
Chapter 8

Identification of Tyre–road Friction
Conditions

8.1 Introduction

Tyre–road friction characteristics are deeply interlaced with all vehicle safety
oriented control systems as road conditions strongly affect the controlled
system behaviour. Thus, the capability of estimating in real-time the friction
conditions may provide a valuable source of information for any active vehicle
control system. In particular, friction information can be used to enhance the
performance of wheel slip control systems.

In this chapter we address three different problems related with friction
estimation. Specifically, Section 8.2 illustrates an approach that is capable of
estimating the sign of the slope of the friction curve, thereby allowing one
to detect if the system is operating in the stable or in the unstable region of
the friction curve. In fact, as largely discussed in this book, the equilibrium
points associated with the wheel braking dynamics are stable for values of
the wheel slip before the peak and unstable for those beyond the peak.

Hence, an online detection of the slope of the friction curve can be ex-
ploited to adapt and to optimise the closed-loop performance of wheel slip
control systems. The advantage of this identification method is that it can
be implemented also with a very limited set of sensors.

Secondly, in Section 8.3 an approach to the problem of estimating both
the slip value corresponding to the peak of the friction curve and the param-
eters of the Burckhardt friction model (see Section 2.1) is presented. This
is done by setting up a curve fitting problem which is then solved by two
different identification approaches, namely a least squares and a maximum
likelihood approach, arising from different parametrisations of the friction
curve. A detailed analysis of the merits and drawbacks of the two approaches
is also provided, which considers both the obtained accuracy in the estimated
parameters and the convergence issues which have to do with the length of
the available data set.
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160 8 Identification of Tyre–road Friction Conditions

Finally, Section 8.4 presents an approach for estimating the instanta-
neous vertical and longitudinal forces from in-tyre acceleration measurements.
Specifically, an appropriate set of sensors and regressors is illustrated, based
on the measurements provided both by standard vehicle sensors (wheel en-
coders) and an accelerometer mounted directly in the tyre. Such estimates
are based on the idea of extracting information from the phase shift between
the wheel hub and the tyre, which is due to the transmission of traction and
braking forces exerted on the tyre itself.

8.2 Detection of the Friction-curve Peak by
Wheel-deceleration Measurements

In this section we focus on estimating the sign change of the slope of the curve
μ(λ), which is responsible for the stability properties of the open-loop equi-
librium points of the wheel dynamics. In particular, recall that for constant
values of the braking torque, i.e., for Tb = T b, the open-loop equilibrium
points associated with slip values beyond the peak of the tyre–road friction
curve are unstable (see Section 2.5.1).

The identification algorithm is formulated based on two different sensors
configurations, i.e., with and without wheel slip measurement (or estimation)
available. This allows us to cover all the possible equipments available on
commercial vehicles. Moreover, it is illustrated how such an identification
algorithm can be employed within a supervisory control logic to enhance
safety properties and performance of active braking systems.

To develop the identification approach, the considered dynamical model
is the single-corner model discussed in Section 2.3. Once again, we treat the
vehicle speed as a slowly-varying parameter and concentrate on the wheel
dynamics only.

As discussed in Section 2.5.1, if we linearise the wheel dynamics (see the
first equation of system (2.18)), the transfer functions Gλ(s) from δTb to δλ
and Gη(s) from δTb to δη can be obtained. Specifically, they have the form

Gλ(s) =
r

Jv

s+ μ1(λ)Fz

mv

(
(1 − λ) + mr2

J

) , (8.1)

and

Gη(s) =
r

Jg

(
s+ μ1(λ)Fz

mv (1 − λ)
)

s+ μ1(λ)Fz

mv

(
(1 − λ) + mr2

J

) . (8.2)

For what follows, it is worth recalling that Gλ(s) and Gη(s) are both first-
order transfer functions, characterised by the same pole. Moreover, recall also
that the vehicle speed value v considered for the linearisation acts only as a
scaling parameter on such pole, but it does not affect its sign.
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In fact, as was shown in Section 2.5.1, the (real) pole of the transfer func-
tions (8.1) and (8.2) is negative if and only if the following inequality holds

μ1(λ)Fz

mv

(
(1 − λ) +

mr2

J

)
> 0,

which can be reduced to
μ1(λ̄) > 0,

where μ1(λ̄) is as in (2.37) and it represents the slope of the tyre–road friction
curve. Thus, the linear systems with transfer functions Gλ(s) and Gη(s) are
unstable if the equilibrium point λ is beyond the peak of the friction curve.
Accordingly, to detect the stability properties of wheel dynamics equilibrium
points it is necessary to monitor the sign-change of μ1(λ̄), i.e., the slope
of the tyre–road friction curve. It is worth pointing out that detecting a
change of stability also gives a means for detecting the pair (μMax, λMax)
i.e., the maximum tyre–road friction coefficient available on the current road
condition and the corresponding value of the wheel slip.

8.2.1 Online Detection of the Sign of the Friction
Curve Slope

We will now propose a strategy to monitor online the sign-change of μ1(λ̄),
i.e., the slope of the tyre–road friction curve. To this end, we deal directly with
the wheel dynamics, trying to find approximate static algebraic relationships
linking measurable variables to the slope sign itself.

Differentiating the wheel dynamics given in the first equation of the single-
corner model (2.15), we obtain

ω̈ =
d
dt

(
rFx

J
− Tb

J

)
=

d
dt

(
rFzμ(λ)

J
− Tb

J

)
=
r Fz

J

dμ(λ)
dλ

∣∣∣∣
λ=λ̄

λ̇− Ṫb

J
=
r Fz

J
μ1(λ̄)λ̇− Ṫb

J
.

We then define

H := ω̈ +
1
J
Ṫb =

r

J
Fzμ1(λ̄)λ̇ = γμ1(λ̄)λ̇, γ ∈ R+. (8.3)

Equation (8.3) shows that we can relate the sign of μ1(λ̄) to the wheel decel-
eration derivative (i.e., the wheel Jerk) and to the braking torque derivative.

The above relation, though, has to be further analysed before being di-
rectly employed. In fact, the sign of H depends both on the sign of μ1(λ̄) and
on the sign of the wheel slip derivative λ̇. In fact, it holds that
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H > 0 ⇔
(
μ1(λ̄) > 0 AND λ̇ > 0

)
OR

(
μ1(λ̄) < 0 AND λ̇ < 0

)
,

while

H < 0 ⇔
(
μ1(λ̄) < 0 AND λ̇ > 0

)
OR

(
μ1(λ̄) > 0 AND λ̇ < 0

)
.

Based on this, two alternative strategies for solving such ambiguity and for
deriving an expression for H suitable for online detection of the sign of the
friction curve slope can be derived. The two strategies differ one from in
other in that they are devised assuming that wheel slip measurement (or
estimation) is either available or not available.

Let us start by assuming that the wheel slip can be either measured or
estimated (for wheel slip estimation see Chapter 5). This assumption implies
that the proposed strategy can be implemented on all passenger cars equipped
with ABS and ESC sensors.

In this case, the slope sign can be derived as

sign(H) = sign
(
ω̈ +

1
J
Ṫb

)
sign(λ̇) = sign(μ1(λ̄)). (8.4)

Hence, slope sign detection becomes a pure signal processing problem.
To cope with the disturbances affecting the measured signals, in the im-

plementation of the friction curve slope sign detection strategy based on
Equation 8.4, one should not use a pure zero-crossing detection algorithm,
but it is necessary to define a small negative threshold on H. Such a threshold
must been experimentally tuned according to the measurement noise in the
available data and should fit all road conditions.

We now discuss how to estimate the slope sign when no slip measurement
(or estimation) is available. The motivation for this analysis is to devise an
identification strategy that can be implemented in any passenger car equipped
only with standard ABS sensors (i.e., wheel encoders and pressure sensors,
but no longitudinal accelerometer).

