

Requirements Engineering

wwwwww

Elizabeth Hull • Ken Jackson
Jeremy Dick

Requirements Engineering

Elizabeth Hull, BSc, PhD, CEng, FBCS
School of Computing and Mathematics
University of Ulster
Newtownabbey, Co Antrim
UK
mec.hull@ulst.ac.uk

Ken Jackson, BSc, MSc, MBCS
University of Ulster
Newtownabbey, Co Antrim
UK
kenjackson@fastmail.fm

Jeremy Dick, BSc (Eng), ACGI,
DPhil, DIC, MA
Integrate Systems Engineering Ltd
Bath
UK
jeremy.dick@integrate.biz

ISBN 978-1-84996-404-3 e-ISBN 978-1-84996-405-0
DOI 10.1007/978-1-84996-405-0
Springer London Dordrecht Heidelberg New York

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2010937427

© Springer-Verlag London Limited 2011
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
 permitted under the Copyright, Designs and Patents Act 1988, this publication may only be repro-duced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms of licenses issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to
the publishers.
The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of
a specific statement, that such names are exempt from the relevant laws and regulations and there-fore
free for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the informa-tion
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

We would like to dedicate this book as follows:

To my late parents John and Edna Hull

Elizabeth Hull

To my wife Chris,
To my children and their spouses Kate, Stef,
Andy, Amy and Pete
and to my grand children Lizzie, Alice, Emily
and Annabel

Ken Jackson

To my wife
Yvonne and to my children
Sebastian, Timothy, Angus, Robin and Felicity

Jeremy Dick

wwwwww

vii

In our desire to keep the material in this book current, the main driver in creating a
new edition has been to adapt to the latest release of DOORS. Since the publication
of Edition 2, Telelogic – the developer of DOORS – has been acquired by IBM, and
the tool has become part of the IBM/Rational stable. While the basic functions of
the tool remain unchanged, the look-and-feel has advanced considerably. Therefore,
Chapter 9 has been updated for DOORS version 9.2.

At the same time, we felt the need to provide a more explicit definition of
Requirements Engineering. In searching the literature, we could not find a satisfac-
tory definition, and we have addressed this in Chapter 1.

Apart from this, there is an expanded description of Product Family Management
in Chapter 8, and a variety of small corrections throughout.

We hope our readers – students and practitioners – continue to find this a valu-
able text in advancing their understanding of the topic.

April 2010 Elizabeth Hull
Ken Jackson
Jeremy Dick

Preface to the Third Edition

wwwwww

ix

Preface to the Second Edition

This second edition follows quickly on the first edition and is an indication of how
fast the subject is changing and developing. In the past 2 years there have been
significant advances and these are reflected in this new edition.

Essentially, this is an update that places more emphasis on modelling by describ-
ing a greater range of approaches to system modelling. It introduces the UML2,
which is the recent standard approved by the OMG. There is also an enhanced
discussion on the relationship between requirements management and modelling,
which relates well to the concept of rich traceability.

The chapter on the requirements management tool DOORS has been revised to
use Version 7 of the tool and this is complemented with examples taken from the
DOORS/Analyst tool which demonstrates how the concepts of modelling can be
captured and created within DOORS.

The text is still aimed at students and practitioners of systems engineering who
are keen to gain knowledge of using requirements engineering for system
development.

As before, a website supporting additional material is available at:
http://www.requirementsengineering.info

June 2004 Elizabeth Hull
Ken Jackson
Jeremy Dick

wwwwww

xi

Preface to the First Edition

Requirements Engineering is common sense, but it is perceived to be difficult and
is not well understood. For these reasons it is generally not very well done. The
ever-increasing pressures on an organisation are often given as the main reasons for
not introducing a more disciplined approach to requirements engineering, but its
aim will be to do the job properly, so the task of the requirements engineer is to
work out how best to help the organisation achieve its goal.

Systems engineering is critical in today’s industry and requirements engineering
is an important stage of that overall process. A good process is key to requirements
engineering – it determines how efficiently and rapidly products can be generated.
This is particularly important in a global competitive market where the ‘time to
market’ and meeting stakeholder requirements are the key success factors.

Requirements engineering is also about management and hence issues in rela-
tion to requirements and management blend to show how requirements can be used
to manage systems development.

The book is concerned with engineering requirements and how systems engi-
neers may be helped to create better requirements. A generic process is presented
which assists the reader in gaining a good understanding of the essence of require-
ments engineering. The process is then instantiated for the problem and solution
domains of development. The book also addresses the concept of system modelling
and presents various techniques and methods which are widely used. An important
feature of the book is the presentation of approaches to traceability, the way in
which it is captured and discusses metrics which can be derived from traceability.
Finally the book presents an overview of DOORS which is a tool for requirements
management. A case study is used to illustrate the process presented in the book
and the features of the tool.

This book should be read by those systems engineers (requirements engineers) in
industry, who, being practitioners are keen to gain knowledge of using requirements
engineering for system development. The book will also be of interest to final year
undergraduate students in Computer Science, Software Engineering and Systems
Engineering studying a course in Requirements Engineering and also to postgraduate
research students in Computer Science or more generally in Engineering.

xii Preface to the First Edition

The approach taken in the book is based on current research in Requirements
Engineering, however it has not only taken the academic view but has also built
substantially on current experience of working in industry to enable system engi-
neers to manage requirements (and projects) more successfully. It provides a snap-
shot, in this rapidly evolving subject, of what we see as best practice in Requirements
Engineering today.

A web site supporting additional material for the book can be found at: http://
www.requirementsengineering.info/

May 2002 Elizabeth Hull
Ken Jackson
Jeremy Dick

xiii

Acknowledgements

Thanks are due to a number of individuals and organisations who helped in various
ways:

Richard Stevens, who inspired us with his work on requirements management
and who laid the foundation for the work in this book. He was a founder of
Requirements Engineering Ltd. (later Quality Systems and Software Ltd.), which
developed the DOORS tool.

Les Oliver (who worked for Astrium at the time) for assistance in the develop-
ment of statecharts for agreement, qualification and satisfaction.

Praxis Critical Systems (now Altran Praxis) for the initial concept of design
justification which become Rich Traceability.

Keith Collyer, Jill Burnett and other colleagues of Telelogic Ltd. for contribu-
tions to ideas presented in this book and for reviews, comments, suggestions and
encouragement.

wwwwww

xv

Contents

1 Introduction ... 1
 1.1 Introduction to Requirements .. 1
 1.2 Introduction to Systems Engineering ... 4
 1.3 Defining Requirements Engineering .. 6

1.3.1 Definition of a Requirement... 6
1.3.2 Definition of a Stakeholder .. 7
1.3.3 Definition of Requirements Engineering 7

 1.4 Requirements and Quality .. 9
 1.5 Requirements and the Lifecycle ... 10
 1.6 Requirements Tracing .. 13
 1.7 Requirements and Modelling ... 17
 1.8 Requirements and Testing .. 19
 1.9 Requirements in the Problem and

Solution Domains .. 20
1.10 How to Read this Book .. 22

2 A Generic Process for Requirements Engineering 25
 2.1 Introduction .. 25
 2.2 Developing Systems ... 25
 2.3 Generic Process Context .. 28

2.3.1 Input Requirements and Derived Requirements 29
2.3.2 Acceptance Criteria and Qualification Strategy 30

 2.4 Generic Process Introduction ... 31
2.4.1 Ideal Development ... 31
2.4.2 Development in the Context of Change 31

 2.5 Generic Process Information Model .. 33
2.5.1 Information Classes .. 34
2.5.2 Agreement State ... 36
2.5.3 Qualification State .. 37
2.5.4 Satisfaction State .. 37
2.5.5 Information Model Constraints .. 38

xvi Contents

 2.6 Generic Process Details ... 38
2.6.1 Agreement Process ... 38
2.6.2 Analyse and Model ... 40
2.6.3 Derive Requirements and Qualification Strategy

Fig. 2.1.3 Portrays the Process for Deriving Requirements
and Qualification Strategy.. 42

 2.7 Summary .. 45

3 System Modelling for Requirements Engineering 47
 3.1 Introduction .. 47
 3.2 Representations for Requirements Engineering 48

3.2.1 Data Flow Diagrams .. 48
3.2.2 Entity-Relationship Diagrams .. 54
3.2.3 Statecharts .. 55
3.2.4 Object-Oriented Approaches .. 56

 3.3 Methods .. 58
3.3.1 Viewpoint Methods .. 59
3.3.2 Object-Oriented Methods ... 67
3.3.3 The UML Notation ... 70
3.3.4 Formal Methods ... 75

 3.4 Summary .. 76

4 Writing and Reviewing Requirements .. 77
 4.1 Introduction .. 77
 4.2 Requirements for Requirements .. 78
 4.3 Structuring Requirements Documents ... 79
 4.4 Key Requirements .. 80
 4.5 Using Attributes ... 80
 4.6 Ensuring Consistency Across Requirements 82
 4.7 Value of a Requirement .. 83
 4.8 The Language of Requirements ... 84
 4.9 Requirement Boilerplates ... 85
4.10 Granularity of Requirements .. 88
4.11 Criteria for Writing Requirements Statements 89
4.12 Summary .. 90

5 Requirements Engineering in the Problem Domain 93
 5.1 What is the Problem Domain? ... 93
 5.2 Instantiating the Generic Process ... 94
 5.3 Agree Requirements with Customer .. 95
 5.4 Analyse & Model ... 96

5.4.1 Identify Stakeholders ... 96
5.4.2 Create Use Scenarios ... 98
5.4.3 Scoping the System .. 101

 5.5 Derive Requirements ... 102
5.5.1 Define Structure ... 102
5.5.2 Capture Requirements ... 106

xviiContents

5.5.3 Define Acceptance Criteria .. 112
5.5.4 Define Qualification Strategy .. 113

 5.6 Summary .. 114

6 Requirements Engineering in the Solution Domain 115
 6.1 What is the Solution Domain ... 115

 6.2 Engineering Requirements from Stakeholder Requirements
to System Requirements .. 116
6.2.1 Producing the System Model ... 117

 6.2.2 Creating System Models to Derive
System Requirements .. 118

6.2.3 Banking Example ... 123
6.2.4 Car Example .. 126
6.2.5 Deriving Requirements from a System Model 131

 6.2.6 Agreeing the System Requirements
with the Design Team .. 132

 6.3 Engineering Requirements from System
Requirements to Subsystems ... 133
6.3.1 Creating a System Architecture Model 134

 6.3.2 Deriving Requirements from an Architectural
Design Model ... 134

 6.4 Other Transformations Using
a Design Architecture ... 135

 6.5 Summary .. 136

7 Advanced Traceability .. 137
 7.1 Introduction .. 137
 7.2 Elementary Traceability ... 137
 7.3 Satisfaction Arguments .. 139
 7.4 Requirements Allocation .. 143
 7.5 Reviewing Traceability .. 144
 7.6 The Language of Satisfaction Arguments .. 144
 7.7 Rich Traceability Analysis ... 145
 7.8 Rich Traceability for Qualification .. 146
 7.9 Implementing Rich Traceability .. 146

7.9.1 Single-Layer Rich Traceability .. 146
7.9.2 Multi-Layer Rich Traceability ... 147

7.10 Design Documents ... 147
7.11 Metrics for Traceability .. 152

7.11.1 Breadth ... 153
7.11.2 Depth .. 153
7.11.3 Growth ... 153
7.11.4 Balance ... 154
7.11.5 Latent Change .. 155

7.12 Summary .. 158

xviii Contents

8 Management Aspects of Requirements Engineering 159
 8.1 Introduction to Management .. 159
 8.2 Requirements Management Problems ... 160

8.2.1 Summary of Requirement Management Problems 162
 8.3 Managing Requirements in an Acquisition Organisation 162

8.3.1 Planning ... 162
8.3.2 Monitoring ... 165
8.3.3 Changes.. 165

 8.4 Supplier Organisations ... 167
8.4.1 Bid Management .. 167
8.4.2 Development .. 171

 8.5 Product Organisations .. 173
8.5.1 Planning ... 173
8.5.2 Monitoring ... 177
8.5.3 Changes.. 178

 8.6 Summary .. 179
8.6.1 Planning ... 179
8.6.2 Monitoring ... 179
8.6.3 Changes.. 180

9 DOORS: A Tool to Manage Requirements ... 181
 9.1 Introduction .. 181
 9.2 The Case for Requirements Management .. 182
 9.3 DOORS Architecture ... 182
 9.4 Projects, Modules and Objects ... 183

9.4.1 DOORS Database Window .. 183
9.4.2 Formal Modules ... 183
9.4.3 Objects ... 186
9.4.4 Graphical Objects .. 189
9.4.5 Tables ... 189

 9.5 History and Version Control .. 190
9.5.1 History ... 190
9.5.2 Baselining .. 190

 9.6 Attributes and Views .. 191
9.6.1 Attributes.. 191
9.6.2 Views ... 192

 9.7 Traceability .. 192
9.7.1 Links .. 192
9.7.2 Traceability Reports ... 193

 9.8 Import and Export .. 195
 9.9 UML Modelling with DOORS/Analyst ... 197
9.10 Summary .. 198

Bibliography .. 199

Index ... 203

1E. Hull et al., Requirements Engineering, DOI 10.1007/978-1-84996-405-0_1,
© Springer-Verlag London Limited 2011

There is no fair wind for one who knows not whither he is
bound.

Lucius Annaeus Seneca, philosopher, 3–65 AD

1.1 Introduction to Requirements

If ever systems development projects needed a “fair wind”, they certainly do so
today. Fast-changing technology and increased competition are placing ever-
increasing pressure on the development process. Effective requirements engineering
lies at the heart of an organisation’s ability to guide the ship and to keep pace with
the rising tide of complexity.

Software is currently the dominant force of change of new products. The trend
is driven by three key factors:

Arbitrary complexity. The most complex systems tend to be those with software,
often integrated deep inside the system’s components. The complexity of such
products is limited only by the imagination of those who conceive them.

Instant distribution. Today a company can think of a new product, implement it in
software, and rapidly distribute it around the world. For example, a car manu-
facturer can improve the software in its diagnostic system, and then transmit it
electronically around the world to tens of thousands of car showrooms in a day.

“Off-the-shelf” components. Systems are now constructed from bought-in technology
and ready-made components with a corresponding reduction in the product
development cycle.

The net impact of these trends is a sudden intensity of competition, and the ability to
monopolise the rewards from the new technology without needing large factories. The
result is pressure to reduce the development cycle and the time to deploy technology.
But ‘time to market’ is not sufficient. The real goal is ‘time to market with the right
product’. Establishing the requirements enables us to agree on and visualise the ‘right
product’. A vital part of the systems engineering process, requirements engineering first

Chapter 1
Introduction

2 1 Introduction

defines the problem scope and then links all subsequent development information to it.
Only in this way can one expect to control and direct project activity; managing the
development of a solution that is both appropriate and cost-effective.

Requirements are the basis for every project, defining what the stakeholders – users,
customers, suppliers, developers, businesses – in a potential new system need from it,
and also what the system must do in order to satisfy that need. To be well understood
by everybody they are generally expressed in natural language and herein lies the chal-
lenge: to capture the need or problem completely and unambiguously without resorting
to specialist jargon or conventions. Once communicated and agreed, requirements drive
the project activity. However the needs of the stakeholders may be many and varied,
and may indeed conflict. These needs may not be clearly defined at the start, may be
constrained by factors outside their control or may be influenced by other goals which
themselves change in the course of time. Without a relatively stable requirements base
a development project can only flounder. It is like setting off on a sea journey without
any idea of the destination and with no navigation chart. Requirements provide both the
“navigation chart” and the means of steering towards the selected destination.

Agreed requirements provide the basis for planning the development of a system
and accepting it on completion. They are essential when sensible and informed
tradeoffs have to be made and they are also vital when, as inevitably happens,
changes are called for during the development process. How can the impact of a
change be assessed without an adequately detailed model of the prior system?
Otherwise what is there to revert to if the change needs to be unwound?

Even as the problem to be solved and potential solutions are defined one must
assess the risks of failing to provide a satisfactory solution. Few sponsors or stake-
holders will support product or systems development without a convincing risk
management strategy. Requirements enable the management of risks from the earliest
possible point in development. Risks raised against requirements can be tracked,
their impact assessed, and the effects of mitigation and fallback plans understood,
long before substantial development costs have been incurred.

Requirements therefore form the basis for:

Project planning•	
Risk management•	
Acceptance testing•	
Trade off•	
Change control•	

The most common reasons for project failures are not technical and Table 1.1 iden-
tifies the main reasons why projects fail. The data is drawn from surveys conducted
by the Standish Group in 1995 and 1996, and shows the percentage of projects that
stated various reasons for project failure. Those marked with an asterisk are directly
related to requirements.

The problems fall into three main categories:

Requirements – either poorly organised, poorly expressed, weakly related to stake-
holders, changing too rapidly, or unnecessary; unrealistic expectations

31.1 Introduction to Requirements

Management problems of resources – failure to have enough money, and lack of
support, or failure to impose proper discipline and planning, many of these arise
from poor requirements control

Politics – which contributes to the first two problems

All these factors can be addressed at fairly low cost.
Project success factors are not quite the inverse of the failure factors, but as can be

seen in Table 1.2, Management support and proper planning are clearly seen as
important here – the larger the project, and the longer its schedule, the higher the
chance of failure (Scientific American, Sept. 1994).

This book considers an engineering approach to requirements in general and
requirements management in particular. It explains the differences between stake-
holder requirements and system requirements and indicates how requirements can be
used to manage system development. It also shows how traceability from stakeholder
requirements through system requirements to design can be used to measure progress,
manage change and assess risks. It exposes the reader to those qualities of require-
ments that make them suitable for validating and verifying designs and solutions, and
stresses the need to produce designs that can be integrated and tested easily.

Requirements management has important interfaces to project management,
which is recognised in the book through the presence of Chapter 8, “Management
Aspects of Requirements Engineering”.

* Incomplete requirements 13.1%
* Lack of user involvement 12.4%

Lack of resources 10.6%
* Unrealistic expectations 9.9%

Lack of executive support 9.3%
* Changing requirements/specifications 8.7%

Lack of planning 8.1%
* Didn’t need it any longer 7.5%

Standish Group 1995 & 1996
Scientific American, Sept. 1994

Table 1.1 Reasons for project failure

Table 1.2 Project success factors * User involvement 15.9%
Management support 13.9%

* Clear statement of requirements 13.0%
Proper planning 9.6%

* Realistic expectations 8.2%
Smaller milestones 7.7%
Competent staff 7.2%

* Ownership 5.3%

Standish Group 1995 & 1996
Scientific American, Sept. 1994

4 1 Introduction

1.2 Introduction to Systems Engineering

This book is not just about requirements for software. The principles and practice
of requirements engineering apply to complete systems in which software may only
play a small part.

For example, consider a railway system such as the West Coast Mainline from
London to Glasgow. A high-level requirement on the system may be to achieve a
journey time from Euston Station in London to Glasgow in Scotland in less than
250 min. Satisfaction of this single requirement arises from the coordinated interac-
tion of every major component of the system:

The trains, and their speed•	
The tracks, and their ability to support high-speed trains•	
The stations and station staff, and the waiting time they impose on the trains•	
The drivers, and their ability to control the trains•	
The signalling subsystems•	
The train control and detection subsystems•	
The power delivery subsystems•	

While the software in the signalling and control subsystems plays a vital part in
achieving this requirement, it cannot deliver alone. The complete solution involves
the whole system. In fact, most requirements are satisfied by the properties that
emerge from the way the system as a whole behaves.

What then is meant by a “system”?

System: a collection of components – machine, software and human – which
co-operate in an organised way to achieve some desired result – the requirements.

Thus systems include people. In the West Coast Mainline, the drivers and station
staff – the training they receive and the procedures they use – are just as important
as the software and machine components.

Since components must co-operate, interfaces between components are a vital
consideration in system (and requirements) engineering – interfaces between peo-
ple and machine components, between machine components, and between software
components. An example of a machine-to-machine interface in a railway system is
the way train wheels interface with the track. Apart from the physical arrangements
(which are designed to allow the train to be guided along the track without sliding
off), electrical currents across the rails may be used to detect the presence of the
train as part of the train control subsystem.

At the heart of the concept of a “system”, lies the idea of “emergent properties”.
This refers to the fact that the usefulness of a system does not depend on any
particular part of the system, but emerges from the way in which its components
interact. Emergent properties may be desirable, in that they have been anticipated
and designed into the system so as to make the system useful; or they may be

51.2 Introduction to Systems Engineering

undesirable, in other words unanticipated side effects, such as harm to the environment.
The trick in system engineering is to be able to harness desirable emergent properties,
and avoid the undesirable ones.

Another important concept is that of “systems of systems”. Every system can be
construed as being part of a larger, enclosing system. For example, the West Coast
Mainline is part of a wider railway system, and intersects with other major and minor
routes. The entire railway system is part of the wider transport system, and interacts in
all kinds of ways with the road and air transport networks. The transport system itself
provides essential infrastructure for the transport of goods and people as part of the
economy of the country. And the country is part of the wider world, and so forth.

To understand the requirements of a system properly is to understand its enclosing
system. Often the correct functioning of a system depends on provisions of the
enclosing system. For example, the ability of a helicopter to fly depends on the
environment provided by the earth, its gravitation field and atmosphere.

Take another, very simple, example: a cup (Fig. 1.1). It is evident that it has
components: a handle and a bowl-shaped container. What purpose do these com-
ponents serve? The bowl is for containing liquid, and the handle is to allow the
bowl to be held by someone without getting burnt. One may deduce that the pur-
pose of – or requirement – for the cup is to allow a human being to transfer hot
liquid into the mouth without spilling it or getting burnt.

The cup is rich in interfaces. It can be placed on a flat surface for stability; it can
be held in a human hand; it can be filled with fluid and emptied; it must interface with
the fluid for sustained containment; and it must deliver fluid to the human mouth.

But there are other observations to be made:

The cup is no good on its own. It depends on the motor-movement of the human •	
arm to achieve its purpose.
The bowl part of the cup depends crucially on the presence of gravity for its •	
correct functioning. It also has to be used correctly: holding the cup upside down
would cause spilling, and may cause scalding.

At the end of the day, the ability of this simple cup to fulfil its purpose depends on:

Fig. 1.1 A cup as a very simple system

6 1 Introduction

The properties that emerge from the interaction of its components•	
Appropriate interfaces to external components•	
Its correct embedding in the enclosing system – being held in the human hand •	
and lifted by the arm
The presence of the proper environment – another solution would be necessary •	
in weightless conditions

In summary, the engineering of requirements must take the nature of systems into
account. Essential considerations are emergent properties, the constraints and pro-
visions of the external environment, and the interfaces with surrounding systems.

1.3 Defining Requirements Engineering

Because of the inter-connectedness of requirements with other aspects of systems
engineering and project management, it is quite challenging to find a satisfactory
scope for a definition of requirements engineering.

1.3.1 Definition of a Requirement

First of all, what is meant by a requirement? Here is a typical definition drawn from
IEEE-STD-1220-1998 (IEEE 1998):

Requirement: a statement that identifies a product or process operational,
functional, or design characteristic or constraint, which is unambiguous,
testable or measurable, and necessary for product or process acceptability (by
consumers or internal quality assurance guidelines).

This definition draws out a number of facets of a requirement that are briefly dis-
cussed here, and in greater detail later:

•	 Statement. That a requirement should be a statement is perhaps biased towards textual
expression, whereas they can also be captured in tabular form, such as in Tom Gilb’s
Planguage (Gilb 2005), in diagrammatic form in notations such as UML (OMG
2003), in formal notations, such as Z (Spivey 1989), VDM (Jones 1986), LOTOS
(Bjorner 1987) and the B-Method (Abrial 1996), or in domain-specific notations, e.g.
(Chaochen, Z; Hoare, C.A.R.; Ravn, A.P. 1991). The important concept, though, is to
have a set of traceable, manageable elements identified as requirements.

•	 Product or process. Complete solutions contain varying mixtures of product
(things that are built in response to requirements) and process (procedures for
using the things that are built). Requirements may therefore define process as
well as product. In addition to this, there may be requirements that stipulate how
the product should be developed, usually for quality control purposes.

71.3 Defining Requirements Engineering

•	 Operational, functional, or design characteristic or constraint. There are many
different kinds of requirement, giving rise to different kinds of language, analysis,
modelling, process and solution. Note that this definition has carefully avoided
the term “non-functional”, since there is heated debate about what this actually
means. Design characteristics cover performance, usability, safety, maintainabil-
ity and a host of other qualities.

•	 Unambiguous. A statement of requirement has desirable qualities that will be
addressed in detail later. In brief, a requirement should lend itself to a clear,
single understanding, common to all parties involved.

•	 Testable or measurable. Requirements are used to test that the design or solution
is acceptable. For this to be possible, the requirement should be quantified, thus
providing a means of “measuring” the solution against it.

•	 Necessary for product or process acceptability. This highlights the multi-dimensional
role that requirements play: they serve to define what should be designed and
developed, and also define how the solution should be tested and accepted. They
have an influence in the earliest stages of the development process as well as in
the latest stages during acceptance.

•	 By consumers or internal quality assurance guidelines. Requirements come
from many sources, including but not limited to customers, regulatory bodies,
users and internal quality procedures.

Some other synonyms for requirements are: aims, aspirations, capabilities, criteria,
constraints, directives, doctrines, duties, expectations, features, functions, goals,
missions, needs, obligations, objectives, orders, regulations, rules, etc.

1.3.2 Definition of a Stakeholder

The term “stakeholder” has already been used without giving a definition:

Stakeholder: An individual, group of people, organisation or other entity that
has a direct or indirect interest (or stake) in a system.

A stakeholder’s interest in a system may arise from using the system, benefiting
from the system (in terms of revenue or other advantage), being disadvantaged by
the system (in terms, for instance, of cost or potential harm), being responsible for
the system, or otherwise being affected by it.

Stakeholders are legitimate sources of requirements.

1.3.3 Definition of Requirements Engineering

The term “requirements engineering” is often too narrowly equated with require-
ments analysis, which is just one of the activities within the wider discipline. The
emphasis on engineering is useful for two main reasons:

8 1 Introduction

 1. Dealing with requirements is an essential part of every engineering endeavour.
Indeed, requirements engineering is a subset of systems engineering in general,
not just software engineering.

 2. The term subsumes the wide variety of other titles given to activities relating to
requirements, such as requirements analysis and the two terms used for key
process areas in CMMI® (CarnegieMellon 2006): requirements management
and requirements development.

The following, broader definition is one of the most long-standing, and comes from
a DoD software strategy document dated 1991:

Requirements engineering “involves all life-cycle activities devoted to identification of user
requirements, analysis of the requirements to derive additional requirements, documentation
of the requirements as a specification, and validation of the documented requirements
against user needs, as well as processes that support these activities” (DoD 1991).

While this definition covers the identification, analysis, development and validation
of requirements, it omits to mention the vital role that requirements play in accepting
and verifying the solution (usually called verification rather than validation.) A
more recent definition, given in the context of software engineering, suffers the
same defect, but emphasizes the goal-oriented (or purpose-oriented) nature of
requirements engineering, and hints at the importance of understanding and docu-
menting the relationships between requirements and other development artefacts:

Requirements engineering is the branch of software engineering concerned with the real-
world goals for, functions of, and constraints on software systems. It is also concerned with
the relationship of these factors to precise specifications of software behavior, and to their
evolution over time and across software families (Zave 1997).

For the purposes of this book, the following definition will be used:

Requirements engineering: the subset of systems engineering concerned with
discovering, developing, tracing, analyzing, qualifying, communicating and
managing requirements that define the system at successive levels of abstraction.

This definition lists carefully selected key activities that are considered proper to
requirements engineering. There are some activities closely related to requirements
that are considered to be part of some other discipline. An example of this is system
testing or verification; while requirements should have the qualities necessary to allow
the solution to be verified, the verification activity itself is another discipline. It also
references the concept of requirements existing at multiple levels of development.

Here are some notes on the definition:

•	 Discovering. This covers a number of terms often used, such as requirements
elicitation and capture.

•	 Tracing. Tracing of requirements to other artefacts, including requirements at
other layers, provides a means of validating requirements against real-world

91.4 Requirements and Quality

needs, of capturing rationale for the design, and of verifying the design against
requirements.

•	 Qualifying. This refers to all kinds of testing activity, covering testing of the
design and solution, including unit, component, integration, system, acceptance
testing. There is considerable disagreement over the meaning of the terms
 “verification” and “validation”. The term “qualifying” is preferred, because it is
about ensuring that the solution has the required “qualities.” In so much as the
terms are used in this book, to validate requirements is to check a formal expres-
sion of requirements against informal needs as understood in the minds of stake-
holders, and to verify requirements is to check their internal consistency within
layers and between layers of abstraction.

•	 Communicating. Requirements are the means of communication through which
customers, suppliers, developers, users and regulators can agree on what is to be
achieved.

•	 Levels of abstraction. This makes reference to the practice of organizing
requirements into layers and of tracing the satisfaction relationship between
those layers. The requirements of the top layer define the system in terms of the
problems to be solved as agreed by the stakeholders and validated against their
real needs; requirements at subsequent layers define the whole or part of the
system in terms of an implementable solution as verified against the require-
ments at the layer above; requirements at every layer provide a precise means
of qualifying the solution. Some people refer to the relationship between
requirements induced by recording satisfaction between layers as a require-
ments hierarchy, but in reality the many-to-many relationship forms a graph or
heterarchy.

1.4 Requirements and Quality

The consequences of having no requirements are many and varied. There is ample
evidence around us of systems that failed because requirements were not properly
organised. However well the system may appear to work at first, if it is not the
system that users want or need then it will be useless – or user-less.

It is interesting to consider the relationship between requirements and quality.
The term “quality” may be understood in a variety of ways. When asked about
quality cars, one might mention Rolls Royce, Mercedes or Jaguar. This inherent
confusion between “quality” and “luxury” is exposed if consideration is given to
choosing the best car for the annual RAC rally. Neither Rolls Royce, Mercedes nor
Jaguar is chosen, since none of them exhibit the right weight/power ratio, ground
clearance and robustness properties. Recent history shows that the best quality car
in its class is a Skoda – not a luxury car, but the right quality of car for the job.

Quality, then, is “fitness for purpose” or conformance to requirements – it is
providing something that satisfies the customer and in doing so ensures that the
needs of all the stakeholders are taken into account.

10 1 Introduction

As is seen in Chapter 8, requirements engineering acts as a compliment to other
management considerations, such as cost and schedule, by providing a vital focus
on the delivery of quality. Every management decision is a compromise between
cost, schedule and quality, three inter-related axes.

Since requirements engineering is a discipline that applies from the start of the devel-
opment lifecycle, the leverage on quality that can be exercised by proper requirements
management is proportionately greater. Relatively little effort expended in early stages
of development can reap dividends in the later stages. The adage “Quality is Free” (the
title of a book by Phil Crosby) holds true, in that getting it right at the outset can save
huge amounts of effort that would have been necessary to put things right later.
Improving requirements means improving the quality of the product.

1.5 Requirements and the Lifecycle

There is a common misconception that requirements engineering is just a single
phase that is carried out and completed at the outset of product development. The
purpose of this section is to demonstrate that requirements engineering has a vital
role to play at every stage of development.

As an initial approach, consider one of the very last activities in the development
process: acceptance testing. What is a system accepted against? The stakeholder
requirements. So it can be seen straight away that requirements developed at the
outset are still in use in the final stages of development.

The classic V-Model, which is used to portray the various stages of develop-
ment, has its basis in this relationship between testing and requirements. Figure 1.2
shows this relationship at every stage of development.

Stakeholder
Requirements

System
Requirements

Subsystem
Requirements

Component
Requirements

System
test

Integration
test

Component
test

Acceptance
test

Testing is with
respect to

requirements

Fig. 1.2 Requirements in the V-Model

111.5 Requirements and the Lifecycle

The V-Model also views development in terms of layers, each layer addressing the
concerns proper to the corresponding stage of development. Although slightly differ-
ent processes may be used at each layer, the basic pattern of requirements use is the
same – a point reinforced through the introduction of a generic process in Chapter 2.
Figure 1.3 shows the main concern of requirements engineering at each layer.

Another role that requirements can play in an organisation is to act as a means
of communicating between projects. This is a good idea, because many organisa-
tions wish to:

Maximise reuse of artefacts across projects•	
Manage families of similar products•	
Use programme management to coordinate activities•	
Optimise process by learning from the experiences of other projects•	

A good set of stakeholder requirements can provide a concise non-technical
description of what is being developed at a level that is accessible to senior manage-
ment. Similarly, the system requirements can form an excellent technical summary
of a development project. These descriptions can serve as a basis for comparison
with other activities. This is illustrated in Fig. 1.4.

If requirements are to play such a central role in systems development, they need
to be maintained. To change the design of a product without having also updated
the requirements to reflect that change, is to store up huge problems for later stages
of development. Hence requirements engineering connects strongly with change
management.

Whether change originates from within a project – e.g. technical issues arising
from details of the design – or from without – e.g. evolving stakeholder needs – the
impact of that change on quality, cost and schedule needs to be assessed. This
assessment forms the basis on which to:

Stakeholder
Requirements

System
Requirements

Subsystem
Requirements

Component
Requirements

System
test

Integration
test

Component
test

Acceptance
test

defining results for stakeholders,
validating the product

defining what the system must do,
verifying the system

optimising the cost-benefits,
qualifying the requirements

allocating requirements,
qualifying components

Fig. 1.3 Requirements engineering in layers

12 1 Introduction

Accept or reject the change (where that is a choice)•	
Negotiate the cost of the change with the customer/suppliers•	
Organise the redevelopment work•	

The key concept that enables this kind of impact analysis is requirements tracing,
a topic treated in greater detail in Section 1.6, and in Chapters 2 and 7. Suffice to
say that change management is an integral part of the requirements engineering
process. This role is illustrated in Fig. 1.5.

Quite apart from change management, a manager’s ability to control a project is
considerably enhanced by good requirements engineering. Without requirements,

Stakeholder
Requirements

System
Requirements

Subsystem
Requirements

Component
Requirements

System
test

Integration
test

Component
test

Acceptance
test

using traceability
and impact analysis
to manage change

Fig. 1.5 Role of tracebility in change management

Stakeholder
Requirements

System
Requirements

Subsystem
Requirements

Component
Requirements

System
test

Integration
test

Component
test

Acceptance
test

informing the
enterprise

learning from
the enterprise

Fig. 1.4 Enterprise requirements engineering

131.6 Requirements Tracing

project managers have no means of gauging how well the project is going, or even
if it is going in the right direction. When it comes to changes there is nothing
against which change can be judged. What is more, when they do come to inter-
vene, their only approach is at a technical level, which is inappropriate to their role,
and which interferes with the technical role properly played by the engineers.
Requirements well expressed at the appropriate level give managers just the right
view of the project to be able to perform their role.

In summary, requirements are essential to the health of every system develop-
ment. They influence the whole development from beginning to end and from top
to bottom. Without effective requirements engineering, development projects are
like ships drifting rudderless in a storm! Above all else, with good requirements
management, hearing the voice of the users and customers ceases to be a game of
Chinese whispers, and becomes a matter of clear lines of communication throughout
the development process.

1.6 Requirements Tracing

In the requirements engineering context, tracing is about understanding how high-
level requirements – objectives, goals, aims, aspirations, expectations, needs – are
transformed into low-level requirements. It is therefore primarily concerned with
the relationships between layers of information.

In a business context, one may be interested in how

Business vision •	 is interpreted as
Business objectives •	 are implemented as
Business organisation and processes•	

In an engineering context, the interest may focus on how

Stakeholder requirements •	 are met by
System requirements •	 are partitioned into
Subsystems •	 are implemented as
Components•	

Tracing can contribute to the following benefits:

Greater confidence in meeting objectives. Establishing and formalising relation-
ships engenders greater reflection on how objectives are satisfied.

Ability to assess the impact of change. Various forms of impact analysis become
possible in the presence of tracing.

Improved accountability of subordinate organisations. Greater clarity in how
suppliers contribute to the whole.

Ability to track progress. It is notoriously difficult to measure progress when all that
you are doing is creating and revising documents. Processes surrounding tracing
allow precise measures of progress in the early stages.

Ability to balance cost against benefit. Relating product components to the require-
ments allows benefit to be assessed against cost.

14 1 Introduction

Traceability relationships are usually many-to-many – that is, one lower-level
requirement may be linked to several higher-level ones, and vice versa. The simplest
way to implement tracing is to link requirements statements in one layer with statements
in another. Requirements management tools typically allow such linking by drag-
and-drop between paragraphs of documents. The links are rather like hyperlinks in
web pages, but should ideally be traversable in either direction. Figure 1.6 shows
tracing downwards through the layers of requirements, and across to the test
information.

The direction of the arrows follows a particular convention: information
traces back to the information it responds to. There are a number of reasons for this
convention:

It usually corresponds to the chronological order in which information is created: •	
always link back to the older information.
It usually corresponds to access rights due to ownership: one owns the outgoing •	
links from a document, someone else owns the incoming links.

Various forms of traceability analysis can be used to support requirements engineering
processes, presented in Table 1.3.

When performing coverage analysis, it is important to realise that counting links
tells only a small part of the story. The presence of one or more links gives no
indication that the coverage provides correct or complete satisfaction, which must

Stakeholder
Requirements

System
Requirements

Subsystem
Requirements

Component
Requirements

System
test plan

Integration
test plan

Component
test plan

Acceptance
test Plan

Fig. 1.6 Requirements tracing

151.6 Requirements Tracing

remain an engineering judgement. We will see later that two aspects have to be
considered when assessing the quality of tracing: sufficiency and necessity.

Impact analysis is used to determine what other artefacts in the development
might be affected if a selected artefact changes. This is illustrated in Fig. 1.7. The
impact is potential; creative analysis has to be carried out by an engineer to deter-
mine the exact nature of the impact, if any.

Derivation analysis works in the opposite direction to impact analysis. A low
level artefact – such as a requirement, design element or test – is selected, and the
tracing is used to determine what higher-level requirements have given rise to it.
Elements in the design that do not so trace back are potentially adding cost without
benefit.

Table 1.3 Types of traceability analysis

Type of analysis Description Processes supported

Impact analysis Following incoming links, in answer to
the question: “What if this was to
change?”

Change management

Derivation analysis Following outgoing links, in answer to
the question: “Why is this here?”

Cost/benefit analysis

Coverage analysis Counting statements that have links,
in answer to the question: “Have I
covered everything?”

(May be used as an approximate
measure of progress, but not of
sufficiency – see below.)

General engineering
Management reporting

Stakeholder
Requirements

System
Requirements

Subsystem
Requirements

Component
Requirements

System
test plan

Integration
test plan

Component
test plan

Acceptance
test Plan

Im
pa

ct
 a

na
ly

si
s

D
erivation analysis

Derivation analysis

Impact analysis

Fig. 1.7 Impact and derivation analysis

16 1 Introduction

Finally, coverage analysis can be used to determine that all requirements do
trace downwards to lower layers, and across to tests. The absence of such a trace is
a fairly certain indication that the requirement will not be met or tested. The
 presence of a link does not, of course, ensure that the requirement will be met – that
again requires creative engineering judgement.

Coverage can also be used as a measure of progress: how far have the systems
engineers got in responding to the stakeholder requirements? Suppose the task of
writing systems requirements in response to stakeholder requirements is given to an
engineer. As she writes system requirements, she links them back to the stakeholder
requirements she is responding to. (By doing it as she goes along, the insertion of
tracing is very little extra overhead – it is much more difficult to establish tracing
after both documents have been written!)

At any stage of the task, the engineers’ progress can be measured in terms of the
percentage of stakeholder requirements that have been covered so far. This is a very
useful management tool during the early stages of development.

The same principle can be used to measure progress in planning tests. What
percentage of the requirements have tests defined so far? These two dimensions of
coverage are summarized in Fig. 1.8.

Because of the kinds of analysis that can be carried out, tracing is a simple concept
that lies at the heart of the requirements engineering process. More advanced forms
of tracing are discussed in detail in Chapter 7.

Stakeholder
Requirements

System
Requirements

Subsystem
Requirements

Component
Requirements

System
test plan

Integration
test plan

Component
test plan

Acceptance
test Plan

Are all
requirements
covered by the
layer below?

Are all
requirements
covered by tests?

Fig. 1.8 Coverage analysis

171.7 Requirements and Modelling

1.7 Requirements and Modelling

It is important to understand the relationship between requirements management
and system modelling. They are mutually supportive activities that should not be
equated. Figure 1.9 compares the relationship to a sandwich. In this analogy,
requirements management is the “bread and butter” of the development cycle. The
“filling” provided by system modelling explains and exposes the analysis and
design that has led to subsequent layers of requirements.

Some people talk about requirements modelling. This is a misnomer. You
model the system design, not the requirements. Modelling supports the design
activity, and is where most of the creative work takes place. It assists the engi-
neer in understanding enough of the system to decompose the requirements at a
particular level into the next level down. The requirements themselves are a
complete snapshot of what is required at each level in increasing levels of
detail.

A particular model never says everything about a system – if it did, it would not
be a model. For this reason, several different, possibly inter-related, models of
systems are often used to cover a variety of different aspects. It is left to the expres-
sion of requirements – usually in textual form – to cover those aspects not
modelled.

A model is an abstraction of a system that deliberately focuses on some aspects
of a system to the exclusion of others. Abstraction is, in this sense, avoidance of
distraction – ignoring those details that, although important, are not relevant to a
particular model. The advantage of this is that smaller amounts of related informa-
tion can be collected, processed, organised and analysed, applying various specific
techniques pertinent to the aspects under study.

Where a large amount of complex information has to be managed, model-
ling provides a means of zooming in, collecting together subsets of the data for a
particular purpose, and zooming out once more to appreciate the whole. It aids
in maintaining a system-wide grasp through focussing on small amounts of
information at a time.

Requirements layer

Requirements layer

Requirements layer

Requirements layer

Modelling layer

Modelling layer

Modelling layer

Fig. 1.9 The systems engineering sandwich

18 1 Introduction

Figure 1.10 portrays the inter-related roles that requirements and system modelling
play. Models assist the requirements engineer in analysing the requirements at a
particular level so as to:

Communicate with the customer, and improve mutual understanding of the system •	
to be developed.
Analyse the system to ascertain the presence of desired emergent properties •	
(and the absence of undesirable ones).
Determine how to satisfy the requirements by deriving new requirements at the •	
layer below.

