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Series Editors’ Foreword 

The series Advances in Industrial Control aims to report and encourage technology 
transfer in control engineering. The rapid development of control technology has 
an impact on all areas of the control discipline. New theory, new controllers, 
actuators, sensors, new industrial processes, computer methods, new applications, 
new philosophies…, new challenges. Much of this development work resides in 
industrial reports, feasibility study papers and the reports of advanced collaborative 
projects. The series offers an opportunity for researchers to present an extended 
exposition of such new work in all aspects of industrial control for wider and rapid 
dissemination.  

Over the last few decades, automobile technology has evolved considerably. 
One direction for this evolution has been the introduction of engines that use 
a wide range of fuels, including petrol, diesel, and ethanol, and that can operate in 
dual fuel mode. The electric car has also begun to gain a market share, especially 
the small runabout-the-town vehicle; however, perhaps an equally important 
development is the introduction of electronic components to manage car operations 
and in some cases replace or significantly modify mechanical components. 
A relevant example is the adoption of brake-by-wire. The use of electronic 
components in automobiles has a number of benefits for car manufacturers: 

• Electronic components allow units to be mass-produced and modularised 
and these are more easily fitted giving a reduction in assembly time and 
manufacturing costs. 

• If components are electronic, manual tuning can be avoided and plug-in 
computer-based tuning used instead; this gives better reliability in the 
tuning process, and also reduces assembly time and costs. 

• Using electronic components and eliminating mechanical linkages releases 
space, and reduces car weight; thus manufacturers are able to introduce 
new design features that improve and diversify the automobile product 
thereby gaining a market advantage. 
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There are also benefits for the car purchaser, the driver and the passenger: 

• The design freedom that electronic components create brings more 
diversity of choice for the purchaser in engine type and management, with 
better fuel economy, a better ride and more interior space. 

• Cars are more reliable and safer, even if the driver understands less of what 
goes on under the bonnet. In addition, routine maintenance becomes a 
computer-based operation that is speedier and more consistent than manual 
procedures. 

• The driver interface is much more sophisticated giving more “drive” 
information to the driver; from this should flow safer driving as the driver 
is more aware of the potential hazards they may have to cope with.  

The opportunities flowing from the use of electronic components include the use of 
better and more advanced control strategies that reduce fuel consumption, limit 
emissions, improve ride control and make braking a better and safer operation. It is 
this last topic that concerns this Advances in Industrial Control monograph by 
Sergio M. Savaresi and Mara Tanelli which comes in three parts. Part I, comprising 
two chapters, supplies the context for the use of control system design in braking 
systems. There is an instructive introduction including a historical perspective 
section (Chapter 1) and a thorough presentation of the models used in the study of 
braking systems and their control (Chapter 2). Part II, comprising three chapters, 
reports the basic braking system control design solutions (Chapters 3 and 4) and 
the methods for the identification of the longitudinal wheel slip parameter (Chapter 
5). Part III, comprising three chapters, reports more advanced design solutions, and 
more identification of driving parameters, this time, road–tyre friction parameters. 
Two very useful appendices on some aspects of nonlinear control that are used by 
the authors and on the practical issues relating to wheel encoder signal processing 
close the monograph. 

Sergio M. Savaresi and Mara Tanelli have produced a comprehensive 
monograph that succeeds in showing how advanced control can contribute to the 
design of new braking system technologies. Industrial and academic readers will 
find the volume quite accessible; academic control lecturers may find the case 
studies can be used to demonstrate industrial control theory in practice. Overall, the 
monograph is highly topical and industrially relevant and will find many interested 
readers from the control community and the automobile industry. The series 
Editors are pleased to have this monograph in the series since it nicely 
complements the recent series monograph by Pietro J. Dolcini, Carlos Canudas-de-
Wit and Hubert Béchart titled Dry Clutch Control for Automotive Applications 
(ISBN: 978-1-84996-067-0, 2010) and ensures that the series continues to report 
on the growing field of advanced control applications in the automobile industry. 

Industrial Control Centre M.J. Grimble 
Glasgow M.A. Johnson 
Scotland, UK 
2010 



Preface

The control of wheel slip dynamics is one of the most critical and intriguing
areas of chassis control, since it is the basis for most of the main chassis
control subsystems like braking control, traction control and stability con-
trol. Moreover, it is an unusual combination of seemingly simple dynamics
(whose dominant features can be easily captured by a second-order dynami-
cal model) and challenging features (nonlinear behaviour, stability properties
which change according to the considered working condition, time-varying
parameters, large parameter variations, unknown environment-dependent pa-
rameters, etc.).

This book is mainly devoted to the analysis and development of wheel
slip control strategies. However, to keep the book focused and to perform
the analysis in depth, most of the work presented here refers to the specific
problem of controlling the longitudinal dynamics of a vehicle during braking.

There are three main reasons for focusing on braking control, while keeping
traction control and stability control in the background:

• Braking control is the first chassis control subsystem to be made avail-
able to the mass market. Anti-lock braking systems (ABS) have become a
standard for all modern cars, whereas traction control and stability control
subsystems are still confined to be niche applications.

• Braking control must face the challenge of the coordination of the braking
force on all the wheels, whereas traction control is typically limited to half
of the vehicle wheels, i.e., the driving ones.

• Braking control is also self consistent and meaningful when the analysis
is restricted to longitudinal dynamics, whereas stability control inherently
requires the coupling of longitudinal, lateral and yaw dynamics.

Needless to say, all the material developed for the specific problem of con-
trolling the wheel slip during braking can be straightforwardly re-used also
within traction and stability control problems.

xi
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From the technological point of view, the design of automatic braking con-
trol systems is clearly highly dependent on the braking system characteristics
and actuator performance.

As a matter of fact, ABS systems for wheeled vehicles equipped with tra-
ditional hydraulic actuated brakes – that is, those commonly available in
all passenger cars – pose specific design constraints as they have to cope
with an on/off modulation of the brake pressure. On the other hand, recent
technological advances in actuators which have led to both electro-hydraulic
and electro-mechanical braking systems have radically changed the starting
point of braking control systems design. In fact, these brake systems enable
a continuous modulation of the braking torque, thereby allowing the use of
classical control theory tools for controller design.

A great boost to the research in this field comes directly from the indus-
trial world, which poses challenging problems by asking for reliable control
systems with the simplest possible architecture, reduced sensors layout and
the capability of coping with transmission delays and significant measurement
errors and parametric uncertainties.

This book develops within this challenging and evolving context, with
the aim of providing a thorough analysis of active braking control systems
and proposing both basic and innovative solutions, which are both effective
and applicable from an industrial viewpoint and theoretically sound from a
methodological perspective.

In particular, the book is devoted to the analysis and design of active
braking control systems together with the main estimation and identification
problems that arise in the braking control context.

The considered control design problems are linked to two different brake
technologies. Namely, braking control systems based on classical hydraulic
actuated brakes (HAB) with on-off dynamics and braking control systems
tailored to brake-by-wire (BBW) control, in particular based on electro-
mechanical brakes (EMB).

The BBW control approaches can be further split into two main families,
because of the fact that the control algorithms are based either on linearised
or nonlinear models of the braking dynamics.

The book shows how these different control approaches are complementary,
in that each of them has specific peculiarities either in terms of performance
or in terms of structural properties of the closed-loop system.

Finally, the book presents some original approaches to three different esti-
mation and identification problems closely related to braking control systems
design, namely

• estimation of the longitudinal wheel slip;
• estimation of the tyre–road friction coefficient; and
• direct estimation of tyre–road contact forces via in-tyre sensors,

with the aim of providing the reader with a comprehensive treatment of
active vehicle braking control from a wider perspective. A significant part of
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the work presented in the book was developed within joint projects between
the Politecnico di Milano and leading automotive industries, thereby being
firmly linked to industrial reality.

Contributions and Organisation of the Book

The book includes survey sections, where the problem and the methodologies
are introduced in a historical and tutorial framework, to suit a wide reader-
ship. Therefore, this book can be effectively accessed at three reading levels:
a tutorial level for students, an application-oriented level for engineers and
practitioners and a methodology-oriented level for researchers.

To enforce these different reading levels and to present the material in an
incremental manner from the basic to the most advanced control approaches,
the book has been conceptually divided into three parts.

The first part of the book is composed of Chapters 1 and 2 : the for-
mer provides the introductory material on the history of ABS systems and
their development and future perspectives together with the description of
the different braking systems considered in this book and their mathemati-
cal description, whereas the latter introduces the control-oriented dynamical
models of the braking dynamics.

The second part of the book is composed of Chapters 3, 4 and 5, which
deal with the main aspects of both control and estimation issues. Specifically,
Chapters 3 and 4 are devoted to presenting the basic solutions to braking
control systems design, according to the two different types of actuators;
Chapter 3 discusses the design of braking controllers based on actuators with
continuous dynamics, whereas Chapter 4 treats in detail the case of braking
systems with on/off dynamics. Furthermore, Chapter 5 studies a fundamental
estimation problem that is inextricably linked with active braking controller
design: the wheel slip estimation.

The third part of the book presents more advanced and research-oriented
solutions both to active braking control systems design and to tyre–road fric-
tion estimation. Specifically, Chapter 6 discusses the mixed slip-deceleration
control, which is an advanced control solution based on linearised models of
the braking dynamics, while Chapter 7 presents a nonlinear control approach
to wheel slip regulation, grounded on Lyapunov-based synthesis methods,
which yields a particular closed-loop behaviour having practical advantages.
Finally, Chapter 8 addresses the problem of estimating the tyre–road friction
conditions and outlines a method to directly estimate the contact forces from
sensors inserted in the tyre.

In writing the book, we assumed that the reader is familiar with basic
notions of dynamical systems and linear control systems design. Accordingly,
we complemented the book with Appendix A, which provides the basic defini-



xiv Preface

tions and the notions of the nonlinear systems analysis and synthesis methods
employed in the book. This Appendix is intended to provide only a quick tu-
torial reference to these topics, a thorough study of which should be pursued
using specialist books, some of which are referenced in the Appendix itself.

Finally, Appendix B provides a dedicated treatment to the problem of
estimating the wheel speed from encoders, which are the fundamental sensors
that one has to deal with when developing active braking and traction control
systems. The Appendix presents the two main speed estimation algorithms
and highlights their merits and drawbacks, presenting also some insights on
signal filtering issues arising from the analysis of experimental data.

Overall, the first two parts of the book present the topic at a level of
depth that can be considered appropriate for practitioners and for a course on
vehicle control at the MSc level, while the third part can constitute additional
material of interest for graduate studies and for researchers in automotive
control.

Milano, Sergio Matteo Savaresi
July 19, 2010 Mara Tanelli
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Part I

Braking Control Systems Design:
Introduction and Modelling



This part of the book starts presenting the history of active braking control
systems, followed by a discussion on their industrial and academic develop-
ment and the future research perspectives. Furthermore, the functional de-
scription of the braking systems considered in this book is provided, together
with their mathematical description. Finally, the control-oriented dynami-
cal models of the braking dynamics used for controller design are discussed.
Overall, these topics constitute the introductory material based on which all
the considered control approaches tackled in the subsequent parts of the book
are developed.



Chapter 1

Introduction to Active Braking Control
Systems

1.1 Introduction

It can be certainly acknowledged that skidding has been a problem for as
long as wheeled vehicles have existed. A 1952 paper by A.C. Gunsaulus of
Goodyear Aircraft Corporation [28] defines skidding as simply the “unwanted
sideways movement [of an automotive vehicle] not planned by the driver...
Its prime cause is a combination of a lessened grip of the tyre on the road
coupled with a sideways force that is greater than the tyre’s grip. Its effect
is usually a partial or, it may be, a total loss of control of the vehicle by the
driver.”

In road vehicles, the unwanted skidding phenomenon can be prevented by
means of active braking control systems.

As a matter of fact, most modern road vehicles are equipped with elec-
tronic ABS. ABS can greatly improve the safety of a vehicle in extreme cir-
cumstances, since it can maximise the longitudinal tyre–road friction while
keeping large lateral (directional) forces that ensure vehicle driveability. The
use of automatic braking control systems has also been extended to electronic
stability control (ESC) systems (see, e.g., [27, 39,45,88]).

The design of automatic braking control systems is clearly highly depen-
dent on the braking system characteristics and actuator performance. As
is well known, standard ABS systems for wheeled vehicles equipped with
traditional hydraulic actuators mainly use rule-based control logics (see,
e.g., [124]).

On the other hand, recent technological advances in actuators have led
to both electro-hydraulic and electro-mechanical braking systems, which en-
able a continuous modulation of the braking torque, thereby allowing us
to formulate active braking control as a classical regulation problem (see,
e.g., [15,23,41,90]). In the field of automatic braking control, a large number
of methods and approaches have been proposed in the last decade, rang-
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ing from classical regulation loops, to sliding-mode, fuzzy-neural, or hybrid
architectures (see, e.g., [15, 38,39,53,54,59,60,95,101,122]).

This chapter will provide an overview of ABS systems, both in terms of
their historical development and of the results in this field available in the sci-
entific literature. Further, the main features of the brake systems considered
in this book are discussed and their mathematical description is provided.
Finally, the chapter offers a brief discussion on recent evolutions in active
chassis control systems which involve the braking controllers as subsystems
to achieve the so-called global chassis control (GCC).

1.2 ABS Systems: a Historical Perspective

The current hydraulic ABS systems were conceived from systems developed
for trains in the early 1900s. In particular, the first patents in the field (An
Improved Safety Device for Preventing the Jamming of the Running Wheels
of Automobiles when Braking) dates back to 1932, while a similar result was
reported in a U.S. patent (Apparatus for Preventing Wheel Sliding) issued in
1936.

Nevertheless, none of these early devices could react quickly enough to the
wheels locking to lessen the stopping distance or to provide greater vehicle
control in a panic situation. The problem of skidding wheels gained new
prominence during the Second World War with the success of air warfare.
After the war, several aircraft producers and their subcontractors began to
work on designing an anti-skid device for aircraft brakes. In 1947, the first use
of anti-lock brakes on airplanes was on B-47 bombers to avoid tyre blowout
on dry concrete and spin-outs on icy runways. Mechanical skid prevention
devices appeared on both military and commercial planes in the early 1950s.

The first automotive use of ABS was in 1954 on a limited number of Lin-
coln cars which were equipped with an ABS from a French aircraft. In 1965,
Jensen FF offered a mechanical ABS system developed by Dunlop. In the
late 1960s, Ford, Chrysler and Cadillac offered ABS on their top-end mod-
els. These very first systems used analogue computers and vacuum-actuated
modulators. Since the vacuum actuated modulators cycled very slowly, the
actual vehicle stopping distance significantly increased, even though the level
of safety improved and the lateral stability of the vehicle increased.

In Japan, Nissan and Toyota announced the development of an elec-
tronic ABS system, while in Germany a joint-venture between Telefunken
and Bendix was trying to put an ABS system called Tekline on the market.
However, the electronic design tools were not reliable yet and the analogue
circuits still suffered large interferences coming from the car, which were due
to large working temperature variations, humidity and most of all vibrations.
These problems caused many industrial projects to fail, and legal concerns
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then literally put the development on hold in the U.S., while the European
companies took the lead in the next 10–20 years.

In fact, in 1978 Bosch announced its anti-blockier system (from which the
ABS acronym was coined) and this started the spread of the ABS technology
in the automotive field; the modern age of ABS had begun.

By 1985, Mercedes, BMW and Audi had introduced Bosch ABS systems
and Ford introduced its first Teves system. By the late 1980s, ABS systems
were offered on many high-priced luxury and sports cars. Today, braking
systems on most passenger cars and many light-duty vehicles have become
complex, computer-controlled systems. Since the mid 1980s, vehicle manufac-
turers have introduced dozens of different anti-lock braking systems. These
systems differ in their hardware configurations as well as in their control
strategy.

Today, 50 years after their first appearance on a commercial car, these
active braking control systems have become standard on all passenger cars.

Notwithstanding this historical development full of significant evolutions,
the research and development of new technologies and new control strategies
is far from complete. Every step forward either in braking force actuation
technology and/or in the available sensors asks for a significant re-design of
the main control algorithms. In particular, the forthcoming advent of EMBs
and of wheel-hub electric motors with high boosting capabilities will probably
be the next revolution in active braking control.

1.3 The Actuators: Main Technologies and Functional
Description

The ABS available on most passenger cars are equipped with hydraulic actua-
tors (HAB: hydraulic actuated brakes) with discrete dynamics. Such systems
are depicted in Figure 1.1.

In these systems the pressure exerted by the driver on the pedal is trans-
mitted to the hydraulic system via a build valve (see also Figure 1.1), which
communicates with the brake cylinder. Moreover, the hydraulic system has
a second valve, the dump valve (again see Figure 1.1), which can discharge
the pressure and which is connected to a low pressure accumulator. A pump
completes the overall system. The braking force acts on the wheel cylinder,
which transmits it to the pads and, finally, to the brake discs.

According to its physical characteristics, the HAB actuator is only capable
of providing three different control actions. Increase the brake pressure: in
this case the build valve is open and the dump one closed. Hold the brake
pressure: in this case both valves are closed, and decrease the brake pressure:
in this case the build valve is closed and the dump one open.
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Figure 1.1 Hydraulic braking system

In dealing with this type of actuator for braking control design a static
brake pad friction model is assumed, i.e., the braking torque Tb is computed
from the measured brake pressure pb as

Tb = rd ν Apb, (1.1)

where rd is the brake disc radius, ν is the (constant) brake pad friction
coefficient and A is the brake piston area. Note that the brake pads friction
coefficient is in general not perfectly constant over the brake life, as it varies
mainly due to brake usage. However, the variation of the braking dynamic
behaviour is, in general, compensated for by the servo-control loop, which
regulates the brake pressure. Therefore, we assume that the braking pressure
pb considered for the conversion is the one provided as output by the servo-
control of the braking system, which copes with the system uncertainties so
that a constant coefficient ν can be used.

Note further that the increase and decrease pressure actions are physically
limited by the actuator rate limit k, which defines the actuator performance.
According to this description, the braking torque dynamics for the HAB
actuator will be described as

dTb

dt
= u, (1.2)
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with u = {−k, 0, k}. According to the value of the control variable u, we
model the three possible actuator actions, i.e., u = −k corresponds to the
decrease control action, u = 0 corresponds to the hold control action and
u = k corresponds to the increase control action. The rate limit k ∈ R+ is a
known parameter. Its nominal value in this book will be set to 5 kN/s.

Note that, in some industrial braking systems, the rate at which the brake
pressure increases or decreases is not perfectly constant, mainly due to the
(unknown) pressure difference between each wheel brake cylinder and the
main brake cylinder [124]. Nonetheless, the assumption of either a fixed or
a user-selectable (within physical limits) actuator rate limit has been used
in several works on rule-based ABS, as for example in [26, 49, 74]. In the
control design approach discussed in this book a constant actuator rate limit
is employed, which is considered to be equal for the increase and the decrease
control action, in order to simplify the notation.

The HAB are characterised by a long life-cycle and high reliability, and this
is the main motivation which has up to now prevented the new generation of
braking systems (electro-hydraulic and electro-mechanical) to enter the mass
production.

Figure 1.2 Electro-mechanical brake (courtesy of Brembo S.p.A.)

On the other hand, the disadvantage of HAB is related to ergonomic issues:
with these brakes, in fact, the driver feels pressure vibrations on the brake
pedal when the ABS is activated, due to the large pressure gradient in the
hydraulic circuit. In fact, the HAB are wired to the brake pedal, hence their
action cannot bypass that of the driver, but it is superimposed onto it.
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The new generation of braking control systems will be based on either
electro-hydraulic or electro-mechanical brakes; the latter will be the technol-
ogy employed in upcoming brake-by-wire (BBW) systems.

In EHBs, a force feedback is provided at the brake pedal (so as to have the
drivers feel the pressure they are exerting) and an electric signal measured via
a position sensor is transmitted to a hydraulic unit endowed with an electronic
control unit (ECU), physically connected to the caliper (i.e., the system made
of the external brake body). The EMBs are characterised by a completely
dry electrical component system that replaces conventional actuators with
electric motor-driven units (see also Figure 1.2).

Table 1.1 Comparison of braking systems actuators

HAB EHB EMB
Technology Hydraulic Electro-hydraulic Electro-mechanical

Force Modulation Discrete (on/off) Continuous Continuous

Ergonomics Pedal vibrations No vibrations No vibrations

Environmental Issues Toxic oils Toxic oils No oil

With respect to the traditional brakes based on solenoid valves, the main
potential benefits of EMBs are the following:

• they allow an accurate continuous adjustment of the braking force;
• no disturbances (pressure vibrations) are present on the brake pedal, even

if the ABS system is active;
• the integration with the other active control systems is easier thanks to

the electronic interface;
• there is a pollution reduction, as the toxic hydraulic oils are completely

removed.

A final concise comparison between the different actuators is given in Ta-
ble 1.1. It is now worth describing the main characteristics for the EMB and
introducing its servo-controller basic features.

A typical EMB is shown in Figure 1.3. As can be seen, the main compo-
nents of such a braking system are the following:

• an electric brushless motor;
• a planetary gear;
• a reversible ball screw;
• a piston, integral with the ball screw;
• two brake pads;
• a brake disc;
• the brake external body, called caliper, to which the motor and the external

pad are fixed; and
• a force and/or a position sensor.
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Figure 1.3 Components of a typical EMB

When a braking force is requested by the driver, an electric signal is trans-
mitted to the motor control unit, which feeds the motor with an electric cur-
rent. The motor generates a traction torque which, via the planetary gear
and the ball screw, is scaled and converted into a linear force that moves the
piston and the pad until contact with the brake disc is established.

When the pads are in contact with the disc, the piston is shifted again
and this induces a deformation of the brake external body, which allows the
external pad to keep contact with the disc and actuate the brake force.

When no more force is requested, the brake system must go back to the
initial position; this is mainly achieved by exploiting the ball screw reversibil-
ity.

Clearly, the EMB is a highly uncertain system, mainly due to the asymmet-
rical friction characteristics in the pads and piston motion, the high variability
of the disc-pad friction coefficient, the temperature drifts and the ageing of
the brake pads.

Hence, to obtain acceptable braking performance, the EMB must be
equipped with a servo-control, which counteracts all the above–mentioned
sources of uncertainty and ensures repeatability of the braking manoeuvre.

Figure 1.4 Block diagram of the EMB servo-control
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This book will not directly deal with the EMB servo-control design. Hence,
we only present the servo control structure, depicted in Figure 1.4, which will
be needed in the next chapters.

As shown in Figure 1.4, the caliper control is usually composed of two
different control loops, namely:

• a current loop, which regulates the electrical dynamics of the motor; and
• a force loop, which regulates the brake action when pads and disc are in

contact.

Note that some EMBs are equipped with a position sensor (an incremen-
tal encoder placed on the electric motor shaft) instead of a force sensor (a
load cell placed between the piston and the internal pad), and in this case the
external loop is a position control loop. In the most sophisticated EMBs, how-
ever, there are both the position and the force sensor. These brakes are thus
endowed with three nested control loops, where the position one is mostly
devoted to controlling the so-called in air braking phase, i.e., the pads and
piston motion until contact with the brake disc is established. With this ar-
chitecture, often the position control loop is kept active only until the force
sensor measures a non-null braking force. From then on, the force loop takes
care of regulating the braking force and it manages the overall manoeuvre.

In this book, a proportionality relation between braking force and braking
torque is assumed, namely

Tb = κb Fb, (1.3)

where Fb is the braking force and κb ∈ R+ is the proportionality constant.
For our purposes, unless otherwise stated, the servo-controlled EMB will

be considered, and its closed-loop dynamics will be described as a first-order
system with delay with transfer function

Gcaliper(s) =
ωact

s+ ωact
e−sτ , (1.4)

with ωact = 70 rad/s and τ = 10 ms.
Note that the delay accounts for both that possibly due to the actuator

dynamics and for that due to the signal transmission introduced by the net-
worked vehicle architecture, which manages the data transmission. Of course,
the real value of the pure delay must be carefully established in any practical
situation. Finally, note that the EMB, as any actuator, has physical limits
which determine a saturation of the admissible braking torque values. Such a
saturation must be taken into account when implementing the braking con-
trol algorithms. The lower bound on the braking torque is of course equal
to 0, whereas the upper bound is braking-system dependent and must be
carefully evaluated.
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1.4 The X-by-wire Approach

In a vehicle, there are three main human-machine-interfaces (HMIs), which
ensure the interaction between the driver and the vehicle: the steering wheel,
the accelerator pedal and the braking pedal. These are usually linked to the
respective physical actuators via mechanical or hydraulic connections.

In the x-by-wire (XBW) approach the links between each HMI and the
vehicle are replaced by an electronic digital link. The x usually stands for the
actuator of interest, thus either steer, brake, or throttle. Sometimes, in the
case of the traction subsystem, the locution drive-by-wire is used.

There are different motivations leading automotive original equipment
manufacturers (OEMs) toward XBW. A frank discussion on XBW technol-
ogy cannot be but twofold: on the one hand it undeniably offers significant
improvements and potentials for performance advancements; on the other, es-
pecially when tailored to safety critical vehicle systems (such as the braking
system), it still has to prove its ability of providing the same safety standards
of hydraulic braking circuits. As for the potential benefits of a full XBW sys-
tem (those specific to the EMB have been already introduced above), we can
mention the following [55]:

• Improved ride and handling. By-wire computer control of chassis dynamics
allows steering, braking, and suspension to work together.

• Enhanced stability control. Sensors and controllers work together to de-
tect and correct abnormal yaw moments that could result in spin-outs or
rollovers.

• Easier integration of additional safety systems. By-wire technology pro-
vides the communication link necessary to enable automated safety sys-
tems like lane keeping and collision avoidance.

• Increased modularity. Fully functional by-wire modules reduce OEM as-
sembly time and cost.

• Improved driver interface. The elimination of mechanical connections to
the steering column gives OEMs more flexibility in designing the driver
interface with regard to location, type, feel, and performance.

• Enhanced passive safety. An x-by-wire cockpit can simplify and improve
occupant restraint management.

• Added flexibility. Vehicle designers will have more flexibility in the place-
ment of hardware under the hood and in the interior to support alternative
powertrains, enhance styling and improve interior functionality.

• Deployment time reduction. OEMs will be able to use a laptop computer to
perform soft tuning capabilities instead of manually adjusting mechanical
components.

Nonetheless, these systems must fulfill several requirements. Specifically,
for brake-by-wire systems, these are the following [32]:

• Safety: after an arbitrary fault, the system must be available in a satisfying
manner, e.g., the brakes have to work with an adequate braking force.
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• Reliability: the reliability of a by-wire system must be at least as high as
that of a comparable mechanical system.

• Availability: it must be at least as high as that of the braking systems
currently in use.

• Maintainability: the time interval over which the system is maintainable
must be at least as long as that of the braking systems currently in use.

• Lifetime: it must be at least as long as that of the braking systems currently
in use.

• Cost: it must be no more (or only slightly more) expensive than conven-
tional braking systems.

• Compartment: it must be small enough for easy integration of the compo-
nents.

• Legal aspects: they must be fulfilled, i.e., to be considered safe, a brake
system must provide performance within specific tolerance levels.

Finally, it is worth noting that an important principle behind by-wire sys-
tems in general is the physical redundancy of the system. In fact, to comply
with the safety standards, it is necessary to provide at least a double redun-
dancy of the main hardware components, so as to be able to recover from a
failure.

1.5 State-of-the-art in Active Braking Control Design

The control systems evolution in the automotive field is well described by
Figure 1.5 (see [55]). One may notice that since electronics has been inte-
grated into vehicles, the advances in the development of active vehicle con-
trol systems has been inextricably linked to advances in sensors and actuators
technology.

Hence, also the results available in the scientific literature are unavoidably
dependent on the brake system under consideration. As a matter of fact, stan-
dard ABS systems for wheeled vehicles equipped with traditional hydraulic
actuators use rule-based control logics (see, e.g., [124]), as they have to deal
with the on/off dynamics of the HAB system (see also Figure 1.1). On the
other hand, as discussed in Section 1.3, EHB and EMB enable a continuous
modulation of the braking torque, thereby allowing active braking control
to be formulated as a classical regulation problem (see, e.g., [15, 23, 41, 90]).
In braking control systems, two output variables are usually considered for
regulation purposes: wheel deceleration and wheel longitudinal slip. These
output variables have characteristics which are somehow complementary.

Wheel deceleration is the controlled output traditionally used in ABS,
since it can be easily measured with a simple wheel encoder (see also Ap-
pendix B); however, the dynamics of a classical regulation loop on the
wheel deceleration critically depend on the road conditions. Henceforth,
deceleration-based control strategies inherently require the online estimation
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Figure 1.5 Evolution of braking systems [55,77]

of the road characteristics; moreover, deceleration control usually is not im-
plemented as a classical regulation loop, but heuristic threshold-based rules
are used (see, e.g., [88, 124]).

On the other hand, a regulation loop on the wheel longitudinal slip is
simpler and dynamically robust. However, the wheel slip measurement is
particularly critical since it requires the estimation of the longitudinal speed
of the vehicle body, which cannot be directly measured (see Chapter 5 for a
detailed treatment of this issue).

As a matter of fact, the current trend in braking control is to move from
threshold-based control rules mainly based on the wheel deceleration to gen-
uine slip control (see, e.g., [15, 40, 41, 100, 131]). Slip control is particularly
attractive since it can be straightforwardly and seamlessly extended from
ABS to TCS and ESC applications. The challenge is to alleviate the high
sensitivity of slip control to poor slip measurements, which is particularly
critical at low speed and around low-slip set-points.

Moreover, to regulate the wheel slip the knowledge of vehicle speed is
necessary, so that a lot of research efforts have been devoted to devise reliable
and low-cost filtering and estimation algorithms. As a matter of fact, the
vehicle speed can be directly measured (by means of laser beams) only for
testing and for prototyping purposes. In commercial cars it must be estimated
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by indirect measurements, e.g., by using longitudinal accelerometers or some
filtering and identification tools — see, e.g., [37,48,85,119] and the references
cited therein. In Chapter 5 a speed estimation algorithm will be described,
together with a detailed analysis of the state of the art in this specific field.

Another active research field inherently linked to active braking control
systems design is that focused on the estimation of the tyre–road friction
characteristics, (see, e.g., [12, 24,29,65,69,92,118,127,129]).

This topic will be thoroughly discussed in Chapter 8, where, together with
a specific approach to the problem, we also provide some insights on the
results available in the scientific literature.

1.6 Recent Evolutions: Brake-based Global Chassis
Control

Traditionally, all the active control systems on board of the vehicle, such as
suspension, steering and braking control systems, are designed and imple-
mented independently from each other, and each of them is studied so as
to solve local problems. This is due to the fact that approaching the control
design for a MIMO system, of which a vehicle is a quite complex example, by
local decoupled SISO loops makes the problem easier and guarantees accept-
able yet suboptimal performance in the case where the couplings are weak
enough. The significant work carried out with this approach has allowed the
development of reliable and effective solutions for the control of the single
subsystems, both comfort and safety-oriented (see, for example, the develop-
ments in active and semi-active suspensions, steering, braking and traction
control systems).

Relying on these advancements, the research focus is moving toward so-
lutions that envisage communication and coordination between the different
local control systems, which comprise sensors, controllers and actuators, so
as to pursue global safety and performance objectives which involve all the
chassis dynamics and can aim at achieving some optimality features.

Of course, such an approach may lead to conflicting or inappropriate con-
trol objectives. As such, research efforts are being devoted to devising sound
control methodologies in order to orchestrate the collaboration among these
subsystems. These new control approaches are being developed within what
is called global chassis control (GCC), see, e.g., [3, 52, 81, 132]. Note that,
however, the price to pay when working toward GCC in comparison to the
traditional subsystem approach is a centralised controller of significant com-
plexity.

While different approaches are being developed, the underlying idea is to
control the global vehicle dynamical behaviour and to consider the vehicle as
an object (characterised by a certain position and orientation in the space)
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that moves in a constrained space and can react to the different working
situations via constrained and heterogeneous actuators.

Several solutions to active chassis stability control have been proposed in
the scientific literature, whose common aim is to actively modify the vehicle
dynamics by generating suitable yaw moments to restore vehicle stability
when dangerous manoeuvres occur, see, e.g., [1, 17,18].

In the field of active vehicle dynamics control systems tailored to enhance
both stability and handling, most of the available solutions are brake-based,
see, e.g., [94]; these approaches try to enhance both vehicle performance and
stability during curves by imposing — via differential braking — an under-
steering or over-steering behaviour on the vehicle.

Examples of brake-based approaches can be found in [20, 25]. In [20], the
overall control problem is formulated as a tracking problem, where the tra-
jectory is specified as a desired yaw rate and longitudinal acceleration profile,
which must be tracked while stabilising the roll and pitch motion. The co-
ordination policy for the two actuators is achieved by solving a constrained
optimisation problem. A similar problem within the context of autonomous
vehicles is tackled in [25], where the model predictive control approach is
used to design control laws acting on active front steering, active braking
and active differentials aimed at ensuring that the vehicle follows a given
path by controlling the front steering angle, brakes and traction at the four
wheels independently, while fulfilling both physical and design constraints.
Further examples are presented in [30, 121], where the problem of actuator
coordination, in these cases active steering and braking, is setup as based
on a dynamic control allocation approach. Specifically, [121] proposes a yaw
stabilisation scheme composed of a high level module which deals with the
vehicle motion control objective, i.e., the computation of the yaw rate refer-
ence and the related tracking problem, and a low level module which handles
the braking control for each wheel. The link between the two is ensured by an
allocation module which generates the longitudinal wheel slip reference for
the braking controller commands and front wheel steering angle corrections.
The optimal use of the available control variables is obtained as the solution
of a real-time optmisation problem.

An alternative to brake-based solutions is provided by the use of a new
generation of torque biasing devices in the vehicle driveline, which can be
controlled to actively distribute the driving torque between front and rear
axle to improve stability and performance. On-demand torque redirection
from front to rear axle can be achieved either via electronically-controlled
differentials or via electronically-controlled central transfer cases, [73, 80].
These torque-biasing devices allow tuning the torque distribution so as to
actively change the vehicle configuration and to make it closer to a full front-
wheel-drive to pursue safety objectives, or to a four-wheel-drive to optimise
performance via a more balanced torque distribution to the four wheels.
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It is worth pointing out that the GCC has also opened the way to achieving
the capability of altering, via an electronic control system, the car behaviour,
which is in principle dictated from its mechanical layout.

From a broader viewpoint, we believe that the GCC research area will
provide a first enabling key for the design a new generation of vehicles, where
the driver’s preferences and inclinations will be sensed by appropriate control
systems and mapped onto specific control systems settings which will enable
the vehicle dynamic behaviour which is closest to the driver preferences. Of
course, such online vehicle personalisation must be performed while always
guaranteeing and enforcing active safety.

In this challenging scenario, braking systems appear to be a strategic sub-
system to employ for different control objectives and this motivates us to
describe in this book different solutions to the braking control problem which
offer specific advantages and may be selected also according to higher level
control goals.

1.7 Summary

In this chapter the active braking control problem was introduced and dis-
cussed, starting from an historical perspective. Further, the available brake
technologies were presented, with specific emphasis on the hydraulic and
electro-mechanical brakes, which will be those considered in the design of the
control approaches presented in this book. Moreover, the context of XBW
has been outlined, highlighting its differences with respect to the current
technology and its potential benefits.

Finally, a perspective on the future evolution of braking systems within
the context of GCC systems has been provided, to motivate the fact that a
thorough understanding of braking control offers the way to tackle and solve
new and complex control problems.

Further, a new interesting stream of research both in braking control sys-
tems and brake-based GCC systems will be initiated by the new challenges
posed by (fully or partially) electric vehicles and actuators. In this context, in
fact, energy management and optimisation issues must be considered explic-
itly also in the control design phase, and the link between the two is one of
the new research issues, which will deserve lot of attention in the near future.



Chapter 2

Control-oriented Models of Braking
Dynamics

2.1 Introduction

This chapter is devoted to introducing the models of the braking dynamics
employed for the design of the different active braking control systems devel-
oped in the next chapters, i.e., the single-corner and double-corner models.

As both single-corner and double-corner vehicle models clearly employ
a tyre–road friction description, based on which the contact forces can be
defined, before introducing the vehicle braking dynamics the force and friction
model adopted in this book will be presented.

Note that the treatment of these topics is not intended to provide a compre-
hensive overview on vehicle modeling nor to present all the available contact
forces and tyre–road friction models available in the literature. The aim is to
provide the reader with the description of the dynamical models which are
of interest for the design of braking control strategies. For a more detailed
discussion on these topics, the reader may refer to, e.g., [45, 71,84].

The chapter is structured as follows. Section 2.2 introduces tyre–road con-
tact forces and presents the adopted friction model. Further, Section 2.3 de-
scribes the single-corner model of the braking dynamics, whereas Section 2.4
the double-corner one. In Section 2.5 the considered dynamical models of the
braking dynamics are analysed and their linearised version is computed. A
numerical analysis of the linearised dynamics is also proposed, to point out
the sensitivity of the model dynamics to specific vehicle parameters.

2.2 Tyre–road Contact Forces

The tyres are probably the single component that mostly affects the dynamic
behaviour and performance of a road vehicle. In fact, the tyre allows contact
between the rigid part of the wheel – the hub – and the road surface to take

17
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place on all surfaces and in every road condition. Moreover, the tyre is the
means for ensuring adherence to the road and it is responsible for transferring
to the ground the vertical load Fz, which is decomposed – at the contact
point on the road plane – into longitudinal Fx (i.e., traction and braking)
and lateral Fy friction forces, which guarantee the vehicle steerability (see
Figure 2.1).

Figure 2.1 Tyre–road contact forces

Both Fx and Fy depend on a large number of features of the road, tyre,
and suspensions. Most often, they can be described as

Fx = Fx(Fz, αt, γ, λ), (2.1)
Fy = Fy(Fz, αt, γ, λ), (2.2)

where

• Fz is the vertical force at the tyre-road contact point. In quasi-static con-
ditions it can be simply described as Fz = mg, where the mass m can be
different for each wheel according to the load distribution of the vehicle
and g represents the gravitational acceleration; in a braking manoeuvre
Fz can significantly change due to dynamic load transfer.

• αt is the tyre sideslip angle (see Figure 2.1), i.e., the angle between the
tyre longitudinal axis and the speed vector of the contact point.

• γ is the camber angle, i.e., the tyre inclination with respect to the vertical
direction.

• λ is the longitudinal wheel slip, i.e., the normalised relative velocity be-
tween the road and the tyre, which, in case of zero tyre sideslip angle is
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defined as
λ :=

v − ωr

max{v, ωr} , (2.3)

where v is the wheel ground contact point velocity and ωr is the linear
speed of the tyre (with radius r and angular speed ω) at the contact point.
The presence of a non-zero slip is due, in general, to traction and braking
forces exerted on the tyre. Note that (see also Figure 2.1) a non-zero
sideslip angle αt modifies the wheel slip expression in (2.3), which takes
the form

λ =
v − ωr cos(αt)

max{v, ωr cos(αt)}
. (2.4)

In the following, we will mostly concentrate on braking manoeuvres (hence
v ≥ ωr) and consider the assumption of small tyre sideslip angle, i.e., with
cos(αt) ∼= 1. In this case, (2.3) simply becomes

λ =
v − ωr

v
, (2.5)

with λ ∈ [0, 1]. In particular, λ = 0 corresponds to a pure rolling wheel
and λ = 1 to a locked wheel.

Finally, note that a normalised expression of the vertical forces (2.1) and (2.2)
is typically used, which has the form

Fx = Fzμx(αt, γ, λ), (2.6)
Fy = Fzμy(αt, γ, λ), (2.7)

where the proportionality constants μx and μy, defined as

μx(αt, γ, λ) :=
Fx

Fz
, (2.8)

μy(αt, γ, λ) :=
Fy

Fz
, (2.9)

are called longitudinal and lateral friction coefficients, respectively. It is worth
pointing out that the normalised expressions (2.6) and (2.7) rely on the as-
sumption that the relationship between Fx and Fy and the vertical load Fz

is linear for all values of Fz. In fact, this assumption does not rigorously hold
for very large values of the vertical load, where the relationship between the
forces and the vertical load shows a saturation. However, for control design
purposes the simplifying assumption of a linear relationship between Fz and
both Fx and Fz can in general be used.

The typical behaviour of the longitudinal and lateral friction coefficients
for different values of the tyre sideslip angle αt is depicted in Figures 2.2(a)
and 2.2(b). These coefficients describe the tyre capability of transferring the
vertical load to the ground in longitudinal and lateral direction.
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By inspecting Figure 2.2(a) one may notice that all the curves are charac-
terised by a single maximum, and hence exhibit a peak value. Further, note
that for λ = 0 no longitudinal force can be transmitted to the ground, while
for λ = 1 (i.e., with locked wheels), there is a loss of longitudinal force up to
20-30% with respect to the peak value. As the tyre sideslip angle αt varies,
the peak shifts forward in λ as αt increases, while the peak value decreases.

On the other hand, from Figure 2.2(b) one may notice that all the curves
are monotonically decreasing as functions of λ and they take on their maxi-
mum value for λ = 0. Further, note that for λ = 1 (i.e., with locked wheels)
no lateral force can be transmitted to the ground (independently of the value
of αt); hence, with locked wheels there is no residual vehicle steerability. This
is one of the main issues that motivate the design of ABS systems. Finally,
the lateral friction coefficient increases as the tyre sideslip angle αt increases.

Hence, the behaviour of μy is somehow dual and complementary with
respect to that of μx, both as a function of λ and of αt.