Consider the expression of the wheel slip derivative

λ̇ =
r

v

(ω
v
v̇ − ω̇

)
=

r

v

(ω
v
v̇ +

g

r
η
)
.

Assuming that the rate of change of the vehicle acceleration v̇ is negligible
with respect to that of the wheel deceleration ω̇, one has

λ̇ = −ω̇ r
v

= η
g

v
.

Accordingly, the slope sign estimator becomes

sign(H) = sign
(
ω̈ +

1
J
Ṫb

)
sign(λ̇) ∼= sign

(
ω̈ +

1
J
Ṫb

)
sign(η). (8.5)
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Thus, the estimation of the sign of μ1(λ̄) can be recast as the detection of
the sign of two components, both of which are measurable on every passenger
car.

It is worth analysing the effects of the approximation used in deriving (8.5).
As we are concerned with braking manoeuvres, by approximating the slip
velocity λ̇ with the normalised wheel acceleration η, we neglect a negative
term dependent on v̇. Hence the following inequality holds:

ω

v
v̇ +

g

r
η <

g

r
η. (8.6)

Inequality (8.6) shows that η changes sign before λ̇ when the wheel slip is
increasing, while the opposite is true when the wheel slip is decreasing (i.e.,
during the pedal release phase). In both cases, there is a time interval during
which η and λ̇ lose their concordance and the algorithm based on Equation 8.5
fails in detecting the slope sign. This means that expression (8.5) can be error
prone at the beginning of very hard braking manoeuvres.

Figure 8.1 FSM representation of the proposed ABS supervisory control logic

8.2.2 ABS Supervisory Control Logic

To enhance passenger safety, it is possible to employ the slope sign detection
strategy as a supervisory control logic, that commands, for example, the ABS
system control actions. To this end, we are interested in detecting the slope
sign change in both directions, i.e., from positive to negative and vice versa.

In order for the proposed logic to be integrated with standard ABS sys-
tems, we assume that no slip measurement (or estimation) is available. Hence,
the proposed results are based on Equation 8.5. An FSM representation of a
supervisory control logic is depicted in Figure 8.1.



164 8 Identification of Tyre–road Friction Conditions

As can be seen, it is composed of three states, each with an associated
control action. Specifically, one has:

• S0: the initial and final state. No control action is sent to the core ABS
system.

• S1: the system is in the stable region of the tyre–road friction curve, hence
the ABS system is allowed to increase the braking torque Tb.

• S2: the system is in the unstable region of the tyre–road friction curve,
hence the ABS system is commanded to decrease the braking torque Tb.
S2 is further decomposed into S21 and S22, whose meaning will be clarified
below.

The overall supervisory logic works as follows: the system remains in S0

while no braking occurs, i.e., while Tb < T̄ , where T̄ is a properly tuned
threshold. When Tb ≥ T̄ , a transition to the stable region S1 occurs. The
system remains in this state until H > Hinst where Hinst is the (negative)
threshold identifying a negative slope sign.

Once H ≤ Hinst, the system signals the crossing of the stability boundary
and enables the transition to the state S2. Actually, the system enters the
substate S21, where it waits for nms before entering S22. The rationale under
the wait action is that even if the release action is triggered by the transition
from S1 to S2, current ECU network topologies do not allow for an immediate
system response.

Accordingly, the substate S21 ensures that the detection of a positive slope
sign is not missed by evaluating H at the same time instant at which the
release action takes place. While the instability condition persists (i.e., as
long as the estimated slope sign is negative), the system remains in S22 and
the release phase is continued by the ABS system. When H ≥ Hst (Hst being
the positive threshold identifying positive slope sign), stability is re-gained
and a transition to S1 takes place. Finally, when the braking manoeuvre is
over, the system goes back to the final state S0.

8.2.3 Experimental Results

To analyse the performance of the identification algorithm, test drives have
been carried out by performing strong braking manoeuvres on two different
road conditions, i.e., a high-grip asphalt road and a low-grip off-road.

All the measured signals (wheel encoders, longitudinal accelerometer and
pressure sensors) are assumed to come from properly calibrated sensors. For
a discussion on the processing issues related to wheel encoders the reader is
referred to Appendix B.

Figures 8.2(a) and 8.2(b) show the time histories of the wheel slip and of
the detection of the stability boundary crossings obtained via Equation 8.4,
i.e., assuming that wheel slip measurements are available, on high-grip and
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(a)

(b)

Figure 8.2 Time histories of the wheel slip (top) and of the detection of the stability
boundary crossings (bottom) obtained with (8.4). (a) high-grip road, (b) low-grip off-
road
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low-grip roads, respectively. Notice that the slope sign detection is very accu-
rate on both road conditions. In fact, analysing the results obtained with the
friction curve slope sign change detection algorithm based on Equation 8.4
(averaging the results obtained in all tests on both road conditions), we have
E[λMax] = 0.0854 on the high-grip road and E[λMax] = 0.1357 on the low-
grip off-road, which is compatible with the tyre–road friction conditions of
the test grounds.

To visually inspect the performance of the estimation algorithms when no
wheel slip measurement (or estimation) is available, refer to Figures 8.3(a)
and 8.3(b), which depict the time histories of the wheel slip and of the detec-
tion of the stability boundary crossings obtained via Equation 8.5 on high-
grip and low-grip roads, respectively. Analysing the results obtained with the
slope sign detection algorithm based on (8.5), (averaging the results obtained
in all tests on both road conditions) one finds E[λMax] = 0.0648 on the high-
grip road and E[λMax] = 0.1283 on the low-grip off-road. Thus, the slope sign
detection can also be reliably performed with no direct information on the
wheel slip.

Finally, it is worth investigating the adaptation of the identification algo-
rithm to the supervisory control logic presented in Section 8.2.2. We recall
that it asks us to detect the slope sign change in both directions.

Figures 8.4(a) and 8.4(b) show the results obtained on dry and off-roads,
respectively. Apparently, the proposed supervisory logic can be profitably
employed both to enhance the safety properties of ABS systems and to opti-
mise their performance. In fact, the parameters of the ABS controller might
be adaptively tuned according to the current system stability properties.

8.3 Real-time Identification of Tyre–road Friction
Conditions

In this section, we consider the problem of estimating the wheel slip value
corresponding to the abscissa of the peak of the tyre–road friction curve
combined with the capability of identifying also the full parametrisation of
the tyre–road friction curve itself.

The characteristics of the friction estimation strategies are analysed and
tested both in simulation and on experimental data. In the latter case, the
performance of the identification techniques is tested also in combination
with the wheel speed estimation algorithm discussed in Section 5.3, in order
to discuss its effects on the accuracy of the final results.

Specifically, the identification approach is based on the solution of a curve
fitting problem formulated using a properly parameterised friction model.
The slip value corresponding to the curve peak is subsequently estimated from
the fitted curve. To this aim, the Burckhardt friction model (see Section 2.1)
is considered.
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(a)

(b)

Figure 8.3 Time histories of the wheel slip (top) and of the detection of the stability
boundary crossings (bottom) obtained with (8.5). (a) high-grip road, (b) low-grip off-
road
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(a)

(b)

Figure 8.4 Time histories of the wheel slip (solid line) and detection of the stability
boundary crossings (dashed line). (a) high-grip road, (b) low-grip off-road

In presenting this topic, we assume that the reader has a basic familiarity
with linear system identification methods, specifically with the least squares
(LS) approach and with the maximum likelihood (ML) approach. For more
details on the identification algorithms, the interested reader is referred to,
e.g., [61, 62,99].

Since the Burckhardt model is nonlinear in the parameters, an iterative
ML estimation technique is applied first. Further, to evaluate the practical
applicability of the method for online use, a recursive version of the algorithm
is also investigated. Secondly, a (recursive) LS method is introduced, based
on an ad hoc parametrisation of the friction model which is linear in the
parameters.