The nature of the models used will vary from layer to layer. At the top layer, usage
models such as “stakeholder scenarios” are used to derive the first statement of
stakeholder requirements. Following this, various kinds of functional model may be
used to derive system requirements from the stakeholder requirements. For soft-
ware, such models could include UML class diagrams, message sequence charts
and state charts (see Chapter 3 for more details on these modelling techniques).

Moving from system requirements to architecture, the concerns become focused
on various aspects of performance. Multiple models may be used to give confidence
that the selected architecture can deliver against non-functional as well as functional
requirements. Here, models may include queuing theory used to assess performance,
wind tunnels for assessing aerodynamics, timetable modelling to assess viability of
journey times.

As is evident from these examples, the nature of the models also varies from
application to application. The modelling of timetables may be appropriate for the
design of railway systems, but not for aircraft design, where the modelling of aero-
dynamics is rather more appropriate. (Aerodynamics may also be important to
high-speed trains, of course.) Message sequence charts may be used in communica-
tions systems, but data-rich applications will find data-focused modelling such as
entity-relationship diagramming more appropriate.

Requirements layer

Modelling layer

Requirements layer

Modelling layer

Requirements layer

Modelling layer

Requirements layer

Usage modelling

Functional
modelling

Stakeholder
requirements

Sub-system
requirements

System
requirements

Statement
of need

Performance
modelling

Fig. 1.10 Requirements and modeling

191.8 Requirements and Testing

Whereas the models may vary, the principles of requirements management
remain generic across applications. Since this book is about requirements engineering,
it also covers the closely associated subject of modelling and methods.

1.8 Requirements and Testing

As has been discussed above, testing is closely related to requirements at every
level. In its broadest sense, testing is any activity that allows defects in the system
to be detected or prevented, where a defect is a departure from requirements. So
testing activities include reviews, inspections, analysis through modelling as well
as the classical tests of components, subsystem and systems that are carried out.

Because of the diversity of testing activities, the term qualification is used in this
book to refer to all such activities.

Qualification should begin as early as possible, since waiting until the system is
almost complete before carrying out any kind of testing can lead to very expensive
design changes and rebuilds. The earliest kinds of qualification action take place
during the design of the system, and include requirements reviews, design inspec-
tions, and various forms of analysis carried out on system models.

Figure 1.11 portrays the qualification strategy along a time-line below the
V-Model. Early qualification actions relate to the left-hand side of the V-Model,
later ones to the test stages on the right-hand side.

Stakeholder
Requirements

System
Requirements

Subsystem
Requirements

Component
Requirements

System
test

Integration
test

Component
test

Acceptance
test

Reviews / Design inspections / Analysis / Prototypes / Component tests / Rig tests / System tests / Trials

Qualification Strategy / Programme
time

Fig. 1.11 Qualification strategy and the V-Model

20 1 Introduction

A single stakeholder requirement will typically give rise to a multitude of
 qualification activities at various stages of development. Where a requirement is
satisfied through useful emergent properties, qualification of components alone
is insufficient; tests have to be carried out at the level where emergent properties
are manifest.

1.9 Requirements in the Problem and Solution Domains

Systems engineering is concerned with developing and managing effective solu-
tions to problems. As has been discussed, it is a staged process vital for businesses
in enabling them to produce the right product within acceptable time-scales and
costs.

Early in the process, the definition of the requirements for the product to be built
is of prime importance. From a management and engineering point of view, a clear
distinction should be made between the “problem domain” and the “solution
domain”. Those stages of development associated with the highest levels of system
description – statement of need, usage modelling and stakeholder requirements –
should be firmly rooted in the problem domain, whereas subsequent layers, starting
with system requirements, operate in the solution domain.

Table 1.4 portrays the ideal boundary between the problem and solution
domains, and the roles that the top requirements layers play.

There is an important principle of abstraction at play here. The initial statement
of capability should state no more than is necessary to define the problem, and avoid
any reference to particular solutions. This allows freedom to the system engineers to
carry out their role, which is to devise the best solution without preconceived ideas.

Modelling assists in the derivation of the next layer of requirements, and tends to
consider possible solutions, even at a high level. To avoid inappropriate solution
bias, rather than focus on the system in question, early modelling should focus on
the immediately enclosing system. For instance, if a radio system is being developed

Table 1.4 Problem and solution spaces

Requirements
layer Domain View Role

Stakeholder
requirements

Problem domain Stakeholder’s
view

State what the stakeholders
want to achieve through
use of the system. Avoid
reference to any particular
solution.

System
requirements

Solution domain Analyst’s view State abstractly what the system
will do to meet the stakeholder
requirements. Avoid reference
to any particular design.

Architectural
design

Solution domain Designer’s view State how the specific design will
meet the system requirements.

211.9 Requirements in the Problem and Solution Domains

for a sailing boat, then early modelling should focus on the vessel and not so much
on the radio. This leads to a statement of the problem to be solved in the context of
the enclosing solution.

The same principle applies to the systems engineers: they should allow the
designers the freedom to perform their role, that of designing against an abstract
solution. The elements of solution introduced through functional modelling remain
at a high-level, leaving the detail to be defined in subsequent stages.

For example, in a traffic control system:

The stakeholders may express the problem in terms of maximising traffic flow
while minimising the risk of accidents at a traffic junction and minimising cost
of maintenance.

The systems engineers may consider a variety of solutions, such as bridges, traffic-
lights or roundabouts, and a bridge as the approach that best solves the problem
within constraints of development and maintenance costs.

The designers then set to work designing the bridge within the physical constraints
presented by the physical environment.

It is frequently the case that the stakeholders will express the problem in terms of
a preconceived solution. It then becomes the requirements engineers’ job to deter-
mine whether there is a good reason for mandating a particular solution, or whether
it is an unnecessary constraint. For example, the customer starts by trying to
 procure traffic lights; the supplier asks questions that lead to an understanding of
the underlying objectives – maximise traffic flow and minimise risk for drivers and
pedestrians – leading to a solution-independent expression of the problem; the
 reasons for the choice of solution are now better understood, and perhaps confirmed
through appropriate modelling, leading to a precise and well-informed specification
of the abstract solution.

When it comes to procuring systems, a judgement needs to be made as to
whether to procure against the problem domain (stakeholder requirements) or
against the abstract solution domain (system requirements). Often the nature of the
solution is known in advance, and it makes sense to procure against system require-
ments framed in terms of that solution. However, even if procuring against a
particular solution, the discipline of capturing a statement of the pure problem prior
to a solution still offers important advantages.

Without a clear distinction between problem and solution, the following may
result:

Lack of understanding of the real problem•	
Inability to scope the system, and understand which functions to include•	
Domination of debate about the system by the developers and suppliers, because •	
the only descriptions of the system are expressed in terms of solutions
Inability to find optimal solutions due to lack of design freedom•	

For these reasons, the book makes the distinction between stakeholder and system
requirements, in terms of how requirements are captured, modelled and expressed.

22 1 Introduction

1.10 How to Read this Book

This book is concerned with engineering requirements and how this process may
help those system engineers and software engineers to create better requirements.
Chapter 1 has discussed the importance of requirements and has investigated the
role of requirements engineering in all parts of the development lifecycle.

Because of multiple dependencies between chapters, the ordering of material
has been carefully chosen to reduce the number of forward references. While it is
best to read the chapters in the sequence presented, some guidelines are given here
to assist readers with particular objectives to make efficient use of the book.

Chapter 2 presents requirements engineering in a generic form that is applicable
to all layers of development. While this approach assists the reader in gaining a
good understanding of the essence of requirements engineering, it remains, of
necessity, quite abstract. The generic process is, however, made more concrete in
Chapters 5 and 6, where it is adapted to the stakeholder and system layers of devel-
opment using numerous examples.

Chapter 3 talks about system modelling, covering various techniques and
methods in wide use. This is again in preparation for Chapters 5 and 6, where
particular modelling techniques are placed in the context of stakeholder and system
requirements.

Chapter 1 – Introduction

Chapter 2 – A Generic Process for Requirements Engineering

Chapter 3 – System modelling and methods for Requirements Engineering

Chapter 5 – Requirements Engineering in the Problem Domain

Chapter 6 – Requirements Engineering in the Solution Domain

Chapter 4 – Writing and Reviewing Requirements

Chapter 7 – Advanced Traceability

Chapter 8 – Management Aspects of Requirements Engineering

Chapter 9 – DOORS: a Tool to Manage Requirements

Fig. 1.12 Chapter dependencies

231.10 How to Read this Book

Chapter 4 addresses the structuring of requirements documents, and the expression
of requirements statements. Here the language of different kinds of requirement is
discussed.

Chapter 5 instantiates the generic process to address the problem domain, in
which stakeholder requirements are the primary focus.

Chapter 6 then does the same for requirements in the solution domain, from
system requirements downwards through subsystems and components.

Chapter 7 presents further approaches to traceability, aimed at improving the
way in which rationale for traceability is captured, and discusses metrics that can
be derived from traceability.

Chapter 8 addresses project management in a requirements management context,
covering a variety of organisation types.

Finally, Chapter 9 provides an overview of DOORS as an example of a software
tool which serves as an enabler of a requirements management process. A case study
is used to illustrate the processes presented in the book, and features of the tool.

Figure 1.12 depicts the chapter dependencies.

25E. Hull et al., Requirements Engineering, DOI 10.1007/978-1-84996-405-0_2,
© Springer-Verlag London Limited 2011

If you can’t describe what you are doing as a process,
you don’t know what you’re doing.

William Edwards Deming,
management consultant, 1900–1993 AD

2.1 Introduction

This chapter introduces the concept of a process for the development of systems.
It starts by examining the way in which systems are developed. This leads to the
identification of a development pattern that can be used in many different contexts.
This development pattern is expressed as a generic process and is explained in some
detail. Subsequent chapters indicate how the generic process can be instantiated for
specific purposes. The relationship between process models and information models
is also explored and an information model for the generic process is developed.

2.2 Developing Systems

Before any system can be developed it is essential to establish the need for the system.
If the purpose of a system is not known, it is unclear what sort of system will be devel-
oped, and it is impossible to determine whether the system, when developed, will
satisfy the needs of its users. Forest Gump summed it up quite nicely when he said:

If you don’t know where you are going, you are unlikely to end up there.

The rigour with which the need is expressed will depend upon the nature of the indi-
vidual responsible for stating the need and his/her role within the organisation in
which they work. The need may be expressed in fairly vague terms initially, e.g.
“I would like a system that improves the efficiency of my department”. Clearly, such
a “specification” is not appropriate to be used as the basis for going out to buy a
 system. However, it could be the basis for a study to determine exactly what the person

Chapter 2
A Generic Process for Requirements
Engineering

26 2 A Generic Process for Requirements Engineering

really wants. Such a study would have to determine where the department is currently
inefficient and to postulate how the capabilities to be provided by the proposed
 system would be used to improve the efficiency. These activities, which transform a
vague statement of need into a set of requirements that can be used as the basis for
purchasing a system, constitute the process of developing the Stakeholder Requirements.
Stakeholders include people, who will directly interact with the system, but also other
people and organisations that have other interests in its existence. The topic of creating
Stakeholder requirements is dealt with in detail in Chapter 5.

Figure 2.1 illustrates the development process. In the diagrammatic conventions
used for process models, circles (or ovals) represent processes and rectangles
 represent data or information that is read or produced. The arrows indicate whether
data is read or written. Thus, Fig. 2.1 states that the Develop Stakeholder Requirements
process takes the Statement of Needs and produces the Stakeholder Requirements.
It also creates and reads a Use Model.

Once a sound set of Stakeholder Requirements exist that define what the stake-
holders want to be able to do with the proposed system, it is possible to begin to
think about potential solutions. Rather than jumping straight to a design, it is good
practice to first determine what characteristics the system must have irrespective of
the final detailed design. This process is known as establishing the System

Stakeholder Requirements

System Requirements

System Component Requirements
(Subsystem Requirements)

Subsystem Component Requirements
(lower level subsystem requirements)

Statement of Needs

Develop
System

Requirements

Develop
System
Design

Develop
Subsystem

Design

Develop
Stakeholder

Requirements

Problem
Domain

Solution
Domain

Abstract
Model

System Design
Architecture

Subsystem Design
Architecture

Use
Model

Fig. 2.1 System development process

272.2 Developing Systems

Requirements. It is recommended that an abstract model of the proposed system be
produced. This model provides a basis for discussion within the development team
and hence provides a means of establishing a common understanding of the pro-
posed solution, albeit at an abstract level. The model can also be used to explain the
solution concepts to those Stakeholders who wish to be assured that the developers
are moving along the right lines. Finally, the model provides a structure for present-
ing the system requirements in a document form. Each element in the model can
form a section in the document. This places each requirement in a relevant context
and is an indispensable aid to reviewing the complete requirements set from a con-
sistency and completeness point of view.

From the system requirements it is possible to consider alternative design archi-
tectures. A design architecture is expressed as a set of interacting components that
collectively exhibit the desired properties. These properties are known as the emer-
gent properties of the system and should exactly match the desired characteristics
of the system as expressed in the system requirements. The design architecture
defines what each system component must do and how the system components
interact with each other to produce the overall effects specified in the system
requirements. In other words, the design architecture defines the requirements for
each system component (see Fig. 2.1) in terms of their functionality and interaction
obligations. The design architecture and hence the system component requirements
must also stipulate any other required properties such as physical size, perfor-
mance, reliability, maintainability, etc.

For all but the smallest of systems, the components in the design architecture
will be too complex to be implemented directly. Components at this level are
 frequently known as “subsystems” because they are complex enough to be consid-
ered as systems in their own right, but yet they are still only part of the higher-level
system for which they are designed.

The process of establishing the design architecture for each subsystem and then
using this to derive component requirements is similar to that described for the
overall system. Eventually a subsystem design architecture and subsystem compo-
nent requirements will be produced for each subsystem as indicated in Fig. 2.1.

This description of the development process has indicated that development of
systems takes place at several levels and that different activities take place at each
level. Figure 2.1 also indicates that each activity is supported by a model (e.g. Use
model, Abstract Model, Design Architecture), although the nature of the models
differs quite significantly. This is an example of a common aspect: each level of
development uses a model. In the following sections of this chapter, these similarities
are further explored in order to define the properties of a generic process.

It is essential to realise that there are requirements at each of the levels:

Needs statement•	
Stakeholder requirements•	
System requirements•	
System component requirements•	
Subsystem component requirements•	

28 2 A Generic Process for Requirements Engineering

Consequently, requirements engineering is not something that is done once and
then forgotten. It happens at each level, and often work is undertaken concurrently
at different levels. At all levels from the system components downward, there is
multiple concurrent work on requirements at each level. (The grey background of
the relevant symbols in Fig. 2.1 indicate this.)

2.3 Generic Process Context

An alternative way of considering the development process is shown in Fig. 2.2.
This diagram suggests that the same development process, “Engineer Requirements”, is
used at each level, although the explanation given above indicates that the work
involved is different at each level. This apparently strange way of describing the
process is used to introduce the fact that there is, in fact, a significant degree of commonality

Stakeholder Requirements

System Requirements

System Component Requirements
(Subsystem Requirements)

Subsystem Component Requirements
(lower level subsystem requirements)

Statement of Needs

Engineer
Requirements

Engineer
Requirements

Engineer
Requirements

Engineer
Requirements

Problem
Domain

Solution
Domain

Fig. 2.2 Different levels of requirements engineering

292.3 Generic Process Context

in the work done at each level. The purpose of this chapter is to explore these com-
mon aspects and to present a generic process that not only addresses the common
aspects but also enables the different aspects to be accommodated.

It is important to stress that in a multi-level development, each level of develop-
ment demands relevant expertise. At the higher levels, domain knowledge in the
problem domain is vital. At the system level, it is important that a system-wide
view is taken to avoid too narrow an interpretation of the Stakeholder Requirements.
At this level there will inevitably be a solution bias introduced. People or organisa-
tions with a proven track record in the development of similar systems are neces-
sary. Similarly, the subsystem developers will bring their own domain experience
for the particular specialist area of their subsystem.

Thus, it is unlikely that the same people will undertake development at every
level. Even when the same organisation is working on several levels, it is likely that
different people will be involved, often from different departments. Therefore, it is
useful to introduce the idea that each level of development is done in response to a
“customer” at the level above, and will involve “suppliers” at the level below.

2.3.1 Input Requirements and Derived Requirements

Figure 2.3 shows an alternative view of Fig. 2.2 in which the individual processes
have been separated. This emphasises that the requirements derived by one process
become the Input Requirements of another process and leads naturally to the idea

Stakeholder Requirements

System Requirements

Engineer
Requirements

Stakeholder Requirements

Statement of Needs

Engineer
Requirements

System Requirements

System Component Requirements
(Subsystem Requirements)

Engineer
Requirements

System Component Requirements
(Subsystem Requirements)

Subsystem Component Requirements
(lower level subsystem requirements)

Engineer
Requirements

InputInputInputInput
Requirements

Input
Requirements

Input
Requirements

Input
Requirements

Derived
Requirements

Derived
Requirements

Input
Requirements

Generic
Process

Engineer
Requirements

Fig. 2.3 Identifying input and derived requirements of the generic process

30 2 A Generic Process for Requirements Engineering

that the generic Engineer Requirements process takes in Input Requirements and
generates Derived Requirements (also as shown in Fig. 2.3).

2.3.2 Acceptance Criteria and Qualification Strategy

Before moving on to explain the internal details of the Engineer Requirements
process, it is necessary to consider another class of information that is both an input
to the process and derived by the process. This is information concerning the quali-
fication strategy for the requirements.

To fully understand the significance of requirements and come to a satisfactory
agreement that the requirements form a good basis for development, it is necessary
to consider how the requirements will be demonstrated when the system (or com-
ponent) has been implemented. This is partly achieved by determining, for each
requirement, the criteria that will be used to establish whether or not the system that
claims to implement the requirement is acceptable to the customer.

It is also necessary to determine the circumstances under which the criteria will
be examined. In Chapter 1 the notion of test plans at each level was introduced.
Testing is just one type of qualification strategy. Others include trials, certification
and inspections. The type of qualification strategy to be used will depend on the
nature of the system; for example, systems that have safety critical aspects will have
to be checked much more carefully than, say, a management information system.

The full context of the Engineer Requirements generic process is therefore as
shown in Fig. 2.4.

The Qualification Strategy often introduces new requirements for test equip-
ment, the use of existing facilities (e.g. wind tunnels, anechoic chambers, etc.) and
special diagnostic functions or monitor points. In some circumstances a whole
new project may evolve to develop the test equipment and other facilities required.

Derived
Requirements

Engineer
Requirements

Input
Requirements

Qualification strategy
for Derived

Requirements

Qualification strategy
for Input

Requirements

Fig. 2.4 Qualification strategy is essential

312.4 Generic Process Introduction

For example, in avionics development it is necessary (for cost and safety reasons)
to perform as much testing as possible before the equipment is installed in an
aircraft. Even when it is installed, it will also be necessary to run with simula-
tions prior to flight trials. Clearly the test pilot must be assured that the avionics
will perform to a known standard prior to first flight.

At lower levels in the hierarchy where items are to be manufactured, the quali-
fication strategy may consider issues such as whether the supplier or the customer
is responsible for the testing of each item supplied. Possible strategies include full
testing of every item prior to delivery, batch testing by the supplier and possible
random checks by the customer.

2.4 Generic Process Introduction

Having established the context for the generic process it is now possible to look
inside the Engineer Requirements process. The process is introduced firstly in an
ideal world in which nothing ever changes and then with modifications to accom-
modate changes.

2.4.1 Ideal Development

The Engineer Requirements process for the ideal world is shown in Fig. 2.5.
The process commences with the need to agree the input information for the project
with the customer at the level above. The second activity in the process is to analyse
the input information and consider how to develop the outputs required. This
 activity, which often goes on in parallel with agreeing the requirements, almost
always involves the creation of one or more models and leads to analysis reports
that together provide a basis for the derivation of requirements and qualification
strategy for the lower level supplier(s). These requirements must, when they are
sufficiently mature, be agreed with the suppliers to form the basis for a contract for
the lower level development.

Figure 2.5 also indicates that there may be several sets of derived requirements
generated. Each set must be agreed with the relevant supplier and some suppliers
may be responsible for more than one component.

2.4.2 Development in the Context of Change

Unfortunately the world hardly ever stands still. This is especially true in the arena
of system development. It seems that everybody is constantly changing his or her
mind or finding that what was previously agreed is no longer possible. Therefore

32 2 A Generic Process for Requirements Engineering

the generic process has to be modified, as indicated in Fig. 2.6, to reflect this
 necessary evil.

The formality with which change is managed will depend upon the nature and
state of the project. During the early stages, changes can and must be made with
ease so that progress can be made. However, there comes a time at which a commit-
ment must be made and formal agreement struck. From this time, it is usual to have
a more formal arrangement in which changes are not just inserted at the whim of
anyone on the project. Instead a process is used in which changes are first requested
or proposed and then they are decided upon in the context of their impact on the
project. The decision process will usually involve a person such as the project
 manager, who has the authority to make the decision supported as necessary by a
group of people who constitute a change control board. Again the degree of
 formality with which these people operate will depend on the nature of the project.
The topic of change management is addressed in more depth in Chapter 8 in the
context of project management.

In Fig. 2.6 it can be seen that almost any activity can lead to the creation of a
change and that these changes usually flow upwards. This does not mean that
 customers never change their minds or that the only problems discovered are lower
level detail problems that flow from a top-down strategy. The situation is that the
downward path is already accounted for in the normal flows, but the return path has
to be explicitly catered for. One typical situation in which a change request might

Qualification
Strategy

Output
Requirements

Derive
Requirements

&
Qualification

Strategy

Analyse
&

Model

Input
Requirements

Qualification
Strategy for

Input Requirements

Agree
Requirements

Derived
Requirements

Agree
Requirements

Model

Qualification Strategy
for Derived

Requirements

Analysis
Results

Fig. 2.5 Engineer requirements process for an ideal world

332.5 Generic Process Information Model

arise is, for example, that a limitation in a model or an anomaly in analysis results
may well be discovered whilst attempting to generate a derived requirement or the
qualification strategy for a derived requirement. A change request will recommend
a modification to the model(s) and/or additional analysis work to investigate the
problem. Similarly a problem with in input requirement may be identified during
the analysis and modelling process leading to the creation of a change request for
the Agree Requirements process.

2.5 Generic Process Information Model

Before considering the sub-processes within the generic Engineer Requirements process,
it is useful to introduce a generic information model that supports the process.

The diagrams used to represent the generic process contain both process symbols
and data or information symbols. The diagrams indicate, via the arrows, which
information is being generated and used by each process.

The purpose of an information model is to indicate what types of information
exist and whether relationships can or should exist between the items of information.

Qualification
StrategyOutput

Requirements

Derive
Requirements

&
Qualification

Strategy

Analyse
&

Model

Input
Requirements

Qualification
Strategy for

Input Requirements

Agree
Requirements

Derived
Requirements

Change Request

Change Request

Change
Request

Change Request

Change Request

Agree
Requirements

Model

Qualification Strategy
for Derived

Requirements

Analysis
Results

Fig. 2.6 Engineer requirements process in context of changes

34 2 A Generic Process for Requirements Engineering

It is also useful to introduce state transition diagrams to indicate how the state of
each type of information can be changed as time proceeds. Consequently these state
transition diagrams can give a visual indication of when and how processes interact
with each other via the information.

2.5.1 Information Classes

Information types already encountered in the generic process context include:

Input requirement•	
Derived requirement•	
Qualification strategy for input requirements•	
Qualification strategy for derived requirements•	
Change request•	

Figure 2.7 shows these five types of information expressed as a Unified Modelling
Language (UML) class diagram. The name of the class is always shown in the
uppermost section (or only section) of the class symbol. The middle section
(if present) indicates the names of attributes that the class can have. The bottom
section (if present) contains any operations (often called “methods”) that can operate
on the class.

Satisfies *

*

Change Request

Ma y
Impact

Impacted
By

*
*

Agreement State
Qualification State
Satisfaction State

Input
Requirement

Agreement State
Qualification State
Satisfaction State

Derived
Requirement

Details
for

Detailed
by

*

*

Agreement State

Qualification
Strategy for

Input Requirements

Agreement State

Qualification
Strategy for

Derived Requirements

Qualifies
Qualified

by

Qualifies
Qualified

by

*

*

*
*

*

*
Imposed
by

Imposed on
Satisfied

by

Fig. 2.7 Information model for the generic process

352.5 Generic Process Information Model

The lines connecting the class symbols show relationships between classes, and
these are called Associations in the UML. Thus an Input Requirement can be related
to a Derived Requirement by a “Satisfied by” relationship. Similarly the Derived
Requirement can be related to an Input Requirement by the inverse “Satisfies” relationship.
(These labels are known as “roles” in the UML.) The asterisk indicates that zero or
more instances of the class can be involved in the association. Asterisks at both ends
indicate that the association can be many to many. Thus in the model of Fig. 2.7 zero
or more Input Requirements can be satisfied by a Derived Requirement and an Input
Requirement can be satisfied by zero or more Derived Requirements. Some readers
may question the zero lower limit, because it suggests that it is not necessary to have
any association. However, if the lower limit were set to 1, this would mean that an
Input Requirement could not exist unless it was associated with at least one Derived
Requirement. Clearly this is an impossible situation. It is essential that Input Requirements
can exist prior to Derived Requirements being generated. Consequently this is a
reasonable model, because there may be times during a project when there will be no
links between input requirements and derived requirements – for example, early in the
development before the links have been established. However, a project manager
would expect that there were links established as soon as possible. This would then
indicate that progress had been made and that all derived requirements were justified
by being there to satisfy an input requirement, and conversely that all input requirements
had been satisfied.

The Qualification strategy classes can each qualify the appropriate type of require-
ment and the qualification strategy for the derived requirements can provide more
details of an Input Requirement qualification. This can occur, for example, in safety
critical systems where it may be necessary to perform lower level detailed inspections
that contribute to the satisfaction of the higher level qualification criteria.

As mentioned earlier, it is possible that a qualification strategy may lead to the
creation of special test rigs. This would be an example of the imposed on relation-
ship between the qualification strategy for an input requirement and one or more
derived requirements. Further examples of this relationship occur when, in order to
be able to check a component, it is necessary to provide a monitor point. Such
monitor points are often essential to be able to check the performance (speed,
response, throughput, etc.) of a system under operational conditions.

A Change Request can apply to any of the other four classes. Enclosing the four
classes inside an outer rectangle and making the relationship line touch this outer
rectangle indicates this.

The middle section of the class symbols is used to define attributes that the class
will have. The requirement classes each have the three attributes:

Agreement state•	
Qualification state•	
Satisfaction state•	

These are defined in the following sections by means of state chart diagrams. The agree-
ment state of the qualification classes is assumed to have the values: Agreed or Not
Agreed.

36 2 A Generic Process for Requirements Engineering

2.5.2 Agreement State

The state chart for the Agreement state is shown in Fig. 2.8. In this type of diagram
each (rounded) rectangle represents the state of a single requirement at some point
in its history. The rectangle labelled Being Assessed is known as a ‘super-state’
because it contains other states within it. The lines connecting one state to another
indicate transitions that cause the state to change.

The requirement state starts off in the Proposed state. When the customer is
content that the requirement is sufficiently well formulated to be sent to the
 supplier, he sends it. The agreement state then enters the Being assessed super-
state. During this state, the customer and supplier negotiate until an agreed require-
ment emerges.

Once in the Agreed state, the requirement will stay there until either the
Customer or the Supplier creates a Change Request. When this happens the require-
ment’s state re-enters the Being Assessed state until a new agreed requirement
emerges.

Within the Being Assessed state, the customer and supplier take turns to suggest
alternative forms of the requirement until an agreement is reached. The agreement
state will therefore be in one of the two states shown depending on which party is
currently making the assessment.

Change
from

Supplier

Change
from
Customer

Requirement
Acceptable

Requirement
Proposed to
Supplier

Alternative
proposal from

Supplier

Alternative
proposal from

Customer

Customer
assessing requirement

from
Supplier

Supplier
assessing requirement

from
Customer

Proposed

Agreed

Being assessed

Fig. 2.8 Statechart for agreement state

372.5 Generic Process Information Model

2.5.3 Qualification State

The qualification state of a requirement is shown in the state chart of Fig. 2.9. The initial
state is that there is No Qualification Strategy decided. When the qualification
strategy has been agreed, the state can proceed to the state Qualification Strategy
decided. This state can then remain until a change request is received. The change
may be directed either at the requirement itself or at the qualification strategy
associated with it. When a change is requested, the state becomes Qualification
Strategy suspect until the impact of the change has been assessed. This assessment
determines whether the existing qualification strategy can stand, and the state can
return to Qualification Strategy decided, or whether an alternative strategy must be
decided, in which case the state becomes No Qualification Strategy decided.

2.5.4 Satisfaction State

The state chart for the Satisfaction state is shown in Fig. 2.10. The logic of this state is
very similar to the qualification states. The starting point is the Not satisfied state indicating
that no Derived Requirements have been related to this requirement. When the input
requirement has been satisfied by one or more Derived Requirements, the lower level
supplier agrees the requirement and the higher level (customer) agrees that the Derived
Requirements will, indeed, satisfy the Input Requirement, the state can be moved to the
Satisfied state. It should be noted that there might be many Derived Requirements that
have to be agreed before each single Input Requirement can achieve the Satisfied state.

Verification
criteria
agreed

Change
proposed

Change impacts
Qualification
Strategy

Change does not
impact

Qualification
Strategy

No Qualification
Strategy decided

Qualification
Strategy decided

Qualification
Strategy suspect

Fig. 2.9 Qualification state

38 2 A Generic Process for Requirements Engineering

When a change is proposed, the Satisfaction state immediately becomes Satisfaction
suspect irrespective of whether the proposed change is directed at the higher or lower
level requirements. This suspect state is retained until the impact of the proposed change
has been assessed and the satisfaction state can then become Not satisfied or Satisfied.

2.5.5 Information Model Constraints

Change requests bind together the Agreement, Qualification and the Satisfaction state.
Registering a change request immediately changes all three states and requires additional
work, firstly to determine whether there is any impact, and secondly to address the conse-
quences, if any, of the impact. Note that the Satisfaction state can ripple up and down the
requirements that are the subject of the Satisfaction relationship. This ripple effect estab-
lishes the potential extent of any consequential change, i.e. the “impact” of the change.

The Agreement state of Derived Requirements must be consistent with the Satisfaction
state of Input Requirements, since an Input Requirement cannot achieve its Satisfied state
until the lower level supplier has agreed all of the Derived Requirements that satisfy it.

2.6 Generic Process Details

2.6.1 Agreement Process

The agreement process is always a concurrent activity between a supplier at one
level and the customer at the level above as indicated in Fig. 2.11.

Requirement
satisfied

Change
proposed

Not satisfied

Satisfied

Satisfaction
suspect

Change impacts
lower level
supplier

Change does not
impact lower
level supplier

Fig. 2.10 Satisfaction states

392.6 Generic Process Details

Before any derivation work can commence, it is necessary to assess the Input
requirements to ascertain whether they form an adequate basis for the development
to proceed.

The assessment must answer the questions:

Is the requirement complete?•	
Is the requirement clear?•	
Is the requirement implementable?•	
Is the qualification plan clear and acceptable?•	

Potential answers to these questions lead naturally to the following reasons why a
requirement may be rejected:

Missing information – e.g. placeholders such as “TBA” (To be agreed), “TBC” (To
be completed) or “TBD” (To be decided) may be used

Lack of clarity – ambiguity, contradiction, confusion, etc.
Impossible to implement – no known solution
Unacceptable qualification plan

Following the review, if a requirement and its qualification plan are acceptable the
status can be set to Agreed.

If the requirement is not acceptable then an alternative form is sent to the
 customer and the onus passes to the customer, and the Agreement state (see
Fig. 2.8) becomes “Customer assessing requirement from Supplier”. If the customer
is content with the alternative wording, then he can set the state to ‘Agreed’. If not,

Derived
Requirements

Qualification strategy
for Derived

Requirements

Input
Requirements

Qualification strategy
for Input

Requirements

Agree
Derived Requirements

&
Qualification Strategy

Change
Request/Proposal

from
Supplier

Change
Request

Change
Request

Agree
Derived Requirements

&
Qualification Strategy

Change
Request/Proposal

from
Customer

Derive Requirements
&

Qualification Strategy

Analyse
&

Model

Higher Level
Responsibility

Lower Level
Responsibility

Fig. 2.11 The agreement process

40 2 A Generic Process for Requirements Engineering

then he proposes a further alternative and sends it to the supplier. The Agreement state
becomes “Supplier assessing requirement from Supplier”, and the onus returns to
the supplier.

This process of proposal and counter proposal continues until an agreement is
reached. Of course it is possible that agreement may never be reached and a dispute
emerges.

When either party proposes a change the “Being assessed” super-state is entered
with the onus on the party receiving the change. Negotiation follows as described
earlier until a new agreed form can be reached.

During the agreement process, Change Requests may be generated by the cus-
tomer side to request that the derived requirement is modified. These will pass to the
Derive Requirements and Qualification strategy process so that the effect of the
change can be assessed and, where necessary, adjustments made to one or more of
the derived requirements. Of course it can happen that the change cannot be handled
completely at this level and the change may have to be escalated to the Modelling
and Analysis process. This need to escalate the decision process up through the
levels makes it imperative that people are working at each level. In other words it is
necessary to work concurrently on several levels simultaneously. This need completely
destroys the notion of the “waterfall” lifecycle in which a sequence of activities takes
place in a strict top-down order. Instead of a sequence of activities, development
takes place as a concurrent set of negotiations and decision taking.

In many projects the acceptance criteria and qualification plans are only decided
quite late. This can be well after the requirements themselves have been agreed and,
in some cases, agreement is only reached just prior to the commencement of test-
ing. This is very bad practice and usually leads to delays caused by late changes in
requirements to make them testable!

2.6.2 Analyse and Model

Figure 2.12 portrays the Analyse and Model process. The analysis part of this pro-
cess is primarily concerned with understanding the nature and scope of the input
requirements to assess the likely risks involved in satisfying them. Analysis work can
range from feasibility studies to explore potential implementation options to the
building of prototypes of some vital or high-risk components. It is often necessary to
build performance models to investigate potential throughput and response figures.

The other uses of models in this process are to understand the nature of and
provide a structure for the derived requirements. The most common models for
understanding and structuring Stakeholder Requirements are use cases or User
Scenarios. These help to understand how people will use the intended system.

The most common models for structuring solutions in the solution domain are design
architectures. These identify elements of the solution and indicate how they interact.

In a lot of cases the model is used to establish the design architecture of the
proposed solution. These models are frequently quite obvious for well-established

412.6 Generic Process Details

development domains (e.g. automobiles, telecommunications, aircraft, etc.) where
a de facto architecture exists. However, for innovative developments where there is
no established architecture the model may be more abstract to allow for potential
alternatives.

In general, the models used will depend entirely on the nature of the develop-
ment that is being undertaken. As indicated earlier the types of models used are
very much domain specific. In software systems it is increasingly the case that
object models are used. Table 2.1 indicates different sorts of models used in three
industrial domains.

The point of developing the models is to understand the input requirements
together with the proposed qualification strategy and experiment with alternative
solution options prior to deciding how to proceed with the creation of derived
requirements. This work will also consider possible qualification strategies for the
derived requirements and this, in turn, may lead to the creation of requirements for
test equipment and/or software. It can also lead to the identification of qualification
requirements for the derived requirements.

The Analyse and Model process can be undertaken in parallel with the Agree
process since it is likely to generate deeper insight into the nature of the
requirements.

In Chapter 3 some widely used modelling techniques are reviewed especially
considering those used in the software industry. Chapter 5 explains how to use User
Scenario models to aid the understanding of Stakeholder requirements, while
Chapter 6 considers function-oriented models that help to provide a framework for
system requirements.

During the analysis and modelling process, it is quite likely that further ques-
tions will arise concerning the meaning and formulation of input requirements. This
gives rise to change requests, which cause the Agree Requirements process to be
re-entered.

Table 2.1 Examples of
modeling techniques

•	 Aircraft	industry
◦ Aerodynamic model
◦ Three-dimensional spatial model
◦ Weight distribution model
◦ Flight simulator

•	 Rail	industry
◦ Timetable simulation
◦ Safety, reliability and maintainability

models
•	 Car	industry

◦ Styling model
◦ Dashboard model
◦ Aerodynamic model

42 2 A Generic Process for Requirements Engineering

2.6.3 Derive Requirements and Qualification Strategy
Fig. 2.13 Portrays the Process for Deriving
Requirements and Qualification Strategy

2.6.3.1 Deriving Requirements

The way in which the models are used for this purpose varies, but the simplest one
to consider initially is the derivation of component requirements based on a design
architecture. Here it is possible to determine the specific requirements that must be
satisfied by each component. Some of these requirements may be identical to one
or more input requirements; others may have been derived from input requirements
in order to partition them amongst the components. A further set of requirements
consists of constraints imposed either by the component architecture or input
requirements. These constraints include interface constraints and possible physical
constraints such as mass, volume, power usage and heat dissipation, etc.

In practice, some work on the allocation or derivation of requirements for com-
ponents may proceed in advance of final agreements on the input requirements and
their qualification strategy. However, it is not possible to complete this activity prior
to final agreement.

In addition to establishing the component requirements, it is also necessary to
establish the satisfaction relationship between the input requirements and the
derived requirements. This relationship indicates which input requirements are
satisfied by which derived requirements and can be used to establish that:

Model

Analyse
&

Model

Input
Requirements

Qualification strategy
for Input

Requirements

Model
Analysis
Results

Agree
IR & IQS

Change
Request

Change
Request

Derive
Requirements

&
Qualification

Strategy

Fig. 2.12 Analyse and model process

432.6 Generic Process Details

All input requirements are satisfied.•	
All derived requirements are necessary (i.e. they directly or indirectly satisfy one •	
or more input requirements).

It is not sufficient just to assert that a satisfaction link exists, as for example in a
cross-reference matrix. The justification for each link should also be stated. These
justification statements constitute a satisfaction argument.

During the process of generating requirements from the models, it may become
clear that there is a defect or an omission in one or more of the models. This causes
a change request to be issued back to the modelling team who will then either
modify the model directly or ask for further clarification or change to input require-
ments. Thus the change escalation process continues.

2.6.3.2 Deriving the Qualification Strategy

As discussed above, the satisfaction relationship is about generating derived
requirements from input requirements – how the system is designed. In contrast, the
qualification strategy plans how each requirement will be tested at each level.

The qualification strategy consists of a set of qualification actions, each one a
particular kind of trial, test or inspection. There may be several qualification actions
defined against each requirement.

Each qualification action should take into account the following aspects:

Qualification strategy
for Input

Requirements

Output
Requirements

Model

Derive
Requirements

&
Qualification

Strategy

Input
Requirements

Qualification strategy
for Input

Requirements

Derived
Requirements

Model

Qualification strategy
for Derived

Requirements

Analysis
Results

Change
Request

Agree
DR & DQS

Change
Request

Analyse
&

Model

Fig. 2.13 Derive requirements and qualification strategy process

44 2 A Generic Process for Requirements Engineering

The •	 kind of action that would be appropriate for the requirement.
The •	 stage at which each action could take place, the earlier the better.
Any special •	 equipment that would be needed for the action.
What would constitute a successful •	 outcome?

The qualification plan may be structured either according to the stage or according
to the type of action.

The qualification actions defined should be appropriate to the level of require-
ments. In other words, stakeholder requirements give rise to acceptance trials,
whereas system requirements give rise to system tests, i.e. prior to delivery to the
customer. It is not necessary to define system tests against stakeholder require-
ments, since those system requirements derived from the stakeholder requirement
will have their own system tests.

Take, for instance, the example shown in Fig. 2.14 in which a system require-
ment for a ship is decomposed into two requirements on different sub-systems, the
hull and the propulsion system. Two qualification tests are planned against the
system-level requirement, and two more against the sub-system requirements.

Thus, for a full understanding of how a requirement will be tested, both the
satisfaction relationship and the qualification strategy are necessary. To understand
the qualification status of a high-level requirement, the results of qualification
actions against requirements that flow down from it at all levels have to be taken into
account, by making use of the satisfaction as well as the qualification relationship.

System
Requirements

The vessel shall be
capable of travelling

at 40 knots while in upto
sea condition D.

Sub-system
Requirements

The hull shall present a
maximum drag
coefficent of X.

Sub-system
Requirements

The engines shall deliver
a minimum thrust of Y.

Sub-system
Qualification Strategy

Drag coefficent tests
using a pre-build scale

model.

System Qualification
Strategy

Sea trial of vessel in
sea condition A

Sea trial of vessel in
sea condition D

Sub-system
Qualification Strategy

Use of factory test rig
to measure power output.

satisfaction

qualification

Reviews / Design inspections / Analysis / Prototypes / Component tests / Rig tests / System tests / Trials

Qualification Programme
time

Fig. 2.14 Qualification information

452.7 Summary

2.7 Summary

A generic process that can be simultaneously applied at each level in a system
development has been presented. The benefit of this generic process is that it identi-
fies common actions that are relevant at every level:

Agreeing input requirements with customer•	
Analysis of input requirements to determine the risks and potential pitfalls in •	
satisfying the requirements
Creating one or more models to investigate possible strategies for deriving •	
requirements
Generating requirements derived from the input requirements via the analysis •	
and modelling information
Agreeing the derived requirements with the team(s) that will be responsible for •	
implementing them
Establishing the satisfaction relationship between Input Requirements and •	
derived requirements
Establishing the qualification relationship between derived requirements and the •	
relevant qualification strategy

These actions lead to the establishment of information according to the information
model presented. The current state of the information can be used to measure
 progress, to assess the impact of proposed changes and to define metrics on how a
project is performing. For example, the state of a requirement can be captured by
its three attributes:

Agreement•	
Satisfaction•	
Qualification•	

The ideal state for any requirement in any system development is that it should be:

Agreed between customer and supplier•	
Have a qualification strategy agreed for it•	
Be satisfied by lower level requirements (or design)•	

The extent to which a project’s requirements deviate from this ideal state represents
the degree of risk to which the project is exposed from the requirements manage-
ment point of view and also indicates the extent of the work necessary to get the
requirements into the ideal state.

47E. Hull et al., Requirements Engineering, DOI 10.1007/978-1-84996-405-0_3,
© Springer-Verlag London Limited 2011

Art and science have their meeting point in method.

