
Chapter 6

Mixed Slip and Deceleration Control

6.1 Introduction

As has been discussed in the previous chapters (see in particular Chapter 3),
in braking control systems, two output variables are usually considered for
regulation purposes: wheel deceleration and wheel slip. Deceleration control
and slip control are mostly viewed as alternative strategies; when deceleration
and slip are both used, the typical approach is to regulate one variable and
to keep the other variable within pre-defined thresholds.

In this chapter a braking control strategy that makes use of both wheel
slip and wheel deceleration is presented and analysed. It is based on the
idea of designing the braking controller as a classical feedback regulation
loop, where the regulated variable is a convex combination of the wheel slip
and the wheel deceleration. Accordingly, this control approach is concisely
named mixed slip-deceleration (MSD) control. MSD is effective and flexible;
it inherits all the attractive dynamical features of slip control, while strongly
alleviating the detrimental effects of poor slip measurement. Moreover, by
simply changing the design parameter that governs the relative weighting
between slip and deceleration in forming the convex combination it is possible
to emphasise different characteristics of the controller, according to different
working conditions.

6.2 Mixed Slip-deceleration Control

The general structure of the proposed MSD control scheme is outlined in Fig-
ure 6.1. The transfer functions Gη(s) and Gλ(s) describing the linearised dy-
namics between wheel slip and braking torque and normalised wheel deceler-
ation and braking torque, respectively, have been derived in (2.45) and (2.46)
and are reported here for completeness
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By inspecting Figure 6.1, it is worth noticing that the noises on the decel-
eration and slip, dη and dλ respectively, are explicitly embedded in the control
scheme. As in a classical control scheme, note that dη and dλ can represent
both measurement noises and external disturbances acting on the system. In
the rest of the chapter the notions of disturbance and measurement noise will
be treated without explicit distinction. In practice, the emphasis here is on
the measurement noise as this is the most critical aspect of slip control, since
the accurate measurement of λ is well known to be rather challenging and
critical (see Chapter 5).

Figure 6.1 General scheme of the MSD controller

The basic idea of MSD control is to define an output controlled variable ε,
which is the convex combination of the wheel normalised deceleration η and
of the wheel slip λ, namely

ε = αλ+ (1 − α)η, α ∈ [0, 1], (6.3)

and to regulate this variable to a set-point constant value ε given by

ε = αλ+ (1 − α)η. (6.4)

Note that the set-point ε itself can be interpreted as a convex combination
of the set-points for wheel slip and wheel deceleration.

As was done in Chapter 3 for the case of wheel slip control, in order to
focus on the heart of the control problem and to provide simple and insight-
ful results, for analysis purposes a simple proportional controller is initially
considered. Needless to say, the performance of the proportional controller



6.2 Mixed Slip-deceleration Control 125

can be improved by employing a higher-order control architecture, but the
basic results and conclusions remain unchanged, as will be shown later in this
chapter.

It is interesting to notice that the MSD controller has the distinctive fea-
ture of embedding, as extremal cases, the slip controller (α = 1) and the
deceleration controller (α = 0), which have been discussed in Sections 3.2
and 3.3. Now, the dynamic properties of the MSD controller will be studied.

Figure 6.2 Equilibrium points for the MSD control in the (λ, η) plane with α = 0.9
and Fz = mg

Figure 6.2 shows the equilibrium manifold in the (λ, η) plane given in
Equation 2.34 for different road conditions, together with the corresponding
graphical interpretation of the set-point ε given in (6.4) for α = 0.9. The
intersection points between the two curves represent the feasible equilibrium
points for the closed-loop system.

By inspecting Figure 6.2 and recalling the expression of the equilibrium
manifold for the wheel deceleration η as a function of λ in (2.34) and the
expression of the set-point equation ε in (6.4), one may notice that the system
equilibria are affected by the following four different factors.

1. The load transfer, represented by the term Fz/mg which is the ratio
between the real vertical load Fz and its static value mg (see also Sec-
tion 2.5). This factor, however, does not affect the qualitative properties
of the equilibrium points. In fact, the the steady-state relationship be-
tween η and λ has the form

η(λ) =
Fz

mg
(1 − λ)μ(λ).
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Hence, the dynamic load transfer effect acts in the same way as a scaling
factor in the tyre-road friction characteristic.