To set up the identification problem, let us assume that the signals ω, v,
λ and Tb are available. As such, one can work on the single-corner dynamics
(see also Equation 2.18)
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λ̇ = −1
v

(
(1 − λ)
m

+
r2

J

)
Fzμ (λ) +

r

vJ
Tb, (8.7)

and invert it to obtain data points of the type μ(ω, v, Tb, λ), which consti-
tute the basis for collecting data suitable for the estimation of the tyre–road
friction curve μ(λ). Actually, note that the angular wheel velocity ω and the
braking torque Tb can be assumed to be measurable (in particular, Tb is as-
sumed to be proportional to the pressure in the hydraulic braking circuit by
a known coefficient, see Equation 1.1), while v is generally not available and
needs to be estimated. Finally, λ can be determined from ω and v.

Namely, expressing v as ωr/(1−λ), μ(λ) can be easily obtained from (8.7)
as

μ(λ; t) =
1−λ(t)
Jω(t) Tb(t) − λ̇(t)

1−λ(t)
ω(t)r Fz(t)

(
1−λ(t)

m + r2

J

) , (8.8)

where the dependence on time is made explicit in order to point out that (8.8)
holds at each time instant. Note that the right-hand side of (8.8) depends on
ω(t), λ(t), λ̇(t), r, Tb(t) and Fz(t). Thus, in principle, if noise-free measure-
ments of such variables were available, one could estimate the corresponding
sample of μ(λ; t) exactly.

However, ω(t) and Tb(t) are measured from noisy sensors, λ(t) is derived
via speed estimation and hence it is affected by the estimation error and the
vertical load Fz(t), together with the wheel radius r, differs from its static
value depending on the braking (or traction) induced pitch angle and tyre
characteristics (see also Appendix B). Note, however, that according to the
longitudinal tyre force model given in (2.12), the vertical load Fz(t) acts only
as a scaling factor on the friction curve, thus not altering the abscissa of the
maximum.

In summary, (8.8) is in fact a highly nonlinear function of data and noise,
which can only provide approximate and noisy samples of μ(λ; t). Accord-
ingly, to set up a curve fitting problem with the aim of identifying tyre–road
friction conditions, (8.8) is used to compute the observations from data, while
suitable parametrisations based on Burckhardt model in (2.13) are employed
to formulate the tyre–road friction relation (see the next section).

8.3.1 Identification Strategies

Based on the problem setting given in the previous section, a curve fitting
problem can be set up to estimate μ(λ), and thus to obtain λMax from the
estimated friction curve. The first of these two tasks is addressed by minimi-
sation of a standard quadratic error function of the form
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J(ϑ) =
1
N

N∑
i=1

ε(λi, ϑ)2, (8.9)

where N is the number of samples and ε(λi, ϑ) = μ(λi) − μ̂(λi, ϑ) is the
estimation error. The next subsections focus on the derivation of suitable
methods for fitting the tyre–road friction curve.

8.3.1.1 The Maximum Likelihood Approach

The most direct approach for the estimation of the tyre–road friction curve
involves the use of the Burckhardt model (2.13), where ϑr is the vector
of unknown parameters to be determined. Unfortunately, the structure of
that model is nonlinear in the parameters and simple algorithms like the LS
method cannot be applied to this case. The computationally more intensive
ML approach must be used instead, [99].

The method performs an iterative minimisation of the fitting error crite-
rion (8.9) by means of a quasi-Newton method [99], which ultimately amounts
to adjusting the parameter vector at each iteration on the basis of the fol-
lowing expression:

ϑ(r+1) = ϑ(r) +
( N∑

i=1

ξ(λi)ξ(λi)T
)−1( N∑

i=1

ξ(λi)ε(λi)
)
, (8.10)

where

ξ(λi) = −dε(λi)T

dϑ
= [1 − e−λiϑr2 ϑr1λie

−λiϑr2 −λi ]T .

A crucial step in the ML approach is the initialisation of the parameter vector.
An ad hoc empirical approach has been adopted for this purpose. Actually,
for low values of the wheel slip, the Burckhardt model can be approximated
as

μ(λ, ϑr) ∼= (ϑr1ϑr2 − ϑr3)λ− ϑr1ϑ
2
r2λ

2. (8.11)

Now, since the parameter ϑr3 varies in an extremely small range, from 0.06
for snow to 0.67 for cobblestone (see Table 8.1), an average value of 0.4 can
be reasonably assumed as initial value ϑ̂r3(0). Then, using the first available
data, which appropriately correspond to low slip values, one can interpolate
the quadratic approximation above to derive the initial values ϑ̂r1(0) and
ϑ̂r2(0).

Several recursive versions of the general iterative batch algorithm described
above have been developed in the literature, see e.g., [62]. These exploit the
structural similarity between the iteration equation of the ML method and the
well-known LS equation and recover the same computational schemes of the
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recursive LS (RLS) methods. Notice, however that in this case the recursive
scheme mixes the data recursion with the iterative mechanism inherent in the
ML approach, so that convergence may be harder to obtain with recursive
ML (RML), as opposed to RLS.

8.3.1.2 The Least Squares Approach

In view of the potential convergence problems of the RML approach discussed
in the previous section (which will be thoroughly analysed on the data of
interest in Section 8.3.2), an alternative estimation scheme is presented based
on a linear regression reformulation of the friction model and LS estimation.

The Burckhardt model (2.13) is nonlinear by way of the exponential term
in ϑr2, which varies in a relatively small range of values depending on the
road conditions. As an alternative, such a term can be approximated using
a linear combination of fixed exponentials, suitably dispersed to cover the
whole range of interest [33]. This results in the model

μ̂(λ) = a1e
−b1λ + a2e

−b2λ + · · · + an−2e
−bn−2λ + an−1λ+ an, (8.12)

where an−1 and an equal −ϑr3 and ϑr1 in model (2.13). If the bi, i =
1, · · · , n − 2 exponents are fixed a priori, model (8.12) can be recognised
as a linear regression

μ̂(λ) = ϕ(λ)T θ,

where

ϕ(λ) =
[
e−b1λ, · · · , e−bn−2λ, λ, 1

]T
θ = [a1, · · · , an]T ,

to which LS estimation methods can be directly applied. The number of
exponentials in the approximate model has been set to four via a trial and
error process, aimed at establishing a satisfactory compromise between model
flexibility and size (to avoid overfitting).

Parameters bi, i = 1, · · · , 4 have been chosen as uniformly distributed in
the range [4, 100], which includes all the values of ϑr2 in the considered road
conditions. More precisely, b1 = 4, b2 = 36, b3 = 68 and b4 = 100.

8.3.2 Numerical Analysis

In order to evaluate the behaviour of the estimation strategies described in
the previous section, it is important to preliminarily discuss which are the
performance levels to be sought in the considered application.
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Specifically, accuracy requirements are set by the characteristics of typical
vehicle electronic and control devices. More precisely, as far as the expected
performances are concerned, a reasonable objective is to obtain an overall
accuracy in the estimation of the abscissa of the peak of the friction curve
of ±5%, which is considered appropriate for ABS control [90]. Furthermore,
the estimator should provide reliable information within the time instant
at which the braking controller would be activated. Since this time interval
can be approximately quantified to be at most of 500 ms, and data in these
applications are typically sampled at 200 Hz, the estimation algorithms have
been tested with 100 samples.

To investigate the performance of the two estimation strategies introduced
in the previous section, simulation tests, which were carried out based on the
single-corner model dynamics, are now presented. In order to consider a more
realistic setting, though, all identification methods have been tested on noisy
simulation data.

