
Chapter 3

Braking Control Systems Design:
Actuators with Continuous Dynamics

3.1 Introduction

This chapter addresses the problem of braking control design based on actua-
tors with continuous dynamics (see Section 1.3 for their dynamic description).

Of course, the actuator performance forces the engineer to design the brak-
ing control system accordingly. Here, for the case of an actuator with con-
tinuous dynamics we show how to design a wheel slip controller that can
guarantee closed-loop stability and acceptable performance in all possible
working conditions by solving a regulation problem. It will be also clear that,
because the braking controller is a safety-oriented aid for the driver, it must
be switched on and off according to the current manoeuvre. Thus, an appro-
priate activation and deactivation logic must be designed to accomplish this
task.

Further, we investigate the wheel slip control problem starting from a
double-corner model, i.e., taking into account the load transfer phenomena.
The analysis highlights the effects of dynamic coupling between front and
rear axles and its impact on ABS systems design. This leads to the selection
of an alternative controlled variable for the braking control of the rear wheel,
which arises from the idea of interlocking the rear wheels with the front
wheels to achieve a more favorable dynamic behaviour while maintaining a
SISO approach to wheel slip control design.

3.2 Wheel Slip Control

In braking control systems, two output variables are usually considered for
regulation purposes: wheel deceleration and wheel slip. The traditional con-
trolled variable, which is still used in some ABS systems, is the wheel decel-
eration. This is due to the fact that it can be easily measured with a simple
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wheel encoder (see Appendix B for a discussion on this topic). However, it
can be dynamically critical if the road surface changes rapidly. On the other
hand, the regulation of the wheel slip is very robust from the dynamical point
of view, but the slip measurement is critical, since it requires the estimation
of the speed of the vehicle (see Chapter 5 for more details on this issue). Noise
sensitivity of slip control hence is a critical issue, especially at low speed.

Thus, the aim of this section is to analyse the merits and drawbacks of
slip and deceleration control when both are set up as regulation problems.
Further, having made it clear that wheel slip control is the most suitable
choice for the design of braking controllers that are robust with respect to
road surface variations, the design steps for the synthesis of a linear wheel
slip controller will be presented and discussed.

To do this, we will adopt a frequency-domain approach, and start by study-
ing the control problem considering the braking dynamics described by the
single-corner model.

Within this context, and based on the analysis performed in Section 2.5.1,
the regulation of the wheel slip has a straightforward graphical interpreta-
tion in the (λ, η) domain, as displayed in Figure 3.1, where the equilibrium
manifold η(λ) given in (2.34) is depicted in four different road conditions.

Figure 3.1 Graphical interpretation of slip control in the (λ, η) domain. The vertical
dashed line represents the set-point λ. The dots represent the equilibrium points, for
different road conditions
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Note that, whatever the value of λ (0 ≤ λ ≤ 1), this regulation scheme
guarantees the uniqueness of the equilibrium point.

Now, let us consider the transfer function model Gλ(s) given in Equa-
tion 2.46, in a unitary negative feedback closed-loop with the simplest con-
troller form, i.e., a proportional controller with constant gain K. The closed-
loop system is shown in Figure 3.2.

Figure 3.2 Wheel slip closed-loop system with a proportional controller

To analyse the dynamic properties of the slip control system, let us com-
pute the characteristic polynomial χλ(s) of the closed-loop system, which, in
view of the negative feedback, is given by
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Accordingly, the following stability condition can be derived (note that it
does not depend on v).

Stability Condition for Slip Control
The closed-loop stability condition for the slip control system shown in Fig-
ure 3.2 is given by

K > −μ1(λ)Fz J

mr
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J

)
. (3.1)

This condition obviously always holds when μ1(λ) > 0. However, also when
μ1(λ) < 0, since |μ1(λ)| is bounded, it is always possible to find a value K
such that for K > K, the closed-loop system in Figure 3.2 is asymptotically
stable in every working condition, namely for every value of λ and for every
road condition (note from Figure 3.1 that, e.g., on snow/icy roads, λ = 0.09
corresponds to an open-loop unstable equilibrium, since μ1(λ) < 0, but the
closed-loop stability can be guaranteed).

Note that condition (3.1) has also an intuitive geometrical interpretation.
To see this, note that the condition K > K can be graphically identified
by first intersecting equilibrium manifold in the (λ, η) plane (see Figure 3.1)
with the line of negative slope K cutting the λ axis in λ. Note also that in
doing so, the intersection between the equilibrium manifold in the (λ, η) plane
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determines the actual equilibrium value of the wheel slip, say λ̃f , which (as
we are using a proportional controller) is in general different from the set-
point value λ. If K satisfies the bound in (3.1) for all values of λ and for all
road conditions, then the closed-loop equilibrium is unique and it is locally
asymptotically stable.

The performed analysis illustrates why slip control is an attractive ap-
proach in braking control systems:

• Given a set-point λ, it guarantees the uniqueness of the equilibrium.
• The choice of λ is not critical; as a matter of fact, it is easy to find a

value of λ (e.g., λ = 0.09, see Figure 3.1) that provides very good results
(even if slightly sub-optimal) for every road condition. This feature is very
appealing since it allows the use of a fixed structure controller, with no
need for online identification and detection of the road conditions.

• With a fixed structure controller (i.e., a fixed value of K), the asymptotic
stability of the closed-loop is guaranteed for every value of λ and for every
road condition.

The major flaw of slip control is that the measurement of the wheel slip is
comparatively difficult and unreliable, especially at low speed. Hence, the
sensitivity of wheel slip control to measurement errors is a key issue. Chap-
ter 6 provides a control strategy able of alleviating the problems related to
this issue.

3.3 Wheel Deceleration Control

If the controlled variable is the normalised linear wheel deceleration η, the
corresponding set-point value is η. Also this control strategy has a straightfor-
ward graphical interpretation in the (λ, η) domain, as displayed in Figure 3.3,
which shows again the equilibrium manifolds η(λ) in four different road con-
ditions.