Edward Bulwer-Lytton, poet, 1803–1873 AD

3.1 Introduction

System modelling supports the analysis and design process by introducing a degree
of formality into the way systems are defined. During system development it is
often the case that pictures are used to help visualize some aspects of the develop-
ment. Modelling provides a way of formalising these representations, through
 diagrams, by not only defining a standard syntax, but also providing a medium for
understanding and communicating the ideas associated with system development.

The art of modelling is arguably the most creative aspect of the work of the
systems engineer. There is no ‘right’ solution and models will evolve through vari-
ous stages of system development. Models are most often represented visually and
the information is therefore represented through connected diagrams. New methods
such as object-orientation have advanced the concept of modelling, however most
approaches are also based on the principles used and tested over time.

A good model is one which is easily communicated. They need to be used for
communication within a development team, and also to an organisation as a whole
including the stakeholders. The uses of a model can be diverse and cover a wide
spectrum. It might be to model the activities of an entire organisation or to model
a specific functional requirement of a system.

Modelling has the following benefits:

Encourages the use of a •	 precisely defined vocabulary consistent across the
system.
Allows system specification and design to be •	 visualized in diagrams.
Allows consideration of •	 multiple interacting aspects and views of a system.
Supports the •	 analysis of systems through a defined discipline.
Allows •	 validation of some aspects of the system design through animation.

Chapter 3
System Modelling for Requirements
Engineering

48 3 System Modelling for Requirements Engineering

Allows •	 progressive refinement towards detailed design, permitting test case
generation and code generation.
Encourages •	 communication between different organizations by using common
standard notations.

Much of the creativity and art of the systems engineer is expressed in the use of
modelling techniques. This chapter considers a number of these representations and
also some methods for Requirements Engineering that use them.

3.2 Representations for Requirements Engineering

3.2.1 Data Flow Diagrams

Data flow diagrams (DFDs) are the basis of most traditional modelling methods.
They are the minimalist graphical representation of the system structure and inter-
faces and although initially produced for use in data representation and flow, the
diagrams can in fact be used to show any type of flow, whether a computer-based
system or not. The one output which DFDs do not show is that of control flow.

The elements in a data flow diagram consist of

Data flows (labelled arrows)•	
Data transformations (circles or “bubbles”)•	
Data stores (horizontal parallel lines)•	
External entities (rectangles)•	

The simple example in Fig. 3.1 shows the use of a data flow diagram in its tradi-
tional, information systems context.

Flows represent the information or material exchanged between two transforma-
tions. In real-world systems, this may be continuous, on demand, asynchronous etc.
When using the notation, diagrams must be supported by textual descriptions of
each process, data store and flow.

A data dictionary is used to define all the flows and data stores. Each leaf node
bubble defines the basic functionality provided by the system components. These
are described in terms of a P-spec or mini-spec. This is a textual description often
written in a pseudo-code form.

The context diagram is the top-level diagram of a DFD and shows the external
systems interacting with the proposed system, as in Fig. 3.2.

Bubbles can be decomposed another layer down. Each bubble is exploded into
a diagram which itself may contain bubbles and data stores. This is represented in
Fig. 3.3.

To illustrate the use of a DFD, consider an example of a context diagram for an
Ambulance Command and Control system (Fig. 3.4). This is the starting point for
a data-flow analysis of the system.

493.2 Representations for Requirements Engineering

The primary external entities are the callers, who make the emergency calls, and
the ambulances, which will be controlled by the system. Note that records are an
important output of the system (in fact a legal requirement) and a very important
means of measuring “performance”.

Credit card holder

PrinterAccounts system

Transactions

Check details

Process
transaction

Print receipt

Fig. 3.1 Data flow diagram

Credit card holder

PrinterAccounts system

ATM
system

Fig. 3.2 Context diagram

50 3 System Modelling for Requirements Engineering

Other potential external entities that would be required for a real system are
shown in the diagram, but for simplicity we shall ignore them.

The next step is to identify the internal functionality of the system. Usually start-
ing by drawing a function for each external entity as the minimal decomposition
and then drawing the basic data that must flow between these top-level functions –
see Fig. 3.5.

Following this, decomposition of the top-level functions takes place thus
including more detail, as shown in Fig. 3.6.

The functional hierarchy in a set of data flow diagrams can be used as a frame-
work for deriving and structuring system requirements. Figure 3.7 shows the
functional structure for the Ambulance Command & Control example derived
from Fig. 3.6.

Figure 3.7 also indicates some examples of requirements derived from this
structure.

The hierarchical breakdown and interfaces give a good view of the component
model, but they give a poor view of the “transactions” across the system i.e. from
input to output (or to complete some system action) as can be seen in Fig. 3.8.

Context
diagram

Level 1
Level 2

Level 3

0

1

2 3

4 3.1

3.2

3.3
3.4

3.5

3.5.1

3.5.2

3.5.3

Fig. 3.3 Functional decomposition

Caller

RecordsAmbulance

Context

Fire brigade

Police

Other
ambulance

C&C
systems

Civil defence

Other potential
external
entities

Fig. 3.4 Context diagram for Ambulance C&C System

513.2 Representations for Requirements Engineering

It is therefore necessary to observe these transactions across the system in terms
of the path(s) they follow, the time they take and the resources they absorb.
Animating the stakeholder requirements and being able to see which functions are

Caller

Records
Ambulance

Current incidents

Ambulance states

Handle callers

Handle ambulances

Keep records

Fig. 3.5 Model for Ambulance C&C system

Caller

Monitor
incidents

Allocate
ambulance

Provide
statisticsMonitor

ambulance
states

Records
Ambulance

Current incidents

Ambulance states

Communicate
with

caller

Analyze
incident

Provide
on-line
advice

Obtain
incident
details

Communicate
with

ambulances

Handle
callers

Handle
ambulances

Keep
records

Fig. 3.6 Detailed model for Ambulance C&C system

52 3 System Modelling for Requirements Engineering

operating, will illustrate major transactions, but an alternative way of showing the
system transactions is to mark them on to a data flow diagram as shown in Fig. 3.9,
using the thick arrows.

Monitor incidents

Allocate ambulance

Provide statistics

Monitor ambulance states

Communicate with caller

Analyze incident

Provide on-line advice

Obtain incident details

Communicate with ambulances

Handle
callers

Handle
ambulances

Keep
records

C & C
system

The “obtain incident
details” function shall

allow the call centre staff
to obtain and record

incident details from the
caller.

The “allocate ambulance”
function shall allow the
controller to allocate an

ambulance to an incident.

Fig. 3.7 Functional structure for Ambulance Command & Control system

Monitor incidents

Allocate ambulance

Provide statistics

Monitor ambulance states

Communicate with caller

Analyze incident

Provide on-line advice

Obtain incident details

Communicate with ambulances

Handle
callers

Handle
ambulances

Keep
records

C & C
system

An input
here ….

…. causes
output
here.

Performance:
“end-to-end time

< 15 seconds’ ’

Fig. 3.8 System transactions

533.2 Representations for Requirements Engineering

DFDs are good at presenting structures but they are not very precise. DFDs are
less precise than text for developing a complete definition of a system – interface
lines can mean anything, and single words can summarize anything. They cannot
handle constraints properly.

A DFD clearly shows functions and interfaces. It can be used to identify end-to-
end transactions, but does not directly show them. Ideally we would like to view
the diagrams with an “expand in place” approach so that it is possible to view the
context in which each level of decomposition is intended to work. Few CASE tools
provide this level of facility.

Figure 3.6 actually breaks the conventions for drawing DFDs, because it shows
a decomposition of the overall system into several processes and it also shows
external agencies with which the system must interact. We advocate a pragmatic
use of DFDs, rather than strict adherence to a conceptually pure ideal. To follow
precisely the rules for drawing DFDs, the external agencies should appear only in
the context diagram, and hence should not be visible at this level. However, the
diagram would be far less meaningful if the external agencies were not shown and
the flows to them left dangling (which is the defined convention for them).

In summary, DFDs:

Show overall functional structure and flows.•	
Identify functions, flows and data stores.•	

Caller

Monitor
incidents

Allocate
ambulance

Provide
statisticsMonitor

ambulance
states

Records
Ambulance

Current incidents

Ambulance states

Communicate
with

caller

Analyze
incident

Provide
on-line
advice

Obtain
incident
details

Communicate
with

ambulances

Handle
callers

Handle
ambulances

Keep
records

Path through model
shown by arrows:

Fig. 3.9 System transactions for Ambulance Command & Control system

54 3 System Modelling for Requirements Engineering

Identify interfaces between functions.•	
Provide a framework for deriving system requirements.•	
Tools are available.•	
Widely used in software development.•	
Applicable to systems in general.•	

3.2.2 Entity-Relationship Diagrams

Modelling the retained information in a system, for example flight plans, system
knowledge and data base records, is often important. Entity relationship diagrams
(ERDs) provide a means of modelling the entities of interest and the relationships
that exist between them. Chen (1976) initially developed ERDs. There is now a
very wide set of alternative ERD notations.

An entity is an object that can be distinctly identified such as: customer, supplier,
part, or product. A property (or attribute) is information that describes the entity.
A relationship has cardinality, which expresses the nature of the association (one-
to-one, one-to-many, many-to-many) between entities. A subtype is a subset of
another entity, i.e. a type X is a sub-type of Y if every member of X belongs to Y.

ERDs define a partial model of the system by identifying the entities within the
system and the relationships between them. It is a model that is independent of the
processing which is required to generate or use the information. It is therefore an
ideal tool to use for the abstract modelling work required within the system require-
ments phase. Consider the example Ambulance C&C system in Fig. 3.10.

is a

involves

consists of

is staffed by

has resource

is allocated

1..1

0..1

1..N

0..N

0..N 0..N

1..1

0..1

0..N

0..1

0..1 0..1

is allocated

0..1 0..N

AmbulanceCrew

Allocation

Incident

Crew member

Person

Hospital

Fig. 3.10 ERD for Ambulance C&C system

553.2 Representations for Requirements Engineering

3.2.3 Statecharts

Functionality and data flows are not enough for requirements definition. It is also
necessary to be able to represent the behaviour of the system and in some circum-
stances consider the system as having a finite number of possible ‘states’, with
external events acting as triggers that lead to transitions between the states.

To represent these aspects it is necessary to examine what states the system can
be in and how it responds to events in these states. One of the most common ways
of doing this is to use Harel’s Statecharts (Harel 1987).

Statecharts are concerned with providing a behavioural description of a system.
They capture hierarchy within a single diagram form and also enable concurrency
to be depicted and therefore they can be effective in practical situations where
 parallelism is prevalent. A labelled box with rounded corners denotes a state.
Hierarchy is represented by encapsulation, and directed arcs, labelled with a
description of the event, are used to denote a transition between states.

The descriptions of state, event and transition make statecharts suitable for
modelling complete systems.

Figure 3.11 presents a statechart for an aircraft flight. The two top-level states
are “Airborne” and “On Ground”, with defined transitions between them. Inside
the “Airborne” state, there are three independent sets of states, while within the

On StandTaxi-ing

H

Taxi-in

Taxi-out

•

On Runway

Ready for
take-off

Taking off

Take-off
aborted

Landed

Ascending

Cruising

Descending

Airborne

Aircraft

Cleared for takeoff

Abort

TouchdownLand

Wheels off

In flight

Cleared
to land

Abort

Abort

Able to taxi
On Ground

Fig. 3.11 Statechart for aircraft flight

56 3 System Modelling for Requirements Engineering

“On Ground” state there are states for “Able to Taxi” and “On Runway”. Inside
the “On Ground” state, there are further states for ‘taxiing’ and ‘on stand’.

The ‘Airborne’ state is entered when the aircraft wheels leave the ground and the
‘On Ground’ state is entered when the wheels touch down. Each of these states can
now be further refined in a hierarchical way.

Statecharts introduce one further useful notion, that of history. When a state with
the (H) annotation is re-entered, then the sub-state that was exited is also re-entered.

3.2.4 Object-Oriented Approaches

Object-orientation provides a rather different approach from that of the structured
analysis approach. Objects describe stable (and hopefully) re-usable components.

Object-orientation tries to maximize this re-usability by asking the systems
engineer to pick persistent objects i.e. those that can be used in system requirements
and design.

So the goals of object-orientation are to:

Encapsulate behaviour (states and events), information (data) and actions within •	
the same objects.
Try to define •	 persistent objects, which can be used within both requirements and
design phases.
Add information by defining the •	 objects in more detail.
Create new objects by specialisation of existing •	 objects, not creation of new
objects.

Object-orientation focuses on the behaviour of objects, and their inter-
relationships. A flat organization of objects is sometimes assumed, but this is not
necessary, or even desirable. The analyst looks for entities that are long-lived, and
models the behaviour of the system around them. This approach gives a coherent
behavioural definition of the system. System elements should be re-usable because
the elements (if not their behaviour) can be incrementally enhanced.

Some methodologists insist that design (and even implementation) is refinement
of the analysis models. This can be a tall order for non-trivial systems. However,
the progression from analysis, design to implementation is often far clearer in
object-orientation than in other approaches. More analysis elements end up being
represented in the implementation than is common in structured analysis and
design. This is a tremendous aid to traceability and maintainability.

3.2.4.1 Class Diagrams

The class diagram is the basic diagramming notation from object-oriented analysis
and design. Object-orientation arose out of computer-based simulation. The basic
principle is that the contents of a software system should model the real world.

573.2 Representations for Requirements Engineering

The natural way to handle this is to have objects in the software that represent
 entities in the real world, both in terms of information and actions.

For example, in a banking system, instead of having an accounts file and
separate accounts programs, there are accounts objects that have information
such as balance and overdraft limit and relationships to other objects such as
account owner. These objects have operations (also called methods) to handle
the actions that are performed on accounts, like check balance, deposit, with-
draw, etc.

The original reasoning behind this approach was that it made software develop-
ment far more akin to modelling, and therefore more natural. As with many good
ideas, practicalities intervene, and few object-oriented software systems can be
seen as pure representations of the real world. Nevertheless, there is still consider-
able merit in the method.

A class (or object) diagram is shown in Fig. 3.12.
Class diagrams express information about classes of objects and their relation-

ships. In many ways, they are similar to entity-relationship diagrams. Like them,
they show how objects of a certain class relate to other objects of the same or
 different classes. The principal additional pieces of information are:

Operations (methods)•	
The concept of generalization•	
Attributes within the objects•	

3.2.4.2 Use Cases

Use cases define the interaction that takes place between a user of a system (an
actor) and the system itself. They are represented as process bubbles in a DFD type
of context diagram. The use case diagram contains the actors and the use cases and
shows the relationship between them. Each use case defines functional require-
ments for the system. Actors do not need to be human, even though they are repre-
sented as stick figures, but in fact represent roles. Each of the actors will have an
association with at least one use case.

balance

check balance

deposit

withdraw

Account

name

Owner

Fig. 3.12 Class diagram

58 3 System Modelling for Requirements Engineering

The system boundary is also defined on the use case diagram by a rectangle,
with the name of the system being given within the box. Normally significant, and
useful, textual information is associated with each use case diagram.

Figure 3.13 presents a use case diagram for a banking system.

3.3 Methods

A method is a degree more prescriptive than a modelling approach – it tells us what
to do to and in what order to do it. Methods use various representations ranging
from natural language, through diagrammatic forms to formal mathematics.
Methods indicate when and where to use such representations. Those methods that
use diagrammatic representations are usually referred to as ‘structural methods’;
those that use object-orientation are referred to as ‘object-oriented methods’ and
those that use mathematics are referred to as ‘formal methods’.

The purpose of the representations used in a method is to capture information.
The information capture is aided by defining the set of concepts that a diagram
represents, and the syntactic rules that govern the drawing of diagrams.

As we have seen in the earlier sections of this chapter, there are a variety of
 different representations used for system modelling. Most methods – Yourdon (1990),
DeMarco (1978), Shlaer and Mellor (1998), Rumbaugh (1991), to name but a few,

Deposit

Withdrawal

Check Balance

Open A/C

Set up A/C

Set Overdraft

 Limit

Customer

Manager

Banking
System

Fig. 3.13 Use case diagram for banking system

593.3 Methods

are a reorganization of these concepts, varying the choice and the order in which they
are done, often with minor enhancements. Interestingly, similarities between these
methods are far more striking than their differences.

3.3.1 Viewpoint Methods

A viewpoint-based approach to Requirements Engineering recognises that require-
ments should not be considered from a single perspective. It is built on the premise
that requirements should be collected and indeed organised from a number of
different viewpoints. Basically two different kinds of viewpoint have been proposed:

Viewpoints associated with stakeholders•	
Viewpoints associated with organisational and domain knowledge•	

The role of the stakeholder is well understood in Requirements Engineering,
however viewpoints associated with organisation and domain knowledge may be
those associated with some aspect of security, marketing, database system, regu-
lation, standard etc. Such viewpoints are not associated with a particular stake-
holder, but will include information from a range of sources.

The following sections consider three different methods based on viewpoints.

3.3.1.1 Controlled Requirements Expression (CORE)

CORE was originally developed following work on requirements analysis carried
out for the UK Ministry of Defence. A key finding of this work was that methods
often started by defining the context of a solution to a problem, rather than attempting
to define the problem itself, before beginning to assess possible solutions. CORE
was specifically designed to address the latter approach. Figure 3.14 indicates the
concepts and representations used in CORE.

The central concept of CORE is the viewpoint and the associated representation
known as the viewpoint hierarchy. A viewpoint can be a person, role or organisation
that has a view about an intended system. (This concept has been used as the basis
of user viewpoint analysis by Darke and Shanks 1997). When used for system
requirements the viewpoints can also represent the intended system, its subsystems
and systems that exist within the environment of the system that may influence
what the system must do. The viewpoints are organised in a hierarchy to provide a
scope and also to guide the analysis process.

If we consider as an example, an aircraft brake and control system (ABCS),
then Fig. 3.15 shows a possible list of initial viewpoints arrived at by means of
brainstorming.

Having produced a list of potential viewpoints, they are organised into a hierarchy
by grouping related candidates. Boundaries are drawn around related sets and this is
repeated until all candidates have been enclosed and a hierarchy is produced.

60 3 System Modelling for Requirements Engineering

Figure 3.16 shows a partial hierarchy for the aircraft braking control system.
In CORE the actions that each viewpoint must perform are determined. Each

action may use or produce information or other items (e.g. commodities) relevant
to the system in question. The information generated by the analysis is recorded in
a Tabular Collection Form (TCF) as indicated in Table 3.1.

Lines are drawn between adjacent columns to indicate the flows that take place.
Once each viewpoint has been analysed in this way, the TCFs at each level in

the viewpoint hierarchy are checked as a group to ensure that the inputs which each
viewpoint expects are generated by the source viewpoint and that the outputs which
each action generates are expected by the viewpoint(s) indicated as the destination(s)
for them.

Returning to the example aircraft braking control system, part of the TCF for the
system is shown in Table 3.2.

Further analysis consists of developing a more detailed data flow model for each
viewpoint in turn. The starting point for these Single Viewpoint Models (SVMs) is

Viewpoint

Tabular

Collection

Form

(TCF)

Single

Viewpoint

Model

(SVM)

Viewpoint

Hierarchy

Function

Data Store

Can

change

Inter-Viewpoint
Flow

Internal

Flow

Flow

Can be

produced

by

Can be

used by

Can

control

Can

trigger

Structures

System

Transaction

Standard CORE
Concepts

Standard CORE
Representations

Fig. 3.14 Representations and concepts in CORE

613.3 Methods

the information recorded in the TCFs. SVMs add flows that are entirely within a
viewpoint and data stores. The SVMs also define how actions are controlled and
triggered by flows from other actions.

Thus the analysis is driven top-down by analysing each stratum in the viewpoint
hierarchy. With top-down analysis, it can be difficult to know when to stop and to

Pilots

Aircraft

Braking system x 2

Steering system

Maintenance
engineer

Environment

Cockpit

System
recording

Brake pedals

Sensors

Fig. 3.15 Initial viewpoints for ABCS

System

Aircraft Maintenance

Cockpit Sensors Braking
System

Recording
system

Pilots Brake
controls

Steering
controls

Fig. 3.16 Hierarchy example

62 3 System Modelling for Requirements Engineering

predict where the analysis will lead. The approach of first identifying the viewpoints
and then using them to control the subsequent analysis provides a controlled way
of doing analysis in a top-down manner. This overcomes a major problem associ-
ated with data flow based analysis. This element of control is alluded to in
Controlled Requirements Expression, the full name of CORE.

Table 3.1 Tabular collection form

Source Input Action Output Destination

The viewpoint from
which the input
comes

The name of
the input
item

The action performed
on one or more
inputs to generate
required outputs

The name(s) of any
outputs generated
by the action

The viewpoint
to which
the output
is sent

Table 3.2 TCF example

Source Input Action Output Destination

Channel 1,2 Self test ok Channel 1,2

Self test fail

Cockpit Power up Channel fault

System
 recording

Towing state

 Aircraft

Channel 1,2

Wheel speeds Cockpit

Other
sensors/
actuators

Monitor
towing

Towing
control off

Towing
control on

Shutoff valve
fault

Autobrake
fault

NWS isolator
valve fault

Towing
controlled

Operational
of channel 1,2

Wheel speed Monitor
wheel speeds

Speed > 70
knots

Power up
self test

Power on of
channel 1,2

633.3 Methods

The other main concept of CORE is the system transaction. This is a path
through the system from one or more inputs, data flows or events to one or more
specific output flows or events. The system transactions address how a system is
intended to operate. They provide a view orthogonal to the top-down analysis.
System transactions provide a sound basis for discussing the non-functional
requirements.

3.3.1.2 Structured Analysis and Design Technique (SADT)

SADT is a method of structured analysis, based on the work undertaken by
Ross on Structured Analysis (SA) in the 1970s (Ross 1977). It is graphically
oriented and adopts a purely hierarchical approach to the problem with a suc-
cession of blueprints both modularising and refining it until a solution is
achieved. The basic element of SADT is the box, which represents an activity
(in activity diagrams) or data (in data diagrams). The boxes are joined by
arrows representing either the data needed or provided by the activity repre-
sented by the box (in activity diagrams), or the process providing or using the
data (in data diagrams).

There are four basic arrows associated with a box, as shown in Fig. 3.17. The
type of arrow is implied by its point of connection to the box:

•	 Input arrows enter the box from the left side, and represent data that is available
to the activity represented by the box.

•	 Output arrows exit the box from the right side, and represent data that is
 produced by the activity represented by the box i.e. the input data has been
transformed by the activity represented by the box to produce this output.

•	 Control arrows enter the box from the top, and govern the way in which the
transformation takes place.

•	 Mechanism arrows enter the box from below and control the way the activity
may use outside mechanisms e.g. a specific algorithm or resources.

Activity
Input Output

Control

Mechanism

Fig. 3.17 SADT box and arrows

64 3 System Modelling for Requirements Engineering

An SADT diagram is made up of a number of boxes with the associated set of
arrows. A problem is refined by decomposing each box and generating a hierarchi-
cal diagram, as shown in Fig. 3.18.

System Top
Level

2nd
Level

3rd
Level

More
detailed

More
general

Fig. 3.18 Decomposition using SADT diagrams

System

Computer

system

Cockpit

Warning
System

Steering
System

Braking

System

A-0

A0-4

A0-5

A0-3

A0-2

A0-1
Flight crew info

ABCS info

Commands

Info

ABCS reset
B&S commands

Systems actions

Sensors

Speed
sensors

Valve currents

Valve
energisation

Braking valve
currents

Shut-off valve
energisation

Remote
steering
commands

Fig. 3.19 SADT example

653.3 Methods

Figure 3.19 shows an example activity diagram for an ABCS. This decomposition
proceeds until there is sufficient detail for the design to proceed.

3.3.1.3 Viewpoint-Oriented Requirements Definition (VORD)

VORD (Kotonya 1996) is a method based on viewpoints. The model used is a
service-oriented one, where the viewpoints are considered to be clients, if one was
to think of it as a client-server system.

A viewpoint in VORD receives services from the system and in turn passes
control information to the system. The service-oriented approach makes VORD
suited for specifying interactive systems.

There are two types of viewpoint in VORD – direct and indirect:

•	 Direct viewpoints receive services from the system and send control informa-
tion and data to the system.

•	 Indirect viewpoints do not interact directly with the system but rather have an
‘interest’ in some or all of the services delivered by the system.

There can be a large variation of indirect viewpoints. Examples include engi-
neering viewpoints concerned with aspects to be undertaken by the systems
engineer; external viewpoints which may be concerned with aspects of the
 system’s environment; organisation viewpoints which may be concerned with
aspects of safety etc.

There are three main iterative steps in VORD:

 1. Viewpoint identification and structuring
 2. Viewpoint documentation
 3. Viewpoint requirements analysis and specification

The graphical notation for a viewpoint is shown in Fig. 3.20. A viewpoint is repre-
sented by a rectangle, which contains an identifier, label and type. Viewpoint attri-
butes are represented by labels attached to a vertical line dropping down from the
left-hand side of the rectangle.

The VORD method guides the systems engineer in identifying viewpoints. It
provides a number of abstract viewpoints which act as a starting point for iden-
tification. See Fig. 3.21. (Following the convention for VORD diagrams, direct
viewpoints are unfilled rectangles and indirect viewpoints are in greyscale).
This class hierarchy is then pruned to eliminate viewpoint classes which are not
relevant to a particular problem. The system stakeholders, the viewpoints repre-
senting other systems and the system operators are then identified. Finally, for
each indirect viewpoint that has been identified consideration is given to who
might be associated with it.

Based on this approach, Fig. 3.22 gives the viewpoints for a Pay & Display Car
Park System.

‘Cash User’ and ‘Credit Card User’ viewpoints are specialisations of the ‘Car Park
Customer’ viewpoint. ‘Cash Collector’ and ‘Car Park Manager’ are specialisations of

66 3 System Modelling for Requirements Engineering

‘Car Park Staff’. The ‘Ticket Issuing’ viewpoint represents the database of the
 organisation responsible for issuing the pay & display tickets. The ‘Credit Card
Database’ is external and holds details of the customer’s credit card details.

The next step in VORD is to document each of the viewpoint requirements. An
example of how this is achieved is given in Table 3.3 which shows the initial view-
point requirements for the ‘Car Park Customer’ viewpoint. The requirement type
refers to a service (sv) or to a non-functional requirement (nf).

VORD also allows for attributes of viewpoints to be provided which characterise
the viewpoint in the problem domain. These are important as they provide the
data on which the system operates. As stated previously, these are represented on
the viewpoint diagram by labels attached to a vertical line dropping down from the
left-hand side of the rectangle as shown in Fig. 3.23.

System behaviour is modelled using event scenarios. These describe how the
system interacts with the environment and provide a way of describing the complex
interactions between the various viewpoints and the system.

n Type

Label

[m attribute]

n.1

n.2

Viewpoint identifer

Attribute identifer

Fig. 3.20 Viewpoint notation

Engineering
Maintenance

Regulatory

Organisation

Indirect

Standards

Policy

Training

Environment

Customer

Viewpoint

Direct

System

Operator

Fig. 3.21 Viewpoint classes

673.3 Methods

The final stage of VORD is to translate the results of the requirements analysis
process into a requirements document, based on an industry standard.

3.3.2 Object-Oriented Methods

During the late 1980s and early 1990s numerous object-oriented methods emerged
proposing different approaches to object-oriented (O-O) analysis and design. The
earliest uses of O-O methods were those companies where time to market and

1

2

Operator/customer

Operator/customer

Operator/staff

Operator/staff

Car Park Customer

Car Park Staff

Cash User

Credit Card User

Cash Collector

Car Park Manager

System

Credit Card D/B

System

Ticket Issuing System

Organisation

Parking CompanyOperator

Operator

1.1

1.2

2.1

2.2

Fig. 3.22 Pay-and-display machine viewpoints

Table 3.3 Requirements from the car park customer viewpoint

Viewpoint Requirement

Identifier Label Description Type

1 Customer 1.1 Provide facility for ticket based on suitable
payment and length of stay

sv

1.1 Credit card user 1.1.1 Provide facility based on valid credit card sv
1.1.2 Provide ticket issuing service for customer sv
1.1.3 Ticket issuing service should be available

99/100 requests
nf

1.1.4 Ticket issuing service should have a response
time of no more than 30 s

nf

1.2 Cash user

68 3 System Modelling for Requirements Engineering

resistance to change were paramount. They included telecommunications, financial
organisations and later aerospace, health care, banking, insurance, transportation etc.

The main players were Object-Oriented Analysis (OOA), Object Modelling
Technique (OMT), Booch, and Objectory. Shlaer-Mellor was also there, but would
not have been regarded as a truly O-O method. However it did play an important
role in assisting in the identification of objects.

3.3.2.1 OOA

Object-oriented analysis (OOA) was developed by Coad and Yourdon (1991a).
OOA is spread across three layers, as they are called. The first layer is the subject
layer, which is concerned with object identification. Here the users are able to
simply represent their understanding of the problem domain by identifying relevant
problem domain objects. The second layer, called the attributes layer, is concerned
with identifying attributes (data elements) associated with problem domain objects.
The third and final layer is the services layer. This specifies the services (or opera-
tions) performed by each object.

In effect, OOA helps the systems engineer in identifying the requirements
of a system, rather than how the software should be structured or implemented.
It therefore describes the existing system, its operation and how the software
system should interact with it.

1

2

Operator/customer

Operator/customer

Operator/staff

Operator/staff

Car Park Customer

Car Park Staff

Cash User

Credit Card User

Cash Collector

Car Park Manager

System

Credit Card D/B

System

Ticket Issuing System

Organisation

Parking CompanyOperator

Operator

1.1

1.2

2.1

2.2

[1 | staff-PIN]

[1 | ticket-information]

[1 | customer-details]

[1 | card]

[1 | cash]

[1 | float]
[2 | pager]

Fig. 3.23 Representation of viewpoint attributes

693.3 Methods

3.3.2.2 OMT

The OMT method was developed by Rumbaugh. It aims to construct a series of
object models that refine the system design until the final model is suitable for
implementation. The approach is achieved in three phases. The analysis phase
 produces models of the problem domain. Three types of model are produced – the
object model, the dynamic model and the functional model. The object model is
the first one to be built. It uses notation similar to that used in OOA, which is based
on the concept of ER modelling which describes the objects, their classes and the
relationships between the objects. The dynamic model represents the behaviour of
the system and uses an extension of Harel’s statecharts. The functional model
describes how the system functions are performed through the use of DFDs.

These models are arrived at by using an iterative approach. The design phase then
structures the model and the implementation phase takes into account the appropriate
target language constructs. In this way OMT covers not only the requirements cap-
turing phase but also helps to inform the architectural design process.

3.3.2.3 Booch

The Booch method is one of the earliest O-O methods proposed. Although the
method does consider analysis, its strength lies in the contribution it makes to
the design of an object-oriented system. The approach is both incremental and
iterative and the designer is encouraged to develop the system by looking at both
logical and physical views of the system.

The method involves analysing the problem domain to identify the set of classes
and objects and their relationships in the system. These are represented using a
diagrammatical notation. The notation is extended further when considering the
implementation of classes and objects and the services they provide. The use of
state transition diagrams and timing diagrams are also an important part of this
method.

3.3.2.4 Objectory

Jacobson proposed the Objectory method. Many of its ideas are similar to other
O-O methods, but the fundamental aspect of this method is the scenario or use case,
as described earlier in this chapter. The system’s functionality should therefore be
able to be described based on the set of use cases for a system – the use case
model.

This model is then used to generate a domain object model, which can become
an analysis model by classifying the domain objects into three types: interface
objects, entity objects and control objects. This analysis model is then converted to
a design model, which is expressed in terms of blocks, from which the system is
implemented.

70 3 System Modelling for Requirements Engineering

3.3.2.5 The UML

The Unified Modelling Language (UML) (OMG 2003) was an attempt to bring
together three of the O-O approaches which had gained greatest acceptance –
Booch, OMT and Objectory. In the mid-1990s Booch, Rumbaugh and Jacobson
joined Rational to produce a single, common and widely usable modelling
 language. The emphasis was very much on the production of a notation rather than
a method or process.

Since its inception the UML has undergone extensive development and change
with various versions being launched. UML 1.0 became a standard in 1997 following
acceptance by the Object Management Group (OMG). Version 1.3 was released in
1999 and in 2003 the UML 2.0 was released, which is the version used in this book.
A discussion of the UML is provided in the following section.

3.3.3 The UML Notation

The UML is made up of a number of models, which together describe the system
under development. Each model represents distinct phases of development and
each will have a separate purpose. Each model is comprised of one or more of the
following diagrams, which are classified as follows:

Structure diagrams•	
Behaviour diagrams•	
Interaction diagrams•	

The 13 diagrams of UML2 are shown in Fig. 3.24 and represent all the diagrams
which are available to the systems engineer. In reality many will not be used and
often only a small subset of the diagrams will be necessary to model a system.
Class diagrams, use case diagrams and sequence diagrams are probably the most
frequently used. If dynamic modelling is required then activity diagrams and state
machine diagrams should be used.

It is how the UML diagrams contribute to modelling which is of interest to
us. The purpose of this section is not so much to provide an overview of UML2,
but rather to show how models can be used in various aspects of Requirements
Engineering.

Consider the banking example used earlier in this chapter. The class is the basic
modelling diagram of the UML. Figure 3.25 presents a UML class diagram
extending the set of classes to include ‘Account’, ‘Owner’, ‘Current Account’ and
‘Issued Cheque’ – used to model the system. As shown, each class has an associ-
ated set of attributes and operations, i.e. the relationships (in this case, generalisa-
tion and association) which exist between one or more classes.

Figure 3.26 gives a different example, that of a Baggage Handling System.
This considers the stakeholder requirements which are firmly within the problem
domain. When modelling, it is often the case that there are external systems, or

713.3 Methods

Package Diagram

Component Diagram

Class Diagram Activity Diagram

Composite Structure Diagram

Object Diagram

Deployment Diagram

Use Case Diagram

State Machine Diagram

Interaction Diagrams

Communication Diagram

Interaction Overview Diagram

Sequence Diagram

Structure Diagrams Behaviour Diagrams Interaction Diagrams

Timing Diagram

Fig. 3.24 UML diagrams

balance

check balance
deposit
withdraw

Account

name

Owner

Class
Name

Attributes

Operations

overdraft limit

pay cheque

Current Account

Generalization

Association

Issued Cheque
number
amount

1 *

Class

Fig. 3.25 Extended UML class diagram

72 3 System Modelling for Requirements Engineering

perhaps, devices which the system will use. These can be represented by classes.
For the Baggage Handling System, classes are identified such as ‘Passenger,
‘Clerk’, ‘Conveyor’ etc and also two embedded systems – BaggageCheckInSystem
and WeightSystem. The associations between the systems and other classes serve
to define aspects of the system context.

If we turn to the solution domain, then it becomes necessary to reason about
function and behaviour. The class diagram therefore needs to be elaborated in order
to show these attributes which will be necessary for modelling the system require-
ments. This is shown in Fig. 3.27.

Use case modelling is used to describe the functional requirements of systems.
For our example we will consider two use case diagrams – one for the Baggage
Handler System and one for the Baggage Check-in System. Figure 3.28 shows the
first of these portrayed as the top-level system. Figure 3.29 is the use case diagram
for the Baggage Check-in System. Both diagrams identify their respective system
boundaries (marked by a rectangle) and identify the various stakeholders or actors
which lie outside the system boundary. It should be noted that the highest level
goals of the stakeholders are represented by the use cases. The «include» relation-
ship shows that a use case is included in another use case, indicating the start of
hierarchical decomposition.

The UML also provides diagrams to allow the systems engineer to model func-
tionality and behaviour. A sequence diagram shows the interaction and collabora-
tion which exists between objects and thus can model complex behaviour. It is
depicted by messages which flow between objects over time. Figure 3.30 shows a
sample sequence diagram. The objects are represented by rectangles at the top of

talks

putsLuggage

controls

manages

prints

controls

Passenger

Clerk

Conveyor

BaggageCheckInSystem

Printer WeightSystem

Fig. 3.26 Class diagram for Baggage Handling System

733.3 Methods

the diagram and each is attached to a vertical timeline. Messages are ordered by
their sequence and are represented by arrows between the timelines. Also included
is the feature of an interaction frame and the operation ‘ref’ has been used to

talks

putsLuggage

controls

manages

prints

controls

Passenger

Clerk

Conveyor

BaggageCheckInSystem

Printer WeightSystem

PassportID:Integer

checkTicket()

LuggageID:Integer
LuggageWeight:Real

printLabel() Weigh()

Fig. 3.27 Elaborated class diagram

CheckInPassenger

CheckInBaggage

LoadBaggage

UnloadBaggage

Passenger

BaggageHandler

CheckInClerk

BaggageHandlingSystem

«include»

Fig. 3.28 Use case diagram for Baggage Handling System

74 3 System Modelling for Requirements Engineering

indicate ‘reference’ i.e. refers to an interaction defined in another diagram, in this
case WeighBaggage and LabelBaggage. These frames have been included to
cover the lifelines involved in the interaction.

WeighBaggage

CheckInBaggage

LabelBaggage

«include»

«include»

Passenger

CheckInClerk

BaggageCheckInSystem

Fig. 3.29 Use case diagram for Baggage Check-in System

Passenger CheckInClerk BaggageCkeckInSystem

WeighBaggage

LabelBaggage

YourTicketsPlease()

HereYouAre()

BaggagePlease()

PutBaggage()

TransportBaggage()
YourBoardingCard()

ref

ref

Fig. 3.30 Example sequence diagram

753.3 Methods

3.3.4 Formal Methods

Formal methods provide a more rigorous representation based on mathematics,
and can be used to conduct mathematical proofs of consistency of specification and
correctness of implementation. Rigorous checking is possible, which can eliminate
some kinds of errors. This may be necessary in certain types of systems, e.g.
nuclear power stations, weapons, and aircraft control systems.

Z (Spivey 1989), VDM (Jones 1986), LOTOS (Bjorner 1987) and the B-Method
(Abrial 1996) are the most common formal methods for formal definition of func-
tionality. LOTOS (Language of Temporal Ordering Specification), VDM (the
Vienna Definition Language) and Z are formal methods standardized by ISO. B and
LOTOS models are executable, and B models can be refined into code.

Formal methods are particularly suitable for critical systems i.e. ones in which
potential financial or human loss would be catastrophic, and the cost of applying
mathematically rigorous methods can be justified.

Formal methods are slowly becoming more important. If their scope can be
broadened to address wider system issues, they will become more useful.

3.3.4.1 Z–A Model-Based Formal Method

Z is a formal specification notation based on first order predicate logic and set
theory. The notation allows data to be represented as sets, mappings, tuples, rela-
tions, sequences and Cartesian products. There are also functions and operation
symbols for manipulating data of these types.

Z specifications are presented in a small, easy to read boxed notation called a
‘schema’. Schemas take the form of a signature part and a predicate part. The
signature part is a list of variable declarations and the predicate part consists of a
single predicate. Naming a schema introduces a syntactic equivalence between
the name and the schema. See Fig. 3.31.

Specifications in Z are presented as a collection of schemas where a schema
introduces some specification entities and sets out the relationships between them.
They provide a framework within which a specification can be developed and
presented incrementally.

Figure 3.32 shows a Z specification for the ‘issue’ operation for a library, where
the general behaviour of the overall library system would be specified in a schema

SchemaName

Variable declarations

Predicates

Fig. 3.31 Z schema

76 3 System Modelling for Requirements Engineering

named ‘library’. The notation ∆Library is called a delta schema and indicates that
the ‘Issue’ operation causes a state change to occur in the Library.

The schema in Fig. 3.32 distinguishes between inputs and outputs, and before
states and after states. These operations are denoted as follows:

‘?’ denotes the variable as an input to the operation
‘!’ denotes the variable as an output of the operation

A state after the operation is decorated with the “symbol, e.g. stock” to distinguish
it from the state before the operation.

3.4 Summary

This chapter has addressed the issues of system modelling, particularly with respect
to the solution domain. A range of techniques and methods have been presented
ranging from those which have stood the test of time to those which have been
developed more recently. All have been widely used in industry. The contents of the
chapter provide a basis for the discussion on modelling stakeholder and system
requirements in subsequent chapters.

Issue

� Library
b? : Book
r? : Reader

b? ∈ shelved; r? ∈readers
issued′ = issued ⊕ {b? - r?}
shelved′ = shelved\{b?}
stock′ = stock: readers′ = readers

Library = = [shelved: PP Book:readers: PPReader:
stock: PP Book: issued: PPBook]

Fig. 3.32 Example schema

77E. Hull et al., Requirements Engineering, DOI 10.1007/978-1-84996-405-0_4,
© Springer-Verlag London Limited 2011

To write simply is as difficult as to be good.

William Somerset Maugham, author, 1874–1965 AD

4.1 Introduction

Requirements engineering is a technical process. Writing requirements is therefore
not like other kinds of writing. It is certainly not like writing a novel, or a book like
this; it is not even like the kind of “technical writing” seen in instruction manuals
and user guides.

The purpose of this chapter is to present those aspects of writing requirements
that are common to every development layer. Wherever the generic process is
instantiated, certain principles and techniques are constant in their application to
the expression and structuring of requirements.

In writing a requirements document, two aspects have to be carefully balanced:

 1. The need to make the requirements document readable
2. The need to make the set of requirements processable

The first of these concerns the structure of the document, how it is organised and
how the flow of it helps the reviewer to place individual requirement statements into
context. The second focuses on the qualities of individual statements of requirement,
the language used to promote clarity and preciseness, and how they are divided into
single traceable items.

The experienced requirements engineer comes to realise that a word processor
alone is not sufficient to manage a set of requirements, for the individual statements
need to be identified, classified and traced. A classic problem, for instance, is the
use of paragraph numbers to identify requirements: insert a new one in the middle,
and suddenly all the subsequent requirement identifiers have changed.

Equally, those who have tried simply to manage their requirements in a database
quickly realise that tables full of individual statements are unmanageable. Despite
having the ability to identify, classify and sort requirements, vital contextual information

Chapter 4
Writing and Reviewing Requirements

78 4 Writing and Reviewing Requirements

provided by the document has been lost; single statements lose meaning when
 separated from their place in the whole.

So both aspects – document and individuality – need to be maintained.
The writing and the reviewing of requirements (or any other kind of document,

for that matter) should go hand-in-hand, in that the criteria for writing a good
requirement are exactly those criteria against which the requirement should be
reviewed. Hence the subjects are treated together in this chapter.