2. The tyre–road friction condition described by μ(λ), according to which
the equilibrium point may vary (see Figure 6.2).

3. The set-point ε. A change in the set-point corresponds to a rigid trans-
lation of the line ε(η, λ) (dashed line in Figure 6.2) which changes the
equilibrium point and can affect its uniqueness.

4. The coefficient α, which determines the slope of the line ε(η, λ) in the
(λ, η) plane (dashed line in Figure 6.2). This is the distinctive feature
of the MSD control approach. In fact, for α = 1 (vertical dash-dotted
line in Figure 6.2) we have a genuine slip control. In this case, for any
ε ∈ [0, 1] there always exists a unique equilibrium for all road conditions.
On the other hand, for α = 0 (horizontal solid line in Figure 6.2) we have
a deceleration control ; in this case there exist some values of the set-point
for which two equilibria exist on some road conditions and none on other
road conditions (see also Sections 3.2 and 3.3). For continuity, these two
extremal conditions must be separated by a threshold (or lower bound)
on α, located between 0 and 1, above which the equilibrium uniqueness
is guaranteed. It will be shown that a good trade-off between slip and
deceleration control is obtained for values of α ∈ [0.8, 1]. Hence, the
existence and uniqueness of the equilibrium points are deeply interlaced
with the choice of this parameter, as will be further discussed in the
following.

6.2.1 Analysis of the Open-loop Dynamics

From the dynamical viewpoint, the open-loop transfer function Gε(s) from
δTb to δε can be computed combining the transfer functions Gη(s) and Gλ(s)
via the convex combination defined by (6.3).

Specifically, it has the form
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(6.5)

By analysing (6.5), the stability properties of the linearised system having
the braking torque as input and ε as output can be easily studied.

Specifically, note that the linearised single-corner model with transfer func-
tion Gε(s) is asymptotically stable if and only if
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which, as both summands in the brackets are positive, reduces to μ1(λ) > 0.
Hence, Gε(s) has a real positive pole if the equilibrium wheel slip value λ
occurs beyond the peak of the curve μ(λ), which is the same result found in
Chapter 3 for Gλ(s) and Gη(s).

Further, it is interesting to investigate the position of the (real) zero of
Gε(s) as a function of the parameter α. Specifically, the zero of Gε(s) is
negative if and only if
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mv
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v

α

1 − α
> 0.

Thus, if μ1(λ) > 0 the zero is negative for all possible values of α ∈ [0, 1),
whereas, if μ1(λ) < 0, to have a negative zero one needs

α
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mg

(
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)
.

Thus, it is always possible to find a value of α, say α, such that, for α < α < 1,
the zero of Gε(s) is negative (in practice, α ∼= 0.3 is enough to guarantee this
in every road condition and for every value of λ).

6.2.2 Closed-loop Stability for MSD Control

Consider now the MSD closed-loop system shown in Figure 6.1. In this case,
the characteristic polynomial χε(s, α) is given by

χε(s, α) = s

[
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Accordingly, the following stability condition can be determined (note that,
as was the case also for slip and deceleration control, see Sections 3.2 and 3.3),
it does not depend on v)

μ1(λ)Fz

m

(
(1 − λ)

(
1 +K

r

Jg
(1 − α)

)
+
mr2

J

)
+Kα

r

J
> 0.

Note that for a fixed value of α ∈ (0, 1) and for large values ofK this condition
can be simplified as follows:
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(1 − α)
μ1(λ)Fz

mg
(1 − λ) + α > 0.

From the above condition it can be easily shown that if μ1(λ) > 0 the con-
dition is fulfilled for all feasible values of α, while to ensure closed-loop sta-
bility for wheel slip values beyond the peak of the friction curve (i.e., when
μ1(λ) < 0), one needs to choose the value of the parameter α such that
αMin < α ≤ 1, where

αMin = max
λ,ϑr

{
μ1(λ;ϑr)(λ− 1) Fz

mg

1 + μ1(λ;ϑr)(λ− 1) Fz

mg

}
. (6.6)

If α is fixed based on (6.6) it is always possible to find a value K such
that, for K > K, the closed-loop system is asymptotically stable in every
working condition (namely for every value of λ and for every road condition,
represented in (6.6) by the parameters ϑr which define the different tyre–road
friction conditions in the model given in (2.13)).