From Figure 3.3 it is immediately clear which is the first major drawback
of deceleration control: the selection of the set-point η is very critical, and it
is impossible to find a unique value of η that provides a good compromise in
every road condition. If a large value of η is chosen (e.g., η = 1), deceleration
control provides optimal performance on high-grip road, but on low-grip roads
the wheel dynamics do not exhibit any equilibrium point. On the other hand,
a low value of η (e.g., η = 0.1) can guarantee the existence of an equilibrium
for every road condition, but it results in an over-conservative design for
high-grip roads. As has already been remarked (see Section 2.5.1), note that
the system always has (if any) two equilibrium points.

To analyse the dynamic properties of the deceleration control system, we
consider the transfer function modelGη(s) given in Equation 2.45 in a unitary
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Figure 3.3 Graphical interpretation of deceleration control in the (λ, η) domain. The
horizontal dashed line represents the set-point η. The dots represent the equilibrium
points, for different road conditions

negative feedback connection with a proportional controller with gain K,
yielding the closed-loop system depicted in Figure 3.4.

Figure 3.4 Wheel deceleration closed-loop system with a proportional controller

For this system, the characteristic polynomial χη(s) of the closed-loop
system has the form
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Accordingly, the following stability condition can be derived (note that it
does not depend on v).

Stability Condition for Deceleration Control

The closed-loop stability condition for the deceleration control shown in Fig-
ure 3.4 is given by

μ1(λ)
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Clearly, it is not possible to find a fixed value of K that provides stability
for every value of λ and for every road condition, since μ1(λ) can be either
positive or negative, depending on the value of λ. Notice that if, e.g., K > 0,
the closed-loop system in Figure 3.2 can be made asymptotically stable for
choices of λ before the friction curve peak, but it becomes unstable for choices
of λ beyond the peak. Henceforth, one of the two equilibrium points is always
unstable.

This analysis reveals the main limits of deceleration control:

• The choice of η is very critical; henceforth, it must be adapted online by
means of an estimation algorithm which allows to detect the current road
conditions.

• With a fixed structure controller (i.e., with a fixed value of K), the asymp-
totic stability of the closed-loop linearised system is not guaranteed for all
choices of λ, also for a fixed road condition (this result can be extended
from a simple proportional controller to every linear time-invariant con-
troller).

• For wheel slip values beyond the peak of the friction curve the open-loop
system is non-minimum phase (see Section 2.5.1 and the transfer function
Gη(s) in (2.45)) and this significantly limits the achievable closed-loop
performance.

Due to these major drawbacks, deceleration control has never been imple-
mented as a classical regulation loop for ABS in practice. Rather, complex
rule-based heuristics based on a set of adjustable thresholds on η and its
derivative have been used (see, e.g., [88, 124]).

However, it is important to recall that deceleration-based algorithms have
the appealing feature of requiring only the measurement of the wheel deceler-
ation (no vehicle speed estimation is required). The wheel deceleration can be
measured in a very reliable and straightforward manner with low cost sensors,
the noise affecting the measure of η is almost stationary, and the variance of
this noise can be a priori designed by properly choosing the precision of the
wheel encoder (see also Appendix B).

Notice that deceleration control can be particularly appealing when the
considered vehicle is such that its main dynamic limit during braking is not
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due to the tyre–road friction but rather to the rollover condition, e.g., the so-
called wheelie phenomenon (that is the uplift of the rear wheel when braking
on high-grip roads) in two-wheeled vehicles, which is mainly due to the large
ratio between the height of the centre of mass and the wheelbase.

As has already been mentioned, the reader is referred to Chapter 6 for
the illustration of a control strategy capable of properly mixing the benefits
and drawbacks of slip and deceleration control and which leads to optmised
performance of the resulting braking control system.

3.4 Linear Wheel Slip Controller Design

For the design of a linear wheel slip controller, we work on the transfer func-
tion model Gλ(s), which is repeated here to ease readability

Gλ(s) =
r

Jv

1

s+ μ1(λ̄)Fz

mv

(
(1 − λ̄) + mr2

J

) . (3.2)

Further, as we are interested in the synthesis of a single controller ca-
pable of providing both closed-loop stability and acceptable performance in
all working conditions, first of all we need to define the linearisation condi-
tions based on which we can evaluate Gλ(s) to serve as a basis for controller
synthesis.

To do this, recall that the pole of the system can be written as

sp = −μ1(λ̄)
Ng

v

(
(1 − λ̄) +

mr2

J

)
, (3.3)

thereby showing that the pole location depends on the vehicle speed v, on
the vertical load distribution N , see also Equation 2.53, and on the road
conditions.

Thus, to account for the load variations at the front and rear wheels (the
former becomes more loaded during braking due to load transfer while the
opposite is true for the latter) it is wise to tune the controllers for the front
axle in a different way with respect to those that regulate the rear wheels.

Further, one needs to linearise the model around an open-loop unstable
equilibrium point, so as to work on the worst case with respect to the road
friction conditions. Thus, to investigate which is the most appropriate oper-
ating point in which to evaluate Gλ(s), Figure 3.5 shows a plot of the system
pole angular frequency as a function of λ for N = 1.5 (i.e., in a setting
compatible with the front wheel load) normalised with respect to the vehi-
cle speed to capture the effects of load transfer and friction conditions only.
To improve readability, and coherently with the aim of defining a worst-case
setting, Figure 3.5 shows the pole angular frequency only for the open-loop
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unstable equilibrium points (in the case where the real pole is negative, its
angular frequency has been clipped to zero).

Figure 3.5 Angular frequency of the open-loop pole (3.3) normalised with respect
to v for N = 1.5

By inspecting Figure 3.5 the following operating point for linearisation
is considered. For the front wheel the worst-case situation considered for
linearisation happens on dry asphalt, where the large value of N (see also
Figure 2.11), causes the pole to move toward higher frequencies. Thus, on
dry asphalt, for λ = 0.62 we obtain a pole sp = 60/v. Note that this is not
the worst-case condition in general; by inspecting Figure 3.5 one may see that
the pole location which is at the largest distance from the imaginary axis is
found for λ = 0.85 on cobblestone. However, this situation, that is a very
large value of the wheel slip on cobblestone, is much less likely to occur in
practice. As such, choosing such a condition as a basis for controller design
would be overly conservative. Of course, this choice is problem-dependent,
and must be carefully evaluated according to the specific situation. On the
other hand, whichever condition is chosen, the control designer will have to
always check that basic closed-loop properties, such as asymptotic stability of
the closed-loop system, are guaranteed in all admissible working conditions,
possibly with a loss of dynamic performance with respect to the nominal
case chosen for control design. A similar rationale may be applied to fix the
linearisation point for the rear wheel if needed.
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Based on these considerations, for controller design we will work with the
transfer function Gλ(s) given by

Gλ(s) =
0.3/v

s− 60/v
=

ρ

s+ γ
, (3.4)

with ρ > 0 and v > 0.
Before moving to the design of a dynamic controller, let us recall that we

have shown that with an appropriate choice of the controller gain value, a
proportional controller which guarantees closed-loop stability for all working
conditions can be found.