2.2.1 Friction Models

Going back to tyre–road contact forces, one of the most well-known tyre
friction models of the form (2.1) and (2.2) is the Pacejka model (see, e.g.,
[71, 72]), also known as the magic formula. The name magic formula comes
from the fact that the structure of the model equations does not rely on a
physical basis and it appears rather complex and with many parameters to
be determined. Further, the magic comes from the fact that by effectively
tuning the parameters such a model does indeed fit a wide variety of tyres in
a large range of operating conditions. This model has been shown to suitably
match experimental data, obtained under particular steady-state conditions,
which assume a constant value of both linear and angular velocities of the
tyre. The expression of the longitudinal force in the Pacejka model, under
the assumption of symmetric tyres, has the form

Fx(Fz, αt, γ, λ) = cos(Cxαt
arctan(Bxαt

αt))Fx0, (2.10)

where the expression of the different terms appearing in (2.10) depend on Fz,
αt, λ, γ and several constant parameters, which are related to the specific
tyre properties and can be identified from experimental data (see, e.g., [71])
according to the following expressions:
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(a)

(b)

Figure 2.2 Plot of the longitudinal (a) and lateral (b) friction coefficient as function
of the longitudinal wheel slip λ for different values of the tyre sideslip angle αt
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Fx0 = Dx sin[Cx arctan(Bxκ− Ex(Bxκ− arctan(Bxκ)))],
κ = λ+Hx,
Hx = ph1 + ph2 dfz,
dfz = (Fz − Fz0)/Fz0,
Dx = (pdx1 + pdx2 dfz)Fz,
Ex = (pex1 + pex2dfz + pex3 df

2
z )(1 − pex4 sign(κ)),

Kx = Fz(pkx1 + pkx2dfz)epkx3dfz ,
Bx = Kx/(CxDx),
Bxαt

= (pbx1 + pdx3γ
2) cos(arctan(pdx2λ)).

The expression of the lateral force Fy, again under the tyre symmetry as-
sumption, has the form

Fy(Fz, αy, γ, λ) = cos(Cyλ arctan(Byλ)Fx0, (2.11)

where the expression of the different terms appearing in (2.11) depend on Fz,
αt, λ, γ and several constant parameters, which are related to the specific
tyre properties and can be identified from experimental data according to the
following expressions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fy0 = Dy sin[Cy arctan(Byαy − Ey(Byαy − arctan(Byαy)))]
+ Cγ arctan(Bγγ − Eγ(Bγγ − arctan(Bγγ))),

αy = αt +Hy,
Hy = phy1 + phy2 dfz + (phy3 + phy4 dfz)γ,
dfz = (Fz − Fz0)/Fz0,
Dy = Fzpdy1e

pdy2dfz (1 − pdy3γ
2),

Ey = (pey1 + pey2dfz)(1 − (pey3 + pey4γ) sign(αy)),
Kyα = pky1Fz0 sin(pky2 arctan(Fz/((pky3 + pky4γ

2)Fz0)))/(1 + pky5γ
2),

By = Kyα/(CyDy),
Kyγ = (pky6 + pky7dfz)Fz,
Bγ = Kyγ/(KyγDy).

The Pacejka friction model is very detailed, and it is the tyre–road friction
description most commonly used in commercial vehicle simulators such as,
for example, CarSim R©, Adams/Tire R©, and Bikesim R© .

In the rest of the book, for controller design purposes, we will work under
the assumptions of small sideslip and camber angles, i.e., αt

∼= 0 and γ ∼= 0,
and thus consider the longitudinal force only. So, for simplicity, we indicate
the friction coefficient μx with μ. Further, we assume a proportionality re-
lationship between normal force and longitudinal force, thus obtaining the
longitudinal tyre–road force description

Fx = Fzμ(λ). (2.12)

This simplification will not affect the design of any of the forthcoming control
algorithms. In fact, changes in αt and γ cause a shift in the abscissa of the
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peak of the the friction coefficient curve μ(λ) and act as a scaling factor
on the curve itself, in this resembling a variation in the vertical load Fz.
Accordingly, as none of the proposed controllers will be designed assuming
knowledge of the current value of the vertical load, in the same way they can
handle non-zero values of αt and γ.

As for the friction model, in this book the Burckhardt model (see, e.g.,
[16,45]) will be employed, as it is particularly suitable for analytical purposes
while retaining a good degree of accuracy in the description of the friction
coefficient μ(λ). Based on this model, the longitudinal coefficient has the
following form:

μ(λ;ϑr) = ϑr1(1 − e−λϑr2) − λϑr3. (2.13)

Notice that the vector ϑr has three elements only. By changing the values of
these three parameters, many different tyre–road friction conditions can be
modelled. In Figure 2.3 the shapes of μ(λ;ϑr) in four different road conditions
are displayed. The corresponding parameters values ϑr are given in Table 2.1.

Figure 2.3 Plot of the function μ(λ; ϑr) in different road conditions

In the rest of the book these four curves will be used; moreover, the sim-
plified notation μ(λ) will be adopted, and it will be implicitly assumed that
the expression of μ(λ) may change, according to different road conditions.

Finally, it is worth noting that both the Pacejka and Burckhardt models
describe the friction forces via static maps, which depend on different pa-
rameters. For completeness, we must mention that in the scientific literature
dynamic friction models have also been proposed (see, e.g., [127] and the
references therein for a complete discussion on this type of friction models).
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Table 2.1 Values of the parameters vector ϑr for different road conditions

Road condition ϑr1 ϑr2 ϑr3

Dry asphalt 1.28 23.99 0.52
Wet asphalt 0.86 33.82 0.35
Cobblestone 1.37 6.46 0.67

Snow 0.19 94.13 0.06

2.2.2 Relaxation Dynamics

When a rolling pneumatic tyre experiences a step variation in one of the sys-
tem parameters (i.e., the sideslip angle, the camber angle or the longitudinal
wheel slip) both the longitudinal and lateral friction forces undergo a tran-
sient leading to a steady-state condition. This mechanism is not an instanta-
neous phenomenon, mainly due to the time required for the deflection of the
tyre. The lag is closely related to the rotation of the tyre, typically taking a
fraction of a full revolution of the tyre to effectively reach the steady-state
force condition. This distance is often referred to as the relaxation length
s0l. Hence, the actual longitudinal and lateral forces FxAct and FyAct are
computed as

ḞxAct =
1
τ

(Fx − FxAct) ,
(2.14)

ḞyAct =
1
τ

(Fy − FyAct) ,

where Fx and Fy can be computed as in (2.10) and (2.11). The filter time-
varying time constant is given by

τ =
s0l

ωr
,

where s0l is the tyre-relaxation length – usually set equal to half of the tyre
circumference – and ωr is linear wheel speed at the tyre–road contact point.

From here onward, however, we simply assume that FxAct
∼= Fx and

FyAct
∼= Fy, and we refer to the longitudinal and lateral forces with Fx

and Fy, respectively.

2.3 The Single-corner Model

For the preliminary design and testing of braking control algorithms, a simple
but effective model known as the single-corner model is typically used.

The model is given by the following set of equations (see also Figure 2.4):
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Figure 2.4 Single-corner model

{
Jω̇ = rFx − Tb,
mv̇ = −Fx,

(2.15)

where

• ω [rad/s] is the angular speed of the wheel;
• v [m/s] is the longitudinal speed of the vehicle centre of mass;
• Tb [Nm] is the braking torque;
• Fx [N] is the longitudinal tyre–road contact force; and
• J [kg m2], m [kg] and r [m] are the moment of inertia of the wheel, the

single-corner mass and the wheel radius, respectively.

With reference to Figure 2.4 and system (2.15), the physical meaning of
the geometric and vehicle parameters are given in Table 2.2 together with
a set of numerical values used in this book for the numerical examples and
simulations carried out with the single-corner model.

Table 2.2 Parameters of the single-corner model

Parameter Physical meaning Numerical value
r Wheel radius 0.3 m
J Wheel inertia 1 kgm2

m Single-corner mass 225 kg

Throughout the book, the normalised linear wheel deceleration

η := − ω̇r

g
(2.16)

will often be employed. Observe that η is the linear deceleration of the contact
point of the tyre, normalised with respect to the gravitational acceleration g.
It is particularly useful since it can be easily compared with the longitudinal
deceleration of the vehicle chassis.

Substituting into the first equation of system (2.15) the expression of Fx

given in (2.12) and the definition of the wheel slip in (2.5) yields
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Jω̇ = rFzμ(v−ωr

v ) − Tb,
mv̇ = −Fzμ(v−ωr

v ). (2.17)

In system (2.17), the state variables are v and ω. As λ, v and ω are linked
by the algebraic relationship (2.5), it is possible to replace the state variable
ω with the state variable λ.

Specifically, substituting

λ̇ = − r

v
ω̇ +

rω

v2
v̇

and
ω =

v

r
(1 − λ)

into the first equation of (2.17), one obtains{
λ̇ = − 1

v

(
(1−λ)

m + r2

J

)
Fzμ (λ) + r

JvTb,

mv̇ = −Fzμ (λ) .
(2.18)

In the following it is assumed (see, e.g., [41]) that the longitudinal dynam-
ics of the vehicle (expressed by the state variable v) are much slower than
the rotational dynamics of the wheel (expressed by the state variable λ or
ω) due to large differences in inertia. Henceforth, v can be considered as a
slowly-varying parameter. Under this assumption, the second equation (ve-
hicle dynamics) of system (2.15) can be neglected, so that the model reduces
to a first-order model of the wheel slip dynamics.

It is worth noticing that the single-corner model relies on the following
simplifications:

• The four wheels are treated as dynamically decoupled, which means that
the dynamic load transfer phenomena induced by pitch motion are ne-
glected. The consequences of this simplification will be subject to a de-
tailed analysis when discussing the double-corner model (see Section 2.4).

• The suspension dynamics are neglected.
• The dependence of the friction forces from the vertical load is modelled

as a proportionality relation. This assumption strictly holds only in static
conditions. When dynamic load transfer occurs, the dependency is slightly
nonlinear with larger directional forces transmitted at lower loads and a
saturation effect at very large load values.

• The wheel radius is assumed to be constant. As a matter of fact – during
braking – a consequence of the pitch motion is a dynamic change in the
wheel radius, which is a function of the instantaneous vertical load.

• Straight-line braking is considered, i.e., the friction forces’ dependence on
the camber angle γ and on the tyre sideslip angle αt is neglected.

• The tyre relaxation dynamics, see Equation 2.14, is not explicitly consid-
ered.
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Despite these simplifications, the single-corner is the dynamical model most
widely employed as a starting point for active braking control systems design
(see, e.g., [23,39–41,54,59,91,100,131]) as it provides a simple yet sufficiently
rich description of the braking dynamics. Clearly, after having derived a wheel
slip control system based on this mathematical model, exhaustive tests should
be carried out on a complete vehicle dynamics simulator, so as to verify its
performance in a more realistic setting before moving to experimental tests.

As a matter of fact, it is interesting to remark that, despite its simple
structure, the design of a feedback controller for (2.18) is far from trivial.
In fact, the current road condition and the current value of the vertical load
are unknown and can suffer substantial and abrupt changes. Moreover, both
the equilibria stability properties and the settling time of the system modes
are strongly affected by changes in tyre–road friction characteristics and the
normal force exerted on the tyre during braking can experience significant
changes due to dynamic load transfer phenomena.

Most of the control approaches presented in this book will be derived from
the single-corner model. However, in order to study some important aspects
of the braking control systems, such as the interactions between braking
control and speed estimation treated in Chapter 5, a more complex model of
the vehicle dynamics is needed, capable of describing the link between front
and rear axles. Thus, in the next section the double-corner model – which
includes load transfer dynamics – is presented.

2.4 The Double-corner Model

The double-corner model can be regarded as a side view of the vehicle, where
one front and one rear wheel are modelled; for our purposes, the main feature
of this model is that it allows to describe the load transfer phenomena. It
is similar in principle to the half car model, which is commonly used to de-
scribe the heave dynamics for suspensions control. Consider the double-corner

Figure 2.5 Double-corner model
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model shown in Figure 2.5, where the dynamic load transfer is assumed to be
proportional to the vehicle deceleration only. Namely, the vehicle dynamics
are described by the following set of equations:⎧⎨⎩

Jω̇f = rfFxf
− Tbf

,
Jω̇r = rrFxr

− Tbr
,

Mv̇ = −Fxf
− Fxr ,

(2.19)

where

• ωf and ωr [rad/s] are the angular speed of the front and rear wheels, re-
spectively.

• v [m/s] is the longitudinal speed of the vehicle centre of mass.
• Tbf

and Tbr
[Nm] are the front and rear braking torques, respectively.

• Fxf
and Fxr

[N] are the front and rear longitudinal tyre–road contact
forces, respectively.

• J [kg m2], M [kg] and rf = rr = r [m] are the moment of inertia of the
wheel, the single-corner mass and the wheel radius, respectively (see also
Table 2.3). Note that, for simplicity, we assume that the front and rear
wheel radii are equal and we denote them both by r.

For the longitudinal forces Fxi
, i = {f, r} we use the model in (2.12) and

express the tyre–road friction forces via the coefficient μ(λ) given in (2.13).
Thus, to complete the model we only have to specify the expression for the
vertical load. To describe the load transfer phenomena between front and rear
axles, consider the case where the vehicle is subject to a constant acceleration
v̇. In this case, considering the force and torque balance at the projection
of the centre of mass to the ground with rotations taken to be positive in
clockwise direction, gives

Mg =Fzf
+ Fzr

, (2.20)
Mv̇h = − Fzf

lf + Fzr lr,

where (see also Figure 2.5 and Table 2.3) lf and lr are the distances between
the projection of the centre of mass to the ground and the front and rear
wheel contact points and h is the height of the centre of mass from the
ground. Solving these equations for Fzf

and Fzr
yields

Fzf
= Wf −ΔFz

v̇, (2.21)
Fzr = Wr +ΔFz v̇,

where

Wf =
Mglr
l

,
(2.22)

Wr =
Mglf
l
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are the static vertical loads at the front and rear wheels, and

ΔFz
=
Mh

l
(2.23)

is the coefficient of the load transfer component in (2.21) due to the vehi-
cle acceleration, which is equal and opposite at the front and rear wheels.
In (2.22) and (2.23), l = lf + lr is the wheelbase, h is the height of the centre
of mass and g is the gravitational acceleration.

Note, finally, that v̇ is the vehicle acceleration, hence is negative during
braking. Thus, Equation 2.21 correctly accounts for the fact that the front
wheel experiences a positive load variation in the face of a braking manoeuvre,
while the opposite is true for the rear wheel

In system (2.19) the state variables are v and ωi, i = {f, r}. As λi, v and
ωi are linked by the algebraic relation (2.5), it is possible to replace ωi with
λi as state variables in the same way as it was done for the single-corner
model. As for the centre of mass longitudinal dynamics in (2.19), based on
the description of the longitudinal force in (2.12) and in view of (2.21), it can
be re-written as

v̇ = − Wfμ(λf ) +Wrμ(λr)
M −ΔFz

(μ(λf ) − μ(λr))
. (2.24)

To compute the expression of the evolution in time of the front and rear
wheel slip λi, i = {f, r}, we consider the longitudinal force description given
in (2.12) and the vertical force description (2.21). Further, we compute

λ̇i = − r

v
ω̇i +

rωi

v2
v̇

and use the relationship
ωi =

v

r
(1 − λi)

together with the wheel dynamics in (2.19). This leads to the set of equations

λ̇f = − r

Jv

(
Ψf (λf , λr) − Tbf

)
,

λ̇r = − r

Jv
(Ψr(λf , λr) − Tbr

) , (2.25)

v̇ = − Wfμ(λf ) +Wrμ(λr)
M −ΔFz

(μ(λf ) − μ(λr))
,

where

Ψf (λf , λr) =
[
r(Wf −ΔFz

v̇)μ(λf ) − J

r
(1 − λf )v̇

]
, (2.26)

Ψr(λf , λr) =
[
r(Wr +ΔFz v̇)μ(λr) −

J

r
(1 − λr)v̇

]
. (2.27)
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Also in this case, we assume that the longitudinal dynamics of the vehi-
cle are much slower than the rotational dynamics of the wheels due to the
differences in inertia. Thus, we regard v as a slowly-varying parameter and
neglect the third equation of model (2.25).

Note that the double-corner model does not include the suspensions dy-
namics, as the vertical load is modelled via the vehicle deceleration only. In
the general case, if the dynamics of the suspensions are taken into account
and modelled as a linear spring-damper system, the effect on the wheel slip
dynamics is the presence of a resonance and an anti-resonance due to the
heave and pitch dynamics, usually located at the chassis frequency, which
is lower than the frequency range at which wheel dynamics act. As such,
the proposed double-corner model is appropriate for braking control systems
design in most cases. The analysis of the effects of the neglected dynamics
must again be carried out via simulations on full vehicle models and finally
based on the tests results obtained on the target vehicle. Of course, particu-
lar specifications or specific vehicle geometries might require the suspensions
dynamics to be considered explicitly in the control-oriented model of the
braking dynamics. Such an issue must be evaluated by the control engineer
for each specific case.

Table 2.3 Parameters of the double-corner model

Parameter Physical meaning Numerical value
r Front and rear wheel radius 0.3 m
h Height of the centre of mass from ground 0.5 m
J Wheels inertia 1kgm2

M Double-corner mass 450 kg
l = lf + lr Wheelbase 2.8 m

lf , lr Front and rear axles length lf = 1.2 m, lr = 1.5 m

2.5 Linearised Models and Dynamic Analysis

The first step in the analysis of the braking dynamics is the computation and
discussion of the equilibrium points for the considered models, followed by
their linearisation around the equilibrium points themselves. Based on the
linearised models it will be also possible to carry out a dynamic analysis by
means of the study of the system frequency response in order to investigate
the model sensitivity to some vehicle parameters of interest.
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2.5.1 Single-corner Model Analysis

We start by analysing the single-corner model (2.15), computing its equi-
librium points and discussing two possible approaches to its linearisation.
Further, the transfer function from braking torque to wheel slip will be de-
termined and analysed to illustrate the dynamic dependency of the model on
vehicle speed and vertical load.

Figure 2.6 Equilibrium points for the single-corner model (2.29) in the (λ, Tb) plane
(example with Fz = mg and dry asphalt)

2.5.1.1 Equilibrium Points

To compute the equilibrium points note that by setting v̇ = 0 and ω̇ = 0 in
system (2.15), the corresponding equilibrium is given by λ = 0 and Tb = 0.
This corresponds to a constant-speed condition without braking; this equilib-
rium condition is trivial and meaningless for the design of a braking controller.
The equilibrium points we are interested in – during braking – are charac-
terised by λ̇ = 0, i.e., constant longitudinal slip λ = λ and thus constant
normalised linear wheel deceleration η = η (see Equation 2.16). Moreover,
note that for any control input Tb ≥ 0, the wheel slip is non-negative, i.e.,
λ ≥ 0. In fact, for non-negative braking torques, the vehicle is either at con-
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stant speed or it is braking, and – by the wheel slip definition in (2.5) –
λ ∈ [0, 1] during braking.

According to the assumption of regarding the vehicle speed v as a slowly-
varying parameter, system (2.18) can be formulated as a first-order model of
the wheel slip dynamics only in the form

λ̇ = −1
v

(
(1 − λ)
m

+
r2

J

)
Fzμ (λ) +

r

Jv
Tb, (2.28)

which, expressing v as v = ωr
1−λ and assuming that λ ∈ [0, 1), can be re-

written as
λ̇ = −1 − λ

Jω
(Ψ(λ) − Tb) , (2.29)

with ω > 0 and

Ψ(λ) =
(
r +

J

rm
(1 − λ)

)
Fzμ(λ). (2.30)

When inspecting Equation 2.29, it is obvious that the equilibrium points are
characterised by

T b = Ψ(λ). (2.31)

Specifically, when μ(λ) is expressed by means of (2.13) and the control
input is constant, i.e., Tb = T b, the system exhibits the equilibrium points
represented, in Figure 2.6, by the intersections between the curve Ψ(λ) and
the constant value of the braking torque T b. To summarise the system be-
haviour, one may note the following.

1. If T b > max
λ

Ψ(λ), the system has no equilibrium points (recall that the

model has been derived under the assumption that λ ∈ [0, 1).
2. If T b ≤ max

λ
Ψ(λ), the system has at most two equilibria, namely λ̄1 and

λ̄2 in Figure 2.6, where λ̄1 ≤ λ̄2 are the two possibly coincident1 solutions
of

T b = Ψ(λ). (2.32)

As the considered nonlinear system (2.29) is a first-order one, the stability
properties of the equilibrium points can be easily investigated by analysing
the behaviour of the open-loop vector field in the case T b ≤ max

λ
Ψ(λ).

To this end, refer to Figure 2.7, where the graph of λ̇ as a function of
λ is displayed for Tb = T b = 600 Nm, i.e., the same condition depicted in
Figure 2.6. As can be seen from the figure (and also by inspecting (2.29)) λ̄1

is a locally asymptotically stable equilibrium, while and λ̄2 is unstable (see
also Appendix A).

Note further that analysing the expression of Ψ(λ) in (2.30), as rm >> J ,
one has Ψ(λ) � rFzμ(λ). As such, the wheel slip value corresponding to the

1 Note that the two solutions of (2.32) coincide only if T b = max
λ

Ψ(λ).
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Figure 2.7 Graph of λ̇ as a function of λ

abscissa of the maximum of Ψ(λ) is – for all practical purposes – that of the
peak of the friction curve.

As such, the nonlinear analysis performed confirms the common knowledge
that, for constant values of the braking torque, the equilibria associated with
slip values beyond the peak of the tyre–road friction curve (see also Figure 2.3)
are unstable. It is well known that the optimal trade-off between longitudinal
friction force and lateral directional force is achieved if a set-point value for
the wheel slip is chosen close to the peak value of the curve μ(λ).

A final remark about model (2.29) is due. If we remove the assumption that
λ ∈ [0, 1), and consider also the value λ = 1, that is completely locked wheels,
as an admissible one, then Equation 2.29 clearly shows that λ = 1 implies
λ̇ = 0 for all values of the braking torque Tb, which means that the condition
of locked wheels is an equilibrium point for the system. However, as can be
seen from Figure 2.7 the point λ = 1 is located on the boundary of the domain
where the state variable λ is defined and thus its stability properties cannot
be directly investigated with the standard analysis tools used in Lyapunov
stability theory (see also Appendix A), as the concept of neighbourhood of
the equilibrium point cannot be properly defined. Moreover, for model (2.29)
to hold one needs ω > 0, which in turn implies that λ cannot in fact be equal
to 1, but can only approach 1 from the left.

For the design of a braking controller, it is also interesting to express the
equilibrium points of the single-corner model in the (λ, η) plane. To do this,
recall first that the wheel slip definition (2.5) gives
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λ = 1 − ωr

v
, (2.33)

which, differentiating with respect to time and letting λ̇ = 0, yields

(ωv̇ − vω̇)
v2

= 0,

namely

ω̇ = ω
v̇

v
.

By substituting ω = v(1 − λ)/r and recalling the second equation of sys-
tem (2.18), one has

ω̇ = − Fz

mr
(1 − λ)μ(λ),

which, recalling the definition of η in (2.16), becomes

η(λ) = Ξ(λ) :=
Fz

mg
(1 − λ)μ(λ), (2.34)

which is the desired closed-form expression of the steady-state relationship
between η and λ.

Figure 2.8 Equilibrium points for the single-corner model (2.29) in the (λ, η) plane
(example with Fz = mg and dry asphalt)

In Figure 2.8 the equilibrium manifold Ξ(λ), see (2.34), is displayed in
the (λ, η)-domain for case of Fz = mg and dry asphalt. It is interesting to
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observe Ξ(λ) (and thus the normalised wheel deceleration η goes to zero as λ
approaches 1, i.e., as the wheel locks). Also notice that since Ξ(λ) is a non-
monotone function, for each value η ≤ maxλ Ξ(λ) there are two admissible
slip equilibrium points λ1 and λ2, whereas if η > maxλ Ξ(λ) no equilibrium
points exist, which is exactly the same condition as that obtained for the case
of the braking torque Tb analysed before for λ ∈ [0, 1).

To investigate the stability properties of the equilibrium points, we can
carry out the same graphical analysis of the vector field used for the braking
torque input, by suitably rearranging the wheel slip dynamic equation and
expressing it as a function of the normalised wheel deceleration.

To this end, first note that, substituting the definition of η in the wheel
speed dynamics given in the first equation of system (2.17), one obtains that
the normalised linear wheel deceleration dynamics are given by

η =
r

Jg
(Tb − rFzμ(λ)). (2.35)

Substituting this expression together with the equation for the equilibrium
manifold Ξ(λ) in (2.34) into the wheel slip dynamics (2.29) and rearranging
the equation, one obtains

λ̇ = −g 1 − λ

Jω
(Ξ(λ) − η) , (2.36)

with ω > 0.

Figure 2.9 Graph of η as a function of λ
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The graph of η as a function of λ is shown in Figure 2.9. As can be seen also
by inspecting (2.36), λ̄1 is a locally stable equilibrium, while λ̄2 is unstable
(see also Appendix A). Note finally that the discussion on the case λ = 1 is
identical to that carried out previously with reference to the graph of λ̇ as a
function of λ.

2.5.1.2 Model Linearisation

Consider now the following variables, defined around an equilibrium point
(characterised by T b, λ, η):

δTb = Tb − T b; δλ = λ− λ; δη = η − η.

To carry out the linearisation of the system, a crucial issue is how to
consider and manage the dynamic dependency on the variable v. Often (see,
e.g., [41]), a simple quasi-static assumption is made: v is assumed to be a
slowly-varying parameter since it is assumed that the longitudinal dynamics
of the vehicle are much slower than the rotational dynamics of the wheel. As
such, to linearise the model, the simplest approach is to neglect the second
equation (vehicle dynamics) of system (2.15) and work with the first-order
model of the wheel dynamics.

To do this, let us define

μ1(λ) :=
∂μ

∂λ

∣∣∣∣
λ=λ

, (2.37)

which represents the slope of the μ(λ) curve around an equilibrium point.
By means of this definition, the friction curve μ(λ) is replaced by its first-

order Taylor series around the equilibrium point λ, namely

μ(λ) ≈ μ(λ) + μ1(λ)δλ. (2.38)

Linearising the wheel dynamics model (2.28) assuming a constant speed
value, i.e., v = v, one obtains

δλ̇ =
Fz

v

[
μ(λ)
m

− μ1(λ)
(

(1 − λ)
m

+
r2

J

)]
δλ+

r

Jv
δTb.

Thus, the transfer function Gλ(s) from δTb to δλ takes the form

Gλ(s) =
r

Jv

s+ Fz

mv

[
μ1(λ)

(
(1 − λ) + mr2

J

)
− μ(λ)

] . (2.39)

Now, linearising the relationship linking η and ω̇ given in (2.35) one obtains
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δη =
r

Jg
δTb −

r2

Jg
μ1(λ̄)Fzδλ. (2.40)

Thus, the transfer function from δTb to δη takes the form

Gη(s) =
r

Jg

[
s+ Fz

mv

(
μ1(λ)(1 − λ) − μ(λ)

)]
s+ Fz

mv

[
μ1(λ)

(
(1 − λ) + mr2

J

)
− μ(λ)

] . (2.41)

To enlarge the range of validity of the linearised model taking into more
direct account the variability of the vehicle speed v, one may use an intermedi-
ate approach: the linearisation is done by explicitly considering the variations
of v, locally around the non-equilibrium value v (namely, δv = v − v); v is
then considered a slowly-varying parameter in the linearised model.

Thus, no assumptions on the frequency decoupling between chassis and
wheel dynamics are while carrying out the linearisation, and the first-order
Taylor expansion of the friction curve μ(λ) becomes

μ(λ(v, ω)) ≈ μ(λ̄) +
[
∂μ

∂λ

∂λ

∂v

]∣∣∣∣
λ=λ̄

δv +
[
∂μ

∂λ

∂λ

∂ω

]∣∣∣∣
λ=λ̄

δω = (2.42)

= μ(λ̄) + μ1(λ̄)
ω̄r

v̄2
δv − μ1(λ̄)

r

v̄
δω.

Linearising system (2.18) with the above expression for the friction curve
one obtains the following second-order linear state space representation

ẋ(t) = Ax(t) +Bu(t), (2.43)
y(t) = Cx(t),

where x = [δω δv]T , u = δTb and

A =

[
−μ1(λ̄)Fzr2

Jv̄
μ1(λ̄)Fzr2ω̄

Jv̄2

μ1(λ̄)Fzr
mv̄ − μ1(λ̄)Fzrω̄

mv̄2

]
, B =

[
− 1

J
0

]
.

Considering as output the wheel speed δω, namely setting C = [1 0], the
transfer function from δTb to δω is obtained as

Gω(s) = C(sI −A)−1B = − 1
Js

s+ μ1(λ̄)Fz

mv (1 − λ̄)

s+ μ1(λ̄)Fz

mv

(
(1 − λ̄) + mr2

J

) . (2.44)

Note that the pole at the origin of Gω(s) corresponds to the physical
situation where, in correspondence to a constant braking torque, the angular
wheel speed decreases with constant deceleration.

Recalling now the definition of the normalised wheel deceleration η in (2.16),
one obtains
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Gη(s) = − r

g
Gω̇(s) =

r

Jg

s+ μ1(λ̄)Fz

mv (1 − λ̄)

s+ μ1(λ̄)Fz

mv

(
(1 − λ̄) + mr2

J

) . (2.45)

Finally, via Equation 2.40 and Equation 2.45, the transfer function Gλ(s)
is obtained as

Gλ(s) =
r

Jv

1

s+ μ1(λ̄)Fz

mv

(
(1 − λ̄) + mr2

J

) . (2.46)

It is now interesting to compare the transfer functions Gλ(s) and Gη(s) ob-
tained with the two linearisation approaches. The comparison can be carried
out considering first the case where μ1(λ) ∼= 0, i.e., when the linearisation
point is close to the peak of the friction curve. In this case, the linearised wheel
slip dynamics yielded by the first linearisation method, see Equation 2.39, be-
come

Gλ(s) =
r/Jv

s− Fz

mvμ(λ)
, (2.47)

while those obtained with the second linearisation method, see Equation 2.46,
give

Gλ(s) =
r/Jv

s
. (2.48)

As for Gη(s), the two approaches give the same result due to a zero/pole
cancellation2, which holds in both cases and yields

Gη(s) =
r

Jg
. (2.49)

Thus, the first linearisation method yields an unstable linearised system
at the peak of the friction curve, while the second one has the peak of the
friction curve as stability boundary for the linearised model, which separates
the open-loop (locally) asymptotically stable equilibrium points from the
unstable ones.

On the other hand, when μ1(λ) is dominant with respect to μ(λ) (note
that due to the friction curves shape – see Figure 2.3 – this is true for most
values of λ on all surfaces except snow), the two linearisation approaches
provide comparable results.

In the following, when dealing with the single-corner model we work on
the transfer functions obtained with the second linearisation procedure, as it
yields models that have the friction curve peak as stability boundary and this
better reflects the results obtained with the analysis of the nonlinear model.

Thus, we work with Gλ(s) and Gη(s) having their single pole located at

2 Note that with the first linearisation approach the pole/zero pair which cancels out
has positive real part, as the zero and pole have same the expression as the pole of
Gλ(s) in (2.47), whereas with the second linearisation approach the cancellation is of
a pole/zero pair at the origin (see Equation 2.45).
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sp = −μ1(λ̄)Fz

mv

[
(1 − λ̄) +

mr2

J

]
, (2.50)

and with the zero of Gη(s) given by

sz = −μ1(λ̄)Fz

mv
(1 − λ̄). (2.51)

2.5.1.3 Stability Analysis

Based on the transfer function models (2.46) and (2.45), stability and
minimum-phase properties of the linearised system can be analysed easily.

Stability Condition Based on Gλ(s) and Gη(s)

The linearised single-corner model with transfer functions Gλ(s) and Gη(s)
is asymptotically stable if and only if

μ1(λ)Fz

mv

[
(1 − λ) +

mr2

J

]
> 0,

which, the term in the brackets being positive, reduces to μ1(λ) > 0.
This means that Gλ(s) and Gη(s) are open-loop unstable if the equilibrium

λ occurs beyond the peak of the curve μ(λ).

Further, it is worth noting that the transfer function Gη(s) is minimum
phase3 if and only if its pole and zero are in the left half plane and its static
gain is positive. The condition on the pole is μ1(λ) > 0, while the others are
given by

Gη(0) =
gv

μ1(λ)Fz

> 0,

and
μ1(λ)Fz

mv

(
1 − λ

)
> 0,

which can be again reduced to μ1(λ) > 0.
This means that Gη(s) is non-minimum phase if the equilibrium λ occurs

beyond the peak of the curve μ(λ).
This analysis has shown that the choice of the equilibrium point strongly

affects the stability and minimum-phase properties of the linearised single-
corner model. Specifically, by applying Lyapunov linearisation method (see
Section A.2.1.2), one has that for constant values of the braking torque, the

3 A linear and time-invariant system with transfer function G(s) is said to be mini-
mum phase if G(s) has positive gain, all its zeros and poles are in the left half plane
and it does not contain any pure delay.
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equilibria of system (2.18) associated with slip values beyond the peak of the
tyre–road friction curve are unstable, which is consistent with the analysis
carried out on the nonlinear system equations.

This instability can hardly be handled by non-professional drivers and it
represents another important motivation for the design of ABS systems.

Figure 2.10 Magnitude and phase Bode plots of the frequency response associated
with Gλ(s) for different longitudinal speed values (the nominal linearisation condi-
tions are as in Table 2.4)

2.5.1.4 Numerical Sensitivity Analysis

It is now worth analysing the effects that some specific system parameters
have on the linearised single-corner dynamics. To this end, we first point out
that the nominal linearisation conditions are given in Table 2.4. Based on
these, we will now analyse the effect of varying the vehicle speed and the
vertical load, the latter being represented by the variable Fz.

The analysis carried out in the previous section has shown that the lon-
gitudinal vehicle speed v, which is being considered as a slowly-varying pa-
rameter, does not affect the stability and minimum-phase properties of the
linearised braking dynamics.

However, it has the very awkward effect of acting as a time scale on the
wheel dynamics. As a matter of fact, notice that both the pole and the zero
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are characterised by the multiplying factor 1/v. In Figure 2.10 the magnitude
and phase Bode plots of the frequency response associated with Gλ(s) (in the
nominal linearisation conditions listed in Table 2.4) are displayed for three
different values of v. Note that the angular frequency of the pole of the
linearised wheel dynamics for v = 3 m/s is a decade larger than that for
v = 30 m/s. Clearly, this scaling effect must somehow be taken into account
in the design of a braking controller. This issue was extensively considered
in [41], where a simple but effective adaptive control strategy was proposed,
using a v-dependent gain-scheduling rationale.

Table 2.4 Nominal linearisation conditions for the single-corner model

Variable Steady-state value

λ 0.05
T b 600 Nm
v 25 m/s

Fz mg
Road conditions Dry asphalt (see Table 2.1)

For braking control design, it is useful to also investigate the effects of the
vertical load Fz on Gλ(s). To highlight the effect of vertical load variations,
it is useful to rewrite Gλ(s) as

Gλ(s) =
r

Jv

s+
[
μ1(λ)Ng

v

(
(1 − λ) + mr2

J

)] , (2.52)

where
N =

Fz

mg
(2.53)

represents the ratio between the actual vertical load Fz and its static value
mg and allows us to highlight the effects of the load transfer that occurs
during braking.

As can be seen in Figure 2.11, and recalling Figure 2.10, the vertical load
mainly affects the low frequency behaviour of Gλ(s), while the longitudinal
speed v is the dominating effect at high frequency, acting as a scaling on the
wheel dynamics. In fact, the static gain of Gλ(s) is given by

Gλ(0) =
r

JNv

μ1(λ)Fz

mv

[
(1 − λ) + mr2

J

] , (2.54)

while the high frequency gain has the form

lim
s→∞ sGλ(s) =

r

Jv
, (2.55)

and these expressions explain the behaviour in Figures 2.10 and 2.11.
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Figure 2.11 Magnitude and phase Bode plots of the frequency response associated
with Gλ(s) for different values of the vertical load (the nominal linearisation condi-
tions are as in Table 2.4)

2.5.2 Double-corner Model Analysis

We now analyse the double-corner model introduced in Section 2.4. For this
model we will be able to analytically study the system equilibrium points and
to carry out the model linearisation explicitly. Further, the transfer function
matrix will be obtained. Finally, the proposed dynamical models will be com-
pared based on the analysis of their frequency responses.

2.5.2.1 Equilibrium Points

Once again, we are interested in the equilibrium points characterised by λ̇i =
0, i = {f, r}, i.e., constant longitudinal slip λi = λi, which in turn yields a
constant deceleration v̇ = v̇.

As mentioned in Section 2.4, we work on the first two equations of sys-
tem (2.25) and consider v as a parameter. Therefore, the system dynamics
we are interested in are given by
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λ̇f = − r

Jv

(
Ψf (λf , λr) − Tbf

)
,

λ̇r = − r
Jv (Ψr(λf , λr) − Tbr

) ,
(2.56)

where Ψf (λf , λr) and Ψr(λf , λr) are as in (2.26) and (2.27), respectively.
Figures 2.12(a) and 2.12(b) show a plot of the functions Ψf (·, λr) and

Ψr(λf , ·), respectively, obtained for different values of λr and λf . As it is ap-
parent by inspecting these figures, the front wheel behaviour is substantially
independent from that of the rear wheel, while the latter is strongly coupled
to the front one.

This can be explained recalling the expression of Ψf (·, λr) and Ψr(λf , ·)
given in (2.26) and (2.27). As a matter of fact, as v̇ is negative during brak-
ing, Ψf (·, λr) and Ψr(λf , ·) are different in magnitude, as the term ΔFz

v̇ is
negative. This difference in magnitude makes Ψr(λf , ·) much more sensitive
to the variations in the wheel slip λf , which modifies both the numerical
value and the shape of the function v̇ in (2.24).

As such, the equilibrium points for each wheel have the form

Ψf (λf , λr) = T bf , (2.57)

Ψr(λf , λr) = T br,

and thus share the same structure with those analysed for the single-corner
model, see Equation 2.31. Thus, the reasoning used in Section 2.5.1 to study
the system equilibria for the single-corner model can be applied also in this
case. In fact, for both the front and the rear wheels, conditions (2.57) can be
pictorially described as in Figure 2.6 and similar conclusions can be drawn.

2.5.2.2 Model Linearisation

To linearise the double-corner model (2.56), let us define the variables
δλf = λf − λf , δλr = λr − λr, δTbf = Tbf − T bf and δTbr = Tbr − T br.

To perform the linearisation we work under the assumption of constant
vehicle speed. This choice is motivated by the fact that with this assumption
the linearisation procedure can be carried out analytically in a rather simple
manner. Of course, the alternative linearisation method considered for the
single-corner model in Section 2.5.1 (see in particular Equation 2.42) can
be applied also to this case, but the computations are too complex to be
analysed explicitly.

Thus, the Taylor expansion of the tyre–road friction coefficient has the
form

μ(λi) ≈ μ(λi) + μ1(λi)δλi, i = {f, r}, (2.58)

where μ1(λ) is as in (2.37). Further, to simplify the notation of the linearised
equations, we introduce the following definition:
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(a)

(b)

Figure 2.12 Plot of (a) Ψf (·, λr) for different values of λr: λr = 0.1 (solid line),
λr = 0.5 (dashed line) and λr = 0.8 (dotted line) and (b) Ψr(λf , ·) for different values
of λf : λf = 0.1 (solid line), λf = 0.5 (dashed line) and λf = 0.8 (dotted line)
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δΨ i,j :=
∂Ψi(λi, λj)

∂λj

∣∣∣∣
λi=λi,λj=λj

, i = {f, r}. (2.59)

Thus, the linearised equations of the double-corner model (2.56) have the
form { ˙δλf = − r

Jv

(
δΨf,fδλf + δΨf,rδλr − δTbf

)
,

˙δλr = − r
Jv

(
δΨr,fδλf + δΨr,rδλr − δTbr

)
,

(2.60)

where

δΨf,f =rWfμ1(λf )+
[
rΔFzμ1(λf )− J

r

]
v̇+

(2.61)

+
[
rΔFzμ(λf )+

J

r
(1 − λf )

]
v̇+,f ,

δΨf,r =
[
rΔFzμ(λf ) +

J

r
(1 − λf )

]
v̇+,r, (2.62)

δΨr,f =
[
−rΔFzμ(λr) +

J

r
(1 − λr)

]
v̇+,f , (2.63)

δΨr,r =rWrμ1(λr) −
[
rΔFzμ1(λr) +

J

r

]
v̇+

(2.64)

−
[
rΔFzμ(λr)−

J

r
(1 − λr)

]
v̇+,r,

and

v̇+ =
Wfμ(λf ) +Wrμ(λr)

M −ΔFz
[μ(λf ) − μ(λr)]

, (2.65)

v̇+,f =
Wfμ1(λf )

M −ΔFz
[μ(λf ) − μ(λr)]

+ΔFz
μ1(λf )

Wfμ(λf ) +Wrμ(λr)(
M −ΔFz

[μ(λf ) − μ(λr)]
)2 ,

(2.66)

v̇+,r =
Wrμ1(λr)

M −ΔFz
[μ(λf ) − μ(λr)]

−ΔFzμ1(λr)
Wfμ(λf ) +Wrμ(λr)(

M −ΔFz
[μ(λf ) − μ(λr)]

)2 .
(2.67)
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G(s) =
[
δλf

δλr

]
=
[
Gff (s) Gfr(s)
Grf (s) Grr(s)

] [
δTbf

δTbr

]
, (2.68)

which describes the wheel slip dynamics of the double-corner model.
To compute the expression of the transfer function matrix in (2.68), con-

sider that system (2.60) has the following second-order state space represen-
tation:

ẋ(t) = Ax(t) +Bu(t), (2.69)
y(t) = Cx(t),

where x = [δλf δλr]T and u = [δTbf δTbr]T , and

A = − r

Jv

[
δΨf,f δΨf,r

δΨr,f δΨr,r

]
,

B =
r

Jv

[
1 0
0 1

]
,

C =
[
1 0
0 1

]
.