Given the previous stability results for slip control and deceleration con-
trol, condition (6.6) was somehow to be expected; we have seen in Chap-
ter 3 that for α = 1 (wheel slip control) stability can be always guaranteed,
whereas for α = 0 (wheel deceleration control) it is impossible to find a
unique stabilising proportional controller. For continuity, these two extremal
conditions must be separated by a threshold on α, located between 0 and 1.
Expression (6.6) is interesting since it provides, in a simple closed-form, the
analytic expression of this threshold αMin.

Note that the lower bound (6.6) is computed as the worst case with respect
to both the equilibrium point λ and the road conditions modelled via ϑr. In
Figure 6.3 the expression

μ1(λ;ϑr)(λ− 1) Fz

mg

1 + μ1(λ;ϑr)(λ− 1) Fz

mg

(6.7)

is displayed, as a function of λ, for different road conditions (it is clipped at
zero when μ1(λ) > 0). Figure 6.3 shows that the most demanding conditions
as far as the lower bound on α is concerned are given by

• values of λ beyond the peak of the friction curve; and
• high-grip road conditions.

From Figure 6.3 an estimation of αMin can be derived: αMin
∼= 0.3. Note that

this value has a simple and intuitive interpretation, similar to that given in
Section 3.2 for the minimum controller gain needed to stabilise the closed-loop
system with a proportional wheel slip controller.

To see this with reference to the (λ, η) plane, consider that the set-point
line ε = ε in (6.4) can be expressed as a function of η as
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Figure 6.3 Plot of the lower bound on the parameter α in (6.7) as a function of λ,
for different road conditions and Fz = mg

η = − α

1 − α
λ+

1
1 − α

ε. (6.8)

Thus, the effect of a proportional controller with gain K can be expressed as
a function of η as

η = −K
[

α

1 − α
λ+

1
1 − α

ε

]
. (6.9)

Hence, the lower bound αMin is the minimum value of α that guarantees
that the set-point for the MSD control in (6.8) (see the dashed line in Fig-
ure 6.2) has an angular coefficient − α

1−α large enough to ensure that when a
proportional controller is used, there exists a minimum value K of the gain
so that for all K > K in the closed-loop system there exists a single equi-
librium point. Such an equilibrium is given by the intersection between the
equilibrium manifold in the (λ, η) plane and the line in (6.9) and it is locally
asymptotically stable for all choices of λ and for all road conditions.

At the end of this analysis, one can concisely conclude that if αMin < α < 1,
MSD control essentially shares the same appealing features as slip control:
unique equilibrium, fixed set-point, fixed controller structure. In practice, in
order to achieve almost-optimal braking performance with fixed values of α
and ε, α must be chosen close to 1, as will be clear once the disturbance
rejection properties of the MSD controller will be analysed.

A non-negligible advantage of MSD control over slip control is the left
half plane zero in the open-loop transfer function (6.5). Note that, more
precisely, the advantage of this zero is easy to understand when a linearisation
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of the plant dynamics around a locally asymptotically stable equilibrium
point is considered. On the other hand, when the considered equilibrium
point is unstable, the advantage of this left half plane zero remains, but its
explanation is less intuitive.

The major advantage of MSD control, however, is its reduced sensitivity
(with respect to slip control) to poor slip measurement. This is a key issue
and will be extensively discussed in the following section. It will be shown
that while preserving all the appealing features of slip control, MSD control
is characterised by superior noise attenuation properties.