However, besides guaranteeing closed-loop stability, one usually needs to
satisfy also performance specifications, which call for the design of a dynamic
controller. The equilibria of the system to be controlled being open-loop un-
stable in some operating conditions of interest, there are two main approaches
to the design of a performance-oriented controller. One choice may be that of
designing first an internal feedback loop with the only aim of stabilising the
closed-loop system in all operating conditions (note that this can be done, for
example, with the simple proportional controller discussed previously) and
then design an external control loop whose aim is to ensure the satisfaction
of performance requirements and disturbance rejection properties. This ap-
proach allows one to work on a pre-stabilised system dynamics, which indeed
poses less limitations on the achievable performance levels (for a detailed and
advanced discussion on the limitations on closed-loop performance posed by
right half plane poles and/or zeros the reader may refer to, e.g., [98]).

The other option is that of designing a single controller which deals with
both stabilisation and performance specifications. As in the considered ap-
plication this second approach allows us to highlight some interesting tuning
rules, in the following the design will be approached accordingly.

Thus, the first attempt to ensure, say, asymptotic tracking of a constant
set-point (which is usually the first performance specification that one needs
to fulfil) would lead to consider an integral controller, i.e.,

RI(s) =
K

s
. (3.5)

Consider, as an example, working on the transfer function model Gλ(s)
in (3.4) and employing the integral controller (3.5).

Assuming again unitary negative feedback, it is easy to see that the char-
acteristic polynomial is given by

χλ(s),I = s2 + γ s+Kρ. (3.6)

Thus, it is apparent that, in the case γ < 0, i.e., if Gλ(s) is open-loop unsta-
ble, no matter which value of K is chosen, the closed-loop system will never
be asymptotically stable (recall that, the characteristic polynomial being a
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second-order one, the necessary and sufficient condition for its roots to have
negative real part is that all its coefficients are non-zero and have the same
sign).

Bearing this in mind, let us move to consider a PI controller structure,
i.e.,

RPI(s) = K
(τ s+ 1)

s
, (3.7)

with τ > 0. With this controller, the characteristic polynomial (assuming
again unitary negative feedback) is given by

χλ(s),PI = s2 + (Kρτ + γ)s+Kρ. (3.8)

In this case, because ρ > 0 and τ > 0, if K is chosen such that

K > − γ

ρτ
, (3.9)

then the closed-loop system will be asymptotically stable. Note that with a PI
controller structure we obtained a closed-loop stability condition that is fully
analogous to the one obtained for the proportional controller (see inequal-
ity (3.1)), with the additional degree of freedom offered by the time constant τ
of the controller zero, which can be used, together with the controller gain K
to guarantee that, besides closed-loop stability, other performance specifica-
tions are met. Substituting the full expressions for γ and ρ, see Equation 3.2,
in (3.9), one obtains

K > −μ1(λ̄)
NJg

τr

(
(1 − λ̄) +
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J

)
, (3.10)

which notably does not depend on the considered speed value v (recall that
the same was true for condition (3.1) obtained based on the proportional
controller). However, in practice a PI controller might not be enough to ensure
that all desired performance specifications are met. Thus, as final analysis
step, we consider a PID controller architecture complemented with a first-
order filter to achieve a causal approximation of the ideal derivative term,
i.e.,

RPID(s) = K
(τ1 s+ 1)(τ2 s+ 1)

s(Ts+ 1)
, (3.11)

with τ1 > 0, τ2 > 0 and T > 0. This controller, with unitary negative
feedback, yields the characteristic polynomial

χλ(s),PID = T s3 + (Kρτ1τ2 + Tγ + 1)s2 + [γ +Kρ(τ1 + τ2)]s+Kρ. (3.12)

Recalling that γ is the angular frequency of the system pole and letting
γ := 1/Tp, if the real pole of the controller is chosen to be sufficiently fast, i.e.,
if T << |Tp|, one has that Tγ ≈ 0. Let us consider this simplification, which
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constitutes a tuning rule on its own, and recall that a necessary condition
for the closed-loop stability of the considered third-order system is given by
the coefficients of the characteristic polynomial (3.12) being all non-zero and
with the same sign.

Based on these considerations, one obtains that the controller parameters
must satisfy the following inequality:

K > − γ

ρ(τ1 + τ2)
= −μ1(λ̄)

NJg

r(τ1 + τ2)

(
(1 − λ̄) +

mr2

J

)
. (3.13)

Again, we have found a speed-independent stability condition, which can be
satisfied acting on the larger number of controller parameters offered by the
PID architecture.

Further, resorting to Routh’s stability criterion (see, e.g., [5]), one can in-
vestigate the additional conditions on the controller parameters that must be
satisfied to fulfil the necessary and sufficient condition for closed-loop stabil-
ity. Specifically, by constructing the Routh’s table and recalling the assump-
tion that Tγ ≈ 0, one finds that the only non-trivial additional condition on
the controller parameters has the form

K >
T − (τ1 + τ2)
ρ(τ1 + τ2)τ1τ2

. (3.14)

3.5 Effects of Actuator Dynamics

To move toward a more realistic situation consider, as an example, the trans-
fer function model Gλ(s) in (3.4) with, e.g., v = 10 m/s, and a proportional
controller with gain K = 1000. It is easy to see that such a controller en-
sures closed-loop stability. However, Gλ(s) is not a complete representation
of the dynamics to be controlled. As a matter of fact, one has to consider
the actuator dynamics. In this case, we assume that we are dealing with the
EMB actuator servo-controlled dynamics Gcaliper(s) given in (1.4), which is
a first-order linear time-invariant system with a pole at ωact = 70 rad/s and
a pure delay τ = 10 ms.