Specifically, zero mean white noises have been added to the wheel speed ω,
to the vehicle speed v and to the braking torque Tb, with σ2

ω = 0.005 rad2/s2,
σ2

v = 0.25 m2/s2 and σ2
Tb

= 10 N2m2, respectively. In the case of v and ω,
which represent the quantities based on which the wheel slip is computed, the
noise variance values should correctly model the fact that the noise acting on
the wheel speed ω is only due to measurement noise (ω is directly measured
by means of a wheel encoder), while the noise acting on the vehicle speed is
also due to estimation errors, see also the discussion in Chapter 6.

Let us first analyse the results obtained with the ML approach. To do this,
consider Table 8.1, which reports the results on the parameter estimation
obtained with ML and RML algorithms. Actually, while an almost perfect
curve fitting (and a quite accurate parameter estimation) is obtained with
the batch ML approach in all tested road conditions, the same does not apply
to the computationally more affordable RML method.

Table 8.1 Summary of the μ(λ) estimation obtained with ML and RML on noisy
simulation data

Dry asphalt Wet asphalt Cobblestone Snow

True values
ϑ1 1.28 0.86 1.37 0.19
ϑ2 23.99 33.82 6.46 94.13
ϑ3 0.52 0.35 0.67 0.06

ML

ϑ̂1 1.29 0.86 1.48 0.18

ϑ̂2 22.69 31.94 5.79 90.95

ϑ̂3 0.57 0.36 0.85 0.04
# iter. 4 4 5 4

RML
ϑ̂1 1.24 0.86 1.12 0.22

ϑ̂2 27.34 35.36 9.73 60.07

ϑ̂3 0.38 0.37 0.29 0.37
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Figure 8.5 Curve fitting results with RML on cobblestone: simulated data (dots),
theoretical μ(λ) curve (dashed line), initial estimation (dash-dotted line), estimated
μ(λ) curve (solid line), true λMax (dashed vertical line) and estimated λMax (solid
vertical line)

Figure 8.6 Results of λ̂Max estimation with RML on cobblestone: true value (dashed
line), estimated value (solid line), initialisation period (dark grey) and 5% error band
(light grey)

Let us consider in more detail the cobblestone case, for which simulation
results are depicted in Figures 8.5 and 8.6. Note that, among all those avail-
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able, this particular type of road condition has been selected for discussion as
it represents a particularly hard case for identification purposes, being almost
flat in the neighbourhood of the maximum. Notice that data are not available
for high slip values, so it should not be surprising that unsatisfactory accuracy
is experienced in that range. Recall, however, that the ultimate objective of
the estimation problem is the peak abscissa evaluation, which can be satisfac-
torily addressed, as long as the available data encompass the maximum point
of the curve. In the case reported in Figure 8.5, the curve fit is only approx-
imately correct in the operating range, resulting in an under-estimation of
λMax. What is more, while the estimation of λMax quickly approaches the cor-
rect value, after an initialisation period of 20 samples, it converges extremely
slowly, revealing that the RML method inefficiently exploits the information
in the data. Also, accurate curve fitting is obtained only where the samples
are more numerous, that is close to the peak point. In any case, a remarkably
low 10% error in the estimation of λMax is achieved after only 30 samples,
i.e., with sufficient advance with respect to the critical point in the braking
process. This information, as will be further discussed in Section 8.3.3, can
be valuably exploited by ABS and wheel slip control systems.

Table 8.2 reports the results of the estimation of λMax with both the
batch and the recursive ML method, based on the respective estimated fric-
tion curves. Apparently, RML provides generally worse peak estimation, an
exception being the snow case.

The difference in performance between the ML and RML methods on the
snow case is due to the fact (see also Figure 2.3) that the friction curve in this
case has an almost flat right portion and this fools the ML method – as the
great majority of the available data are not descriptive of the peak dynamics
– while better results are achieved with the RML approach. This is because
the ad hoc initialisation procedure is particularly effective on this surface. As
a matter of fact, the λMax value being very low, the interesting part of the
curve is well captured by the initialisation samples (see also Equation 8.11).
In the RML case, then, the recursive nature of the method can better exploit
a good initialisation than the batch version, which tries to fit, in the ML
sense, the whole dataset in one shot.

Some general remarks concerning RML are in order. Apparently, due to
numerical ill-conditioning of the gradient term of the parameter tuning equa-
tion, parameters ϑr2 and ϑr3 are only slightly moved from the initial values.
Given the better performance of the batch version of the algorithm, this can
only be ascribed to the fact that RML combines the iterative nature of the
ML approach with data recursion. To deal with this problem, it is conve-
nient to modify the update equations for ϑr2 and ϑr3 inserting an additional
gain factor to speed up convergence. If computationally viable, a few batch
iterations could also be performed as soon as RML convergence does not sig-
nificantly improve. This last variation, denoted in the following as RML+ML,
has yielded significantly better results in simulation and its performance on
experimental data will be analysed in Section 8.3.3.
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Figure 8.7 Curve fitting results with RLS on cobblestone: simulated data (dots),
theoretical μ(λ) curve (dashed line), initial estimation (dash-dotted line), estimated
μ(λ) curve (solid line), true λMax (dashed vertical line) and estimated λMax (solid
vertical line)

Figure 8.8 λ̂Max estimation results with RLS on cobblestone: true value (dashed
line), estimated value (solid line), initialisation period (dark grey) and 5% error
band (light grey)
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Table 8.2 Summary of the λMax estimation performances obtained with ML and
RML on noisy simulation data

Dry asphalt Wet asphalt Cobblestone Snow

True values
λMax 0.1700 0.1307 0.3995 0.0605
μMax 1.1699 0.8039 1.0014 0.1857

ML
λ̂Max 0.1737 0.1350 0.3989 0.0656
μ̂Max 1.1700 0.8035 0.9998 0.1848
ελ% 2.17% 3.28% 0.15% 8.42%

RML
λ̂Max 0.1641 0.1242 0.3723 0.0594
μ̂Max 1.1679 0.8048 0.9906 0.1929
ελ% 3.47% 4.97% 6.8% 1.81%

Table 8.3 Summary of the λMax estimation performances obtained with LS and
RLS on noisy simulation data

Dry asphalt Wet asphalt Cobblestone Snow

True values
λMax 0.1700 0.1307 0.3995 0.0605
μMax 1.1699 0.8039 1.0014 0.1857

LS and RLS
λ̂Max 0.1786 0.1370 0.3966 0.0658
μ̂Max 1.1696 0.8024 1.0019 0.1849
ελ% 5.05% 4.84% 0.73% 8.76%

Let us now move to investigate the performance of the LS and the RLS
algorithms. In the simulations, the RLS algorithm was initialised using the
batch LS method on the first 20 available data. The estimation performances
for λMax are reported in Table 8.3. Notice that 100 data are sufficient for
the RLS to converge exactly to the estimates obtained with the LS method.
Overall, the LS approach is slightly less accurate than ML, but no signif-
icant deterioration resulting from the recursive version of the algorithm is
experienced.

Also for the RLS method, the snow case experiences the worst estimation
performance in terms of relative error (note that the absolute one is still com-
parable to the other surfaces). This is mainly because, as observed analysing
the ML approach, λMax takes on a very low value which makes relative error
an unfair metric for this specific case. Moreover, because of the large dif-
ference between the numerical values of all the snow parameters ϑr (all of
them differ of more than an order of magnitude from each other), one would
need specific scalings in the RLS gains to significantly improve performance.
However, as the results are acceptable also on this kind of surface, scaling has
been avoided, as it would be surface dependent and therefore not applicable
in practice.

For comparison purposes, consider again the cobblestone case, for which
simulation results are represented in Figures 8.7 and 8.8. In Figure 8.7 notice
the significant estimation error in the initial part of the curve, which is a result
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of using an empirical model as opposed to the Burckhardt one. Nevertheless, a
remarkable accuracy is achieved near the peak, so that λMax can be estimated
almost exactly.