6.3 Disturbance Analysis of Slip Control and MSD
Control

Consider the general MSD control structure in the block diagram of Fig-
ure 6.1. It is easy to see that – in the closed-loop system – the disturbance
dε(α) affecting the controlled variable ε is related to the slip and deceleration
disturbances dλ and dη as follows:

Dε(s, α) = [αDλ(s) + (1 − α)Dη(s)]Sε(s, α),

where Dε(s;α), Dλ(s) and Dη(s) are the Laplace-transforms of the signals dε,
dλ and dη, respectively, and Sε(s;α) is the closed-loop sensitivity function,
given by
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=
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mv

(
(1 − λ) + mr2

J

)
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[
1 +K r
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]
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m

(
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(
1 + Kr

Jg (1 − α)
)

+ mr2

J

)
+Kα r

J

] .
(6.10)

We now want to investigate the dependency of the closed-loop disturbance
dε(α) on the weighting parameter α. More specifically, we want to analyse
the following function:

γ(α) =
Var[dε(α)]
Var[dε(1)]

, (6.11)

where dε(1) represents the disturbance in the case of wheel slip control, i.e.,
for α = 1. Thus, γ(α) is the ratio between the variance of the disturbance
acting on the output variable in MSD control and the that in wheel slip
control (note in fact that γ(1) = 1). In order to develop this analysis, three
simple preliminary assumptions are made.

1. It is assumed that the measured output variables λ and η are affected
by zero-mean, uncorrelated, band-limited white noises dλ and dη in the
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frequency range [0, ΩN ], ΩN being the Nyquist frequency of the sampled
signals: dλ ≈ WN(0, σ2

λ), dη ≈ WN(0, σ2
η). Notice that, in practice, all

the measured signals are digitally sampled at the frequency of 2ΩN ; in
order to keep the continuous-time notation used throughout the chapter,
a band-limited white noise assumption must be made.

2. It is also assumed that σ2
λ >> σ2

η. This is motivated by the fact that
the noise on the wheel deceleration only comes from the wheel encoder
signal processing and the differentiation, while that on the wheel slip is
also affected by the vehicle speed estimation error (see Appendix B and
Chapter 5).

3. Large values of the feedback gain K are considered, the parameter α is
assumed to be close to 1 (0.8 ≤ α ≤ 0.95), and the slip values are assumed
to be non-negligible (i.e., λ > 0.07).

First, it is easy to see that γ(α) can be re-written as the product of two
factors as

γ(α) =
Var[dε(α)]
Var[dε(1)]

= Ψ(α)Φ(α),

where

Ψ(α) =
α2σ2

λ + (1 − α)2σ2
η

σ2
λ

and

Φ(α) =

∫ ΩN

ω=0
|Sε(jω;α)|dω∫ ΩN

ω=0
|Sε(jω; 1)|dω

.

The analysis of the first factor Ψ(α) is very simple. As we assumed that
0.8 ≤ α ≤ 0.95 and that σ2

λ >> σ2
η, Ψ(α) can be approximated as follows:

Ψ(α) ∼= α2.

Clearly, this factor has little influence on the noise attenuation properties
(a slightly better attenuation in the case of MSD control is provided with
respect to wheel slip control).

The analysis of the factor Φ(α) is far more complicated. This analysis
can be carried out by inspecting the main features of the magnitude of the
frequency response of the sensitivity function (6.10), which is a first-order
transfer function, characterised by a pole and a zero. For the analysis of
Φ(α), the behaviour of Sε(s;α) can be condensed into four main features:
the high-frequency gain, the low-frequency (DC) gain, the angular frequency
position of the zero and the angular frequency position of the pole. A simple
qualitative analysis and discussion of these four features is now provided.
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High-frequency Gain: HF(α)

From Equation 6.10, HF(α) can be computed as

HF(α) =
1

1 +K r
Jg (1 − α)

. (6.12)

This term shows that MSD control can provide a large attenuation benefit at
high frequencies. As a matter of fact the HF gain for slip control HF(1) = 1,
whereas, for large values of K, HF(α) << 1.

Figure 6.4 Sensitivity function features, when α = 1 and 0.8 ≤ α ≤ 0.95

Low-frequency gain: LF(α)

From Equation 6.10, LF(α) can be computed as

LF(α) =

μ1(λ)Fz

m
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J

)
μ1(λ)Fz
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J

)
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J

. (6.13)

The analysis of Equation 6.13 is less trivial than that of Equation 6.12. For
the analysis of the attenuation benefits achievable with MSD control it is
useful to analyse the ratio LF(α)/LF(1)
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= [
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] . (6.14)
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Note that the dominant term both in the numerator and in the denominator
of (6.14) is

K r
J

Kα r
J

=
1
α

∼= 1.