Bearing this in mind, the overall system dynamics to be controlled are
given by

D(s) = Gcaliper(s)Gλ(s). (3.15)

It is now interesting to investigate how the proportional controller with
gain K = 1000 that we assumed to have designed considering only the trans-
fer function model Gλ(s) in (3.4) with v = 10 m/s behaves if we consider the
full dynamics (3.15). It is clear that the choice of a proportional controller is
a simplistic one, but the considerations remain unaltered for more complex
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Figure 3.6 Nyquist diagram of the loop transfer function Lλ(s) for τ = 10 m/s and
ωact = 70 rad/s (dotted line), τ = 50 m/s and ωact = 70 rad/s (dashed line) and
τ = 10 m/s and ωact = 10 rad/s (solid line)

controller structures. Such a simple choice is thus motivated by its ease of
tractability.

For a pictorial representation of the considered situation, the reader is
referred to Figure 3.6, which shows the Nyquist diagram of the loop transfer
function

Lλ(s) = KD(s), (3.16)

where D(s) is as in (3.15) (and K = 1000), for different combinations of the
actuator bandwidth and of the transmission delay.

Namely, the following situations are considered:

• the nominal case, i.e., τ = 10 ms and ωact = 70 rad/s (dotted line in
Figure 3.6);

• a situation with a much larger transmission delay, i.e., τ = 50 ms and
ωact = 70 rad/s (dashed line in Figure 3.6); and

• a situation with a much narrower actuator bandwidth, i.e., τ = 10 ms and
ωact = 10 rad/s (solid line in Figure 3.6).

By inspecting Figure 3.6 it is clear that even though the controller gain
chosen for the open-loop system Gλ(s) still ensures stability for the nominal
case of τ = 10 ms and ωact = 70 rad/s, the same does not hold for the cases
of a larger delay and of a narrower actuator bandwidth. Specifically, to cope
with such modified situations one would in principle have to decrease the
controller gain in order to ensure closed-loop stability, up to the point where
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it would be impossible to fulfill condition (3.1) which ensures closed-loop
stability for Gλ(s) in all possible working conditions.

The message here is that one must always carefully evaluate all the system
characteristics before moving to the controller design and investigate how and
if they pose substantial limitations to the achievable closed-loop performance.
If this is the case, then one may want to reconsider the vehicle layout or,
if this is not possible, to revise the specifications and requirements for the
closed-loop system.

Figure 3.7 Magnitude and phase Bode diagrams of the frequency response associ-
ated with the loop transfer function L1λ(s) for v = 10 m/s (solid line), v = 20 m/s
(dashed line), v = 30 m/s (dash-dotted line) and v = 40 m/s (dotted line)

3.6 Performance Analysis: a Numerical Example

We now design a slip controller that can achieve good dynamic performance,
which, given the considered nominal actuator dynamics and transmission
delay (i.e., ωact = 70 rad/s and τ = 10 ms), can be defined as: ensure
asymptotic tracking of a constant wheel slip set-point and achieve a closed-
loop bandwidth between approximately 1 and 10 Hz for all admissible speed
values.



68 3 Braking Control Systems Design: Actuators with Continuous Dynamics

Based on the previous analysis, a PID controller architecture that satis-
fies the desired requirements can be devised. Note that besides fulfilling the
stability conditions discussed in the previous section one has to consider the
phase loss due to the delay and to the actuator dynamics.

In particular, the following PID controller can be employed:

Rλ(s) = 12000
(1 + 1

20s)
2

s(1 + 1
500s)

. (3.17)

Note that the controller (3.17) is not intended as the best possible tuning for
the considered situation, but is given as an example of a simple controller
architecture that achieves the desired performance levels. Each specific prac-
tical situation will lead to a more detailed list of requirements, which in turn
will require a different tuning of the controller parameters.

To visually inspect the loop transfer function obtained with the con-
troller (3.17), i.e.,

L1λ(s) = Rλ(s)D(s), (3.18)

the reader is referred to Figure 3.7, which shows the magnitude and phase
Bode diagrams of the frequency response associated with L1λ(s) for different
values of the vehicle speed. As can be seen the closed-loop bandwidth does
indeed vary according to the vehicle speed value v used to evaluate the system
dynamics Gλ(s) in (3.4); specifically, the closed-loop dynamics are faster as
speed decreases. Of course, no stability property of the closed-loop linearised
system can be inferred from the Bode diagrams, as the loop transfer function
has a positive pole.

The fact that the system dynamics become faster as speed decreases, cou-
pled with the presence of a pure delay, makes it impossible to ensure closed-
loop stability for very low values of v.

To visually inspect this issue consider Figure 3.8, which shows the magni-
tude and phase Bode diagrams of the frequency response associated with the
loop transfer function

L2λ(s) = Rλ(s)Dst(s),

where
Dst(s) = Gcaliper(s)Gst

λ (s)

is the system dynamics obtained considering an open-loop stable equilibrium,
that is

Gst
λ (s) =

0.3/v
s+ 60/v

,

for v = 40 m/s and v = 2 m/s. As the loop transfer function has no poles with
positive real part and the cut-off frequency is well-defined, the closed-loop
stability can now be inferred via the Bode criterion. By inspecting Figure 3.8
one notes that for v = 2 m/s the closed-loop system is unstable. Note that
this is not due to the particular controller tuning; any controller tuning will
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Figure 3.8 Magnitude and phase Bode diagrams of the frequency response associ-
ated with the loop transfer function L2λ(s) for v = 40 m/s (dotted line) and v = 2 m/s
(solid line)

lead to a different minimum value of the speed which compromises closed-loop
stability, but such a value will always exist.

Moreover, from a practical viewpoint one must also consider that at very
low speed the wheel encoders used to measure the wheel speed become less
reliable, so that the available wheel speed measurement cannot be safely
employed to estimate the vehicle speed needed to compute the wheel slip.
For a better analysis of these issues the reader is referred to Appendix B and
to Chapter 5, which discuss the processing issues of the wheel encoders signal
and the speed estimation problem, respectively.