Concerning the convergence properties of λMax estimation (see Figure 8.8),
one can observe that with RLS the initialisation process is not so efficient in
approaching the correct value quickly as in the RML case, but convergence is
faster, so that 10% λMax estimation error is achieved only slightly later (after
40 samples) and 5% error after 70 samples.

Figure 8.9 Example of data (dots) measured on the front wheel on high-grip asphalt
road and the theoretical μ(λ) curve (red dashed line)

8.3.3 Experimental Results

Before analysing the estimation results obtained with the identification ap-
proaches on measured data, some remarks are due. Specifically, refer to Fig-
ure 8.9, where an example of the samples of μ(λ; t) measured on the front
left wheel on high-grip asphalt road is shown together with the theoretical
tyre–road friction curve related to the road condition used in the tests. Note
that the theoretical curve in Figure 8.9 has been derived considering also the
increased vertical load experienced by the front wheel during braking. As is
apparent by inspection of Figure 8.9, experimental data are significantly dif-
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ferent from those obtained in simulation, and this is due to several concurring
phenomena:

1. First of all, the μ(λ) curve is intrinsically a static description of the tyre–
road friction condition, in that it represents the collection of the steady-
state friction coefficient values associated with the corresponding value
of the wheel slip. Note that this fact does not depend on the analytical
model chosen (the Burckhardt one in this case); the same would have held
true if, for example, the Pacejka model had been used (see Section 2.2).
When looking at real data, instead, several dynamic phenomena, mainly
suspension elasticity and tyre relaxation, cause the real μ(λ) values to
exhibit the overshoot clearly visible in Figure 8.9, which also accounts
for dynamic load transfer effects.

2. Secondly, as the test was carried out with a real, albeit professional,
driver, it is very unlikely that the measured data go significantly beyond
the peak value of the μ(λ) curve. When this happens, in fact, the car
experiences a significant loss of driveability, and the driver is forced to
release the brake pedal to avoid losing control of the vehicle.

3. Finally, the initialisation phase for both algorithms on experimental data
has been linked to the wheel slip behaviour. Specifically, both RLS and
RML+ML are initialised when the wheel slip is be such that λ > λinit.
The value of λinit = 0.07 was chosen based on the analysis of the measured
data.

Notice that even though these dynamic phenomena apparently change the
shape of the μ(λ) curve, they cause a very small change (if any) of the value
of λMax, that is the abscissa of its peak. Therefore, as the main aim of the
identification procedure is that of estimating such a value so that it can be
used as input for braking control systems, the identification algorithms do
not lose their capability of pursuing this objective.

8.3.3.1 Wheel Slip Measurements Available

We first discuss the estimation results obtained when the vehicle speed is
exactly measurable, i.e., by employing the speed signal obtained with an
optical sensor, and thus the wheel slip can be directly measured.

Note that here the main aim is to verify that upon controller activation,
the proposed estimation algorithm is able to provide a consistent estimate
λ̂Max of the value of the abscissa of the peak point of the friction curve. To
this end, we assume that the ABS is switched on when the current wheel slip
value exceeds a predefined threshold, which has been set to λ = 0.15. Note
that on real ABS systems, see Section 3.7, it is possible to have a dynamic
activation threshold selection, which tunes the activation slip value also based
on the braking intensity. Nonetheless, as the aim of the experiments is that
of testing the identification performance obtainable with a limited number
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Figure 8.10 Plot of the slip λ as function of samples (top, solid line) and the

ABS activation threshold (top, dashed line) and λ̂Max estimation results with RLS
on high-grip asphalt road (bottom): theoretical value (dashed line), estimated value
(solid line), initialisation period (grey) and 5% error band (grey)

of data a constant threshold is appropriate. Accordingly, besides evaluating
the final results of the estimation when all the available 100 samples are
processed, we also monitor at which sample the ABS would virtually be
activated and how accurate our estimation is at that time instant.

The estimation results obtained on dry asphalt road with the RLS method
are shown in Figure 8.10, while those obtained on low-grip off-road with
the RML+ML method are shown in Figure 8.11. Both these figures also
show the time history of the wheel slip and highlight the ABS activation
threshold. As can be seen, the estimation of λMax is quite satisfactory and,
most importantly, it is reliable also at the time instant at which the ABS
would be activated, even if this happens when less than 100 samples have
been processed.

A quantitative summary of the overall results obtained with RLS and
RML+ML with measured vehicle speed for both friction conditions is pro-
vided in Table 8.4. As can be seen, while on dry asphalt the performances
of the two algorithms are comparable, RLS shows its better features with
respect to RML+ML on low-grip off-roads, where the availability of fewer
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Figure 8.11 Plot of the slip λ as function of samples (top, solid line) and the ABS

activation threshold (top, dashed line) and λ̂Max estimation results with RML+ML
on low-grip off-road (bottom): theoretical value (dashed line), estimated value (solid
line), initialisation period (grey) and 5% error band (grey)

Figure 8.12 Plot of the slip λ as function of samples (top, solid line) and the ABS

activation threshold (top, dashed line) and λ̂Max estimation results with RLS and
speed estimation on high-grip asphalt road (bottom): theoretical value (dashed line),
estimated value (solid line), initialisation period (grey) and 5% error band (grey)
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Table 8.4 Summary of the λMax estimation performance obtained with RLS and
RML+ML on experimental data with measured vehicle speed

v measured Dry – RLS Dry – RML+ML Off-road – RLS Off-road – RML+ML
True λMax 0.1 0.1 0.13 0.13
# samples 92 [0.46 s] 92 [0.46 s] 52 [0.26 s] 52 [0.26 s]

λ̂Max 0.0955 0.0942 0.1226 0.1063
ελ% -4.5% -5.8% -5.69% -18.23%
# samples at ABS
activation

88 [0.44 s] 88 [0.44 s] 44 [0.22 s] 44 [0.22 s]

ελACT% 1.9% 4.7% -1.69% -19.46%

samples makes the initialisation phase crucial, thereby confirming the theo-
retical analysis of the two algorithms.

8.3.3.2 Wheel Slip Measurements not Available

The estimation results obtained when non-exact wheel slip measurements
are available are now discussed. This analysis reflects the practical case in
which the tyre–road friction estimation is in fact implemented on a passenger
vehicle equipped with standard ABS/ESC sensors (i.e., wheel encoders and a
longitudinal accelerometer), in which the wheel slip is estimated. Specifically,
the estimation algorithm described in Chapter 5 has been used.

Due to the superior properties of the RLS algorithm observed in the case of
measured vehicle speed, we only present results obtained with this algorithm
in combination with estimated vehicle speed. The results obtained with the
RLS method on a dry asphalt road and on a low-grip off-road are shown
in Figures 8.12 and 8.13, respectively. Again, these figures also show the
time history of the wheel slip and highlight the ABS activation threshold.
As can be seen, the reliability of the estimation remains unchanged (both
looking at the ABS activation time instant and at the overall estimation
results) if the estimated value of the vehicle speed is provided as input to the
algorithm, thereby confirming its practical applicability. Similar results with
respect to the consistency between the case of measured and estimated vehicle
speed have been obtained also for the RML+ML algorithm. A quantitative
summary of the overall results on experimental data obtained with RLS and
estimated vehicle speed is provided in Table 8.5.
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Figure 8.13 Plot of the slip λ as function of samples (top, solid line) and the

ABS activation threshold (top, dashed line) and λ̂Max estimation results with RLS
and speed estimation on low-grip off-road (bottom): theoretical value (dashed line),
estimated value (solid line), initialisation period (grey) and 5% error band (grey)

Table 8.5 Summary of the λMax estimation performance obtained with RLS on
experimental data with estimated vehicle speed

v estimated Dry – RLS Off road – RLS
True λMax 0.1 0.13
# samples 92 [0.46 s] 52 [0.26 s]

λ̂Max 0.0953 0.123
ελ% -4.7% -5.3%

# samples at ABS activation 88 [0.44 s] 44 [0.22 s]
ελACT% 0.2% -1.38%

8.4 Direct Estimation of Contact Forces via In-tyre
Sensors

Traditionally, tyre–road contact forces are indirectly estimated from vehicle-
dynamics measurements (e.g., chassis accelerations, yaw and roll rates, sus-
pension deflections). The emerging of the smart-tyre concept (tyre with em-
bedded sensors and digital-computing capability) has made possible, in prin-
ciple, a more direct estimation of contact forces. In this field, which is still in
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its infancy, a basic and fundamental problem is the choice of the sensor(s) and
of the regressor(s) that are most appropriate to be used for force estimation.