Thus, computing G(s) = C(sI −A)−1B, yields

G(s) =
r/Jv

D(s)

[
(s+ r

Jv δΨr,r) − r
Jv δΨf,r

− r
Jv δΨr,f (s+ r

Jv δΨf,f ),

]
, (2.70)

with

D(s) = s2 +
r

Jv
(δΨf,f + δΨr,r)s+

[ r

Jv

]2 (
δΨf,fδΨr,r − δΨf,rδΨr,f

)
.

(2.71)

2.5.2.3 Stability Analysis

Based on the transfer function matrix (2.70), the stability and minimum-
phase properties of the linearised double-corner model can be easily analysed.

The linearised double-corner model with transfer function matrix (2.70) is
asymptotically stable if and only if the coefficients of the denominator D(s)
in (2.71) are non-zero and have the same sign4.

To work out this condition in a meaningful and readable manner, we pro-
ceed by assuming that the front wheel dynamics are independent of those of
the rear wheel, i.e., we disregard the dependence of Ψf (λf , λr) from λr and
set δΨf,r = 0. This assumption is motivated by the analysis carried out in

4 For a second-order polynomial, this is a necessary and sufficient condition for its
roots to have negative real part.

The expressions obtained are useful for deriving the transfer function matrix
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Section 2.4 (see also Figures 2.12(a) and 2.12(b)). Further, we perform the
linearisation about λf = λr = λ.

Under this assumption, one has asymptotic stability of the linearised model
if and only if {

δΨf,f + δΨr,r > 0,
δΨf,fδΨr,r > 0.

(2.72)

In view of the above assumptions and of the expressions of δΨf,f and δΨr,r

in (2.61) and (2.64), the first equation of (2.72) has the form

δΨf,f + δΨr,r = r(Wf +Wr)μ1(λ) − 2
J

r
v̇+

+
J

r
(1 − λ)[v̇+,f + v̇+,r] + rΔFzμ(λ)[v̇+,f − v̇+,r]

= r(Wf +Wr)μ1(λ)
[
1 +

J

r2M

(
−2

μ(λ)
μ1(λ)

+ (1 − λ)
)

+
2ΔFzμ(λ)2

M2

]
> 0,

which, considering that J/(r2M) << 1 reduces to μ1(λ) > 0.
Analysing now the second condition (2.72), one obtains

δΨf,fδΨr,r = r2WfWrμ1(λ)2 +
(
J2

r2
− r2Δ2

Fz
μ1(λ)2

)
v̇
2
+

+
(
J2

r2
(1 − λ)2 − r2Δ2

Fz
μ(λ)2

)
[v̇+,f v̇+,r]

∼= r2WfWrμ1(λ)2
[
1 −

Δ2
Fz
μ(λ)2

M2

(Wf +Wr)2

WfWr
−
Δ2

Fz
μ(λ)2

M2

]
> 0,

which, considering that the two negative terms in the square brackets are
both << 1, is trivially satisfied for all choices of the linearisation point.

This analysis shows that the linearised system with transfer function G(s)
is open-loop unstable if the equilibrium (λf , λr) occurs beyond the peak of
the curve μ(λ), thus yielding the same stability condition found for the single-
corner model.

Further, it is interesting to note that the static gain of Gff (s) is given by

Gff (0) =
δΨr,r(

δΨf,fδΨr,r − δΨf,rδΨr,f

) ∼=
1

δΨf,f

, (2.73)

while similarly that of Grr(s) has the form

Grr(0) =
δΨf,f(

δΨf,fδΨr,r − δΨf,rδΨr,f

) ∼=
1

δΨr,r

. (2.74)
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By analysing the expression of δΨf,f in (2.61) and observing that v̇+,r > 0
if and only if μ1(λ) > 0 (see Equation 2.66), one has that the static gain of
Gff (s) is positive if the linearisation point is before the peak of the friction
curve (note that the same was true for the single-corner model, see Equa-
tion 2.54). To see that this holds also for Grr(s), consider the expression of
δΨr,r in (2.64), which can be rewritten as

δΨr,r = rWrμ1(λ) − rWrΔFz
μ(λ)μ1(λ)
M

− r(Wf +Wr)ΔFzμ(λ)μ1(λ)
M

[
1 +

ΔFzμ(λ)
M

]
∼= rWrμ1(λ)

[
1 − ΔFz

μ(λ)
M

(
1 +

(Wf +Wr)
Wr

)]
∼= rWrμ1(λ).

Finally, the zero of the transfer functions Gff (s) and Grr(s) has the form

sz = − r

Jv
δΨ i,i, i = {f, r}.

Thus, the zero is negative if and only if δΨ i,i > 0 and this, as shown above,
happens when μ1(λ) > 0, thus again yielding results that are qualitatively
equal to those obtained for the single-corner model.

Moving to the transfer functions Gij(s), i = {f, r} of the coupling terms,
one has that the static gain is given by

Gij(0) =
−δΨ i,j

r
Jv

(
δΨ i,iδΨ j,j − δΨ i,jδΨ j,i

) ∼=
−δΨ i,j

r
Jv

(
δΨ i,iδΨ j,j

) . (2.75)

Thus, while the static gain of the direct transfer functions Gff (s) and Grr(s)
is independent of v as it was for the single-corner model, see Equation 2.54,
this is not true for the transfer functions of the coupling terms, whose static
gain is inversely proportional to v. Further, note that the static gain of the
transfer function Grf (s) is positive for all linearisation points with μ1(λ) > 0,
as – see Equation 2.63 – one has that

δΨr,f
∼= −rΔFz

μ(λ)μ1(λ)
Wf

m
. (2.76)

Conversely, the static gain of the transfer function Gfr(s) is negative for all
linearisation points with μ1(λ) > 0, as – see Equation 2.62 – one has that

δΨf,r
∼= rΔFz

μ(λ)μ1(λ)
Wr

m
. (2.77)

Finally, the high frequency gain for the direct terms Gff (s) and Grr(s)
has the form
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lim
s→∞ sGii(s) =

r

Jv
, i = {f, r}, (2.78)

as was the case for the single-corner model, see Equation 2.55, while for the
coupling terms it is given by

lim
s→∞ s2 Gij(s) = −

[ r

Jv

]2
δΨ i,j , i = {f, r}. (2.79)

Table 2.5 Nominal linearisation conditions for the double-corner model

Variable Steady-state value

λf 0.05

λr 0.07
T bf 859 Nm
T br 395 Nm
v 25 m/s
v̇ -8.8 m/s2

Fzf 3.193.2 N
Fzr 1221.5 N

Road conditions Dry asphalt (see Table 2.1)

2.5.2.4 Numerical Sensitivity Analysis

For the double-corner model, the analysis is carried out for the equilibrium
point characterised by the values given in Table 2.5, which reports the lin-
earisation conditions for the double-corner model. To analyse the open-loop
behaviour of the transfer function matrix (2.68), let us refer to Figures 2.13
and 2.14, where the magnitude and phase Bode plots of frequency responses
associated with the transfer functions in (2.68) are plotted. Note further that
to perform a comparison with the single-corner model, the transfer functions
Gff (s) and Grr(s) are also compared with their single-corner counterparts.
The latter have been obtained employing the steady-state values in Table 2.5.

• Single-corner versus Double-corner Model
The comparison is done first of all by analysing the transfer functions
Gff (s) and Grr(s) and their counterparts obtained with the single-corner
model. As can be seen, the single-corner model and the double-corner
model do not show significant differences. This is due to the fact that
considering Equation 2.71 and assuming again to disregard the dependency
of Ψf (λf , λr) from λr, i.e., setting δΨf,r = 0, one has that the denominator
D(s) in (2.71) takes the form

D(s) = (s+
r

Jv
δΨf,f )(s+

r

Jv
δΨr,r). (2.80)
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Figure 2.13 Magnitude Bode plots of the frequency response associated with the
transfer function matrix (2.68)
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Figure 2.14 Phase Bode plots of the frequency response associated with the transfer
function matrix (2.68)

Thus, under this assumption there is a cancellation between one of the
poles and the zero of the direct terms, see Equation 2.70, and the double-
corner model reduces in fact to the single-corner one. Actually, if no as-
sumptions are made, the cancellation is not exact but nonetheless tends
to cancel out the effects of the pole and of the zero, which indeed remain
quite close. Further, coherently with the analysis carried out on the high-
frequency gain, the single-corner and the double-corner model share the
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same behaviour at high frequency. Due to this fact, the effects of longitudi-
nal vehicle speed variations act as a frequency scaling on the transfer func-
tions Gff (s) and Grr(s) of the double-corner model exactly in the same
way as they do for the single-corner model, see Equations 2.55 and 2.78.

• Coupling Terms
The most interesting feature of the double-corner model is its ability to
describe the dynamic coupling between front and rear axles. As can be
seen from Figure 2.13 the static gain of the coupling terms Gfr(s) and
Grf (s) is of the same magnitude as that of the direct transfer functions
Gff (s) and Grr(s).
Finally, the phase diagram in Figure 2.14 allows us to confirm the be-
haviour of the static gains of the coupling terms outlined in Equations 2.76
and 2.77. Specifically, the cross coupling term Grf (s) has negative static
gain. This has the following intuitive physical interpretation: when a con-
stant braking torque is applied to the front wheel, the front wheel slip λf

increases (recall that λ is positive during braking) and this in turn causes
the vehicle speed v to decrease. Hence, the effect on the rear axle (whose
wheel speed ωr is unaffected by the change on λf ) is a decrease in the rear
wheel slip as λr = 1 − rωr/v. Note that this is in principle true also for
the effect of the rear wheel on the front one, but because the effect of the
rear wheel slip on the front one is very weak this is not evident.

2.6 Summary

In this chapter the adopted analytical description of the tyre–road contact
forces was introduced and the dynamical models of the braking dynamics,
which will serve as a basis in the control design phase, namely the single-
corner and the double-corner models, were described.

Specifically, a complete analysis was carried out, both on the nonlinear
models and on their linearised versions, so as to highlight the equilibrium
points, their stability properties as a function of the model parameters and
the frequency response characteristics.

These results constitute the necessary background on braking dynamics
analysis and will serve as a basis for the next chapters where active braking
controllers will be designed.



Part II

Braking Control Systems Design:
Basic Solutions



This part of the book deals with the main aspects of both braking control
and estimation. Specifically, the basic solutions to braking control systems
design are introduced based on the two different types of considered actuators,
starting with braking systems with continuous dynamics, and then moving to
the case of braking systems with on/off dynamics. Finally, the fundamental
problem of longitudinal wheel slip estimation is studied, which is inextricably
linked with active braking controller design.



Chapter 3

Braking Control Systems Design:
Actuators with Continuous Dynamics

3.1 Introduction

This chapter addresses the problem of braking control design based on actua-
tors with continuous dynamics (see Section 1.3 for their dynamic description).

Of course, the actuator performance forces the engineer to design the brak-
ing control system accordingly. Here, for the case of an actuator with con-
tinuous dynamics we show how to design a wheel slip controller that can
guarantee closed-loop stability and acceptable performance in all possible
working conditions by solving a regulation problem. It will be also clear that,
because the braking controller is a safety-oriented aid for the driver, it must
be switched on and off according to the current manoeuvre. Thus, an appro-
priate activation and deactivation logic must be designed to accomplish this
task.

Further, we investigate the wheel slip control problem starting from a
double-corner model, i.e., taking into account the load transfer phenomena.
The analysis highlights the effects of dynamic coupling between front and
rear axles and its impact on ABS systems design. This leads to the selection
of an alternative controlled variable for the braking control of the rear wheel,
which arises from the idea of interlocking the rear wheels with the front
wheels to achieve a more favorable dynamic behaviour while maintaining a
SISO approach to wheel slip control design.

3.2 Wheel Slip Control

In braking control systems, two output variables are usually considered for
regulation purposes: wheel deceleration and wheel slip. The traditional con-
trolled variable, which is still used in some ABS systems, is the wheel decel-
eration. This is due to the fact that it can be easily measured with a simple

55
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wheel encoder (see Appendix B for a discussion on this topic). However, it
can be dynamically critical if the road surface changes rapidly. On the other
hand, the regulation of the wheel slip is very robust from the dynamical point
of view, but the slip measurement is critical, since it requires the estimation
of the speed of the vehicle (see Chapter 5 for more details on this issue). Noise
sensitivity of slip control hence is a critical issue, especially at low speed.

Thus, the aim of this section is to analyse the merits and drawbacks of
slip and deceleration control when both are set up as regulation problems.
Further, having made it clear that wheel slip control is the most suitable
choice for the design of braking controllers that are robust with respect to
road surface variations, the design steps for the synthesis of a linear wheel
slip controller will be presented and discussed.

To do this, we will adopt a frequency-domain approach, and start by study-
ing the control problem considering the braking dynamics described by the
single-corner model.

Within this context, and based on the analysis performed in Section 2.5.1,
the regulation of the wheel slip has a straightforward graphical interpreta-
tion in the (λ, η) domain, as displayed in Figure 3.1, where the equilibrium
manifold η(λ) given in (2.34) is depicted in four different road conditions.

Figure 3.1 Graphical interpretation of slip control in the (λ, η) domain. The vertical
dashed line represents the set-point λ. The dots represent the equilibrium points, for
different road conditions
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Note that, whatever the value of λ (0 ≤ λ ≤ 1), this regulation scheme
guarantees the uniqueness of the equilibrium point.

Now, let us consider the transfer function model Gλ(s) given in Equa-
tion 2.46, in a unitary negative feedback closed-loop with the simplest con-
troller form, i.e., a proportional controller with constant gain K. The closed-
loop system is shown in Figure 3.2.

Figure 3.2 Wheel slip closed-loop system with a proportional controller

To analyse the dynamic properties of the slip control system, let us com-
pute the characteristic polynomial χλ(s) of the closed-loop system, which, in
view of the negative feedback, is given by

χλ(s) = s+
1
v

[
μ1(λ)Fz

m

(
(1 − λ) +

mr2

J

)
+K

r

J

]
.

Accordingly, the following stability condition can be derived (note that it
does not depend on v).

Stability Condition for Slip Control
The closed-loop stability condition for the slip control system shown in Fig-
ure 3.2 is given by

K > −μ1(λ)Fz J

mr

(
(1 − λ) +

mr2

J

)
. (3.1)

This condition obviously always holds when μ1(λ) > 0. However, also when
μ1(λ) < 0, since |μ1(λ)| is bounded, it is always possible to find a value K
such that for K > K, the closed-loop system in Figure 3.2 is asymptotically
stable in every working condition, namely for every value of λ and for every
road condition (note from Figure 3.1 that, e.g., on snow/icy roads, λ = 0.09
corresponds to an open-loop unstable equilibrium, since μ1(λ) < 0, but the
closed-loop stability can be guaranteed).

Note that condition (3.1) has also an intuitive geometrical interpretation.
To see this, note that the condition K > K can be graphically identified
by first intersecting equilibrium manifold in the (λ, η) plane (see Figure 3.1)
with the line of negative slope K cutting the λ axis in λ. Note also that in
doing so, the intersection between the equilibrium manifold in the (λ, η) plane
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determines the actual equilibrium value of the wheel slip, say λ̃f , which (as
we are using a proportional controller) is in general different from the set-
point value λ. If K satisfies the bound in (3.1) for all values of λ and for all
road conditions, then the closed-loop equilibrium is unique and it is locally
asymptotically stable.

The performed analysis illustrates why slip control is an attractive ap-
proach in braking control systems:

• Given a set-point λ, it guarantees the uniqueness of the equilibrium.
• The choice of λ is not critical; as a matter of fact, it is easy to find a

value of λ (e.g., λ = 0.09, see Figure 3.1) that provides very good results
(even if slightly sub-optimal) for every road condition. This feature is very
appealing since it allows the use of a fixed structure controller, with no
need for online identification and detection of the road conditions.

• With a fixed structure controller (i.e., a fixed value of K), the asymptotic
stability of the closed-loop is guaranteed for every value of λ and for every
road condition.

The major flaw of slip control is that the measurement of the wheel slip is
comparatively difficult and unreliable, especially at low speed. Hence, the
sensitivity of wheel slip control to measurement errors is a key issue. Chap-
ter 6 provides a control strategy able of alleviating the problems related to
this issue.

3.3 Wheel Deceleration Control

If the controlled variable is the normalised linear wheel deceleration η, the
corresponding set-point value is η. Also this control strategy has a straightfor-
ward graphical interpretation in the (λ, η) domain, as displayed in Figure 3.3,
which shows again the equilibrium manifolds η(λ) in four different road con-
ditions.

From Figure 3.3 it is immediately clear which is the first major drawback
of deceleration control: the selection of the set-point η is very critical, and it
is impossible to find a unique value of η that provides a good compromise in
every road condition. If a large value of η is chosen (e.g., η = 1), deceleration
control provides optimal performance on high-grip road, but on low-grip roads
the wheel dynamics do not exhibit any equilibrium point. On the other hand,
a low value of η (e.g., η = 0.1) can guarantee the existence of an equilibrium
for every road condition, but it results in an over-conservative design for
high-grip roads. As has already been remarked (see Section 2.5.1), note that
the system always has (if any) two equilibrium points.

To analyse the dynamic properties of the deceleration control system, we
consider the transfer function modelGη(s) given in Equation 2.45 in a unitary
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Figure 3.3 Graphical interpretation of deceleration control in the (λ, η) domain. The
horizontal dashed line represents the set-point η. The dots represent the equilibrium
points, for different road conditions

negative feedback connection with a proportional controller with gain K,
yielding the closed-loop system depicted in Figure 3.4.

Figure 3.4 Wheel deceleration closed-loop system with a proportional controller

For this system, the characteristic polynomial χη(s) of the closed-loop
system has the form

χη(s) =
(

1 +K
r

Jg

)
s+

μ1(λ)Fz

mv

[
(1 − λ)

(
1 +K

r

Jg

)
+
mr2

J

]
.
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Accordingly, the following stability condition can be derived (note that it
does not depend on v).

Stability Condition for Deceleration Control

The closed-loop stability condition for the deceleration control shown in Fig-
ure 3.4 is given by

μ1(λ)
[
(1 − λ)

(
1 +K

r

Jg

)
+
mr2

J

]
> 0.

Clearly, it is not possible to find a fixed value of K that provides stability
for every value of λ and for every road condition, since μ1(λ) can be either
positive or negative, depending on the value of λ. Notice that if, e.g., K > 0,
the closed-loop system in Figure 3.2 can be made asymptotically stable for
choices of λ before the friction curve peak, but it becomes unstable for choices
of λ beyond the peak. Henceforth, one of the two equilibrium points is always
unstable.

This analysis reveals the main limits of deceleration control:

• The choice of η is very critical; henceforth, it must be adapted online by
means of an estimation algorithm which allows to detect the current road
conditions.

• With a fixed structure controller (i.e., with a fixed value of K), the asymp-
totic stability of the closed-loop linearised system is not guaranteed for all
choices of λ, also for a fixed road condition (this result can be extended
from a simple proportional controller to every linear time-invariant con-
troller).

• For wheel slip values beyond the peak of the friction curve the open-loop
system is non-minimum phase (see Section 2.5.1 and the transfer function
Gη(s) in (2.45)) and this significantly limits the achievable closed-loop
performance.

Due to these major drawbacks, deceleration control has never been imple-
mented as a classical regulation loop for ABS in practice. Rather, complex
rule-based heuristics based on a set of adjustable thresholds on η and its
derivative have been used (see, e.g., [88, 124]).

However, it is important to recall that deceleration-based algorithms have
the appealing feature of requiring only the measurement of the wheel deceler-
ation (no vehicle speed estimation is required). The wheel deceleration can be
measured in a very reliable and straightforward manner with low cost sensors,
the noise affecting the measure of η is almost stationary, and the variance of
this noise can be a priori designed by properly choosing the precision of the
wheel encoder (see also Appendix B).

Notice that deceleration control can be particularly appealing when the
considered vehicle is such that its main dynamic limit during braking is not
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due to the tyre–road friction but rather to the rollover condition, e.g., the so-
called wheelie phenomenon (that is the uplift of the rear wheel when braking
on high-grip roads) in two-wheeled vehicles, which is mainly due to the large
ratio between the height of the centre of mass and the wheelbase.

As has already been mentioned, the reader is referred to Chapter 6 for
the illustration of a control strategy capable of properly mixing the benefits
and drawbacks of slip and deceleration control and which leads to optmised
performance of the resulting braking control system.

3.4 Linear Wheel Slip Controller Design

For the design of a linear wheel slip controller, we work on the transfer func-
tion model Gλ(s), which is repeated here to ease readability

Gλ(s) =
r

Jv

1

s+ μ1(λ̄)Fz

mv

(
(1 − λ̄) + mr2

J

) . (3.2)

Further, as we are interested in the synthesis of a single controller ca-
pable of providing both closed-loop stability and acceptable performance in
all working conditions, first of all we need to define the linearisation condi-
tions based on which we can evaluate Gλ(s) to serve as a basis for controller
synthesis.

To do this, recall that the pole of the system can be written as

sp = −μ1(λ̄)
Ng

v

(
(1 − λ̄) +

mr2

J

)
, (3.3)

thereby showing that the pole location depends on the vehicle speed v, on
the vertical load distribution N , see also Equation 2.53, and on the road
conditions.

Thus, to account for the load variations at the front and rear wheels (the
former becomes more loaded during braking due to load transfer while the
opposite is true for the latter) it is wise to tune the controllers for the front
axle in a different way with respect to those that regulate the rear wheels.

Further, one needs to linearise the model around an open-loop unstable
equilibrium point, so as to work on the worst case with respect to the road
friction conditions. Thus, to investigate which is the most appropriate oper-
ating point in which to evaluate Gλ(s), Figure 3.5 shows a plot of the system
pole angular frequency as a function of λ for N = 1.5 (i.e., in a setting
compatible with the front wheel load) normalised with respect to the vehi-
cle speed to capture the effects of load transfer and friction conditions only.
To improve readability, and coherently with the aim of defining a worst-case
setting, Figure 3.5 shows the pole angular frequency only for the open-loop
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unstable equilibrium points (in the case where the real pole is negative, its
angular frequency has been clipped to zero).

Figure 3.5 Angular frequency of the open-loop pole (3.3) normalised with respect
to v for N = 1.5

By inspecting Figure 3.5 the following operating point for linearisation
is considered. For the front wheel the worst-case situation considered for
linearisation happens on dry asphalt, where the large value of N (see also
Figure 2.11), causes the pole to move toward higher frequencies. Thus, on
dry asphalt, for λ = 0.62 we obtain a pole sp = 60/v. Note that this is not
the worst-case condition in general; by inspecting Figure 3.5 one may see that
the pole location which is at the largest distance from the imaginary axis is
found for λ = 0.85 on cobblestone. However, this situation, that is a very
large value of the wheel slip on cobblestone, is much less likely to occur in
practice. As such, choosing such a condition as a basis for controller design
would be overly conservative. Of course, this choice is problem-dependent,
and must be carefully evaluated according to the specific situation. On the
other hand, whichever condition is chosen, the control designer will have to
always check that basic closed-loop properties, such as asymptotic stability of
the closed-loop system, are guaranteed in all admissible working conditions,
possibly with a loss of dynamic performance with respect to the nominal
case chosen for control design. A similar rationale may be applied to fix the
linearisation point for the rear wheel if needed.
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Based on these considerations, for controller design we will work with the
transfer function Gλ(s) given by

Gλ(s) =
0.3/v

s− 60/v
=

ρ

s+ γ
, (3.4)

with ρ > 0 and v > 0.
Before moving to the design of a dynamic controller, let us recall that we

have shown that with an appropriate choice of the controller gain value, a
proportional controller which guarantees closed-loop stability for all working
conditions can be found.

However, besides guaranteeing closed-loop stability, one usually needs to
satisfy also performance specifications, which call for the design of a dynamic
controller. The equilibria of the system to be controlled being open-loop un-
stable in some operating conditions of interest, there are two main approaches
to the design of a performance-oriented controller. One choice may be that of
designing first an internal feedback loop with the only aim of stabilising the
closed-loop system in all operating conditions (note that this can be done, for
example, with the simple proportional controller discussed previously) and
then design an external control loop whose aim is to ensure the satisfaction
of performance requirements and disturbance rejection properties. This ap-
proach allows one to work on a pre-stabilised system dynamics, which indeed
poses less limitations on the achievable performance levels (for a detailed and
advanced discussion on the limitations on closed-loop performance posed by
right half plane poles and/or zeros the reader may refer to, e.g., [98]).

The other option is that of designing a single controller which deals with
both stabilisation and performance specifications. As in the considered ap-
plication this second approach allows us to highlight some interesting tuning
rules, in the following the design will be approached accordingly.

Thus, the first attempt to ensure, say, asymptotic tracking of a constant
set-point (which is usually the first performance specification that one needs
to fulfil) would lead to consider an integral controller, i.e.,

RI(s) =
K

s
. (3.5)

Consider, as an example, working on the transfer function model Gλ(s)
in (3.4) and employing the integral controller (3.5).

Assuming again unitary negative feedback, it is easy to see that the char-
acteristic polynomial is given by

χλ(s),I = s2 + γ s+Kρ. (3.6)

Thus, it is apparent that, in the case γ < 0, i.e., if Gλ(s) is open-loop unsta-
ble, no matter which value of K is chosen, the closed-loop system will never
be asymptotically stable (recall that, the characteristic polynomial being a
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second-order one, the necessary and sufficient condition for its roots to have
negative real part is that all its coefficients are non-zero and have the same
sign).

Bearing this in mind, let us move to consider a PI controller structure,
i.e.,

RPI(s) = K
(τ s+ 1)

s
, (3.7)

with τ > 0. With this controller, the characteristic polynomial (assuming
again unitary negative feedback) is given by

χλ(s),PI = s2 + (Kρτ + γ)s+Kρ. (3.8)

In this case, because ρ > 0 and τ > 0, if K is chosen such that

K > − γ

ρτ
, (3.9)

then the closed-loop system will be asymptotically stable. Note that with a PI
controller structure we obtained a closed-loop stability condition that is fully
analogous to the one obtained for the proportional controller (see inequal-
ity (3.1)), with the additional degree of freedom offered by the time constant τ
of the controller zero, which can be used, together with the controller gain K
to guarantee that, besides closed-loop stability, other performance specifica-
tions are met. Substituting the full expressions for γ and ρ, see Equation 3.2,
in (3.9), one obtains

K > −μ1(λ̄)
NJg

τr

(
(1 − λ̄) +

mr2

J

)
, (3.10)

which notably does not depend on the considered speed value v (recall that
the same was true for condition (3.1) obtained based on the proportional
controller). However, in practice a PI controller might not be enough to ensure
that all desired performance specifications are met. Thus, as final analysis
step, we consider a PID controller architecture complemented with a first-
order filter to achieve a causal approximation of the ideal derivative term,
i.e.,

RPID(s) = K
(τ1 s+ 1)(τ2 s+ 1)

s(Ts+ 1)
, (3.11)

with τ1 > 0, τ2 > 0 and T > 0. This controller, with unitary negative
feedback, yields the characteristic polynomial

χλ(s),PID = T s3 + (Kρτ1τ2 + Tγ + 1)s2 + [γ +Kρ(τ1 + τ2)]s+Kρ. (3.12)

Recalling that γ is the angular frequency of the system pole and letting
γ := 1/Tp, if the real pole of the controller is chosen to be sufficiently fast, i.e.,
if T << |Tp|, one has that Tγ ≈ 0. Let us consider this simplification, which
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constitutes a tuning rule on its own, and recall that a necessary condition
for the closed-loop stability of the considered third-order system is given by
the coefficients of the characteristic polynomial (3.12) being all non-zero and
with the same sign.

Based on these considerations, one obtains that the controller parameters
must satisfy the following inequality:

K > − γ

ρ(τ1 + τ2)
= −μ1(λ̄)

NJg

r(τ1 + τ2)

(
(1 − λ̄) +

mr2

J

)
. (3.13)

Again, we have found a speed-independent stability condition, which can be
satisfied acting on the larger number of controller parameters offered by the
PID architecture.

Further, resorting to Routh’s stability criterion (see, e.g., [5]), one can in-
vestigate the additional conditions on the controller parameters that must be
satisfied to fulfil the necessary and sufficient condition for closed-loop stabil-
ity. Specifically, by constructing the Routh’s table and recalling the assump-
tion that Tγ ≈ 0, one finds that the only non-trivial additional condition on
the controller parameters has the form

K >
T − (τ1 + τ2)
ρ(τ1 + τ2)τ1τ2

. (3.14)

3.5 Effects of Actuator Dynamics

To move toward a more realistic situation consider, as an example, the trans-
fer function model Gλ(s) in (3.4) with, e.g., v = 10 m/s, and a proportional
controller with gain K = 1000. It is easy to see that such a controller en-
sures closed-loop stability. However, Gλ(s) is not a complete representation
of the dynamics to be controlled. As a matter of fact, one has to consider
the actuator dynamics. In this case, we assume that we are dealing with the
EMB actuator servo-controlled dynamics Gcaliper(s) given in (1.4), which is
a first-order linear time-invariant system with a pole at ωact = 70 rad/s and
a pure delay τ = 10 ms.

Bearing this in mind, the overall system dynamics to be controlled are
given by

D(s) = Gcaliper(s)Gλ(s). (3.15)

It is now interesting to investigate how the proportional controller with
gain K = 1000 that we assumed to have designed considering only the trans-
fer function model Gλ(s) in (3.4) with v = 10 m/s behaves if we consider the
full dynamics (3.15). It is clear that the choice of a proportional controller is
a simplistic one, but the considerations remain unaltered for more complex
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Figure 3.6 Nyquist diagram of the loop transfer function Lλ(s) for τ = 10 m/s and
ωact = 70 rad/s (dotted line), τ = 50 m/s and ωact = 70 rad/s (dashed line) and
τ = 10 m/s and ωact = 10 rad/s (solid line)

controller structures. Such a simple choice is thus motivated by its ease of
tractability.

For a pictorial representation of the considered situation, the reader is
referred to Figure 3.6, which shows the Nyquist diagram of the loop transfer
function

Lλ(s) = KD(s), (3.16)

where D(s) is as in (3.15) (and K = 1000), for different combinations of the
actuator bandwidth and of the transmission delay.

Namely, the following situations are considered:

• the nominal case, i.e., τ = 10 ms and ωact = 70 rad/s (dotted line in
Figure 3.6);

• a situation with a much larger transmission delay, i.e., τ = 50 ms and
ωact = 70 rad/s (dashed line in Figure 3.6); and

• a situation with a much narrower actuator bandwidth, i.e., τ = 10 ms and
ωact = 10 rad/s (solid line in Figure 3.6).

By inspecting Figure 3.6 it is clear that even though the controller gain
chosen for the open-loop system Gλ(s) still ensures stability for the nominal
case of τ = 10 ms and ωact = 70 rad/s, the same does not hold for the cases
of a larger delay and of a narrower actuator bandwidth. Specifically, to cope
with such modified situations one would in principle have to decrease the
controller gain in order to ensure closed-loop stability, up to the point where
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it would be impossible to fulfill condition (3.1) which ensures closed-loop
stability for Gλ(s) in all possible working conditions.

The message here is that one must always carefully evaluate all the system
characteristics before moving to the controller design and investigate how and
if they pose substantial limitations to the achievable closed-loop performance.
If this is the case, then one may want to reconsider the vehicle layout or,
if this is not possible, to revise the specifications and requirements for the
closed-loop system.

Figure 3.7 Magnitude and phase Bode diagrams of the frequency response associ-
ated with the loop transfer function L1λ(s) for v = 10 m/s (solid line), v = 20 m/s
(dashed line), v = 30 m/s (dash-dotted line) and v = 40 m/s (dotted line)

3.6 Performance Analysis: a Numerical Example

We now design a slip controller that can achieve good dynamic performance,
which, given the considered nominal actuator dynamics and transmission
delay (i.e., ωact = 70 rad/s and τ = 10 ms), can be defined as: ensure
asymptotic tracking of a constant wheel slip set-point and achieve a closed-
loop bandwidth between approximately 1 and 10 Hz for all admissible speed
values.
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Based on the previous analysis, a PID controller architecture that satis-
fies the desired requirements can be devised. Note that besides fulfilling the
stability conditions discussed in the previous section one has to consider the
phase loss due to the delay and to the actuator dynamics.

In particular, the following PID controller can be employed:

Rλ(s) = 12000
(1 + 1

20s)
2

s(1 + 1
500s)

. (3.17)

Note that the controller (3.17) is not intended as the best possible tuning for
the considered situation, but is given as an example of a simple controller
architecture that achieves the desired performance levels. Each specific prac-
tical situation will lead to a more detailed list of requirements, which in turn
will require a different tuning of the controller parameters.

To visually inspect the loop transfer function obtained with the con-
troller (3.17), i.e.,

L1λ(s) = Rλ(s)D(s), (3.18)

the reader is referred to Figure 3.7, which shows the magnitude and phase
Bode diagrams of the frequency response associated with L1λ(s) for different
values of the vehicle speed. As can be seen the closed-loop bandwidth does
indeed vary according to the vehicle speed value v used to evaluate the system
dynamics Gλ(s) in (3.4); specifically, the closed-loop dynamics are faster as
speed decreases. Of course, no stability property of the closed-loop linearised
system can be inferred from the Bode diagrams, as the loop transfer function
has a positive pole.

The fact that the system dynamics become faster as speed decreases, cou-
pled with the presence of a pure delay, makes it impossible to ensure closed-
loop stability for very low values of v.

To visually inspect this issue consider Figure 3.8, which shows the magni-
tude and phase Bode diagrams of the frequency response associated with the
loop transfer function

L2λ(s) = Rλ(s)Dst(s),

where
Dst(s) = Gcaliper(s)Gst

λ (s)

is the system dynamics obtained considering an open-loop stable equilibrium,
that is

Gst
λ (s) =

0.3/v
s+ 60/v

,

for v = 40 m/s and v = 2 m/s. As the loop transfer function has no poles with
positive real part and the cut-off frequency is well-defined, the closed-loop
stability can now be inferred via the Bode criterion. By inspecting Figure 3.8
one notes that for v = 2 m/s the closed-loop system is unstable. Note that
this is not due to the particular controller tuning; any controller tuning will
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Figure 3.8 Magnitude and phase Bode diagrams of the frequency response associ-
ated with the loop transfer function L2λ(s) for v = 40 m/s (dotted line) and v = 2 m/s
(solid line)

lead to a different minimum value of the speed which compromises closed-loop
stability, but such a value will always exist.

Moreover, from a practical viewpoint one must also consider that at very
low speed the wheel encoders used to measure the wheel speed become less
reliable, so that the available wheel speed measurement cannot be safely
employed to estimate the vehicle speed needed to compute the wheel slip.
For a better analysis of these issues the reader is referred to Appendix B and
to Chapter 5, which discuss the processing issues of the wheel encoders signal
and the speed estimation problem, respectively.

In view of these problems, in practical applications the braking control
system needs to be complemented with a deactivation logic that switches to
an open-loop control strategy to manage the last part of the braking phase
associated with very low values of the vehicle speed. The design of such a
logic is addressed in the next section.

3.7 Activation and Deactivation Logic

The last design step, crucial for moving toward a real vehicle implementation,
is to devise a safe and reliable activation and deactivation logic. As a matter
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of fact, an active braking controller is a safety system, hence it is not active
during normal vehicle operations but it has to be turned on when a panic
stop occurs.

The first step is then to single out which signals better describe the current
safety level on board as far as braking is concerned. Further, we need to devise
an activation and deactivation logic based on these signals and take care that
a bumpless transfer is guaranteed between manual and automatic operational
modes.

To this end, the first step is to implement the wheel slip controllers with
anti-windup architecture and with the structure shown in Figure 3.9, which
ensures that a reliable controller output is available also when in manual
mode, and that a bumpless transfer from manual to automatic mode is en-
sured upon the controller activation. The anti-windup implementation of the
integral controller action is also necessary to cope with actuator constraints,
which are of course to be taken into account in the considered application
(see also Section 1.3).

Figure 3.9 Schematic view of the implementation of a wheel slip PID controller
which ensures a bumpless transfer from manual to automatic mode

Moreover, in the considered system, besides switching from manual to au-
tomatic mode, one has to monitor the value of the vehicle speed. In fact,
in view of the analysis performed, when the value of the vehicle speed goes
below a certain threshold, specific braking strategies must be devised in or-
der to take the vehicle to a complete stop. Based on these considerations,
the activation and deactivation logic is governed by the finite state machine
(FSM) shown in Figure 3.10. We now analyse the conditions based on which
the transitions between the states are activated.
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Figure 3.10 FSM representation of the activation and deactivation logic

3.7.1 Activation Conditions

When a braking manoeuvre takes place, the ABS is activated if the following
condition holds (see also Figure 3.10 and Table 3.1):(

λ > λth
1 − λth

1 − λth
2

ṪbMax

Ṫb

)
AND

(
TbDr > ρon

Tb
TbContr

)
AND (v > von) .

(3.19)
Thus, the activation is based on the wheel slip λ, the braking torque Tb and
the vehicle speed v.

Specifically, the threshold on λ is modulated according to the braking
intensity, described via the braking torque derivative Ṫb. The threshold λth

1

is employed in the case Ṫb = 0, while a lower threshold value λth
2 is used in

the case when a hard braking manoeuvre occurs, i.e., Ṫb = ṪbMax. The first
condition of (3.19) is simply a linear interpolation of these extreme conditions,
which allows us to handle all the intermediate braking intensities.

However, note that an activation based only on this condition is not com-
pletely safe. In fact, the wheel slip λ is a noisy signal, and one needs to avoid
that the controller is switched on due to possibly large measurement errors.
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This is achieved by considering also the value of the braking torque, as shown
by the second condition of (3.19), where TbDr is the braking torque requested
by the driver, TbContr is the braking torque that the controller would apply if
active (recall the the chosen controller architecture makes the control output
available also in manual mode) and the parameter ρon

Tb
> 1.

Finally, as the controller is not guaranteed to ensure closed-loop stability
at very low speed values, the automatic mode has to be switched on only if
the speed value is sufficiently large, i.e., if v > von, where von is a properly
defined threshold.

3.7.2 De-activation Conditions

When the braking manoeuvre is completed, the controller must be switched
off so that the full control of the vehicle returns to the driver. Hence, an
automatic to manual switch must occur when the driver releases the brake
pedal. Thus, if the de-activation occurs at v > von, it is allowed when the
following condition holds (see again Figure 3.10):

TbDr < ρoff
Tb
TbContr, ρoff

Tb
< 1.

To switch off the controller at low speed, note that if the condition v ≤ von

occurs when a panic stop is still going on, then it is not safe to give back the
control to the driver immediately. Hence, an additional braking logic has to
be devised in order to take the vehicle to a complete stop automatically.

One solution is to complete the braking manoeuvre commanding the ac-
tuator to apply a constant braking torque, such that

Tb = ρ TbLPF, ρ < 1,

where TbLPF is a low pass filtered version of the last value of the braking
torque requested by the controller.

Then, once the vehicle has stopped or if the driver has released the brake
pedal, i.e., if

(v < vstop) OR (TbDr < ρoff
Tb
TbLPF),

then the ABS can be switched off (see the transition between the ABS on
and off states associated with the low speed condition in Figure 3.10).

Figures 3.11(a) and 3.11(b) and Figures 3.12(a) and 3.12(b) show the
closed-loop behaviour of the wheel slip and braking torque when the controller
endowed with the activation logic is employed.

Specifically, Figures 3.11(a) and 3.11(b) show the results on dry asphalt,
whereas Figures 3.12(a) and 3.12(b) those on snow. These figures show that
the controller allows one to perform a safe braking manoeuvre and that the
activation and deactivation logic guarantees a bumpless transfer between
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Table 3.1 Description of the parameters employed in the activation and deactivation
logic

Parameter Value Constraints Meaning

ρoff
Tb

0.9 < 1 Safety scaling between TbDr and
TbContr to determine if the con-
troller can be switched off at low
speed

ρon
Tb

1.02 > 1 Scaling between TbDr and TbContr to
activate the controller

ρ 0.97 < 1 Controller torque scaling factor for
v < von

λth
1 0.2 > λth

2 Activation threshold for constant Tb

λth
2 0.1 > 0 Activation threshold for Ṫb = ṪbMax

ṪbMax 5 kNm/s > 0 Actuator rate limit
von 2.5 m/s > 0 Speed threshold above which

TbContr is reliable
vstop 0.05 m/s 0 < vstop ≤ von Speed threshold below which the ve-

hicle is considered still
hv 0.5 m/s > 0 Hysteresis on von to avoid chatter-

ing between the two manual abs-off
states

Figure 3.11 Activation logic behaviour for repeated braking manoeuvres on dry
asphalt road with initial speed v0 = 100 km/h; (a): plot of the longitudinal wheel
slip (solid line) and activation signal (dashed line); (b): braking torque
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Figure 3.12 Activation logic behaviour for repeated braking manoeuvres on snowy
road with initial speed v0 = 100 km/h; (a): plot of the longitudinal wheel slip (solid
line) and activation signal (dashed line); (b): braking torque

manual and automatic mode, and the controller state is correctly reset on
deactivation, so that the subsequent braking manoeuvre can be safely han-
dled. Finally, good performance and safety are ensured independently of the
road condition.

In the simulations considered, the activation logic was implemented with
the numerical values given in Table 3.1.

3.8 Slip Controller Analysis Based on the Double-corner
Model

This section is devoted to investigating the wheel slip control problem start-
ing from a double-corner model. Specifically, we first analyse the closed-loop
stability properties obtained with a slip controller acting on both the front
and the rear wheels. Further, we discuss an alternative control strategy that
interlocks the rear wheels with the front ones, and allows one on the one
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hand to achieve coupling minimisation while maintaining a SISO approach
to wheel slip control and on the other hand to employ a control strategy that
does not need the rear wheel slip measurement.

Finally, we briefly discuss the problem of adapting a wheel slip control sys-
tem to the case of braking on curves, showing that the approaches discussed
in this book still apply if the current manoeuvre does not compromise the
vehicle stability, provided that a set-point adaptation strategy is available.

3.8.1 Closed-loop Stability Analysis

Similarly to what was done at the beginning of this chapter on the single-
corner model, we now analyse the closed-loop stability of the wheel slip con-
trol applied to the double-corner model given in system (2.25).