In view of these problems, in practical applications the braking control
system needs to be complemented with a deactivation logic that switches to
an open-loop control strategy to manage the last part of the braking phase
associated with very low values of the vehicle speed. The design of such a
logic is addressed in the next section.

3.7 Activation and Deactivation Logic

The last design step, crucial for moving toward a real vehicle implementation,
is to devise a safe and reliable activation and deactivation logic. As a matter
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of fact, an active braking controller is a safety system, hence it is not active
during normal vehicle operations but it has to be turned on when a panic
stop occurs.

The first step is then to single out which signals better describe the current
safety level on board as far as braking is concerned. Further, we need to devise
an activation and deactivation logic based on these signals and take care that
a bumpless transfer is guaranteed between manual and automatic operational
modes.

To this end, the first step is to implement the wheel slip controllers with
anti-windup architecture and with the structure shown in Figure 3.9, which
ensures that a reliable controller output is available also when in manual
mode, and that a bumpless transfer from manual to automatic mode is en-
sured upon the controller activation. The anti-windup implementation of the
integral controller action is also necessary to cope with actuator constraints,
which are of course to be taken into account in the considered application
(see also Section 1.3).

Figure 3.9 Schematic view of the implementation of a wheel slip PID controller
which ensures a bumpless transfer from manual to automatic mode

Moreover, in the considered system, besides switching from manual to au-
tomatic mode, one has to monitor the value of the vehicle speed. In fact,
in view of the analysis performed, when the value of the vehicle speed goes
below a certain threshold, specific braking strategies must be devised in or-
der to take the vehicle to a complete stop. Based on these considerations,
the activation and deactivation logic is governed by the finite state machine
(FSM) shown in Figure 3.10. We now analyse the conditions based on which
the transitions between the states are activated.
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Figure 3.10 FSM representation of the activation and deactivation logic

3.7.1 Activation Conditions

When a braking manoeuvre takes place, the ABS is activated if the following
condition holds (see also Figure 3.10 and Table 3.1):(

λ > λth
1 − λth

1 − λth
2

ṪbMax

Ṫb

)
AND

(
TbDr > ρon

Tb
TbContr

)
AND (v > von) .

(3.19)
Thus, the activation is based on the wheel slip λ, the braking torque Tb and
the vehicle speed v.

Specifically, the threshold on λ is modulated according to the braking
intensity, described via the braking torque derivative Ṫb. The threshold λth

1

is employed in the case Ṫb = 0, while a lower threshold value λth
2 is used in

the case when a hard braking manoeuvre occurs, i.e., Ṫb = ṪbMax. The first
condition of (3.19) is simply a linear interpolation of these extreme conditions,
which allows us to handle all the intermediate braking intensities.

However, note that an activation based only on this condition is not com-
pletely safe. In fact, the wheel slip λ is a noisy signal, and one needs to avoid
that the controller is switched on due to possibly large measurement errors.
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This is achieved by considering also the value of the braking torque, as shown
by the second condition of (3.19), where TbDr is the braking torque requested
by the driver, TbContr is the braking torque that the controller would apply if
active (recall the the chosen controller architecture makes the control output
available also in manual mode) and the parameter ρon

Tb
> 1.

Finally, as the controller is not guaranteed to ensure closed-loop stability
at very low speed values, the automatic mode has to be switched on only if
the speed value is sufficiently large, i.e., if v > von, where von is a properly
defined threshold.

3.7.2 De-activation Conditions

When the braking manoeuvre is completed, the controller must be switched
off so that the full control of the vehicle returns to the driver. Hence, an
automatic to manual switch must occur when the driver releases the brake
pedal. Thus, if the de-activation occurs at v > von, it is allowed when the
following condition holds (see again Figure 3.10):

TbDr < ρoff
Tb
TbContr, ρoff

Tb
< 1.

To switch off the controller at low speed, note that if the condition v ≤ von

occurs when a panic stop is still going on, then it is not safe to give back the
control to the driver immediately. Hence, an additional braking logic has to
be devised in order to take the vehicle to a complete stop automatically.

One solution is to complete the braking manoeuvre commanding the ac-
tuator to apply a constant braking torque, such that

Tb = ρ TbLPF, ρ < 1,

where TbLPF is a low pass filtered version of the last value of the braking
torque requested by the controller.

Then, once the vehicle has stopped or if the driver has released the brake
pedal, i.e., if

(v < vstop) OR (TbDr < ρoff
Tb
TbLPF),

then the ABS can be switched off (see the transition between the ABS on
and off states associated with the low speed condition in Figure 3.10).

Figures 3.11(a) and 3.11(b) and Figures 3.12(a) and 3.12(b) show the
closed-loop behaviour of the wheel slip and braking torque when the controller
endowed with the activation logic is employed.

Specifically, Figures 3.11(a) and 3.11(b) show the results on dry asphalt,
whereas Figures 3.12(a) and 3.12(b) those on snow. These figures show that
the controller allows one to perform a safe braking manoeuvre and that the
activation and deactivation logic guarantees a bumpless transfer between
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Table 3.1 Description of the parameters employed in the activation and deactivation
logic

Parameter Value Constraints Meaning

ρoff
Tb

0.9 < 1 Safety scaling between TbDr and
TbContr to determine if the con-
troller can be switched off at low
speed

ρon
Tb

1.02 > 1 Scaling between TbDr and TbContr to
activate the controller

ρ 0.97 < 1 Controller torque scaling factor for
v < von

λth
1 0.2 > λth

2 Activation threshold for constant Tb

λth
2 0.1 > 0 Activation threshold for Ṫb = ṪbMax

ṪbMax 5 kNm/s > 0 Actuator rate limit
von 2.5 m/s > 0 Speed threshold above which

TbContr is reliable
vstop 0.05 m/s 0 < vstop ≤ von Speed threshold below which the ve-

hicle is considered still
hv 0.5 m/s > 0 Hysteresis on von to avoid chatter-

ing between the two manual abs-off
states

Figure 3.11 Activation logic behaviour for repeated braking manoeuvres on dry
asphalt road with initial speed v0 = 100 km/h; (a): plot of the longitudinal wheel
slip (solid line) and activation signal (dashed line); (b): braking torque
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Figure 3.12 Activation logic behaviour for repeated braking manoeuvres on snowy
road with initial speed v0 = 100 km/h; (a): plot of the longitudinal wheel slip (solid
line) and activation signal (dashed line); (b): braking torque

manual and automatic mode, and the controller state is correctly reset on
deactivation, so that the subsequent braking manoeuvre can be safely han-
dled. Finally, good performance and safety are ensured independently of the
road condition.