4.2 Requirements for Requirements

Before discussing how requirements documents and statements should be written, it is
best to review some of the objectives and purpose for the writing of requirements in
the first place. This will help in understanding why certain principles are suggested.

The starting place is the identification of stakeholders, which is shown in Table 4.1.

Table 4.1 Stakeholders for requirements

Stakeholder Role

Author Creates the requirements and incorporates changes
Publisher Issues and archives the requirements document
Reviewer Reviews the requirements and suggests changes
Implementer Analyses the requirements and negotiates changes

Table 4.2 Abilities required for requirements

Ability

Ability uniquely to identify every statement of requirement.
Ability to classify every statement of requirement in multiple ways, such as:
• By importance
• By type (e.g. functional, performance, constraint, safety)
• By urgency (when it has to be provided)
Ability to track the status of every statement of requirement, in support of multiple processes,

such as:
• Review status
• Satisfaction status
• Qualification status
Ability to elaborate a requirement in multiple ways, such as by providing:
• Performance information
• Quantification
• Test criteria
• Rationale
• Comments
Ability to view a statement of requirement in the document context, i.e. alongside its

surrounding statements.
Ability to navigate through a requirements document to find requirements according to a

particular classification or context.
Ability to trace to any individual statement of requirement.

794.3 Structuring Requirements Documents

Table 4.2 lists capabilities required by the various stakeholders that relate to how
requirements documents and statements are written. These are the basic things that
one needs to be able to do to – and with – requirements, including identification,
classification, elaboration, tracking status, tracing, placing in context and retrieving.
How requirements are expressed and organised has a great influence on how
 “useable” the sets of requires becomes.

4.3 Structuring Requirements Documents

Requirements documentation can be very large. On paper, the complete subsystem
requirements for an aircraft carrier, for instance, may fill many filing cabinets.
It is not unknown for supplier responses to large systems to be delivered in
 lorries. In such situations, having a well-understood, clearly documented struc-
ture for the whole requirements set is essential to the effective management of
complexity.

Organising requirements into the right structure can help:

•	 Minimize the number of requirements
•	 Understand large amounts of information
•	 Find sets of requirements relating to particular topics
•	 Detect omissions and duplications
•	 Eliminate conflicts between requirements
•	 Manage iteration (e.g. delayed requirements)
•	 Reject poor requirements.
•	 Evaluate requirements
•	 Reuse requirements across projects

Documents are typically hierarchical, with sections and subsections to multiple
levels. Hierarchies are useful structures for classification, and one way of structuring
a requirements document is to use the section heading structure to categorise the
requirements statements. In such a regime, the position a requirement statement has
in the document represents its primary classification. (Secondary classifications can
be given through links to other sections, or by using attributes.)

Chapter 3 describes how system models frequently use hierarchies in the analysis
of a system. Examples are:

Goal or capability decomposition as in stakeholder scenarios
Functional decomposition as in data-flow diagrams
State decomposition as in state charts

Where requirements are derived from such models, one of the resulting hierarchies
can be used as part of the heading structure for the requirements document.

In addition to requirements statements themselves, requirements documents
may contain a variety of technical and non-technical text, which support the under-
standing of the requirements. These may be such things as:

80 4 Writing and Reviewing Requirements

•	 Background information that places the requirements in context
•	 External context describing the enclosing system, often called “domain knowledge”
•	 Definition of the scope of the requirements (what’s in and what’s out)
•	 Definitions of terms used in the requirement statements
•	 Descriptive text which bridges different sections of the document
•	 Stakeholder descriptions
•	 Summary of models used in deriving the requirements
•	 References to other documents

4.4 Key Requirements

Many organisations use the concept of “key requirements”, particularly at the
stakeholder level. Often referred to as KURs (“Key User Requirements”) or KPIs
(“Key Performance Indicators”), these requirements are a small subset abstracted
from the whole that capture the essence of the system.

The guiding philosophy when selecting key requirements is similar to that used
by Jerome K. Jerome’s “Three Men in a Boat”, who, when planning for the trip,
realised that

the upper reaches of the Thames would not allow the navigation of a boat sufficiently large
to take the things [they] had set down as indispensable. …

George said, ‘We must not think of the things we could do with,but only the things that we
cannot do without.’

Every key requirement should solicit a negative response to the question:

If the solution didn’t provide me with this capability, would I still buy it?

or, if at the system level,

If the system didn’t do this, would I still want it?

In this way, the key requirements become those that are absolutely mandatory. (Of
course, everything is negotiable, but trading key requirements would always
engender very careful consideration.)

Where appropriate, each key requirement should be quantified with performance
attributes. Doing this allows them to be used as KPIs, used to assess alternative
 proposals against the requirements, or used as a summary of vital statistics on project
progress.

4.5 Using Attributes

It is clear from the discussions of process in previous chapters, and from the list of
abilities in Table 4.2, that a simple textual statement is not sufficient fully to define
a requirement; there is other classification and status information that each require-
ment carries.

814.5 Using Attributes

Rather than clutter the text of a requirement, additional information should be
placed in “attributes” attached to the requirement. Attributes allow the information
associated with a single requirement to be structured for ease of processing, filtering,
sorting, etc. Attributes can be used to support many of the abilities in Table 4.2,
enabling the requirements to be sorted or selected for further action, and enabling
the requirements development process itself to be controlled. Figure 4.1 shows an
example of a requirement with a number of attributes.

The particular attributes used will depend on the exact processes that need to be
supported. Some attributes are entirely automatic – e.g. dates, numbers – some
come from users – e.g. priority – other attributes are flags, which are set after analysis
work – e.g. checkability.

The following suggestions for attribute categories are drawn in part from some
work carried out by a requirements working group in the UK chapter of INCOSE
(Table 4.3).

[SH234] The ambulance control system shall be able to handle up to 100
simultaneous emergency calls.

Source: R. Thomas

Priority: Mandatory

Release: 1

Review status: Accepted

Verifiable: Yes

Verification: By simulation, then by system test.

Fig. 4.1 Requirements attributes

Table 4.3 Categories of Attributes

Category Example Values

Identification
•	 Identifier Unique reference
•	 Name Unique name summarising the subject of the requirement.
Intrinsic characteristics
•	 Basic	type Functional, performance, quality factor, environment,

interface, constraint, non-requirement
•	 Quality	factor	sub-type Availability, flexibility, integrity, maintainability,

portability, reliability, safety, security, supportability,
sustainability, usability, workmanship

•	 Product/process	type Product, process, data, service
•	 Quantitative/qualitative	type Quantitative, qualitative
•	 Life-cycle	phase Pre-concept, concept, development, manufacturing,

integration/test, deployment/delivery/installation,
operation, support, disposal

Priority and importance
•	 Priority	(compliance	level) Key, mandatory, optional, desirable

or
Must, Should, Could, Would (MoSCoW)

•	 Importance 1–10

(continued)

82 4 Writing and Reviewing Requirements

4.6 Ensuring Consistency Across Requirements

A frequent concern in managing large sets of requirements is being able to identify
conflicting requirements. The difficulty is in spotting that two statements many
pages apart are in conflict. What techniques can be applied to assist in identifying
these potential inconsistencies?

One answer lies in classifying requirements in several ways, and using filtering
and sorting techniques to draw together small numbers of statements that address
the same topic. Many requirements will touch on several aspects of a system. For
instance, a requirement primarily about engine performance may also contain a
safety element. Such a statement should therefore be viewed in both an engine
performance context as well as in a safety context.

Table 4.3 (continued)

Category Example Values

Source and ownership

•	 Derivation	type Allocation, decomposition
•	 Source	(origin) Name of document or stakeholder
•	 Owner Name of stakeholder
•	 Approval	authority Name or person
Context
•	 Requirements	set/document (Best handled through positioning the requirement in a

structured document.)•	 Subject
•	 Scope
Verification and validation
•	 V&V	method Analysis, inspection, system test, component test
•	 V&V	stage (See life-cycle phase.)
•	 V&V	status Pending, pass, failed, inconclusive
•	 Satisfaction	argument Rationale for choice of decomposition
•	 Validation	argument Rationale	for	choice	of	V&V	methods
Process support
•	 Agreement	status Proposed, being assessed, agreed
•	 Qualification	status Not qualified, qualified, suspect
•	 Satisfaction	status Not satisfied, satisfied, suspect
•	 Review	status To be reviewed, Accepted, Rejected
Elaboration
•	 Rationale Textual statement about why the requirement is present.
•	 Comments Textual comments of clarification.
•	 Questions Questions to be posed for clarification.
•	 Responses Responses received for clarification.
Miscellaneous
•	 Maturity	(stability) Number of changes/time
•	 Risk	level High, Medium, Low
•	 Estimated	cost
•	 Actual	cost
•	 Product	release Version(s) of product meeting the requirement.

834.7 Value of a Requirement

To facilitate this, requirements can be given primary and secondary classifications,
as discussed in Section 1.3. Typically, each has a single primary classification
(perhaps by virtue of its position in the document), and multiple secondary classi-
fications, perhaps using links or attributes.

A thorough review process can now include the systematic filtering of state-
ments by keywords used in primary and secondary classifications. For example,
filtering on all requirements to do with safety will draw together statements whose
primary classifications may be quite diverse. These can then be reviewed in prox-
imity for potential conflicts.

4.7 Value of a Requirement

Some requirements are non-negotiable. If they are not met, the product is of no use.
Other requirements are negotiable. For instance, if a system is required to

 support at least 100 simultaneous users, but the delivered solution only supports 99,
then it is most likely still of some value to the customer.

Capturing the value of a requirement can be a challenge. A way needs to be
found of expressing the idea that, while the target may be 100 simultaneous users,
75 would be acceptable, but anything less than 50 is not acceptable; and maybe 200
would be even better.

One approach to this is to provide several performance values. Here is an
example of a three-valued approach:

M: the mandatory lower (or upper) limit
D: the desired value
B: and the best value

These three values can be held in separate attributes, or represented within the text
in a labelled form, such as “The system shall support [M:50, D:100, B:200] simul-
taneous users.”

Another approach is to represent the value of a requirement by supplying a function
that maps performance to some representation of value, usually a figure between 1 and
100. Figure 4.2 shows four examples of different shapes of value function. Function
(a) shows the example above, where the number of simultaneous users should be
maximised, but more than a minimum number is mandatory. Function (b) is the binary
case: either the performance of 100 is exceeded or not. A performance of 200 does not
add extra value. Function (c) shows a performance that is to be minimised (weight, for
instance), whereas (d) shows one that is to be optimised (engine revs, for example).

This is a very visual way of presenting value. One glance at the shape of the value
curve indicates the nature of the requirement: minimise, maximise, optimise, etc. It
also allows the engineers to understand the degrees of freedom they have in designing
solutions that deliver the best overall value, by trading-off performance between
requirements. This is why this approach is frequently used as part of the tender
assessment process, to judge between the relative values of alternative proposals.

http://Section�1.3

84 4 Writing and Reviewing Requirements

An attribute can be used to represent a value function as a set of performance/
value pairs.

4.8 The Language of Requirements

The use of consistent language makes it easier to identify different kinds of require-
ments. A simple example of this is the use of “shall” as a key word to indicate the
presence of a requirement in the text. Some approaches go so far as to use “shall”,
“should” and “may” to indicate different priorities of requirement.

The language used will vary depending on the level of requirement being
expressed. The principle difference is between stakeholder requirements that lie in
the problem domain and system requirements that lie in the solution domain (see
Chapter 1, Section 1.9).

As is emphasised in Section 1.9, stakeholder requirements are primarily concerned
with capability and constraints on capability. A capability statement should express a
(single) capability required by one or more identified stakeholder types (or user
groups). The types of stakeholder should be stated in the requirement text.

A typical capability requirement takes the following form:

The < stakeholder type > shall be able to < capability>.

Where there are some aspects of performance or constraint associated solely with
the requirement, they may also be stated in the text, for instance giving the form:

performance

va
lu

e

0

100

maximise

5 10 20kg
performance

va
lu

e

0

100

minimise

3 7 10 Krpm
performance

va
lu

e

0

100

optimise

50 100 200 users50 100 200 users
performance

va
lu

e

0

100

exceed

a b

c d

Fig. 4.2 Typical value functions

http://Section�1.9
http://Section�1.9

854.9 Requirement Boilerplates

The < stakeholder type > shall be able to < capability >
within < performance > of < event >
while < operational condition>.

For example, the following capability requirement has a performance and constraint
attached:

The weapons operator shall be able to fire a missile
within 3 seconds of radar sightingwhile in severe sea conditions.

Less commonly, a single performance attribute is associated with several capabili-
ties. For example, several capabilities may need to be provided with a set time. In
practice these capabilities are usually sub-divisions of a high-level capability, to
which the performance attribute should be attached.

It frequently occurs, however, that constraints have to be expressed separately
from the capabilities, either because they apply to the whole system, or because they
apply to diverse capabilities. Generally, constraints in stakeholder requirements are
based either on minimum acceptable performance or are derived from the need to
interact with external systems (including legal and social systems).

A typical constraint requirement takes the following form:

The < stakeholder > shall not be placed
in breach of < applicable law>.

E.g. The ambulance driver shall not be placed
in breach of national road regulations.

Since they lie in the solution domain, the language of systems requirements is a
little different. Here the focus is on function and constraints on the system. The
language depends on the kinds of constraint or performance associated with the
requirement. Here is an example of a function with a capacity performance:

The < system > shall < function >
not less than < quantity > <object > while < operational condition>.

E.g. The communications system shall sustain telephone contact
with not less than 10 callerswhile in the absence of external power.

Here is another that expresses a periodicity constraint:

The < system > shall < function > <object >
every < performance > <units>.

E.g. The coffee machine shall produce a hot drink
every 10 seconds.

Further discussion of this topic can be found in the following section.

4.9 Requirement Boilerplates

The language of requirements in Section 4.8 was expressed in terms of boilerplates.
This section extends this concept, and applies it to the collection and expression of
constraint requirements.

86 4 Writing and Reviewing Requirements

Using boilerplates such as the examples in Section 4.8 is a good way of standardis-
ing the language used for requirements. A palette of boilerplates can be collected and
classified as different ways of expressing certain kinds of requirement. As an organisa-
tion gains experience, the palette can be expanded and reused from project to project.

Expressing a requirement through a boilerplate now becomes a process of

Selecting the most appropriate boilerplate from the palette•	
Providing data to complete the placeholders•	

The requirement can refer to a single document-wide instance of the boilerplate,
and placeholders can actually be collected separately as attributes of the require-
ment. This is illustrated in Fig. 4.3.

From this information, the textual form of the requirement can be generated
when needed. Separating the template has the following advantages:

Global changes in style can be effected: To change the ways certain requirements
are expressed, only the centrally-held boilerplate needs to be edited.

System information can be processed more easily: Collecting, for instance, all the
“<operational condition>” placeholders into a separate attribute allows for easy
sorting and filtering on operational conditions.

Confidential information can be protected: In contexts where requirements contain
classified or secret information, boilerplates can be used to separate out just
those parts of each statement that need to be protected.

This last point merits some elaboration. In military or commercially sensitive projects,
there is a need to restrict the availability of some information, but not all. Quite often,
a single statement of requirement will contain a mixture of information classified at

The <system> shall <function> <object>
every <performance> <units>.

Template 34

Requirement 347 = Template 34 +
<system> = coffee machine

<function> = produce
<object> = a hot drink

<performance> = 10
<units> = seconds

Requirement 348 = Template 34 +

<system> = coffee machine
<function> = produce

<object> = a cold drink
<performance> = 5

<units> = seconds

Fig. 4.3 Global templates

874.9 Requirement Boilerplates

various levels. For instance, it is obvious that the ship is going to fire missiles; what is
classified is the performance associated with that capability: the state of readiness, the
frequency, and the range, etc. Rather than having to hide the whole statement because
some of the elements are confidential, boilerplates permit the statement to be visible
without some of its more sensitive attributes. Indeed, different readers may be able to
see different sets of attributes.

Since there are such a wide variety of constraints, these tend to be the most
 difficult to express, and this is where boilerplates can help the most. Here is an
approach to capturing constraint requirements:

 1. Collect all capability requirements first.
 2. Construct a list of all the different kinds of constraint that may need to be expressed.

If this list is based on past experience of the same kind of system, then boilerplates
should exist for each kind. Otherwise suitable boiler-plates may have to be defined.

 3. For each capability, consider each kind of constraint, and determine whether a con-
straint needs to be captured. A large table could be used for this; in each cell, indicate
where constraints exist by entering the appropriate sub-ordinate clauses to the require-
ment; where no constraint is necessary, enter “N/A” in the appropriate cell.

 4. Select the boilerplate that best matches the constraint to be expressed, and instantiate it.
 5. The process is finished when every “cell” has been considered.

This process answers two frequently asked questions:

How do I express constraint requirements? (Use boilerplates.)•	
How do I know when all constraints have been collected? (Use this systematic •	
coverage approach.)

Table 4.4 shows some examples of boilerplates classified by type of constraint.
Note that there may be several ways of expressing similarly classified constraints,

Table 4.4 Example boilerplates for constraint requirements

Type of Constraint Boiler-Plate

Performance/capability The < system > shall be able to < function > <object >
not less than < performance > times per < units>.

Performance/capability The < system > shall be able to < function > <object >
of type < qualification > within < performance > <units>.

Performance/capacity The < system > shall be able to < function >
Not less than < quantity > <object>

Performance/timeliness The < system > shall be able to < function > <object >
within < performance > <units > from < event>.

Performance/periodicity The < system > shall be able to < function > not less than
< quantity > <object > within < performance > <units>.

Interoperability/capacity The < system > shall be able to < function > <object >
composed of not less than< performance > <units >
with < external entity>.

Sustainability/periodicity The < system > shall be able to < function > <object >
for < performance > <units > every < performance > <units>.

Environmental/operability The < system > shall be able to < function > <object >
while < operational condition>.

88 4 Writing and Reviewing Requirements

and that constraints may have a compound classification. Only those parts of the
boilerplate that are in bold font are actually relevant to the constraint.

4.10 Granularity of Requirements

The use of requirements boilerplates encourages the practice of placing some
constraints and performance statements as sub-clauses of capability or functional
requirements. In some cases, it may be desirable to create traceability to and from
just those sub-clauses.

This raises the question of granularity of information. How far do we “split the
atom” in requirements management?

Statements of requirements can be decomposed into sub-clauses, as long as tool
support ensures that clauses are always visible in context. One scheme is to extend
the requirements hierarchy to make the sub-clauses children of the main require-
ment, as shown in Fig. 4.4. Whereas the main requirement is readable (and trace-
able) on its own, the sub-clauses, albeit separately referenceable for tracing
purposes, make sense only in the context of their “parent” statement.

Traceability can now reference a specific sub-clause, but the clause should only
ever be cited with the context of its ancestor statements. For instance, the traceable
statements that can be cited from Fig. 4.4, with context in italics, are

The communications system shall sustain telephone contact.

•	 The communications system shall sustain telephone contact with not less than
10 callers.

•	 The communications system shall sustain telephone contact while in the absence
of external power.

There may be several ways of organising the hierarchy of clauses. Suppose, for
instance, that there are multiple capabilities required “in the absence of external
power”. Then the arrangement may be as in Fig. 4.5.

Now the traceable statements that can be cited are:

•	 While in the absence of external power, the communications system shall sustain
telephone contact.

•	 While in the absence of external power, the communications system shall sustain
telephone contact with not less than ten callers.

•	 While in the absence of external power, the communications system shall sustain
radio contact with not less than 15 ambulance drivers.

The communications system shall sustain telephone contact

with not less than 10 callers

while in the absence of external power.

Fig. 4.4 Performance and constraints as sub-clauses

894.11 Criteria for Writing Requirements Statements

Indeed, as a general principle, requirements could be organised in such a way that
the set of ancestor objects provide the complete context for each statement, including
section and sub-section headings.

4.11 Criteria for Writing Requirements Statements

Apart from the language aspects, there are certain criteria that every statement of
requirement should meet. These are summarised as follows:

Atomic: each statement carries a single traceable element.
Unique: each statement can be uniquely identified.
Feasible: technically possible within cost and schedule.
Legal: legally possible.
Clear: each statement is clearly understandable.
Precise: each statement is precise and concise.
Verifiable: each statement is verifiable, and it is known how.
Abstract: does not impose a solution of design specific to the layer below.

In addition, there are other criteria that apply to the set of requirements as a whole:

Complete: all requirements are present.
Consistent: no two requirements are in conflict.
Non-redundant: each requirement is expressed once.
Modular: requirements statements that belong together are close to one
another.
Structured: there is a clear structure to the requirements document.
Satisfied: the appropriate degree of traceability coverage has been achieved.
Qualified: the appropriate degree of traceability coverage has been achieved.

Two “nightmare” examples of actual requirements are given below.

 1. The system shall perform at the maximum rating at all times except that in emer-
gencies it shall be capable of providing up to 125% rating unless the emergency
condition continues for more than 15 min in which case the rating shall be reduced
to 105% but in the event that only 95% can be achieved then the system shall

While in the absence of external power,

the communications system shall sustain telephone contact

with not less than 10 callers.

the communications system shall sustain radio contact

with not less than 15 ambulance drivers.

Fig. 4.5 Alternative arrangement of sub-clauses

90 4 Writing and Reviewing Requirements

activate a reduced rating exception and shall maintain the rating within 10% of
the stated values for a minimum of 30 min.

 2. The system shall provide general word processing facilities which shall be easy
to use by untrained staff and shall run on a thin Ethernet Local Area Network
wired into the overhead ducting with integrated interface cards housed in each
system together with additional memory if that should be necessary.

Some classic problems are present in these examples. The following pitfalls should
be avoided:

•	 Avoid rambling: conciseness is a virtue; it doesn’t have to read like a novel
•	 Avoid let-out clauses: such as “if that should be necessary”; they render the

requirements useless.
•	 Avoid putting more than more requirement in a paragraph: often indicated by

the presence of the word “and”.
•	 Avoid speculation.
•	 Avoid vague words: usually, generally, often, normally, typically.
•	 Avoid vague terms: user friendly, versatile, flexible.
•	 Avoid wishful thinking: 100% reliable, please all users, safe, run on all platforms,

never fail, handle all unexpected failures, upgradeable to all future situations.

An analysis of the first example above admits that there could be 12 requirements
present. A better approach would be to identify clearly the four different opera-
tional modes of the aircraft: normal, emergency, emergency more than 15 min, and
reduced rating exception, and express a separate requirement for each.

Note the let-out clause in the second example. It is not clear what the scope of
the clause is. One interpretation is “The system shall provide general word processing
facilities … if that should be necessary.” Well is it required, or not?

4.12 Summary

One of the hardest things to do in requirements is to get started. It is important to
have an approach, but above all it is important to start writing down the require-
ments from day 1 and show them to others for comment. The following list is
intended as a safe way to proceed:

Define an outline structure at the outset, preferably hierarchical, and improve it •	
as you go.
Write down requirements as soon as possible, even if they are imperfect.•	
Determine in advance what attributes will be used to classify and elaborate the •	
textual statement.
Produce an initial version rapidly to stimulate immediate feedback.•	
Perfect the requirements as you go, removing repetition, unwarranted design, •	
inconsistency.

914.12 Summary

Brainstorm and hold informal reviews continually, with rapid turn-around of •	
versions.
Exposure to users is much better than analysis by ‘experts’.•	

The rules to follow when writing requirements are as follows:

Use simple direct language•	
Write testable requirements•	
Use defined and agreed terminology•	
Write •	 one requirement at a time

93E. Hull et al., Requirements Engineering, DOI 10.1007/978-1-84996-405-0_5,
© Springer-Verlag London Limited 2011

It isn’t that they can’t see the solution.
It is that they can’t see the problem.

Gilbert Keith Chesterton, author, 1874–1936 AD

5.1 What is the Problem Domain?

The problem domain is the domain in which a system is going to be used. Therefore
it is important to look at requirements from an operational point of view. A system
or any other product enables somebody or some equipment to do something. It is
this enabling aspect that is at the heart of requirements engineering in the problem
domain. Faced with the challenge of eliciting requirements from potential users one
might therefore be tempted to ask a user the question:

What do you want the system to do?

Some users will have little or no idea of what they want the system to do. Those
who have an existing system will usually have ideas about how to improve the
system, but when there is no existing system this source of inspiration is not available.
Answers may be forthcoming from those with insight into what is possible, but they
are most likely to come up with a solution because the question is focussing on the
functionality to be provided by the intended system.

To avoid this premature jump into the solution domain, it is necessary to ask the
question:

What is the purpose of the system you want?

When considering the purpose of a system, people immediately think about what
they want to be able to do with the system, rather than how they will do it. What
people want to achieve can be stated without any implementation or solution bias
and this leaves the solution space open to the systems engineers and architects.

Chapter 5
Requirements Engineering in the Problem
Domain

94 5 Requirements Engineering in the Problem Domain

It can be argued that even mentioning “the system” in the question could be
misleading and the question reduces to:

What do you want to be able to do?

The answers to this question should be of the form:

I want to be able to …

This is known as a capability requirement and is one of the key forms of require-
ment in the problem domain.

Having established that requirements engineering in the problem domain is pri-
marily about eliciting capabilities, the next question is

Who should be asked?

This leads to the identification of stakeholders. Recall from the definition in Chapter 1
that a stakeholder is an individual, group of people, organisation or other entity that has
a direct or indirect interest (or stake) in the intended system (see Section 1.3.1).

Finally we must examine what sorts of models are relevant to the problem
domain. Clearly any models that are used must be understandable to the stakeholders,
because they are going to be responsible for validating them. Since the stakeholders
have been chosen for their specialist knowledge in the problem, they are generally
unwilling or unable to comprehend any model that is the slightest bit technical. For
example, if you were to go into a car show room and examine the cars on display,
you would be very unlikely to be interested in a state transition diagram of the
engine management system. You are more likely to be concerned about the perfor-
mance of the car in terms of its acceleration, fuel efficiency, its comfort level and
the in-car entertainment facilities. In other words, you are considering what the car
might be like to drive on a long journey. In your mind’s eye you are thinking about
an imaginary journey in the car and considering all the aspects of the car that would
be useful or beneficial during that journey. This is an example of a use scenario.

It has been found that use scenarios are a very good way of modelling what
people do or want to be able to do. They are directly related to the way they think
about their job or their problems. The scenario can be constructed with the stake-
holders and then used as a basis for discussing the capabilities that are required.

The final aspect of requirements engineering in the problem domain, is that there
may be some overriding constraints. In the example of buying a car, you may have
a limited budget, or you may require the car to be delivered within a given period
of time. You may want the running costs to be below a given level.

It is now possible to consider how to instantiate the generic process for the
 creation of stakeholder requirements.

5.2 Instantiating the Generic Process

Figure 5.1 contains an instantiation of the generic process for the elicitation of
stakeholder requirements. The starting point is the Statement of need. This may be
quite a small item, e.g. it could be an email from the Chief Executive Officer (CEO)

http://Section�1.3.1

955.3 Agree Requirements with Customer

to the Chief Technical Officer (CTO) stating that a new product is required to get
one step ahead of the competition. Alternatively, there may already have been a
study performed to look at possible options and a concept of operations document
produced that identifies some use scenarios.

Figure 5.1 indicates that the Analyse and Model process creates a set of Use
Scenarios plus a list of the Stakeholders. The derived requirements will be stake-
holder requirements.

The details of the Analyse & Model and Derive Stakeholder Requirements and
Qualification Strategy processes are introduced in the following sections.

5.3 Agree Requirements with Customer

The agreement process at the start of the stakeholder requirements process is usually
very informal. It is quite likely that the Statement of Needs is a simple document that
has not been engineered from a requirements point of view. In other words it is likely
to contain woolly expressions of need mixed with descriptive information. It will not
contain atomic requirements that can be the target of satisfaction relationships. In
this respect the stakeholder requirements process is different to other requirements

Qualification
StrategyQualification

Strategy

Derive
Stakeholder

Requirements
&

Qualification
Strategy

Analyse
&

Model

Statement of
need

Qualification
Strategy

Agree
Requirements

Stakeholder
Requirements

Change Request

Change
Request

Change Request

Use
Scenarios

Qualification
Strategy

Stakeholders

Agree
Requirements

Fig. 5.1 Stakeholder requirements process

96 5 Requirements Engineering in the Problem Domain

processes because it starts from this rather vague position. One of the key elements
in eliciting stakeholder requirements is to establish the scope of the intended system.
This is usually done once a set of use scenarios has been established.

5.4 Analyse & Model

The Analyse & Model process is instantiated for the problem domain as shown in
Fig. 5.2. The first activity is to identify stakeholders and then the Use Scenarios can
be created in consultation with them.

5.4.1 Identify Stakeholders

As indicated earlier, a stakeholder can be any person or organisation that has an
opinion, a responsibility for, or who may be influenced or affected by the proposed
system. The types of stakeholders vary according to the nature of the system;
e.g. on whether the system is a consumer product, or a public service such as air
traffic control or a railway.

People who have an opinion about the proposed system include those people
who will use the system directly. Note that this can include the general public who
may be passengers on aircraft or trains, or may be affected by a crash when they
were otherwise not involved in travelling. People with responsibility for a system
may be managers in charge of operating the system, or safety authorities.

The following list contains possible stakeholder categories that can be used as
the basis for establishing whether a complete list of stakeholders has been identified.

Analyse
&

Model

Statement of
need

Change Request

Use
Scenarios

Stakeholders

Identify
Stakeholders

Create
models

Fig. 5.2 Analyse & Model pro-
cess for Stakeholder Requirements

975.4 Analyse & Model

The list does not claim to be complete, but provides guidance to help when brainstorming
to create the list:

Managers: People who have a responsibility for either the development budget or
operating budget of the proposed system. It is also a good plan to involve senior
policy makers who will take a view on whether the proposed development con-
forms to the aims and philosophy of the company or organisation.

Investors: People who either have made or are being invited to make a contribution
to the funding of the proposed system, or the organisations responsible for devel-
oping or operating the system.

System users: Clearly this is a very important group of stakeholders. They have a
direct interest in the capabilities provided by the new system or service. Note
that there may also be users who do not interact directly with the system. For
example, the users of the Hubble telescope are astronomers. They ask for pho-
tographs to be taken in specific directions, and they receive the information
when it arrives, but they do not directly control the telescope itself. Users of an
existing system are also valuable sources of knowledge of problems with that
system. They can give invaluable insight into how they would like to see the
system improved.

Maintenance and service staff: Although their prime responsibility is to keep the
system running once it has been delivered, they do have important requirements
that the system must address in order to help them do their job.

Product disposers: This is an increasingly important role as environmental protec-
tion legislation develops. Requirements from this source can have a massive
impact on design especially with respect to the materials employed.

Training personnel: Like the maintenance staff, these people have a vested interest
in making the system easy to use and consequently easy to train people to use.
These people may also require the system to be able to work simultaneously in
a mode where live data and training data can be mixed without interfering with
the safe operation of the system.

System buyers: For public services and other large systems, the person who buys the
system may not be involved directly with its development or operation. They will,
though, have an important role to play in scoping the system from the point of view
of cost versus perceived benefit. For product-based developments, the buyer may
be the actual user, e.g. mobile phone user, car driver etc.

Sales and marketing: These people have a vital role to play in formulating the
capabilities for new systems, especially for product-based developments,
because, for mass produced consumer products, it is not possible to have access
to all potential users.

Usability and efficiency experts: These people have a view on how the system can
be optimised to make it efficient in use. These factors include ergonomics, ease
of learning and, where relevant, ability to be used reliably under pressure (e.g.
in air traffic control).

Operational environment experts: Usually a new system is not created to work in
a “green fields” situation; it will have to inter-operate with existing systems.

98 5 Requirements Engineering in the Problem Domain

There may also be other environmental aspects such as emission control where
the system must not pollute the environment, and conversely, aspects where the
system must be able to tolerate the environment in which it is placed (e.g. in
extreme weather conditions, submersed in water etc.)

Government: Rules, regulations and laws determine and influence what a system
may or may not do.

Standards bodies: Existing and future standards can affect the goals of a proposed
system. These may be international such as the GSM mobile phone standards,
national standards or internal company standards.

Public opinion and opinion leaders: Different regions of the world have different
attitudes. These factors must be recognised where a product is to be marketed in
a wide range of countries.

Regulatory authorities: These organisations may require that certain evidence be
collected as part of a certification or authorisation process. Examples include the
Rail Regulator in the UK and the Food and Drug Administration (FDA) in the
USA.

Having arrived at a list of potential stakeholder types, it is necessary to determine
which types are relevant and how each stakeholder type can be accessed. In some cases,
e.g. system users, it may be possible to have direct access to them. In other
cases, e.g. general public, it is not possible. It is necessary to decide, for those that
are accessible, who will be nominated as the stakeholder(s); and for those not
accessible, who will take on the “role” of that stakeholder and speak on their behalf.
This list then constitutes the output Stakeholders from this process (see Fig. 5.2).

5.4.2 Create Use Scenarios

Most conversations are built around a set of assumptions on which the speakers
agree. These assumptions can be interpreted to be a model of their mutual under-
standing. Attempting to discuss requirements in the absence of any agreed ground
rules would be unproductive.

One basic structuring mechanism for discussing capability requirements is the
operational or use scenario. This produces a structure that is organised hierarchi-
cally by time. Stakeholder requirements use the notion of a scenario as a means of
establishing a framework in which meaningful dialogue can take place.

The scenario encourages the stakeholders to think about the job that they are
doing and how they would like to do it. In effect, they are rehearsing the way they
would like to do their job. Once the scenario is agreed, individual requirements can
be generated to define precisely what it is the stakeholders would like to be able to
do at each point in the scenario.

Scenarios provide an excellent method for exploring requirements with
stakeholders. They are inherently about what the stakeholders want to achieve.
A scenario is the sequence of results produced (or states achieved) through time
for the stakeholders. As shown in Fig. 5.3 a use scenario may be represented as

995.4 Analyse & Model

a hierarchy of goals and represents the capabilities provided by the system to the
stakeholders – without saying how to provide them. In other words the use
 scenario is a capability hierarchy.

The time-orientation allows a rehearsal of what the system will provide and
the stakeholders can step through and see missing and overlapping elements.
This structure therefore avoids over-commitment to solutions while defining the
problem well.

There is a clearly defined approach to follow when creating use scenarios. The
basic question to ask the stakeholder is “what do you want to achieve?” or “what
state do you want to be in?” The approach is then to start with the final state and
then expand that, by asking what states, or intermediate steps, need to be attained
on the way. The states are then explored as a tree or hierarchy. So the following
procedure emerges:

Start with the end goal•	
Derive the necessary capabilities to get to that point•	
Break large steps into smaller steps•	
Keep the set hierarchical•	
Review informally at each stage•	
Be wary of defining solutions•	

If the stakeholder finds it difficult to define the intermediate stages, the stakeholder
can be asked to describe a typical situation – it is important to know what the stake-
holder would do in a situation such as this. If the system is completely new, they
may need to use their imagination. They can postulate what they want or expect to
happen or achieve at each step. It is important at this point also to identify if any
stages are optional, or if there are any repetitions. Would different conditions lead
to different sequences?

The stakeholder also needs to identify the order of the capabilities and whether
this is fixed or variable, and if it is variable, under what circumstances does it vary.
For example, before you can paint a picture you must have paper (or canvas etc.),

Final
goal

O
pe

ra
tio

na
l s

eq
ue

nc
e

Steps leading
to end goals

Sub-goal
Sub-goal

Sub-goal

Sub-goal

Sub-goal

Sub-goal

Sub-goal

Sub-goal

Sub-goal

Sub-goal

Fig. 5.3 Use scenario as
a hierarchy of goals

100 5 Requirements Engineering in the Problem Domain

paints and brushes, but it does not matter which is ready first. This gives the opportunity
to change sequencing or do things in parallel.

It is important, as in all forms of requirements capture, to accept everything that
the stakeholders say. It can always be refined later. Frequently it will be necessary
to ask the stakeholders to expand on what they mean.

Scenarios represent the capabilities to be provided by the system (in problem
domain terms) organised into a hierarchy – without saying how to provide them.
They are seen to be beneficial for the following reasons:

Enables stakeholders to step through operational use
Missing steps can be found
Different stakeholders can have different scenarios
Time constructs can be identified

5.4.2.1 Characteristics of Use Scenarios

Figure 5.4 contains an example scenario based on a day out with a sailing boat,
which can be transported on a car. It covers all the aspects of the trip starting
with loading the boat on to the car, getting ready to sail, sailing and returning
home.

The scenario also illustrates some other points:
Generally, it follows a time sequence.

Its nodes are high level capabilities.•	
It shows alternatives.•	
It shows periodic repeated behaviour.•	
It shows where sequence is not important (parallel branches).•	
It shows exceptions.•	

The use of a time sequence is important. Not only does it provide a simple frame-
work for the stakeholder to understand, but it also helps to place stakeholder
requirements into a context.

It is important that all the nodes are expressed as capabilities at the appropriate
level. Using the phrase “able to…” in the names of these nodes helps to avoid the
tendency to think of the capabilities as functions (and hence to move towards
implementation detail).

Scenarios provide a very powerful method of exploring exceptions. In many
systems, the functionality to handle exceptions is more complex than that needed
to provide the main stakeholder capabilities. The stakeholder can be prompted for
exceptions by asking questions such as “what can go wrong in this state?” or “what
can go wrong in reaching this state?” Recovery actions can be explored by asking
what should be done (or happen) if something does go wrong.

In the example of Fig. 5.4, it can be seen that the scenario includes the need to
communicate when the boat is capsized. In the absence of a scenario this require-
ment may not be spotted.

1015.4 Analyse & Model

The example also illustrates how scenarios can make it easy to spot missing
areas of requirements. In this case the capabilities of being able to transport the
loaded boat (to the place where it will be sailed) and being able to launch are
missing.

The purpose of creating a scenario is to promote understanding and communica-
tion. A scenario is not itself a requirement; it is rather a structure for elicitation of
requirements. It is an aid to finding a complete set of requirements, by covering
every aspect of operational use. Any one modelling technique does not attempt to
represent all possible concepts. There is no single correct way of modelling a given
operation. Different people come up with different models.

5.4.3 Scoping the System

When preparing the scenarios it is best to set the boundary a bit wider than the
anticipated system boundary. This ensures that the view taken is not “blinkered”
and serves to set the system in its context. At some point it is essential to determine
where the boundary of the system is to be placed and hence to set its scope.

Boat lifted

Boat on car

Able to rig mast

parallel

Able to
manoeuvre

periodic

Able to
load boat

Able to
unload

boat

Able to
rig boat

sequential

Able to
survive
capsize

Able to
go ashore

exception

alternate
alternate

Able to
get ready

to sail

Able to
sail

Able to
return
home

Able to right
capsize

Able to contact
Coast Guard

Able to rig rudder

Able to rig centre-plate

Able
to go

sailing

Able to gibe

Able to tack

Able to cruise

Able to
sail

normally

Fig. 5.4 Example use scenario

102 5 Requirements Engineering in the Problem Domain

Once the complete set of scenarios has been assembled, the scope of the system
can be finalised. This decision may have to be changed, once the cost of developing
the system has been estimated. Such estimation can be made by people with experi-
ence of system development for the domain of the proposed system. Estimates
based purely on scenarios are very coarse and consequently must have a high
degree of uncertainty associated with them. Nevertheless making such an estimate
can serve to give an initial idea of whether the proposed budget is in the right
ballpark.

5.5 Derive Requirements

The Derive Requirements & Qualification strategy process has been split into two.
These two parts are handled in this section and the next.

The derive Requirements process is instantiated for the problem domain as
shown in Fig. 5.5. The key activities are to capture requirements and define a struc-
ture into which to place them. Once the structure and the candidate requirements
have been decided, it is possible to place the candidate requirements into the struc-
ture. In practice the two activities go on in parallel and the structure evolves as
experience of using it develops. Therefore, instead of having a separate activity to
take the candidates and place them into the structure Fig. 5.5 indicates that both
activities contribute to the creation of structured requirements.

When the structure has been completed, the requirements and the structure can
be reviewed and refined.

5.5.1 Define Structure

Structure is critical for handling all complex elements in the whole life cycle.
Stakeholder requirements are usually captured one by one, cleaned up and then
attached into the structure.

Some approaches assume that:

Stakeholder requirements are inherently unstructured.
Traceability to design is enough.
We never see a complete requirements model – requirements need be viewed only

one at a time.

These approaches have nothing to do with quality, but are merely in the short-term
interests of the developer.

Requirements need to be organised, and there needs to be a good structure to
manage the individual requirements as they emerge. The arguments about structure
and the need for it are the same for requirements engineering in both the problem

1035.5 Derive Requirements

domain and the solution domain. Therefore they have been put together in Chapter 4.
In this chapter it is assumed that providing an understandable structure is vitally
important. It remains therefore to indicate how to derive a structure for stakeholder
requirements.

The main structuring concept for stakeholder requirements is the use scenario.
However, there can be many such scenarios, depending on the nature of the system.
It is recommended that time and effort is expended to try and merge scenarios
together to make, if possible, a single overall scenario. Obviously this will not
always be possible, but it is a good idea to attempt to do it. Apart from any other
results, it really makes people aware of the overall extent of the system and
 frequently exposes many issues.

To explain the way in which scenarios can sometime be merged, an example of
running a restaurant will be taken. Three scenarios can be used to describe the
restaurant as follows:

The overall life of the restaurant – Owner’s scenario•	
A day in the life of the restaurant – Manager’s scenario•	
A meal at the restaurant – Customer’s scenario•	

Use
Scenarios

Stakeholders

Candidate
Requirements

Stakeholder
Requirements

Structured
Requirements

Structure

Generate stakeholder
requirements

Statement of
need

Refine
Requirements

Capture
Requirements

Define
structure

Fig. 5.5 Derive output requirements for problem domain

104 5 Requirements Engineering in the Problem Domain

These are shown in Figs. 5.6, 5.7 and 5.8.
The first goal in the restaurant life scenario is that the owner acquires the

 restaurant. This is followed by a period of operating the restaurant and finally the
restaurant is sold.

The restaurant day scenario considers the states that the restaurant is in during the day.
The first goal is to replenish the stocks of food and drink. These aspects of the scenario
indicate that there will be several suppliers, but it does not matter which order their
deliveries arrive. It could be argued that the completion of replenishment is not necessary
before the restaurant is opened, but for the sake of creating a reasonable example it has
been decided that no deliveries will be accepted whilst the restaurant is open to customers.
The day scenario than has a period of being open and ends the day closed with every-
thing tidied up and the replenishment needs recorded ready for the following day.