Specifically, to perform the analysis it is assumed that the longitudinal
dynamics of the vehicle (expressed by the state variable v) are significantly
slower than the rotational dynamics of the wheels (expressed by the state
variables λi or ωi, i = {f, r}) due to the differences in inertia. Under this as-
sumption, the third equation (centre of mass dynamics) in (2.25) is neglected,
and the model reduces to a second-order model of the wheels dynamics only
where v is treated as a varying parameter.

Further, as it was done for the single-corner model, we concentrate for
simplicity on a proportional controller. This choice allows us to draw gen-
eral conclusions, which hold also with a more complex linear time-invariant
controller.

Finally, based on the analysis carried out in Chapter 2 (see also Fig-
ures 2.12(a) and 2.12(b)), which revealed that the front wheel behaviour
is substantially independent from that of the rear wheel, while the latter is
strongly coupled to the front one, in the following we disregard the depen-
dence of Ψf (λf , λr), see Equation 2.26, on λr and adopt the notation Ψf (λf ).

Accordingly, the control laws obtained with a proportional controller ap-
plied to each wheel have the form

Tbf
= kf (λf − λf ),

(3.20)
Tbr

= kr(λr − λr),

where λf and λr are the set-point values for the front and rear wheel slip, re-
spectively, and kf , kr are positive constants. Hence, the closed-loop dynamics
become

λ̇f = − r

Jv

[
Ψf (λf ) − kf (λf − λf )

]
,

(3.21)
λ̇r = − r

Jv

[
Ψr(λf , λr) − kr(λr − λr)

]
.
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For the closed-loop system (3.21), we can state the following:

Proposition 3.1. Consider the closed-loop system described by (3.21) with
v > 0 and let the wheel slip set-point values be λi ∈ (0, 1), i = {r, f}. Then,
there exist positive gain values kf and kr such that, for any kf > kf and
kr > kr, the closed-loop system admits a unique locally asymptotically stable
equilibrium for all initial conditions λf (0), λr(0) ∈ (0, 1), for all choices of
λf and λr and for all road conditions.

Proof. Fix the set-point values λf , λr ∈ (0, 1). As a proportional controller
does not guarantee that the wheel slip of the closed-loop system will converge
to λf , λr, let (λ̃f , λ̃r) be an equilibrium of system (3.21) associated with
λf , λr, i.e., {

Ψf (λ̃f ) = kf (λf − λ̃f ),
Ψr(λ̃f , λ̃r) = kr(λr − λ̃r).

(3.22)

As a preliminary step, we re-write system (3.21) in a form that is more useful
for analysing the stability properties of (λ̃f , λ̃r).

We start from the equation governing λr, which can be expressed in the
form

λ̇r = − r

Jv

{
kr(λr − λ̃r) + Ψr(λ̃f , λr) − kr(λr − λ̃r)

+ Ψr(λf , λr) − Ψr(λ̃f , λr)
}

= − r

Jv

{
(λr − λ̃r)

[
kr +

Ψr(λ̃f , λr) − Ψr(λ̃f , λ̃r)
λr − λ̃r

]
+ Ψr(λf , λr) − Ψr(λ̃f , λr)

}
,

where the first equality is obtained by adding and subtracting krλ̃r and
Ψr(λ̃f , λr) to the expression within the brackets in (3.21), whereas the second
equality is obtained using the equilibrium condition (3.22).

A similar procedure applied to the equation governing λf in (3.21) leads
to the following equivalent form for the closed-loop system equations:

λ̇f = − r

Jv

[
kf + αf (λf )

]
(λf − λ̃f ),

(3.23)

λ̇r = − r

Jv

[
kr + αr(λr)

]
(λr − λ̃r) + γ(λf , λr),

where

αf (λf ) =
Ψf (λf ) − Ψf (λ̃f )

λf − λ̃f

,

αr(λr) =
Ψr(λ̃f , λr) − Ψr(λ̃f , λ̃r)

λr − λ̃r

,
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and
γ(λf , λr) = − r

Jv
[Ψr(λf , λr) − Ψr(λ̃f , λr)].

Note that the system under study is made of a cascade connection of two sub-
systems where λf evolves independently of λr and this affects the dynamics
of λr through the additive term γ(λf , λr), which vanishes when λf is at the
equilibrium, i.e., γ(λ̃f , λr) = 0, ∀λr. Also, αf (λf ) represents the slope of
the straight line intersecting the curve Ψf (·) in the two points of coordinates
λf and λ̃f . Thus, αf (λf ) is lower bounded by the negative steepest slope of
the curve Ψf (·) obtained for different road conditions. A similar geometric
interpretation holds for αr(λr).

It is next shown that, for i ∈ {f, r}, if ki is large enough, then the equi-
librium λ̃i of the subsystem

λ̇i = − r

Jv

[
ki + αi(λi)

]
(λi − λ̃i) (3.24)

is globally exponentially stable (GES) and, hence, also globally asymptoti-
cally stable (GAS). Note that subsystem (3.24) with i = r is obtained from
the cascade system (3.23) by removing the interconnection term γ(λf , λr)
and setting λf at the equilibrium.

Consider the candidate Lyapunov function

V (λi) =
(λi − λ̃i)2

2
,

which, by construction, is positive definite (V (λi) > 0 for all λi 	= λ̃i, and
V (λ̃i) = 0) and is radially unbounded. The time derivative of V along the
subsystem trajectories is

V̇ (λi) = (λi − λ̃i)λ̇i = − r

Jv

[
ki + αi(λi)

]
(λi − λ̃i)2.

Thus, recalling the definition of αf (λf ) and αr(λr), if

kf > k̄f = − min
ϑ,λf ,λ′

f

Ψf (λf ) − Ψf (λ′f )
λf − λ′f

, (3.25)

kr > k̄r = − min
ϑ,λr,λ′

r,λ′
f

Ψr(λ′f , λr) − Ψr(λ′f , λ
′
r)

λr − λ′r
, (3.26)

one obtains that V̇ (λi) < −ci(λi−λ̃i)2, with ci > 0, which concludes the proof
that the equilibrium λ̃i of subsystem (3.24) is GES (see also Appendix A).
The stability properties of the equilibria of two nonlinear subsystems ensure
that, once the cascade interconnection of the two is active, the closed-loop
system admits a unique equilibrium point that is locally asymptotically stable
(see e.g., [44]).


�
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Note that, in the case of nonlinear systems, the global asymptotic stability
of the equilibrium of each of the two subsystems is not enough to infer the
same property for the equilibrium of the interconnection, while this is instead
true for the cascade connections of linear systems, see, e.g., [35].

Note further that a solution to the equilibrium conditions (3.22) always
exists for all gain values kf , kr > 0 and it can be graphically identified by
first intersecting Ψf (λf ) in Figure 2.12(a) with the line of negative slope −kf

cutting the λf axis in λf to determine λ̃f , and then intersecting Ψr(λ̃f , λr)
in Figure 2.12(b) with the line of negative slope −kr cutting the λr axis in
λr to determine λ̃r. If kf and kr satisfy the bound for the global asymptotic
stability to hold, the equilibrium is unique. Note also that, as we are using a
proportional controller, the values λ̃f and λ̃r are in general different from the
set-point values λf and λr. From the equilibrium conditions (3.22), however,
it is clear that λ̃f and λ̃r can be made close to λf and λr if the controller
gains kr and kf are sufficiently large.

Finally, it is worth pointing out that the condition obtained on the con-
troller gains is similar to that given for the single-corner model in Section 3.2,
where it was shown that the gain must be larger than the steepest negative
slope of the friction curve for all road conditions to ensure local stability.
Proposition 3.1 thus extends the results obtained on the single-corner model
to the double-corner one, and from a linear to a nonlinear analysis setting.

3.8.2 Controlling the Rear Wheel: Slip versus Relative
Slip Control

The double-corner model analysis has shown that stability can indeed be
guaranteed with results that are fully analogous to those obtained with the
single-corner model. The dynamic analysis carried out in Section 2.5.2 warned
us that a dynamic coupling is present between front and rear wheel, which can
be more or less significant according to the specific vehicle characteristics. In
general, it cannot be neglected in vehicles that experience a very large load
transfer between front and rear axles during braking, such as two-wheeled
vehicles.

As an example, consider Figure 3.13, which shows the typical behaviour
of the longitudinal force Fx as a function of the wheel slip at the front and
rear wheels in a vehicle with large load transfer. As discussed in Section 2.2,
the longitudinal force scales with the vertical load Fz and also the peak
value shifts forward in λ as Fz increases due to the non-exact proportionality
between Fz and Fx. So, assuming that one wants to control the wheel slip
of both wheels at the value λ shown in Figure 3.13, the control problem at
the rear wheel is difficult to be handled in open-loop by the driver, as λ is
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Figure 3.13 Longitudinal force as a function of the wheel slip at the front and rear
wheels in a vehicle with large load transfer

very close to the peak of the friction curve, while this is not true for the front
wheel.

As such, especially with two-wheeled vehicles, in the situation depicted
in Figure 3.13 one would have the front wheel slip left in open-loop to be
regulated by the driver, whereas the rear wheel slip should be regulated in
closed-loop by an active controller.

Based on the above considerations, the idea is to devise an alternative
control strategy for the rear wheel. The solution that we propose is that
of considering an alternative control variable for the rear wheel, based on
the idea of interlocking the rear wheels with the front ones with the aim of
guaranteeing the same wheel slip on both axles.

Specifically, the controlled variable for the rear wheel is the speed difference
between front and rear wheel, i.e.,

ωf − ωr, (3.27)

which can be linked to slip control by means of the following equality:

ωf − ωr =
v

r
(λf − λr). (3.28)

Hence, if we achieve ωf −ωr = 0, this implies that also the wheel slip at front
and rear wheels will be the same. This is why we will refer to this approach
as relative slip control.
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Formulating the rear wheel control problem as that of regulating to zero
the relative slip offers significant advantages with respect to controlling the
rear wheel slip. First of all, feedback based on (3.27) does not require a
measurement of the wheel slip. This is a particularly important feature in two-
wheeled vehicles, where slip estimation is more critical than in cars, due to the
larger load transfer. Thus, in the case where the front wheel slip is regulated
by the driver, relative slip control at the rear wheel can be implemented
by simply having two wheel encoders, which provide a cheap and robust
measurement.

Further, from a dynamic viewpoint, Equation 3.28 reveals that the depen-
dence on the forward speed obtained using the relative slip is different from
the one obtained using the wheel slip as controlled variable.

Specifically, to compute the transfer function Gωr−ωr
(s) from the rear

braking torque δTbr to δ(ωf − ωr) of the double-corner model, the second-
order state space representation employed in Section 2.5.2 can be used again
with only the modification of the C matrix, which in view of (3.28) takes the
form

C =
[

1 0
− v

r
v
r

]
.

Thus, if we assume again, as was done in Section 2.5.2, that we can disregard
the dependence of Ψf (λf , λr) from λr and set δΨf,r = 0, the transfer function
Gωr−ωr

(s) is given by

Gωr−ωr
(s) =

1
J

s+ r
Jv δΨf,f

D(s)
, (3.29)

where D(s) is as in (2.71). Hence, the dependence of Gωr−ωr
(s) on v is

significantly different from that of Grr(s). Specifically, the static gain is given
by

Gωr−ωr (0) ∼=
vJ/r

δΨr,r

, (3.30)

thus proportional to the vehicle speed, while that of Grr(s) was independent
of v, see Equation 2.74. The high frequency gain, instead, is given by

lim
s→∞ sGωr−ωr (s) =

1
J
, (3.31)

thus independent of v, while that of Grr(s) was inversely proportional to v,
see Equation 2.78.

Figures 3.14(a) and 3.14(b) show a comparison between the Bode plots of
the frequency responses associated with Grr(s) and with Gωr−ωr

(s) obtained
employing the double-corner model (see Section 2.4) with λr = 0.05, v =
25 m/s and on dry asphalt for different vehicle speed values, which visually
confirm the different dynamic behaviour just analysed. Based on these results,
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(a)

(b)

Figure 3.14 Magnitude and phase Bode plots of the frequency responses associated
with Gωf−ωr

(s) (a) and Grr(s) (b) for different vehicle speed values: v = 25 m/s
(solid line), v = 15 m/s (dashed line) and v = 5 m/s (dash-dotted line)
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a simple and fixed structure PID controller has been designed to regulate the
relative slip at the rear wheel.

Figure 3.15 Plot of the wheel slip (a) and braking torque (b) in two braking manoeu-
vres with no control on the front wheel (dry asphalt and initial speed v0 = 100 km/h)

Figures 3.15(a) and 3.15(b) show the rear wheel slip behaviour when the
front wheel is in open-loop (the braking torque is imposed by the driver),
and the rear wheel is controller using the relative slip as controlled variable,
showing a good dynamic behaviour.

Finally, Figures 3.16(a) and 3.16(b) show the closed-loop behaviour of the
wheel slip when a closed-loop slip controller (a simple PID controller of the
type discussed in Section 3.4) acts on the front wheels and the rear wheels
are regulated via relative slip control. In this case, when all the four wheels
are controlled at the same time, the effects of dynamic coupling are more
significant. However, the proposed control approach allows us to achieve a
very good closed-loop performance with a SISO approach and two linear and
fixed structure controllers.

3.8.3 Wheel Slip Control on Curves

Up to now we have always considered the wheel slip control problem under
the assumption of negligible tyre sideslip angles, that is when the tyre–road
contact forces are dominated by the longitudinal component.

When braking on a curve with non-negligible tyre sideslip angles, instead,
one has to handle the trade-off between longitudinal and lateral forces (see
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Figure 3.16 Plot of the wheel slip (a) and braking torque (b) in a hard braking
manoeuvre on dry asphalt with front wheel slip control and rear wheels relative slip
control. Front wheels (solid line) and rear wheel (dashed line)

Figures 2.2(a) and 2.2(b)). When on a curve, in fact, the largest amount of
longitudinal force for transferring the braking torque to the ground is limited
by the lateral force which is needed for negotiating the curve.

Thus, if the braking occurs in a curve manoeuvre where the vehicle is not
subject to stability problems, that is when the ESC controller is not active, a
wheel slip controller can be used by adapting the longitudinal slip set-point
value λ to the curve condition. In four-wheeled vehicles this can be done by
letting the set-point be a function of the steering angle (a variable commonly
measured on all cars equipped with ESC systems), whereas in two-wheeled
vehicles the set-point should be adapted as a function of the roll angle (see,
e.g., [108] and the references therein for a more detailed discussion on this
topic). Besides the set-point adaptation, then, a wheel slip controller of the
type discussed in this book is needed to handle the braking manoeuvre.

In the case of stability problems, instead, which in general occur when
large values of the vehicle sideslip angle (i.e., the angle between the chassis
longitudinal axis and the velocity vector of the centre of mass) are reached,
the ESC controller is activated. Some modern ESC controllers have a su-
pervisory control logic that translates the yawing moment needed to recover
stability into different wheel slip set-points commanded to each wheel and
that are tracked by means of a slip controller of the type discussed in this
book.
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Other ESC controllers, instead, do not have this supervisory unit and di-
rectly act on the brakes to achieve the desired yawing moment, thus overriding
the wheel slip control loop.

3.9 Summary

This chapter showed how to design braking controllers based on actuators
with continuous dynamics.

Specifically, we first highlighted the advantages of controlling the wheel
slip rather than the wheel deceleration, and discussed how to solve the slip
control problem employing a linearised model of the single-corner dynamics.
The tuning phase of different simple linear controllers was analysed in detail,
providing the tuning rules to ensure closed-loop stability.

Further, the need for an activation and deactivation logic was motivated
and a possible solution was outlined.

Finally, an analysis of the wheel slip control problem based on the double-
corner model was presented, and its closed-loop stability properties were anal-
ysed.

Further, a control strategy based on the idea of interlocking the rear wheels
with the front ones was presented, which imposes the same wheel slip be-
haviour on both axles and which is particularly interesting for vehicles pre-
senting a large load transfer during braking.

Note finally that the stability proof carried out in Proposition 3.1 for
the slip controller applied to the double-corner model could be extended to
show that the stability of the equilibrium of the closed-loop system is indeed
global and not only local. To do this, however, advanced concepts of nonlinear
analysis are needed, which we believe go beyond the scope of this book and
do not add crucial information to the specific problem. The interested reader
can find the full proof in [115], together with some references to the related
theoretical tools.



Chapter 4

Braking Control Systems Design:
Actuators with Discrete Dynamics

4.1 Introduction

As discussed in the previous chapters, the design of automatic braking con-
trol systems is highly dependent on the braking system characteristics and
actuator performance. This chapter addresses the problem of designing an
ABS controller based on a hydraulic actuator system with on/off dynamics,
which is capable of providing only three control actions: namely, one can only
increase, hold and decrease the brake pressure.

Clearly, the control objectives must be traded off with the braking sys-
tem capabilities. Accordingly, the aim of the control system will be that of
maintaining the wheel slip around acceptable values, thus avoiding wheel
locking, abandoning the goal of regulating it around a constant single value
as was done in the preceding chapter for the case of a braking system with
continuous dynamics.

To solve this problem, we will design a switching controller that yields
closed-loop dynamics that converge to an asymptotically stable limit cycle.

For this control system, we provide necessary conditions for the limit cycle
existence, which come from a detailed analysis of the state plane trajectories
of the resulting braking dynamics. Further, the limit cycle stability properties
are formally proved via a Poincaré map analysis (the interested reader may
refer to Section A.2.2 for an introduction to the analysis tools used in this
chapter).

An analysis of the effect of the actuator performance on the closed-loop
system is also provided, which helps highlighting the features of the controller
under study.

We underline that the main purpose of this analysis is to provide a system-
theoretic framework to characterise the performance of standard ABS systems
rather than on focusing on the design of a new ABS control algorithm.

Finally, the chapter provides a discussion on the link between the two
braking technologies considered, which aims at pointing out that the control

85
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engineer will have to carefully analyse the actuator dynamic capabilities in
order to devise the most appropriate control approach for braking systems
design.

The presentation of this topic is organised as follows. In Section 4.2 the
braking and actuator dynamics are described and discussed. The state plane
trajectories are shown and the considered ABS controller is introduced. In
Section 4.3 the necessary conditions for the limit cycle existence are presented
and the limit cycle properties in terms of amplitude and period are derived.
Then, in Section 4.4 the construction of the Poincaré map is outlined, and
the cycle asymptotic stability is assessed. Further, an analysis of the effect
of the actuator rate limit on the closed-loop trajectories is presented and the
chapter is concluded with a comparison of braking technologies considered.

4.2 Problem Setting

The model of the braking dynamics considered in this chapter is the single-
corner model (see Section 2.3), coupled with the HAB discussed in Section 1.3.

Specifically, the connection between the wheel dynamics (2.29) and the
hydraulic actuator dynamics introduced in (1.2) yields the second-order sys-
tem {

λ̇ = − 1−λ
Jω (Ψ(λ) − Tb) ,

Ṫb = u,
(4.1)

where ω > 0, u = {−k, 0, k} and (see also Equation 2.30)

Ψ(λ) =
(
r +

J

rm
(1 − λ)

)
Fzμ(λ). (4.2)

Recall (see Section 1.3) that according to the value of the control variable u,
we have three possible closed-loop dynamics, where u = −k corresponds to
the decrease control action, u = 0 corresponds to the hold control action and
u = k corresponds to the increase control action. The nominal value for k in
this chapter will be k = 5 kNm/s.

We now study the closed-loop trajectories with the aim of gathering in-
formation for the design of a switching control law that yields a limit cycle
in the closed-loop system. To this end, Figure 4.1(a) shows the closed-loop
trajectories in the state plane (λ, Tb) when u = k, Figure 4.1(b) the closed-
loop trajectories in the state plane (λ, Tb) when u = 0 and Figure 4.1(c) the
closed-loop trajectories in the state plane (λ, Tb) when u = −k. These results
were obtained for a static value of the vertical load Fz = mg, for v = 30 m/s
and on a dry asphalt road.

The dashed line in these figures is the curve defined by the expression of
the equilibrium points for the open-loop single-corner model, i.e.,
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(a)

(b)

(c)

Figure 4.1 Closed-loop trajectories in the state plane (λ, Tb) when u = k (a), u = 0
(b) and u = −k (c)
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Tb(λ) = Ψ(λ), (4.3)

where Ψ(λ) is as in (4.2).
According to the trajectories analysis, we can devise an appropriate switch-

ing logic to induce a limit cycle on the wheel slip. To this end, as depicted
in Figure 4.2(a), we select a box in the state plane; the idea is to use the
boundaries of the box as switching surfaces and to select the control actions
according to the finite state machine (FSM) shown in Figure 4.2(b). Specif-
ically, Figure 4.2(b) shows that the hybrid controller is composed of four
discrete states q = {0, 1, 2, 3}, each of which has an associated control action,
that is u = {k, 0,−k}. The transitions between these discrete states take
place when the closed-loop system trajectory hits the switching surfaces.

We define the switching manifolds as follows (see Figure 4.2(a)):

Σ0 = {(λ, Tb) : H0(λ, Tb) := Tb − TbMax = 0}, (4.4)
Σ1 = {(λ, Tb) : H1(λ, Tb) := λ− λMax = 0}, (4.5)
Σ2 = {(λ, Tb) : H2(λ, Tb) := Tb − TbMin = 0}, (4.6)
Σ3 = {(λ, Tb) : H3(λ, Tb) := λ− λMin = 0}. (4.7)

A detailed discussion on the relative position between the box and the
equilibrium curve Ψ(λ) given in Equation 4.2 is postponed to Section 4.3, as
it is closely related to the existence of the limit cycle.

By analysing Figure 4.2(b), where the FSM representation of the hybrid
controller is depicted, one can see that we employ the braking torque Tb

and the wheel slip λ as switching variables and that the switching mani-
folds change according to the current discrete controller state q = {0, 1, 2, 3}.
Moreover note that because of the specific application, we can assume that
(in normal operating conditions) the controller – upon activation – enters
the state q = 0 associated with the increase control action. This is due to
the fact that, when the braking manoeuvre begins, the controller is usually
activated when the wheel slip λ reaches a predefined threshold value, lower
than λMin. In the following simulations, for simplicity, we assume that the
braking manoeuvre starts with λ = 0 and Tb = 0.

Finally, it is worth noticing that when the closed-loop system evolves in
the discrete states q = 1 and q = 3, the control action is u = 0. Hence, the
dynamics given in (4.1) reduce to a first-order system and the closed-loop
trajectories in these discrete states slide along the switching manifold.

From the application viewpoint, the controller needs a measure of the lon-
gitudinal wheel slip λ and of the braking torque Tb (which can be derived via
a pressure measurement by means of Equation 1.1). Chapter 5 will discuss
the problem of wheel slip estimation in detail. What can be said here is that
the considered controller provides robustness features to measurement errors,
as the thresholds can be properly tuned based on the confidence on the qual-
ity of the available estimates of the controlled variables. Finally, note that
the ABS controller depicted in Figure 4.2(b) is representative of the heart of
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(a)

(b)

Figure 4.2 Switching logic shown in the state plane (λ, Tb) (a) and FSM description
of the braking controller (b)
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the switching logic actually implemented on current hydraulic ABS systems,
even though it offers a simplified description of the whole set of rules actually
employed. An industrial implementation of such control logic, in fact, must
handle all possible exceptions to normal functioning and this causes a huge
increase in the set of the needed logic rules. In particular, it is worth men-
tioning that as the braking pressure is not always available for measurement,
the threshold on the braking torque Tb might be replaced with thresholds on
the wheel deceleration (see, e.g., [27, 74]). Moreover, some vehicles might be
equipped with some sort of tyre–road friction monitoring system; if this is the
case, the threshold values TbMin and TbMax can be adapted online according
to the current road conditions. We discuss the controller in Figure 4.2(b) be-
cause it is representative of the actual functioning of current industrial ABS
controllers while consisting only of a few discrete states, thereby allowing us
to provide a sound formal analysis in a simple yet realistic framework.

Figure 4.3 Simulated closed-loop trajectory of system (4.1) with the given control
logic in the hybrid state space (Tb, λ, u)

4.3 Existence and Stability of Limit Cycles

We now investigate the existence and stability properties of the limit cycle
exhibited by the closed-loop braking system. We start by analysing the be-
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haviour of the closed-loop system obtained with the considered controller and
then give appropriate necessary conditions for the limit cycle existence.

The main features of the limit cycle are obtained by solving the associated
boundary value problem (BVP), i.e., by solving the nonlinear differential
equations defining system (4.1) over a specified time interval with appropriate
initial and final conditions.

For the definition of a limit cycle and a discussion on its stability properties
the interested reader is referred to Appendix A for a brief introduction and
to the references given therein for a more detailed presentation of the related
topics. It is worth mentioning that the considered closed-loop system is within
the class of non-smooth systems, i.e., its dynamics are not fully continuous,
as the control action switches according to the FSM representing the braking
controller. For the analysis carried out in this chapter, the material presented
Appendix A for the case of continuous systems still applies. For a thorough
review of the existing results concerning the nonlinear dynamic analysis of
non-smooth and hybrid systems, the interested reader may refer to [22, 50,
126].

Moving now to the considered case, Figure 4.3 shows a representative
simulation of the closed-loop system (4.1) with the control logic given in Fig-
ure 4.2(b) and with the threshold values TbMin = 600 Nm, TbMax = 900 Nm,
λMin = 0.08 and λMax = 0.35, on dry asphalt. In particular, Figure 4.3 shows
the closed-loop system trajectory in the three-dimensional hybrid state space
(Tb, λ, u), where also the discrete control action u ∈ {k, 0,−k} is regarded as
an additional state of the system. The dashed lines connecting the segments
of the periodic orbit in Figure 4.3 represent the jumps of the closed-loop
system among the different discrete states of the controller. These simulation
results demonstrate that the proposed control logic can indeed induce a pe-
riodic behaviour in the wheel slip and in the braking torque. Nonetheless, we
still need to analyse under which conditions the existence of the limit cycle
is ensured and what the other possible closed-loop dynamics are when the
desired periodic solution does not exist.

To investigate under which conditions the proposed control logic induces
a limit cycle behaviour in the wheel slip, refer to Figures 4.3 and 4.4; in
the latter a pictorial representation of the closed-loop trajectories (plotted
in Figure 4.3) is displayed. According to the hybrid controller behaviour
depicted in Figure 4.2(b) the limit cycle of interest is composed of the four
different segments shown in Figure 4.4.

1. When the braking manoeuvre begins, the FSM is in the discrete state
q = 0. The system then evolves with the dynamics given by system (4.1)
for u = k. Accordingly, the first switching occurs when the switching
manifold Σ0 is crossed at the point labelled as

x̄ = (TbMax, λ̄). (4.8)



92 4 Braking Control Systems Design: Actuators with Discrete Dynamics

Figure 4.4 Pictorial representation of the limit cycle behaviour in terms of itinerary
and initial conditions

2. The system then switches to the discrete state q = 1 where u = 0, and
starting from this initial condition evolves in this discrete state until
hitting Σ1 at the point

xMax = (TbMax, λMax). (4.9)

3. Now, the system switches again, this time to the discrete state q = 2, and
starting from xMax it remains in this state until crossing the switching
manifold Σ2. Again, the switching occurs at a specific point, labelled (see
also Figure 4.4)

¯̄x = (TbMin,
¯̄λ). (4.10)

4. Finally, the system switches to the discrete state q = 3 until, at the point

xMin = (TbMin, λMin), (4.11)

it crosses Σ3 when the discrete state q = 0 is entered again and the cycle
is repeated.

Note that both λ̄ and ¯̄λ are functions of the system parameter k, which defines
the curvature of the vector field when the system is in the states q = 0 and
q = 2. Furthermore, while ¯̄λ affects the limit cycle existence, λ̄ only affects
the itinerary of the limit cycle. In fact, if λ̄ > λMax, the point (TbMax, λMax)
does not belong to the limit cycle, but the limit cycle itself might still exist.
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Now let Φ(t, [λ(0), Tb(0); q = i]), i = 0, . . . , 3 define the system trajectory
forward in time1. In the following, we use the terminology forward trajectory.

Thus, if the limit cycle described above exists, the following conditions
must be satisfied.

1. There must be no intersection between the switching manifold Σ0 and
the manifold Ψ(λ) (see Figure 4.2(a)), i.e.,

Σ0 ∩ Ψ(λ) = ∅. (4.12)

2. The switching manifold Σ2 must intersect the equilibrium manifold Ψ(λ),
i.e.,

Σ2 ∩ Ψ(λ) 	= ∅. (4.13)

Note that if an intersection exists between the two manifolds, then, re-
calling Equation 2.30 (see also Figure 4.2(a)) if TbMin < Ψ(λ = 1) the
intersection is constituted by a single point, while, if TbMin ≥ Ψ(λ = 1)
it is constituted by two points.

3. If TbMin ≥ Ψ(λ = 1), i.e., two points of intersections exist between Σ2

and Ψ(λ), that is

Σ2 ∩ Ψ(λ) = {(TbMin, λ1), (TbMin, λ
+
0 )}, (4.14)

with
λ1 < λ+

0 , (4.15)

then the intersection between the system forward trajectory

Φ(t, [λMax, TbMax; q = 2])

and Σ2 must occur at a point (TbMin, λ) such that

λ < λ+
0 . (4.16)

Clearly, if condition (4.12) were not satisfied, then the closed-loop trajec-
tory would intersect Ψ(λ) when evolving in the discrete state q = 0 with
u = 0. When u = 0, the isocline is a set of equilibrium points for the closed-
loop dynamics. Hence, the system trajectory hits the point of intersection
with this curve and remains at the equilibrium with no limit cycle occurring.
This case is depicted in Figures 4.5(a) and 4.5(b), where the trajectory and
the time histories of the closed-loop system are shown for threshold values
TbMin = 600 Nm, TbMax = 750 Nm, λMin = 0.08 and λMax = 0.35, on dry as-
phalt. Note that when condition (4.12) is violated the closed-loop behaviour
of the system resembles that of a modulating controller, and we are able

1 For a generic dynamical system with state x ∈ Rn, the trajectory forward in time is
defined as Φ(t− t0, x(t0)), where t0 is the initial time and x(t0) the initial conditions,
see, e.g., [126].
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(a)

(b)

Figure 4.5 Closed-loop trajectory (a) and time histories of slip and braking torque
(b) of system (4.1) with the given control logic when the necessary condition (4.12)
for the limit cycle existence is violated
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to track a constant wheel slip value that corresponds to the abscissa of the
intersection between the manifolds Σ0 and Ψ(λ). Hence, even though the de-
sired limit cycle does not exist, from the application point of view this kind
of solution can be regarded as acceptable, as the braking manoeuvre is still
handled in a safe way.

Condition (4.13) guarantees that when the discrete controller switches
between q = 2 and q = 3, the system trajectory (which in this case is the
wheel dynamics only, as Σ2 is a sliding surface) evolves along decreasing
values of λ. In the case Σ2 ∩ Ψ(λ) = ∅, in fact, the system trajectory after
such switching would be such that λ increases (see Figure 4.1(b)) and wheel
locking would then occur. The effect of violating this condition is shown
in Figures 4.6(a) and 4.6(b), where the trajectory and the time histories of
the closed-loop system are shown, for threshold values TbMin = 850 Nm,
TbMax = 950 Nm, λMin = 0.08 and λMax = 0.35, on dry asphalt. Note that
when condition (4.13) is not fulfilled, after the switching between q = 2 and
q = 3 occurs the system trajectory evolves along increasing values of λ, and
this causes the wheel slip to lock.

Similarly, if the condition λ < λ+
0 in (4.16) were violated, then when the

system switched between q = 2 and q = 3 the system trajectory would again
evolve along increasing values of λ, thereby causing the system to move to-
ward λ = 1 (see also Figure 4.1(b)). Again, this means that no limit cycle ex-
ists and the braking manoeuvre ends with the locking of the wheel. A simula-
tion of the violation of this condition is shown in Figures 4.7(a) and 4.7(b), for
threshold values TbMin = 700 Nm, TbMax = 950 Nm, λMin = 0.08, λMax = 0.35
and k = 1 kNm/s, again on dry asphalt.

Assume now that conditions (4.12-4.16) are satisfied. Then, according to
the limit cycle itinerary described above and to the definitions of the switching
points given in Equations 4.8-4.11, we can explicitly define the switching
instants (we assume t0 = 0) as

t1 = {t : Φ(t1, [xMin; q = 0]) ∩Σ0 = {x}} , (4.17)
t2 = {t : Φ(t2 − t1, [x̄; q = 1]) ∩Σ1 = {xMax}} , (4.18)

t3 =
{
t : Φ(t3 − t2, [xMax; q = 2]) ∩Σ2 = {x}

}
, (4.19)

t4 =
{
t : Φ(t4 − t3, [x; q = 3]) ∩Σ3 = {xMin}

}
. (4.20)

Once all the system parameters have been fixed, conditions (4.17-4.20)
together with (4.8-4.11) can be seen as a BVP that can be solved numerically
for the unknowns λ, λ, Δ0 = t1, Δ1 = t2 − t1, Δ2 = t3 − t2 and Δ3 = t4 − t3.
Setting the threshold values TbMin = 600 Nm, TbMax = 900 Nm, λMin = 0.08
and λMax = 0.35, as depicted in Figure 4.2(a), considering dry asphalt road
and simulating the single-corner model with the numerical values given in
Table 2.2 we obtain the solution λ = 0.093, λ = 0.352,Δ0 = 0.072,Δ1 = 0.25,
Δ2 = 0.052 and Δ3 = 0.22.
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(a)

(b)

Figure 4.6 Closed-loop trajectory (a) and time histories of wheel slip and braking
torque (b) of system (4.1) with the given control logic when condition (4.13) for the
limit cycle existence is violated
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(a)

(b)

Figure 4.7 Closed-loop trajectory (a) and time histories of wheel slip and braking
torque (b) of system (4.1) with the given control logic when condition (4.16) for the
limit cycle existence is violated
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Figure 4.8 Plot of the closed-loop system trajectory in the state plane (λ, Tb) ob-
tained as the solution of the BVP

The resulting closed-loop behaviour is depicted in Figure 4.8, where the
limit cycle is shown in the state plane (λ, Tb). From the numerical solution
of the BVP we can also extract quantitative informations about the cycle
amplitude and period. Specifically, the period is given by

T =
3∑

i=0

Δi = 0.594 s.

As for the amplitude, it is clear that, in the vertical direction, the cycle am-
plitude is a priori fixed from the choice of the thresholds TbMin and TbMax.
Hence, the only interesting amplitude value is that on the longitudinal direc-
tion, which we refer to as to the cycle λ-amplitude.

To compute this value numerically, we evaluate the closed-loop system
forward trajectory in the states q = 0 and q = 2 until the time instant at
which the event λ̇ = 0 occurs. Hence, the cycle λ-amplitude is computed as

Aλ = λ− λ = 0.295,

where λ and λ are defined as

λ := Γλ[Φ(t3 − t2, [xMax; q = 2]) ∩ Ψ(λ)] (4.21)

and
λ := Γλ[Φ(t1, [xMin; q = 0]) ∩ Ψ(λ)], (4.22)
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with Γλ : R × R → R being a map such that Γλ(x, y) = x, i.e., a map that
returns the abscissas of the intersections described in (4.21) and (4.22).

Thus, the existence of the limit cycle has been proved and its nominal
amplitude and period computed. The next issue, which will be addressed in
the next section, is to investigate its stability. To do this, we will employ
some of the analysis tools presented in Appendix A.

Before moving to the stability analysis, it is worth mentioning that up
to now a single tyre–road friction condition has been considered, that is dry
asphalt road. Actually, the controller considered herein must be tuned by
fixing the threshold values for both the wheel slip and the braking torque so
that the necessary conditions (4.12)-(4.16) are satisfied. Hence, to devise a
controller that can ensure the limit cycle existence on all road surfaces, and
in view of the fact that a change in the road condition affects the curve Ψ(λ)
(see Equation 4.2), a trade-off in these values must be found. Nonetheless, as
Ψ(λ) can be analytically computed, the considered control approach allows
an easy tuning of such values so as to define a fixed-structure control law that
works on all different (a priori unknown) road conditions.

4.4 Limit Cycle Stability Analysis

To prove asymptotic stability of the limit cycle exhibited by system (4.1) in
closed-loop with the hybrid control law given in Figure 4.2(b) we need to
construct an appropriate Poincaré map (see Section A.2.2). In particular, we
choose a plane Π := {(λ, Tb) | λ̄ ≤ λ ≤ λMax} as a suitable Poincaré section,
which is transversal to the system flow associated with the discrete controller
state q = 1; that is, as time evolves, the closed-loop system trajectory inter-
sects Π transversally.

Let xn be the nth intersection of the system trajectory with the section
Π. Also, let x∗ = (λ∗, T ∗

b ) ∈ Π be the point at which the limit cycle crosses
the Poincaré section. Then, it is possible to construct a local mapping P :
Π �→ Π in a neighbourhood of x∗ from one intersection xn to the next xn+1.
Specifically, we have

xn+1 = P (xn), xn ∈ Br(x∗) ∩Π,

where Br(x∗) is a ball of centre x∗ and radius r.
Referring to Figure 4.9, we can see that for threshold values TbMin =

700 Nm, TbMax = 1000 Nm, λMin = 0.08, λMax = 0.35, with Π :=
{(λ, Tb) |λ = 0.2} and considering again a dry asphalt road, if we select two
initial conditions x−0 and x+

0 both belonging to Br(x∗) ∩Π, the system tra-
jectories starting from any of these two initial conditions evolve on a sliding
surface (see also Figure 4.1(b)) which is parallel to that of the steady-state
system flow in q = 1. Nonetheless, as the first switching manifold is Σ1, both
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Figure 4.9 Plot of the closed-loop system trajectory in the state plane (λ, Tb) with

the Poincaré section for the initial conditions x−
0 (dotted line) and x+

0 (dashed line)
in a neighbourhood of the fixed point x∗

these perturbed trajectories switch with the same value of λ = λMax. Then,
when the second switching manifold Σ2 is encountered, both trajectories
again evolve on a sliding surface, which annihilates the initial perturbation.

From here onwards, the two trajectories are indistinguishable and coincide
with the nominal one (solid line in Figure 4.9), i.e.,

P (xn) = x∗ ∀xn ∈ Br(x∗) ∩Π. (4.23)

From the above discussion and from Equation 4.23 it is clear that the only
eigenvalue γF of the Jacobian of the Poincaré map is γF = 0 and this guar-
antees (see also Section A.2.2) that the limit cycle is not only asymptotically
stable but it is also characterised by dead beat convergence, in the sense that
the cycle starting from a perturbed initial condition is indistinguishable from
the nominal one already at its first intersection with the plane Π and not
only asymptotically.

4.5 Effects of the Actuator Rate-limit Variation

It is interesting to further investigate the effect of the actuator rate-limit
k on the closed-loop trajectories. First of all, it is worth noting that there
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exists a critical value for k that can cause the violation of the necessary
condition (4.16) for the limit cycle existence.

In fact, as has already been mentioned, the parameter k is responsible
for the curvature of the vector field when the system is in the states q = 0
and q = 2. Accordingly, a low value of k can make the system switch from
q = 0 to q = 1 when λ > λMax, hence the pair (TbMax, λMax) does not belong
to the limit cycle. This, however, only modifies the cycle itinerary, but does
not prevent its existence. On the other hand, a critical value of k exists such
that when the switching from q = 2 to q = 3 occurs after the decrease control
action has been applied, condition (4.16) is violated and wheel locking occurs.

To highlight the effects of k on the tuning of the different thresholds used
in the algorithm, it is interesting to derive analytical bounds that allow us
to capture the parameter effects on the closed-loop trajectories. To this end,
consider the closed-loop system dynamics in the discrete state q = 2, which
have the form {

λ̇ = − 1−λ
Jω (Ψ(λ) − Tb) ,

Ṫb = −k. (4.24)

To derive an analytical bound on the wheel slip evolution in time in q = 2,
note first that when the switching from q = 1 to q = 2 occurs, the braking
torque is such that Tb = TbMax (recall that Tb = TbMax for the entire system
evolution in q = 1, where the hold control action is applied). Thus, the
evolution in time of the braking torque in q = 2 is described as TbMax − k t.
Further, one must note that the function Ψ(λ) is bounded, as it satisfies
0 ≤ Ψ(λ) ≤ ΨMax, where ΨMax = maxλ Ψ(λ).

Due to these considerations and recalling that λ ∈ [0, 1], it holds that

0 ≤ λ̇ ≤ ΨMax + (TbMax − k t). (4.25)

Further, as λ is non-negative, the same bound holds if we integrate (4.25)
with respect to time; this yields

λ(0) ≤ λ(t) ≤ λ(0) + ΨMax t+ TbMax t− k
t2

2
. (4.26)

We are now interested in finding the time instant t̄ when the switching from
q = 2 to q = 3 occurs; that is

t̄ : Tb = TbMax − k t = TbMin → t̄ =
TbMax − TbMin

k
> 0.

Substituting this expression into the right-hand side of (4.26) and noticing
that λ(0) = λMax yields

λ(t) ≤ λMax + (ΨMax + TbMax)
(TbMax − TbMin)

k
− (TbMax − TbMin)2

2k (4.27)
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= λMax +
[
(ΨMax + TbMax) −

(TbMax − TbMin)
2

]
(TbMax − TbMin)

k
.

The above relation allows us to capture the fact that if k → 0 (i.e., if no
braking torque is applied) we obtain λ(t) → 1, i.e., wheel locking occurs.
In fact, if this is the case the trajectories are of the form depicted in Fig-
ure 4.1(b). On the other hand, if k → +∞ (i.e., if we have an infinitely large
actuator rate-limit) we have λ(t) → λ(0), i.e., the system trajectory would
evolve exactly along Σ1 (and thus the limit cycle would coincide with the
box defined in the state space by the curves Σi, see Figure 4.2(a)).