The objective of this section is to illustrate a sensor-regressor choice tai-
lored to accomplish this task, and to provide some experimental results to
discuss the validity of this choice. The idea is to use a wheel encoder and an
accelerometer mounted directly in the tyre (see Figure 8.14). The measure-
ment of the in-tyre acceleration is transmitted through a wireless channel.
The key concept is to use the phase shift between the wheel encoder and
the pulse-like signals provided by the accelerometer as the main regressor for
force estimation.

Figure 8.14 Detail of the in-tyre accelerometer

8.4.1 Introduction

In the field of smart-tyres, i.e., tyres equipped with electronic devices that
make them active components of the vehicle, one of the main challenges is
the direct real-time estimation of the tyre–road contact forces via in-tyre
sensors. This research is still actively ongoing and a number of non-trivial
issues are still open. Among others: the choice of in-tyre sensors, the in-tyre
preprocessing of the signal, the wireless transmission, the post-processing,
the regressor choice and the estimation algorithm. The problem is made even
more complicated by technological and industrial issues like durability, cost
and energy consumption of the in-tyre electronic devices.

The great interest in a smart-tyre capable of providing a real-time estima-
tion of the tyre–road contact forces is easily explained by its huge potential
benefits: the direct measurement of tyre–road contact forces can stimulate
the development of a new generation of traction, braking and stability control
systems which may outperform the existing ones in terms of safety, driving
satisfaction and also energy consumption.
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Figure 8.15 Detail of the battery and wireless transmitter installed on the wheel
rim

At this stage, no commercial products that can estimate the friction forces
directly from on-vehicle measurements are available on the market, but many
research groups are exploring and testing different solutions. The two key is-
sues (strictly interwoven), which are still open, can be summarised as follows:

1. What is the best tyre-embedded sensor choice?
2. Given the sensor configuration, what is the best set of regressors to be

used for force estimation?

This section presents a possible solution to these two open issues and pro-
vides some experimental results as a preliminary validation. Specifically, this
method is tailored to estimate the tyre–road vertical and longitudinal forces
and it makes use of two sensors in each wheel; namely

• a standard wheel encoder typically used by ABS systems for the wheel
speed measurement (see Appendix B); and

• a one-axis accelerometer mounted directly in the tyre, which measures the
acceleration experienced by the tyre in the radial direction.

Based on these signals, we aim at evaluating the phase shift between the
wheel hub and the tyre, based on the wheel encoder and the accelerometer
signals, respectively, by detecting when the tyre encounters and leaves the
tyre–road contact patch. In fact, such a phase shift appears to be strongly
correlated with the longitudinal and vertical tyre deformation; henceforth it
can be suitably employed for the direct identification of the contact forces.
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8.4.2 Experimental Set Up

The test-car used in the experiments is a rear-wheel-driven BMW, equipped
with the following sensors:

• four inductive 48-teeth Hall-effect encoders (see also Appendix B) that
measure the wheel rotational speed, whose output is a sinusoidal-like sig-
nal, with amplitude and frequency proportional to the rotational wheel
speed ω(t); and

• a one-axis, ± 500 g piezoresistive low-mass linear accelerometer, mounted
(glued) inside the tyre (see Figure 8.14), which measures the in-tyre radial
acceleration atyre(t); the accelerometer has been installed alternatively on
the front-left tyre and on the rear-left tyre. Its bandwidth is of approxi-
mately 3 kHz.

The wireless data transmission of the in-tyre acceleration signal is made via
a transmitter, which is mounted on the wheel rim together with its battery
(see Figure 8.15); the receiver antenna is placed on the car roof. All signals
are sampled at 10 kHz, with a resolution of 16 bit.

The driving tests were all made on the same road surface, a high-grip flat
dry-asphalt road. Two main types of tests were carried out, namely

• quasi-static tests: very slow decelerations and accelerations (with no gear
shifts) in the range 10-25 m/s; and

• dynamic tests: strong braking and acceleration manoeuvres, interleaved
with constant-speed intervals.

All the tests were performed on a straight road. Two tyre-pressure conditions
were tested: 2.0 bar (nominal condition) and 1.6 bar (low-pressure condition).

8.4.3 Main Concept

Consider the signal detected by the in-tyre accelerometer. It measures the
instantaneous acceleration experienced by the tyre at the installation point
in the radial direction. An example of this signal (the raw signal, without any
kind of pre-processing) over a 0.7 s time window is displayed in Figure 8.16.
The analysis of this signal reveals that:

• The radial acceleration is approximately constant over a short time-
window (it is the centripetal acceleration, proportional to the wheel speed),
but when the accelerometer passes through the contact patch the acceler-
ation is characterised by two impulse-like signals. This twin-spike is obvi-
ously repeated every wheel revolution.

• The two main fronts of the acceleration signal around the contact patch
(the first is descending, the second is ascending) can be used to detect
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Figure 8.16 Raw signal detected by the radial in-tyre accelerometer

the time instants when the accelerometer reaches and leaves the contact
patch, respectively.

Based on this signal and on the wheel encoders measurements, the aim is
to estimate the vertical and the longitudinal force acting on the tyre by
exploiting the information contained in the phase shift between the wheel
hub and the tyre.

In order to obtain a more visual description of this idea, consider Fig-
ure 8.17(a), where a schematic picture of a wheel and its contact patch is
displayed. If we consider the two acceleration spikes, and their absolute po-
sition in the angular reference frame α given by wheel encoder (which is not
subject to elastic deformation), three quantities can be computed at each
wheel revolution:

1. the angular position α1 of the initial position of the contact patch;
2. the angular position α2 of the final position of the contact patch; and
3. the length Δφ = α2 − α1 of the contact patch.

In Figures 8.17(b) and 8.17(c) the phase shift phenomenon is pictorially de-
scribed. More specifically:

• Due to the elastic properties of the tyre in the radial direction (see e.g.,
[7,8,71]), the vertical tyre–road contact force Fz is assumed to be strictly
correlated with the length

Δφ = α2 − α1 (8.13)
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(a)

(b)

(c)

Figure 8.17 A schematic representation of a wheel and its contact patch (a), the
effect of a vertical force variation (b) and the effect of a longitudinal force variation
(c)
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of the contact patch (see Figure 8.17(b)); the idea hence is to use the
measured angle Δφ to estimate Fz, i.e.,

Fz = fz(Δφ). (8.14)

• Due to the elastic properties of the tyre in the longitudinal (tangential)
direction (see again [7, 8, 71]), the longitudinal tyre–road contact force Fx

is assumed to be strictly correlated to the phase shift of the centre of the
contact patch (see Figure 8.17(c)), given by

δφ = (α1 + α2)/2. (8.15)

The idea is to use the measured angle δφ to estimate Fx, i.e.,

Fx = fx(δφ). (8.16)

In particular, note that δφ is expected to be negative during braking and
positive during acceleration; in other words, this means that the centre of
the contact patch is assumed to rotate backwards or forwards (with respect
to a conventional zero position), respectively. Also notice that, in general,
the real centre of the contact patch is not perpendicular to the wheel hub.
Hence, (8.15) provides a conventional centre of the contact patch. This,
however, does not affect the estimation procedure, since it is insensitive to
the conventional choice of the contact patch centre.