The LF gain ratio (6.14) henceforth is approximately equal to 1. More specif-
ically, when μ1(λ) > 0, note that all the terms at the denominator of Equa-
tion 6.14 are positive; hence, in this case, LF(α)/LF(1) can be significantly
lower than 1. When μ1(λ) < 0, notice that the third term in the denominator
is small, since, despite the presence of K, the factors (1 − λ), (1 − α) and
|μ1(λ)| are all very small; henceforth, LF(α)/LF(1) ∼= 1.

We can conclude that at low frequencies the MSD control and the slip
control provide almost the same attenuation (or MSD control can provide a
small attenuation benefit).

Frequency-domain Position of the Zero: Z(α)

The angular frequency of the zero does not depend on the parameter α; it is
given by

Z(α) = Z(1) =
∣∣∣∣μ1(λ)Fz

m
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J

)∣∣∣∣ .
Frequency-domain Position of the Pole: P (α)

The angular frequency of the pole is given by

P (α) =

∣∣∣∣∣∣
1
v

[
μ1(λ)Fz

m

(
(1 − λ)

(
1 +K r

J (1 − α)
)

+ mr2

J

)
+Kα r

J

]
[
1 +K r

Jg (1 − α)
]

∣∣∣∣∣∣ . (6.15)

It is interesting to analyse the relative position of the pole, for 0.8 ≤ α ≤ 0.95,
and for α = 1, namely
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∣∣∣∣∣∣ . (6.16)

The analysis of Equation 6.16 clearly shows that the pole angular frequency
decreases when α decreases, since the ratio P (α)/P (1) is dominated by the
factor

1 +K
r

Jg
(1 − α)

at the denominator.
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(a)

(b)

Figure 6.5 Bode plot of the frequency response associated with the sensitivity func-
tion: behaviour for v = 30 m/s (a) and for v = 10 m/s (b)
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Figure 6.6 Plot of Φ(α) in different working conditions

The results of the above analysis of |Sε(s;α)| and |Sε(s; 1)| can be sum-
marised as in Figure 6.4:

• The LF gain is slightly sensitive to α; moving from α = 1 to 0.8 ≤ α ≤ 0.95,
it remains almost unchanged, or it can slightly decrease.

• The HF gain strongly decreases when 0.8 ≤ α ≤ 0.95.
• The angular frequency of the zero is unchanged, whereas that of the pole

decreases when 0.8 ≤ α ≤ 0.95.

These approximate results are confirmed by Figures 6.5(a) and 6.5(b), where
the magnitude Bode plots of the frequency response associated with the sen-
sitivity function for α = 1 and α = 0.8 are displayed for different conditions
(two different forward speed values and two different values of λ). The anal-
ysis of the magnitude Bode plots of the frequency response associated with
Sε(s;α) clearly shows that the factor Φ(α) rapidly becomes much lower than
1 when α < 1.

In order to have a more immediate feeling on the attenuation level, in
Figure 6.6 the behaviour of Φ(α) is displayed in the range α ∈ [0.8, 1], for
different conditions (two different forward speed values, and two different
values of λ). Interestingly enough, it can be observed that:

• As α moves from α = 1 to α < 1, Φ(α) decreases very rapidly (e.g., in
every condition, if α = 0.95, the value of Φ(α) is lower than 0.05). This
means that a slight use of the wheel deceleration in the feedback controlled
variable is enough to obtain large noise attenuation benefits.

• The spread of Φ(α) is comparatively small. Thus, the attenuation effect is
large in every working condition.
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This analysis has shown that MSD control can provide large benefits in terms
of noise attenuation with respect to slip control. This advantage has been
assessed by means of a quantitative analysis.

6.4 Steady-state Slip Values in MSD Control

Before moving on to assess the MSD performance via simulation results, it is
worth analysing the steady-state behaviour of the wheel slip when the vehicle
is controlled via MSD control.

To perform the analysis, recall first that the the equilibrium manifold in
the (λ, η) domain is given by

η(λ) = N(1 − λ)μ(λ), (6.17)

where N = Fz/mg, see also (2.53), is the ratio between the actual and the
static vertical load. Thus, when MSD control is applied to the single-corner
model, the dependence of the equilibrium point on the load transfer N makes
the steady-state value of the wheel slip λ change according to the value
of N itself. In fact, by imposing a set-point value ε one has to satisfy the
relationship (6.4), i.e.,

ε = αλ+ (1 − α)η.