Finally, from (4.27), if we let

λMax+
[
(ΨMax + TbMax)−

(TbMax − TbMin)
2

]
(TbMax − TbMin)

k
=λ+

0 , (4.28)

we can solve for k to find out the effect of k on the necessary condition (4.16).
Namely, for condition (4.16) to hold, the following inequality must be fulfilled:

k ≥
[
(ΨMax + TbMax) −

(TbMax − TbMin)
2

]
(TbMax − TbMin)

λ+
0 − λMax

. (4.29)

Equation 4.29 shows that it is possible to obtain a periodic behaviour in
the wheel slip also with a low value of k by simply lowering the threshold
Tb = TbMin. In so doing, when the system switches from q = 1 to q = 2 the
necessary condition (4.16) holds and the limit cycle is induced on the wheel
slip. In fact, a lower value of k means that the curvature of the vector field
will be larger, and thus λ(t) will reach values that grow larger than λMax as
k decreases. However, by lowering the value TbMin one may allow the system
trajectory to switch to q = 2 when condition (4.16) holds. As a matter of
fact, if the value of TbMin is low enough so that no intersections exist between
Σ2 and Ψ(λ) other than λ1, then condition (4.16) does not apply, and the
trajectories – when hitting Σ2 – will certainly evolve toward lower values of
λ (see again Figure 4.1(b)).

The same kind of reasoning can be applied to see the effect of k in enforcing
the condition that (TbMax, λMax) belongs to the limit cycle. In this case, one
needs to find a bound on the closed-loop system dynamics associated to the
discrete state q = 0. Note that, in this case, the time instant that defines the
switching we are interested in is

t̄ : Tb = TbMin + k t = TbMax → t̄ =
TbMax − TbMin

k
> 0.

A simple computation in this case (note that now λ(0) = λMin) yields

λ(t) ≤ λMin +
[
(ΨMax + TbMax) +

(TbMax − TbMin)
2

]
(TbMax − TbMin)

k
.

(4.30)



4.6 Summary of the Actuators’ Performance 103

Hence, to guarantee that (TbMax, λMax) belongs to the limit cycle one needs

k ≥
[
(ΨMax + TbMax) +

(TbMax − TbMin)
2

]
(TbMax − TbMin)
λMax − λMin

. (4.31)

If, for a fixed value of k, one wants to ensure that (TbMax, λMax) belongs to the
limit cycle then Equation 4.31 shows that it suffices to choose a smaller value
for the threshold Tb = TbMax — taking care that this satisfies Σ0 ∩ Ψ(λ) = ∅
— so that, when the switching manifold Σ0 is hit, λ̄ ≤ λMax.

4.6 Summary of the Actuators’ Performance

After having presented two different approaches for braking control design,
which are based on the two possible classes of braking actuators, it is inter-
esting to show that the two are indeed deeply linked to each other.

As a matter of fact, the control logic that we have just discussed for the
case of discrete actuator dynamics is based on the thresholds on the wheel slip
and braking torque, which define a box in the state space of the closed-loop
system.

It is clear, then, that if we let the box shrink — in the limit to a single
point — then we are practically achieving the regulation of the wheel slip to
a fixed set-point value, which is exactly what we did in Section 3.1 to design
the slip controller based on continuous actuator dynamics.

To see this, refer to Figure 4.10(a) and Figure 4.10(b), which show the
closed-loop trajectory and the time histories of the wheel slip and of the
braking torque in a simulation carried out on dry asphalt, with threshold
values TbMin = 790 Nm, TbMax = 810 Nm, λMin = 0.14, λMax = 0.145
and k = 5 kNm/s. These results show that, indeed, the obtained closed-
loop behaviour resembles that achieved via regulation of the wheel slip at a
constant value.

From the technological point of view, the possibility of reducing the box
size implies the ability of the braking system to switch between the three
possible actions assumed in the discrete case, i.e., increase, hold and decrease,
fast enough to allow the switching to take place. Should such an assumption
be fulfilled, then one may say that the discrete braking actuator can in fact
be modulated in a pulse-width-modulation (PWM) fashion and can therefore
be regarded as a continuous actuator for control purposes.

This shows the link between the two technologies considered in this book,
which constitute the two limiting situations in which one can operate. In
practice, each braking system will have to be analysed in order to select the
best control approach based on its dynamic characteristic and on the final
performance levels that are expected for the considered application.
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(a)

(b)

Figure 4.10 Closed-loop trajectory (a) and time histories of wheel slip and braking
toque (b) of system (4.1) with the given control logic with threshold values TbMin =
790 Nm, TbMax = 810 Nm, λMin = 0.14, λMax = 0.145 and k = 5 kNm/s
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4.7 Summary

This chapter discussed in detail how to cope with an actuator with dis-
crete dynamics for the design of ABS systems. Specifically, the existence
and asymptotic stability of a limit cycle induced by an appropriate braking
controller was studied. Based on a detailed analysis of the state plane tra-
jectories of the braking dynamics we have given necessary conditions for the
limit cycle existence. Moreover, we have proved the limit cycle existence by
showing that the related BVP admits a solution and assessed its asymptotic
stability properties via Poincaré map analysis. For a more detailed presen-
tation of the robustness properties of the proposed controller, in the face
of both measurement errors and variations in the tyre–road conditions, the
interested reader is referred to [112].

In the scientific literature, some results on the study of the wheel slip dy-
namics based on nonlinear dynamics’ theoretical tools can be found in [67]
and [68]; in these works, though, the analysis concentrated on vehicle trac-
tion and braking dynamics and was not related to any particular controller
architecture. Other works focused on the study of rule-based ABS systems
are [26,49,70,74], each of which considers a different number of discrete states
in the ABS controller. In particular, in [49] an ABS controller with four dis-
crete states is studied, and switching between the different states is governed
by wheel deceleration thresholds and the elapsed time intervals spent in the
different states. The structure of the hybrid controller in [49] is similar to that
discussed in this chapter, even if it is based on a simplified tyre–road model,
which is a piecewise linear approximation of the one considered herein. The
tuning of the threshold values is made by analysing the quarter car dynamics,
even if no formal existence and stability analysis of the closed-loop trajec-
tories are given. Recently, [74] presented a five-state controller, where the
threshold values are based on wheel deceleration, and the stability analysis
was performed via Poincaré maps and notions from hybrid systems theory.
From the industrial viewpoint, rule-based ABS were introduced on commer-
cial cars by Bosch [87] and a qualitative description of such algorithms is
provided in [45].



Chapter 5

Longitudinal Wheel Slip Estimation

5.1 Introduction

As has become clear in the previous chapters of this book, the problem of
estimating the longitudinal wheel slip is crucial for an effective design of
ABS, TCS and ESC control systems, especially in the case when the control
problem is formulated as the regulation of the wheel slip itself.

To obtain an accurate estimate of the longitudinal wheel slip one first of
all needs to correctly process the wheel speed sensor measurements in order
to obtain an estimate of the wheel speed. This topic is discussed in detail
in Appendix B, where the two main algorithms employed for this task are
discussed and their advantages and disadvantages outlined.

Further, according to the wheel slip definition, see Equation 2.3, one needs
to estimate the longitudinal vehicle speed. In fact, this variable can be directly
measured only by means of optical sensors, which are expensive and fragile
and hence used only for prototyping purposes.

The crucial difference in setting up a speed estimation algorithm for ABS
and TCS control systems is that in the former case all wheels are in general
subject to braking torque (and thus to a non-zero wheel slip), whereas in the
latter only the driving wheels transmit the traction torque to the ground,
and thus two of the wheel speeds in fact evolve in almost free rolling (thus
with no – or with negligible – wheel slip) and can hence be used estimate the
vehicle speed.

This is also true for braking systems for two-wheeled vehicles where only
the front wheel brake is used. In this case, the rear wheel speed provides a
reasonable estimate of the vehicle speed.

Thus, the availability or lack of free rolling wheels makes a crucial differ-
ence in the speed estimation problem.

To demonstrate the need for a reliable estimate of the vehicle speed during
braking, this chapter studies first the interaction between speed estimation
and braking control, showing that feeding a slip controller with a coarse esti-

107
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mation of the controlled variable can substantially alter its dynamic proper-
ties. Specifically, we analyse what happens to the closed-loop system stability
properties when one controls the wheel slip of a vehicle using the simple fastest
wheel algorithm to estimate the vehicle speed, that is by using as estimate
– at each time instant – the speed of the wheel with the lowest slip. This
analysis, carried out based on the double-corner model, reveals that such a
coarse estimation coupled with a slip controller can lead to closed-loop in-
stability, thus confirming the need of an accurate estimation algorithm. The
results obtained suggest that the slip controller and the speed estimation
algorithm – which might be developed separately and by different teams in
current practice – should be carefully designed through a coordinated effort.

Based on this, a data-based approach to the estimation problem in the
ABS case is provided, yielding an algorithm for vehicle speed estimation,
which is based only on the four wheel rotational speeds and longitudinal
vehicle acceleration measurements. Four wheel encoders and a one-axis ac-
celerometer, in fact, are standard sensors on cars equipped with modern ABS
control systems.

5.2 Interaction Between Braking Control and Speed
Estimation

The discussion provided in Chapter 3 has shown that under perfect speed
knowledge a slip controller can be designed, which guarantees the existence
of a unique equilibrium that is locally asymptotically stable for all choices of
the set-point at the front and rear wheels and for all road conditions, both
for the single-corner and for the double-corner models.

Consider now the case when the vehicle speed is estimated as the fastest
wheel speed. Even though this estimation may appear quite crude, it is in
fact still used in practice, as it does not need any additional sensor to the
wheel encoders.

Formally, considering the double-corner model the vehicle speed is esti-
mated as

v̂ = max{ωf , ωr}r. (5.1)

Correspondingly, given the definition of the wheel slip in Equation 2.5, the
estimate of the front wheel slip λ̂f has the form

λ̂f = 1 − ωf

ωf
= 0 if ωf ≥ ωr ⇔ λf ≤ λr, (5.2)

λ̂f = 1 − ωf

ωr
=
λf − λr

1 − λr
if ωf < ωr ⇔ λf > λr.

Analogous expressions hold for the rear slip estimate λ̂r.
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Based on the double-corner model (2.56), we now show that when a slip
controller is fed by the vehicle speed estimate (5.1) stability is lost. To con-
centrate on the core of the problem and to provide insightful results, for
analysis purposes a simple proportional feedback controller is considered.
Needless to say, the performance of proportional controllers can be improved
by higher-order control architectures, but the basic results and conclusions
remain unchanged. Once again, we assume that the dependence of Ψf (λf , λr)
from λr can be neglected and adopt the notation Ψf (λf ).

As shown in Proposition 3.1 (see Section 3.8.1), in the case of perfect
knowledge of the vehicle speed v, the closed-loop system equilibrium can be
stabilised by a proportional controller, provided that the controller gains are
chosen to be large enough.

Recall that in the case where an error-free measure of the controlled vari-
ables λi, i = {r, f} is available letting

Tbf
= kf (λf − λf ),

(5.3)
Tbr

= kr(λr − λr),

where λf and λr are the set-point values for the front and rear wheel slip,
respectively, and kf , kr are the positive controller gains, the closed-loop dy-
namics become

λ̇f = − r

Jv

[
Ψf (λf ) − kf (λf − λf )

]
,

(5.4)
λ̇r = − r

Jv

[
Ψr(λf , λr) − kr(λr − λr)

]
.

For the closed-loop system (5.4), fixing the set-point values to λf , λr ∈ (0, 1),
and letting (λ̃f , λ̃r) be an equilibrium of system (5.4) associated with λf , λr,
one has the following equilibrium condition:{

Ψf (λ̃f ) = kf (λf − λ̃f )
Ψr(λ̃f , λ̃r) = kr(λr − λ̃r).

(5.5)

Now, if the proportional controller (5.3) is used with λi replaced by λ̂i

i = {f, r} computed as in (5.2), the closed-loop system dynamics are still
continuous but have two different expressions according to the region of the
state space within which the system state is at any time instant, determined
according to the wheel that is currently used to estimate the vehicle speed.

Specifically, the system dynamics have the following form.
Region I (λf ≤ λr):

λ̇f = − r

Jv

(
Ψf (λf ) − kfλf

)
,

(5.6)
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λ̇r = − r

Jv

(
Ψr(λf , λr) − kr

[
λr −

λr − λf

1 − λf

])
.

Region II (λf > λr):

λ̇f = − r

Jv

(
Ψf (λf ) − kf

[
λf − λf − λr

1 − λr

])
,

(5.7)

λ̇r = − r

Jv

(
Ψr(λf , λr) − krλr

)
.

In the following proposition we analyse the behaviour of the system described
by (5.6) and (5.7), when the gains of the wheel slip controller are chosen to
be large enough to satisfy the stability condition worked out for the stability
of the double-corner model in the case of perfect speed knowledge (see again
Proposition 3.1 in Section 3.8.1). This choice is motivated by two different
reasons. First of all, the spirit of this analysis is that of showing how the
results that one has found assuming perfect knowledge of the vehicle speed
coupled with a bad speed estimate can cease to hold. Secondly, this is due to
the fact that considering the common set-point values for the application at
hand, that is λ ∈ [0.1, 0.25], one finds that the values of the the front and rear
wheel slip associated with the equilibrium points in (5.5) that correspond to
low values of the gains kf and kr would be extremely low, and thus unappro-
priate for safely managing a braking manoeuvre. Thus, the only situation of
potentially practical interest is that investigated in the next proposition.

Proposition 5.1. Consider the closed-loop system described by (5.6) and (5.7)
with kf > maxλf

Ψf (λf ) and kr > maxλf ,λr Ψr(λf , λr). Then, there exist set-
point values λi ∈ (0, 1), i = {r, f} such that, for all initial conditions λf (0),
λr(0) ∈ (0, 1) the wheels lock, that is λi → 1 , i = {r, f}.

Proof. Given the bounds on the controller gains, we can choose λi ∈ (0, 1), i =
{r, f} so as to satisfy

Ψf (λf ) − kfλf < 0, ∀λf , (5.8)
Ψr(λf , λr) − krλr < 0, ∀λf , λr.

In the closed-loop system evolution, three different situations may occur.

1. The state of the system remains in Region I from some time t ≥ 0 on,
i.e., λf (t) ≤ λr(t), t ≥ t̄.

2. The state of the system remains in Region II from some time t ≥ 0 on,
i.e., λf (t) > λr(t), t ≥ t̄.

3. The state of the system keeps switching between Region I and Region II.

Let us start considering case 1. By the first equations in (5.6) and (5.8),
within Region I, we have both λ̇f > 0 and λr > λf . Thus, as time grows,
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λf → 1, so that the front wheel locks and, as λr > λf , also λr → 1. The
same reasoning applies to case 2.

As for case 3, we shall prove by contradiction that it cannot actually
occur. For this purpose, we start by observing that the time derivative of
Δλ = λf − λr for λf = λr = λ is given by

Δ̇λ = − r

Jv

[
r(Wf −Wr − 2ΔFz

v̇)μ(λ) − kfλf + krλr

]
, (5.9)

which is obtained based on (5.6) and the definitions of Ψf (·) and Ψr(·, ·) given
in (2.26) and (2.27). Thus, on the boundary between Region I and Region II,
Δ̇λ is zero for those values of λf = λr = λ satisfying the equation

μ(λ) =
kfλf − krλr

r(Wf −Wr − 2ΔFz
v̇)
.

Recalling the expression for μ(·) in (2.13), we then have that there is a
single value, say λ, such that Δ̇λ(t) = 0 when λf (t) = λr(t) = λ.

Assume now by contradiction that there exists a sequence of time instants
{tk}k≥0, with tk+1 > tk ≥ 0, k ≥ 0, such that λf (t) > λr(t), t ∈ (t2h, t2h+1),
and λf (t) ≤ λr(t), t ∈ (t2h+1, t2h+2) with h ≥ 0, that is a sequence of
time instants at each of which successive switchings between Region I and
Region II occur. Set λk := λf (tk) = λr(tk). We next show that from this
assumption it follows that

λk+1 > λk, k ≥ 0. (5.10)

Note that (5.10) implies that there exists a sequence {λk} of increasing
values of λ such that Δ̇λ in (5.9) keeps changing sign. Because of the conti-
nuity of Δ̇λ as a function of λ, this contradicts the fact that Δ̇λ = 0 on a
single point (λf = λr = λ̆) of the boundary between Region I and Region II,
thus concluding the proof of the proposition.

As a matter of fact, for the state to commute at time t2h from Region
I where λf − λr ≤ 0 to Region II where λf − λr > 0, it should hold that
λf (t2h) = λr(t2h) = λ2h and Δ̇λ(t2h) > 0. By a similar reasoning, it is
easily seen that for the state to commute at time t2h+1 > t2h back from
Region II to Region I, λf (t2h+1) = λr(t2h+1) = λ2h+1 and Δ̇λ(t2h+1) ≤ 0.
Thus, λ2h+1 	= λ2h because of the different sign of Δ̇λ on the boundary at
λf = λr = λ2h and λf = λr = λ2h+1. Moreover, we know that λ2h+1 ≥ λ2h,
since we have λ̇f > 0 within Region I, λ̇r > 0 within Region II, and both
λ̇f > 0 and λ̇r > 0 on the boundary between Region I and Region II (this is a
consequence of (5.8) and of the continuity of the vector field (5.6) and (5.7)).

Thus, from λ2h+1 ≥ λ2h and λ2h+1 	= λ2h, it follows that λ2h+1 > λ2h. In
a perfectly analogous way it can be shown that λ2h+2 > λ2h+1, so that (5.10)
is finally proved and hence the thesis follows.


�
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5.3 A Solution for Vehicle Speed Estimation

The problem of vehicle speed estimation with four-wheeled vehicles has tradi-
tionally been tackled by pursuing three different kinds of approaches: devising
algorithms based on intuitive procedures linked to the physics of the consid-
ered problem (a basic example of these is the fastest wheel speed discussed
in the previous section), setting up genuine black-box approaches based on
input/output data and stating model-based filtering problems solved via clas-
sical identification techniques and observer design methods (see Section 5.5
for a list of references and a brief description of the different existing ap-
proaches).

The rest of the section illustrates a solution to the vehicle speed estimation
problem coming from the first family of algorithms described above, which
offers a more accurate and refined solution than the fastest wheel speed but
retains the intuitive nature of that approach. The estimation algorithm allows
highlighting some of the data processing problems involved in the considered
application which are almost independent of the chosen estimation approach;
further, it is easy to implement on board of commercial ECUs, it makes use of
standard sensors only (four wheel encoders and a longitudinal accelerometer)
and it represents a good compromise between estimation accuracy, computa-
tional complexity and physical insight.

The main idea of the algorithm is to estimate the vehicle speed differently
according to the current vehicle status, so as to account for the different
motion conditions. Specifically, the status of the vehicle is represented by
a four-valued variable S(t), which is used to model the condition in which
the vehicle speed is very low, the acceleration condition, the constant or soft
braking condition and, finally, the strong braking condition.

Once the vehicle status has been reconstructed from the measured signals
via appropriate data processing, the estimated vehicle speed is computed
based on the following observations: when the vehicle has very low or constant
speed, the estimated vehicle speed can be obtained as the average of the four
wheel speeds, as basically the slip is equal to zero for all wheels. When the car
accelerates, instead, as the driving wheels have a non-null longitudinal slip
due to traction force, the estimated vehicle speed must be obtained as the
average of the non-driving wheels. Not surprisingly, the braking condition is
the most critical, and it requires an appropriate integration procedure of the
accelerometer signal. In the following, the computation of the vehicle status
and the speed estimation in each of the four cases outlined above will be
formally specified.

Overall, the estimation approach is composed of the following:

Input (Measured) Signals

• vi(t), i = 1, . . . , 4: four wheel linear speeds at the tyre–road contact point;
and

• ax(t): longitudinal vehicle acceleration.
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All the signals are assumed to derive from measurements coming from prop-
erly calibrated sensors. For a thorough discussion on wheel encoder processing
the reader is referred to Appendix B. The accelerometer needs to be calibrated
by adjusting the sensor gain and removing the offset.
Input (Internally Computed) Signals
At each sampling instant, the following auxiliary signals are computed:

• v̄(t) = 1
4

∑4
i=1 vi(t): average of the four wheel speeds;

• v̄ND(t) = 1
2

∑2
i=1 vi(t): average of the two non-driving wheel speeds; and

• axFIL(t) = F (z)ax(t): filtered version of the longitudinal acceleration – the
filter F (z) is a digital FIR low pass filter.

Output Signal

• v̂x: estimated longitudinal vehicle speed.

Estimation Algorithm

The algorithm behaviour changes according to the status of the vehicle, which
is represented by the four-valued variable S(t). Specifically:

• S(t) = −2 means that the vehicle speed is very low;
• S(t) = −1 means that the vehicle is accelerating;
• S(t) = 0 means that the vehicle has constant speed or is softly braking;

and
• S(t) = 1 means that the vehicle is braking.

The vehicle status S(t) is computed as follows:
S(t) = −2 if ⎧⎨⎩

S(t− 1) = −2 AND v̄(t) ≤ vMin + hv

OR
S(t− 1) 	= −2 AND v̄(t) ≤ vMin.

S(t) = −1 if⎧⎨⎩
S(t− 1) = −2 AND (axFIL(t) ≥ δ AND v̄(t) > vMin + hv)
OR
S(t− 1) 	= −2 AND (axFIL(t) ≥ δ AND v̄(t) > vMin) .

S(t) = 0 if⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
S(t− 1) = −2 AND (−β ≤ axFIL(t) < δ AND v̄(t) > vMin + hv)
OR
S(t− 1) = 1 AND (−β + ha ≤ axFIL(t) < δ AND v̄(t) > vMin)
OR
S(t− 1) = {0,−1} AND (−β ≤ axFIL(t) < δ AND v̄(t) > vMin.)
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S(t) = 1 if⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
S(t− 1) = −2 AND (axFIL(t) < −β AND v̄(t) > vMin + hv)
OR
S(t− 1) = 1 AND (axFIL(t) < −β + ha AND v̄(t) > vMin)
OR
S(t− 1) = {0,−1} AND (axFIL(t) < −β AND v̄(t) > vMin) .

The longitudinal vehicle speed is estimated as follows:

if S(t) = −2 OR S(t) = 0 → v̂x(t) = v̄(t),
if S(t) = −1 → v̂x(t) = v̄ND(t),
if S(t) = 1,

v̂x(t) = v̂x(t− 1) + ax(t)T, ∀t ≥ t̄, (5.11)

where T is the sampling time, t̄ is such that S(t̄ − 1) = 0 and S(t) = 1 for
t ≥ t̄ and

v̂x(t̄− 1) = v̂x(t̄− 2) + ax(t̄− 1)T, ∀t ∈ [t̄−M + 1, t̄), (5.12)

with v̂x(t̄−M) = v̄(t̄−M).

Comments and Additional Aspects

It is worth noting that as the braking condition is the most critical, since
all four wheels are slipping, the speed estimation is carried out via an open-
loop integration procedure of the accelerometer signal, augmented with a
backward integration phase, see Equation 5.12, to cope with initialisation
errors due to a delayed detection of the braking condition caused by the use
of a filtered acceleration signal.

However, one must filter the longitudinal acceleration for computing the
vehicle status due to the need of preventing chattering between different
states due to the measurement noise affecting the signal ax(t). Therefore, the
rationale behind the backward integration phase is as follows: it is assumed
that t̄ is the last time instant when a switch of the vehicle status S(t) took
place from 0 to 1 (which is the natural transition from soft to strong braking),
namely that S(t̄ − 1) = 0 and S(t) = 1, t = t̄, t̄ + 1, t̄ + 2, . . . In this phase
the speed estimation v̂x(t) is computed according to the discrete time inte-
gration of the vehicle acceleration given in Equation 5.11. This integration
rule, however, is itself recursive, and it must be initialised at t = t̄. Even if a
natural initialisation could in principle be given by

v̂x(t̄− 1) = v̄(t̄− 1),

under the assumption that S(t̄− 1) = 0, such a choice would lead to an error
due to the delay in the identification of the braking phase introduced both
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by the use of thresholds to detect the braking phase itself and by the use
of the filtered version of the vehicle acceleration for determining the vehicle
current status. Accordingly, for the initialization of the recursion (5.11), the
additional vehicle integration given in Equation 5.12 is used, which is back-
propagated for M samples up to the time instant t̄−M + 1, assuming that
v̂x(t̄−M) = v̄(t̄−M).

For a correct operation of the algorithm, the different parameters need
to be correctly tuned, and this has to be done based on the analysis of the
measured data. Specifically, β is the threshold set on the filtered version of
the vehicle deceleration axFIL(t) for identifying a braking manoeuvre. The
constants vMin and δ are thresholds – to be properly tuned according to
the specific vehicle characteristics – to detect the low speed status and the
acceleration status, respectively. The additional hysteresis thresholds on the
acceleration ha and on the wheel speed hv were introduced to avoid chattering
phenomena.

In the above description of the algorithm, all input signals are assumed
to be correct and available at each sampling instant. A deployable imple-
mentation should take care of, for instance, outliers detection and removal.
To this purpose, when the four wheel signals are obtained as inputs, an a
posteriori check of v̄(t) (and v̄ND(t)) is performed. To avoid an outlier wheel
measurement, the four wheel speeds vi(t) are re-checked immediately after
v̄(t) is computed as follows:

|v̄(t) − vi(t)|
|v̄(t)| < er, (5.13)

where the value of the threshold er is to be defined according to the noise
level in the wheel speed measurements and to the application-specific safety
requirements. If one – or more – wheel speeds do not pass this consistency
test they are discarded, and v̄(t) is re-computed as the average of the reduced
set of wheel speeds.

Another issue to be considered when deploying a final version of the algo-
rithm is the inclusion of a feasibility check of the output provided during the
open-loop integration phase. To guarantee the estimation convergence, one
may notice that during braking phases (i.e., when the algorithm relies on the
open-loop integration of the accelerometer signal), the estimated speed must
be monotonically decreasing.

Accordingly, if S(t) = 1 and

v̂x(t) − v̂x(t− 1) > ea, (5.14)

ea being a properly tuned threshold, the algorithm should detect the incon-
sistency. As a back-up strategy, one may let v̂x(t) = v̂x(t− 1) – if the vehicle
deceleration rate has kept nearly constant in the last few samples – or let
v̂x(t) be a scaled version of the current fastest wheel speed, with the scaling
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factor that can be made proportional to the current vehicle deceleration, so
as to account for the fact that the wheel slip in general increases with the
deceleration.

Table 5.1 Parameters employed in estimation algorithm implementation

Parameter Value Meaning
Ts 5ms Sampling time

vMin 2.5 m/s Speed threshold to identify the low speed status
S = −2

δ 0.1 m/s2 Acceleration threshold to identify the acceleration
status S = −1

β 0.8 m/s2 Acceleration threshold to identify the braking sta-
tus S = 1

hv 0.2 m/s Hysteresis on the speed threshold vMin to avoid
chattering between different states

ha 0.1 m/s2 Hysteresis on the acceleration threshold β to avoid
chattering between different states

M 50 samples Back-propagation window length
er 0.05 Speed threshold for the outlier check (5.13)
ea 0.3 m/s Speed threshold for the consistency check (5.14)

5.4 Performance Evaluation of the Estimation
Algorithm

To investigate the results that can be obtained via the estimation algorithm
described in the previous section, some experimental results are now dis-
cussed. The test drives used for collecting the experimental data on the basis
of which the following results were carried out on two different road condi-
tions, i.e., a high-grip asphalt road and a low-grip gravel road. All the braking
manoeuvres took place in a straight line.

The algorithm performance is tested against the fastest wheel algorithm,
which estimates the vehicle speed as in (5.1), i.e., selecting the wheel with
the lowest longitudinal slip.

The parameter values used for the algorithm implementation are reported
in Table 5.1 where their meaning is also recalled. To evaluate the estimation
algorithm performance a one-axis optical sensor for measuring the actual
longitudinal vehicle speed v(t) was installed on the test vehicle.

Figures 5.1 and 5.2 show (a few seconds’ zoom out of a 2 min test drive)
the results of the estimation algorithm on high-grip and low-grip road, re-
spectively. Namely, the figures show both the estimated vehicle speed and
the estimated wheel slip, each with the pertaining estimation error. For com-
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Figure 5.1 Time histories of: (a) vehicle speed, (b) speed estimation error, (c) wheel
slip and (d) slip estimation error on a high-grip road. Reference signals (dotted line),
estimated signals with the proposed algorithm (solid line), and estimated signals with
the fastest-wheel algorithm (dash-dotted line)

parison purposes, Figures 5.1 and 5.2 also show the reference vehicle speed
and the estimation results obtained via the fastest-wheel algorithm.

The maximum and the average speed estimation errors, say evMax and evAvg

(these values were computed over the whole 2 min test drive) are very small:
evMax = 0.270 m/s and evAvg = 0.040 m/s on high-grip asphalt road and
evMax = 0.364 m/s and evAvg = 0.077 m/s on low-grip off-road. If compared
with the simple fastest-wheel benchmark, both evMax and evAvg obtained with
the discussed estimation algorithm are about one order of magnitude smaller
on both road conditions.
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Figure 5.2 Time histories of: (a) vehicle speed, (b) speed estimation error, (c) wheel
slip and (d) slip estimation error on a low-grip road: reference signals (dotted line),
estimated signals with the proposed algorithm (solid line), and estimated signals with
the fastest-wheel algorithm (dash-dotted line)

The maximum and average slip estimation errors, say eλMax and eλAvg,
are eλMax = 2.48% and eλAvg = 0.47% on high-grip road and eλMax = 3.55%
and eλAvg = 0.58% on low-grip road.

Such orders of magnitude can be considered adequate for the estimation
algorithm to be used in combination with slip-based ABS/TCS control sys-
tems.
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5.5 Summary

In this chapter, the problem of wheel slip estimation has been considered.
In particular, the interactions between wheel slip estimation and slip control
have been investigated, revealing that care must be taken in evaluating the
quality of the estimates with respect to the braking controller considered.

A solution to wheel slip estimation has been proposed, describing an al-
gorithm based on the signals coming from wheel encoders and a longitudinal
acceleration sensor to estimate the vehicle speed. The algorithm has been de-
scribed based on four-wheeled vehicle dynamics. The results can be extended
also to two-wheeled vehicles, even though the differences in some aspects of
the dynamic behaviour might call for some adaptations and modifications of
the proposed approach.

As mentioned in Section 5.3, the scientific literature offers several solutions
to wheel speed and wheel slip estimation for four-wheeled vehicles. Some of
these, such as [37], are based on the assumption that the braking control
algorithm is of the type discussed in Chapter 4, thus yielding an oscillatory
behaviour of the wheel slip, and the resulting algorithm relies on the detection
of the fast alternation of minima and maxima in the wheel speed signal.
In [29], an adaptive estimation method for the wheel slip is proposed based
on a linear approximation of the tyre–road friction relation and the use of
least squares identification techniques. Others approaches are model-based:
in [123], the estimation of the vehicle speed is derived from a Kalman filter
used in combination with a set of fuzzy rules for dynamically adapting the
filter coefficients. Similar approaches are presented in [47, 48, 96], where the
fuzzy logic is used to tune the estimator weights by selecting the most reliable
measures among the available ones at each time instant. In [85] and [86]
a nine-degrees of freedom vehicle model is used, on the basis of which an
extended Kalman filter is built to estimate vehicle speed, braking forces,
wheel slip and vehicle sideslip angle. Further, [2,34,128] propose to estimate
the vehicle speed via nonlinear observers, possibly combined with a dynamic
description of the tyre–road friction based on a Lu–Gre friction model.



Part III

Braking Control Systems Design:
Advanced Solutions



This part of the book presents some advanced and research-oriented solu-
tions both to active braking control systems design and to the problem of
real-time estimation of tyre–road friction conditions. Specifically, we start
by presenting the mixed slip-deceleration control approach, which is an ef-
fective control solution based on linearised models of the braking dynamics.
Further, we also discuss a nonlinear approach for slip control grounded on
Lyapunov-based synthesis methods, which provides significant advantages in
terms of closed-loop behaviour. Finally, the problem of estimating the tyre–
road friction conditions is considered, and an online estimation method based
on linear identification techniques is proposed, together with a method to di-
rectly estimate the contact forces from sensors inserted in the tyre itself.



Chapter 6

Mixed Slip and Deceleration Control

6.1 Introduction

As has been discussed in the previous chapters (see in particular Chapter 3),
in braking control systems, two output variables are usually considered for
regulation purposes: wheel deceleration and wheel slip. Deceleration control
and slip control are mostly viewed as alternative strategies; when deceleration
and slip are both used, the typical approach is to regulate one variable and
to keep the other variable within pre-defined thresholds.

In this chapter a braking control strategy that makes use of both wheel
slip and wheel deceleration is presented and analysed. It is based on the
idea of designing the braking controller as a classical feedback regulation
loop, where the regulated variable is a convex combination of the wheel slip
and the wheel deceleration. Accordingly, this control approach is concisely
named mixed slip-deceleration (MSD) control. MSD is effective and flexible;
it inherits all the attractive dynamical features of slip control, while strongly
alleviating the detrimental effects of poor slip measurement. Moreover, by
simply changing the design parameter that governs the relative weighting
between slip and deceleration in forming the convex combination it is possible
to emphasise different characteristics of the controller, according to different
working conditions.

6.2 Mixed Slip-deceleration Control

The general structure of the proposed MSD control scheme is outlined in Fig-
ure 6.1. The transfer functions Gη(s) and Gλ(s) describing the linearised dy-
namics between wheel slip and braking torque and normalised wheel deceler-
ation and braking torque, respectively, have been derived in (2.45) and (2.46)
and are reported here for completeness

123
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Gη(s) =
r

Jg

(
s+ μ1(λ)Fz

mv (1 − λ)
)

s+ μ1(λ)Fz

mv

(
(1 − λ) + mr2

J

) , (6.1)

Gλ(s) =
r

Jv

s+ μ1(λ)Fz

mv

(
(1 − λ) + mr2

J

) . (6.2)

By inspecting Figure 6.1, it is worth noticing that the noises on the decel-
eration and slip, dη and dλ respectively, are explicitly embedded in the control
scheme. As in a classical control scheme, note that dη and dλ can represent
both measurement noises and external disturbances acting on the system. In
the rest of the chapter the notions of disturbance and measurement noise will
be treated without explicit distinction. In practice, the emphasis here is on
the measurement noise as this is the most critical aspect of slip control, since
the accurate measurement of λ is well known to be rather challenging and
critical (see Chapter 5).

Figure 6.1 General scheme of the MSD controller

The basic idea of MSD control is to define an output controlled variable ε,
which is the convex combination of the wheel normalised deceleration η and
of the wheel slip λ, namely

ε = αλ+ (1 − α)η, α ∈ [0, 1], (6.3)

and to regulate this variable to a set-point constant value ε given by

ε = αλ+ (1 − α)η. (6.4)

Note that the set-point ε itself can be interpreted as a convex combination
of the set-points for wheel slip and wheel deceleration.

As was done in Chapter 3 for the case of wheel slip control, in order to
focus on the heart of the control problem and to provide simple and insight-
ful results, for analysis purposes a simple proportional controller is initially
considered. Needless to say, the performance of the proportional controller
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can be improved by employing a higher-order control architecture, but the
basic results and conclusions remain unchanged, as will be shown later in this
chapter.

It is interesting to notice that the MSD controller has the distinctive fea-
ture of embedding, as extremal cases, the slip controller (α = 1) and the
deceleration controller (α = 0), which have been discussed in Sections 3.2
and 3.3. Now, the dynamic properties of the MSD controller will be studied.

Figure 6.2 Equilibrium points for the MSD control in the (λ, η) plane with α = 0.9
and Fz = mg

Figure 6.2 shows the equilibrium manifold in the (λ, η) plane given in
Equation 2.34 for different road conditions, together with the corresponding
graphical interpretation of the set-point ε given in (6.4) for α = 0.9. The
intersection points between the two curves represent the feasible equilibrium
points for the closed-loop system.

By inspecting Figure 6.2 and recalling the expression of the equilibrium
manifold for the wheel deceleration η as a function of λ in (2.34) and the
expression of the set-point equation ε in (6.4), one may notice that the system
equilibria are affected by the following four different factors.

1. The load transfer, represented by the term Fz/mg which is the ratio
between the real vertical load Fz and its static value mg (see also Sec-
tion 2.5). This factor, however, does not affect the qualitative properties
of the equilibrium points. In fact, the the steady-state relationship be-
tween η and λ has the form

η(λ) =
Fz

mg
(1 − λ)μ(λ).
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Hence, the dynamic load transfer effect acts in the same way as a scaling
factor in the tyre-road friction characteristic.

2. The tyre–road friction condition described by μ(λ), according to which
the equilibrium point may vary (see Figure 6.2).

3. The set-point ε. A change in the set-point corresponds to a rigid trans-
lation of the line ε(η, λ) (dashed line in Figure 6.2) which changes the
equilibrium point and can affect its uniqueness.

4. The coefficient α, which determines the slope of the line ε(η, λ) in the
(λ, η) plane (dashed line in Figure 6.2). This is the distinctive feature
of the MSD control approach. In fact, for α = 1 (vertical dash-dotted
line in Figure 6.2) we have a genuine slip control. In this case, for any
ε ∈ [0, 1] there always exists a unique equilibrium for all road conditions.
On the other hand, for α = 0 (horizontal solid line in Figure 6.2) we have
a deceleration control ; in this case there exist some values of the set-point
for which two equilibria exist on some road conditions and none on other
road conditions (see also Sections 3.2 and 3.3). For continuity, these two
extremal conditions must be separated by a threshold (or lower bound)
on α, located between 0 and 1, above which the equilibrium uniqueness
is guaranteed. It will be shown that a good trade-off between slip and
deceleration control is obtained for values of α ∈ [0.8, 1]. Hence, the
existence and uniqueness of the equilibrium points are deeply interlaced
with the choice of this parameter, as will be further discussed in the
following.

6.2.1 Analysis of the Open-loop Dynamics

From the dynamical viewpoint, the open-loop transfer function Gε(s) from
δTb to δε can be computed combining the transfer functions Gη(s) and Gλ(s)
via the convex combination defined by (6.3).

Specifically, it has the form

Gε(s) =
r

J

1−α
g

[
s+ μ1(λ)Fz

mv (1 − λ)
]

+ α
v

s+ μ1(λ)Fz

mv

(
(1 − λ) + mr2

J

)
=

(1 − α)r
Jg

s+
(

μ1(λ)Fz

mv (1 − λ) + g
v

α
1−α

)
s+ μ1(λ)Fz

mv

(
(1 − λ) + mr2

J

) .

(6.5)

By analysing (6.5), the stability properties of the linearised system having
the braking torque as input and ε as output can be easily studied.

Specifically, note that the linearised single-corner model with transfer func-
tion Gε(s) is asymptotically stable if and only if
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μ1(λ)Fz

mv

(
(1 − λ) +

mr2

J

)
> 0,

which, as both summands in the brackets are positive, reduces to μ1(λ) > 0.
Hence, Gε(s) has a real positive pole if the equilibrium wheel slip value λ
occurs beyond the peak of the curve μ(λ), which is the same result found in
Chapter 3 for Gλ(s) and Gη(s).

Further, it is interesting to investigate the position of the (real) zero of
Gε(s) as a function of the parameter α. Specifically, the zero of Gε(s) is
negative if and only if

μ1(λ)Fz

mv
(1 − λ) +

g

v

α

1 − α
> 0.

Thus, if μ1(λ) > 0 the zero is negative for all possible values of α ∈ [0, 1),
whereas, if μ1(λ) < 0, to have a negative zero one needs

α

(1 − α)
> −μ1(λ)Fz

mg

(
1 − λ

)
.

Thus, it is always possible to find a value of α, say α, such that, for α < α < 1,
the zero of Gε(s) is negative (in practice, α ∼= 0.3 is enough to guarantee this
in every road condition and for every value of λ).

6.2.2 Closed-loop Stability for MSD Control

Consider now the MSD closed-loop system shown in Figure 6.1. In this case,
the characteristic polynomial χε(s, α) is given by

χε(s, α) = s

[
1 +

Kr

Jg
(1 − α)

]
+

1
v

[
μ1(λ)Fz

m

(
(1 − λ)

(
1 +

Kr

Jg
(1 − α)

)
+
mr2

J

)
+ α

Kr

J

]
.

Accordingly, the following stability condition can be determined (note that,
as was the case also for slip and deceleration control, see Sections 3.2 and 3.3),
it does not depend on v)

μ1(λ)Fz

m

(
(1 − λ)

(
1 +K

r

Jg
(1 − α)

)
+
mr2

J

)
+Kα

r

J
> 0.

Note that for a fixed value of α ∈ (0, 1) and for large values ofK this condition
can be simplified as follows:
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(1 − α)
μ1(λ)Fz

mg
(1 − λ) + α > 0.

From the above condition it can be easily shown that if μ1(λ) > 0 the con-
dition is fulfilled for all feasible values of α, while to ensure closed-loop sta-
bility for wheel slip values beyond the peak of the friction curve (i.e., when
μ1(λ) < 0), one needs to choose the value of the parameter α such that
αMin < α ≤ 1, where

αMin = max
λ,ϑr

{
μ1(λ;ϑr)(λ− 1) Fz

mg

1 + μ1(λ;ϑr)(λ− 1) Fz

mg

}
. (6.6)

If α is fixed based on (6.6) it is always possible to find a value K such
that, for K > K, the closed-loop system is asymptotically stable in every
working condition (namely for every value of λ and for every road condition,
represented in (6.6) by the parameters ϑr which define the different tyre–road
friction conditions in the model given in (2.13)).

Given the previous stability results for slip control and deceleration con-
trol, condition (6.6) was somehow to be expected; we have seen in Chap-
ter 3 that for α = 1 (wheel slip control) stability can be always guaranteed,
whereas for α = 0 (wheel deceleration control) it is impossible to find a
unique stabilising proportional controller. For continuity, these two extremal
conditions must be separated by a threshold on α, located between 0 and 1.
Expression (6.6) is interesting since it provides, in a simple closed-form, the
analytic expression of this threshold αMin.