The customer meal scenario is a straightforward sequence of states.

1 Acquired

2 Operating

3 Sold

Restaurant Life

Fig. 5.6 Restaurant life
scenario

1 Replenished

1.1 Food delivered

1.1.1 Meat delivered

1.1.2 Fish delivered

1.1.3 Vegetables delivered

1.1.4 Bread delivered

1.2 Drinks delivered

2 Open

3 Closed

4.1 Tables cleared

4.2 Washing-up complete

4.3 Waste bins ready

4.4 Replenishments listed

Restaurant Day

Fig. 5.7 Restaurant day scenario

Customer Meal

1 Table booked

3 Food served

2 Arrived and seated

4 Food eaten

5 Bill received

6 Bill paid

Fig. 5.8 Customer meal
scenario

1055.5 Derive Requirements

If we now examine how these scenarios can be put together, it can be seen that:

The restaurant day scenario can be a repeating scenario in the Operating state of •	
the restaurant life scenario, and
The meal scenario can be a parallel repeating scenario in the Open state of the •	
restaurant day scenario.

Thus an overall structure for these three different stakeholder scenarios is shown
in Fig. 5.9.

This can then become the structure for the headings of the capabilities in the
requirements document.

There are, of course circumstances when it is just not possible to fit scenarios
together. There is no easy answer here. If all else fails then all the separate sce-
narios can be used one after the other. Thus the structure of the Stakeholder require-
ments document will be a sequence of scenarios, each with their own requirements
embedded. Essentially the structure is driven from the list of stakeholders. Even
in this approach attempts should be made to nest one scenario inside another.

However, care must be exercised to ensure that there is no duplication. Where
there is duplication the duplicated parts must occur once. Two approaches can be
used. The first entails cutting out the common items and putting them in a separate
section of their own. Then each occurrence must reference the separated section
at the appropriate point. The other approach is to place the duplicate section in
the first scenario in the document and then reference this from all the other
occurrences.

2.1.1 Replenished

2.1.1.1 Food
delivered

2.1.1.1.1 Meat delivered

2.1.1.1.2 Fish delivered

2.1.1.1.3 Vegetables
 delivered
2.1.1.1.4 Bread delivered

2.1.1.2 Drinks
delivered

2.1.2
Open

2.1.3 Closed

2.1.3.1 Tables cleared

2.1.3.2 Washing-up complete

2.1.3. 3 Waste bins ready

2.1.3. 4 Replenishments listed

2.1 Restaurant
 Day

1 Acquired

2 Operating

3 Sold

Restaurant
Life

2.1.2.1 Customer
Meal

2.1.2.1.1 Table booked

2.1.2.1.3 Food served

2.1.2.1.2 Arrived and seated

2.1.2.1.4 Food eaten

2.1.2.1.5 Bill received

2.1.2.1.6 Bill paid

Fig. 5.9 Overall scenario and structure for restaurant capabilities

106 5 Requirements Engineering in the Problem Domain

5.5.2 Capture Requirements

5.5.2.1 Sources of Stakeholder Requirements

Stakeholder requirements can come from a variety of sources as illustrated by the
following list:

Interviews with stakeholders•	
Scenario exploration (generally through stakeholder interviews)•	
Descriptive documentation (perhaps from studies or market research)•	
Existing systems which are being upgraded•	
Problems and change suggestions from existing systems•	
Analogous systems•	
Prototyping, either partial systems, mock-ups, or even simple sketches, of the •	
product or the requirements themselves
Opportunities from new technology (approved by stakeholders)•	
Studies•	
Questionnaires•	
Anthropomorphic studies or analysis of videos•	

5.5.2.2 Stakeholder Interviews

To undertake this task, the requirements engineer must be a good communicator,
able to dig out real requirements from stakeholder interviews. It is an intense psychological
task, with little in common with the technical or operational side of system develop-
ment. It is important to remember that extracting stakeholder requirements is a
human, not a technical problem and therefore preparing in advance is important so
that the world of the stakeholder is understood.

It is important to talk the stakeholder’s language about the stakeholder’s
world, not about the final product or any technical issues. During the interview
the stakeholder should be asked to step through the process of his/her work. A
comprehensive set of notes should be taken, which later can be organised into a
structured set of requirements and returned to the stakeholder. Interviews are an
interactive process, it is important that the requirements engineer should not be
judgmental, but should repeatedly ask the question ‘Why?’ There are several
ways of asking this question including: “What is the purpose of this…” or “Can
you give me more background on this…” Clearly the requirements engineer is
not expected to be an expert in the stakeholder’s domain and therefore will need
clarification at various points. Don’t worry about asking (apparently) stupid
questions. The only stupid question is the one that it not asked! It is important,
however, that finally the stakeholder will take the responsibility for the
requirements.

1075.5 Derive Requirements

Discuss scenarios with the people interviewed!
The following provides a set of tips for stakeholder interviews:

Interview every type of stakeholder.•	
Take them seriously.•	
Document the interviews and invite stakeholders to sign the record of the •	
interview.
Identify which scenarios are relevant to the stakeholder(s) being interviewed and •	
talk them through it (them) inviting the interviewee(s) to state what they want to
be able to do in each state of the scenario.
If necessary create new scenarios as the discussion proceeds and then develop •	
requirements from them.
Attempt to discover the relative importance to the stakeholder of each •	
requirement.
If the stakeholder is vague about any requirement ask firstly what is the purpose of the •	
requirement and secondly ask how the proposed requirement could be demonstrated.
Enquire about any constraints the stakeholder is aware of.•	
Make stakeholders aware that their requirements will shape the system.•	
Stimulate and provoke the stakeholders to respond.•	
Don’t be judgmental about stakeholder requirements.•	
Process the notes into single requirements quickly, and then iterate.•	

Generally, the questioning will proceed from the general to the specific. It is impor-
tant to be sure to cover all the ground, defining which areas are irrelevant. Experience
in interviewing dictates the form of questioning that takes place, depending on the
stakeholder and the situation.

5.5.2.3 Extracting Requirements from Informal Documents

Informal documents such as letters, studies, action lists and other types of descrip-
tive material may all contain requirements hidden in the documentation. Such user
requirements should not remain hidden, but should be brought out into the open.
But in doing so it is important to record where the stakeholder requirements have
come from; in other words the source must be recorded. Further, requirements
extracted in this way must be “substantiated” by one of the stakeholders.

5.5.2.4 Identifying Capability Requirements from Scenarios

When an outline scenario has been developed, it is possible to postulate capability
requirements directly from them. Sometimes, a simple paraphrase of the state is all
that is required. For example, the state ready to sail can be paraphrased as the
 capability the user shall be able to make the sailing boat ready to sail. In other
cases, more work is required Fig. 5.10 shows some examples, although are not very
well formulated. Consider the requirement:

108 5 Requirements Engineering in the Problem Domain

Two people shall be able to lift the boat onto the roof of the average saloon car

This raises the questions:

1. How strong are the people?
2. What is an “average saloon car”?

These questions must eventually be answered. However, the important thing when
gathering requirements is to write them down. It doesn’t matter if there are not
well formulated at first – they can always be improved. The critical issue is not to
lose the idea! Misquoting a well-known proverb sums up this approach:

A job worth doing is a job worth doing badly!

More information on how to formulate requirements properly can be found in
Chapter 4.

5.5.2.5 Requirements Workshops

An alternative way of collecting stakeholder requirements is to hold requirements
workshops. This can be an excellent way of rapidly eliciting and capturing require-
ments. It is important from the outset that the stakeholders are gathered in an envi-
ronment that is conducive, and that they realise that capturing requirements is not
hard and need not take a long time. There should be a structure to the workshop, but

Boat lifted

Boat on car

Able to rig mast

parallel

Able to
manoeuvre

periodic

Able to
load boat

Able to
unload

boat

Able to
rig boat

sequential

Able to
survive
capsize

Able to
go ashore

exception

alternate
alternate

Able to
get ready

to sail

Able to
sail

Able to
return
home

Able to right
capsize

Able to contact
Coast Guard

Able to rig rudder

Able to rig centre-plate

Able
to go

sailing

Able to gibe

Able to tack

Able to cruise

Able to
sail

normally

Two people shall be able to
lift the boat into the roof of
the average saloon car

The sailor shall be able
to perform a gibe

The sailor shall be able
to contact the coastguard

Stakeholder
Requirements

Fig. 5.10 Deriving capabilities from scenarios

1095.5 Derive Requirements

it should also be iterative. As shown in Fig. 5.11, stakeholders should be educated to
understand what is expected of them. For example, they need to understand the
concepts of:

Stakeholder•	
Use scenarios•	
Capability requirements•	

Depending upon the starting point of the workshop, there may be an existing set of
requirements already in draft form. Alternatively, start by splitting the attendees
into teams and get them to create scenarios for the intended system. Then review
the set of scenarios generated with the full group. Make any required changes to the
scenarios and then move on to extracting requirements based on them.

As soon as possible present the draft requirements to the full group and encourage
criticism and discussion. The possibility of interactions between the different stake-
holder groups adds significant value to the requirements. Often this can be the first
time that such a group has ever been together. It is always interesting and satisfying
when the interactions between the groups leads to the creation of requirements that

Gather stakeholders in a
conducive environment

Present stakeholders with
a requirements document

or
a set of use scenarios

Structure the meeting
teach the subject area

Encourage criticism and
inter-action among

stakeholders

Rapidly process the
amendments

Produce a new version

Fig. 5.11 Workshops for requirements capture

110 5 Requirements Engineering in the Problem Domain

give a greater insight into what each group wants to be able to do and how these
capabilities fit in with those of other groups.

These days with video projectors, the whole group can be involved with editing
the requirements online, but it can be more productive to split into smaller groups
to work on subsets for a period and then review the whole set together. In this way,
for a typical project, a set of requirements can be produced in 3–4 days.

The key element of a workshop is firstly to establish momentum and then to
keep it up. Running a workshop can be very demanding, but the results can be very
rewarding for all concerned.

It is vital that all stakeholder groups are represented and that they are empowered
to make decisions.

5.5.2.6 Requirements Learnt from Experience

Problems reported by real users of a system are gold dust – yet this information is
often thrown away. There is somehow a negative attitude to such information
because it is associated with a problem, but it can be of real value. Obviously the
earlier the problem is detected the less the cost of change, and allowing changes to
be made too easily kills a project. However in an iterative development, it is often
possible to postpone changes until the next pass through the system.

5.5.2.7 Requirements from Prototypes

Prototypes can be invaluable when creating unprecedented systems. They can be
used to give stakeholders an idea of what may be possible. They are also very
important in the development of software-based systems where the user interface is
difficult to imagine. The problem with prototypes can be that the developers get
carried away and spend too much time and effort. Prototype development should
therefore always be treated as a small sub-project with its own stakeholder require-
ments. The objective of the prototype should always be clearly indicated and will
usually be to provide greater insight so that stakeholder requirements can be more
easily and accurately formulated.

There are three problems with prototyping:

1. The developers get carried away and go into far too much detail.
2. The prototype tends to cause stakeholders to stray into implementation.
3. The stakeholders may be so impressed with the prototype that they want to use it

operationally.

The first two problems can be countered by properly formulating the requirements
for the prototype. To counter the third problem it is always important to ensure that
stakeholders are fully aware of the illusory nature of a prototype, since a prototype
can be a partial system, a mock-up, or even a set of simple sketches.

1115.5 Derive Requirements

5.5.2.8 Constraints in the Stakeholder Requirements

A constraint is a type of requirement that does not add any capability to a system.
Instead it controls the way in which one or more capabilities are to be delivered.

For example, consider the following:

A customer shall be served within 15 minutes of placing the order.

This does not make the system different per se – it just quantifies the service to be
provided.

Nevertheless, a word of caution is required here. A mass of constraints, each one
reasonable, can make a development impossible, therefore they have to be analysed
as a system as well as individually.

When the design is known, each constraint should be analysed for its cost/
benefit value or impact upon the system. A constraint may bring a function into
existence, for example, a caution and warning system or a backup. The cost of a
constraint can only be guessed before the design is known. This unfortunately
depends on the design choice, but some minimum assumptions can be made – too
many unnecessary constraints can ruin a system.

By default, a constraint applies to the top capability and all its child capabilities
inherit it. The applicability should be pushed down the capability hierarchy as much
as possible (see Fig. 5.12) to limit its applicability and hence its cost impact. When
a constraint applies to just one capability, that constraint can be written as part of
the capability.

It is interesting to note the difference between stakeholder constraints and
 system requirements constraints. Stakeholder constraints refer to the results that the
stakeholders want. System constraints are ‘professional’ or engineering constraints
that affect the quality of the product. All of the stakeholder constraints must be
addressed in the system requirements. Sometimes they must be reformulated;
sometimes they can be passed on without change.

Safety
Comfort
Availability
Ease-of-use
Running costs

Constraints Capabilities

Applicability link

Fig. 5.12 Capabilities and constraints

112 5 Requirements Engineering in the Problem Domain

5.5.2.9 Refine Requirements

Review each requirement in its context and ensure that

1. It belongs in the place it is in.
2. It conforms to the criteria for well-written requirements as explained in Chapter 4.

5.5.2.10 Derive Qualification Strategy

There are two sub-processes used to derive the qualification strategy as shown in
Fig. 5.13. These are described in the following subs-sections.

5.5.3 Define Acceptance Criteria

Understanding the criteria that will satisfy the stakeholders that a requirement has been
met is an essential and vital part of gathering requirements. Asking the question:

What will convince you that this requirement has been satisfied?

can often lead to a clearer and more focussed formulation of a requirement. This
question is therefore often used during stakeholder interviews. The question can be
answered in two ways:

1. Stakeholders may define an operational situation in which the requirement can
be demonstrated and/or

2. Stakeholders may define a numerical value for a level of achievement that must
be demonstrated.

Derive
Qualification

Strategy

Use
ScenariosStakeholders

Qualification
strategy

Define
acceptance

criteria

Stakeholder
Requirements

Acceptance
criteria

Define
qualification

strategy

Fig. 5.13 Processes to derive the qualification strategy

1135.5 Derive Requirements

The first type of answer feeds directly into the process of creating a set of tests,
trials or demonstrations that must be part of the qualification strategy. The second
type of answer indicates the “pass mark” for a trial test or demonstration, i.e. it
indicates the acceptance criterion for the requirement.

Acceptance criteria define, for each requirement, what would be a successful
outcome from the qualification approach adopted. Acceptance criteria are usually
recorded in an attribute associated with the requirement. In other words there is
usually a one-to-one relationship between a requirement and its acceptance crite-
rion. In the example of the restaurant, the acceptance criterion for the running of
the restaurant may be that it is “successful”. Success can be measured in a number
of ways e.g.:

1. Profitability.
2. Return on investment.
3. Reputation as indicated in guidebooks, newspaper articles, etc.
4. Forward load in terms of how far ahead is the restaurant fully booked.

Different stakeholders may well have differing ideas about success, for example,
the owner’s bank manager will be more interested in the first two, but the chef will
certainly be more interested in the last two.

Thus it is important to determine the acceptance criteria for any requirement
from all the stakeholders who may have an opinion.

5.5.4 Define Qualification Strategy

The way in which acceptability is demonstrated depends to a very large extent on
the nature of the application and the way in which it has been acquired. For large
one-off systems such as air traffic control, it will be necessary to make sure that all
the functionality has been properly provided and that the controllers are happy that
the system can used easily and quickly when they are busy. This will require a
mixture of tests and trials. Firstly the capability of the system under light loading
must be demonstrated. If this capability is not acceptable then there is no point in
progressing to tests that involve much more investment such as live trials at a busy
time of day.

The cost of the qualification strategy must also be borne in mind. Mounting
extensive trials is a very costly business and so there must always be a gradual
build-up. For example, most ships will undergo harbour trials before sea trials.

The overall cost must also be taken into consideration, but this must be set
against the risk of failing to discover a significant flaw in the system during opera-
tional use. Thus, where there is a large safety, environmental or financial risk, the
qualification strategy must be very carefully engineered to ensure a gradual but
steady build-up of confidence in the system. On the other hand, where the conse-
quences of malfunction are quite light, a less expensive approach can be under-
taken. The bottom line is that a requirement that cannot be demonstrated (in some

114 5 Requirements Engineering in the Problem Domain

way) is not a requirement. Properly engineered requirements are requirements that
are easy to understand and demonstrate.

5.6 Summary

Stakeholder requirements must be kept as small as possible and easy to understand.
The stakeholder requirements must be non-technical and at the same time realistic.
There must be a focus on roles and responsibilities, and it is important to properly
distinguish between stakeholder groups.

The common problems that can occur, when deriving stakeholder require-
ments, are:

Over-emphasis on solutions.•	
Under-emphasis on defining the real problems to be solved.•	
Failure to understand that stakeholders must own and approve these requirements.•	

Stakeholder requirements should be built as quickly as possible, they define the
capabilities that the stakeholders require, expressed in terms with which they are
comfortable and familiar. There should therefore be a concentration on the stake-
holder domain, not on system solutions. They should be structured and traceable to
the source of the information. Stakeholder requirements are owned by stakeholders,
scoped by the budget holder and often written by requirement engineering
specialists.

115E. Hull et al., Requirements Engineering, DOI 10.1007/978-1-84996-405-0_6,
© Springer-Verlag London Limited 2011

Never tell people how to do things.Tell them what to do,and
they will surprise you with their ingenuity.

George Smith Patton, general, 1885–1945 AD

6.1 What is the Solution Domain

The solution domain is where engineers use their ingenuity to solve problems. The
primary characteristic that differentiates the solution domain from the problem
domain is that, invariably requirements engineering in the solution domain starts
with a given set of requirements. In the problem domain requirements engineering
starts with a vague objective or wish list. The extent to which the input requirements
for the solution domain are “well formed” depends upon the quality of the people
within the customer organisation that developed them. In an ideal world, all the
requirements would be clearly articulated, individual test able requirements.

As indicated in Chapter 2, the solution is very rarely arrived it in a single step
(see Fig. 6.1).

At each level there is modelling and analysis done to firstly understand the input
requirements and secondly to provide a sound basis for deriving the requirements
for the next level down. The number of levels of design is dictated by the nature of
the application domain and the degree of innovation involved in the development.
No matter how many levels are necessary it is always vital to understand how many
solution details – the “how” – should be introduced at each step.

At every level in the solution domain, engineers must make decisions that move
towards the final solution. Each of these decisions, by their very nature reduces the
available design space, i.e. they preclude certain design options, but it is impossible
to make progress in the absence of decisions. Engineers are always very strongly
tempted to go into too much detail too soon. This temptation must be avoided, in
order to allow creativity and ingenuity to work together to produce innovative
 solutions that could never be achieved in the presence of the constraints imposed
by premature design decisions.

Chapter 6
Requirements Engineering in the Solution
Domain

116 6 Requirements Engineering in the Solution Domain

Typically the first level of system development in the solution domain is to transform
the stakeholder requirements into a set of system requirements. These must define what
the system must do in order to solve the problems posed by the stakeholder requirements.
This first level is illustrated by the top instantiation of the generic process in Fig. 6.1.

The issue of premature design detail is especially problematic at the first step. The
System Model indicated in Fig. 6.1 must be created at a level of abstraction that enables
the functionality of the system to be defined without going into unnecessary detail.

The next step on from defining the system requirements is to create an architec-
tural design as indicated by the second instantiation of the generic process in
Fig. 6.1. This must be expressed in terms of a set of components that interact to
generate the emergent properties identified by the system requirements. The
derived requirements from the architectural design process (Fig. 6.1) define the
requirements that the component suppliers must satisfy for each component.

Development proceeds by further levels of design that move further towards
implementation detail.

This chapter concentrates on the transformation from stakeholder requirements
to system requirements because it is the most problematic in most developments,
because typically too much detail is added too soon.

6.2 Engineering Requirements from Stakeholder
Requirements to System Requirements

The full instantiation of the generic model for this transformation is shown in
Fig. 6.2.

As with all instantiations, the process commences by agreeing the input require-
ments, which, in this case, are the stakeholder requirements. The agreement process

Stakeholder Requirements

System Requirements

System Component Requirements
(Subsystem Requirements)

Subsystem Component Requirements
(lower level subsystem requirements)

Engineer
Requirements

Engineer
Requirements

Engineer
Requirements

Acceptance strategy

System test strategy

Subsystem test strategy

Subsystem component test strategy

System
Model

System
Architecture Model

Subsystem
Architecture Model

Analysis
Results

Analysis
Results

Analysis
Results

Define
System

Requirements

Create Design
Architecture

Create Subsystem
Architecture

Fig. 6.1 Possible instantiations of the generic process

1176.2 Engineering Requirements from Stakeholder Requirements to System Requirements

must not assume that the input requirements have been produced according to the
guidelines given earlier in this book. Instead, it is necessary to consider the require-
ments and the associated qualification strategy on their merits and apply the review
criteria for stakeholder requirements with rigour and thoroughness.

6.2.1 Producing the System Model

To avoid the tendency to go into too much detail, engineers should always work in
the context of a model (see Fig. 6.1) that is sufficiently detailed for the purpose of
defining requirements in terms of what should be done rather than how. The level
of detail that should be provided in derived requirements depends upon the level of
development at which requirements engineering is being done, but the maxim is
always “do not add more detail than is necessary”. The temptation to go into detail
is always greatest at the top level where Stakeholder requirements expressed in
problem domain terms are being translated into high level system requirements that
indicate what the system must do to solve the problems posed by the Stakeholders.

Derive
Requirements

&
Qualification

Strategy

Analyse
&

Model

Stakeholder
Requirements

Qualification
Strategy

Agree
Requirements

System
Requirements

Change Request

Change
Request

Change Request

System
Models

Agree
Requirements

Qualification
Strategy

Analysis
Results

Fig. 6.2 Instantiation of generic process to create system requirements

118 6 Requirements Engineering in the Solution Domain

The difficulty arises because of the need to work at an abstract level. The creation
of an abstract system model, which will provide the framework for the system
requirements, always causes problems. At all levels below this, development work
progresses in the context of a design architecture. Engineers are much more
 comfortable with this level of detail, because they can get involved with determining
how the system will work. Even at these levels, care must be exercised to ensure
that the amount of detail imposed is appropriate. Consequently, the architecture
models should be expressed in terms of components that work together, but care should
be taken to ensure that components are defined in terms of what they are required to do
rather than how they should achieve it. In other words components should be
specified as “black boxes” whose internal details are of no concern provided that
they achieve their overall purpose as defined in the requirements.

The next sections of this chapter concentrate on the preparation of system
 models for the derivation of system requirements. Following this, the ways in
which the same approach is applied at more detailed levels is explained.

6.2.2 Creating System Models to Derive System Requirements

The system model must be created at an appropriate level of abstraction such that
it encompasses:

Internal functionality that the system must exhibit; this must concentrate on •	
“what” the system must do rather than on “how” it should be done to avoid
pre-empting the design.
Functionality necessary to enable the system to interact with other systems in its •	
environment.
Functionality necessary to enable people to successfully interact with it.•	
Functionality to prevent the system from malfunctioning due to the presence of •	
other systems (threats) in its environment. (Note that some of these systems may
not be deliberately threatening, e.g. electromagnetic emissions from neighbouring
equipments.)

This “safeguard” functionality must also prevent the system from interfering in an
adverse way with the environment.

The way in which these types of functionality interact with each other and with
 elements in the system’s environment is expressed diagrammatically in Fig. 6.3. It is clear
that the context of the system within its environment must be defined with respect to:

The existing systems with which the new system is required to co-operate•	
The types of people who are intended to interact with the system•	
The threats that the system must defend against and•	
The adverse effects that must be prevented•	

The functionality can be represented in a number of ways, for example,

Operations or methods on classes in class diagrams•	
Message sequence charts•	

1196.2 Engineering Requirements from Stakeholder Requirements to System Requirements

State transition diagrams•	
Function flow block diagrams•	
Processes in data flow diagrams•	

In practice it will be necessary to use several models in order to cover the many different
aspects required. Each model contains information of a defined set of types and each
modelling technique carries its own semantics. The information for some models may
be quite separate from information in other models. On the other hand the same
 information may appear in more than one model. In the latter case it is essential that,
when information is changed, the change is reflected in all other models in which that
information occurs. Ideally this would be achieved automatically by linking the
 modelling tools. If this is not the case then extreme care should be exercised to ensure
that any change is applied identically in all relevant models. The Venn diagram in
Fig. 6.4 indicates that some models represent islands of information whereas others
may have common information presented in different forms. Figure 6.4 also indicates
that there may be some system information that is not present in any model.

6.2.2.1 Internal Functionality

This is the primary element of the creation of the system requirements, because
it is the main focus of defining what the system will do. It is necessary to create

People
Human

Interaction
Functionality

Internal
Functionality

Interface
Functionality

Safeguard
Functionality

External
Co-operating

Systems

External
Threatening

Systems

Fig. 6.3 System context and types of functionality

Model
A

Model
E

Model
D

Model
C

Model
B

System
Information

Domain

Fig. 6.4 Scope of system models

120 6 Requirements Engineering in the Solution Domain

a structure or model that can be the basis for creating the system requirements.
This model must have the capability to express some form of decomposition of
the system into modules or high-level components such as subsystems. The use
of terms such as “module” or “component” tends to make developers think more
in terms of implementation rather than specification. This is generally considered
to be bad practice, especially in software-based systems. In general systems, the
need to move to a more physical model is not considered to be particularly
 problematic, since the application domain will generally be of a more physical
nature.

As an alternative to terminology that may induce premature implementation,
there is an increasing tendency (some would say “fashion”) to use the term “object”
as the decomposition element, especially for software-based systems, since objects
can refer to items in the problem domain. This discipline helps to prevent the
 premature descent into solution terms. Functionality can then be introduced as
 methods or operations on objects and as interactions between objects.

The use of this object-oriented approach can also make the creation of trace-
ability from the system requirements to the stakeholder requirements an easier task,
because the same objects tend to be visible in both the problem domain and the
solution domain.

In addition to stating what the system must do, the system model may also be
required to indicate the intended behaviour of the system. There are a number of
ways in which to represent this type of information. Models in this area usually
represent the fact there are a number of concurrently active “actors” that interact in
some way. Examples of this sort of notation are message sequence charts and
behaviour diagrams. Message sequence charts have long been used in the telecom-
munications industry. Behaviour diagrams originated in the US ballistic missile
early warning system (BMEWS) in the 1970s and have been implemented in tools
such as RDD-100 from Ascent Logic Corporation and CORE from Vitech
Corporation.

Behaviour can also be modelled using state transition diagrams or state charts.
State transition diagrams have the limitation that they can only model a sequence
of states and the item being modelled can only be in one of these states at any one
time. State transition diagrams cannot represent hierarchical states directly.
Separate diagrams must be used for each level in the hierarchy and, in some cases
this means that there may be a set of active diagrams at certain times. Such sets of
diagrams can be difficult to understand. To avoid this complexity it is better to use
state charts because they have been developed to directly handle state hierarchies.
They also address parallel states.

In any system it is necessary to consider whether there is information to be
handled. Some systems, e.g. insurance company systems, require that information
must be gathered and retained for use over a number of years. In other systems,
e.g. radar data processing systems for air traffic control, there is some information
that has a long lifetime, e.g. flight plans, whereas the current position of an aircraft
in flight, by its very nature, soon gets out of date. Thus the information require-
ments must be examined to ascertain:

1216.2 Engineering Requirements from Stakeholder Requirements to System Requirements

The longevity of the information – i.e. for how long is the information relevant, •	
and for how long must it be retained?
The freshness of the information – i.e. how up to date must it be (seconds, minutes •	
or hours)?

It is also very relevant to know the amount of information that may be involved.
This can have a profound effect on the design of the system.

6.2.2.2 Interface Functionality

It is necessary to define the nature of the interactions required with any other
 system. Interactions may involve the movement of information, or material between
the systems. The movement may be in one direction or both, and there may be
limits on the capability that can be transferred. It may be necessary to provide
 temporary storage (e.g. data buffer or warehouse) for items that are held up. There
may be time response requirements on the speed with which either system must
react to a stimulus from the other.

The nature of interfaces varies significantly. However, there must always be a
baseline reference that indicates what each party undertakes to do or provide as part
of the interface. These obligations are frequently documented in an Interface
Control Document (ICD). Where the interactions are controlled by national or
international standards, the standard becomes the interface control document to
which all relevant parties can work. Where the interface is less well defined, the
obligations (i.e. interface requirements) must still be written down and agreed.
Control of these requirements is notoriously difficult because there is often no
organisation with a clear mandate to control the interface. Consequently each party
to the interface tends to have its own version of the document and, worse, each
party tends to have its own interpretation of it.

It is usual for interface documents to be controlled by the organisation that has
responsibility for the system that encompasses the two (or more) systems that interact.
Such an organisation is quite difficult to define when a new system is being developed.
Often the existing system(s) will have been developed earlier and the interfaces
may not be properly documented. Further, the development organisation may well
no longer have any responsibility for that system, having handed it over to a higher-
level customer or other operating authority.

Care must be exercised to ensure that all interface obligations are accurately
reflected in derived requirements at the appropriate level and, so far as is possible,
the interface control authority is clearly defined.

6.2.2.3 Human Interaction Functionality

The crucial issue for human interactions with a system is to know what interactions
are going to be required. The context in which the users will work is also important.

122 6 Requirements Engineering in the Solution Domain

This can have an impact on the way they can work. For example, users working in
a standard office environment will be warm and able to work conveniently without
gloves. Other users may have to operate the system in harsh environments such as
extreme cold weather, or hazardous situations where protective clothing will be
necessary. In these circumstances the design of the displays and keyboards must
take note of these aspects.

6.2.2.4 Safeguard Functionality

The environment in which a system must operate will also have a significant influ-
ence especially with respect to safety and security. For example, in a banking system
it is necessary to provide assurance that information and money will not be given to
unauthorised people. In a car (system) it is necessary to be assured that the car will
stop when the brake pedal is operated.

There may also be other systems operating in the environment of the system that
may be competing with the system being developed. This competition could be
commercial competition as in online banking for example. Here the need for any
system to be evolved rapidly can be of prime importance.

Other ‘competing’ systems include those that could interfere with the correct
operation of a system by, for example, making radio transmissions that confuse the
system or overload sensitive receivers. An example of this is the worry that the use
of mobile telephones on board aircraft in flight could interfere with the aircraft’s
navigation systems.

6.2.2.5 System Transactions

It is worthwhile re-visiting the use scenarios that were developed for the system
from the stakeholders, or if none exist to create a set of relevant scenarios. These
can be applied to the system model(s) to make sure that they are possible within the
system being specified (see Fig. 6.5). Working through these ‘system transactions’
provides reassurance that elements of system functionality have not been lost by a
blinkered approach to object modelling or functional decomposition. (Note that this
use of the term “system transaction” is different to the use of the term within the
CORE method described in Chapter 3.)

The system transactions shown in Fig. 6.5 as User System Transactions are those
derived from the use scenarios. Figure 6.5 also indicates that there can be other
transaction derived from the way in which the system being developed must interact
with external systems.

System transactions encourage system engineers to stand back and take a
‘holistic’ view of the system. It is all too easy to concentrate on the detail and
forget the big picture i.e. how do the detailed parts work together to achieve the
overall aim?

123

6.2.2.6 Modes of Operation

Different functionality may be required in some circumstances. A typical example
for information-based systems is the need to be able to provide training for staff
without compromising the integrity of the data held in the system. Other examples
include fallback modes of operation following a failure or, in military systems,
 different modes depending on the current state of alertness. These may be related
to the use scenarios in the stakeholder requirements.

6.2.2.7 Additional Constraints

In addition to the constraints already mentioned, there are additional aspects that
should be considered. Perhaps the most important are those concerned with safety and
certifiability. In these areas additional requirements can be introduced and these will
certainly have a strong influence on the means adopted for qualification. The relevant
authorities will have to be convinced that a system is safe to use or to be deployed, or,
in the case of an aircraft, that it can be given a certificate of airworthiness.

A further set of additional constraints are introduced by the need to manufacture
the system. It may be necessary to use an existing facility or the design may have
to be changed in order to reduce the cost of manufacturing.

6.2.3 Banking Example

In this example of a management information system, the primary concern will be
to model the information that must be handled, but it is quite clear that there are
many other areas that should be addressed. Several system models are therefore

People
Human

Interaction
Functionality

Internal
Functionality

Interface
Functionality

Safeguard
Functionality

External
Co-operating

Systems

External
Threatening

Systems

External
System

Transactions

User
System

Transactions

Fig. 6.5 System transactions

6.2 Engineering Requirements from Stakeholder Requirements to System Requirements

124 6 Requirements Engineering in the Solution Domain

likely to be used, one focussing on the information, others focussing on the flow
and security of information.

Figure 6.6 shows a model that provides an alternative abstraction for the bank
example. It identifies the types of locations where equipment might be sited and
thus from where transactions may be initiated.

6.2.3.1 Internal Functionality

The primary internal functionality is concerned with supporting the services
 provided by the bank such as current accounts, deposit accounts, loans and invest-
ment portfolios. To support these services the system must be able to collect, update
and retain information. Of vital importance here are the types (or classes) of infor-
mation (e.g. accounts, customers, etc.), the relationships that exist between them
(e.g. how many accounts is a customer allowed to have?) and the longevity, fresh-
ness and volume of each type.

It is important to determine how information is collected, disseminated and
manipulated.

A further important aspect of a banking system is the number and location of
sources of information and/or transactions. These will include branches, automatic
teller machines and credit card point of sale machines.

Manage
Accounts

Manage
Investments

Manage
Loans

Services
Provided

Teller
Machines

PCs / Terminals

Branch Office

Teller
Machines

Other Banks

Teller
Machines

Credit Card
Point of Sale

Machines

Retail Outlets

Teller
Machines

Inter-bank
services

Cheque
clearing

Fig. 6.6 An abstract model for the bank example

1256.2 Engineering Requirements from Stakeholder Requirements to System Requirements

From a performance point of view it is important to understand the likely loading
that the system must be able to cope with, such as the number and mix of transaction
types. This will clearly vary from day to day and from hour to hour within each day.
There may be constraints imposed by existing infrastructure such as landlines or
other communication mechanisms.

6.2.3.2 Interface Functionality

The primary interfaces for this type of system are to other banks for funds transfers
and use of their teller machines.

Banks also have existing systems for clearing cheques, etc. that are jointly
 created amongst several banks.

It is highly likely that a banking system will make use of telecommunications
services from external providers.

6.2.3.3 Human Interaction Functionality

Information systems generally have to cope with a wide variety of user types. For a
bank the following list covers many of them:

General public – must be able to use automatic teller machines and, increasingly,
online facilities via the web without any prior training – i.e. the user interfaces
must be intuitive.

Counter staff – must be able to use the system quickly in order to provide a fast
and efficient service to customers queuing up. These counter staff will require
training and the most important aspect of this type of interface is that it should
be ‘slick’ when the staff have been trained.

Managers at various levels – some managers may not be quite as computer liter-
ate as the counter staff (although, of course, some may have been promoted after
becoming proficient as counter clerks). The facilities to be provided for the
managers may include some of the counter staff facilities, but will include
more summary types of information derived from looking at a wider set of
information than a single account. These may include statement summaries,
branch or area business summaries, etc. Note that these types of information
demand that information is retained over a period of time so that trends and
other historical information can be deduced and/or presented.

Policy makers and marketing staff – require quite different capabilities, perhaps
introducing the capability to start new business products.

System maintainers – must be able to update system facilities. Ideally they should
be able to do this while the system is fully operational, but in practice they may
take down all or part of the system (usually for a brief period in the middle of
the night) in order to guarantee integrity of data.

126 6 Requirements Engineering in the Solution Domain

6.2.3.4 Safeguard Functionality

Security in banking systems is of paramount importance. The key element is the
need to protect the integrity of the information that is at the heart of the business.

Obvious mechanisms used include the personal identification numbers (PINs)
on credit or debit cards and encryption for transfers between branches, teller
machines, etc.

Other areas that must be considered are the need to keep the systems working in
the presence of computer faults, power failures or communication failures. These
categories of functionality are related to the perception of risk. The degree of
 protection that can be afforded to mitigate the risks depends critically on the expo-
sure that is perceived.

Finally and most importantly, it is necessary to consider threats from hackers,
embezzlers or others with fraudulent intent. The software must provide adequate
protection to safeguard the bank and its customers from these threats.

6.2.3.5 System Transactions

Each type of user is likely to be a Stakeholder in this category of system. Therefore
it is likely that there will be a set of use scenarios for each type of user. For the bank
customers these include regularly used facilities such as withdrawals, deposits and
transfers whether made in person or done automatically as direct debits, salary
 payments, etc. There will also be other transactions used less frequently such as
negotiating a personal loan or a mortgage.

For each type of user it is worthwhile considering the load that will be imposed,
so that the response time can be estimated. Of course this will not be a fixed time,
but will depend upon the current loading and this, in turn, will depend upon the time
of day and day of the week.

Increasing use of web based facilities must add a further dimension to load
prediction.

6.2.3.6 Modes of Operation

The predominant mode of operation will be the normal mode. However, there may
be additional modes to cover training, backup and recovery operations and system
evolution.

6.2.4 Car Example

The second example addresses a more physical type of system, but it is interesting
to see that the same categories of information are still present, although in an
entirely different form.

1276.2 Engineering Requirements from Stakeholder Requirements to System Requirements

The big issue in this example is whether the system model is a physical model
and to what extent it can become abstract. It is unlikely that a new car is going to
be radically different in architecture from previous models – it will still have a
wheel at each corner, an engine, a gearbox, suspension, a windscreen, etc. For this
reason, the system model for a car may well make reference directly to the physical
objects of the architecture as indicated in Fig. 6.7. The arrows on this diagram
indicate “some influence” in the direction of the arrow. The driver presses the brake
pedal and the brake pedal activates the brakes. The connections between the body
and the parts fastened to it are shown as double ended arrows to indicate that there
is a dependency in both directions, e.g. the engine is fastened to the body and the
body has mountings to take the engine.

However, where aspects of the new car are likely to be rather different – such as
in an electronic vehicle control system – remaining more abstract will present advan-
tages in determining the best solution. To the extent that the functionality of a car is
quite well understood, what is required is to quantify the functionality. For example,
it is clear that a car must be able to move people and their luggage or other items
from one place to another. The key questions that should have been addressed in the
Stakeholder Requirements are:

How many people?•	
How much luggage?•	
How comfortable will the car be?•	
How fast will the car travel?•	
How quickly will the car accelerate?•	
How much will it cost?•	
What information will be provided to the driver?•	

Engine

Gearbox

Transmission

Wheels

Brakes

Suspension

Body

Seats

Driver
Passengers

Doors

Lights

Accelerator

Brake Pedal

Gear Lever

Driver Information

Alarm system

In-car entertainment

Fig. 6.7 An abstract model for a car based on physical objects

128 6 Requirements Engineering in the Solution Domain

What in-car entertainment facilities will be provided?•	
What safety features will be necessary?•	
Where will the car be used?•	

6.2.4.1 Internal Functionality

The key requirements that must be addressed at the functional level include:

The acceleration rate of the carThis requires a balance between the engine power,
the overall weight of the car, the wind resistance of the body and the drag
induced by the wheels.

The range of the carThis requires a balance between the fuel efficiency of the
engine, the fuel capacity, whether a manual or automatic gearbox is used, and
the way in which the car is driven.

The comfort level of the carThis will influence cost and weight of the car plus
people of different stature may perceive the end-result differently.

Note that these key aspects are not independent. This is typical in a systems engi-
neering situation. It is these interactions that tend to move the model to a more
abstract level. For example, the above factors will be quite different depending
upon the type of engine and fuel used. Fuel types include: petroleum, diesel and
liquid propane gas (LPG). The fuel efficiency and weight of engine, fuel and fuel
tank are quite different in all three cases. Consequently it is necessary to
determine:

Whether to make a selection at all at this point, or•	
Whether to keep all options open, or•	
Whether to provide a customer selectable option for one, two or three of these •	
types

The nature of the design will be significantly affected by the decision(s) that are
taken. It may be that multiple options are evaluated, each more detailed than the
overall model. Alternatively some options, for example LPG fuel, could be elimi-
nated right at the start.

6.2.4.2 Interface Functionality

One might expect that a car is going to be isolated in terms of its need to interface
with other systems. Increasingly this is not the case. One trivial example is that a car
will usually have a radio receiver and this entails conforming to certain standards of
demodulation in order to decode the transmitted signals.

As sophistication increases so there are wider sets of standards that must be
conformed to. For example cars that have GPS navigation must understand how to
receive and decode the satellite signals on which this system depends. Cars that can

1296.2 Engineering Requirements from Stakeholder Requirements to System Requirements

provide traffic information to drivers must be able to interface with the relevant
information providers. In future, it is possible to envisage that the navigation system
may well be influenced by the traffic information and hence a further (internal)
interface will be introduced.

For modern cars, the way in which they are serviced is an important consideration.
Frequently cars are required to retain information about events during their opera-
tional use so that the service technician can access it to aid in diagnosing problems
or to guide him to check or change relevant items that are either faulty or nearing
the end of their useful life. This is an example of a test system that is partly installed
in the operational system (i.e. the car) and partly installed in the garage where the
maintenance operations are undertaken.

6.2.4.3 Human Interaction Functionality

Many aspects of the ‘user interface’ of the car are set by conventions that have
evolved over the years. For example, the relative positions of the foot pedals (accel-
erator on the right, brake to the left and, if present, clutch to the left of that) are
identical all over the world.

Other aspects such as left-hand or right-hand drive and position of indicators and
windscreen wipers have local conventions in different geographical areas.

On the other hand for entertainment systems, navigation systems and other less
common systems there is, as yet, no agreed conventions and therefore the designers
are free to provide an interface of their choice. As with most electronic systems,
there is a need to make the interface easy to use (or even possible to use) for
 anybody who needs to use it. This is quite a challenge, because the only explanation
that can be provided is a user guide. It is not possible to send drivers and passengers
on training courses and it is not appropriate to make any assumptions about the
educational level or experience of those who may need to use it.

6.2.4.4 Safeguard Functionality

The primary safeguard functionality in cars is to ensure the safety of the car and its
occupants. A further, increasingly important area of functionality is the prevention
of theft.

Safety functionality starts with the braking system. It is essential that effective
braking is available to the driver at all times. Dual circuit hydraulic brakes that
 provide redundancy such that braking is still provided after any single hydraulic
failure is one way of providing this. The system model could include the implemen-
tation directly; alternatively the model could just include the need for braking. In the
latter case, the fact that braking must still be available in the event of a single hydraulic
failure must be added outside of the model.