In the simulations considered, the activation logic was implemented with
the numerical values given in Table 3.1.

3.8 Slip Controller Analysis Based on the Double-corner
Model

This section is devoted to investigating the wheel slip control problem start-
ing from a double-corner model. Specifically, we first analyse the closed-loop
stability properties obtained with a slip controller acting on both the front
and the rear wheels. Further, we discuss an alternative control strategy that
interlocks the rear wheels with the front ones, and allows one on the one
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hand to achieve coupling minimisation while maintaining a SISO approach
to wheel slip control and on the other hand to employ a control strategy that
does not need the rear wheel slip measurement.

Finally, we briefly discuss the problem of adapting a wheel slip control sys-
tem to the case of braking on curves, showing that the approaches discussed
in this book still apply if the current manoeuvre does not compromise the
vehicle stability, provided that a set-point adaptation strategy is available.

3.8.1 Closed-loop Stability Analysis

Similarly to what was done at the beginning of this chapter on the single-
corner model, we now analyse the closed-loop stability of the wheel slip con-
trol applied to the double-corner model given in system (2.25).

Specifically, to perform the analysis it is assumed that the longitudinal
dynamics of the vehicle (expressed by the state variable v) are significantly
slower than the rotational dynamics of the wheels (expressed by the state
variables λi or ωi, i = {f, r}) due to the differences in inertia. Under this as-
sumption, the third equation (centre of mass dynamics) in (2.25) is neglected,
and the model reduces to a second-order model of the wheels dynamics only
where v is treated as a varying parameter.

Further, as it was done for the single-corner model, we concentrate for
simplicity on a proportional controller. This choice allows us to draw gen-
eral conclusions, which hold also with a more complex linear time-invariant
controller.

Finally, based on the analysis carried out in Chapter 2 (see also Fig-
ures 2.12(a) and 2.12(b)), which revealed that the front wheel behaviour
is substantially independent from that of the rear wheel, while the latter is
strongly coupled to the front one, in the following we disregard the depen-
dence of Ψf (λf , λr), see Equation 2.26, on λr and adopt the notation Ψf (λf ).

Accordingly, the control laws obtained with a proportional controller ap-
plied to each wheel have the form

Tbf
= kf (λf − λf ),

(3.20)
Tbr

= kr(λr − λr),

where λf and λr are the set-point values for the front and rear wheel slip, re-
spectively, and kf , kr are positive constants. Hence, the closed-loop dynamics
become

λ̇f = − r

Jv

[
Ψf (λf ) − kf (λf − λf )

]
,

(3.21)
λ̇r = − r

Jv

[
Ψr(λf , λr) − kr(λr − λr)

]
.
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For the closed-loop system (3.21), we can state the following:

Proposition 3.1. Consider the closed-loop system described by (3.21) with
v > 0 and let the wheel slip set-point values be λi ∈ (0, 1), i = {r, f}. Then,
there exist positive gain values kf and kr such that, for any kf > kf and
kr > kr, the closed-loop system admits a unique locally asymptotically stable
equilibrium for all initial conditions λf (0), λr(0) ∈ (0, 1), for all choices of
λf and λr and for all road conditions.

Proof. Fix the set-point values λf , λr ∈ (0, 1). As a proportional controller
does not guarantee that the wheel slip of the closed-loop system will converge
to λf , λr, let (λ̃f , λ̃r) be an equilibrium of system (3.21) associated with
λf , λr, i.e., {

Ψf (λ̃f ) = kf (λf − λ̃f ),
Ψr(λ̃f , λ̃r) = kr(λr − λ̃r).

(3.22)

As a preliminary step, we re-write system (3.21) in a form that is more useful
for analysing the stability properties of (λ̃f , λ̃r).

We start from the equation governing λr, which can be expressed in the
form

λ̇r = − r

Jv

{
kr(λr − λ̃r) + Ψr(λ̃f , λr) − kr(λr − λ̃r)

+ Ψr(λf , λr) − Ψr(λ̃f , λr)
}

= − r

Jv

{
(λr − λ̃r)

[
kr +

Ψr(λ̃f , λr) − Ψr(λ̃f , λ̃r)
λr − λ̃r

]
+ Ψr(λf , λr) − Ψr(λ̃f , λr)

}
,

where the first equality is obtained by adding and subtracting krλ̃r and
Ψr(λ̃f , λr) to the expression within the brackets in (3.21), whereas the second
equality is obtained using the equilibrium condition (3.22).

A similar procedure applied to the equation governing λf in (3.21) leads
to the following equivalent form for the closed-loop system equations:

λ̇f = − r

Jv

[
kf + αf (λf )

]
(λf − λ̃f ),

(3.23)

λ̇r = − r

Jv

[
kr + αr(λr)

]
(λr − λ̃r) + γ(λf , λr),

where

αf (λf ) =
Ψf (λf ) − Ψf (λ̃f )

λf − λ̃f

,

αr(λr) =
Ψr(λ̃f , λr) − Ψr(λ̃f , λ̃r)

λr − λ̃r

,
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and
γ(λf , λr) = − r

Jv
[Ψr(λf , λr) − Ψr(λ̃f , λr)].

Note that the system under study is made of a cascade connection of two sub-
systems where λf evolves independently of λr and this affects the dynamics
of λr through the additive term γ(λf , λr), which vanishes when λf is at the
equilibrium, i.e., γ(λ̃f , λr) = 0, ∀λr. Also, αf (λf ) represents the slope of
the straight line intersecting the curve Ψf (·) in the two points of coordinates
λf and λ̃f . Thus, αf (λf ) is lower bounded by the negative steepest slope of
the curve Ψf (·) obtained for different road conditions. A similar geometric
interpretation holds for αr(λr).