Note that the lower bound (6.6) is computed as the worst case with respect
to both the equilibrium point λ and the road conditions modelled via ϑr. In
Figure 6.3 the expression

μ1(λ;ϑr)(λ− 1) Fz

mg

1 + μ1(λ;ϑr)(λ− 1) Fz

mg

(6.7)

is displayed, as a function of λ, for different road conditions (it is clipped at
zero when μ1(λ) > 0). Figure 6.3 shows that the most demanding conditions
as far as the lower bound on α is concerned are given by

• values of λ beyond the peak of the friction curve; and
• high-grip road conditions.

From Figure 6.3 an estimation of αMin can be derived: αMin
∼= 0.3. Note that

this value has a simple and intuitive interpretation, similar to that given in
Section 3.2 for the minimum controller gain needed to stabilise the closed-loop
system with a proportional wheel slip controller.

To see this with reference to the (λ, η) plane, consider that the set-point
line ε = ε in (6.4) can be expressed as a function of η as
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Figure 6.3 Plot of the lower bound on the parameter α in (6.7) as a function of λ,
for different road conditions and Fz = mg

η = − α

1 − α
λ+

1
1 − α

ε. (6.8)

Thus, the effect of a proportional controller with gain K can be expressed as
a function of η as

η = −K
[

α

1 − α
λ+

1
1 − α

ε

]
. (6.9)

Hence, the lower bound αMin is the minimum value of α that guarantees
that the set-point for the MSD control in (6.8) (see the dashed line in Fig-
ure 6.2) has an angular coefficient − α

1−α large enough to ensure that when a
proportional controller is used, there exists a minimum value K of the gain
so that for all K > K in the closed-loop system there exists a single equi-
librium point. Such an equilibrium is given by the intersection between the
equilibrium manifold in the (λ, η) plane and the line in (6.9) and it is locally
asymptotically stable for all choices of λ and for all road conditions.

At the end of this analysis, one can concisely conclude that if αMin < α < 1,
MSD control essentially shares the same appealing features as slip control:
unique equilibrium, fixed set-point, fixed controller structure. In practice, in
order to achieve almost-optimal braking performance with fixed values of α
and ε, α must be chosen close to 1, as will be clear once the disturbance
rejection properties of the MSD controller will be analysed.

A non-negligible advantage of MSD control over slip control is the left
half plane zero in the open-loop transfer function (6.5). Note that, more
precisely, the advantage of this zero is easy to understand when a linearisation
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of the plant dynamics around a locally asymptotically stable equilibrium
point is considered. On the other hand, when the considered equilibrium
point is unstable, the advantage of this left half plane zero remains, but its
explanation is less intuitive.

The major advantage of MSD control, however, is its reduced sensitivity
(with respect to slip control) to poor slip measurement. This is a key issue
and will be extensively discussed in the following section. It will be shown
that while preserving all the appealing features of slip control, MSD control
is characterised by superior noise attenuation properties.

6.3 Disturbance Analysis of Slip Control and MSD
Control

Consider the general MSD control structure in the block diagram of Fig-
ure 6.1. It is easy to see that – in the closed-loop system – the disturbance
dε(α) affecting the controlled variable ε is related to the slip and deceleration
disturbances dλ and dη as follows:

Dε(s, α) = [αDλ(s) + (1 − α)Dη(s)]Sε(s, α),

where Dε(s;α), Dλ(s) and Dη(s) are the Laplace-transforms of the signals dε,
dλ and dη, respectively, and Sε(s;α) is the closed-loop sensitivity function,
given by

Sε(s;α)

=
s+ μ1(λ)Fz

mv

(
(1 − λ) + mr2

J

)
s
[
1 +K r

Jg (1 − α)
]

+ 1
v

[
μ1(λ)Fz

m

(
(1 − λ)

(
1 + Kr

Jg (1 − α)
)

+ mr2

J

)
+Kα r

J

] .
(6.10)

We now want to investigate the dependency of the closed-loop disturbance
dε(α) on the weighting parameter α. More specifically, we want to analyse
the following function:

γ(α) =
Var[dε(α)]
Var[dε(1)]

, (6.11)

where dε(1) represents the disturbance in the case of wheel slip control, i.e.,
for α = 1. Thus, γ(α) is the ratio between the variance of the disturbance
acting on the output variable in MSD control and the that in wheel slip
control (note in fact that γ(1) = 1). In order to develop this analysis, three
simple preliminary assumptions are made.

1. It is assumed that the measured output variables λ and η are affected
by zero-mean, uncorrelated, band-limited white noises dλ and dη in the
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frequency range [0, ΩN ], ΩN being the Nyquist frequency of the sampled
signals: dλ ≈ WN(0, σ2

λ), dη ≈ WN(0, σ2
η). Notice that, in practice, all

the measured signals are digitally sampled at the frequency of 2ΩN ; in
order to keep the continuous-time notation used throughout the chapter,
a band-limited white noise assumption must be made.

2. It is also assumed that σ2
λ >> σ2

η. This is motivated by the fact that
the noise on the wheel deceleration only comes from the wheel encoder
signal processing and the differentiation, while that on the wheel slip is
also affected by the vehicle speed estimation error (see Appendix B and
Chapter 5).

3. Large values of the feedback gain K are considered, the parameter α is
assumed to be close to 1 (0.8 ≤ α ≤ 0.95), and the slip values are assumed
to be non-negligible (i.e., λ > 0.07).

First, it is easy to see that γ(α) can be re-written as the product of two
factors as

γ(α) =
Var[dε(α)]
Var[dε(1)]

= Ψ(α)Φ(α),

where

Ψ(α) =
α2σ2

λ + (1 − α)2σ2
η

σ2
λ

and

Φ(α) =

∫ ΩN

ω=0
|Sε(jω;α)|dω∫ ΩN

ω=0
|Sε(jω; 1)|dω

.

The analysis of the first factor Ψ(α) is very simple. As we assumed that
0.8 ≤ α ≤ 0.95 and that σ2

λ >> σ2
η, Ψ(α) can be approximated as follows:

Ψ(α) ∼= α2.

Clearly, this factor has little influence on the noise attenuation properties
(a slightly better attenuation in the case of MSD control is provided with
respect to wheel slip control).

The analysis of the factor Φ(α) is far more complicated. This analysis
can be carried out by inspecting the main features of the magnitude of the
frequency response of the sensitivity function (6.10), which is a first-order
transfer function, characterised by a pole and a zero. For the analysis of
Φ(α), the behaviour of Sε(s;α) can be condensed into four main features:
the high-frequency gain, the low-frequency (DC) gain, the angular frequency
position of the zero and the angular frequency position of the pole. A simple
qualitative analysis and discussion of these four features is now provided.
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High-frequency Gain: HF(α)

From Equation 6.10, HF(α) can be computed as

HF(α) =
1

1 +K r
Jg (1 − α)

. (6.12)

This term shows that MSD control can provide a large attenuation benefit at
high frequencies. As a matter of fact the HF gain for slip control HF(1) = 1,
whereas, for large values of K, HF(α) << 1.

Figure 6.4 Sensitivity function features, when α = 1 and 0.8 ≤ α ≤ 0.95

Low-frequency gain: LF(α)

From Equation 6.10, LF(α) can be computed as

LF(α) =

μ1(λ)Fz

m

(
(1 − λ) + mr2

J

)
μ1(λ)Fz

m

(
(1 − λ)

(
1 +K r

J (1 − α)
)

+ mr2

J

)
+Kα r

J

. (6.13)

The analysis of Equation 6.13 is less trivial than that of Equation 6.12. For
the analysis of the attenuation benefits achievable with MSD control it is
useful to analyse the ratio LF(α)/LF(1)

LF(α)
LF(1)

= [
μ1(λ)Fz

m

(
(1 − λ) + mr2

J

)]
+
[
K r

J

][
μ1(λ)Fz

m

(
(1 − λ) + mr2

J

)]
+
[
Kα r

J

]
+
[

μ1(λ)Fz

m (1 − λ)(1 − α)K r
J

] . (6.14)
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Note that the dominant term both in the numerator and in the denominator
of (6.14) is

K r
J

Kα r
J

=
1
α

∼= 1.

The LF gain ratio (6.14) henceforth is approximately equal to 1. More specif-
ically, when μ1(λ) > 0, note that all the terms at the denominator of Equa-
tion 6.14 are positive; hence, in this case, LF(α)/LF(1) can be significantly
lower than 1. When μ1(λ) < 0, notice that the third term in the denominator
is small, since, despite the presence of K, the factors (1 − λ), (1 − α) and
|μ1(λ)| are all very small; henceforth, LF(α)/LF(1) ∼= 1.

We can conclude that at low frequencies the MSD control and the slip
control provide almost the same attenuation (or MSD control can provide a
small attenuation benefit).

Frequency-domain Position of the Zero: Z(α)

The angular frequency of the zero does not depend on the parameter α; it is
given by

Z(α) = Z(1) =
∣∣∣∣μ1(λ)Fz

m

(
(1 − λ) +

mr2

J

)∣∣∣∣ .
Frequency-domain Position of the Pole: P (α)

The angular frequency of the pole is given by

P (α) =

∣∣∣∣∣∣
1
v

[
μ1(λ)Fz

m

(
(1 − λ)

(
1 +K r

J (1 − α)
)

+ mr2

J

)
+Kα r

J

]
[
1 +K r

Jg (1 − α)
]

∣∣∣∣∣∣ . (6.15)

It is interesting to analyse the relative position of the pole, for 0.8 ≤ α ≤ 0.95,
and for α = 1, namely

P (α)
P (1)

=

∣∣∣∣∣∣
[

μ1(λ)Fz

m

(
(1 − λ)

(
1 +K r

J (1 − α)
)

+ mr2

J

)
+Kα r

J

]
[

μ1(λ)Fz

m

(
(1 − λ) + mr2

J

)
+K r

J

] [
1 +K r

Jg (1 − α)
]
∣∣∣∣∣∣ . (6.16)

The analysis of Equation 6.16 clearly shows that the pole angular frequency
decreases when α decreases, since the ratio P (α)/P (1) is dominated by the
factor

1 +K
r

Jg
(1 − α)

at the denominator.
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(a)

(b)

Figure 6.5 Bode plot of the frequency response associated with the sensitivity func-
tion: behaviour for v = 30 m/s (a) and for v = 10 m/s (b)
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Figure 6.6 Plot of Φ(α) in different working conditions

The results of the above analysis of |Sε(s;α)| and |Sε(s; 1)| can be sum-
marised as in Figure 6.4:

• The LF gain is slightly sensitive to α; moving from α = 1 to 0.8 ≤ α ≤ 0.95,
it remains almost unchanged, or it can slightly decrease.

• The HF gain strongly decreases when 0.8 ≤ α ≤ 0.95.
• The angular frequency of the zero is unchanged, whereas that of the pole

decreases when 0.8 ≤ α ≤ 0.95.

These approximate results are confirmed by Figures 6.5(a) and 6.5(b), where
the magnitude Bode plots of the frequency response associated with the sen-
sitivity function for α = 1 and α = 0.8 are displayed for different conditions
(two different forward speed values and two different values of λ). The anal-
ysis of the magnitude Bode plots of the frequency response associated with
Sε(s;α) clearly shows that the factor Φ(α) rapidly becomes much lower than
1 when α < 1.

In order to have a more immediate feeling on the attenuation level, in
Figure 6.6 the behaviour of Φ(α) is displayed in the range α ∈ [0.8, 1], for
different conditions (two different forward speed values, and two different
values of λ). Interestingly enough, it can be observed that:

• As α moves from α = 1 to α < 1, Φ(α) decreases very rapidly (e.g., in
every condition, if α = 0.95, the value of Φ(α) is lower than 0.05). This
means that a slight use of the wheel deceleration in the feedback controlled
variable is enough to obtain large noise attenuation benefits.

• The spread of Φ(α) is comparatively small. Thus, the attenuation effect is
large in every working condition.
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This analysis has shown that MSD control can provide large benefits in terms
of noise attenuation with respect to slip control. This advantage has been
assessed by means of a quantitative analysis.

6.4 Steady-state Slip Values in MSD Control

Before moving on to assess the MSD performance via simulation results, it is
worth analysing the steady-state behaviour of the wheel slip when the vehicle
is controlled via MSD control.

To perform the analysis, recall first that the the equilibrium manifold in
the (λ, η) domain is given by

η(λ) = N(1 − λ)μ(λ), (6.17)

where N = Fz/mg, see also (2.53), is the ratio between the actual and the
static vertical load. Thus, when MSD control is applied to the single-corner
model, the dependence of the equilibrium point on the load transfer N makes
the steady-state value of the wheel slip λ change according to the value
of N itself. In fact, by imposing a set-point value ε one has to satisfy the
relationship (6.4), i.e.,

ε = αλ+ (1 − α)η.

Thus, if N increases, the set-point value η increases in view of (6.17) and
thus the steady-state wheel slip λ decreases to satisfy the set-point expres-
sion (6.4).

To see this, consider Figure 6.7, which shows the time histories of the
closed-loop front and rear wheel slip in a hard braking manoeuvre on dry as-
phalt in four different cases: the front wheel slip obtained when only the front
wheels are controlled (dashed line), the rear wheel slip obtained when only
the rear wheels are controlled (dash-dotted line) and the front (dotted line)
and rear (solid line) wheel slip obtained when all four wheels are controlled
via MSD control with equal values for ε and α.

As can be seen, when only the front or the rear wheels are controlled with
the same ε and α, the steady-state wheel slip is different and, consistently
with what has been previously noticed, lower at the front wheels (where N
is larger) and higher at the rear wheels (where N is smaller).

However, in a full vehicle setting, that is when the same MSD controller
(i.e., with a common set-point value ε and an equal value for α) is used to
regulate each of the four wheels, the steady-state value of the wheel slip goes
back to being the same at all wheels.
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To see this, consider for simplicity the double-corner model, where the
longitudinal chassis dynamics is given by (see also Section 2.4)

v̇ = − 1
m

(Fzfμ(λf ) + Fzrμ(λr)), (6.18)

where Fzf and Fzr are the vertical forces at the front and rear wheel and λf

and λr are the front and rear wheel slip, respectively.

Figure 6.7 Time histories of the wheel slip during a hard braking manoeuvre on
dry asphalt: front wheel slip when only the front wheels are controlled (dashed line),
rear wheel slip when only the rear wheels are controlled (dash-dotted line) and front
(dotted line) and rear (solid line) wheel slip when all four wheels are controlled

Recalling now the analysis in Section 2.5.1 one has that, letting λ̇i = 0,
i = {f, r}, the expression linking the wheel acceleration ω̇i and the chassis
acceleration v̇ has the form

ω̇i =
1 − λi

ri
v̇. (6.19)

Accordingly, recalling that ηi = −ω̇i ri/g, and substituting into this rela-
tionship the expression for v̇ in (6.18) one has

ηi =
(Fzfμ(λf ) + Fzrμ(λr))

mg
(1 − λi) = ζ(λf , λr)(1 − λi), (6.20)

where the term ζ(λf , λr) is the same for the front and for the rear wheel.
Further, imposing the same MSD control set-point for the controlled vari-

able, i.e., εi = ε, i = {f, r}, the expression for the equilibrium values of ηi

becomes
ηi =

1
1 − α

ε− α

1 − α
λi. (6.21)



138 6 Mixed Slip and Deceleration Control

Combining Equation 6.21 with Equation 6.20 and solving for λi, one ob-
tains

λi =
ζ(λf , λr) − 1

1−αε

ζ(λf , λr) − α
1−α

, (6.22)

which shows that, at steady-state, the wheel slip value will be the same at
the front and rear wheels, i.e., λi = λ.

This allows us to re-write the term ζ(λf , λr) as

ζ(λf , λr) = μ(λ)
[
(Fzf + Fzr)

mg

]
= μ(λ), (6.23)

where the last equality comes from the fact that (Fzf +Fzr) equals the overall
vertical load, independently of its distribution between front and rear wheels.

Inspecting Figure 6.7 again, note that when both the front and rear con-
trollers are employed, the steady-state wheel slip values are the same at all
wheels, coherently with the performed analysis.

6.5 Numerical Analysis

The MSD control approach has been presented in the previous sections in a
simplified setting: only the single-corner dynamics have been modelled and
a simple proportional controller has been used. This simplified setting is
particularly useful to focus on the heart of the control problem and to gain
a deep insight in the algorithm behaviour.

However, the theoretical analysis developed in this simple setting must be
corroborated by simulation results obtained on a full-vehicle simulator.

To implement the control algorithms in a fully-realistic setting, the sim-
ulation environment must also include the description of the EMB actuator
dynamics given in (1.4). Finally, the simulations are performed replacing the
proportional controllers with dynamic controller structures. More specifically:

• The wheel slip controller Rλ(s) is implemented with the PID control ar-
chitecture presented in Section 3.4, which has been tuned to work satis-
factorily in every working condition (for different slip set-points, different
road surfaces and different speed values).

• The MSD controller Rε(s) is implemented with a simpler PI control archi-
tecture (notice that this is another additional advantage of MSD control)

Rε(s) = Kε
(1 + τεs)

s
,

and with α = 0.9. Also the MSD controller has been tuned to work satis-
factorily in every working condition.

The results presented in the following refer to a front wheel.
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Figure 6.8 An example of measurement noises on λ and η used in the simulator

The first simulations have the goal of comparing the noise attenuation
properties of the two control algorithms. In Figure 6.8 the measurement
noises affecting the wheel deceleration and the wheel slip measurement are
displayed. Notice that the variance of dη is smaller than the variance of dλ.
Moreover, notice the different behaviour of the two measurement noises: dη is
essentially a broad-band stationary signal, while dλ is characterised by huge
spikes, due to poor speed estimation. Unfortunately, these spikes can hardly
be reduced and they occur during hard braking, which is the typical working
condition of active braking controllers.

In Figure 6.9 the time histories of the wheel slip during a hard braking ma-
noeuvre on dry asphalt are displayed and MSD and slip control are compared.
Notice that, as expected, the noise sensitivity of MSD control is remarkably
lower than that of slip control; this results in a much smaller variation range
of the actual wheel slip. Moreover, notice that MSD control has slightly better
phase margin properties at low speed; as a matter of fact, the typical unstable
behaviour that occurs at the end of the braking manoeuvre, i.e., when the
vehicle speed is very low (see the time interval t ∈ [12, 14] s in Figure 6.9),
arises later in MSD control. This result fully confirms the theoretical analysis
performed in the simplified setting.

Finally, in Figures 6.10 and 6.11 the time histories of the wheel slip ob-
tained with the MSD controller during a hard braking manoeuvre (in a noise-
free setting) is shown, when a sudden change in the road surface occurs
(from dry asphalt to snow in Figure 6.10, and from snow to dry asphalt in
Figure 6.11). Very similar results can be obtained with the slip controller.
Notice the remarkable robustness of the fixed-structure MSD controller; also
notice that according to the MSD control rationale, the steady-state value of
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Figure 6.9 Time history of the wheel slip during a hard-braking manoeuvre on dry
asphalt

Figure 6.10 MSD control performance in a hard braking manoeuvre, with a sudden
road-surface change from high to low grip road

Figure 6.11 MSD control performance in a hard braking manoeuvre, with a sudden
road-surface change from low to high grip road
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the wheel slip changes when the friction curve changes according to different
road surfaces (see Figure 6.2, which clearly shows this fact).

6.6 Summary

This chapter presented a wheel slip control strategy based on the idea of
designing a standard SISO regulation loop on an output variable constituted
by the convex combination of wheel slip and wheel deceleration. This control
approach was referred to as MSD control.

The starting point of the MSD approach is to be found in [41, 69], where
braking controllers based on modern electro-mechanical brakes are described,
and which can be regarded as the state-of-the art in slip-controlled braking
systems. The MSD approach was conceived to move one step further, so as
to improve the performance of slip control by mixing slip and deceleration
measurements.

Using a simple proportional-control regulation scheme this control struc-
ture was deeply analysed. Interestingly enough, MSD control inherently em-
bodies, as extremal cases, also the more classical slip control and deceleration
control schemes. Hence MSD control can move seamlessly between deceler-
ation control and slip control. This is very appealing in sophisticated BBW
systems, which may require a time-varying setting: emphasis on deceleration
control during soft braking and emphasis on slip control in anti-lock condi-
tions.

It has been shown that MSD control inherits all the appealing character-
istics of slip control (unique equilibrium, fixed set-point, guaranteed closed-
loop stability with a fixed structure linear time-invariant controller), but it
overcomes the major flaw of slip control: its sensitivity to slip measurement
errors.



Chapter 7

Nonlinear Wheel Slip Control Design

7.1 Introduction

Up to now, for the case of actuators with continuous dynamics, we have
discussed how to design braking controllers based on linearised models of the
braking dynamics of interest.

In this chapter, we discuss a nonlinear approach to wheel slip control
design, namely a Lyapunov-based dynamic feedback control law. For an in-
troduction to the control approach employed in this chapter, the reader is
referred to Appendix A.

As a matter of fact, the braking dynamics are nonlinear due to the tyre–
road interaction model; as such, the proposed approach allows us to take these
nonlinearities directly into account and to consider their effects on the control
algorithm. Further, the proposed control strategy is grounded on theoretical
tools which allow us analyse its characteristics and to highlight its advantages
with respect to the linear approaches.

Specifically, the nonlinear slip controller discussed in this chapter relies on
a nonlinear dynamic feedback control law, based on wheel slip and wheel
speed measurements, which guarantees bounded control action and thus
copes with input constraints. The main advantage of the proposed controller
with respect to a wheel slip controller based on a linearised model of the brak-
ing dynamics is that the closed-loop system properties allows one to detect
if the current operating condition is such that the chosen wheel slip set-
point determines a closed-loop equilibrium point which is beyond the peak of
the tyre–road friction curve, thereby enabling us to adapt the set-point and
yielding a significant enhancement of both performance and safety. This is
a special feature of the proposed control law, which in general is not offered
by other active braking control systems unless they are complemented with
tyre–road friction estimators.

143
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7.2 Lyapunov-based Wheel Slip Control

One of the main challenges in designing ABS systems is to devise a control
logic that is robust and can offer good performance irrespectively of the
(unknown) tyre–road friction conditions. Due to this fact, significant efforts
have been devoted to explicitly estimating the road characteristics online
(see e.g., [12, 24, 29, 65, 69, 92, 93, 114, 118, 127, 129], in an attempt to devise
viable solutions to complement braking controllers with tyre–road friction
estimation capabilities, so as to enhance both performance and safety.

However, due to the limited computing resources commonly available on
commercial vehicles’ ECUs, a robust control logic that does not require online
estimation algorithms or adaptive control laws is usually preferred.

Figure 7.1 Equilibrium points for the single-corner model (7.1) in the (λ, Tb) plane
(example with Fz = mg and dry asphalt)

As for the braking dynamics, we consider the single-corner model and
work again under the assumption (see also Chapter 2) of regarding the ve-
hicle speed v as a slowly-varying parameter (see also Section 2.3). Thus, we
consider the wheel slip dynamics

λ̇ = −1 − λ

Jω
(Ψ(λ) − Tb) , (7.1)

with ω > 0 and

Ψ(λ) =
(
r +

J

rm
(1 − λ)

)
Fzμ(λ). (7.2)
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7.2.1 Assumptions

In developing the nonlinear approach discussed in this chapter, the following
assumptions are considered:

1. The control input Tb takes values in a non-empty subset of the real axis,
i.e., Tb ∈ [TbMin, TbMax], for some known values TbMin and TbMax such
that 0 ≤ TbMin < TbMax.
Note that this assumption is always verified in practice, as the values
TbMin and TbMax represent the lower and upper limits of the braking
torque and are imposed by the actuator characteristics.
We consider that the actuator limits TbMin and TbMax are such that

TbMin = 0,

and
TbMax > max

λ
Ψ(λ),

where Ψ(λ) is as in (7.2). Note that this last inequality simply requires
that the actuator saturation occurs for values of the braking torque larger
than the maximum equilibrium torque admissible for any road surface,
which is a prerequisite for any actuator to guarantee that the friction
capability of any tyre–road friction condition can be fully exploited.

2. The steady-state value of the control input T b associated with the wheel
slip set-point λ is such that T b ∈ [TbMin, TbMax].
Further, the longitudinal wheel slip set-point λ is selected such that

T b < max
λ

Ψ(λ).

This inequality (see Figure 7.1) is verified for all choices of the set-point
λ, but for the abscissa of the exact peak point of the Ψ(λ) curve, where
T b = max

λ
Ψ(λ).

7.2.2 Controller Design

The main idea here is to design a control law in the form of a dynamic update
law, such that system (7.1) is robustly stabilised around a desired equilibrium
point in the sense of Lyapunov with respect to the uncertainties lying in the
function Fzμ(λ).

To this aim, we can state the following result.

Proposition 7.1. Consider the single-corner model described by Equation 7.1
and assume that assumptions 1 and 2 illustrated in Section 7.2.1 hold.
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With reference to Figure 7.1, let the wheel slip set-point λ ∈ (0, 1) be the
smallest solution of T b = Ψ(λ).

Further, suppose that either1

λ2

(
1 +

1
ln (1 − λ2)

)
≤ λ < λ2 or λ2 ≥ 1. (7.3)

Then, for any2 θ(0) ∈ (0, TbMax), the dynamic output feedback control law{
Tb = θ,

θ̇ = kλ
1

Jω (λ− λ)(θ − TbMax)(θ − TbMin),
(7.4)

with kλ > 0 and ω > 0 is such that the closed-loop system{
λ̇ = − 1−λ

Jω (Ψ(λ) − θ) ,
θ̇ = kλ

1
Jω (λ− λ)(θ − TbMax)(θ − TbMin).

(7.5)

has a locally stable equilibrium point (λ, θ) and for any initial condition λ(0)
in the region

Λ = {λ ∈ R | 0 ≤ λ ≤ 1} , (7.6)

λ(t) remains in this region. Moreover, if λ(0) 	= 1, λ(t) converges asymptoti-
cally to λ.

Now let λ be the largest solution of T b = Ψ(λ). Then the control law (7.4)
is such that for any initial condition λ(0) ∈ Λ, λ(t) remains in this region.
Moreover, if λ(0) 	= 1, the closed-loop system trajectory (λ(t), θ(t)) converges
to an attractive periodic orbit encircling the equilibrium (λ, θ).

Finally, in both cases, the control variable Tb remains in the set [TbMin, TbMax]
for all t ≥ 0.

Proof. To begin with note that, for a constant value of the braking torque T b,
the vector field λ̇ exhibits the behaviour shown in Figure 7.2. This, coupled
with the wheel slip definition given in (2.5) which implies that λ ∈ [0, 1],
ensures that the region Λ in (7.6) is invariant. Note that Figure 7.2 was
plotted considering a dry asphalt road surface, a static value of the vertical
load Fz = mg and a value of T b satisfying assumption 2 (namely, see also
Section 2.5.1, the value T b = 600 Nm was used). However, note that in view of
assumption 2, as the road surface or the vertical load vary, a constant value
of the braking torque T b can always be selected such that the qualitative
vector field behaviour does not change, the only modification being in the
different numerical values of the wheel slip equilibrium points λ1 and λ2.

1 Note that if λ2 < 1, that is if two intersections exist between Tb = T b and Ψ(λ),
condition (7.3) holds trivially if λ ≤ λ2 and λ2 ≤ 1 − e−1 ∼= 0.6321. Note, moreover
(see Figure 7.1), that the case λ2 ≥ 1 corresponds, for the considered friction model,
to the case when only one point of intersection exists between T b and Ψ(λ), hence to
low values of λ.
2 Recall that by assumption 1, T b = 0.
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Figure 7.2 Graph of λ̇ as a function of λ

Consider now the candidate Lyapunov function

W (λ, θ) = V (λ) + ξ(θ) + c, (7.7)

where V (λ) has the form

V (λ) = −λ+ (λ− 1) ln(1 − λ), (7.8)

the function ξ(θ) is defined as

ξ(θ) := ln(TbMax − θ)τ/kλ − ln(θ − TbMin)(τ+1)/kλ , (7.9)

with τ =
θ − TbMax

TbMax − TbMin
< 0 and τ +1 > 0, and the constant c is chosen such

that

W (λ, θ) = 0.

Notice that the function W (λ, θ) is positive definite in

(λ, θ) ∈ (0, 1) × (TbMin, TbMax).
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Moreover, note that

Ẇ =
∂V

∂λ
λ̇+

∂ξ

∂θ
θ̇ −

[
(λ− 1)
(1 − λ)

+ 1
]
λ̇+

∂ξ

∂θ
θ̇

= − (λ−λ)
(1−λ)

{
− 1−λ

ωr

(
(1−λ)

m + r2

J

)
Fzμ (λ) + r

J
1−λ
ωr θ

}
+ (λ− λ) 1

Jω (θ − θ) +
∂ξ

∂θ
θ̇

= − (λ−λ)
(1−λ)

{
− 1−λ

ωr

(
(1−λ)

m + r2

J

)
Fzμ (λ) + r

J
1−λ
ωr θ

}
+ (λ− λ) 1

Jω

[
(θ − θ) +

∂ξ

∂θ
σ(θ)

]
.

Recalling the definition of Ψ(λ) in Equation 7.2, we can re-write Ẇ as

Ẇ = − (λ−λ)
Jω

(
Ψ(λ) − θ

)
+ (λ− λ) 1

Jω

[
(θ − θ) +

∂ξ

∂θ
σ(θ)

]
.

In view of assumptions 1 and 2 in Section 7.2.1, if λ is the smallest solution
of T b = Ψ(λ), (λ− λ) and

(
Ψ(λ) − θ

)
have the same sign for all λ ∈ (0, λ2).

Hence, their product can be written as

(λ− λ)2Ξ(λ),

where Ξ(λ) > 0,∀λ ∈ (0, λ2).
Moreover, for Tb = θ and given the expression of ξ(θ) in Equation 7.9, if

one chooses
σ(θ) = kλ(θ − TbMax)(θ − TbMin), (7.10)

then
(θ − θ) +

∂ξ

∂θ
σ(θ) = 0.

Hence,
Ẇ = −(λ− λ)2Ξ(λ) ≤ 0, (7.11)

for all λ ∈ (0, λ2] and θ ∈ (TbMin, TbMax).
Note in passing that the control law is inspired by the result presented in

Appendix A.3 (see Proposition A.1). Specifically, with respect to the setting
of Proposition A.1 note that the control law proposed herein is constructed

as θ̇ =
∂V

∂x
g(x)σ(θ), where g(x) = 1

Jω (1− λ), V (λ) is the Lyapunov function

in (7.8) and σ(θ) is as in (7.10).
As a result, recalling that λ < λ2, we have shown that the equilibrium

point (λ, θ) is locally stable. To complete the proof we must show that any
trajectory of the closed loop system such that θ(0) ∈ (0, TbMax) and λ(0) ∈
[0, 1) converges to this equilibrium.

To this end, first of all one has to consider that since the system un-
der study is two-dimensional, the only possible attractors are either zero-
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dimensional, i.e., equilibrium points, or one-dimensional, i.e., limit cycles
(see Appendix A.2.2).

We now analyse the stability properties of the closed-loop equilibrium
points different from (λ, θ) via linearisation and show directly that no limit
cycles can occur in the closed-loop system.

Specifically, The closed-loop system dynamics are given by (7.5). In view
of assumption 1, the equilibrium points (λss, θss) different from (λ, θ) to be
studied are the following:

(i) λ = 1 and θ = TbMax;
(ii) λ = 1 and θ = TbMin = 0; and
(iii) λ = 0 and θ = TbMin = 0.

If we define
δλ := λ− λss,

δθ := θ − θss,

and

μ1(λ) :=
d
dλ

μ(λ)
∣∣∣∣
λ=λss

,

where μ(λ) is as in Equation 2.13, the linearisation of system (7.5) has the
form ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙δλ = {−rFz [−μ(λss) + (1 − λss)μ1(λss)]

−JFz

m

[
−2(1 − λss)μ(λss) + (1 − λss)2μ1(λss)

]
−θss + (1 − λss)θss} δλ+ (1 − λss)δθ,

δ̇θ = −kλλ(θss − TbMax)(θss − TbMin)δλ

+kλ(λss − λ) [2θss − (TbMin + TbMax)] δθ.

(7.12)

Accordingly, the dynamic matrix of the linearised system in the equilib-
rium λss = 1 and θss = TbMax is given by

A(1,TbMax) =
[
rFzμ(1) − TbMax 0

0 kλ(1 − λ)[TbMax − TbMin]

]
,

which shows that (1, TbMax) is a saddle point (see also Section A.2.2). Now
note that as can easily be seen from Figure 7.3(a), the only initial conditions
yielding trajectories that converge to this equilibrium are such that λ(0) = 1
and θ(0) ∈ (0, TbMax].

The dynamic matrix of the linearised system in the equilibrium λ = 1 and
θ = TbMin is given by

A(1,TbMin =
[
rFzμ(1) − TbMin 0

0 kλ(1 − λ)[TbMin − TbMax]

]
,
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which shows that also (1, TbMin) is a saddle point. Moreover, the only initial
conditions yielding trajectories that converge to this equilibrium are such
that λ(0) ∈ (0, 1] and θ(0) = 0.

Finally, the dynamic matrix of the linearised system in the equilibrium
λ = 0 and θ = TbMin is given by

A(0,TbMin) =
[
rFzμ(0) − TbMin 0

0 −kλλ[TbMin − TbMax]

]
,

which shows that (0, TbMin) is an unstable saddle-node point.
According to this analysis, if we study the closed-loop trajectories, which

are qualitatively depicted in Figure 7.3(a), we can see that the region

D =
{
(λ, θ) ∈ R2 | 0 ≤ λ < 1, θ ∈ (TbMin, TbMax)

}
(7.13)

is a trapping region for the closed-loop system (7.5) (see Appendix A.2.2).
To complete the proof we need to show that all trajectories with initial

condition in D do converge to (λ, θ). To do this, we only need to show that
there are no limit cycles in this region. However, by index theory (see again
Appendix A.2.2), the only limit cycles that may exist within D should encircle
the equilibrium (λ, θ). To rule out the existence of such limit cycles, consider
the level set3 of the Lyapunov function W (λ, θ) defined as

Ω =
{
(λ, θ) ∈ D̄ | W (λ, θ) ≤ W (0, θ)

}
.

By condition (7.3), this set is contained in the set

D̃ =
{
(λ, θ) ∈ D̄ | λ ≤ λ2

}
.

Hence, in view of (7.11), any trajectory starting in the set Ω will remain
inside Ω and converge to the equilibrium (λ, θ). This implies that any limit
cycle encircling the equilibrium (λ, θ) should be contained in

Dr = D \Ω.

However, it is impossible to construct a closed curve contained in Dr and
encircling the point (λ, θ). As a consequence, all trajectories starting in D
will converge to the equilibrium (λ, θ).

To complete the proof, we now study the case when λ is the largest solution
of T b = Ψ(λ). In this case, (λ− λ) and

(
Ψ(λ) − θ

)
have opposite sign for all

λ ∈ (λ1, 1) (see also Figure 7.1). Hence, in a neighbourhood of (λ, θ) one has
Ẇ ≥ 0 (see Equation 7.11) and this allows us to conclude that (λ, θ) is an
unstable equilibrium.

To study the closed-loop system trajectories in this case we can employ the
analysis of the linearised system performed before and refer to Figure 7.3(b).

3 The closure of a set D is denoted by D̄.
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(a)

(b)

Figure 7.3 Qualitative behaviour of the closed-loop vector field in the region D̄
when λ is the smallest solution of T b = Ψ(λ) (a) and when λ is the largest solution
of T b = Ψ(λ) (b)
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Let B ⊂ D be a sufficiently small neighbourhood of the unstable equilibrium
(λ, θ). Consider now the region

C̃ = {(λ, θ) ∈ D \ B | λ ∈ (0, 1)} .

Due to the instability of the equilibrium (λ, θ) all the trajectories starting in
B (except that with initial condition (λ, θ)) converge to the set C̃ and remain
in this set.

As the set D (see (7.13)) has been shown to be a trapping region for the
closed-loop system (7.5) and recalling the Poincaré–Bendixon theorem (see
Appendix A.2.2), all the trajectories starting in the set C̃ remain inside C̃.
Moreover, the Poincaré-Bendixon theorem ensures that as C̃ does not contain
any equilibrium point, these trajectories either are periodic orbits or tend to
a periodic orbit. Further, as (λ, θ) is an unstable equilibrium, index theory
guarantees that the periodic orbit is unique.

Hence, according to the stability properties of the closed-loop system equi-
librium points shown in Figure 7.3(b), we can conclude that any trajectory
in C̃ converges to an attractive periodic orbit and this completes the proof.


�

The results given in Proposition 7.1 prove that if the selected set-point λ is
the smallest solution of T b = Ψ(λ), i.e., if, in practice, λ lies to the left of the
friction curve peak (see also Section 2.5.1), then the closed-loop equilibrium
(λ, θ) is locally asymptotically stable. On the other hand, if λ is the largest
solution of T b = Ψ(λ), i.e., if λ lies beyond the friction curve peak, then the
control law stabilises the system around a stable periodic orbit. Note that this
periodic closed-loop behaviour of the wheel slip is that commonly achieved
with ABS systems based on actuators with on/off dynamics (see Chapter 4).

Hence, on the one hand the system stability and the related safety of
the braking manoeuvre are always guaranteed by the nonlinear controller
considered while, on the other hand, the periodic behaviour of the closed-loop
trajectory can be monitored to detect if the closed-loop working condition
lies in the unstable region of the friction curve. This very peculiar feature of
the proposed control law provides a crucial information for optimising the
braking performance (see, e.g., [29,118,129]). This feature, cannot usually be
found in other active braking control systems unless they are complemented
with tyre–road friction estimators.

Clearly this peculiarity can be profitably employed to adjust online the
wheel slip set-point, once the periodic behaviour is detected. This is shown
in Figure 7.4, where the time histories of the wheel slip in a hard braking
manoeuvre on dry asphalt for two different values of the wheel slip set-point
λ are depicted both when a linear wheel slip controller of the type discussed
in Chapter 3 is adopted and with the nonlinear control law (7.4). Specifically,
the two set-point values are λ = 0.08, which is to the left of the peak of the
friction curve and λ = 0.3, which is beyond the peak (see also Figure 2.3).
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Figure 7.4 Time histories of the wheel slip in a hard braking manoeuvre for two
different values of the wheel slip set-point λ: to the left of the peak of the friction
curve (dashed line) and beyond the peak of the friction curve (dotted line) obtained
with a linear wheel slip controller (a) and with the nonlinear control law (7.4) (b).
The solid line in (b) plot was obtained by adapting the set-point value after the limit
cycle was detected

Note that, even though the linear controller stabilises the system also
for operating points in the unstable region of the friction curve, it has no
means of detecting whether the current operating condition is such that the
chosen wheel slip set-point determines a closed-loop equilibrium point which
is before or beyond the peak of the tyre–road friction curve. The nonlinear
control law (7.4), instead, allows one to detect such a condition by simply
monitoring the wheel slip. Moreover, as shown in Figure 7.4 (see the solid
line in the bottom plot), it is possible to adapt the set-point value online
after the limit cycle behaviour has been detected.

We now exploit this property to search in real time for the wheel slip value
that maximises the friction force so to always operate with the best possible
braking performance. To this end, we observed that the amplitude of the limit
cycle on the wheel slip is a monotonously increasing function of the distance
between the set-point and the wheel slip value that corresponds to the peak
of the function Ψ(λ); hence, a map between these two quantities has been
estimated via simulations and used to adapt the set-point value online.
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Figure 7.5 Plot of the trajectory of the closed-loop system (7.5) (solid line) and of
the function Ψ(λ) in (7.2) (dotted line) with the adaptation logic that searches online
for the wheel slip set-point value that allows optimising the braking performance

Figure 7.5 shows the results obtained with this adaptation strategy, which
assess the possibility – with little extra computation effort – of significantly
enhancing the braking performance.

As final remarks on the nonlinear control law (7.4), it is interesting to
point out that the role of the term (θ − TbMax)(θ − TbMin) is to keep the
control input θ(t) in the admissible set [TbMin, TbMax] at any time t, so that
it intrinsically takes into account saturation constraints. Note also that the
control law has – in principle – three design parameters, namely TbMax, TbMin

and kλ. In our case, though, TbMax and TbMin are determined by the physical
limits of the braking system, hence the only free parameter is kλ, which can
be tuned in principle as the integral gain of the linear controller.

Finally, with respect to other braking control algorithms, the control law
(7.4) has the additional advantage that it is reliable also at low speed values.
In this respect, rewriting the update law as

ωθ̇ = kλ
1
J

(λ− λ)(θ − TbMax)(θ − TbMin),

we can see that as ω → 0, either θ → TbMin, or θ → TbMax, or λ → λ.
Nevertheless, the structure of the Lyapunov function (7.7) ensures that no

closed-loop trajectory can be such that supt∈[0,+∞) = TbMax or inft∈[0,+∞) =
TbMin. As a result, λ → λ as ω approaches 0.
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Accordingly, even though it remains of course true that the open-loop
wheel dynamics become faster and faster as speed decreases, the proposed
control law speeds up the convergence to the desired wheel slip set-point
as ω → 0. This means that although also the proposed output feedback
controller needs to be deactivated at low speed, its performance improves
as the speed decreases (up to a certain lower bound) while that of linear
controllers generally worsens.

Figure 7.6 Time histories of the wheel slip λ with the linear slip controller (solid
line) and with the nonlinear output feedback control (dashed line) in a double μ-jump
braking manoeuvre from dry asphalt, μ = 1, to wet asphalt, μ = 0.5 and back to dry
asphalt, for initial speed vin = 150 km/h

7.3 Numerical Analysis

The simulation results presented refer to a front wheel. The wheel slip set-
point value was set to λ = 0.09. The MSC CarSim R© simulator was comple-
mented with the EMB dynamics given in (1.4). For comparison purposes, a
fixed structure wheel slip controller based on a linearised model of the single-
corner dynamics is also considered. The linear slip controller Rλ(s) has been
implemented with a PID control architecture of the type presented in Chap-
ter 3. To propose a fair comparison between the two control approaches the
fixed structure linear controller has been tuned to exhibit a similar transient
behaviour to that given by the nonlinear output feedback controller in a nom-
inal working condition, i.e., a hard braking manoeuvre on dry asphalt. The
linearisation was carried out around a value of the wheel slip beyond the peak
of the μ(λ) curve.