Thus, if N increases, the set-point value η increases in view of (6.17) and
thus the steady-state wheel slip λ decreases to satisfy the set-point expres-
sion (6.4).

To see this, consider Figure 6.7, which shows the time histories of the
closed-loop front and rear wheel slip in a hard braking manoeuvre on dry as-
phalt in four different cases: the front wheel slip obtained when only the front
wheels are controlled (dashed line), the rear wheel slip obtained when only
the rear wheels are controlled (dash-dotted line) and the front (dotted line)
and rear (solid line) wheel slip obtained when all four wheels are controlled
via MSD control with equal values for ε and α.

As can be seen, when only the front or the rear wheels are controlled with
the same ε and α, the steady-state wheel slip is different and, consistently
with what has been previously noticed, lower at the front wheels (where N
is larger) and higher at the rear wheels (where N is smaller).

However, in a full vehicle setting, that is when the same MSD controller
(i.e., with a common set-point value ε and an equal value for α) is used to
regulate each of the four wheels, the steady-state value of the wheel slip goes
back to being the same at all wheels.



6.4 Steady-state Slip Values in MSD Control 137

To see this, consider for simplicity the double-corner model, where the
longitudinal chassis dynamics is given by (see also Section 2.4)

v̇ = − 1
m

(Fzfμ(λf ) + Fzrμ(λr)), (6.18)

where Fzf and Fzr are the vertical forces at the front and rear wheel and λf

and λr are the front and rear wheel slip, respectively.

Figure 6.7 Time histories of the wheel slip during a hard braking manoeuvre on
dry asphalt: front wheel slip when only the front wheels are controlled (dashed line),
rear wheel slip when only the rear wheels are controlled (dash-dotted line) and front
(dotted line) and rear (solid line) wheel slip when all four wheels are controlled

Recalling now the analysis in Section 2.5.1 one has that, letting λ̇i = 0,
i = {f, r}, the expression linking the wheel acceleration ω̇i and the chassis
acceleration v̇ has the form

ω̇i =
1 − λi

ri
v̇. (6.19)

Accordingly, recalling that ηi = −ω̇i ri/g, and substituting into this rela-
tionship the expression for v̇ in (6.18) one has

ηi =
(Fzfμ(λf ) + Fzrμ(λr))

mg
(1 − λi) = ζ(λf , λr)(1 − λi), (6.20)

where the term ζ(λf , λr) is the same for the front and for the rear wheel.
Further, imposing the same MSD control set-point for the controlled vari-

able, i.e., εi = ε, i = {f, r}, the expression for the equilibrium values of ηi

becomes
ηi =

1
1 − α

ε− α

1 − α
λi. (6.21)
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Combining Equation 6.21 with Equation 6.20 and solving for λi, one ob-
tains

λi =
ζ(λf , λr) − 1

1−αε

ζ(λf , λr) − α
1−α

, (6.22)

which shows that, at steady-state, the wheel slip value will be the same at
the front and rear wheels, i.e., λi = λ.

This allows us to re-write the term ζ(λf , λr) as

ζ(λf , λr) = μ(λ)
[
(Fzf + Fzr)

mg

]
= μ(λ), (6.23)

where the last equality comes from the fact that (Fzf +Fzr) equals the overall
vertical load, independently of its distribution between front and rear wheels.

Inspecting Figure 6.7 again, note that when both the front and rear con-
trollers are employed, the steady-state wheel slip values are the same at all
wheels, coherently with the performed analysis.

6.5 Numerical Analysis

The MSD control approach has been presented in the previous sections in a
simplified setting: only the single-corner dynamics have been modelled and
a simple proportional controller has been used. This simplified setting is
particularly useful to focus on the heart of the control problem and to gain
a deep insight in the algorithm behaviour.

However, the theoretical analysis developed in this simple setting must be
corroborated by simulation results obtained on a full-vehicle simulator.