It is next shown that, for i ∈ {f, r}, if ki is large enough, then the equi-
librium λ̃i of the subsystem

λ̇i = − r

Jv

[
ki + αi(λi)

]
(λi − λ̃i) (3.24)

is globally exponentially stable (GES) and, hence, also globally asymptoti-
cally stable (GAS). Note that subsystem (3.24) with i = r is obtained from
the cascade system (3.23) by removing the interconnection term γ(λf , λr)
and setting λf at the equilibrium.

Consider the candidate Lyapunov function

V (λi) =
(λi − λ̃i)2

2
,

which, by construction, is positive definite (V (λi) > 0 for all λi 	= λ̃i, and
V (λ̃i) = 0) and is radially unbounded. The time derivative of V along the
subsystem trajectories is

V̇ (λi) = (λi − λ̃i)λ̇i = − r

Jv

[
ki + αi(λi)

]
(λi − λ̃i)2.

Thus, recalling the definition of αf (λf ) and αr(λr), if

kf > k̄f = − min
ϑ,λf ,λ′

f

Ψf (λf ) − Ψf (λ′f )
λf − λ′f

, (3.25)

kr > k̄r = − min
ϑ,λr,λ′

r,λ′
f

Ψr(λ′f , λr) − Ψr(λ′f , λ
′
r)

λr − λ′r
, (3.26)

one obtains that V̇ (λi) < −ci(λi−λ̃i)2, with ci > 0, which concludes the proof
that the equilibrium λ̃i of subsystem (3.24) is GES (see also Appendix A).
The stability properties of the equilibria of two nonlinear subsystems ensure
that, once the cascade interconnection of the two is active, the closed-loop
system admits a unique equilibrium point that is locally asymptotically stable
(see e.g., [44]).


�
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Note that, in the case of nonlinear systems, the global asymptotic stability
of the equilibrium of each of the two subsystems is not enough to infer the
same property for the equilibrium of the interconnection, while this is instead
true for the cascade connections of linear systems, see, e.g., [35].

Note further that a solution to the equilibrium conditions (3.22) always
exists for all gain values kf , kr > 0 and it can be graphically identified by
first intersecting Ψf (λf ) in Figure 2.12(a) with the line of negative slope −kf

cutting the λf axis in λf to determine λ̃f , and then intersecting Ψr(λ̃f , λr)
in Figure 2.12(b) with the line of negative slope −kr cutting the λr axis in
λr to determine λ̃r. If kf and kr satisfy the bound for the global asymptotic
stability to hold, the equilibrium is unique. Note also that, as we are using a
proportional controller, the values λ̃f and λ̃r are in general different from the
set-point values λf and λr. From the equilibrium conditions (3.22), however,
it is clear that λ̃f and λ̃r can be made close to λf and λr if the controller
gains kr and kf are sufficiently large.

Finally, it is worth pointing out that the condition obtained on the con-
troller gains is similar to that given for the single-corner model in Section 3.2,
where it was shown that the gain must be larger than the steepest negative
slope of the friction curve for all road conditions to ensure local stability.
Proposition 3.1 thus extends the results obtained on the single-corner model
to the double-corner one, and from a linear to a nonlinear analysis setting.

3.8.2 Controlling the Rear Wheel: Slip versus Relative
Slip Control

The double-corner model analysis has shown that stability can indeed be
guaranteed with results that are fully analogous to those obtained with the
single-corner model. The dynamic analysis carried out in Section 2.5.2 warned
us that a dynamic coupling is present between front and rear wheel, which can
be more or less significant according to the specific vehicle characteristics. In
general, it cannot be neglected in vehicles that experience a very large load
transfer between front and rear axles during braking, such as two-wheeled
vehicles.

As an example, consider Figure 3.13, which shows the typical behaviour
of the longitudinal force Fx as a function of the wheel slip at the front and
rear wheels in a vehicle with large load transfer. As discussed in Section 2.2,
the longitudinal force scales with the vertical load Fz and also the peak
value shifts forward in λ as Fz increases due to the non-exact proportionality
between Fz and Fx. So, assuming that one wants to control the wheel slip
of both wheels at the value λ shown in Figure 3.13, the control problem at
the rear wheel is difficult to be handled in open-loop by the driver, as λ is
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Figure 3.13 Longitudinal force as a function of the wheel slip at the front and rear
wheels in a vehicle with large load transfer

very close to the peak of the friction curve, while this is not true for the front
wheel.

As such, especially with two-wheeled vehicles, in the situation depicted
in Figure 3.13 one would have the front wheel slip left in open-loop to be
regulated by the driver, whereas the rear wheel slip should be regulated in
closed-loop by an active controller.

Based on the above considerations, the idea is to devise an alternative
control strategy for the rear wheel. The solution that we propose is that
of considering an alternative control variable for the rear wheel, based on
the idea of interlocking the rear wheels with the front ones with the aim of
guaranteeing the same wheel slip on both axles.

Specifically, the controlled variable for the rear wheel is the speed difference
between front and rear wheel, i.e.,

ωf − ωr, (3.27)

which can be linked to slip control by means of the following equality:

ωf − ωr =
v

r
(λf − λr). (3.28)

Hence, if we achieve ωf −ωr = 0, this implies that also the wheel slip at front
and rear wheels will be the same. This is why we will refer to this approach
as relative slip control.
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Formulating the rear wheel control problem as that of regulating to zero
the relative slip offers significant advantages with respect to controlling the
rear wheel slip. First of all, feedback based on (3.27) does not require a
measurement of the wheel slip. This is a particularly important feature in two-
wheeled vehicles, where slip estimation is more critical than in cars, due to the
larger load transfer. Thus, in the case where the front wheel slip is regulated
by the driver, relative slip control at the rear wheel can be implemented
by simply having two wheel encoders, which provide a cheap and robust
measurement.

Further, from a dynamic viewpoint, Equation 3.28 reveals that the depen-
dence on the forward speed obtained using the relative slip is different from
the one obtained using the wheel slip as controlled variable.