Further, as discussed in Chapter 3, the linear wheel slip controller has been
implemented together with the activation logic discussed in Section 3.7.
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As for the nonlinear controller, it is always kept switched on also when the
system is is manual mode, so as to provide a reliable output when it needs
to be activated. The controller state is initialised with a value θ(0) lower
than the steady-state value of the braking torque under any road condition.
This is a conservative choice, which might be improved if an estimation of
the road condition is available before the braking begins. Nonetheless, as the
controller is active also before being activated, the simulation results confirm
that the time interval before activation is usually long enough to achieve a
good transient behaviour upon switching to automatic mode.

In Figure 7.6 the behaviour of the nonlinear controller is compared to that
of the fixed structure linear slip controller during a hard braking manoeuvre
when two successive changes in the road surface occur. As can be seen, the
settling times of the wheel slip obtained with the two controllers are indeed
quite similar. The larger overshoot of the linear controller is due on the one
hand to the worst-case choice adopted for the design and on the other hand to
the activation logic tuning and could be easily reduced by choosing another
linearisation condition for the controller design or by tuning the activation
logic thresholds differently (see Section 3.7).

Figure 7.7 Time history of the measured wheel slip estimation error

Another important issue to analyse is the noise sensitivity of the nonlinear
controller and, again, to compare it to that of the linear wheel slip controller.
Figure 7.7 shows a time history of the wheel slip estimation error (obtained
with the estimation algorithm described in Chapter 5) measured in experi-
mental tests, which will be used in the simulations to model realistic noise
on the wheel slip. In Figure 7.8 the time histories of the wheel slip λ and of
the braking torque Tb during a hard braking manoeuvre with noisy slip mea-
surements are displayed, and the nonlinear controller performance is again
compared to that of the linear slip controller. Note that the noise sensitivity
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of the nonlinear controller is remarkably lower than that of the linear one
and this results in a much smoother transient of the wheel slip.

Figure 7.8 Time histories of the longitudinal wheel slip λ (a) and of the braking
torque Tb (b) in a hard braking manoeuvre on dry asphalt obtained with the linear
(dotted line) and with the nonlinear (solid line) wheel slip controller in the case of
noisy wheel slip measurements, for initial speed vin = 150 km/h

7.4 Summary

In this chapter, a nonlinear control law for wheel slip control was presented.
The controller yields bounded control action and can cope with actuator
constraints. Moreover, the control algorithm allows us to detect if the closed-
loop system is operating in the unstable region of the friction curve, thereby
allowing us to adapt the set-point and ensuring a great enhancement of both
performance and safety.

Note that the proof of the closed-loop system stability was carried out
without explicitly considering the actuator dynamics. To take these into ac-
count formally and prove that they do not alter the results obtained without
considering them, one needs to resort to perturbation analysis (see, e.g., [44]).
This method, under the assumption that the actuator bandwidth is suffi-
ciently large, allows one to separate the system dynamics from the actuator
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ones, in view of their dynamic frequency decoupling (the system dynamics are
seen as slow, whereas the actuator ones as fast). Based on the fact that the
system and the actuator evolve on two separated time scales, it can be proved
that the stability and tracking properties of the closed-loop system given in
Proposition 7.1 are maintained by explicitly taking into account the actuator
dynamics for sufficiently large values of the actuator bandwidth. Further, the
analysis of the closed-loop system behaviour can be analysed via bifurcation
theory to show that the the closed-loop system exhibits a Hopf bifurcation
and to study its characteristics to optimise the braking performance. The
interested reader is referred to [109].



Chapter 8

Identification of Tyre–road Friction
Conditions

8.1 Introduction

Tyre–road friction characteristics are deeply interlaced with all vehicle safety
oriented control systems as road conditions strongly affect the controlled
system behaviour. Thus, the capability of estimating in real-time the friction
conditions may provide a valuable source of information for any active vehicle
control system. In particular, friction information can be used to enhance the
performance of wheel slip control systems.

In this chapter we address three different problems related with friction
estimation. Specifically, Section 8.2 illustrates an approach that is capable of
estimating the sign of the slope of the friction curve, thereby allowing one
to detect if the system is operating in the stable or in the unstable region of
the friction curve. In fact, as largely discussed in this book, the equilibrium
points associated with the wheel braking dynamics are stable for values of
the wheel slip before the peak and unstable for those beyond the peak.

Hence, an online detection of the slope of the friction curve can be ex-
ploited to adapt and to optimise the closed-loop performance of wheel slip
control systems. The advantage of this identification method is that it can
be implemented also with a very limited set of sensors.

Secondly, in Section 8.3 an approach to the problem of estimating both
the slip value corresponding to the peak of the friction curve and the param-
eters of the Burckhardt friction model (see Section 2.1) is presented. This
is done by setting up a curve fitting problem which is then solved by two
different identification approaches, namely a least squares and a maximum
likelihood approach, arising from different parametrisations of the friction
curve. A detailed analysis of the merits and drawbacks of the two approaches
is also provided, which considers both the obtained accuracy in the estimated
parameters and the convergence issues which have to do with the length of
the available data set.

159
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Finally, Section 8.4 presents an approach for estimating the instanta-
neous vertical and longitudinal forces from in-tyre acceleration measurements.
Specifically, an appropriate set of sensors and regressors is illustrated, based
on the measurements provided both by standard vehicle sensors (wheel en-
coders) and an accelerometer mounted directly in the tyre. Such estimates
are based on the idea of extracting information from the phase shift between
the wheel hub and the tyre, which is due to the transmission of traction and
braking forces exerted on the tyre itself.

8.2 Detection of the Friction-curve Peak by
Wheel-deceleration Measurements

In this section we focus on estimating the sign change of the slope of the curve
μ(λ), which is responsible for the stability properties of the open-loop equi-
librium points of the wheel dynamics. In particular, recall that for constant
values of the braking torque, i.e., for Tb = T b, the open-loop equilibrium
points associated with slip values beyond the peak of the tyre–road friction
curve are unstable (see Section 2.5.1).

The identification algorithm is formulated based on two different sensors
configurations, i.e., with and without wheel slip measurement (or estimation)
available. This allows us to cover all the possible equipments available on
commercial vehicles. Moreover, it is illustrated how such an identification
algorithm can be employed within a supervisory control logic to enhance
safety properties and performance of active braking systems.

To develop the identification approach, the considered dynamical model
is the single-corner model discussed in Section 2.3. Once again, we treat the
vehicle speed as a slowly-varying parameter and concentrate on the wheel
dynamics only.

As discussed in Section 2.5.1, if we linearise the wheel dynamics (see the
first equation of system (2.18)), the transfer functions Gλ(s) from δTb to δλ
and Gη(s) from δTb to δη can be obtained. Specifically, they have the form

Gλ(s) =
r

Jv

s+ μ1(λ)Fz

mv

(
(1 − λ) + mr2

J

) , (8.1)

and

Gη(s) =
r

Jg

(
s+ μ1(λ)Fz

mv (1 − λ)
)

s+ μ1(λ)Fz

mv

(
(1 − λ) + mr2

J

) . (8.2)

For what follows, it is worth recalling that Gλ(s) and Gη(s) are both first-
order transfer functions, characterised by the same pole. Moreover, recall also
that the vehicle speed value v considered for the linearisation acts only as a
scaling parameter on such pole, but it does not affect its sign.
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In fact, as was shown in Section 2.5.1, the (real) pole of the transfer func-
tions (8.1) and (8.2) is negative if and only if the following inequality holds

μ1(λ)Fz

mv

(
(1 − λ) +

mr2

J

)
> 0,

which can be reduced to
μ1(λ̄) > 0,

where μ1(λ̄) is as in (2.37) and it represents the slope of the tyre–road friction
curve. Thus, the linear systems with transfer functions Gλ(s) and Gη(s) are
unstable if the equilibrium point λ is beyond the peak of the friction curve.
Accordingly, to detect the stability properties of wheel dynamics equilibrium
points it is necessary to monitor the sign-change of μ1(λ̄), i.e., the slope
of the tyre–road friction curve. It is worth pointing out that detecting a
change of stability also gives a means for detecting the pair (μMax, λMax)
i.e., the maximum tyre–road friction coefficient available on the current road
condition and the corresponding value of the wheel slip.

8.2.1 Online Detection of the Sign of the Friction
Curve Slope

We will now propose a strategy to monitor online the sign-change of μ1(λ̄),
i.e., the slope of the tyre–road friction curve. To this end, we deal directly with
the wheel dynamics, trying to find approximate static algebraic relationships
linking measurable variables to the slope sign itself.

Differentiating the wheel dynamics given in the first equation of the single-
corner model (2.15), we obtain

ω̈ =
d
dt

(
rFx

J
− Tb

J

)
=

d
dt

(
rFzμ(λ)

J
− Tb

J

)
=
r Fz

J

dμ(λ)
dλ

∣∣∣∣
λ=λ̄

λ̇− Ṫb

J
=
r Fz

J
μ1(λ̄)λ̇− Ṫb

J
.

We then define

H := ω̈ +
1
J
Ṫb =

r

J
Fzμ1(λ̄)λ̇ = γμ1(λ̄)λ̇, γ ∈ R+. (8.3)

Equation (8.3) shows that we can relate the sign of μ1(λ̄) to the wheel decel-
eration derivative (i.e., the wheel Jerk) and to the braking torque derivative.

The above relation, though, has to be further analysed before being di-
rectly employed. In fact, the sign of H depends both on the sign of μ1(λ̄) and
on the sign of the wheel slip derivative λ̇. In fact, it holds that
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H > 0 ⇔
(
μ1(λ̄) > 0 AND λ̇ > 0

)
OR

(
μ1(λ̄) < 0 AND λ̇ < 0

)
,

while

H < 0 ⇔
(
μ1(λ̄) < 0 AND λ̇ > 0

)
OR

(
μ1(λ̄) > 0 AND λ̇ < 0

)
.

Based on this, two alternative strategies for solving such ambiguity and for
deriving an expression for H suitable for online detection of the sign of the
friction curve slope can be derived. The two strategies differ one from in
other in that they are devised assuming that wheel slip measurement (or
estimation) is either available or not available.

Let us start by assuming that the wheel slip can be either measured or
estimated (for wheel slip estimation see Chapter 5). This assumption implies
that the proposed strategy can be implemented on all passenger cars equipped
with ABS and ESC sensors.

In this case, the slope sign can be derived as

sign(H) = sign
(
ω̈ +

1
J
Ṫb

)
sign(λ̇) = sign(μ1(λ̄)). (8.4)

Hence, slope sign detection becomes a pure signal processing problem.
To cope with the disturbances affecting the measured signals, in the im-

plementation of the friction curve slope sign detection strategy based on
Equation 8.4, one should not use a pure zero-crossing detection algorithm,
but it is necessary to define a small negative threshold on H. Such a threshold
must been experimentally tuned according to the measurement noise in the
available data and should fit all road conditions.

We now discuss how to estimate the slope sign when no slip measurement
(or estimation) is available. The motivation for this analysis is to devise an
identification strategy that can be implemented in any passenger car equipped
only with standard ABS sensors (i.e., wheel encoders and pressure sensors,
but no longitudinal accelerometer).

Consider the expression of the wheel slip derivative

λ̇ =
r

v

(ω
v
v̇ − ω̇

)
=

r

v

(ω
v
v̇ +

g

r
η
)
.

Assuming that the rate of change of the vehicle acceleration v̇ is negligible
with respect to that of the wheel deceleration ω̇, one has

λ̇ = −ω̇ r
v

= η
g

v
.

Accordingly, the slope sign estimator becomes

sign(H) = sign
(
ω̈ +

1
J
Ṫb

)
sign(λ̇) ∼= sign

(
ω̈ +

1
J
Ṫb

)
sign(η). (8.5)
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Thus, the estimation of the sign of μ1(λ̄) can be recast as the detection of
the sign of two components, both of which are measurable on every passenger
car.

It is worth analysing the effects of the approximation used in deriving (8.5).
As we are concerned with braking manoeuvres, by approximating the slip
velocity λ̇ with the normalised wheel acceleration η, we neglect a negative
term dependent on v̇. Hence the following inequality holds:

ω

v
v̇ +

g

r
η <

g

r
η. (8.6)

Inequality (8.6) shows that η changes sign before λ̇ when the wheel slip is
increasing, while the opposite is true when the wheel slip is decreasing (i.e.,
during the pedal release phase). In both cases, there is a time interval during
which η and λ̇ lose their concordance and the algorithm based on Equation 8.5
fails in detecting the slope sign. This means that expression (8.5) can be error
prone at the beginning of very hard braking manoeuvres.

Figure 8.1 FSM representation of the proposed ABS supervisory control logic

8.2.2 ABS Supervisory Control Logic

To enhance passenger safety, it is possible to employ the slope sign detection
strategy as a supervisory control logic, that commands, for example, the ABS
system control actions. To this end, we are interested in detecting the slope
sign change in both directions, i.e., from positive to negative and vice versa.

In order for the proposed logic to be integrated with standard ABS sys-
tems, we assume that no slip measurement (or estimation) is available. Hence,
the proposed results are based on Equation 8.5. An FSM representation of a
supervisory control logic is depicted in Figure 8.1.
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As can be seen, it is composed of three states, each with an associated
control action. Specifically, one has:

• S0: the initial and final state. No control action is sent to the core ABS
system.

• S1: the system is in the stable region of the tyre–road friction curve, hence
the ABS system is allowed to increase the braking torque Tb.

• S2: the system is in the unstable region of the tyre–road friction curve,
hence the ABS system is commanded to decrease the braking torque Tb.
S2 is further decomposed into S21 and S22, whose meaning will be clarified
below.

The overall supervisory logic works as follows: the system remains in S0

while no braking occurs, i.e., while Tb < T̄ , where T̄ is a properly tuned
threshold. When Tb ≥ T̄ , a transition to the stable region S1 occurs. The
system remains in this state until H > Hinst where Hinst is the (negative)
threshold identifying a negative slope sign.

Once H ≤ Hinst, the system signals the crossing of the stability boundary
and enables the transition to the state S2. Actually, the system enters the
substate S21, where it waits for nms before entering S22. The rationale under
the wait action is that even if the release action is triggered by the transition
from S1 to S2, current ECU network topologies do not allow for an immediate
system response.

Accordingly, the substate S21 ensures that the detection of a positive slope
sign is not missed by evaluating H at the same time instant at which the
release action takes place. While the instability condition persists (i.e., as
long as the estimated slope sign is negative), the system remains in S22 and
the release phase is continued by the ABS system. When H ≥ Hst (Hst being
the positive threshold identifying positive slope sign), stability is re-gained
and a transition to S1 takes place. Finally, when the braking manoeuvre is
over, the system goes back to the final state S0.

8.2.3 Experimental Results

To analyse the performance of the identification algorithm, test drives have
been carried out by performing strong braking manoeuvres on two different
road conditions, i.e., a high-grip asphalt road and a low-grip off-road.

All the measured signals (wheel encoders, longitudinal accelerometer and
pressure sensors) are assumed to come from properly calibrated sensors. For
a discussion on the processing issues related to wheel encoders the reader is
referred to Appendix B.

Figures 8.2(a) and 8.2(b) show the time histories of the wheel slip and of
the detection of the stability boundary crossings obtained via Equation 8.4,
i.e., assuming that wheel slip measurements are available, on high-grip and
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(a)

(b)

Figure 8.2 Time histories of the wheel slip (top) and of the detection of the stability
boundary crossings (bottom) obtained with (8.4). (a) high-grip road, (b) low-grip off-
road
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low-grip roads, respectively. Notice that the slope sign detection is very accu-
rate on both road conditions. In fact, analysing the results obtained with the
friction curve slope sign change detection algorithm based on Equation 8.4
(averaging the results obtained in all tests on both road conditions), we have
E[λMax] = 0.0854 on the high-grip road and E[λMax] = 0.1357 on the low-
grip off-road, which is compatible with the tyre–road friction conditions of
the test grounds.

To visually inspect the performance of the estimation algorithms when no
wheel slip measurement (or estimation) is available, refer to Figures 8.3(a)
and 8.3(b), which depict the time histories of the wheel slip and of the detec-
tion of the stability boundary crossings obtained via Equation 8.5 on high-
grip and low-grip roads, respectively. Analysing the results obtained with the
slope sign detection algorithm based on (8.5), (averaging the results obtained
in all tests on both road conditions) one finds E[λMax] = 0.0648 on the high-
grip road and E[λMax] = 0.1283 on the low-grip off-road. Thus, the slope sign
detection can also be reliably performed with no direct information on the
wheel slip.

Finally, it is worth investigating the adaptation of the identification algo-
rithm to the supervisory control logic presented in Section 8.2.2. We recall
that it asks us to detect the slope sign change in both directions.

Figures 8.4(a) and 8.4(b) show the results obtained on dry and off-roads,
respectively. Apparently, the proposed supervisory logic can be profitably
employed both to enhance the safety properties of ABS systems and to opti-
mise their performance. In fact, the parameters of the ABS controller might
be adaptively tuned according to the current system stability properties.

8.3 Real-time Identification of Tyre–road Friction
Conditions

In this section, we consider the problem of estimating the wheel slip value
corresponding to the abscissa of the peak of the tyre–road friction curve
combined with the capability of identifying also the full parametrisation of
the tyre–road friction curve itself.

The characteristics of the friction estimation strategies are analysed and
tested both in simulation and on experimental data. In the latter case, the
performance of the identification techniques is tested also in combination
with the wheel speed estimation algorithm discussed in Section 5.3, in order
to discuss its effects on the accuracy of the final results.

Specifically, the identification approach is based on the solution of a curve
fitting problem formulated using a properly parameterised friction model.
The slip value corresponding to the curve peak is subsequently estimated from
the fitted curve. To this aim, the Burckhardt friction model (see Section 2.1)
is considered.
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(a)

(b)

Figure 8.3 Time histories of the wheel slip (top) and of the detection of the stability
boundary crossings (bottom) obtained with (8.5). (a) high-grip road, (b) low-grip off-
road
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(a)

(b)

Figure 8.4 Time histories of the wheel slip (solid line) and detection of the stability
boundary crossings (dashed line). (a) high-grip road, (b) low-grip off-road

In presenting this topic, we assume that the reader has a basic familiarity
with linear system identification methods, specifically with the least squares
(LS) approach and with the maximum likelihood (ML) approach. For more
details on the identification algorithms, the interested reader is referred to,
e.g., [61, 62,99].

Since the Burckhardt model is nonlinear in the parameters, an iterative
ML estimation technique is applied first. Further, to evaluate the practical
applicability of the method for online use, a recursive version of the algorithm
is also investigated. Secondly, a (recursive) LS method is introduced, based
on an ad hoc parametrisation of the friction model which is linear in the
parameters.

To set up the identification problem, let us assume that the signals ω, v,
λ and Tb are available. As such, one can work on the single-corner dynamics
(see also Equation 2.18)
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λ̇ = −1
v

(
(1 − λ)
m

+
r2

J

)
Fzμ (λ) +

r

vJ
Tb, (8.7)

and invert it to obtain data points of the type μ(ω, v, Tb, λ), which consti-
tute the basis for collecting data suitable for the estimation of the tyre–road
friction curve μ(λ). Actually, note that the angular wheel velocity ω and the
braking torque Tb can be assumed to be measurable (in particular, Tb is as-
sumed to be proportional to the pressure in the hydraulic braking circuit by
a known coefficient, see Equation 1.1), while v is generally not available and
needs to be estimated. Finally, λ can be determined from ω and v.

Namely, expressing v as ωr/(1−λ), μ(λ) can be easily obtained from (8.7)
as

μ(λ; t) =
1−λ(t)
Jω(t) Tb(t) − λ̇(t)

1−λ(t)
ω(t)r Fz(t)

(
1−λ(t)

m + r2

J

) , (8.8)

where the dependence on time is made explicit in order to point out that (8.8)
holds at each time instant. Note that the right-hand side of (8.8) depends on
ω(t), λ(t), λ̇(t), r, Tb(t) and Fz(t). Thus, in principle, if noise-free measure-
ments of such variables were available, one could estimate the corresponding
sample of μ(λ; t) exactly.

However, ω(t) and Tb(t) are measured from noisy sensors, λ(t) is derived
via speed estimation and hence it is affected by the estimation error and the
vertical load Fz(t), together with the wheel radius r, differs from its static
value depending on the braking (or traction) induced pitch angle and tyre
characteristics (see also Appendix B). Note, however, that according to the
longitudinal tyre force model given in (2.12), the vertical load Fz(t) acts only
as a scaling factor on the friction curve, thus not altering the abscissa of the
maximum.

In summary, (8.8) is in fact a highly nonlinear function of data and noise,
which can only provide approximate and noisy samples of μ(λ; t). Accord-
ingly, to set up a curve fitting problem with the aim of identifying tyre–road
friction conditions, (8.8) is used to compute the observations from data, while
suitable parametrisations based on Burckhardt model in (2.13) are employed
to formulate the tyre–road friction relation (see the next section).

8.3.1 Identification Strategies

Based on the problem setting given in the previous section, a curve fitting
problem can be set up to estimate μ(λ), and thus to obtain λMax from the
estimated friction curve. The first of these two tasks is addressed by minimi-
sation of a standard quadratic error function of the form
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J(ϑ) =
1
N

N∑
i=1

ε(λi, ϑ)2, (8.9)

where N is the number of samples and ε(λi, ϑ) = μ(λi) − μ̂(λi, ϑ) is the
estimation error. The next subsections focus on the derivation of suitable
methods for fitting the tyre–road friction curve.

8.3.1.1 The Maximum Likelihood Approach

The most direct approach for the estimation of the tyre–road friction curve
involves the use of the Burckhardt model (2.13), where ϑr is the vector
of unknown parameters to be determined. Unfortunately, the structure of
that model is nonlinear in the parameters and simple algorithms like the LS
method cannot be applied to this case. The computationally more intensive
ML approach must be used instead, [99].

The method performs an iterative minimisation of the fitting error crite-
rion (8.9) by means of a quasi-Newton method [99], which ultimately amounts
to adjusting the parameter vector at each iteration on the basis of the fol-
lowing expression:

ϑ(r+1) = ϑ(r) +
( N∑

i=1

ξ(λi)ξ(λi)T
)−1( N∑

i=1

ξ(λi)ε(λi)
)
, (8.10)

where

ξ(λi) = −dε(λi)T

dϑ
= [1 − e−λiϑr2 ϑr1λie

−λiϑr2 −λi ]T .

A crucial step in the ML approach is the initialisation of the parameter vector.
An ad hoc empirical approach has been adopted for this purpose. Actually,
for low values of the wheel slip, the Burckhardt model can be approximated
as

μ(λ, ϑr) ∼= (ϑr1ϑr2 − ϑr3)λ− ϑr1ϑ
2
r2λ

2. (8.11)

Now, since the parameter ϑr3 varies in an extremely small range, from 0.06
for snow to 0.67 for cobblestone (see Table 8.1), an average value of 0.4 can
be reasonably assumed as initial value ϑ̂r3(0). Then, using the first available
data, which appropriately correspond to low slip values, one can interpolate
the quadratic approximation above to derive the initial values ϑ̂r1(0) and
ϑ̂r2(0).

Several recursive versions of the general iterative batch algorithm described
above have been developed in the literature, see e.g., [62]. These exploit the
structural similarity between the iteration equation of the ML method and the
well-known LS equation and recover the same computational schemes of the
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recursive LS (RLS) methods. Notice, however that in this case the recursive
scheme mixes the data recursion with the iterative mechanism inherent in the
ML approach, so that convergence may be harder to obtain with recursive
ML (RML), as opposed to RLS.

8.3.1.2 The Least Squares Approach

In view of the potential convergence problems of the RML approach discussed
in the previous section (which will be thoroughly analysed on the data of
interest in Section 8.3.2), an alternative estimation scheme is presented based
on a linear regression reformulation of the friction model and LS estimation.

The Burckhardt model (2.13) is nonlinear by way of the exponential term
in ϑr2, which varies in a relatively small range of values depending on the
road conditions. As an alternative, such a term can be approximated using
a linear combination of fixed exponentials, suitably dispersed to cover the
whole range of interest [33]. This results in the model

μ̂(λ) = a1e
−b1λ + a2e

−b2λ + · · · + an−2e
−bn−2λ + an−1λ+ an, (8.12)

where an−1 and an equal −ϑr3 and ϑr1 in model (2.13). If the bi, i =
1, · · · , n − 2 exponents are fixed a priori, model (8.12) can be recognised
as a linear regression

μ̂(λ) = ϕ(λ)T θ,

where

ϕ(λ) =
[
e−b1λ, · · · , e−bn−2λ, λ, 1

]T
θ = [a1, · · · , an]T ,

to which LS estimation methods can be directly applied. The number of
exponentials in the approximate model has been set to four via a trial and
error process, aimed at establishing a satisfactory compromise between model
flexibility and size (to avoid overfitting).

Parameters bi, i = 1, · · · , 4 have been chosen as uniformly distributed in
the range [4, 100], which includes all the values of ϑr2 in the considered road
conditions. More precisely, b1 = 4, b2 = 36, b3 = 68 and b4 = 100.

8.3.2 Numerical Analysis

In order to evaluate the behaviour of the estimation strategies described in
the previous section, it is important to preliminarily discuss which are the
performance levels to be sought in the considered application.
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Specifically, accuracy requirements are set by the characteristics of typical
vehicle electronic and control devices. More precisely, as far as the expected
performances are concerned, a reasonable objective is to obtain an overall
accuracy in the estimation of the abscissa of the peak of the friction curve
of ±5%, which is considered appropriate for ABS control [90]. Furthermore,
the estimator should provide reliable information within the time instant
at which the braking controller would be activated. Since this time interval
can be approximately quantified to be at most of 500 ms, and data in these
applications are typically sampled at 200 Hz, the estimation algorithms have
been tested with 100 samples.

To investigate the performance of the two estimation strategies introduced
in the previous section, simulation tests, which were carried out based on the
single-corner model dynamics, are now presented. In order to consider a more
realistic setting, though, all identification methods have been tested on noisy
simulation data.

Specifically, zero mean white noises have been added to the wheel speed ω,
to the vehicle speed v and to the braking torque Tb, with σ2

ω = 0.005 rad2/s2,
σ2

v = 0.25 m2/s2 and σ2
Tb

= 10 N2m2, respectively. In the case of v and ω,
which represent the quantities based on which the wheel slip is computed, the
noise variance values should correctly model the fact that the noise acting on
the wheel speed ω is only due to measurement noise (ω is directly measured
by means of a wheel encoder), while the noise acting on the vehicle speed is
also due to estimation errors, see also the discussion in Chapter 6.

Let us first analyse the results obtained with the ML approach. To do this,
consider Table 8.1, which reports the results on the parameter estimation
obtained with ML and RML algorithms. Actually, while an almost perfect
curve fitting (and a quite accurate parameter estimation) is obtained with
the batch ML approach in all tested road conditions, the same does not apply
to the computationally more affordable RML method.

Table 8.1 Summary of the μ(λ) estimation obtained with ML and RML on noisy
simulation data

Dry asphalt Wet asphalt Cobblestone Snow

True values
ϑ1 1.28 0.86 1.37 0.19
ϑ2 23.99 33.82 6.46 94.13
ϑ3 0.52 0.35 0.67 0.06

ML

ϑ̂1 1.29 0.86 1.48 0.18

ϑ̂2 22.69 31.94 5.79 90.95

ϑ̂3 0.57 0.36 0.85 0.04
# iter. 4 4 5 4

RML
ϑ̂1 1.24 0.86 1.12 0.22

ϑ̂2 27.34 35.36 9.73 60.07

ϑ̂3 0.38 0.37 0.29 0.37
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Figure 8.5 Curve fitting results with RML on cobblestone: simulated data (dots),
theoretical μ(λ) curve (dashed line), initial estimation (dash-dotted line), estimated
μ(λ) curve (solid line), true λMax (dashed vertical line) and estimated λMax (solid
vertical line)

Figure 8.6 Results of λ̂Max estimation with RML on cobblestone: true value (dashed
line), estimated value (solid line), initialisation period (dark grey) and 5% error band
(light grey)

Let us consider in more detail the cobblestone case, for which simulation
results are depicted in Figures 8.5 and 8.6. Note that, among all those avail-
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able, this particular type of road condition has been selected for discussion as
it represents a particularly hard case for identification purposes, being almost
flat in the neighbourhood of the maximum. Notice that data are not available
for high slip values, so it should not be surprising that unsatisfactory accuracy
is experienced in that range. Recall, however, that the ultimate objective of
the estimation problem is the peak abscissa evaluation, which can be satisfac-
torily addressed, as long as the available data encompass the maximum point
of the curve. In the case reported in Figure 8.5, the curve fit is only approx-
imately correct in the operating range, resulting in an under-estimation of
λMax. What is more, while the estimation of λMax quickly approaches the cor-
rect value, after an initialisation period of 20 samples, it converges extremely
slowly, revealing that the RML method inefficiently exploits the information
in the data. Also, accurate curve fitting is obtained only where the samples
are more numerous, that is close to the peak point. In any case, a remarkably
low 10% error in the estimation of λMax is achieved after only 30 samples,
i.e., with sufficient advance with respect to the critical point in the braking
process. This information, as will be further discussed in Section 8.3.3, can
be valuably exploited by ABS and wheel slip control systems.

Table 8.2 reports the results of the estimation of λMax with both the
batch and the recursive ML method, based on the respective estimated fric-
tion curves. Apparently, RML provides generally worse peak estimation, an
exception being the snow case.

The difference in performance between the ML and RML methods on the
snow case is due to the fact (see also Figure 2.3) that the friction curve in this
case has an almost flat right portion and this fools the ML method – as the
great majority of the available data are not descriptive of the peak dynamics
– while better results are achieved with the RML approach. This is because
the ad hoc initialisation procedure is particularly effective on this surface. As
a matter of fact, the λMax value being very low, the interesting part of the
curve is well captured by the initialisation samples (see also Equation 8.11).
In the RML case, then, the recursive nature of the method can better exploit
a good initialisation than the batch version, which tries to fit, in the ML
sense, the whole dataset in one shot.

Some general remarks concerning RML are in order. Apparently, due to
numerical ill-conditioning of the gradient term of the parameter tuning equa-
tion, parameters ϑr2 and ϑr3 are only slightly moved from the initial values.
Given the better performance of the batch version of the algorithm, this can
only be ascribed to the fact that RML combines the iterative nature of the
ML approach with data recursion. To deal with this problem, it is conve-
nient to modify the update equations for ϑr2 and ϑr3 inserting an additional
gain factor to speed up convergence. If computationally viable, a few batch
iterations could also be performed as soon as RML convergence does not sig-
nificantly improve. This last variation, denoted in the following as RML+ML,
has yielded significantly better results in simulation and its performance on
experimental data will be analysed in Section 8.3.3.
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Figure 8.7 Curve fitting results with RLS on cobblestone: simulated data (dots),
theoretical μ(λ) curve (dashed line), initial estimation (dash-dotted line), estimated
μ(λ) curve (solid line), true λMax (dashed vertical line) and estimated λMax (solid
vertical line)

Figure 8.8 λ̂Max estimation results with RLS on cobblestone: true value (dashed
line), estimated value (solid line), initialisation period (dark grey) and 5% error
band (light grey)
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Table 8.2 Summary of the λMax estimation performances obtained with ML and
RML on noisy simulation data

Dry asphalt Wet asphalt Cobblestone Snow

True values
λMax 0.1700 0.1307 0.3995 0.0605
μMax 1.1699 0.8039 1.0014 0.1857

ML
λ̂Max 0.1737 0.1350 0.3989 0.0656
μ̂Max 1.1700 0.8035 0.9998 0.1848
ελ% 2.17% 3.28% 0.15% 8.42%

RML
λ̂Max 0.1641 0.1242 0.3723 0.0594
μ̂Max 1.1679 0.8048 0.9906 0.1929
ελ% 3.47% 4.97% 6.8% 1.81%

Table 8.3 Summary of the λMax estimation performances obtained with LS and
RLS on noisy simulation data

Dry asphalt Wet asphalt Cobblestone Snow

True values
λMax 0.1700 0.1307 0.3995 0.0605
μMax 1.1699 0.8039 1.0014 0.1857

LS and RLS
λ̂Max 0.1786 0.1370 0.3966 0.0658
μ̂Max 1.1696 0.8024 1.0019 0.1849
ελ% 5.05% 4.84% 0.73% 8.76%

Let us now move to investigate the performance of the LS and the RLS
algorithms. In the simulations, the RLS algorithm was initialised using the
batch LS method on the first 20 available data. The estimation performances
for λMax are reported in Table 8.3. Notice that 100 data are sufficient for
the RLS to converge exactly to the estimates obtained with the LS method.
Overall, the LS approach is slightly less accurate than ML, but no signif-
icant deterioration resulting from the recursive version of the algorithm is
experienced.

Also for the RLS method, the snow case experiences the worst estimation
performance in terms of relative error (note that the absolute one is still com-
parable to the other surfaces). This is mainly because, as observed analysing
the ML approach, λMax takes on a very low value which makes relative error
an unfair metric for this specific case. Moreover, because of the large dif-
ference between the numerical values of all the snow parameters ϑr (all of
them differ of more than an order of magnitude from each other), one would
need specific scalings in the RLS gains to significantly improve performance.
However, as the results are acceptable also on this kind of surface, scaling has
been avoided, as it would be surface dependent and therefore not applicable
in practice.

For comparison purposes, consider again the cobblestone case, for which
simulation results are represented in Figures 8.7 and 8.8. In Figure 8.7 notice
the significant estimation error in the initial part of the curve, which is a result
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of using an empirical model as opposed to the Burckhardt one. Nevertheless, a
remarkable accuracy is achieved near the peak, so that λMax can be estimated
almost exactly.

Concerning the convergence properties of λMax estimation (see Figure 8.8),
one can observe that with RLS the initialisation process is not so efficient in
approaching the correct value quickly as in the RML case, but convergence is
faster, so that 10% λMax estimation error is achieved only slightly later (after
40 samples) and 5% error after 70 samples.

Figure 8.9 Example of data (dots) measured on the front wheel on high-grip asphalt
road and the theoretical μ(λ) curve (red dashed line)

8.3.3 Experimental Results

Before analysing the estimation results obtained with the identification ap-
proaches on measured data, some remarks are due. Specifically, refer to Fig-
ure 8.9, where an example of the samples of μ(λ; t) measured on the front
left wheel on high-grip asphalt road is shown together with the theoretical
tyre–road friction curve related to the road condition used in the tests. Note
that the theoretical curve in Figure 8.9 has been derived considering also the
increased vertical load experienced by the front wheel during braking. As is
apparent by inspection of Figure 8.9, experimental data are significantly dif-
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ferent from those obtained in simulation, and this is due to several concurring
phenomena:

1. First of all, the μ(λ) curve is intrinsically a static description of the tyre–
road friction condition, in that it represents the collection of the steady-
state friction coefficient values associated with the corresponding value
of the wheel slip. Note that this fact does not depend on the analytical
model chosen (the Burckhardt one in this case); the same would have held
true if, for example, the Pacejka model had been used (see Section 2.2).
When looking at real data, instead, several dynamic phenomena, mainly
suspension elasticity and tyre relaxation, cause the real μ(λ) values to
exhibit the overshoot clearly visible in Figure 8.9, which also accounts
for dynamic load transfer effects.

2. Secondly, as the test was carried out with a real, albeit professional,
driver, it is very unlikely that the measured data go significantly beyond
the peak value of the μ(λ) curve. When this happens, in fact, the car
experiences a significant loss of driveability, and the driver is forced to
release the brake pedal to avoid losing control of the vehicle.

3. Finally, the initialisation phase for both algorithms on experimental data
has been linked to the wheel slip behaviour. Specifically, both RLS and
RML+ML are initialised when the wheel slip is be such that λ > λinit.
The value of λinit = 0.07 was chosen based on the analysis of the measured
data.

Notice that even though these dynamic phenomena apparently change the
shape of the μ(λ) curve, they cause a very small change (if any) of the value
of λMax, that is the abscissa of its peak. Therefore, as the main aim of the
identification procedure is that of estimating such a value so that it can be
used as input for braking control systems, the identification algorithms do
not lose their capability of pursuing this objective.

8.3.3.1 Wheel Slip Measurements Available

We first discuss the estimation results obtained when the vehicle speed is
exactly measurable, i.e., by employing the speed signal obtained with an
optical sensor, and thus the wheel slip can be directly measured.

Note that here the main aim is to verify that upon controller activation,
the proposed estimation algorithm is able to provide a consistent estimate
λ̂Max of the value of the abscissa of the peak point of the friction curve. To
this end, we assume that the ABS is switched on when the current wheel slip
value exceeds a predefined threshold, which has been set to λ = 0.15. Note
that on real ABS systems, see Section 3.7, it is possible to have a dynamic
activation threshold selection, which tunes the activation slip value also based
on the braking intensity. Nonetheless, as the aim of the experiments is that
of testing the identification performance obtainable with a limited number
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Figure 8.10 Plot of the slip λ as function of samples (top, solid line) and the

ABS activation threshold (top, dashed line) and λ̂Max estimation results with RLS
on high-grip asphalt road (bottom): theoretical value (dashed line), estimated value
(solid line), initialisation period (grey) and 5% error band (grey)

of data a constant threshold is appropriate. Accordingly, besides evaluating
the final results of the estimation when all the available 100 samples are
processed, we also monitor at which sample the ABS would virtually be
activated and how accurate our estimation is at that time instant.

The estimation results obtained on dry asphalt road with the RLS method
are shown in Figure 8.10, while those obtained on low-grip off-road with
the RML+ML method are shown in Figure 8.11. Both these figures also
show the time history of the wheel slip and highlight the ABS activation
threshold. As can be seen, the estimation of λMax is quite satisfactory and,
most importantly, it is reliable also at the time instant at which the ABS
would be activated, even if this happens when less than 100 samples have
been processed.

A quantitative summary of the overall results obtained with RLS and
RML+ML with measured vehicle speed for both friction conditions is pro-
vided in Table 8.4. As can be seen, while on dry asphalt the performances
of the two algorithms are comparable, RLS shows its better features with
respect to RML+ML on low-grip off-roads, where the availability of fewer
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Figure 8.11 Plot of the slip λ as function of samples (top, solid line) and the ABS

activation threshold (top, dashed line) and λ̂Max estimation results with RML+ML
on low-grip off-road (bottom): theoretical value (dashed line), estimated value (solid
line), initialisation period (grey) and 5% error band (grey)

Figure 8.12 Plot of the slip λ as function of samples (top, solid line) and the ABS

activation threshold (top, dashed line) and λ̂Max estimation results with RLS and
speed estimation on high-grip asphalt road (bottom): theoretical value (dashed line),
estimated value (solid line), initialisation period (grey) and 5% error band (grey)
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Table 8.4 Summary of the λMax estimation performance obtained with RLS and
RML+ML on experimental data with measured vehicle speed

v measured Dry – RLS Dry – RML+ML Off-road – RLS Off-road – RML+ML
True λMax 0.1 0.1 0.13 0.13
# samples 92 [0.46 s] 92 [0.46 s] 52 [0.26 s] 52 [0.26 s]

λ̂Max 0.0955 0.0942 0.1226 0.1063
ελ% -4.5% -5.8% -5.69% -18.23%
# samples at ABS
activation

88 [0.44 s] 88 [0.44 s] 44 [0.22 s] 44 [0.22 s]

ελACT% 1.9% 4.7% -1.69% -19.46%

samples makes the initialisation phase crucial, thereby confirming the theo-
retical analysis of the two algorithms.

8.3.3.2 Wheel Slip Measurements not Available

The estimation results obtained when non-exact wheel slip measurements
are available are now discussed. This analysis reflects the practical case in
which the tyre–road friction estimation is in fact implemented on a passenger
vehicle equipped with standard ABS/ESC sensors (i.e., wheel encoders and a
longitudinal accelerometer), in which the wheel slip is estimated. Specifically,
the estimation algorithm described in Chapter 5 has been used.

Due to the superior properties of the RLS algorithm observed in the case of
measured vehicle speed, we only present results obtained with this algorithm
in combination with estimated vehicle speed. The results obtained with the
RLS method on a dry asphalt road and on a low-grip off-road are shown
in Figures 8.12 and 8.13, respectively. Again, these figures also show the
time history of the wheel slip and highlight the ABS activation threshold.
As can be seen, the reliability of the estimation remains unchanged (both
looking at the ABS activation time instant and at the overall estimation
results) if the estimated value of the vehicle speed is provided as input to the
algorithm, thereby confirming its practical applicability. Similar results with
respect to the consistency between the case of measured and estimated vehicle
speed have been obtained also for the RML+ML algorithm. A quantitative
summary of the overall results on experimental data obtained with RLS and
estimated vehicle speed is provided in Table 8.5.
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Figure 8.13 Plot of the slip λ as function of samples (top, solid line) and the

ABS activation threshold (top, dashed line) and λ̂Max estimation results with RLS
and speed estimation on low-grip off-road (bottom): theoretical value (dashed line),
estimated value (solid line), initialisation period (grey) and 5% error band (grey)

Table 8.5 Summary of the λMax estimation performance obtained with RLS on
experimental data with estimated vehicle speed

v estimated Dry – RLS Off road – RLS
True λMax 0.1 0.13
# samples 92 [0.46 s] 52 [0.26 s]

λ̂Max 0.0953 0.123
ελ% -4.7% -5.3%

# samples at ABS activation 88 [0.44 s] 44 [0.22 s]
ελACT% 0.2% -1.38%

8.4 Direct Estimation of Contact Forces via In-tyre
Sensors

Traditionally, tyre–road contact forces are indirectly estimated from vehicle-
dynamics measurements (e.g., chassis accelerations, yaw and roll rates, sus-
pension deflections). The emerging of the smart-tyre concept (tyre with em-
bedded sensors and digital-computing capability) has made possible, in prin-
ciple, a more direct estimation of contact forces. In this field, which is still in
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its infancy, a basic and fundamental problem is the choice of the sensor(s) and
of the regressor(s) that are most appropriate to be used for force estimation.