Note that this discussion has tacitly assumed that braking will be effected using
hydraulics! Some aspects of detailed design can be included especially where there

130 6 Requirements Engineering in the Solution Domain

is a well-established precedent, or the decision can be taken in response to a business
objective introduced into the input requirements by the developer organisation.

Other areas of safety include ABS braking and the provision of air bags to cushion
the impact of a collision. Again these can either be explicitly included in the model,
or the designer can be given freedom to invent alternative solutions.

The starting point for security is the provision of locks on doors. This can be
enhanced by the provision of an alarm system and engine immobiliser. The limiting
factor here is the cost of introducing the extra functionality and the amount that a
customer is prepared to pay for it. However, there are other factors such as the
facilities provided by competing cars and the attitude of insurance companies. Both
have a strong influence not only on the functionality that must be provided, but also
on the way its inclusion is justified.

6.2.4.5 System Transactions

There are many possible transactions for a car. All are based on journeys but with
specific objectives or characteristics, for example:

Driver, shopping trip in town – leave parking bay, travel, park, secure vehicle, •	
unlock vehicle, load vehicle, leave parking bay, travel, park, unload, secure
vehicle.
Driver, motorway trip.•	
Driver, airport trip (with luggage).•	
Driver, trip with accident.•	
Passenger – get in, fit belt, travel, undo belt, get out.•	
Garage technician – repeatedly service, with major/minor intervals.•	
Owner – buy, depreciate, sell/dispose.•	
Salesman – repeatedly attempt to sell, ended by selling, warranty period.•	

Each of these may add new requirements such as luggage capacity or maintenance
facilities.

Therefore it is important to consider them all and understand how the implied
requirements of each are addressed. Of course this does not mean that all of them
will be satisfied. It may be that some are rejected because they are too expensive or
are not considered to be relevant for the market being considered. Alternatively the
transactions may cause different models to be created for different markets.

6.2.4.6 Modes of Operation

One could imagine a car in which the prevailing terrain could influence the way in
which the car operates. For example in mountainous terrain, the gearbox could
automatically select lower ratios and the engine management system would take
into account the amount of oxygen in the air and consequently alter the mixture of
petrol and air to take account of this. Alternatively, these could be options that
could be selected either at the time of purchase or when driving.

1316.2 Engineering Requirements from Stakeholder Requirements to System Requirements

A further important mode of operation is the maintenance mode, in which the
engine management system is downloading the collected information for analysis
by the maintenance system and technician.

A more extreme mode could be to join a motorway “train” composed of a set of
cars all travelling at the same speed with minimal spacing. The cars would then be
controlled as a group and local driving facilities would be disabled.

6.2.5 Deriving Requirements from a System Model

6.2.5.1 Create a Document Structure for the Requirements

As indicated earlier, the system model may be composed of many independent and
potentially overlapping models. It is possible to start deriving requirements from
any of these models as has already been alluded to in the previous sections covering
the banking and car examples. However, the challenge is to find a structure into
which all of these derived requirements can be placed such that every requirement
has an obvious place in that structure and that any empty sections are empty by
design rather than by accident. The structure is referred to as a ‘document structure’
in Chapter 4.

It is recommended that one of the models be chosen as the primary source for
 generating the document structure. The model selected should be the one with the
widest scope, since the system requirements must cover the complete system and
not one small area. In practice the decision is usually obvious. For data oriented
systems such as the banking example, the data model is often the best focus, since
every function is concerned, to some extent, with establishing, disseminating,
updating or safeguarding the data. For more physical systems such as the car
example, it is often best to use a model derived from the physical structure of the
system (assuming one exists), because most of the requirements refer to one or
more of these elements.

6.2.5.2 Derive or Allocate Requirements

Once the structure has been agreed it is possible to collect all the requirements that
have been derived and to place them in the structure. It may be possible to allocate
some input requirements directly to the document structure. Where this is the case,
it frequently means that the input requirements are too detailed i.e. too close to the
implementation.

All the rules for writing good requirements outlined in Chapter 4 should be
observed when formulating requirements. Remember that the golden rule is to write
each requirement as a single testable statement. As each requirement is formulated
it is necessary to establish traceability back to the one or more input requirements
that the newly derived requirement satisfies wholly or partially.

132 6 Requirements Engineering in the Solution Domain

When considering testability it may be worthwhile thinking about the criteria
that will determine whether a test is considered successful or not. These acceptance
criteria should be documented with each requirement. Sometimes the criteria can
be embodied as a performance clause within the text of the requirement. An alterna-
tive is to write the criteria in a separate attribute alongside the requirement.

As testability and performance are being considered, it is a vital to consider how
the testing, or other demonstration of successful implementation, will be organised.
This leads naturally into the issue of qualification strategy and the identification, in
outline, of the set of trials tests and inspections that will be necessary.

In this context it is also essential to consider the test harnesses or special test
equipment that will be required. These may require separate development and, in
some cases, can become separate projects in their own right. A further consider-
ation in this area is the notion of built-in tests and the provision of monitor points.
Built-in tests are increasingly important, especially in safety related area. For
example, in the car example, most electronic systems will have a built-in test that
is performed when the car engine is started up. Monitor points are places where
significant information can be made available that would otherwise not be visible.
A simple example of this is an oil pressure gauge on cars. An information example
for the banking system could be a display screen showing the current transaction
rates across the whole of the banking network.

The final set of requirements that should be considered is the set of constraints.
These add no additional functionality, but control the way in which the functionality
is delivered. At the systems requirements level, there may be some constraints that
come straight from the stakeholder requirements. For example the space that a system
can occupy may be limited or the stakeholders may have insisted that a pre-existing
system is used as a subsystem in the new system.

Some other sources of constraint are:

Design decisions – e.g. the decision to have dual hydraulically operated braking
system.

The application itself – e.g. that the equipment must be able to cope with the vibra-
tion generated by the car when it is in motion.

Safety – e.g. how can the developers convince the authorities that the car will not
constitute a hazard to other road users?

Manufacturing – e.g. can the car be manufactured using the existing facilities at a
reasonable cost?

6.2.6 Agreeing the System Requirements with the Design Team

The final step in the creation of the system requirements is to agree the require-
ments with the team who will be responsible for developing the design. This uses
the agreement process described in Chapter 2 and therefore no further explanation
is necessary.

1336.3 Engineering Requirements from System Requirements to Subsystems

6.3 Engineering Requirements from System Requirements
to Subsystems

The logical next step on from the creation of the system requirements is to produce
a design architecture whose components are the major subsystems of the proposed
system as shown in Fig. 6.8. As usual the process starts off by agreeing the input
requirements with the customer. The review criteria for system requirements must
be used as the basis for the agreement process together with the general criteria
presented in Chapters 2 and 4. The requirements should be free from implementa-
tion bias unless there is a specific need to constrain the design. In the latter case the
requirement must be explicitly stated as a constraint. All too frequently constraints
are assumed because “that is what the customer asked for”. It is always good prac-
tice to challenge any design constraint, especially if the constraint is implied rather
than explicit. Sometimes requirements are expressed in design terms due to laziness
and because engineers have a tendency to go into too much detail too soon.

The analysis work necessary to support the agreement process helps to educate
the designers about what is intended and starts them thinking about possible
solutions,

Qualification
StrategyQualification

Strategy

Derive
Stakeholder

Requirements
&

Qualification
Strategy

Analyse
&

Model

System
Requirements

Qualification
Strategy

Agree
Requirements

Subsystem
Requirements

Change Request

Change
Request

Change Request

Qualification
Strategy

Agree
Requirements

System
Architecture

Model

Analysis
Results

Fig. 6.8 Instantiation of generic process to create subsystem requirements from system
requirements

134 6 Requirements Engineering in the Solution Domain

6.3.1 Creating a System Architecture Model

An architecture model identifies the components of the system and the way in which
they interact. The designer must understand how the components work together to
develop the emergent properties of the system, i.e. to indicate how they satisfy the
input requirements. The designers must also be able to predict whether there are any
emergent properties that are definitely not required, such as catastrophic failures or
other safety or environmental hazards. There may, however, be emergent properties
that a given design generates that, although not actually requested by the customer,
may be perfectly acceptable. These additional capabilities must be discussed with
the customer. They may give rise to changes in the input requirements to request
them, or the customer may request that they are inhibited. Finally the designers may
find that it is impossible to satisfy the requirements at all or at reasonable cost.

It is only when a design architecture has been generated and explored that these
possibilities come to light. Once a design exists it is possible to predict the cost and
development time for a system with much greater accuracy than earlier. Thus it is
possible to enter a round of negotiation with the customer to hone the input require-
ments by the customer making concessions where problems or cost dictate the need.

In many circumstances it is worthwhile considering two or more alternative
designs and then investigating the relative merits of each. Again this can lead to
further negotiation (trade-off) with the customer to determine the most appropriate
options in terms of cost versus benefit.

When an agreed architecture has been established, each component must be
described in terms of its internal functions and its interaction obligations with other
components and with external systems.

6.3.2 Deriving Requirements from an Architectural
Design Model

From the descriptions of the components, requirements can be derived. The require-
ments must address the functionality that the component must provide, the interfaces
that it must use or provide and any constraints to which the component must conform.
These constraints may come directly from the overall system constraints (e.g. a particular
electronic technology must be used for all components), or they may be derived from
them (e.g. the overall weight limit for the system has been divided amongst the
components). The component (i.e. subsystem) requirements are essentially the system
requirements for that component when it is viewed as a system in its own right.

As each requirement is derived, so it should be traced back to one or more of the
input requirements that it partially or fully satisfies.

The strategy for testing each component must also be determined. This will not be
the first occasion that testability has been considered. Testability is one of the most
important aspects of the design and must be considered as the design is being created.

1356.4 Other Transformations Using a Design Architecture

6.4 Other Transformations Using a Design Architecture

As the development proceeds from one level down to lower levels so each level
introduces its own architectural design model (see Fig. 6.1). At each level the
process followed is as described in the previous section. Thus the next level
down from the creation of subsystems is to create the components of each sub-
system and so on.

There is one special case in which an architectural model is used that is an
exception to this rule. This is indicated in Fig. 6.9, which shows that a design
architecture and subsequently subsystem requirements are created directly from
the stakeholder requirements. This is only possible where the system architecture
model is known in advance. Examples of this include some of the physical systems
already considered, e.g. cars and aeroplanes. Another important group of applica-
tions are those in the telecommunications industry. Here the overall design archi-
tecture is mandated in the telecommunications standards that govern the
application domains. It is a moot point whether the input requirements to such a
process which are often taken directly from the standard are really stakeholder
requirements or are, in fact, system requirements. Whatever interpretation is
placed upon these requirements, during the transformation it is usual to make quite

Qualification
StrategyQualification

Strategy

Derive
Stakeholder

Requirements
&

Qualification
Strategy

Analyse
&

Model

Stakeholder
Requirements

Qualification
Strategy

Agree
Requirements

Subsystem
Requirements

Change Request

Change
Request

Change Request

Qualification
Strategy

Agree
Requirements

System
Architecture

Model

Analysis
Results

Fig. 6.9 Transforming stakeholder requirements directly to subsystems

136 6 Requirements Engineering in the Solution Domain

direct allocations from the input requirements to the subsystem requirements.
Again this suggests that such standards are providing requirements at quite a
detailed level.

6.5 Summary

In this chapter, the nature of the solution domain has been described, the way in
which requirement engineering is applied to transform stakeholder requirements to
system requirements and thence to subsystem requirements and components
requirements has been explained.

Two quite different examples have been used to explore the types of functionality
that must be used to define requirements in the solution domain. It has been shown
that, in addition to the required internal functionality, additional functionality must
be added to cope with external cooperating systems, human interactions, to safe-
guard the system from external threatening systems make the system safe to use.
The latter aspect may also involve additional constraints on the means of qualification
in order to convince the relevant authorities.

137E. Hull et al., Requirements Engineering, DOI 10.1007/978-1-84996-405-0_7,
© Springer-Verlag London Limited 2011

For starters I’ll have ‘Who?’, ‘What?’, ‘When?’, ‘Where?’,
and then ‘Wither?’, ‘Whence?’ and ‘Wherefore?’ to follow,
and one big side order of ‘Why?’

Zaphod Beeblebrox in The Hitch-Hiker’s Guide to the Galaxy
Douglas Noel Adams, writer, 1952–2001 AD

7.1 Introduction

So often, the real rationale for a particular design, and the deeper understanding of
how the components of a system work together to achieve an end result, remain in
the minds of the engineers. Months or years later, when the original designers have
long since moved on, or their memory has dimmed, the loss of that understanding
may seriously impede the ability to evolve, maintain or reuse the system.

This chapter first presents a technique for maintaining this greater understanding
of a system, through capturing the rationale associated with the relationships
between problem, solution and design. Christened “rich traceability”, the approach
builds on the basic concepts of “elementary traceability” presented in Chapter 1 and
applied in subsequent chapters.

While rich traceability may represent one big side order of ‘Why?’, the
‘Wither?’, ‘Whence?’ and ‘Wherefore?’ of traceability are perhaps addressed
through another subject of this chapter: metrics in relation to traceability.

7.2 Elementary Traceability

There are many ways of representing many-to-many relationships. One consultant
 visited a defence contractor just prior to a customer traceability audit to find the office
all laid out ready. Along the length of the floor on one side was spread out the
 requirements document, and on the other side the code listing. Traceability was shown

Chapter 7
Advanced Traceability

138 7 Advanced Traceability

by pieces of string taped between the documents. This approach was space-consuming,
time-consuming, non-maintainable, and non-transportable, but it did some of the job.

Many engineers will have seen traceability represented in matrix form as an
appendix to relevant documents. The two dimensions identify, for instance, user
requirements on one axis and system requirements on the other, with marks in those
cells where a relationship exists.

There are a number of disadvantages to this approach:

Where there are a large number of statements to index on both axes, the paper •	
or screen is too small to show enough information.
Traceability relationships tend to be sparse, resulting in most of the cells in the •	
matrix being empty, which is a waste of space.
It is very hard working your way through multiple layers of traceability pre-•	
sented in a number of separate matrices.
Information about traceability is separated from the details of the requirements •	
themselves.

Another method is to use hyper-linked documents, where statements can be high-
lighted, linked to other statements, and traversed at will – in either direction if you
are clever. Now the traceability information is visible in the text of the statement,
but there are still problems:

To carry out analysis you may have physically to traverse the link before text at •	
the other end is visible.
It is hard to spot when the item at the other end of a hyperlink has been deleted, •	
leaving a dangling link, making traceability difficult to maintain.

Whatever approach you use, unless supported by a tool, traceability will be very
hard to manage.

The simplest form of traceability is achieved by linking statements together
using some kind of database support. It is helpful if linking information is held
separately from the documents. It is essential that statements are independently and
uniquely identifiable.

With analysis in mind, the essential capabilities for implementation of trace-
ability are:

Ability to create links between statements, thus forming permitted relationships.•	
Ability to delete links between statements in a controlled manner.•	
Ability to view simultaneously the text (or other attributes) of statements at both •	
ends of a selected relationship.
Ability to carry out coverage analysis to show those statements covered or not •	
covered by a selected relationship.
Ability to carry out single-level and multi-level impact analysis to show sets of •	
impacted statements.
Ability to carry out single-level and multi-level derivation analysis to show sets •	
of originating statements.
Ability to carry out upwards and downwards coverage analysis to show sets of •	
statements covered and not covered by selected relationships.

1397.3 Satisfaction Arguments

Figure 7.1 shows an example of elementary traceability. A user requirement traces
down to three responding system requirements. In this presentation, the text of the
user requirement is visible together with the set of system requirements that
respond to it. Having this information together allows the traceability to be reviewed
easily. Figure 7.2 shows a second example.

7.3 Satisfaction Arguments

Implementation of elementary traceability as discussed in Section 1.2 represents a
major step forward for many organisations. Indeed, changing the culture of an
organisation to embrace even this simple approach may be a big enough leap in
itself. However, there is, as always, more that can be done.

The intention in the example of Fig. 7.1 is that the three system requirements are
somehow sufficient to satisfy the user requirement. It is difficult, however, for a

UR 21: The driver shall be able
to deploy the vehicle over
terrain type 4A.

SR 15: The vehicle shall transmit
power to all wheels.

SR 32: The vehicle shall have ground
clearance of not less than 25cms.

SR 53: The vehicle shall weigh not
more than 1.5 tonnes.

Fig. 7.1 Elementary traceability example: military vehicle

UR 3: The user shall be able
to boil 10 litres of water in 4
minutes in a flat bottomed pan.

SR 37 : The cooker shall have a
3 kilo watt, 15 cm diameter
electric plate.

SR 31 : The cooker shall have a
10 cm diameter gas ring.

SR 41 : The cooker shall be
supplied with gas pressured at
not less than 25psi.

Fig. 7.2 Elementary traceability example: cooker

http://Section�1.2

140 7 Advanced Traceability

non-expert to assess the validity of this assertion. This is because the reasoning has
not been presented.

What is better is to present a “satisfaction argument” for each user requirement.
With the elementary traceability of Fig. 7.1, the only information provided is that
the three system requirements play some kind of role in the satisfaction argument,
but there is nothing to indicate exactly what the argument is.

Rich traceability is a way of capturing the satisfaction argument. This appears as
another statement sitting between the user requirement and the corresponding
system requirements, as illustrated in Fig. 7.3.

Not only is the satisfaction argument expressed textually, but an indication is
given about the way in which the system requirements combine in the argument
using a propositional operator:

By conjunction (&) indicating that the contribution of •	 all the system require-
ments is necessary for the user requirement satisfaction argument to hold.
By disjunction (or) indicating that the contribution of •	 any one of the system
requirements is necessary for the user requirement satisfaction argument to hold.

An example of disjunction is given in Fig. 7.4, where satisfaction is achieved
through provision of either an electric ring or a gas ring or both. Note the two-level
propositional structure of the argument.

Much more information is now provided about how the user requirements are
being satisfied. Even one who is not a domain expert may feel capable of assessing
important aspects of the argument. The text helps in assessing the logic of the
argument for validity and completeness. The operator makes the structure of the
argument more precise.

Notice in particular, it is not at all clear in Fig. 7.2 that the set of system
requirements represent alternative solutions, whereas in Fig. 7.4 the fact is

UR 21: The driver shall be able
to deploy the vehicle over
terrain type 4A.

SR 15: The vehicle shall transmit
power to all wheels.

SR 32: The vehicle shall have ground
clearance of not less than 25cms.

SR 53: The vehicle shall weigh not
more than 1.5 tonnes.

Terrain type 4A specifies
soft wet mud, requiring
constraints on weight,
clearance and power
delivery.

&

Fig. 7.3 Rich traceability example: vehicle

1417.3 Satisfaction Arguments

made absolutely specific. If an electric ring cannot be supplied, the requirement
can still be satisfied through a gas ring.

The authors first came across the concept of rich traceability in the Network Rail
(then Railtrack) West Coast Route Modernisation project in the UK, where a team
from Praxis Critical Systems had devised a requirements management process and
data model that used “design justifications”. The same concept can be identified in
a variety of similar approaches in which satisfaction arguments are called variously
“requirements elaboration”, “traceability rationale”, “strategy”, etc.

Satisfaction arguments may depend for their validity on things other than lower-
level requirements. Figure 7.5 shows an example using “domain knowledge” to
support the argument. Domain knowledge is a fact or assumption about the real
world, and not something that constrains the solution in and of itself. In this case,
the statement of domain knowledge is an essential part of the satisfaction argument,
shown in a slanted box.

Capturing such assumptions is important, not least because the world, and the
assumptions you can make about it, has a habit of changing. Once captured, deriva-
tion analysis can be used to understand the impact of changing assumptions on the
ability of the system to meet its requirements.

An example of this comes from the New York underground. A series of acci-
dents in the 1970s were due to a false assumption concerning the stopping distance
of trains. Initially valid, the assumption was invalidated as trains got heavier over
the years, and the stopping distance increased. Whilst the performance of the
signalling software was originally correct, and it did not evolve, the changing
assumptions meant that it ceased to meet requirements from a certain time.

UR 3: The user shall be able
to boil 10 litres of water in 4
minutes in a flat bottomed pan.

Two kinds of flat plates
can achieve this
performance:

or

SR 37: The cooker shall have a
3 kilo watt, 15 cm diameter
electric plate.

SR 31: The cooker shall have a
10 cm diameter gas ring.

A large gas ring,
with medium
pressure gas supply.

&

SR 41: The cooker shall be
supplied with gas pressured at
not less than 25psi.

Fig. 7.4 Rich traceability example: cooker

142 7 Advanced Traceability

The ability to document and trace the role of such assumptions is possible
through effective traceability.

Another example of non-requirements information playing a role in satisfaction
arguments comes from modelling activities. Satisfaction arguments are often
derived from complex modelling activities, the complete details of which are too
detailed to be captured in rich traceability.

Figure 7.6 shows an example abstracted from a railway project in which a
satisfaction argument depends on the results of a complex timetable modelling

BR14: The journey time
between Euston and
Glasgow shall be not more
than 250 minutes.

VT 15 : Vision model no V54a.

SR 32 : Linespeed
requirements

This requirement is satisfied by:
-ensuring sufficient running

in each line segment,
-ensuring minimum non-running

time
-ensuring feasability of overall

timetable.

& &VISION time-tabling
model shows feasability
of journey times for
given line speeds and
dwell times.

SR 32 : Stations dwell-time
requirements

Fig. 7.6 The role of modelling

UR 21: The driver shall be able
to deploy the vehicle over
terrain type 4A.

SR 35: The vehicle shall
have 3 axles.

SR 32 : The vehicle shall have
ground clearance of not less
than 25 cms.

SR 53: The vehicle shall weigh not
more than 1.5 tonnes.

&
A wheeled vehicle
requiring constraints
on weight, clearance
and power delivery.

DK 5: Terrain type 4A can support
0.5 tonnes per axle.

SR 15: The vehicle shall transmit
power to all wheels.

Fig. 7.5 The role of domain knowledge

1437.4 Requirements Allocation

activity using specialised software. A set of assumptions and subsystem require-
ments are derived from the modelling tool, and these are documented in the rich
traceability structure. The modelling reference is shown in a box with rounded
ends.

In this case, the modelling activities that need revisiting become apparent under
impact analysis.

Rich traceability can of course be used through multiple layers of requirements
or objectives. Figure 7.7 depicts three layers and the traceability between them.

7.4 Requirements Allocation

The satisfaction argument is often trivial, amounting perhaps only to the allocation
of an identical requirement to one or more subsystems or components. This is
sometimes referred to as requirements “allocation” or “flow-down”.

Where this pure flow-down of requirements is used, the change process may be
simplified. Changes to high-level requirements may be automatically flowed-down
to lower levels.

A simple extension of rich traceability allows such cases to be captured. A new
value representing “identity” is added to the “and” and “or” operators used to anno-
tate the arguments. Figure 7.8 shows an example of this. The symbol “=” is used to
indicate identity.

X xxxxx xxx xxxx,
xxxx xxxx xx xxxx
xxxxxxx xxx xxxxxx.

Xxx xxxx xxx x xxxx
xxxx xxxx x xxxxxx:

or

X xxxxx xxx xxxx,
xxxx xxxx xx xxxx
xxxxxxx xxx xxxxxx.

&

Xxxx xx xxxx
xxxxxxx xxx xxxx
xxxx x xxxxxx.

Xxxx xx xxxx
xxxxxxx xxx xxxx
xxxx x xxxxxx.

SHR 3 SR 37

SR 31

SR 41 DR 131

& DR 42

DR 132

or
DR 24

DR 14

DR 73&

Stakeholder requirements System requirements Design requirements

Fig. 7.7 Multiple layers of rich traceability

144 7 Advanced Traceability

7.5 Reviewing Traceability

Every time a requirement is reviewed, it should be reviewed along with its satisfaction
argument. Based on rich traceability, a review process can be established that
focuses on one requirement at a time, together with its satisfaction argument, and
the requirements that flow from it.

Figure 7.9 shows a screen shot of a tool used in a defence project to review
requirements and satisfaction arguments. On the screen is just the right parcel of
information to assess a requirement and how it is satisfied.

The dark triangles are for navigating downwards through the layers of traceability,
or across to the next requirement at the same level.

7.6 The Language of Satisfaction Arguments

As with requirements, it helps to have a uniform approach to expressing satisfaction
arguments. The key guideline is to start the sentence with “This requirement will
be satisfied by …”, which focuses the mind on the kind of statement being made.

While requirements should be strictly atomic (see Chapter 4), satisfaction argu-
ments need not be so limited. However, if statements become too complex, a struc-
tured argument should be used instead.

X xxxxx xxx xxxx,
xxxx xxxx xx xxxx
xxxxxxx xxx xxxxxx.

Xxx xxxx xxx x xxxx
xxxx xxxx x xxxxxx:or

X xxxxx xxx xxxx,
xxxx xxxx xx xxxx
xxxxxxx xxx xxxxxx.

&

Xxxx xx xxxx
xxxxxxx xxx xxxx
xxxx x xxxxxx.

Xxxx xx xxxx
xxxxxxx xxx xxxx
xxxx x xxxxxx.

SHR 3
SR 37

SR 31

SR 41 SS2-131

& SS1-42

SS1-132

or
SS1-24

SS2-14

SS2-84=

Requirement flowed down to 2 subsystems

SS1-73

Fig. 7.8 Flow-down of requirements using “identity”

1457.7 Rich Traceability Analysis

Repeated patterns of satisfaction arguments may be identifiable, in which case a
palette of boilerplate statements could be used to good effect.

7.7 Rich Traceability Analysis

The presence of satisfaction arguments in rich traceability does not preclude the
ability to carry out elementary impact and derivation analysis as described in
Chapter 1. Indeed, the arguments add important clues as to the nature of the impact
by capturing understanding, or raison-d’être.

The propositional structure (and’s and or’s) of the satisfaction arguments offers
opportunities for other kinds of analysis. For instance, the structures can be analysed to
show the number of degrees of freedom that exist for meeting a particular objective.

Take the example of Fig. 7.4. The proposition structure for UR3 can be captured
in the expression SR37 or (SR31 and SR41). Using the laws of propositional logic,
this can be converted to a special disjunctive form in which each disjunct shows one
way of meeting the requirement:

Fig. 7.9 Reviewing tool for satisfaction arguments

146 7 Advanced Traceability

[SR37 and (not SR31) and (not SR41)]
or [SR37 and SR31 and (not SR41)]
or [SR37 and (not SR31) and SR41]
or [SR37 and SR31 and SR41]
or [(not SR37) and SR31 and SR41]

In simple cases, this analysis may not seem that useful, but imagine more complex
scenarios where there are hundreds of requirements in several layers with complex
interactions. One may want to know whether there is any way of meeting the require-
ments, and if there is no way, then what the cause is – where the conflict exists.

7.8 Rich Traceability for Qualification

Rich traceability can be used in any traceability relationship. The discussion so far
has been based on the satisfaction relationship, but it is also applicable to qualifica-
tion. In this case, the “satisfaction argument” may be referred to as the “qualification
argument” or “qualification rationale”. All the same advantages of using satisfaction
arguments apply to the qualification strategy.

7.9 Implementing Rich Traceability

We describe here two approaches to the implementation of rich traceability: single-
layer and multi-layer.

7.9.1 Single-Layer Rich Traceability

In this approach, illustrated in Fig. 7.10, each high-level requirement has a single
statement of satisfaction or strategy as an attribute, and multiple low-level requirements

High-level

Requirements

Low-level
requirements

satisfaction
argument

requirmt

requirmt

requirmt

satisfies (n:n)

Fig. 7.10 Single-layer rich traceability

1477.10 Design Documents

may flow from it in a many-to-many satisfaction relationship. Another attribute (not
shown in the diagram) is used to type the argument as either a conjunction or a
disjunction.

7.9.2 Multi-Layer Rich Traceability

Here satisfaction arguments can be structured into multiple layers: a main argument
attached (as an attribute or linked in an “establishes” relationship) to the require-
ment to be established, and a hierarchy of sub-arguments hang off of the main
argument. Low-level requirements are linked to the sub-arguments in a “contributes
to” relationship. This is shown in Fig. 7.11.

Some implementations limit the depth of the argument hierarchy to two, using a
main argument – the satisfaction argument – and a single layer of sub-arguments
that explains the role played by the contributing requirements.

7.10 Design Documents

Astute readers will have noticed that the layer of rationale introduced by satisfac-
tion arguments is very like the “filling” in the systems engineering sandwich pre-
sented in Fig. 1.9. Indeed, the satisfaction arguments can be gathered into a
document, which may be best characterised as an “analysis and design” document.
It is this design document which is the focal point of the integration between
requirements and modelling. The role of the design document is to summarize –
textually and visually – those parts of the modelling activity that explain why one
layer of requirements is sufficient and necessary to satisfy the layer above. The
document references data from the modelling process as evidence for the rationale.
Traceability between layers of requirement passes through the design document.

High-level
requirements

Low-level
requirements

Satisfaction
Arguments

sub
argument

sub
argument

main
argument

requirmt

requirmt

requirmt

contributes to

 sehsilbatse

Fig. 7.11 Multi-layer rich traceability

148 7 Advanced Traceability

In this way, the results of modelling appear in the traceability chain, and can engage
in impact analysis.

Figure 7.12 portrays this approach. Layers of requirements are filled by design
documents appropriate to the level of abstraction. The modelling activities at each
level give rise to data that is referenced by the design document. The thin arrows
represent the flow of information; the thick arrows represent traceability.

We now show an example of the kind of information that may be collected into
a design document. A sequence of figures shows extracts from an “Analysis of
Need” document that models a Baggage Check-in System at the problem domain
level. The model sits between the “Statement of Need” and the “Stakeholder
Requirements” documents, and uses UML2 to portray the analysis in visual form.

The following kinds of information are typical:

•	 Concepts A UML class diagram is used to identify the domain concepts and
the relationships between them. Each concept is a UML class, and each relation-
ship is a UML association. Both appear as entries in the design document where
a textual description of the concept or relationship is supplied. Figure 7.13
shows an example for the Baggage Check-in System. The symbols to the left of
each paragraph indicate that that part of the document corresponds to a UML
entity in the model.

•	 Stakeholders This section lists the stakeholders that have been identified during
analysis, and includes a class diagram showing relationships. In the example
shown in Fig. 7.14, there are two stakeholders with a single relationship.

•	 Static Context The purpose of this section is to identify the context in which
the Baggage Check-in System exists. The Baggage Check-in System itself is

Requirements layer

Modeling layer

Requirements layer

Modeling layer

Requirements layer

Modeling layer

Requirements layer

e.g Goal / Usage
modeling

e.g. Functional
modeling

Stakeholder
requirements

Sub-System
requirements

System
requirements

Statement
of need

e.g. Performance
modeling

Analysis
of Need

Functional
Design

Architectural
Design

Modeling
data

Modeling
data

Modeling
data

Fig. 7.12 Analysis and design documents

1497.10 Design Documents

1 Concepts

1.1 Baggage ltem

1.2 Trackable Baggage ltem

1.3 Baggage Receipt

1.4 Concept Relationships

1.3.1 identifies

This section will contain textual descriptions of the following modelling entities. Each one
will correspond to a "Class" in the UML model.

The term 'Baggage Item' refers to a single item of luggage.
Each passenger may have 0 or more items of luggage.

The term 'Trackable Baggage' refers to a Baggage Item that can be identified with a
particular passenger.

The term 'Baggage Receipt' refers to a means of allowing a passenger to assert ownership of
an item of baggage.

A Baggage Receipt serves to uniquely identify a Baggage Item.

'Baggage Receipt'
identifies

'Trackable Baggage Item'

'Baggage Item'

1..1 1..1

Fig. 7.13 Concepts section of design document

3 Stakeholders

3.1 Passenger

3.2 Family

3.3 Stakeholder Relationships

This section will contain textual descriptions of each kind of
stakeholder. Each one should correspond to an " Actor" in the UM L
model.

A passenger is any person wishing to travel on a flight.

A family is a group of passengers travelling together. They may share
luggage, and wish to sit together.

Optional class diagram showing sub-type relationships between
stakeholders, if any.

Family
<<actor>>

'belongs to'
Passenger

0..n

<<actor>>

Fig. 7.14 Stakeholders section of design document

150 7 Advanced Traceability

modeled as a class in a class diagram, along with classes representing all the
surrounding and enclosing systems. Relationships between these systems are
modeled using aggregations and associations. Again, each class and association
appears in the design document with a textual description (Fig. 7.15).

•	 Usage This section describes the top level use cases for the system. This is
presented as a series of use case diagrams, each with one or more sequence
diagrams. Figure 7.16 shows just one of the use cases and its sequence diagram
showing the normal course of action for the scenario. The sequence diagram shows
the interactions between the stakeholders (some of which are external subsystems)
and the system in question (the Baggage Check-in System), and thus helps to
define the scope, process context and external interfaces.

3 Context

3.1 Baggage Check-in System

3.2 Baggage Handling System

3.3 Baggage Transport System

3.4 Passenger Transport System

3.5 Baggage Reclaim System

3.6 Baggage Holding System

3.7 Relationships with surrounding systems

Start with a class diagram that shows the significant context of the system to be
developed.

This section identifies and introduces the system to be developed.

This is the enclosing system. (Concept of system-of-systems.)
It must be a class, so that an architexture diagram can be drawn for it, but we
stereotype it as an actor .

This is a peer system, so we make it a class, but stereotype it as an actor.

This is a peer system, so we make it a class, but stereotype it as an actor.

This is a peer system, so we make it a class, but stereotype it as an actor .

This is a peer system, so we make it a class, but stereotype it as an actor.

'Baggage Check-in System'

'Baggage Transport System'

'Baggage Reclaim System'

'Baggage Holding System'

'Baggage Handling System'
<<actor>>

<<actor>>

<<actor>>

<<actor>>

<<actor>>

SendsBaggageList SendsBaggage

Fig. 7.15 Context section of design document

1517.10 Design Documents

•	 Design rationale This section summarizes the analysis and modeling activity
by giving an explanation of how the need is going to be satisfied by the capabili-
ties of the system. One way of presenting this information is in the form of a
“satisfaction argument” for each statement in the input requirements document.
It is here that the traceability to high-level requirements and from low-level
requirements is established. The satisfaction argument, in effect, explains how
the statement of need has been decomposed into statements of capability. This
is illustrated in Fig. 7.17.

Fig. 7.16 Usage section of design document

152 7 Advanced Traceability

In this figure, the first column shows the text of the Statement of Need that is
addressed by the rationale, the middle column contains the rationale, and the right-
hand column shows evidence for the rationale in the model and requirements that
are derived from it. This tabular presentation is, in effect, the sandwich on its side:
two layers of requirement with the design rationale in between. With effective tool
support, this view of the project data can be generated from the presence of tracing
between the layers.

7.11 Metrics for Traceability

Since the concept of traceability is so central to requirements engineering, it is
interesting to consider what process measurements may be useful in relation to the
flow-down of requirements.

Focussing on the satisfaction relationship, and moving down through the layers
of requirements, there are three dimensions of traceability that may interest us:

Breadth: how well does the relationship cover the layer, upwards and
downwards?

Depth: how far down (or up) the layers does the relationship extend?

1 Design Rationale
1.1 Reduce check-in time

This objective will be met by ensuring that
the Baggage Check-in System has sufficient
performance at the point of check-in. A
separation will be made between the check.
in of the passenger and the check-in of that
passenger's baggage. The target check-in for
each item of baggage is 25 seconds. This
strategy is reflected in the following ways:
 passenger check-in and baggage item
check-in are separate events in the modeled
scenarios;
 a performance requirement is imposed on
the baggage check-in capability.
1.2 lncrease security standards

 This objective will be met by issuing unique
receipts to passengers for baggage check-in
on departure, allowing trackable baggage to
be matched with those receipts, and obliging
passengers to present those receipts to the
Baggage Collection System on arrival. This
strategy is reflected in the following ways:
 a distinction is made between baggage and
trackable baggage;
 every item of trackable baggage has a
unique receipt;
 presentation of receipts by passengers
occurs at baggage collection.

[PA-233] UML Sequence diagram Travel
With Baggage: Normal Course of Events

[SHR-3] At the port of departure, the
passenger shall be able to check-in an
item of baggage within 25 seconds of
placing it on the conveyor.

Baggage Item

Trackable Baggage Item

identifies
[PA-263] A Baggage Receipt serves to
uniquely identify a Baggage Item.
[PA-233] UML Sequence diagra m
Travel with Baggage: Normal Course of
Events

[PA-3] The term 'Baggage Item' refers to
a single item of luggage.

[PA-6] The term 'Trackable Baggage'
refers to a Baggage Item that can be
identified with a particular passenger.

[SHR-5] At the port of arrival, the
passenger shall be able to collect baggage
he/she checked-in on departure.

[SoN-9] Passengers
will be able to
check-in baggage on
average twice as
fast as the current
average for given
number of items.
The current
average is 80 secs
per item.

[SoN-8] Passengers
will only be allowed
to collect baggage
that they
themselves
checked-in on
departure.

Fig. 7.17 Rationale section of design document

1537.11 Metrics for Traceability

Growth: how much does the relationship expand down through the layers?
To help in determining which aspects of these dimensions are useful in terms of
measuring the requirements engineering process, it is necessary to distinguish
between two types of metrics:

Phase metrics: measurements relating to a single stage of development, e.g. just to
the systems requirements layer;

Global metrics: measurements spanning several stages of development.
The three dimensions, along with a discussion about balance, are now addressed.

7.11.1 Breadth

Breadth relates to coverage, and as such is a phase metric. As discussed in Chapter 1,
coverage can be used to measure progress of processes that create traceability at a
single stage. It focuses on a single layer, and measures the extent to which require-
ments are covered by the adjacent level above or below (or ‘beside’ when looking
at qualification.)

7.11.2 Depth

Depth looks at the number of layers that traceability extends upwards or down-
wards from a given layer, making it a global metric. One application may relate to
determining the origins of requirements of the lowest level. How many component
requirements have actually flowed down all the way from the stakeholder require-
ments, and how many have their origin somewhere in the design?

7.11.3 Growth

Growth is more interesting. It is related to potential change impact. How many
requirements at lower levels are related to a single requirement at the top level?

Consider Fig. 7.18, in which four situations are contrasted.
In case (a), a single requirement is satisfied by a single requirement at the next

level down. The growth factor is 1. In (b) the single requirement is met by 6, giving
a growth factor of 6. What does this say about the differences between the two
requirements? Possibilities are:

Requirement (b) may be poorly expressed, and needs decomposing into several
Requirement (b) may be inherently more complex than (a), and therefore may need

special attention

154 7 Advanced Traceability

Changing requirement (b) will have more impact than changing (a), and therefore
needs special attention

Of course, an apparent imbalance at one level may be addressed at the next level
down. This is illustrated by cases (c) and (d), where the growth factor two levels
down is identical. What could be deduced from this? Possibilities are:

The top requirement in (c) was at a level too high.•	
The middle requirements in (d) were at a level too low.•	

Only after considerable experience in a particular organisation developing par-
ticular kinds of systems could one begin to ascertain what growth factor of require-
ments between layers is to be expected. More readily useful, however, would be to
examine the balance of growth between requirements, as a means of identifying
potential rogue requirements, or imbalances in the application of process.

7.11.4 Balance

One idea for a metric is to look at the distribution of growth factors for individual
requirements between two given layers, and examine those that lie in the outer
quartiles of the distribution. The goal is to identify requirements that have an abnor-
mally high or low growth factor, and subject them to special scrutiny.

Figure 7.19 shows what a typical growth distribution may look like. The graph
plots the growth rate against the number of requirements that possess that growth
rate. Most lie between 2 and 6, whereas a few have only 1 or more than 6. It is these
latter requirements that should be identified and given special attention.

a b

c d

Fig. 7.18 Traceability growth

1557.11 Metrics for Traceability

The discussion above was about downwards growth – examining the number of
requirements that flow out of another. What about the opposite direction: the number
of requirements that flow into another?

Bearing in mind that traceability is a many-to-many relationship, consider
Fig. 7.20. Two requirements at the lower level have more than one requirement
flowing into them. What can we say about these requirements? They are perhaps
more critical than others, since they satisfy multiple requirements, and should
therefore be given special attention.

The distribution of upward traceability can be used to single out these requirements.
Figure 7.21 shows the typical shape of such a distribution.

7.11.5 Latent Change

Change management is perhaps the most complex requirements engineering process.
ability to determine the potential impact of change. When a change request is raised

Growth at next level

N
o.

 o
f r

eq
ui

re
m

en
ts

Focus on reviewing requirements
in upper and lower quartiles

0 1 2 3 4 5 6 7 8 9 10 11 12

Fig. 7.19 Frequency distribution of requirement growth

2 3

Fig. 7.20 Criticality of requirements

156 7 Advanced Traceability

against one requirement, all those tracing to it move to a suspect status until the
engineers ascertain the true impact.

The raising of a single change request, therefore, can suddenly introduce a
cascade of potential latent change into the system. In such circumstances, it would
be highly desirable to track progress and estimate the consequential work.

Figure 7.22 illustrates the complexity of change impact. A change request is
raised on one of the highest-level requirements. Part (a) shows the potential impact
using downwards traceability. Those boxes marked with a white circle are subject
to change assessment.

Part (b) then shows potential change using upwards impact. This occurs because
of a low-level requirement that flows down from two higher requirements. It is
necessary to access upwards impact from these changes, because changes in a low-
level requirement may cause renegotiation at a higher level. Suddenly everything in
this example is potentially subject to change!

Of course, as engineers assess the real impact, it may be found that in fact some
of these requirements are not subject to change after all, and the cascade of poten-
tial changes can thankfully be pruned, sometimes quite substantially.

The status of change can simply be measured in terms of the number of
requirements still in a suspect state. When a change request is raised, all other
requirements traceable downwards and upwards are marked as suspect. Then the
number of suspect requirements will steadily decrease as assessments are made of
each, their state is reset, possibly resulting in a cascade of others being reset as well.
The amount of residual change in a system will thus peak every time a new change
is introduced, and tail-off, as illustrated in Fig. 7.23.

Growth from previous level

N
o.

 o
f r

eq
ui

re
m

en
ts

Focus on reviewing requirements
in upper quartile

0 1 2 3 4 5 6 7 8 9 10 11 12

Fig. 7.21 Frequency distribution of requirement criticality

1577.11 Metrics for Traceability

The above discussion of the change process supposes that change is propagated
from requirement to requirement purely through the existing set of links. However,
a change in a requirement may necessitate the addition or removal of traceability
links. Changes in links should propagate change to the connected requirements at
both ends.