8.4.4 Signal Processing

The whole method is based on the measurement of two signals for each wheel:
the wheel rotational speed ω and the radial acceleration atyre experienced by
a point in the tyre.

The wheel encoder is the standard 48-teeth encoder used by the ABS and
ESC control systems (see also Appendix B). The original signal coming from
the encoder is a sinusoidal-like voltage signal. An example of this signal is
displayed in Figure 8.18(a), over a time-window of 100 ms. The wheel rota-
tional speed is computed from the sinusoidal wheel encoder via a frequency
tracking algorithm, see [83], and the wheel radius is calibrated as detailed in
Section B.2.2.

In Figure 8.18(b), an example of the calibrated linear wheel speed signal
(for the front-left wheel) is displayed. Notice that the estimation of the wheel
radius is not particularly critical for this application, since the considered
regressors are based on phase shifts, which are not strongly correlated with
the actual wheel radius.

The last step of the pre-processing of the wheel encoder signal, specific to
the considered estimation problem, is to estimate the instantaneous angular
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(a)

(b)

(c)

Figure 8.18 Examples of the measured wheel encoder signal (a), the calibrated
wheel speed at the contact point (b) and the estimated angular position α of the
wheel from the wheel encoder (c)
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position α of the wheel. This estimation is fundamental since it represents
the baseline for the identification of the phase shift. The basic idea for the
estimation of the angular position is simply to make an incremental step
counter, which resets every wheel revolution (or 360o). Since in a 48-teeth
encoder the peak-to-peak distance of one period corresponds to 7.5o of wheel
rotation, the whole sinusoidal profile of the signal (Figure 8.18(a)) must be
used to improve the accuracy of the angular position. The angular resolution
obtained can be estimated to be about 0.1o, which is suitable for this appli-
cation. An example of the estimated wheel angular position is displayed in
Figure 8.18(c).

Figure 8.19 Example of output of the front-detection algorithm

As has already been mentioned, in-tyre accelerometer is a one-axis sensor
(oriented in the radial direction) linear accelerometer glued inside the tyre
(see Figure 8.14). The output signal is a voltage signal, characterised by a
bump (or a twin-impulse) around the tyre–road contact patch. The main
signal processing issue is to detect the time instant when each impulse takes
place, namely to detect the angular position α1 and α2 of the two fronts (one
descending and one ascending) of the bump.

In Figure 8.19 an example of the output of the front-detection algorithm
is displayed (dotted line). The implemented front-detection algorithm essen-
tially performs a simple zero-crossing search in the neighbourhood of the two
main fronts; the zero-crossing algorithm is applied to the normalised and de-
trended signal. Note that in Figure 8.19 the signals are plotted as a function
of the wheel’s absolute angular position α, not as a function of time. This is
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a key step that allows us to eliminate most of the dependency of the phase
shift from the wheel rotational frequency.

Starting from α1 and α2, the estimation of the length of the contact patch
Δφ is straightforward, as Δφ = α2 − α1. For the computation of the phase
shift of the centre of the contact patch Ω0 the following procedure was used.
The first part of every test drive is always characterised by a low, constant-
speed (lasting approximately 10 ms) condition. It is conventionally assumed
that the phase shift in that condition is zero, namely

δφ =
α1 + α2

2
+Ω0 = 0.

The calibration offset Ω0 is then added to the absolute angular position of
the wheel for the entire experiment. In other words, it is assumed that at the
beginning of each experiment the phase shift is zero, and all the phase shifts
of the rest of the experiment are referred to that conventional zero-condition.
As has already been remarked, the choice of this conventional zero does not
affect the quality of the estimation.

Figure 8.20 Example of a complete dynamic test: vehicle speed (a), estimated phase
shift (b) and estimated length of the contact patch (c). The phase shift and length
of the contact patch refer to the rear-left wheel

The results of the above described pre-processing of the two main signals
can be appreciated in Figure 8.20, where the vehicle speed, the phase shift of
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the mid-point of the contact patch δφ and the contact patch length Δφ are
displayed, for a 1 min long dynamic experiment. From the behaviour of the
vehicle speed, note that experiment is constituted by five main parts: a first
part of constant low-speed, an acceleration, a new long constant-speed win-
dow, a strong braking manoeuvre and a final constant low-speed condition.

By inspecting the estimated δφ and Δφ in Figure 8.20 it is immediately
apparent that their behaviour is highly correlated with the vehicle speed.
Unfortunately, this speed-dependency phenomenon almost completely hides
the important part of the relationships between the pair (δφ, Δφ) and the
contact forces (Fx, Fz).

The removal of the speed-dependent trends in δφ and Δφ hence is manda-
tory. Note that this effect was somehow expected and it is mainly due to the
effects of the aerodynamic forces and (at mid/low speed values) of the rolling
resistance.

In order to remove this speed dependence, a simple quasi-static exper-
iment was performed: the car was slowly accelerated (without gear-shift)
from 10 m/s to 25 m/s; the same experiment was repeated in deceleration
(coasting down).

Since the acceleration/deceleration ramp is extremely slow, in this exper-
iment the dynamic effects can be neglected. At each wheel revolution, the
pairs (ωr, δφ) and (ωr,Δφ) have been computed. The results are plotted in
Figures 8.21(a) and 8.21(b).

As the experiment has been made in a quasi-static setting, the relation-
ships depicted in Figures 8.21(a) and 8.21(b) are static and can be easily
fitted with one-dimensional nonlinear functions. In particular, both maps
were fitted with simple second-order polynomials. A unique map was used
both for the front and the rear tyres. The estimated maps are displayed in
Figures 8.21(a) and 8.21(b).

Using the estimated maps, the speed-dependent trends have been removed
from the dynamic experiments. The results are displayed in Figures 8.22
and 8.23, for both the rear and the front wheels. Note that after the trend-
removal, the phase shift and the length of the contact patch have the same
value (0o and 25o, respectively) in every constant-speed condition.

By carefully inspecting Figure 8.23 (front tyre), another residual spurious
effect can be observed. As a matter of fact, notice that – during the acceler-
ation phase – no significant longitudinal force Fx should be developed by the
front wheels; as a consequence, we know a priori that the phase shift of the
contact patch on a front wheel in that condition should be zero. This condi-
tion is not perfectly met by the data displayed in Figure 8.23 (see the time
interval t ∈ [15, 20] s in the middle plot). This phenomenon has a simple and
intuitive explanation: there is a slight dependency (or cross-talk) between the
phase shift and the vertical force. Hence, the phase shift must be subject to
an additional correction as follows:

δφ = δφ̃+ fF (Fz), (8.17)
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(a)

(b)

Figure 8.21 Quasi-static maps of the phase shift (a) and contact patch length (b)
as functions of wheel speed

where δφ̃ is the phase shift without correction and fF (Fz) is the correction
term (to be estimated). Unfortunately, Fz is not directly known. However,
since we have assumed a direct static relationship between Fz and Δφ, we
can approximate Equation 8.17 with the following equation:

δφ = δφ̃+ fF (Δφ). (8.18)
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Figure 8.22 Example of a complete dynamic experiment: vehicle speed (a), esti-
mated phase shift (b) and estimated length of the contact patch (c). Rear-left wheel;
nominal pressure

For simplicity, we have assumed a linear dependency in the correction term,
namely

δφ = δφ̃+ β(Δφ−Δφ0). (8.19)

The term (Δφ−Δφ0) in Equation 8.19 is the dynamic variation of the contact
patch length (Δφ0 is the average value of the contact patch, at constant
speed). The only unknown term in Equation 8.19 is the coefficient β. The
optimal value of β has been identified by numerical optimisation from data,
in order to guarantee no phase shift on the front tyre during acceleration in
every working condition.