To implement the control algorithms in a fully-realistic setting, the sim-
ulation environment must also include the description of the EMB actuator
dynamics given in (1.4). Finally, the simulations are performed replacing the
proportional controllers with dynamic controller structures. More specifically:

• The wheel slip controller Rλ(s) is implemented with the PID control ar-
chitecture presented in Section 3.4, which has been tuned to work satis-
factorily in every working condition (for different slip set-points, different
road surfaces and different speed values).

• The MSD controller Rε(s) is implemented with a simpler PI control archi-
tecture (notice that this is another additional advantage of MSD control)

Rε(s) = Kε
(1 + τεs)

s
,

and with α = 0.9. Also the MSD controller has been tuned to work satis-
factorily in every working condition.

The results presented in the following refer to a front wheel.
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Figure 6.8 An example of measurement noises on λ and η used in the simulator

The first simulations have the goal of comparing the noise attenuation
properties of the two control algorithms. In Figure 6.8 the measurement
noises affecting the wheel deceleration and the wheel slip measurement are
displayed. Notice that the variance of dη is smaller than the variance of dλ.
Moreover, notice the different behaviour of the two measurement noises: dη is
essentially a broad-band stationary signal, while dλ is characterised by huge
spikes, due to poor speed estimation. Unfortunately, these spikes can hardly
be reduced and they occur during hard braking, which is the typical working
condition of active braking controllers.

In Figure 6.9 the time histories of the wheel slip during a hard braking ma-
noeuvre on dry asphalt are displayed and MSD and slip control are compared.
Notice that, as expected, the noise sensitivity of MSD control is remarkably
lower than that of slip control; this results in a much smaller variation range
of the actual wheel slip. Moreover, notice that MSD control has slightly better
phase margin properties at low speed; as a matter of fact, the typical unstable
behaviour that occurs at the end of the braking manoeuvre, i.e., when the
vehicle speed is very low (see the time interval t ∈ [12, 14] s in Figure 6.9),
arises later in MSD control. This result fully confirms the theoretical analysis
performed in the simplified setting.

Finally, in Figures 6.10 and 6.11 the time histories of the wheel slip ob-
tained with the MSD controller during a hard braking manoeuvre (in a noise-
free setting) is shown, when a sudden change in the road surface occurs
(from dry asphalt to snow in Figure 6.10, and from snow to dry asphalt in
Figure 6.11). Very similar results can be obtained with the slip controller.
Notice the remarkable robustness of the fixed-structure MSD controller; also
notice that according to the MSD control rationale, the steady-state value of
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Figure 6.9 Time history of the wheel slip during a hard-braking manoeuvre on dry
asphalt

Figure 6.10 MSD control performance in a hard braking manoeuvre, with a sudden
road-surface change from high to low grip road

Figure 6.11 MSD control performance in a hard braking manoeuvre, with a sudden
road-surface change from low to high grip road
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the wheel slip changes when the friction curve changes according to different
road surfaces (see Figure 6.2, which clearly shows this fact).

6.6 Summary

This chapter presented a wheel slip control strategy based on the idea of
designing a standard SISO regulation loop on an output variable constituted
by the convex combination of wheel slip and wheel deceleration. This control
approach was referred to as MSD control.

The starting point of the MSD approach is to be found in [41, 69], where
braking controllers based on modern electro-mechanical brakes are described,
and which can be regarded as the state-of-the art in slip-controlled braking
systems. The MSD approach was conceived to move one step further, so as
to improve the performance of slip control by mixing slip and deceleration
measurements.

Using a simple proportional-control regulation scheme this control struc-
ture was deeply analysed. Interestingly enough, MSD control inherently em-
bodies, as extremal cases, also the more classical slip control and deceleration
control schemes. Hence MSD control can move seamlessly between deceler-
ation control and slip control. This is very appealing in sophisticated BBW
systems, which may require a time-varying setting: emphasis on deceleration
control during soft braking and emphasis on slip control in anti-lock condi-
tions.

It has been shown that MSD control inherits all the appealing character-
istics of slip control (unique equilibrium, fixed set-point, guaranteed closed-
loop stability with a fixed structure linear time-invariant controller), but it
overcomes the major flaw of slip control: its sensitivity to slip measurement
errors.
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