A change proposal is
raised here.

These need reviewing
for impact.

Maybe so do these
(upwards impact)

… and therefore these.
(downwards impact)

a

b

Fig. 7.22 Potential change resulting from a change request

N
o.

 o
f s

us
pe

ct
 r

eq
ui

re
m

en
ts

time

Peaks indicate introduction
of change requests

Fig. 7.23 Progress in processing change

158 7 Advanced Traceability

7.12 Summary

Of all the advantages in the use of traceability cited in Chapter 1, Section 1.5, it is
the increase in confidence in meeting requirements that is so clearly addressed
through rich traceability. The discipline of capturing the rationale associated with
traceability builds that confidence.

There is no doubt that there is considerable effort involved in the creation of
complete satisfaction arguments, especially in complex systems with hundreds of
requirements.

In the Network Rail project, there are some 500 satisfaction arguments that serve
to decompose the high-level requirements through to subsystem requirements.
A team of between two and five requirements engineers was dedicated to the main-
tenance of this information over about 3 years.

Experience suggests, however, that the cost is amply repaid in the increased
confidence that comes from the greater reflection required. The ability for the
Network Rail sponsor organisation to take a high-level objective, and demonstrate
in detail through the layers of rich traceability exactly how that objective is going
to be met, was a major selling point for the concept.

It is clear, also, that traceability is a rich source of metrics for process measure-
ment. It is the formalisation of relationships through traceability and associated
processes that make such measurement possible.

http://Section�1.5

159E. Hull et al., Requirements Engineering, DOI 10.1007/978-1-84996-405-0_8,
© Springer-Verlag London Limited 2011

In theory there is no difference between theory and practice.
In practice there is.

Yogi Berra, baseball player, b. 1925 AD

8.1 Introduction to Management

The management of the requirements engineering process is similar to the management
of any other endeavour. Before starting out it is necessary to understand what needs
to be done. We need to know the sorts of activities that must be undertaken. We
need to know whether there are any dependencies between the activities, e.g. whether
one activity can only commence when another one has been completed. We need
to know what kinds of skills are required to perform the activities.

It is good practice when preparing a plan to concentrate on the outputs that will
be generated by each activity. Outputs can be seen and provide tangible evidence
that work has been or is being done.

From all of this information we can generate a plan in which we have identified
the activities to be undertaken, the people who will perform the activities and the
time it will take them to complete the activities. We can then start work following
the plan and the manager can monitor work against the plan. In an ideal world the
plan will be followed to the letter. Nothing will go wrong and we shall arrive at the
completion date of the plan with all the work done.

Reality can be quite different. Firstly, estimating the time and effort required to
complete a task is very difficult unless the manager has extensive experience of
tackling similar jobs in the past. Secondly, there may be difficulties discovered as
work progresses that could not have been foreseen. For example, the plan may have
relied on the availability of a key person at a specific time and, for any number of
reasons, that person is not able to be there.

These events cause deviations from the plan and lead to the need to change it.
Once a new plan has been put in place, the whole process is repeated. A frequent
consequence of changing the plan is that, almost inevitably, the cost will increase
and/or the time to completion will be later than previously estimated. An alternative

Chapter 8
Management Aspects of Requirements
Engineering

160 8 Management Aspects of Requirements Engineering

approach is to keep the costs and completion time constant and reduce the amount
of work to be done. This can be a viable strategy in some circumstances; for example,
it may be imperative that a company has a new product out in the market place at a
given time (to address the competition) and within a given budget (because that is
all the company can afford) irrespective of how capable the product is (although at
least a threshold level is usually necessary to avoid triviality). This situation is typical
of the way in which commercial pressures can drive a project.

It is important to recognise that any project is constrained by the three factors:

Product capability•	
Cost•	
Timescale•	

These three factors are related as indicated in the diagram of Fig. 8.1. Any change
to one of these factors will have a consequential change to at least one of the others.
Figure 8.1 also indicates that projects make progress by taking decisions. Every
decision positions the project with respect to these three fundamental factors. It is
the pipe dream of every project manager that each decision will improve the product
capability whilst simultaneously reducing cost and shortening development time. In
spite of its improbability, this dream is widely held.

8.2 Requirements Management Problems

In this section introduces the specific problems that make the management of
requirements more difficult than some other management activities. The first problem
is that very few people have had significant experience of managing requirements.
This is mainly because very few organisations have a defined requirements manage-
ment process that is followed across the organisation. As a result people faced with
a project that must address requirements, have very little experience to draw on.
This makes estimation very difficult, because one of the main ingredients to the

Cost

Cheaper Faster

Better

Time

Product
Capability

Decisions

Fig. 8.1 Capability, cost and
time are interrelated

1618.2 Requirements Management Problems

production of good estimates is extensive relevant experience. Thus the starting point
is not good and one is reminded of the joke in which one person asks another the
way to a specific place and receives the reply “I wouldn’t start from here”!

A corollary of this problem is more fundamental. If people have had little experi-
ence of requirements management, they may not even know what activities are
necessary to develop requirements. Earlier chapters of this book have addressed
this issue and give direct guidance on the sorts of activities necessary to develop
requirements of various types and in several contexts.

The second problem is that many people do not properly distinguish between
user or stakeholder requirements and system requirements. Further they often do
not distinguish between system requirements and design specifications. In other
words they go straight for a solution rather than defining a solution-independent set
of requirements. Again this topic has been dealt with in the preceding chapters of
this book.

The third main problem is that the way in which requirements are managed will
depend upon the type of organisation in which the work is being done. In the pre-
ceding chapters we have discussed the different types of requirements and indicated
how they are related. However, the way in which these processes are applied will
depend upon the type of organisation applying them. There are three main types of
organisation:

Acquisition oranisations that purchase systems and then use them to provide an •	
operational capability. These organisations are mainly concerned with creating
and managing Stakeholder requirements, which subsequently are used as the
basis for acceptance of the delivered system.
Supplier organisations that respond to acquisition requests from Acquisition •	
organisations or higher level Supplier organisations. These organisations receive
Input Requirements and develop system requirements (and subsequently a
design that is manufactured) in response to them. (Suppliers may also be acquirers
of lower level subsystems or components, but this is a quite different form of
acquisition because it is based on a design architecture.)
Product companies that develop and sell products. These organisations collect •	
Stakeholder requirements but from their market place rather than from individuals
or from operations organisations. The marketing department usually performs the
collection of requirements. Product companies develop products in response to
the stakeholder (marketing) requirements and sell the developed products. In a
sense these types of organisations encompass both acquisition and supply, but they
tend to have a different relationship between the parts of the company that perform
these roles compared to the standard acquisition and supplier relationship.

We will return to these types of organisation later in this chapter.
The fourth problem that makes the management of requirements more difficult

than some other management activities is that it is quite difficult to monitor prog-
ress when requirements are being generated. One difficult issue is to know whether
the requirements set is complete – in order to decide whether the activity should
stop. Even worse, is the problem of determining how much progress has been made

162 8 Management Aspects of Requirements Engineering

when the activity is nowhere near completion. This problem is further exacerbated
by the need to assess the quality of the requirements generated. A long list of
requirements may have been generated, but how does the manager assess whether
each requirement is well expressed? How can he tell whether each requirement is
unique and whether they are all necessary?

The final problem is the perennial problem of changes. Requirements manage-
ment should be the primary focus for change management. Any proposed change
will usually relate to one or more requirements. The impact or knock-on effects of
proposed changes are quite often difficult to assess, yet without this knowledge it
is impossible to estimate the cost and time impact of introducing a change.

8.2.1 Summary of Requirement Management Problems

Specific management issues for requirements development arise in connection with:

Planning•	
Monitoring progress•	
Controlling changes•	

The problems are subtly different depending on the organisation involved. Therefore,
in the rest of this chapter we consider each of these activities in the context of the
three types of organisations introduced earlier. Finally we draw together some common
approaches in a concluding section.

8.3 Managing Requirements in an Acquisition Organisation

8.3.1 Planning

The starting point for a project in an Acquisition Organisation will be some form
of concept description. In its most basic form this will be just an idea, but usually
it will be more concrete and well founded. The reason for this is simple: projects
must be authorised by the organisation and the authorisation process will require
some documented evidence to support the case for spending time and money
(resources). The evidence usually contains a brief description of what the users
want to be able to do (the concept) and a supporting argument to indicate the
benefits that will ensue to the operating organisation from the provision of such a
capability.

The information in the concept definition enables the project manager to begin
planning. Since the concept definition contains a “description of what the users
want to be able to do” we immediately have an initial set of Stakeholders (users)
for the system and an outline of one or more Scenarios (ability to do something).

1638.3 Managing Requirements in an Acquisition Organisation

The first step in constructing a plan consists of identifying a fuller set of
Stakeholder types and a more complete set of Scenarios that cover the complete
range of expected operation of the system including, where useful, different modes
of operation. Once the number of stakeholder types is known it is possible to plan
in detail how to set about eliciting requirements. Actions that may be instantiated
in the plan include:

(a) Plan to interview one or more candidates of each stakeholder type. The require-
ments manager is responsible for ensuring that authorisation to conduct the
interviews is obtained from the candidates’ managers. Authorisation may
depend upon appropriate job codes and budgets being agreed (so that the candi-
dates interviewed can book their time to the new project and consequently their
managers are not penalised for their staff’s absence whilst being interviewed).
The requirements manager should also ensure that access to key operations staff
is provided. Often the candidates’ managers will be unwilling to release their
most competent (useful and well informed) staff for an activity that is not in
their short-term interests. It is up to the requirements manager to convince them
of the value of doing so.

(b) Allocate time to write up the interviews as interview reports and agree them
with candidates interviewed.

(c) Decide the interview strategy and communicate to the interviewers (who may
be involved in the decision process anyway). The interview strategy will deter-
mine how each interview is conducted, for example, whether candidates should
be prompted to express scenarios themselves, or be presented with a suggested
scenario that they can criticise, etc.

(d) Prior to the interviews it can be useful (but not necessarily easy) to get all the
candidates together and explain the purpose of the interviews. If such a meeting
can be arranged, it provides an excellent forum in which to discuss/develop
user scenarios and to seek confirmation that all stakeholder types have been
identified

(e) Agree and document the set of user scenarios that best reflect the purpose and
operation of the system in its context. It is essential to ensure that the scenarios
are not too blinkered in their scope.

(f) Following the interviews, suggested stakeholder requirements can be extracted
from the interview reports and agreed with the interview candidates

(g) Decide on a structure into which each of the stakeholder requirements can be
entered.

(h) Place each identified stakeholder requirement within the agreed structure and
modify the structure as necessary.

(i) Identify and record any constraints. Some constraints are product requirements
such as physical size. Others are plan constraints such as budgeted cost and
completion time. The product constraints should be entered into the Stakeholder
Requirements Specification. The planning constraints (such as budget, schedule,
resource or quality) belong in the management plan and will have an influence
on the planning activity.

164 8 Management Aspects of Requirements Engineering

(j) Decide whether additional attributes are required to support the text of the
requirements. Many organisations have standard sets of attributes that may be
required or are merely advisory. Examples are: Priority, Urgency, Status,
Validation method, Acceptance criterion.

(k) Agree the criteria for the review of each individual requirement and for the
requirement set as a whole. These criteria are best presented as a checklist for
the reviewers. Ideally the review criteria should be created as early as possible
and distributed to the people writing the requirements. This enables them to
appreciate what is required of them before they start to write.

(l) Define the review process and relate this to the status of the individual require-
ments. This process can be summarised as a state transition diagram as shown
in Fig. 8.2. This shows that the initial state of a stakeholder requirement is
‘Proposed’. When the requirements management team has reviewed it, it can
move to the Reviewed status. Reviewed requirements can then be subjected to a
further review by the Sponsor’s team and, when successful, will achieve
Endorsed status. Note that, at any time, an Active requirement can be rejected.
Review criteria must be determined for each review.

(m) Perform reviews as required by the review procedure defined.

This list of activities implies the need for several decisions to be taken. This is the
requirements manager’s responsibility in collaboration with other interested parties
such as the interview candidates, their managers and the overall sponsor for the
system.

Care should be taken to assess any planning constraints to ensure that they are
feasible and sensible. Stakeholders may demand that the system is put in service in
a very short period of time and at low cost, but this may not be possible. A prime
example of an unrealistic time constraint comes from the London Ambulance
System developed to control ambulances in London in the early 1990s. The managers
wanted to have the system in place so that they could supply the government with
the performance statistics they were demanding. This very short development
period and early in-service date were placed on the project as overall constraints, but
were absolutely impossible to meet. Many contractors tried to persuade the ambu-
lance service that it was impossible to meet these constraints and asked for the in-service
date to be put back. These requests were refused and so many contractors did not bid.
This left less experienced contractors to attempt to meet the impossible constraint.

Active

Requirements
Management

Team
Review

Sponsor’s
Team

Review

Proposed Reviewed Endorsed Rejected

Fig. 8.2 Example state transition diagram for stakeholder requirement status

1658.3 Managing Requirements in an Acquisition Organisation

History shows that they completely failed to meet the demanded deadline and in the
process caused serious harm to many people.

Realism in planning is essential for professional integrity.

8.3.2 Monitoring

Monitoring can start once the plan is in place. Obvious monitoring points are the
completion of each activity in the plan. In the early stages the activities will mainly
revolve around preparing for the interviews, conducting them and reporting on
them. These are quite easy to assess.

Three major milestones help to define the monitoring for the rest of the process:

 1. The definition of the structure for the requirements specification
 2. The definition of the attributes required for each requirement
 3. The definition of the review process(es) with associated checklists

Once the structure is in place it is possible to determine whether there are any areas
where there should be requirements but none exist. These “holes” can be addressed
by specific actions.

Once the attributes have been decided, progress in filling them can be monitored.
Finally, the progress against satisfying the review checklist criteria can be

checked by measuring the number of requirements that have a specific status.

8.3.3 Changes

During the development of stakeholder requirements there will be a period of rapid
and intense change. At this stage it is not sensible to have a formal change control
process in place, because the situation is too dynamic and would just get in the way.
However, at some point stability will begin to emerge and the requirements
manager can determine when the requirements are sufficiently stable to subject
further changes to a more formal process. Often this stage only occurs once all the
requirements have been reviewed and reach the Endorsed state (see Fig. 8.2).

Managing change is a vital activity in requirements development. The formality
with which the process must be applied depends upon the development state of the
project. Important stages include the following:

Stakeholder Requirements used as the basis for a competitive bidding process.•	
Contract in place for the development of a system.•	
Design complete and manufacturing about to start.•	
Acceptance trials are being undertaken.•	
The system is in service.•	

166 8 Management Aspects of Requirements Engineering

This list defines a set of points in a sequence of increasing commitment. Hence the
further down this list a project is, the more formality is required in the change con-
trol process and the higher the likely cost impact of any change.

Whatever stage a project is at, the following steps are required in a change
control process:

 1. Record the suggested change
 2. Identify the impact of the suggested change
 3. Decide whether to accept the change
 4. Decide when to implement the change

The suggested change should indicate the reason for the change and identify the
stakeholder requirements that must be changed, added or deleted. The person or
organisation requesting the change must also be recorded.

At step 2 the impact will depend upon the stage at which the change is suggested
and this will require information about how the impacted requirements will influ-
ence the downstream information such as system requirements, design, manufac-
turing and in-service operations.

A Change Control Board will take step 3. The constitution of this board will
depend upon the organisation, the scale of the system, and the stage of development
or operational use of the system. If a change is accepted, then step 4 is required. It
may be that the change must be incorporated immediately irrespective of cost.
Alternatively the change may be deferred until a later release of the system. Any
number of intermediate points may be appropriate and this clearly depends on
circumstances.

It is always useful to have a set of states for a change and to represent this using
a state transition diagram or statechart. Figure 8.3 contains an example.

It is also important to decide whether the status of requirements that are the
subject of a change proposal should be changed to indicate this. There are at least
two schools of thought on this point. One group takes the view that the dependency

Proposed

Agreed

Incorporated

Rejected

Planned

Deferred

Fig. 8.3 State transition
diagram for change control

1678.4 Supplier Organisations

between the change and the requirements is held in the change proposal and hence
it is not necessary to modify the requirement’s status. Another group takes the view
that when it has been decided that a change proposal will be incorporated, this
means that the requirement is subject to change and this indicates that its review
status has changed. (This is the view taken in Chapter 2.) Whatever position is
adopted, it is necessary to decide on the status values for change proposals and
whether these have any impact on the review status of the affected requirements.

In summary, Acquisition organisations are mainly concerned with the creation
of stakeholder requirements. This is a creative process that is difficult to scope
initially. However, as the work progresses and the numbers of stakeholders and
scenarios are agreed, it is possible to plan more accurately.

Change control starts off with little formality, but this evolves as the project
matures through development, manufacture and in-service operation.

8.4 Supplier Organisations

Supplier organisations respond to requests from customers to build systems or
components for systems. Prior to obtaining a contract to build a system, they must
prepare a proposal to indicate how they intend to go about the job and containing
estimates of cost and time to complete the work. Often proposals are requested
from a number of supplier organisations that compete to get the business. It is
therefore useful to consider supplier organisations from two points of view: bidding
for work and executing a contract once the work has been won.

8.4.1 Bid Management

This section looks at the management aspects of the process to create a proposal in
response to a customer’s set of requirements

8.4.1.1 Planning

Often the starting point for requirements management within a supplier organisa-
tion will be the receipt of an Invitation to Tender (ITT), also known as a Request
for Proposal (RFP). Such an invitation or request will contain a set of requirements
that must be satisfied by the system to be delivered.

The nature of the requirements received will depend upon the organisation type
of the customer (i.e. the organisation that issued the invitation). If the customer is
an acquisition organisation it is likely that the requirements may be stakeholder
requirements. Alternatively, the customer may be another supplier organisation that is
planning to sub-contract one or more subsystems in a higher level system. In this case

168 8 Management Aspects of Requirements Engineering

the requirements are likely to be system requirements with imposed design constraints.
To make the narrative clearer we shall refer to the requirements received by a supplier
as Input Requirements irrespective of what they really are.

Whatever the nature of the input requirements received, the first task is to assess
them to determine whether they are:

Clearly identified and distinguished from purely descriptive information•	
Unambiguous•	
Consistent•	
Free from undue design constraints•	

In short, it is to determine whether they form a sound basis upon which to bid.
From a planning point of view, it is important to identify the number of require-

ments that must be satisfied. This provides a metric that can be used to get an idea
of the scope of the work to be done.

During the review of the input requirements, any problems must be highlighted
by identifying specific problems and proposing a potential solution for them. Such
solutions may involve suggesting alternative wording for the requirements, or even
alternative requirements that can be satisfied – perhaps with off-the-shelf
components.

Once the review has been undertaken, the problems it identifies must be
addressed. This will usually involve entering a dialogue with the customer to obtain
clarification or authorisation for a proposed change. The extent of this dialogue will
depend upon the conditions attached to the invitation. If the invitation is to a single
supplier the dialogue can be entered into immediately.

However, if the invitation comes as part of a competitive bid it may be necessary
to be more circumspect. The reason for this is that, usually the competition rules
insist that any queries from one potential supplier are copied (together with the
customer’s response) to all the other potential suppliers. Hence, it is possible that,
by asking questions, one supplier can give information to the other competing suppliers.
In this situation, it may be more appropriate to flag the problems and observations,
but rather than going back to the customer with them, discuss them internally and
decide how to handle them. Possible options for each problem include:

Ignore it.•	
Make an assumption and document it.•	
Decide that it is essential to ask the customer whatever the consequences.•	

The last action may lead to a further action to formulate the request to the customer
in such a way that the competitors are helped least.

In parallel with sorting out the Input Requirements, work must proceed on creating
a proposed solution. Obviously the primary output from this work is the proposal
ready to be submitted to the customer. There are many different approaches to the
creation of a proposal, but they all involve ensuring that each input requirement is
properly addressed. The bid manager must allocate each requirement to an indi-
vidual or team who will be responsible for creating a response.

1698.4 Supplier Organisations

It is vital that all these responses be coherent, otherwise the proposal could end
up proposing a random and disconnected set of bits and pieces. The best way of
achieving this is to create a model that can form the basis for the solution.
Depending on the nature of the proposal, this could be either an abstract model that
can form the basis for building a set of system requirements, or it can be an outline
design architecture. Each response to an input requirement can then be related to the
model. This provides traceability from the input requirements and it provides the coher-
ence so that inconsistencies can be identified. The problem is always that the people
working on the solution must work with incomplete information based on docu-
mented assumptions and potentially best guesses at what the customer really meant.
However, this is life!

At the end of the bid phase, when the proposal has been submitted, it is impor-
tant that the bid team record all the information they have accumulated during the
bid preparation. The bid team will quite often be under extreme pressure to finalise
and submit the bid by the required submission date. Often, they will be ready to
take a break and may forget to properly record all the information in a form that can
be used by the development team later. For large proposals the amount of informa-
tion can be significant and also the delay between submitting the proposal and
starting development can be long (e.g. 6–8 months). In these circumstances it is
even more important that information is recorded, because the development team
may not have any people who were involved in the bid preparation, and even if it
does, after a significant period of time, they are likely to have forgotten some of the
key assumptions and rationales.

A further important activity during the bid phase is the setting up of agreements
with suppliers. These will usually be made conditional on the bid being successful,
but they will have an impact on the level of detail to which the solution is developed.
The basis of an agreement between a supplier organisation and its suppliers must be
founded on a set of requirements for the components to be supplied. The level of
detail that is required during the bid phase will be set by agreement between the
organisations involved. This will depend upon the nature of the working relationship
that exists between the organisations and the degree of experience and trust that
exists. (See Agreement Process in the Generic Process introduced in Chapter 2.)

8.4.1.2 Monitoring

Measuring progress during the creation of a proposal is vital, because timescales
are usually quite constrained and the submission date is not negotiable. The end
point must be that the proposal clearly indicates how each input requirement will
be met. However, merely asserting how a requirement will be met is not sufficient.
It is also necessary to check that all the assertions are valid. This is an aspect of the
review process, but an indication of progress can be obtained by comparing the
percentage of input requirements that have been traced to the solution model (and
hence to either system requirements or design components).

170 8 Management Aspects of Requirements Engineering

A measure of the amount of outstanding work to be done can be obtained by
assessing the number of input requirements that still have outstanding problems
logged against them together with the number of input requirements that still have
no proposed solution.

Another important milestone in the development of a solution is the creation of
a model that the team are content with. Ensuring that such a model is produced
quickly and that there is “buy in” is a crucial task for the manager.

In addition to all of these monitoring devices, a measure of the quality of the
system requirements must also be made. This can be done in a similar manner to
that described above for acquisition organisations monitoring the creation of stake-
holder requirements, by defining states and linking the progression through those
states to review criteria.

8.4.1.3 Changes

During the preparation of a proposal there are three potential sources of change:

Customer•	
Suppliers•	
Internal•	

One might think that there would be no customer changes during the preparation of
a proposal, and ideally this would be true. However, it is safest not to assume this.
Typically the probability of change is roughly proportional to the size of the system
(or component) to be developed. For very large systems, suppliers often commence
their bidding activities with an early draft of an RFP in order to get the bid team
running and thinking along the right lines. Later versions are issued at intervals and
may contain significant changes.

The first task on receipt of a new version of the RFP (or its requirements) is to
determine the nature and extent of the changes. Depending on the customer and
the medium used to issue the RFP, the location of the changes may be highlighted
or completely unknown. Once found, the changes must be related to the work
already done and an assessment made of the new work and rework that is now
necessary.

Changes from customers can also come via responses to queries from bidders.
These are usually well focussed and can be assessed quite readily.

Changes instigated by suppliers are more likely. These may be in response
to an initial request for a proposal to indicate that they cannot meet the require-
ments as defined, or the changes may come later in the process when the
 supplier discovers that what was originally thought to be possible turns out not
to be.

Internal changes arise for much the same reasons as the suppliers’ changes.
Initial assumptions turn out to be invalid and therefore an alternative approach must
be taken.

1718.4 Supplier Organisations

Whatever the source of the change, it is essential that the various requirements
baselines are kept up-to-date, i.e.:

Input requirements•	
Requirements placed on suppliers•	
Assumptions and interpretations made within the bid team•	

8.4.2 Development

8.4.2.1 Planning

The development stage of a project commences with an agreed contract based on
the proposal submitted to the customer and modified during contract negotiations.
In addition to this there will be other information generated during the bidding
process, but not necessarily incorporated into the proposal. This may include
detailed requirements, assumptions, outline or detailed design information and an
initial assessment of the risks involved in undertaking the development. This infor-
mation will have been used to arrive at the estimated time and cost of the work.

The activities involved in the development stage have to be more considered and
in much more detail than those at the proposal preparation or bidding stage. One
important difference is that instead of producing a proposal, the proposal previously
submitted may now be part of the input requirements.

The information generated during development activities will depend upon the
nature of the development but will inevitably include the creation of a solution
model. This may be done in two stages, firstly producing an abstract model and
secondly producing one or more potential design solutions. If more than one solution
is created, then it will be necessary to define the criteria for making a comparative
assessment of the solutions and then deciding which one to take forward. This com-
parative assessment leads to the creation of options and the possibility of trading off
some requirements against others. This trade off may be done entirely internal to the
supplier organisation or it may involve the customer and/or the suppliers.

Activities are necessary to ensure that all the input requirements in the contrac-
tual specification are addressed, that the proposed solution embodied in the system
requirements and design is adequate. The level of detail will usually have to be
improved to ensure that, at the most detailed level, nothing is left to chance.

During the development stage it is important to ensure that the means of testing (or oth-
erwise demonstrating the satisfaction of) each requirement is understood and documented.

The first step is to undertake an audit of the available information to determine its
extent and quality. Ideally all the information created by the bid team should have been
collected together and archived ready for use in the development process. All too
frequently this is not the case and significant information can be lost. This can cause a
major discontinuity between the intentions of the bid team and what is actually done
by the development team. This, in turn, can put the organisation’s business at risk.

Following the audit the project manager must determine, by comparing the proposal
submitted with the contract, what has changed since the proposal was submitted.

172 8 Management Aspects of Requirements Engineering

The next step is to determine what the impact of these changes will be and to plan
activities to make any consequential changes to the system requirements, design
and component specifications.

Any outstanding assumptions and comments must be referred back to the
customer, although ideally these will have been addressed during the negotiation of
the contract.

A further issue that often arises when planning a development is whether the
system will be delivered with full functionality at once, or whether there will be a
series of releases with increasing functionality culminating with the final complete
release. Supplying a series of releases provides the customer with an initial capability
early. This approach is very popular in software development where there may be
some doubts about the usability of the system.

From a requirements management point of view, releases must be planned on the
basis of the set of requirements that will be implemented in each release. These
decisions can be recorded by adding a release attribute to each requirement. Such
attributes can either be enumerated lists or Boolean. A set of possible values for an
enumeration list would be:

{TBD, Release 1, Release 2, Release 3}

(Where TBD stands for “To Be Decided” and will usually be the default value).
When using Boolean attributes each has the value True or False and one is

created for each release.

8.4.2.2 Monitoring

Monitoring progress during the development should be focussed on assessing the
current extent and quality of the output information to be generated. It is also vital
to know how much time and effort has been consumed. From this knowledge it is
possible to estimate whether the outputs will be complete within the effort and time
allowed in the plan. This estimate must take into account the manager’s knowledge
of when or at what rate the information outputs are expected to be achieved.

If the manager discovers that progress is lagging behind the plan, then appropriate
corrective actions can be taken. These will inevitably lead to a change in the plan, such
as adjusting the duration or resources of existing activities, or adding extra activities.

The monitoring activities must ensure that project information is up-to-date.
It is especially important that input requirements and supplier requirements are
modified in line with agreed changes and that traceability links exist from input
requirements through to supplier requirements via the proposed solution.

8.4.2.3 Changes

The same three sources of changes arise in the development as already identified in
the bidding stage. The extent of customer changes is likely to be far less during

1738.5 Product Organisations

development than during bidding. Internal and supplier changes are just as likely.
The procedure for identifying the nature and consequence of any change is just the
same. However, the consequence of a change at this point is far more serious. Small
changes can be accommodated within the customer contract or supplier agreement.
However, more serious changes may require a change to the terms and conditions
of either. Changes introduced during development will usually have an impact on
both the time scale (schedule) of the development and the cost. Once the conse-
quences have been determined, it is then a commercial decision whether to absorb
any cost and time penalties or whether to negotiate with the customer and/or
suppliers.

When a change is proposed for a development with several releases, it is a
function of change management to decide which release the change will be imple-
mented in.

In summary, Supplier organisations respond to customer requests by preparing
a proposal and if successful they go on to develop a system. Making sure that the
requirements issued by the customer are a sound basis for the development is of
prime importance. Keeping the input requirements up-to-date as changes are intro-
duced ensures that the project is soundly based. Traceability from the input require-
ments to the proposed solution, to their suppliers’ requirements and to testing
information ensures that the impact of change can be assessed and that the organi-
sation at all times knows the status of the development.

8.5 Product Organisations

Product organisations define stakeholder requirements and develop a product to
satisfy them. Thus they have many of the characteristics of Acquisition and
Supplier organisations. The main difference is that the customer–supplier agree-
ment at the top level of the supply chain is within the overall organisation, although
different departments usually undertake the roles of defining stakeholder require-
ments and developing products to satisfy them.

8.5.1 Planning

8.5.1.1 Single Product Version

Planning for a single version of a single product involves the same activities as for
the acquisition and the supplier organisations. The difference between the bidding
and the development stages may still be there. For example, when starting a new
product, the company may want to have an initial idea of what is involved in building
it. To achieve this it is necessary to elicit the stakeholder requirements and to
 produce an outline solution.

174 8 Management Aspects of Requirements Engineering

Producing the stakeholder requirements is very similar to the way in which acquisi-
tion organisations do it. There is a need to identify stakeholders and user scenarios.
However, rather than interviewing real stakeholders, what usually happens is that
people volunteer (or are volunteered) to act as “surrogate” stakeholders. This means
that they adopt the role of a defined stakeholder and define, from that point of view,
what the stakeholder requirements are. From a planning point of view there is little
difference. People must still be identified and interviewed. Requirements must be
extracted, properly formulated and embodied in an agreed structure. Finally the
requirements must be reviewed and their quality established.

Producing an outline solution is very similar to the work done when creating
a proposal. The main difference is that there is direct access to the people who
are formulating the requirements and hence there is the possibility of a much
more interactive development where the stakeholder requirements can be modi-
fied to make implementation easier, to reduce time to market and to reduce cost.
It is even possible that the capability of a proposed product can be enhanced
within the given budget by feeding back technical possibilities to the owners of
the stakeholder requirements. It is clearly much easier to gain clarification where
requirements are vague or confusing, etc. This may sound very informal, and in
some cases, it can be. However, the degree of formality must be agreed prior to
starting the work.

When an agreed set of stakeholder requirements and an outline solution have
been produced and reviewed by the product organisation, it may decide not to proceed
with the development or it may decide to invest further funds and go to a more
detailed design or even to produce an early prototype. Thus it can be seen that a
product can proceed by means of a set of stages where each stage builds upon previous
work. Each stage has a given budget and a set of objectives. At the end of each stage
there is a review at which progress against the budget and the objectives is assessed.
This procedure can be described using the stage gate concept as indicated in
Fig. 8.4.

At the initial gate (Stage Gate 0), a set of objectives, budget and timescale are
defined. These feed into a planning process which determines the information
which must be generated in order to achieve the stage’s objectives and a work plan
which will achieve the required state within the budget. The initial objective may
be merely an exploration of the concept and some preliminary estimation of market
size, etc. At the end of the stage the work done is reviewed against the objectives
to determine whether the project should continue or whether it should stop. This
review should also take into account the current business objectives, which may
have changed or evolved during the stage.

If the project is allowed to continue then a further budget, timescale and objec-
tives will be agreed. For the second stage it may be decided to go for a costed
proposal as discussed above and a more detailed exploration of market conditions.
The stage gate review will then check whether the estimated cost is in line with the
expected revenue that can be earned. This leads naturally into a decision to cancel
or commit further funds. If the latter, then a decision has to be taken about how far
the development should be taken, e.g.

1758.5 Product Organisations

Do more investigation into the development and production costs.•	
Develop a prototype.•	
Produce a small batch and try them out with real customers.•	
Go into full production.•	
Etc.•	

Thus the stage gate process can continue one stage at a time with gradual commit-
ment of funds and resources. This enables the organisation to control its investment
strategy and keep an eye on its likely return on investment.

8.5.1.2 Multiple Products and Versions

Product organisations may have several versions of the same product at different
stages in their evolution. Typically they will have some product versions in use by
people who have purchased them, some in development and some being defined.
From a planning point of view, each version can be treated as a separate “project”
going through its own set of stages and gates. However, there is an additional need
to plan for the different versions of the products in the pipeline. It is important to
plan when each version in current use will be phased out and replaced by a later
model. These aspects can also be brought under the stage gate process, so that a set
of stage gate reviews can be held at the same time to determine the best investment
strategy to keep or increase market share.

Initial Gate

Enterprise Goals

Stage 1
Objectives

Stage 1
Planning

Stage 1
Information

State
Required

Stage
1

Work

Stage 2
Objectives

Stage 2
Planning

Stage 2
Information

State
Required

Stage
2

Work

Stage 3
Objectives

Stage 3
Planning

Stage 3
Information

State
Required

Stage
3

Work

Stage Gate 1 Stage Gate 2

Project Information Base

Stage Gate 3

Fig. 8.4 Stage gates and project work

176 8 Management Aspects of Requirements Engineering

A further factor in this area is that there may well be different versions for
different markets. For example, it may be necessary to have user interfaces that
support different natural languages for sale in different countries.

To cope with this type of difference we introduce the notion of a “Variant”
meaning “differing in form or details from the main one”. Thus we can have the
“main one” (perhaps better expressed as the “core product”) being a product with
the user interface in English and variants for the French, German and Spanish markets.
Each variant can have its own versions such that each version is an improvement
over the previous one.

Figure 8.5 indicates how there can be parallel versions and variants of a single
product each at a different stage of its evolution. The letters S, D and U indicate
whether a product is being specified, being developed or being used. Each of these
states corresponds to one or more stages in the stage gate lifecycle.

From a requirements management point of view, each variant will have many
requirements in common with the core product, but it will have some requirements
that are specific to that variant and therefore differentiate it from other variants. On
the other hand, there may be no different requirements for each version of a variant,
because each version is an attempt to satisfy the same set of requirements (hope-
fully improving as the sequence goes on).

US Dv1

US Dv2

US Dv3

US Dv4

Main

US Dv1

US Dv2

US Dv3

US Dv4

Variant A

US Dv1

US Dv2

US Dv3

US Dv4

Variant B

Fig. 8.5 Versions and variants

1778.5 Product Organisations

In the previous section we used the term “release” and readers may be confused
between a release and a version. The difference is that a release is a version that is
delivered to the customer, whereas not all versions will be.

Planning the evolution of the variants and their versions for each product is a
further organisational task that can also be controlled using the stage gate mecha-
nism. The development for these may overlap in time and there will be a need to
support at least one version of each variant whilst it is in operational use.

The activities involved in doing the specification and development are very similar
to those introduced earlier for the acquisition and supplier organisations. The major
difference is that, where different versions and variants of the same product exist,
there is common information being used in several contexts. This complicates the
management of the requirements and makes it essential to understand how the
requirements baselines for each version and variant overlap.

There are two approaches commonly used. In the first, requirements are marked
using an attribute, to indicate whether the requirement is a common requirement or
only valid for one or more variants. In the second approach a copy of all the require-
ments is made and changes made to the copy for a specific product variant.

An alternative approach that is gaining popularity in some organisations is to
introduce an additional layer of abstraction referred to as a Feature Variability
Model. Features can be used in several products and tend to be quite stable.
Requirements are marked as either common or related to one or more specific features.
The advantage of this approach is that, once a new feature has had its requirements
introduced and marked, that feature can be used in any number of new products.
Thus development effort is only required when a new feature is added to the product
set, rather than work being necessary for every new product.

From a planning and organisational point of view, the introduction of a feature
variability model provides a level of abstraction that product planners and marketing
people can relate to. This helps focus the organisation’s senior management and
make them more aware of the extent and capabilities of their product portfolio.

Whichever approach is adopted, the fact that there are common requirements
and variant requirements leads to extra complications in the management of change
(see below).

8.5.2 Monitoring

Monitoring progress in a product organisation uses exactly the same mechanisms
as for the other organisations. When stage gates are used as the basis for organisa-
tional decisions, the process of planning will involve the identification of the data
state that must exist at the end of the stage. Progress can then be measured based
on the extent to which the desired state has been reached. As a general rule such
states can be measured in the following terms:

Whether new objects exist that will become targets for traceability links (e.g. •	
solution objects in response to stakeholder requirements, or design objects in
response to system requirements)

178 8 Management Aspects of Requirements Engineering

Whether attribute values exist•	
Whether the required review status exists•	
Whether traceability links exist from one data set to others (e.g. from stake-•	
holder requirements to system requirements, from system requirements to
design and from all of these to testing strategies and possibly test results)

Measures expressed as a percentage of required data quality currently achieved
provide useful metrics for both quality of data and progress within a stage.

8.5.3 Changes

As mentioned earlier the major additional factor for change management in a prod-
uct organisation is where several variants of a product have common requirements,
and a change proposal is raised against one or more of them. The questions that
must be answered are:

Will all the variants want to incorporate the change?•	
When will they want to incorporate it?•	

Quite often the answer will be that all variants will want to incorporate the change,
but not at the same time! This introduces an extra state into the change handling
state transition diagram (see Fig. 8.6) because each variant must incorporate the
change before the change can be completed.

Figure 8.6 also indicates that it is necessary that there are Planned, Deferred and
Incorporated states for each variant. The change can only achieve the status of
complete when all the variants have reached their individual ‘Incorporated’ state.

Proposed

Agreed

Rejected

Planned Deferred Repeated for
each variant

Complete

Incorporated

Fig. 8.6 Modified STD for change management with variants

1798.6 Summary

In summary, Product organisations perform similar tasks to both Acquisition and
Supplier organisations. In addition they must take care to control their product
portfolio so that an appropriate degree of commitment is made and the overall com-
mercial exposure is acceptable.

8.6 Summary

The summary is grouped under the headings of planning, monitoring and changes
in line with the presentation of the main body of the text.

8.6.1 Planning

Planning should be driven by the outputs that must be created. Activities to create
the required outputs can then be introduced. Outputs can be categorised as follows:

Types of information objects (e.g. stakeholders, stakeholder requirements, system •	
requirements, design or solution objects, etc.).
Attributes associated with an information object.•	
Links between information objects to establish traceability, testing strategy, •	
etc.
Review criteria to determine the required quality of information and associated •	
attributes.
Achievement of a particular state possibly via progression through a series of •	
states (e.g. by reviews).

Before any work can be started, the work must be authorised by the organisation in
which it will be undertaken. A mechanism such as stage gates is appropriate for
Acquisition and Product organisations to control the level of commitment and
consequent financial and/or commercial exposure they are willing to tolerate. In
Supplier organisations there must be an authorisation to prepare a proposal and this
is usually accompanied by an allowed budget. Permission to progress to develop-
ment will usually be embodied in the signing of a contract with the customer.

Evolutionary development should be considered to be the norm especially for
unprecedented systems. This leads naturally into the concepts of releases, versions
and variants.

8.6.2 Monitoring

It is vital that progress is measured by investigating the current state of the required
outputs. Progress measured in this way together with the amount of effort and time

180 8 Management Aspects of Requirements Engineering

used compared to the plan enables the viability of the plan to be established.
Ignoring the outputs and just measuring time and effort consumed gives a distorted
view that is not realistic.

8.6.3 Changes

The most critical aspect of a change is the impact that it will have on the system to
be developed and hence on the development plan. Understanding the impact can
only be achieved provided that the current states of the (project) outputs are avail-
able and up-to-date. Of particular importance here are the links that exist to provide
traceability from input information to derived information.

Deciding when a change can or should be incorporated will usually impact the
plan and may cause serious re-planning – depending on the scope of the change.
Changes can also lead to the introduction of additional releases, version or variants.

181E. Hull et al., Requirements Engineering, DOI 10.1007/978-1-84996-405-0_9,
© Springer-Verlag London Limited 2011

There’s nothing remarkable about it.
All one has to do is hit the right keys at the right time
and the instrument plays itself.

Johann Sebastian Bach, composer, 1685–1750 AD

9.1 Introduction

Systems engineers and managers need the right instruments to assist them with the
requirements management process. A variety of tools currently exist. This chapter
presents an overview of one of these tools – IBM Rational® DOORS® (Version 9.2).
DOORS (Dynamic Object Oriented Requirements System) is a leading require-
ments management tool used by tens of thousands of engineers around the world.
The tool was originally created by QSS Ltd, Oxford and is now developed and
marketed by IBM.

DOORS is a multi-platform, enterprise-wide requirements management tool
designed to capture, link, trace, analyse and manage a wide range of information
to ensure a project’s compliance to specified requirements and standards. DOORS
provides for the communication of business needs, allows cross-functional teams
to collaborate on development projects to meet these needs, and enables you to
validate that the right system is being built, and is being built right. The views
provided by DOORS on the screen provide a powerful familiar navigation
mechanism.

Also briefly covered in this chapter is a DOORS extension called DOORS/
Analyst, which integrates DOORS with the IBM Rational® Tau® modelling tool,
allowing UML models to be embedded and traced within DOORS.

Throughout this chapter reference will be made to a case study for a family sailing
boat. The DOORS/Analyst discussion uses part of a case study for an airport baggage
handling system.

Chapter 9
DOORS: A Tool to Manage Requirements

182 9 DOORS: A Tool to Manage Requirements

9.2 The Case for Requirements Management

Today, systems engineers require effective requirements management in order to
provide solutions. Requirements management is the process that captures, traces and
manages stakeholder needs and the changes that occur throughout a project’s lifecycle.
Products, too, are becoming more complex to the point where no individual has the
ability to comprehend the whole, nor understand all of its constituent parts. Structuring
is by far the best way of organising requirements, thus making them more manageable
in terms of omissions or duplicate information. Hence requirements management is
also about communication. For that reason it is important that requirements are com-
municated correctly, thus ensuring that team collaboration is enhanced, project risk is
reduced and the project meets its business objectives. If requirements are well managed,
the right product will get to market on time, on budget and to specification.