In Figure 8.24 the detail of the acceleration phase for the front tyre before
and after the correction with (8.19) is shown. Using the estimated value of
β, the phase shift signals of both the front and the rear wheels have been
modified according to Equation 8.19. After the single (for the contact patch
length) and the double (for the phase shift) trend removal, all the main
spurious effects are eliminated, and data can be employed to extract the
phase shift and contact patch length information.
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Figure 8.23 Example of a complete dynamic experiment: vehicle speed (a), esti-
mated phase shift (b) and estimated length of the contact patch (c). Front-left wheel;
nominal pressure

8.4.5 Experimental Results

The experimental results are based on a set of test drives performed on a
flat dry-asphalt surface, when driving in a straight line at low/mid-range
speed (0-80) km/h. Two tyre pressure settings have been tested, in order to
analyse the sensitivity of the method with respect to this critical parameter.
Specifically, a nominal pressure of 2.0 bar and a reduced pressure of 1.6 bar
were considered.

Figures 8.25 and 8.26 show the results for the nominal pressure at the
rear and front wheels, respectively. By carefully inspecting these figures, the
following observations can be made.

• Acceleration phase – Longitudinal force
During this phase no longitudinal force is applied at the front wheel:
FxFront = 0, whereas a positive force is applied at the rear (drive) wheel:
FxRear > 0.
Accordingly, since we have assumed a direct monotone static relationship
Fx = fx(δφ) between the longitudinal force Fx and the phase shift of
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Figure 8.24 Detail of the acceleration phase (front wheel): vehicle speed (a) and
estimated phase shift before (b) and after (c) the removal of the load-transfer parasitic
effect

the contact patch δφ, the phase shift of the front wheel should be zero
(δφFront = 0).
Conversely, the phase shift at the rear wheel should be positive (δφRear >
0). From Figures 8.25 and 8.26 it is easy to see that both these conditions
are met.

• Acceleration phase – Vertical force
During this phase the front wheel should experience a decrease of the
vertical force, i.e., FzFront < F zFront , where F zFront is the static load at the
front wheel, whereas the vertical force at the rear wheel should increase,
i.e., FzRear > F zRear , where F zRear is the static load at the rear wheel.
Accordingly, since we have assumed a direct monotone static relationship
Fz = fz(Δφ) between the vertical force Fz and the length of the contact
patch Δφ, the length at the front wheel should decrease, i.e., ΔφFront <
Δφ0, whereas that at the rear wheel should increase i.e., ΔφRear > Δφ0.
From Figures 8.25 and 8.26 it is easy to see that also both these conditions
are met.

• Braking phase – Longitudinal force
During this phase, a negative longitudinal force is applied at both wheels
i.e., FxFront < 0, FxRear < 0. Accordingly, we expect that δφRear < 0 and
δφFront < 0.
From Figures 8.25 and 8.26 it is easy to see that these conditions are met.
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Figure 8.25 Final results on a complete dynamic experiment: vehicle speed (a),
estimated phase shift (b) and estimated length of the contact patch (c). Rear-left
wheel; nominal pressure

• Braking phase – Vertical force
During this phase, the front wheel should experience an increase of the
vertical force, i.e., FzFront > F zFront , whereas the vertical force at the rear
wheel should decrease, i.e., FzRear < F zRear .
Accordingly, we expect that ΔφFront > Δφ0 and ΔφRear < Δφ0.
From Figures 8.25 and 8.26 it is easy to see that both these conditions are
met.

In Figures 8.27 and 8.28 the results of the experiments performed with
low-pressure tyres on rear and front wheels, respectively, are displayed. No-
tice that the results displayed in Figures 8.27 and 8.28 were obtained without
recalibration; they were computed using the same pre-processing and calibra-
tions as for the 2.0 bar case in order to test the robustness of the method. All
the considerations made in the nominal-pressure case still hold; this fact is
encouraging as the method shows a good robustness with respect to pressure
variations.

By carefully comparing the results at nominal and low pressure, one can
notice that, as expected, the contact patch length is slightly larger in the
case of low-pressure tyres; the variations in the phase shift instead are very
similar to the nominal-pressure setting.
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Figure 8.26 Final results on a complete dynamic experiment: vehicle speed (a),
estimated phase shift (b) and estimated length of the contact patch (c). Front-left
wheel, nominal pressure

8.5 Summary

This chapter provided some approaches to estimate online the tyre–road fric-
tion characteristics. As friction information can be extremely valuable for all
active vehicle control systems, much research activity has focused on the esti-
mation and monitoring of tyre–road friction characteristics (see, e.g., the de-
tailed review in [65]), resulting in the proposal of many different approaches,
which differ both regarding the estimation technique and the required sensor
equipment.

Some interesting approaches are tyre-oriented. For example, in [12] an
acoustic sensor is used to gain information on road-condition by registering
the acoustic waves emitted by the tyres. The drawback of such an approach
is the high noise level in the acoustic signal, which makes it very hard to
extract the real effect of friction changes on the measured signal. Another
tyre-oriented approach is documented in [12] and [24], where tyre-tread de-
formation sensors are employed. Such an approach, besides suffering from
the same drawbacks as the former, is also quite expensive and of difficult
implementation, as the tyre-tread sensors have to be embedded in the tyre
with specific vulcanisation processes.
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Figure 8.27 Final results on a complete dynamic experiment: vehicle speed (a),
estimated phase shift (b) and estimated length of the contact patch (c). Rear-left
wheel, reduced pressure

Another approach for the estimation of tyre–road friction is the so-called
slip-based approach, which appears particularly appealing as it needs only
standard ABS-ESC sensor equipment. Slip-based estimation is mostly ad-
dressed during braking manoeuvres, where sufficiently large slip levels are
encountered, although estimation techniques based on low slip measure-
ments, as available during traction, are also documented in the literature
(see, e.g., [65]). In [29], an adaptive estimation method is proposed based on
a linear approximation of the tyre–road friction description. In the last few
years, the interest has also shifted towards the estimation of the dynamic
behaviour of tyre friction forces (see, e.g., [12,24,29,85,86,93,129]). Another
example of this field of research is given in [69], where the authors estimate
the tyre extended braking stiffness – i.e, the derivative of the longitudinal
friction force with respect to the wheel slip, which indicates the residual lon-
gitudinal friction force available to the driver. Such an estimate serves as
additional information for the design of an ABS system.

Further, developments in tyre materials, structure and manufacturing
techniques have been enormous in the last decades. However, as has already
been remarked, the tyre has up to now essentially remained a passive object.

In the last few years a new trend has emerged, whose aim is to equip the
tyre with embedded sensors and digital-computing capability; the measure-
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Figure 8.28 Final results on a complete dynamic experiment: vehicle speed (a),
estimated phase shift (b) and estimated length of the contact patch (c). Front-left
wheel, reduced pressure

ment and low-bandwidth transmission of the tyre pressure is an industrial
reality (tyre pressure monitoring systems, see, e.g., [31]) and new in-tyre
sensors and electronics are currently under research [63, 75]. This trend is
mainly driven by information and communication technology methods and
devices and it represents a sort of revolution in tyre manufacturing. The term
smart-tyre is frequently used to label this new generation of tyres.

In the open scientific literature, little has been published so far on the
topic of direct estimation of tyre–road contact forces by in-tyre sensors.

Most of the current research activity on this topic has up to now been
described in industrial patents (see, e.g., [13, 79]) or in oral presentations
(see, e.g., [63]).
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