Specifically, to compute the transfer function Gωr−ωr
(s) from the rear

braking torque δTbr to δ(ωf − ωr) of the double-corner model, the second-
order state space representation employed in Section 2.5.2 can be used again
with only the modification of the C matrix, which in view of (3.28) takes the
form

C =
[

1 0
− v

r
v
r

]
.

Thus, if we assume again, as was done in Section 2.5.2, that we can disregard
the dependence of Ψf (λf , λr) from λr and set δΨf,r = 0, the transfer function
Gωr−ωr

(s) is given by

Gωr−ωr
(s) =

1
J

s+ r
Jv δΨf,f

D(s)
, (3.29)

where D(s) is as in (2.71). Hence, the dependence of Gωr−ωr
(s) on v is

significantly different from that of Grr(s). Specifically, the static gain is given
by

Gωr−ωr (0) ∼=
vJ/r

δΨr,r

, (3.30)

thus proportional to the vehicle speed, while that of Grr(s) was independent
of v, see Equation 2.74. The high frequency gain, instead, is given by

lim
s→∞ sGωr−ωr (s) =

1
J
, (3.31)

thus independent of v, while that of Grr(s) was inversely proportional to v,
see Equation 2.78.

Figures 3.14(a) and 3.14(b) show a comparison between the Bode plots of
the frequency responses associated with Grr(s) and with Gωr−ωr

(s) obtained
employing the double-corner model (see Section 2.4) with λr = 0.05, v =
25 m/s and on dry asphalt for different vehicle speed values, which visually
confirm the different dynamic behaviour just analysed. Based on these results,
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(a)

(b)

Figure 3.14 Magnitude and phase Bode plots of the frequency responses associated
with Gωf−ωr

(s) (a) and Grr(s) (b) for different vehicle speed values: v = 25 m/s
(solid line), v = 15 m/s (dashed line) and v = 5 m/s (dash-dotted line)
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a simple and fixed structure PID controller has been designed to regulate the
relative slip at the rear wheel.

Figure 3.15 Plot of the wheel slip (a) and braking torque (b) in two braking manoeu-
vres with no control on the front wheel (dry asphalt and initial speed v0 = 100 km/h)

Figures 3.15(a) and 3.15(b) show the rear wheel slip behaviour when the
front wheel is in open-loop (the braking torque is imposed by the driver),
and the rear wheel is controller using the relative slip as controlled variable,
showing a good dynamic behaviour.

Finally, Figures 3.16(a) and 3.16(b) show the closed-loop behaviour of the
wheel slip when a closed-loop slip controller (a simple PID controller of the
type discussed in Section 3.4) acts on the front wheels and the rear wheels
are regulated via relative slip control. In this case, when all the four wheels
are controlled at the same time, the effects of dynamic coupling are more
significant. However, the proposed control approach allows us to achieve a
very good closed-loop performance with a SISO approach and two linear and
fixed structure controllers.

3.8.3 Wheel Slip Control on Curves

Up to now we have always considered the wheel slip control problem under
the assumption of negligible tyre sideslip angles, that is when the tyre–road
contact forces are dominated by the longitudinal component.

When braking on a curve with non-negligible tyre sideslip angles, instead,
one has to handle the trade-off between longitudinal and lateral forces (see
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Figure 3.16 Plot of the wheel slip (a) and braking torque (b) in a hard braking
manoeuvre on dry asphalt with front wheel slip control and rear wheels relative slip
control. Front wheels (solid line) and rear wheel (dashed line)

Figures 2.2(a) and 2.2(b)). When on a curve, in fact, the largest amount of
longitudinal force for transferring the braking torque to the ground is limited
by the lateral force which is needed for negotiating the curve.

Thus, if the braking occurs in a curve manoeuvre where the vehicle is not
subject to stability problems, that is when the ESC controller is not active, a
wheel slip controller can be used by adapting the longitudinal slip set-point
value λ to the curve condition. In four-wheeled vehicles this can be done by
letting the set-point be a function of the steering angle (a variable commonly
measured on all cars equipped with ESC systems), whereas in two-wheeled
vehicles the set-point should be adapted as a function of the roll angle (see,
e.g., [108] and the references therein for a more detailed discussion on this
topic). Besides the set-point adaptation, then, a wheel slip controller of the
type discussed in this book is needed to handle the braking manoeuvre.

In the case of stability problems, instead, which in general occur when
large values of the vehicle sideslip angle (i.e., the angle between the chassis
longitudinal axis and the velocity vector of the centre of mass) are reached,
the ESC controller is activated. Some modern ESC controllers have a su-
pervisory control logic that translates the yawing moment needed to recover
stability into different wheel slip set-points commanded to each wheel and
that are tracked by means of a slip controller of the type discussed in this
book.
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Other ESC controllers, instead, do not have this supervisory unit and di-
rectly act on the brakes to achieve the desired yawing moment, thus overriding
the wheel slip control loop.

3.9 Summary

This chapter showed how to design braking controllers based on actuators
with continuous dynamics.

Specifically, we first highlighted the advantages of controlling the wheel
slip rather than the wheel deceleration, and discussed how to solve the slip
control problem employing a linearised model of the single-corner dynamics.
The tuning phase of different simple linear controllers was analysed in detail,
providing the tuning rules to ensure closed-loop stability.

Further, the need for an activation and deactivation logic was motivated
and a possible solution was outlined.

Finally, an analysis of the wheel slip control problem based on the double-
corner model was presented, and its closed-loop stability properties were anal-
ysed.

Further, a control strategy based on the idea of interlocking the rear wheels
with the front ones was presented, which imposes the same wheel slip be-
haviour on both axles and which is particularly interesting for vehicles pre-
senting a large load transfer during braking.

Note finally that the stability proof carried out in Proposition 3.1 for
the slip controller applied to the double-corner model could be extended to
show that the stability of the equilibrium of the closed-loop system is indeed
global and not only local. To do this, however, advanced concepts of nonlinear
analysis are needed, which we believe go beyond the scope of this book and
do not add crucial information to the specific problem. The interested reader
can find the full proof in [115], together with some references to the related
theoretical tools.
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