9.3 DOORS Architecture

For any application, the requirements and related information can be stored in a
central database in DOORS. This database can be accessed in a variety of ways and
exists throughout the lifetime of the application. The information in a DOORS
database is stored in modules. Modules can be organised within the database by
using folders and projects. A project is a special kind of folder that contains all the
data for a particular project (Fig. 9.1).

= Folder

= Project

= Module

Fig. 9.1 DOORS database structure

1839.4 Projects, Modules and Objects

DOORS folders are used to organise data and are just like folders in a computer
file store. Folders may contain other folders, projects or modules. Folders are given
a name and description and the ability for users to see or manipulate the data in a
folder may be constrained using access controls.

DOORS projects are used by a team of people to manage a collection of data
relating to that team’s work effort. The project should contain all of the data related
to the requirements, design, development, test, production and maintenance for an
application. The project provides the capability to manage users and their access to the
data in the project, to back-up the data and to distribute portions of the data to other
DOORS databases.

DOORS modules are containers for data sets. Three classes of module exist:

•	 Formal – the most frequently used type of module for structured sets of like
information.

•	 Descriptive – unstructured source information (letters or interview notes).
•	 Link – contain relationships between other data elements.

The user interface works very much like Windows Explorer and lets the user navigate
through the database.

9.4 Projects, Modules and Objects

9.4.1 DOORS Database Window

The DOORS Database window allows the user to see and manage the organisation
of DOORS data. Figure 9.2 shows the database window, with the database explorer
to the left, and the list of contents of the selected folder on the right.

DOORS provides the capability to change the name or description of existing folders
and projects. Folders and projects can also be moved if there is a need to reorganise or
change the structure of the database. Folders and projects can also be cut, copied or
pasted within the database to reorganise or duplicate portions of the database.

9.4.2 Formal Modules

Using the DOORS Database window, a new formal module can be created using
the menu File ► New ► Formal Module as shown in Fig. 9.3.

In the formal module creation window, the user provides the name of the new
module and its description. The user can also determine the starting point for the
unique identifiers generated for the objects in the module. A prefix can be provided
for this number that reflects the contents of the module, such as PR for Product
Requirements. By defining a unique prefix for each module, a project-wide unique

184 9 DOORS: A Tool to Manage Requirements

Fig. 9.2 Database window

Fig. 9.3 Create new formal module

1859.4 Projects, Modules and Objects

identifier for all information in the DOORS project is established. This provides a
convenient reference.

When a formal module is opened, the default display shows the module explorer
on the left, and the module data on the right as shown in Fig. 9.4.

The module explorer makes it easy to move to a specific place in the document,
and also shows the structure of the information in the module. Sections can be
expanded or collapsed in the same way as can be done with Windows Explorer.

The right hand pane shows the data for the module. The default display shows
two columns, the “ID” column and the “text” column, whose title is the module
description. The ID is a unique identifier assigned by DOORS when an object is
created. DOORS uses this identifier to keep track of the object and any other infor-
mation that is associated with it, e.g. attributes and links. The text column displays
the data like a document, showing a combination of the heading number, the heading
itself and the text associated with each the requirement.

DOORS provides a number of display options for formal modules as shown in
Fig. 9.5. In the Standard View, all levels of objects are displayed in a ‘document’
format. Users can restrict the display level, e.g. Outline displays only headings,
hiding all other object details. This result is similar to a typical document ‘table of
contents’. As stated earlier the Explorer View is useful for seeing the structure of the
module and for navigating to a specific object in the module.

Fig. 9.4 Formal module default display

186 9 DOORS: A Tool to Manage Requirements

Graphics mode on the other hand represents the display as a tree. This aids navi-
gation through large data sets. The titles of the objects in graphics mode are based
on the Object Heading and a shortened version of the Object Text (see Fig. 9.6).

9.4.3 Objects

As we have seen in the previous section, within formal modules, data is stored in
objects. An object may be a block of text, a graphic image or even a spreadsheet
created using another package. The standard view of a formal module display
includes two columns and a number of visual indicators as described below.

As shown in Fig. 9.7 the first column displays the Object Identifier assigned by
DOORS. The Object Identifier is made up of two parts:

A prefix (typically an abbreviation for the requirement set).•	
The absolute number, supplied by DOORS.•	

The absolute number is an integer assigned sequentially (1, 2, 3 etc.) that serves as
a key for each object, unique within the module.

The second column is known as the Main or Text column. It includes a composite
three attributes, depending on contents:

Fig. 9.5 Formal module display modes

1879.4 Projects, Modules and Objects

Section number (e.g. 1, 2.1, 3.2.3) indicating the object’s position in the module •	
structure.
Object heading providing a title for the object.•	
Object text giving the full description of the object.•	

Object numbers are only displayed for objects that have been assigned an object
heading.

Black lines above and below the object indicate the Current Object. Many func-
tions relating to objects in DOORS modules, e.g. inserting a new object, pasting an
object and moving an object are performed relative to the current object.

Blue, yellow and red change bars appear at the left edge of the text column. Blue
denotes an object that has not been changed since the last module baseline. Yellow
shows that changes have been saved since the baseline and red indicates unsaved
changes made in the current session.

Maroon and orange link indicators are displayed on the right hand side of
objects, which have relationships to other objects. The orange triangle pointing to
the left indicates an incoming link, and a maroon triangle pointing to the right indicates
an outgoing link (only incoming indicators are present in Fig. 9.7).

Introduction
Product perspective

General capabilities

General constraints

User characteristics

Operational environment

Assumptions and dependencies

Boat moved to sailing area

Boat ready to sail

Boat Launched

Capabilities

Constraints

Sailed normally

Boat Loaded

Boat Transported

Boat Unloaded

Boat rigged for sailing

Ready to sail

Boat Controlled

Boat Navigated

Capsize righted

Ashore using wind

Ashore When becalmed

Survived in boat

Survived in WaterAccident survived

Boat returned home

Market Constraints

Safety Constraints

Shipping Regulations

General
Description

User
Requirements
for sailboat

Fig. 9.6 Graphics mode

188 9 DOORS: A Tool to Manage Requirements

A DOORS formal module tree structure provides a simple, yet powerful method
of writing requirements. Requirements are often organised into a hierarchy, and so
the graphics mode is a useful view.

Creating new objects in DOORS is simple – new objects are placed in one of two
positions relative to the current object. Either:

A new object is created as the next sibling of the current object with •	
Insert ► Object, or
An object is created as the first child below the current object with •	
Insert ► Object Below.

This is shown in Fig. 9.8.
In DOORS, facilities are provided for editing objects. For example, a DOORS

tree can be modified by using the cut and paste functions. The Cut operation
removes the current object and all its children from the module display. This
causes the rearrangement of the object hierarchy, collapsing the tree into the
hole vacated by the objects that have been cut. This produces a renumbering of
the remaining successor objects. The insertion point can then be identified for the
objects that have been cut. Because of the nature of an object hierarchy there are
only two possibilities. Objects are placed after as the next sibling to the current
object or one level down as the first child of the current object. The former is
shown in Fig. 9.9.

Fig. 9.7 Displayed information

1899.4 Projects, Modules and Objects

9.4.4 Graphical Objects

Graphical objects in the form of embedded OLEs can be inserted into any text
attribute in DOORS, in much the same way as OLEs are handled in Word, for
instance. This allows pictures, diagrams, charts, documents, spreadsheets, and
many other kinds of information to be inserted into the requirements document in
support of requirements statements.

9.4.5 Tables

In many cases, requirements or information associated with requirements is pre-
sented in tabular form. Tables can be created after or below an existing object, or at
level one in an empty module. This is achieved by specifying the number of rows
and columns required. The new table can then be inserted into the formal module
as shown in Fig. 9.10. Tables can be deleted as long as there are no links to any of
the cell objects or to the table object.

Section 1
Section 1.1
Section 1.2
Section 1.3
Section 1.4

Section 2
Section 3

Section 1 Section 1

Section 1.1
Section 1.2
Section 1.3

Section 1.4

Section 1.2
Section 1.3
Section 1.4
Section 1.5

Section 2

Section 3
Section 3

New Section 2

New Section 1.1

Section 4
Renumbered

Renumbered

Current
Object Insert, Object Insert, Object Below

– ––

Fig. 9.8 Creating objects

Section 1.1
Section 1.2

Section 1.3
Section 1.4

Section 2

Section 3

Section 2

Section 1

Section 1 Section 1
Section 2

Section 2.1
Section 2.2
Section 2.3
Section 2.4

Section 3

–

Renumbered

Cut

Current
Object

Renumbered Again

Paste

–

Fig. 9.9 Cut and paste objects

190 9 DOORS: A Tool to Manage Requirements

9.5 History and Version Control

9.5.1 History

DOORS maintains an historical log of all module and object level actions that
modify the contents of a module, its objects and attributes.

Every change that is recorded includes who made the change, when the change was
made and what were the before/after states of the object and its attributes. The module
history can be used to track every event in the life of a given module. The object history
can be accessed via the change bar in the formal module window or it can be launched
from the main menu. An example history window is shown in Fig. 9.11.

9.5.2 Baselining

A baseline is a frozen copy of a module. They are typically created at significant
stages of a project, e.g. a set of requirements is normally baselined immediately prior
to a review, and then immediately after the resulting changes from the review have
been incorporated. This allows the various states of the requirements document to be
easily reproduced at any time. Baselines can be numbered and labelled in DOORS.

Fig. 9.10 Creating a table

1919.6 Attributes and Views

Baselines are read-only copies of a formal module and cannot be edited. When
a module is baselined, all history since the previous baseline is stored with the
newly created baseline, and the history for the current version is cleared. The life
history of a module is therefore stored across a series of baselines.

9.6 Attributes and Views

9.6.1 Attributes

Attributes provide a means to annotate modules and objects with related information.
Module attributes are used to capture information about the module itself, such as
its owner, document control number, review states etc. Object attributes are used to
capture information about individual objects. Attributes may be either system- or user-
defined. System attributes automatically maintain critical information about a
module or object, such as when it was created and by whom, while user-defined
attributes may be used to capture any information required to support the user’s
requirements management process.

Fig. 9.11 History window

192 9 DOORS: A Tool to Manage Requirements

DOORS provides a variety of standard attribute types, known as base types,
from which attributes may be defined, e.g. integer, real, date, string, text, user name.
It is also possible to have user defined attribute types.

Attribute information can be readily viewed and edited by creating columns.
In this way, on-screen as well as printable reports can be readily generated. While
an object may contain many attributes, a user is typically interested in viewing a
subset of these attributes at one time. Columns may be created to show just the
desired subset so that the user is not overwhelmed with information. Simply drag-
ging and dropping the column header can reposition columns.

9.6.2 Views

DOORS provides a facility called views for looking at the same information in
many different ways. Views are stored with modules and it is possible to create
many views from a project’s data. When creating views the object and attributes
which are to be displayed are specified. For example, you might wish to create a
view that lets you see only those objects in the module whose ‘Priority’ attribute
has a value ‘High’. A view then appears as a table, where each row contains one
object and the object attributes that have been selected.

9.7 Traceability

Traceability is managed in DOORS through the use of links between objects.

9.7.1 Links

A DOORS link is a connection between two objects. One property of a link is direc-
tionality; all links have a direction, from source to target. To represent data relation-
ships a link is created, thus enabling the user to visualize information as a network
rather than just a tree. Although links have directionality, DOORS provides the capa-
bility to navigate in either direction through the path that a link creates between two
objects. Hence it is possible to trace the impact of changes in one document on another
document, or trace backwards to indicate the original thinking behind a decision.

DOORS provides a variety of methods for creating and maintaining links. Individual
links can be created using drag-and-drop between two objects (usually in different
modules). Whole sets of links can be created in other ways. For instance, the Copy and
link function can copy a whole set of objects, and link each copy to its original.

Links are indicated along the right hand side of the main column in the standard
view of a formal module by triangular link icons. An icon that points to the left
represents incoming links; the opposite for outgoing links.

1939.7 Traceability

9.7.2 Traceability Reports

There are a number of ways in DOORS of creating traceability reports, on
screen and on paper. The simplest on-screen traceability tool is through using
Analysis ► Traceability Explorer, which uses a Windows-style interface to allow
the user to explore traceability across multiple documents in a single window. This
is illustrated in Fig. 9.12.

Another way of constructing an on-screen report (which can subsequently be
printed) is by adding traceability columns to a view. These columns can display
data about linked objects from other documents. They are created using
Analysis ► Wizard, which guides the user to select which links and which attri-
butes of linked objects are to be displayed. Traceability columns are completely
dynamic, and are updated as new links are created, or as the distant data is changed.
Through this means, data from several documents can be brought together into a
single report, on-screen or printed onto paper.

Figure 9.13 shows an example of a view that contains a traceability column. The
view lives in the current module, which is the Stakeholder Requirements, and the

Fig. 9.12 Traceability explorer

194 9 DOORS: A Tool to Manage Requirements

column shows data from the System Requirements module by following the incoming
links. Rich traceability is used in the example, and the columns are as follows:

The Stakeholder requirement identifier (from current module).•	
The main column showing the Stakeholder requirement heading/text (from current •	
module).
The rich traceability combinator (an attribute of the Stakeholder requirement in •	
the current module).
The satisfaction argument (an attribute of the Stakeholder requirement in the cur-•	
rent module).
A traceability column entitled “Contributing Requirements” showing several •	
attributes of system requirements linked to the stakeholder requirement. The
object identifier of the system requirement is shown bold in square brackets, fol-
lowed by the text. In addition, the section headings of each system requirement
are shown to give essential context within the System Requirements document.

Figure 9.14 shows a traceability column from the other end of the same links, i.e. from
the System Requirements document back to the Stakeholder Requirements. In this case,
the outgoing links are traversed, and information is displayed in the column entitle
“originating Requirements”. There is no column for the satisfaction arguments.

It is common for requirements documentation to include traceability matrices
showing the relationships between documents. Through the use of traceability columns
in views, DOORS avoids the need to create and maintain such matrices manually.

Fig. 9.13 Traceability columns showing requirments satisfaction

1959.8 Import and Export

9.8 Import and Export

The capability of exchanging information between DOORS and other tools is
highly desirable. This can range from importing legacy information into DOORS
and for exporting DOORS information to external tools for publishing and other
purposes.

In project development the ability to efficiently and reliably import and organise
large quantities of information is often a necessary task. However the variety of
storage formats and platforms and the inconsistencies in data structures can make
this a real challenge. DOORS provides a wide range of import tools to support this
activity and in particular in relation to documents, tables and databases. For example,
Fig. 9.15 shows how to input from Word into DOORS. This is achieved by open-
ing a Word document and exporting it to DOORS, using the Export to DOORS
button – a module name and description needs to be supplied before the file is
exported from Word and imported into DOORS.

The document is imported into DOORS with the same structure as the Word
Outline view, so Heading 1 text becomes an object at the level 1 in DOORS.
Paragraph breaks are used for delimiting the content of each object.

Similarly, DOORS supports many export formats to provide a convenient
method of transferring DOORS data to other desktop tools. As an example consider
exporting from DOORS to Word as shown in Fig. 9.16.

Fig. 9.14 Traceability column on outgoing links

196 9 DOORS: A Tool to Manage Requirements

Fig. 9.15 Export from Word to DOORS

Fig. 9.16 Export from DOORS to Word

1979.9 UML Modelling with DOORS/Analyst

This is the reverse of the previous operation. The Word document will have the
same structure as the formal module, i.e. Object Heading 1 becomes Level 1 Headings
become Word style “Heading 1”, and so on. Text is displayed in Normal style.

DOORS provides these types of import and export capabilities for a range of
tools and formats including: RTF, Word, WordPerfect, Excel, Lotus, Access, Plain
Text, HTML, PowerPoint, MS Project, Outlook and many others.

9.9 UML Modelling with DOORS/Analyst

DOORS/Analyst is an integration of DOORS with the UML modelling tool, IBM
Rational® Tau®. It permits UML models to be created and diagrams to be presented
within a DOORS module.

As requirements are analysed, objects in a DOORS module can be labelled as UML
elements, such as actors, classes and states. When a diagram is inserted into the DOORS
module by activating the UML modelling tool, the DOORS objects so labelled are
synchronised with elements that appear in the diagrams. The effect of this is to allow
traceability of requirements into elements that appear in diagrams in UML.

Figure 9.17 shows a screen-shot of a DOORS module in which DOORS/Analyst
has been used to label objects, and insert a class diagram. Labelled objects are
indicated by icons in the narrow column to the left of the main column, and the type
of UML entity is also shown in the “Object Type” column to the right.

Fig. 9.17 UML modelling in DOORS/Analyst

198 9 DOORS: A Tool to Manage Requirements

Double-clicking on a diagram starts up the DOORS/Analyst diagram editor,
shown in Fig. 9.18. Saving changes to the model causes information to be re-syn-
chronised into the DOORS module.

9.10 Summary

A brief overview of a requirements management tool, DOORS, has been given in this
chapter. The example used shows the application of some of the principles used in the
book, e.g. instantiations of the generic process in layers, rich traceability, etc.

DOORS/Analyst is also introduced as an example of how modelling tools can
compliment requirements management tools.

The same principles can be applied and implemented in other requirements
management tools. Even if one is just using a word processor, the disciplines
described within the covers of this book will be beneficial.

Fig. 9.18 UML diagram editor in DOORS/Analyst

199

Alderson A, Hull MEC, Jackson K and Griffiths LE (1998) Method Engineering for Industrial
Real-Time and Embedded Systems. Information and Software Technology, 40: 443–454.

Andriole SJ (1996) Managing Systems Requirements: Methods, Tools and Cases. New York,
McGraw-Hill.

Babich W (1986) Software Configuration Management – Coordination for Team Productivity.
Boston, MA, Addison-Wesley.

Bernstein P (1996) Against the Gods – the Remarkable Story of Risk. New York, Wiley.
Boehm B (1981) Software Engineering Economics. New York, Prentice-Hall.
Booch G (1994) Object-oriented Design with Applications. Redwood City, California, Benjamin

Cummins.
Brown AW, Earl AN et al. (1992) Software Engineering Environments. London, McGraw-Hill.
Budgen D (1994) Software Design. Boston, MA, Addison-Wesley.
CarnegieMellon (2006) Software Engineering Institute, CMMI® for Development, Version 1.2,

CMMI-DEV, Pitsburg, PA 15213–3890
Chaochen Z, Hoare CAR, Ravn AP (1991) A Calculus of Durations. Information Processing

Letter, 40(5): 269–276.
Chen, Peter (1976) The Entity-Relationship Model – Toward a Unified View of Data. In: ACM

Transactions on Database Systems 1/1/1976. ACM-Press, ISSN 0362-5915, S. 9–36
Clark KB and Fujimoto T (1991) Product Development Performance. Harvard Business School.
Coad P and Yourdon E (1991a) Object-Oriented Analysis. Englewood Cliffs, NJ, Prentice-Hall.
Coad P and Yourdon E (1991b) Object-Oriented Design. Englewood Cliffs, NJ, Prentice-Hall.
Cooper RG (1993) Winning at New Products. Reading, MA, Addison Wesley.
Crosby PB (1979) Quality Is Free. New York, McGraw-Hill.
Crosby PB (1984) Quality Without Tears. New York, New American Library.
Darke P, Shanks GG (1947) User Viewpoint Modelling: Understanding and Representing User

Viewpoints During Requirements Definition. Information Systems Journal 7(3): 213–240.
Davis AM (1993) Software Requirements: Objects, Functions and States. Englewood Cliffs, NJ,

Prentice-Hall.
DeGrace P (1993) The Olduvai Imperative: CASE and the State of Software Engineering Practice.

Englewood Cliffs, NJ, Prentice-Hall.
DeMarco T (1978) Structured Analysis and System Specification. New York, Yourdon.
DeMarco T (1982) Controlling Software Projects. Englewood Cliffs, NJ, Yourdon Press.
DeMarco T and Lister T (1987) Peopleware – Productive Projects and Teams. New York, Dorset

House.
Easterbrook S and Nuseibeh B (1996) Using Viewpoints for Inconsistency Management. Software

Engineering Journal, 11(1): 31–43.
Finkelstein A, Kramer J, Nuseibeh B and Goedicke M (1992) Viewpoints: A Framework for

Integrating Multiple Perspectives in Systems Development. International Journal of Software
Engineering and Knowledge Engineering, 2(10): 31–58.

Bibliography

200 Bibliography

Fowler M and Scott K (1997) UML Distilled: Applying the Standard Object Modeling Language.
Reading, MA, Addison-Wesley.

Gilb T (1988) Principles of Software Engineering Management. Reading, MA, Addison-Wesley.
Gilb T (2005) Competitive Engineering: A Handbook for Systems Engineering, Requirements

Engineering and Software Engineering Management Using Planguage. Oxford, Elsevier
Butterworth-Heinemann

Gorchels L (1997) The Product Manager’s Handbook. Lincolnwood, IL, NTC Business Books.
Gotel OCZ and Finkelstein ACW (1995) Contribution Structures. Proceedings RE’95. York, UK,

IEEE Press.
Harel D (1987) Statecharts: A Visual Formalism for Complex Systems. Science of Computer

Programming, 8: 231–274.
Hull MEC, Taylor PS, Hanna JRP and Millar RJ (2002) Software Development Processes – An

Assessment. Information and Software Technology, 44(1): 1–12.
Humphrey WM (1989) Managing the Software Process. Boston, MA, Addison-Wesley.
IEEE STD 1220–1998 (1998) Standard for Application and Management of the Systems

Engineering Process. New York, NY, IEEE.
Jackson M (1995) Software Requirements & Specifications: a Lexicon of Practice, Principles and

Prejudices. New York, NY, Addison-Wesley.
Jacobsen I and Christerson M et al (1993) Object-Oriented Software Engineering. Wokingham,

Addison-Wesley.
Kotonya G and Sommerville I (1996) Requirements Engineering with Viewpoints. Software

Engineering Journal, 11(1): 5–11.
Kotonya G and Sommerville I (1998) Requirements Engineering: Processes and Techniques.

Chichester, Wiley.
Leite JCP and Freeman PA (1991) Requirements Validation Through Viewpoint Resolution.

Transactions of Software Engineering, 12(2): 1253–1269.
Loucopulos P and Karakostas V (1995) Systems Requirements Engineering. New York, NY,

McGraw-Hill.
Mazza C et al (1994) ESA – Software Engineering Standards. Prentice-Hall.
Monroe RT, Kompanek A, Metlon R, and Garlan D (1997) Architectural Styles, Design Patterns,

and Objects. IEEE Software.
Mumford E (1989) User Participation in a Changing Environment – Why We Need IT. In:

Participation in Systems Development. Ed. K Knight. London, Kogan Page.
Nuseibeh B, Kramer J and Finkelstein A (1994) A Framework for Expressing the Relationships

Between Multiple Views in Requirements Specification. Transactions of Software Engineering,
20(10): 760–773.

Oliver DW, Kelliher TP and Keegan JG (1997) Engineering Complex Systems with Models and
Objects. New York, McGraw-Hill.

OMG (2003) The Unified Modelling Language Version 2, www.omg.org
Page-Jones M (1980 The Practical Guide to Structured Systems. New York, Yourdon Press.
Perrow C (1984) Normal Accidents. Basic Books.
Petroski H (1982) To Engineer is Human – the Role of Failure in Successful Design. New York,

St Martin’s Press.
Petroski H (1996) Invention by Design: How Engineers Get from Thought to Thing. Harvard

University Press.
Poots C, Takahashi K et al (1994) Inquiry-based Requirements Analysis. IEEE Software, 11(2):

21–32.
Pressman RS (1997) Software Engineering: A Practitioner’s Approach. New York, NY, McGraw-

Hill.
Ross DT (1977) Structured Analysis (SA): A Language for Communicating Ideas. IEEE

Transactions on Software Engineering, 3(1): 16–34.
Ross DT (1985) Applications and Extensions of SADT. IEEE Computer, 18(4): 25–34.
Ross DT and Schoman KE (1977) Structured Analysis for Requirements Definition. IEEE

Transactions on Software Engineering, 3(1): 6–15.

201Bibliography

Rumbaugh J and Blaha M et al (1991) Object Modeling and Design. Englewood Cliffs, NJ,
Prentice-Hall.

Rumbaugh J, Blaha M, Premerlani W, Eddy F and Lorenzen W (1991) Object-Oriented Modeling
and Design. Prentice-Hall.

Shlaer S and Mellor SJ (1991) Object Life Cycles – Modeling the World in States. Yourdon
Press.

Shlaer S and Mellor SJ (1998) Object-Oriented Systems Analysis. Englewood Cliffs NJ, Prentice-
Hall.

Software Engineering Institute (Carnegie-Mellon) (1991) Capability Maturity Model for Software.
Tech. Report CMU/SEI-91-TR-24.

Sommervile I (1996) Software Engineering. Wokingham, Addison-Wesley.
Sommervile I and Sawyer P (1997) Requirements Engineering: A Good Practice Guide.

Chichester, Wileyons.
Spivey JM (1989) The Z Notation: A Reference Manual. Englewood Cliffs, NJ, Prentice-Hall.
Stevens R, Brook P, Jackson K and Arnold S (1998) Systems Engineering: Coping with

Complexity. Prentice-Hall Europe.
Yourdon EN (1990) Modern Structured Analysis. Englewood Cliffs, NJ, Prentice-Hall.
Zave P (1997) Classification of Research Efforts in Requirements Engineering. ACM Computing

Surveys, 29(4): 315–321.

203

A
Abstraction, 17, 20, 80, 89
Abstract model, 54
Acceptance criteria, 30–31, 112–113
Acquisition, 161, 162–167
Analysis

coverage, 16, 138
derivation, 15, 138, 141
impact, 15, 138, 148
rich traceability, 145–146

Assessment, 80, 82–83
Assumptions. See Domain knowledge
Atomicity, 89
Attributes, 80–82

categories, 81–82

B
Background information, 79–80
Bid management, 167–171
B-Method, 75
Boilerplates, 85–88
Brainstorming, 59, 91, 97
Business objectives, 13

C
Capability, 84–85
Capacity, 85, 87
Change

complexity, 156
estimation, 156
impact, 156
latent, 155–156
management, 13, 14, 155, 159–160, 162,

165–166, 172–173, 177
request, 156

Clarity, 13, 39, 77
Class diagram, 56–57

Classification
primary, 79, 83
secondary, 79, 83

Communication, 9, 13, 18
Completeness, 89
Complexity, 1
Confidential information, 86
Conflicts, 79, 82–83
Consistency, 82–83, 90
Constraints, 84–87, 123
Contextual information, 77–78
COTS (Off-the-shelf components), 1
Coverage analysis, 14–16, 138
Cup, 5–6

D
Data flow, 33, 48–53
Data-flow diagrams (DFD),

48–53, 79
Data store, 48
Data transformation, 48
DeMarco, T., 58
Derivation analysis, 15, 138, 141, 145
Design freedom, 21, 83
Design justifications. See Satisfaction

argument
Development

change, 30–31
ideal, 31
process, 26
systems, 25–28

DFD. See Data-flow diagrams
Diagram

class, 56–57
data flow, 48–53
entity-relationship, 54
state transition, 69

Domain knowledge, 80, 141, 142

Index

204 Index

Dynamic Object Oriented Requirements
System (DOORS), 181–198

architecture, 182–183
attributes, 186, 191–192
baselines, 190–191
base types, 191
change bars, 187
columns, 187
explorer view, 185
export, 195–197
folders, 182–183
graphical objects, 189
graphics mode, 186–188
history, 190–191
import, 195–197
link indicators, 187
links, 187
main column, 192
modules, 183
object heading, 186–187
object identifier, 186
object text, 186–187
outline view, 185
projects, 181
rich traceability, 194
satisfaction argument, 194
standard view, 185
tables, 189–190
traceability, 192–195
traceability explorer, 193
views, 192

E
Elementary traceability, 137–140
Emergent properties, 4–6, 18–19
Entity-relationship diagram (ERD), 54
Environment, 6
Estimation, 160–161
Examples

aircraft engine, 90
banking, 123–126
car, 126–131
cooker, 139–141
cup, 5–6
military vehicle, 139
New York underground, 141
nightmare, 89
RAC rally, 9
sailing boat, 100, 181
timetables, 142–143
vehicle, 139–141

External entity, 48–50

F
Feasibility, 89
Feedback, 90
Filtering, 86
Formal method, 75–76
Functionality

human interaction, 119, 121–123, 125, 129
interface, 119, 121, 123, 125, 128–129
internal, 118–121, 124–125, 128
safeguard, 118–119, 122–123, 126, 129–131

Functional requirements, 88

G
Generic process, 33–38

instantiation, 94, 116–117, 133

H
Hierarchies, 79
Human interaction, 121–122, 123, 125, 129

I
Impact analysis, 12–13, 15, 138, 143, 148
Impact assessment, 156
INCOSE, 81
Information model, 33–38
Interfaces, 4–6
Invitation to tender (ITT), 167

K
Key requirements, 80

L
Language, 84–85
Language of temporal ordering specification

(LOTOS), 75
Legality, 89
Let-out clauses, 90
Lifecycle, 10–13
LOTOS. See Language of temporal ordering

specification

M
Management, 155, 159–160

of change, 155–157, 162, 170,
172–173, 177

experience, 159–161
or bids, 164

205Index

planning, 162–165, 167–169, 173–177
problems, 160–162

Method, 57–76
Metrics, 152–157

global, 153
imbalance, 154
phase, 153

Models
abstract, 54
system, 55

Modes of operation, 123, 126, 130–131
Modularity, 89
Monitoring progress, 161–162, 165, 170,

172, 177

O
Operability, 87
Operational modes, 90
Operators, 140, 143
Organisations

acquisition, 161, 162–167
product developers, 161, 173
suppliers, 161, 167–173
types, 161–162

P
Paragraph numbers, 77
Performance, 18, 85–87
Performance attribute, 85
Periodicity, 85, 87
Praxis critical systems, 141
Precision, 89
Problem

domain, 20–23, 84, 93–114
vs. solution, 20–21, 161

Process
analysis, 40–41
derivation, 42–43
generic, 25–45
modelling, 40–41
qualification, 40, 42–44
requirements agreement, 36

Process specification, 42
Product developers, 161, 173
Product distribution, 1
Product families, 11, 173–176
Programme management, 11
Progress measurement, 16
Project

decision factors, 160
failure, 2–3

plan, 159
success, 3

Propositional logic, 145
Prototypes

requirements from, 110

Q
Qualification, 19–20, 95
Qualification argument, 146
Qualification rationale. See Qualification

argument
Qualification strategy, 19, 30–31, 112–114
Quality, 9–10

factors, 81

R
Reality, 159
Redundancy, 89
Request for Proposals (RFP), 167
Requirements

abstraction, 89
agreement, 34–37, 40, 95–96, 132–133
allocation, 131–132, 143–144
atomicity, 89
attributes, 79, 80–82
boilerplates, 85–88
capabilities, 84–88
capture, 102–103, 106–112
clarity, 77
classification, 78–80
completeness, 89
conflicting, 79, 82–83
consistency, 82–83, 90
constraints, 84–85, 87–88, 111
criticality, 155–156
decomposition, 53–54, 151
definition, 6–7
derivation, 118, 131–135
derived, 29–30
documents, 77–80
elaboration (See Satisfaction argument)
expressing, 86
feasibility, 89
flow-down, 143–144
functional, 18, 85–88
identification, 107–108
identifying, 77–79, 84
identity, 138, 141, 143–144
imbalance, 154
input, 29–30
language, 84–85, 86, 89, 91

206 Index

Requirements (cont.)
legality, 89
management, 155, 159–180
modularity, 89
nightmare, 89–90
non-functional, 18
performance, 82–85
precision, 89
qualification, 35, 95
redundancy, 89
refinement, 112
reuse, 79
reviewing, 77–91
satisfaction, 34–35, 37–38,

95–96
stakeholder, 18–23, 84–85
stakeholder vs. system, 21–22
structure, 79, 89–90, 131
structuring, 79–80, 103
system, 16–23, 82–86
trade-off, 83
uniqueness, 89
value of, 83–84
verifiability, 89
workshops, 108–110
writing, 77–91

Requirements engineering
definition, 6–9

Reuse, 11, 86
Review process

criteria, 78
requirements, 144
traceability, 144

RFP. See Request for Proposals
Rich traceability, 139–147, 194

analysis, 145–146
implementation, 146–147
multi-layer, 147
operators, 140, 143
single-layer, 146–147

Risk management, 2
Rumbaugh, J., 58–59, 69, 70

S
Satisfaction, 95
Satisfaction argument, 139–147, 151,

158, 194
disjunction, 140
language, 144–145

Scenarios, 18, 79
Shlaer-Mellor, 68
Software, 1

Solution
domain, 20–23, 84–85, 115–136
vs. problem, 20–21, 161

Sorting, 86
Specification

process, 42
Speculation, 90
Stage gate, 174
Stakeholders, 78–80, 84–85

constraints, 107, 111
definition, 7
identification, 94, 96–98
interviewing, 106–107
requirements, 21, 23, 26, 84, 85

State charts, 18, 79
Statecharts, 55–56
State transition diagram, 69
Strategy. See satisfaction argument
Structure, 89
Subsystems, 132–134
Suppliers, 161, 167–173
Systems

architecture, 133–134
definition, 6–7
development, 25–28
engineering, 4–6
model, 117–118
modelling, 17–18, 22, 47–76
requirements, 21–23, 84–85
scope, 101–102
transactions, 122–123, 126, 130

Systems of systems, 5

T
Tender assessment. See Assessment
Test planning, 16
Timeliness, 87
Time to market, 1
Traceability, 12, 14, 15, 22–23,

192–195
analysis, 14–15
benefits, 158
breadth, 152, 153
depth, 152, 153
downwards, 156
effort, 158
elementary, 137–139, 140
growth, 153, 154
imbalance, 154
matrix, 138
metrics, 152–157
multi-layer, 146–147

207Index

overhead, 16
rationale (See Satisfaction argument)
rich, 137, 140–144
upwards, 156

U
Unified Modelling Language (UML)

class diagrams, 18
message sequence charts, 18

Uniqueness, 89
Use scenarios

characteristics, 100–101
creation, 98–101

V
Value function, 83–84
Variants, 176, 177–180
Verifiability, 89
Versions, 173–177

Vienna Definition Language
(VDM), 75

VISION, 142
V-Model, 10–11

W
West Coast Mainline, 4–5, 141
Word processor, 77

Y
Yourdon, E., 58, 68

Z

Z
as formal notation, 75

	Chapter 1: Introduction
	1.1 Introduction to Requirements
	1.2 Introduction to Systems Engineering
	1.3 Defining Requirements Engineering
	1.3.1 Definition of a Requirement
	1.3.2 Definition of a Stakeholder
	1.3.3 Definition of Requirements Engineering

	1.4 Requirements and Quality
	1.5 Requirements and the Lifecycle
	1.6 Requirements Tracing
	1.7 Requirements and Modelling
	1.8 Requirements and Testing
	1.9 Requirements in the Problem and Solution Domains
	1.10 How to Read this Book

	Chapter 2: A Generic Process for Requirements Engineering
	2.1 Introduction
	2.2 Developing Systems
	2.3 Generic Process Context
	2.3.1 Input Requirements and Derived Requirements
	2.3.2 Acceptance Criteria and Qualification Strategy

	2.4 Generic Process Introduction
	2.4.1 Ideal Development
	2.4.2 Development in the Context of Change

	2.5 Generic Process Information Model
	2.5.1 Information Classes
	2.5.2 Agreement State
	2.5.3 Qualification State
	2.5.4 Satisfaction State
	2.5.5 Information Model Constraints

	2.6 Generic Process Details
	2.6.1 Agreement Process
	2.6.2 Analyse and Model
	2.6.3 Derive Requirements and Qualification Strategy Fig. 2.13 Portrays the Process for Deriving Requirements and Qualifica
	2.6.3.1 Deriving Requirements
	2.6.3.2 Deriving the Qualification Strategy

	2.7 Summary

	Chapter 3: System Modelling for Requirements Engineering
	3.1 Introduction
	3.2 Representations for Requirements Engineering
	3.2.1 Data Flow Diagrams
	3.2.2 Entity-Relationship Diagrams
	3.2.3 Statecharts
	3.2.4 Object-Oriented Approaches
	3.2.4.1 Class Diagrams
	3.2.4.2 Use Cases

	3.3 Methods
	3.3.1 Viewpoint Methods
	3.3.1.1 Controlled Requirements Expression (CORE)
	3.3.1.2 Structured Analysis and Design Technique (SADT)
	3.3.1.3 Viewpoint-Oriented Requirements Definition (VORD)

	3.3.2 Object-Oriented Methods
	3.3.2.1 OOA
	3.3.2.2 OMT
	3.3.2.3 Booch
	3.3.2.4 Objectory
	3.3.2.5 The UML

	3.3.3 The UML Notation
	3.3.4 Formal Methods
	3.3.4.1 Z–A Model-Based Formal Method

	3.4 Summary

	Chapter 4: Writing and Reviewing Requirements
	4.1 Introduction
	4.2 Requirements for Requirements
	4.3 Structuring Requirements Documents
	4.4 Key Requirements
	4.5 Using Attributes
	4.6 Ensuring Consistency Across Requirements
	4.7 Value of a Requirement
	4.8 The Language of Requirements
	4.9 Requirement Boilerplates
	4.10 Granularity of Requirements
	4.11 Criteria for Writing Requirements Statements
	4.12 Summary

	Chapter 5: Requirements Engineering in the Problem Domain
	5.1 What is the Problem Domain?
	5.2 Instantiating the Generic Process
	5.3 Agree Requirements with Customer
	5.4 Analyse & Model
	5.4.1 Identify Stakeholders
	5.4.2 Create Use Scenarios
	5.4.2.1 Characteristics of Use Scenarios

	5.4.3 Scoping the System

	5.5 Derive Requirements
	5.5.1 Define Structure
	5.5.2 Capture Requirements
	5.5.2.1 Sources of Stakeholder Requirements
	5.5.2.2 Stakeholder Interviews
	5.5.2.3 Extracting Requirements from Informal Documents
	5.5.2.4 Identifying Capability Requirements from Scenarios
	5.5.2.5 Requirements Workshops
	5.5.2.6 Requirements Learnt from Experience
	5.5.2.7 Requirements from Prototypes
	5.5.2.8 Constraints in the Stakeholder Requirements
	5.5.2.9 Refine Requirements
	5.5.2.10 Derive Qualification Strategy

	5.5.3 Define Acceptance Criteria
	5.5.4 Define Qualification Strategy

	5.6 Summary

	Chapter 6: Requirements Engineering in the Solution Domain
	6.1 What is the Solution Domain
	6.2 Engineering Requirements from Stakeholder Requirements to System Requirements
	6.2.1 Producing the System Model
	6.2.2 Creating System Models to Derive System Requirements
	6.2.2.1 Internal Functionality
	6.2.2.2 Interface Functionality
	6.2.2.3 Human Interaction Functionality
	6.2.2.4 Safeguard Functionality
	6.2.2.5 System Transactions
	6.2.2.6 Modes of Operation
	6.2.2.7 Additional Constraints

	6.2.3 Banking Example
	6.2.3.1 Internal Functionality
	6.2.3.2 Interface Functionality
	6.2.3.3 Human Interaction Functionality
	6.2.3.4 Safeguard Functionality
	6.2.3.5 System Transactions
	6.2.3.6 Modes of Operation

	6.2.4 Car Example
	6.2.4.1 Internal Functionality
	6.2.4.2 Interface Functionality
	6.2.4.3 Human Interaction Functionality
	6.2.4.4 Safeguard Functionality
	6.2.4.5 System Transactions
	6.2.4.6 Modes of Operation

	6.2.5 Deriving Requirements from a System Model
	6.2.5.1 Create a Document Structure for the Requirements
	6.2.5.2 Derive or Allocate Requirements

	6.2.6 Agreeing the System Requirements with the Design Team

	6.3 Engineering Requirements from System Requirements to Subsystems
	6.3.1 Creating a System Architecture Model
	6.3.2 Deriving Requirements from an Architectural Design Model

	6.4 Other Transformations Using a Design Architecture
	6.5 Summary

	Chapter 7: Advanced Traceability
	7.1 Introduction
	7.2 Elementary Traceability
	7.3 Satisfaction Arguments
	7.4 Requirements Allocation
	7.5 Reviewing Traceability
	7.6 The Language of Satisfaction Arguments
	7.7 Rich Traceability Analysis
	7.8 Rich Traceability for Qualification
	7.9 Implementing Rich Traceability
	7.9.1 Single-Layer Rich Traceability
	7.9.2 Multi-Layer Rich Traceability

	7.10 Design Documents
	7.11 Metrics for Traceability
	7.11.1 Breadth
	7.11.2 Depth
	7.11.3 Growth
	7.11.4 Balance
	7.11.5 Latent Change

	7.12 Summary

	Chapter 8: Management Aspects of Requirements Engineering
	8.1 Introduction to Management
	8.2 Requirements Management Problems
	8.2.1 Summary of Requirement Management Problems

	8.3 Managing Requirements in an Acquisition Organisation
	8.3.1 Planning
	8.3.2 Monitoring
	8.3.3 Changes

	8.4 Supplier Organisations
	8.4.1 Bid Management
	8.4.1.1 Planning
	8.4.1.2 Monitoring
	8.4.1.3 Changes

	8.4.2 Development
	8.4.2.1 Planning
	8.4.2.2 Monitoring
	8.4.2.3 Changes

	8.5 Product Organisations
	8.5.1 Planning
	8.5.1.1 Single Product Version
	8.5.1.2 Multiple Products and Versions

	8.5.2 Monitoring
	8.5.3 Changes

	8.6 Summary
	8.6.1 Planning
	8.6.2 Monitoring
	8.6.3 Changes

	Chapter 9: DOORS: A Tool to Manage Requirements
	9.1 Introduction
	9.2 The Case for Requirements Management
	9.3 DOORS Architecture
	9.4 Projects, Modules and Objects
	9.4.1 DOORS Database Window
	9.4.2 Formal Modules
	9.4.3 Objects
	9.4.4 Graphical Objects
	9.4.5 Tables

	9.5 History and Version Control
	9.5.1 History
	9.5.2 Baselining

	9.6 Attributes and Views
	9.6.1 Attributes
	9.6.2 Views

	9.7 Traceability
	9.7.1 Links
	9.7.2 Traceability Reports

	9.8 Import and Export
	9.9 UML Modelling with DOORS/Analyst
	9.10 Summary

	Bibliography