The objective of this section is to illustrate a sensor-regressor choice tai-
lored to accomplish this task, and to provide some experimental results to
discuss the validity of this choice. The idea is to use a wheel encoder and an
accelerometer mounted directly in the tyre (see Figure 8.14). The measure-
ment of the in-tyre acceleration is transmitted through a wireless channel.
The key concept is to use the phase shift between the wheel encoder and
the pulse-like signals provided by the accelerometer as the main regressor for
force estimation.

Figure 8.14 Detail of the in-tyre accelerometer

8.4.1 Introduction

In the field of smart-tyres, i.e., tyres equipped with electronic devices that
make them active components of the vehicle, one of the main challenges is
the direct real-time estimation of the tyre–road contact forces via in-tyre
sensors. This research is still actively ongoing and a number of non-trivial
issues are still open. Among others: the choice of in-tyre sensors, the in-tyre
preprocessing of the signal, the wireless transmission, the post-processing,
the regressor choice and the estimation algorithm. The problem is made even
more complicated by technological and industrial issues like durability, cost
and energy consumption of the in-tyre electronic devices.

The great interest in a smart-tyre capable of providing a real-time estima-
tion of the tyre–road contact forces is easily explained by its huge potential
benefits: the direct measurement of tyre–road contact forces can stimulate
the development of a new generation of traction, braking and stability control
systems which may outperform the existing ones in terms of safety, driving
satisfaction and also energy consumption.
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Figure 8.15 Detail of the battery and wireless transmitter installed on the wheel
rim

At this stage, no commercial products that can estimate the friction forces
directly from on-vehicle measurements are available on the market, but many
research groups are exploring and testing different solutions. The two key is-
sues (strictly interwoven), which are still open, can be summarised as follows:

1. What is the best tyre-embedded sensor choice?
2. Given the sensor configuration, what is the best set of regressors to be

used for force estimation?

This section presents a possible solution to these two open issues and pro-
vides some experimental results as a preliminary validation. Specifically, this
method is tailored to estimate the tyre–road vertical and longitudinal forces
and it makes use of two sensors in each wheel; namely

• a standard wheel encoder typically used by ABS systems for the wheel
speed measurement (see Appendix B); and

• a one-axis accelerometer mounted directly in the tyre, which measures the
acceleration experienced by the tyre in the radial direction.

Based on these signals, we aim at evaluating the phase shift between the
wheel hub and the tyre, based on the wheel encoder and the accelerometer
signals, respectively, by detecting when the tyre encounters and leaves the
tyre–road contact patch. In fact, such a phase shift appears to be strongly
correlated with the longitudinal and vertical tyre deformation; henceforth it
can be suitably employed for the direct identification of the contact forces.
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8.4.2 Experimental Set Up

The test-car used in the experiments is a rear-wheel-driven BMW, equipped
with the following sensors:

• four inductive 48-teeth Hall-effect encoders (see also Appendix B) that
measure the wheel rotational speed, whose output is a sinusoidal-like sig-
nal, with amplitude and frequency proportional to the rotational wheel
speed ω(t); and

• a one-axis, ± 500 g piezoresistive low-mass linear accelerometer, mounted
(glued) inside the tyre (see Figure 8.14), which measures the in-tyre radial
acceleration atyre(t); the accelerometer has been installed alternatively on
the front-left tyre and on the rear-left tyre. Its bandwidth is of approxi-
mately 3 kHz.

The wireless data transmission of the in-tyre acceleration signal is made via
a transmitter, which is mounted on the wheel rim together with its battery
(see Figure 8.15); the receiver antenna is placed on the car roof. All signals
are sampled at 10 kHz, with a resolution of 16 bit.

The driving tests were all made on the same road surface, a high-grip flat
dry-asphalt road. Two main types of tests were carried out, namely

• quasi-static tests: very slow decelerations and accelerations (with no gear
shifts) in the range 10-25 m/s; and

• dynamic tests: strong braking and acceleration manoeuvres, interleaved
with constant-speed intervals.

All the tests were performed on a straight road. Two tyre-pressure conditions
were tested: 2.0 bar (nominal condition) and 1.6 bar (low-pressure condition).

8.4.3 Main Concept

Consider the signal detected by the in-tyre accelerometer. It measures the
instantaneous acceleration experienced by the tyre at the installation point
in the radial direction. An example of this signal (the raw signal, without any
kind of pre-processing) over a 0.7 s time window is displayed in Figure 8.16.
The analysis of this signal reveals that:

• The radial acceleration is approximately constant over a short time-
window (it is the centripetal acceleration, proportional to the wheel speed),
but when the accelerometer passes through the contact patch the acceler-
ation is characterised by two impulse-like signals. This twin-spike is obvi-
ously repeated every wheel revolution.

• The two main fronts of the acceleration signal around the contact patch
(the first is descending, the second is ascending) can be used to detect
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Figure 8.16 Raw signal detected by the radial in-tyre accelerometer

the time instants when the accelerometer reaches and leaves the contact
patch, respectively.

Based on this signal and on the wheel encoders measurements, the aim is
to estimate the vertical and the longitudinal force acting on the tyre by
exploiting the information contained in the phase shift between the wheel
hub and the tyre.

In order to obtain a more visual description of this idea, consider Fig-
ure 8.17(a), where a schematic picture of a wheel and its contact patch is
displayed. If we consider the two acceleration spikes, and their absolute po-
sition in the angular reference frame α given by wheel encoder (which is not
subject to elastic deformation), three quantities can be computed at each
wheel revolution:

1. the angular position α1 of the initial position of the contact patch;
2. the angular position α2 of the final position of the contact patch; and
3. the length Δφ = α2 − α1 of the contact patch.

In Figures 8.17(b) and 8.17(c) the phase shift phenomenon is pictorially de-
scribed. More specifically:

• Due to the elastic properties of the tyre in the radial direction (see e.g.,
[7,8,71]), the vertical tyre–road contact force Fz is assumed to be strictly
correlated with the length

Δφ = α2 − α1 (8.13)
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(a)

(b)

(c)

Figure 8.17 A schematic representation of a wheel and its contact patch (a), the
effect of a vertical force variation (b) and the effect of a longitudinal force variation
(c)
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of the contact patch (see Figure 8.17(b)); the idea hence is to use the
measured angle Δφ to estimate Fz, i.e.,

Fz = fz(Δφ). (8.14)

• Due to the elastic properties of the tyre in the longitudinal (tangential)
direction (see again [7, 8, 71]), the longitudinal tyre–road contact force Fx

is assumed to be strictly correlated to the phase shift of the centre of the
contact patch (see Figure 8.17(c)), given by

δφ = (α1 + α2)/2. (8.15)

The idea is to use the measured angle δφ to estimate Fx, i.e.,

Fx = fx(δφ). (8.16)

In particular, note that δφ is expected to be negative during braking and
positive during acceleration; in other words, this means that the centre of
the contact patch is assumed to rotate backwards or forwards (with respect
to a conventional zero position), respectively. Also notice that, in general,
the real centre of the contact patch is not perpendicular to the wheel hub.
Hence, (8.15) provides a conventional centre of the contact patch. This,
however, does not affect the estimation procedure, since it is insensitive to
the conventional choice of the contact patch centre.

8.4.4 Signal Processing

The whole method is based on the measurement of two signals for each wheel:
the wheel rotational speed ω and the radial acceleration atyre experienced by
a point in the tyre.

The wheel encoder is the standard 48-teeth encoder used by the ABS and
ESC control systems (see also Appendix B). The original signal coming from
the encoder is a sinusoidal-like voltage signal. An example of this signal is
displayed in Figure 8.18(a), over a time-window of 100 ms. The wheel rota-
tional speed is computed from the sinusoidal wheel encoder via a frequency
tracking algorithm, see [83], and the wheel radius is calibrated as detailed in
Section B.2.2.

In Figure 8.18(b), an example of the calibrated linear wheel speed signal
(for the front-left wheel) is displayed. Notice that the estimation of the wheel
radius is not particularly critical for this application, since the considered
regressors are based on phase shifts, which are not strongly correlated with
the actual wheel radius.

The last step of the pre-processing of the wheel encoder signal, specific to
the considered estimation problem, is to estimate the instantaneous angular
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(a)

(b)

(c)

Figure 8.18 Examples of the measured wheel encoder signal (a), the calibrated
wheel speed at the contact point (b) and the estimated angular position α of the
wheel from the wheel encoder (c)
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position α of the wheel. This estimation is fundamental since it represents
the baseline for the identification of the phase shift. The basic idea for the
estimation of the angular position is simply to make an incremental step
counter, which resets every wheel revolution (or 360o). Since in a 48-teeth
encoder the peak-to-peak distance of one period corresponds to 7.5o of wheel
rotation, the whole sinusoidal profile of the signal (Figure 8.18(a)) must be
used to improve the accuracy of the angular position. The angular resolution
obtained can be estimated to be about 0.1o, which is suitable for this appli-
cation. An example of the estimated wheel angular position is displayed in
Figure 8.18(c).

Figure 8.19 Example of output of the front-detection algorithm

As has already been mentioned, in-tyre accelerometer is a one-axis sensor
(oriented in the radial direction) linear accelerometer glued inside the tyre
(see Figure 8.14). The output signal is a voltage signal, characterised by a
bump (or a twin-impulse) around the tyre–road contact patch. The main
signal processing issue is to detect the time instant when each impulse takes
place, namely to detect the angular position α1 and α2 of the two fronts (one
descending and one ascending) of the bump.

In Figure 8.19 an example of the output of the front-detection algorithm
is displayed (dotted line). The implemented front-detection algorithm essen-
tially performs a simple zero-crossing search in the neighbourhood of the two
main fronts; the zero-crossing algorithm is applied to the normalised and de-
trended signal. Note that in Figure 8.19 the signals are plotted as a function
of the wheel’s absolute angular position α, not as a function of time. This is
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a key step that allows us to eliminate most of the dependency of the phase
shift from the wheel rotational frequency.

Starting from α1 and α2, the estimation of the length of the contact patch
Δφ is straightforward, as Δφ = α2 − α1. For the computation of the phase
shift of the centre of the contact patch Ω0 the following procedure was used.
The first part of every test drive is always characterised by a low, constant-
speed (lasting approximately 10 ms) condition. It is conventionally assumed
that the phase shift in that condition is zero, namely

δφ =
α1 + α2

2
+Ω0 = 0.

The calibration offset Ω0 is then added to the absolute angular position of
the wheel for the entire experiment. In other words, it is assumed that at the
beginning of each experiment the phase shift is zero, and all the phase shifts
of the rest of the experiment are referred to that conventional zero-condition.
As has already been remarked, the choice of this conventional zero does not
affect the quality of the estimation.

Figure 8.20 Example of a complete dynamic test: vehicle speed (a), estimated phase
shift (b) and estimated length of the contact patch (c). The phase shift and length
of the contact patch refer to the rear-left wheel

The results of the above described pre-processing of the two main signals
can be appreciated in Figure 8.20, where the vehicle speed, the phase shift of
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the mid-point of the contact patch δφ and the contact patch length Δφ are
displayed, for a 1 min long dynamic experiment. From the behaviour of the
vehicle speed, note that experiment is constituted by five main parts: a first
part of constant low-speed, an acceleration, a new long constant-speed win-
dow, a strong braking manoeuvre and a final constant low-speed condition.

By inspecting the estimated δφ and Δφ in Figure 8.20 it is immediately
apparent that their behaviour is highly correlated with the vehicle speed.
Unfortunately, this speed-dependency phenomenon almost completely hides
the important part of the relationships between the pair (δφ, Δφ) and the
contact forces (Fx, Fz).

The removal of the speed-dependent trends in δφ and Δφ hence is manda-
tory. Note that this effect was somehow expected and it is mainly due to the
effects of the aerodynamic forces and (at mid/low speed values) of the rolling
resistance.

In order to remove this speed dependence, a simple quasi-static exper-
iment was performed: the car was slowly accelerated (without gear-shift)
from 10 m/s to 25 m/s; the same experiment was repeated in deceleration
(coasting down).

Since the acceleration/deceleration ramp is extremely slow, in this exper-
iment the dynamic effects can be neglected. At each wheel revolution, the
pairs (ωr, δφ) and (ωr,Δφ) have been computed. The results are plotted in
Figures 8.21(a) and 8.21(b).

As the experiment has been made in a quasi-static setting, the relation-
ships depicted in Figures 8.21(a) and 8.21(b) are static and can be easily
fitted with one-dimensional nonlinear functions. In particular, both maps
were fitted with simple second-order polynomials. A unique map was used
both for the front and the rear tyres. The estimated maps are displayed in
Figures 8.21(a) and 8.21(b).

Using the estimated maps, the speed-dependent trends have been removed
from the dynamic experiments. The results are displayed in Figures 8.22
and 8.23, for both the rear and the front wheels. Note that after the trend-
removal, the phase shift and the length of the contact patch have the same
value (0o and 25o, respectively) in every constant-speed condition.

By carefully inspecting Figure 8.23 (front tyre), another residual spurious
effect can be observed. As a matter of fact, notice that – during the acceler-
ation phase – no significant longitudinal force Fx should be developed by the
front wheels; as a consequence, we know a priori that the phase shift of the
contact patch on a front wheel in that condition should be zero. This condi-
tion is not perfectly met by the data displayed in Figure 8.23 (see the time
interval t ∈ [15, 20] s in the middle plot). This phenomenon has a simple and
intuitive explanation: there is a slight dependency (or cross-talk) between the
phase shift and the vertical force. Hence, the phase shift must be subject to
an additional correction as follows:

δφ = δφ̃+ fF (Fz), (8.17)
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(a)

(b)

Figure 8.21 Quasi-static maps of the phase shift (a) and contact patch length (b)
as functions of wheel speed

where δφ̃ is the phase shift without correction and fF (Fz) is the correction
term (to be estimated). Unfortunately, Fz is not directly known. However,
since we have assumed a direct static relationship between Fz and Δφ, we
can approximate Equation 8.17 with the following equation:

δφ = δφ̃+ fF (Δφ). (8.18)
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Figure 8.22 Example of a complete dynamic experiment: vehicle speed (a), esti-
mated phase shift (b) and estimated length of the contact patch (c). Rear-left wheel;
nominal pressure

For simplicity, we have assumed a linear dependency in the correction term,
namely

δφ = δφ̃+ β(Δφ−Δφ0). (8.19)

The term (Δφ−Δφ0) in Equation 8.19 is the dynamic variation of the contact
patch length (Δφ0 is the average value of the contact patch, at constant
speed). The only unknown term in Equation 8.19 is the coefficient β. The
optimal value of β has been identified by numerical optimisation from data,
in order to guarantee no phase shift on the front tyre during acceleration in
every working condition.

In Figure 8.24 the detail of the acceleration phase for the front tyre before
and after the correction with (8.19) is shown. Using the estimated value of
β, the phase shift signals of both the front and the rear wheels have been
modified according to Equation 8.19. After the single (for the contact patch
length) and the double (for the phase shift) trend removal, all the main
spurious effects are eliminated, and data can be employed to extract the
phase shift and contact patch length information.
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Figure 8.23 Example of a complete dynamic experiment: vehicle speed (a), esti-
mated phase shift (b) and estimated length of the contact patch (c). Front-left wheel;
nominal pressure

8.4.5 Experimental Results

The experimental results are based on a set of test drives performed on a
flat dry-asphalt surface, when driving in a straight line at low/mid-range
speed (0-80) km/h. Two tyre pressure settings have been tested, in order to
analyse the sensitivity of the method with respect to this critical parameter.
Specifically, a nominal pressure of 2.0 bar and a reduced pressure of 1.6 bar
were considered.

Figures 8.25 and 8.26 show the results for the nominal pressure at the
rear and front wheels, respectively. By carefully inspecting these figures, the
following observations can be made.

• Acceleration phase – Longitudinal force
During this phase no longitudinal force is applied at the front wheel:
FxFront = 0, whereas a positive force is applied at the rear (drive) wheel:
FxRear > 0.
Accordingly, since we have assumed a direct monotone static relationship
Fx = fx(δφ) between the longitudinal force Fx and the phase shift of
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Figure 8.24 Detail of the acceleration phase (front wheel): vehicle speed (a) and
estimated phase shift before (b) and after (c) the removal of the load-transfer parasitic
effect

the contact patch δφ, the phase shift of the front wheel should be zero
(δφFront = 0).
Conversely, the phase shift at the rear wheel should be positive (δφRear >
0). From Figures 8.25 and 8.26 it is easy to see that both these conditions
are met.

• Acceleration phase – Vertical force
During this phase the front wheel should experience a decrease of the
vertical force, i.e., FzFront < F zFront , where F zFront is the static load at the
front wheel, whereas the vertical force at the rear wheel should increase,
i.e., FzRear > F zRear , where F zRear is the static load at the rear wheel.
Accordingly, since we have assumed a direct monotone static relationship
Fz = fz(Δφ) between the vertical force Fz and the length of the contact
patch Δφ, the length at the front wheel should decrease, i.e., ΔφFront <
Δφ0, whereas that at the rear wheel should increase i.e., ΔφRear > Δφ0.
From Figures 8.25 and 8.26 it is easy to see that also both these conditions
are met.

• Braking phase – Longitudinal force
During this phase, a negative longitudinal force is applied at both wheels
i.e., FxFront < 0, FxRear < 0. Accordingly, we expect that δφRear < 0 and
δφFront < 0.
From Figures 8.25 and 8.26 it is easy to see that these conditions are met.
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Figure 8.25 Final results on a complete dynamic experiment: vehicle speed (a),
estimated phase shift (b) and estimated length of the contact patch (c). Rear-left
wheel; nominal pressure

• Braking phase – Vertical force
During this phase, the front wheel should experience an increase of the
vertical force, i.e., FzFront > F zFront , whereas the vertical force at the rear
wheel should decrease, i.e., FzRear < F zRear .
Accordingly, we expect that ΔφFront > Δφ0 and ΔφRear < Δφ0.
From Figures 8.25 and 8.26 it is easy to see that both these conditions are
met.

In Figures 8.27 and 8.28 the results of the experiments performed with
low-pressure tyres on rear and front wheels, respectively, are displayed. No-
tice that the results displayed in Figures 8.27 and 8.28 were obtained without
recalibration; they were computed using the same pre-processing and calibra-
tions as for the 2.0 bar case in order to test the robustness of the method. All
the considerations made in the nominal-pressure case still hold; this fact is
encouraging as the method shows a good robustness with respect to pressure
variations.

By carefully comparing the results at nominal and low pressure, one can
notice that, as expected, the contact patch length is slightly larger in the
case of low-pressure tyres; the variations in the phase shift instead are very
similar to the nominal-pressure setting.
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Figure 8.26 Final results on a complete dynamic experiment: vehicle speed (a),
estimated phase shift (b) and estimated length of the contact patch (c). Front-left
wheel, nominal pressure

8.5 Summary

This chapter provided some approaches to estimate online the tyre–road fric-
tion characteristics. As friction information can be extremely valuable for all
active vehicle control systems, much research activity has focused on the esti-
mation and monitoring of tyre–road friction characteristics (see, e.g., the de-
tailed review in [65]), resulting in the proposal of many different approaches,
which differ both regarding the estimation technique and the required sensor
equipment.

Some interesting approaches are tyre-oriented. For example, in [12] an
acoustic sensor is used to gain information on road-condition by registering
the acoustic waves emitted by the tyres. The drawback of such an approach
is the high noise level in the acoustic signal, which makes it very hard to
extract the real effect of friction changes on the measured signal. Another
tyre-oriented approach is documented in [12] and [24], where tyre-tread de-
formation sensors are employed. Such an approach, besides suffering from
the same drawbacks as the former, is also quite expensive and of difficult
implementation, as the tyre-tread sensors have to be embedded in the tyre
with specific vulcanisation processes.
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Figure 8.27 Final results on a complete dynamic experiment: vehicle speed (a),
estimated phase shift (b) and estimated length of the contact patch (c). Rear-left
wheel, reduced pressure

Another approach for the estimation of tyre–road friction is the so-called
slip-based approach, which appears particularly appealing as it needs only
standard ABS-ESC sensor equipment. Slip-based estimation is mostly ad-
dressed during braking manoeuvres, where sufficiently large slip levels are
encountered, although estimation techniques based on low slip measure-
ments, as available during traction, are also documented in the literature
(see, e.g., [65]). In [29], an adaptive estimation method is proposed based on
a linear approximation of the tyre–road friction description. In the last few
years, the interest has also shifted towards the estimation of the dynamic
behaviour of tyre friction forces (see, e.g., [12,24,29,85,86,93,129]). Another
example of this field of research is given in [69], where the authors estimate
the tyre extended braking stiffness – i.e, the derivative of the longitudinal
friction force with respect to the wheel slip, which indicates the residual lon-
gitudinal friction force available to the driver. Such an estimate serves as
additional information for the design of an ABS system.

Further, developments in tyre materials, structure and manufacturing
techniques have been enormous in the last decades. However, as has already
been remarked, the tyre has up to now essentially remained a passive object.

In the last few years a new trend has emerged, whose aim is to equip the
tyre with embedded sensors and digital-computing capability; the measure-
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Figure 8.28 Final results on a complete dynamic experiment: vehicle speed (a),
estimated phase shift (b) and estimated length of the contact patch (c). Front-left
wheel, reduced pressure

ment and low-bandwidth transmission of the tyre pressure is an industrial
reality (tyre pressure monitoring systems, see, e.g., [31]) and new in-tyre
sensors and electronics are currently under research [63, 75]. This trend is
mainly driven by information and communication technology methods and
devices and it represents a sort of revolution in tyre manufacturing. The term
smart-tyre is frequently used to label this new generation of tyres.

In the open scientific literature, little has been published so far on the
topic of direct estimation of tyre–road contact forces by in-tyre sensors.

Most of the current research activity on this topic has up to now been
described in industrial patents (see, e.g., [13, 79]) or in oral presentations
(see, e.g., [63]).



Appendix A

Analysis and Synthesis Tools for
Dynamical Systems

A.1 Introduction

The objective of this appendix is to briefly survey the main concepts of dy-
namical systems analysis and synthesis used in this book. Specifically, we
will review notions of stability theory for dynamical systems, which allows
one to draw conclusions about the behaviour of a dynamical system without
actually computing its solution.

The first researcher to study stability in the modern sense was Lagrange,
who analysed the qualitative behaviour of mechanical systems (his famous
book Mécanique Analytique was published in 1788). One of his conclusions
was that in the absence of external forces, an equilibrium of a conservative
mechanical system is stable if it corresponds to a minimum of the potential
energy.

Since then, the most important progress in stability theory was due to the
theory introduced by the Russian mathematician Lyapunov who was able to
extend the results obtained by Lagrange to a large class of dynamical systems.
These achievements were mainly presented in his Ph.D. thesis The general
problem of the stability of motion, which was developed at the University of
Moscow and dates back to 1892. Lyapunov’s theory includes two important
methods for stability analysis: the direct method and the linearisation method
(also called the linear approximation method).

The direct method determines the stability properties of the equilibrium
points of a nonlinear dynamical system by constructing an energy-like func-
tion for the system and studying how this function varies with time. The
linearisation method gives results about the local stability of a nonlinear
dynamical system around an equilibrium point by analysing the stability
properties of its linear approximation.

Besides stability analysis tools, we will provide the reader with the basic
notions that allow us to qualitatively investigate the behaviour of second-
order dynamical systems via the state trajectories and to classify the system
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equilibrium points. We also present the notions of periodic orbit and limit
cycle and introduce some results mainly due to Poincaré, which enable one
to assess the existence and stability of periodic orbits. These results were
developed at the beginning of the 20th century.

As for the synthesis methods, we introduce the general problem of feedback
stabilisation and present and discuss a specific result that falls within the class
of Lyapunov-based design methods and is used in this book.

In general, the various results are reported without proofs, but comple-
mented with explanations about their meaning and their use in practical
applications. In fact, this appendix is intended to provide the reader who
is not familiar with these results with a description of the methodological
tools needed to understand the more advanced control analysis and design
approaches employed in this book.

Note that all the main definitions and theorems mentioned in this chapter
are taken from the books Nonlinear Systems by Khalil [44], Nonlinear Dy-
namics and Chaos by Strogatz [102] and Introduction to Applied Nonlinear
Dynamical Systems and Chaos by Wiggins [126] which can be consulted for
an in-depth exposition of the different topics.

A.2 Dynamical Systems Analysis

This section begins with some background definitions concerning nonlinear
systems and stability of equilibrium points. Specifically, Section A.2.1 first re-
calls the fundamental theorems of Lyapunov, which enable us to characterise
the behaviour of nonlinear systems. This is followed by a simple explanation
of Lyapunov’s linearisation method. Finally, an extension of the basic theory
due to LaSalle is presented.

Further, the special case of second-order dynamical system is analysed in
Section A.2.2, providing notions about both equilibrium points classification
and limit cycles.

A finite dimensional continuous time1 nonlinear dynamical system can be
represented by a set of nonlinear differential equations in the form

ẋ = f
(
x, t

)
, (A.1)

where x ∈ Rn and f : G× [0,+∞) −→ Rn with G ⊂ Rn. We assume that for
all initial conditions x(t0) = x0 ∈ G there exists a unique x(·) : [0,+∞) −→
G such that (A.1) holds (possibly in a sense to be suitably specified) for
all t ∈ [0,+∞). Such x(t) is a solution of Equation A.1 and it is generally
referred to as state motion. Thus, the state motion is a curve in the space

1 In the case when time evolves over the integers rather than over the reals, we talk of
discrete time systems, whose dynamics can be expressed as xk+1 = f

(
xk, k

)
, k ∈ N.
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G × [0,+∞), while the projection of the state motion onto the space G is
called state trajectory or system trajectory.

It is worth noting that although Equation A.1 is unforced , that is it does
not explicitly contain the control input as a variable, yet it can represent the
closed-loop dynamics of a feedback control system, where the control input is
a function of the state x and of the time t and which therefore “disappears”
in the closed-loop dynamics. Thus, if the system dynamics are of the form

ẋ = h(x, u, t), (A.2)

and the control law is given by

u = g(x, t), (A.3)

then the closed-loop dynamics can be expressed as

ẋ = h
(
x, g(x, t), t

)
= f(x, t), (A.4)

thereby yielding an unforced system of the form (A.1).

Definition A.1. The nonlinear system (A.1) is said to be time-invariant if
the function f(·, ·) does not depend explicitly on time, i.e., if the system (A.1)
can be written as

ẋ = f(x). (A.5)

Otherwise, the system is called time-varying.

If a system is both time-invariant and unforced, then it is called autonomous.
If one of the two properties does not hold, conversely, it is called non-
autonomous.

A special class of dynamical systems are linear systems. The dynamics of
linear systems are described in general by equations of the form

ẋ = A(t)x, (A.6)

where A(t) is an n × n matrix. Also linear systems are classified as either
time-varying or time-invariant, depending on whether the system matrix A
varies with time or not.

The main difference between time-invariant and time-varying systems is
that the state trajectory of a time-invariant system is independent of the ini-
tial time, while that of a time-varying system generally is not. This difference
requires us to consider the initial time explicitly in defining stability concepts
for time-varying systems and makes the analysis more difficult than that of
time-invariant ones. As a matter of fact, when analysing time-invariant sys-
tems the initial time is set, without loss of generality, to t0 = 0.

Note that the concept of an autonomous system is an idealised notion, as
it is the concept of a linear system. In practice, all these classes of systems
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are intended to provide analytical representations used to model physical
systems, and have to be chosen according to the desired degree of accuracy
in describing the reality of interest.

Further, note also that in the case where Definition A.1 is applied to the
closed-loop dynamics, the control system is composed of a controller and a
plant, and the time-varying nature of the control system may be due to a
time variation either in the plant or in the control law (or both).

However, some system properties often change slowly with respect to the
time scales of the dynamics of interest; hence it makes sense to neglect their
time variation when developing their analytical models without incurring any
significant error.

This is also the approach taken in this book to develop and analyse the
proposed control laws, both in the linear and the nonlinear setting.

Hence, in the following only autonomous systems will be considered. For
such a class of systems, we are interested in analysing under which conditions
the nonlinear differential equation (A.5) actually admits a solution and when
such a solution is unique.

Theorem A.1 (Existence and Uniqueness of Solutions). Consider the
nonlinear differential equation

ẋ = f(x), (A.7)

with initial condition x(0) = x0. Assume that f : G ⊂ Rn → Rn, where G
is an open and connected2 subset of Rn, is continuously differentiable. Then,
for all x0 ∈ G there exist a time instant τ > 0 and a unique solution x(t)
of (A.7) defined over the time interval t ∈ [0, τ).

Note that there exist stronger versions of this theorem, which allow us to
extend the existence and uniqueness of the solution over all times t ≥ 0 (the
interested reader may refer to Chapter 3 of [44] for details), but the one given
above suffices for our purposes. Also, it is worth mentioning that the concept
of solution can be appropriately extended to the case where the function f(·)
is not continuous. Most importantly, under the assumptions of the existence
and uniqueness theorem, the following crucial implication holds.

Corollary A.1. Different system trajectories never intersect.

As a matter of fact, if two trajectories were to intersect, it would imply that
there are two solutions starting from the same point (the point of intersec-
tion), and hence the uniqueness theorem would be violated. This fact will be
discussed further in Section A.2.2.

2 An open set S is said to be connected if any two points in S can be can be joined
with an arc lying entirely in S.
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where x ∈ Rn and f : G −→ Rn with G ⊂ Rn.

Definition A.2. A state x ∈ G is an equilibrium state or equilibrium point
for the system (A.8) if

x(t) = x

is a solution of the differential equation (A.8). Thus, x(t) = x is a constant
state motion. In the case where f(·) is continuous, the equilibrium state x
can be computed as the solution of

f(x) = 0.

Note that a linear time-invariant system

ẋ = Ax

has a single equilibrium point represented by the origin x = 0 if and only if
A is non-singular. If A is singular and G = Rn, the set of equilibrium points
consists of all x such that Ax = 0, namely the null-space of the matrix A.
This set is a continuum: in the neighbourhood of any equilibrium point there
is an infinity of equilibrium points (i.e., no equilibrium point is isolated). A
nonlinear system can instead have one or several isolated equilibrium points,
or even a continuum of them.

For notational and analytical simplicity, nonlinear system equations are of-
ten transformed by means of a change of coordinates such that the considered
equilibrium point is the origin of the new coordinate system. By introducing
the new variable

x̃ = x− x, (A.9)

and substituting
x = x̃+ x

into Equation A.1, a new set of equations on the variable x̃ is obtained, i.e.,

˙̃x = f (x̃+ x) := f̃ (x̃) . (A.10)

It is worth noticing that there is a one to one correspondence between
the solutions of (A.7) and those of (A.10). Moreover, x̃ = 0, corresponding
to x = x, is an equilibrium point of system (A.10). Therefore, instead of
studying the stability properties of x = x for (A.1), the behaviour of (A.10)
in the neighbourhood of the origin can be equivalently examined.

We now investigate the notion of equilibrium point of a nonlinear system.
To this end, let

ẋ = f
(
x), (A.8)
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A.2.1 Stability of Equilibrium Points: Lyapunov’s
Theory

In this section some fundamental stability concepts are formally defined and
their practical significance is shortly discussed.

First, we recall the properties of the norm of a vector x ∈ Rn denoted by
‖x‖, which will be used in the following.

Definition A.3. The norm ‖x‖ of a vector x ∈ Rn is any real-valued function
such that

1. ‖x‖ ≥ 0;
2. ‖x‖ = 0 ⇐⇒ x = 0;
3. ‖αx‖ = |α|‖x‖, ∀α ∈ IR, ∀x ∈ IRn; and
4. ‖x+ y‖ ≤ ‖x‖ + ‖y‖, ∀x, y ∈ IRn.

Note that in the case of finite dimensional systems, all norms are equivalent
as far as stability analysis is concerned. Thus, without loss of generality, in
the following we employ the Euclidean norm, which is defined as

‖x‖ =

√√√√ n∑
i=1

|xi|2.

We are now ready to define stability in the sense of Lyapunov. In this
respect, it is worth pointing out that in the general case this analysis is
focused on studying the stability properties of the state motion x(t). However,
for our purposes it is sufficient to focus on the stability of the constant state
motions, that is of the equilibrium points.

Definition A.4. An equilibrium point x is stable in the sense of Lyapunov
if, for each ε > 0, there exists a δ = δ(ε) > 0 such that

‖x(0) − x‖ < δ =⇒ ‖x(t) − x‖ < ε, ∀t ≥ 0.

This means that an equilibrium point is stable in the sense of Lyapunov
(or Lyapunov stable) when the state motion x(t) originating from all initial
points x(0) sufficiently close to x remains within a specified distance ε of x.
An equilibrium that is not stable, is said to be unstable.

Definition A.5. An equilibrium state x is asymptotically stable if it is stable
and if δ can be chosen such that∥∥x(0) − x

∥∥ < δ =⇒ lim
t→+∞x(t) = x.

This means that an equilibrium point is asymptotically stable if all solutions
starting at nearby points not only stay nearby, but also converge to the
equilibrium point as time approaches infinity.
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The intuitive meaning of these notions is illustrated in Figure A.1, where
the curves (a), (b) and (c) represent, respectively, prototype state motions of
systems having x as an asymptotically stable, stable or unstable equilibrium
point.

Figure A.1 Geometric interpretation of the stability notions

With the notions of stability and asymptotic stability defined above, one
can address the problem of how to determine if and when such properties
hold. In 1892, Lyapunov proved that certain types of functions could be used
to determine stability of an equilibrium point. These results will be discussed
in the following section.

A.2.1.1 Lyapunov’s Direct Method

The direct method, also called the second method of Lyapunov, provides a gen-
eral approach to the study of the stability of dynamical systems described by
linear or nonlinear ordinary differential equations. Since this method requires
no knowledge of the solutions of the equations, it provides a useful practical
approach to the study of stability.

It is a generalisation of the energy concept of classical mechanics. Indeed,
it is based on the concept of total energy, which is a non-negative function
having the property of being zero at the equilibrium point and positive ev-
erywhere else.

Lyapunov used this fact to create a generalised energy function, satisfying
some pre-specified properties with which he was able to establish the stability
properties for a system of differential equations.

Theorem A.2 (Lyapunov’s Stability Theorem). Let x = x be an equi-
librium point for system (A.8), i.e.,
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ẋ = f(x),

and G ⊂ Rn be a domain containing x. Let V : G → R be a continuously
differentiable function such that

V (x) = 0 and V (x) > 0 in G− {x}, (A.11)

V̇ (x) =
dV
dx

f(x) ≤ 0 in G. (A.12)

Then, the equilibrium point x of system (A.8) is stable.

Moreover, if
V̇ (x) < 0 in G− {x} (A.13)

then the equilibrium point x is asymptotically stable.

A continuously differentiable function V (x) satisfying the two conditions (A.11)
and (A.12) is called a Lyapunov function, while the surface V (x) = c > 0 is
known as a Lyapunov surface or a level surface. The condition (A.12) implies
that when a trajectory enters a Lyapunov surface V (x) = c, it continues to
move inside the set Ωl = {x ∈ Rn | V (x) ≤ c} and never leaves it. The set
Ωl is usually referred to as a level set.

If V̇ (x) < 0, the state trajectory moves from one level surface to an inner
one, which corresponds to a smaller value of the constant c. In general, as
c decreases, the level surface V (x) shrinks to the equilibrium point showing
that the trajectories come closer and closer to it.

If V̇ (x) ≤ 0, it is not possible to guarantee that the state trajectory con-
verges to the equilibrium state, but only to conclude that the equilibrium
point is stable.

To state the stability notions introduced above in a more compact way,
we introduce the following classification for the function V (x).

Definition A.6. The function V (x) is said to be positive definite on G ⊂ Rn

if it satisfies condition (A.11), i.e.,

V (x) = 0 and V (x) > 0 in G− {x}. (A.14)

Definition A.7. The function V (x) is said to be positive semidefinite on
G ⊂ Rn if it satisfies the weaker condition

V (x) = 0 and V (x) ≥ 0 in G− {x}.

Similarly, a function V (x) is negative definite or negative semidefinite if -V (x)
is positive definite or positive semidefinite, respectively.

By using these new definitions, it is straightforward to rephrase Lyapunov’s
stability theorem A.2 with the following statement.
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Theorem A.3. Consider the system (A.8) with equilibrium point x. This
equilibrium point is stable if there exists a continuously differentiable function
V : G → R, with G ⊂ Rn, such that

• V (x) is positive definite on G; and
• V̇ (x) is negative semidefinite on G.

The equilibrium x is asymptotically stable if

• V (x) is positive definite on G; and
• V̇ (x) is negative definite on G.

An interesting class of scalar functions V (x) for which positive or negative
definiteness can easily be checked is the class of quadratic functions

V (x) = (x− x)TP (x− x),

where P is a real symmetric3 matrix. In this case, V (x) is positive definite
or positive semidefinite if and only if all the eigenvalues of the matrix P are
positive or non-negative, respectively. If V (x) is positive definite, then it is
possible to define P as a positive definite matrix and write P > 0.

When an equilibrium point is asymptotically stable, it is interesting to
determine how large the constant δ can be taken in Definition A.5. This
leads to the definition of domain of attraction.

Definition A.8. The set

G(x) =
{
x(0) ∈ Rn | lim

t→+∞x(t) = x

}
is called the domain of attraction of the equilibrium point x.

Determining analytically the exact domain of attraction might be difficult
or even impossible. However an interesting question that may arise is under
what conditions the domain of attraction corresponds to the whole space Rn,
i.e., the equilibrium x is globally asymptotically stable.

Theorem A.4 (Barbashin–Krasovskii’s theorem). Consider the system
(A.8) and let x = x be an equilibrium state. Suppose that there exists a
continuously differentiable function V : Rn → R such that

V (x) = 0 and V (x) > 0, ∀x 	= x,

‖x− x‖ → +∞ =⇒ V (x) → +∞,

V̇ (x) < 0 ∀x 	= x.

Then the equilibrium state x is a stable equilibrium point and any trajectory
converges asymptotically to x, i.e., x is globally asymptotically stable (GAS).

3 Recall that a symmetric matrix has real eigenvalues.
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The above theorem establishes the conditions that make a state trajectory
approach the equilibrium point for any initial state as time progresses, no
matter how far from the equilibrium point the initial state is. It must be
noted that if an equilibrium point is globally asymptotically stable, this must
be the unique equilibrium state of the system. In fact, if there were another
equilibrium point, the solution trajectory starting in this equilibrium would
stay in it forever. Therefore, it would not move toward the original equilibrium
point and this contradicts the claim of the theorem.

In some cases, it is also necessary to estimate how fast the state will
approach the equilibrium point. For this reason, the concept of exponential
stability is introduced.

Definition A.9. An equilibrium state x is globally exponentially stable if
there exist two constants k > 0 and γ > 0 such that

‖x(t) − x‖ ≤ k‖x(0) − x‖e−γt, ∀t ≥ 0 ∀x(0).

Therefore, exponential stability means that trajectories of the closed-loop
system converge to the equilibrium point at least as fast as an exponential
function. Note, finally, that exponential stability implies asymptotic stability
but not vice versa.

The previous results deal with the problem of establishing the stability
properties of an equilibrium point. However, sometimes it might also be of
interest to prove that an equilibrium is unstable. To this end, several results
are available, the most powerful of which is Chetaev’s theorem.

Theorem A.5 (Chetaev’s theorem). Let x = x be an equilibrium point
for the system (A.8), i.e.,

ẋ = f(x),

and G ⊂ Rn be a domain containing x. Let V : G → R be a continuously dif-
ferentiable function such that V (x) = 0 and V (x̃) > 0 for some x̃ arbitrarily
close to x, i.e., with arbitrarily small norm ‖x̃− x‖. Consider now a ball of
radius r > 0 defined as

Br = {x ∈ Rn| ‖x− x‖ < r} (A.15)

contained in G and define the set

U = {x ∈ Br |V (x) > 0}. (A.16)

Then, if
V̇ (x) > 0 in U (A.17)

the equilibrium point x is unstable.

The instability of the equilibrium comes from the fact that it is possible to
choose an initial condition x0 = x̃ arbitrarily close to x so that the trajectory
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x(t) which starts from it will eventually leave the ball Br and this contradicts
the ε − δ requirement used in the definition of a stable equilibrium point in
the sense of Lyapunov (see Definition A.4).

A.2.1.2 Lyapunov’s Linearisation Method

Lyapunov’s linearisation method involves the concept of local stability of a
nonlinear dynamical system. It derives from the idea that a nonlinear system
should exhibit, in the neighbourhood of the linearisation point, a behaviour
similar to that of its linear approximation.

Consider again the autonomous system

ẋ = f(x), (A.18)

where f : G ⊂ Rn → Rn is a continuously differentiable function. Suppose
that the state x = x ∈ G is an equilibrium point for the system (A.18), which
implies f(x) = 0. Then, the system dynamics (A.18) can be written, using a
Taylor series expansion about x = x, as

ẋ =
df
dx

(x)
∣∣∣∣
x=x

(x− x) + fh.o.t(x)(x− x), (A.19)

where fh.o.t(x) indicates higher-order terms in x− x. Let A be the Jacobian
matrix of f(x) at x = x, i.e.,

A =
[
∂fi

∂xj
(x)

]
{i,j}=1,...,n

.

The system
ẋ = Ax (A.20)

is called the linear approximation of the nonlinear system (A.18) about the
equilibrium point x = x.

The following theorem outlines the main condition under which it is pos-
sible to draw conclusions about the local stability of an equilibrium point for
a nonlinear system by analysing the stability of the linearised system.

Theorem A.6. Let x = x be an equilibrium point of the nonlinear system

ẋ = f(x),

where f : G → Rn is a continuously differentiable function and G is a subset
of Rn containing x. Let

A =
[
∂fi

∂xj
(x)

]
{i,j}=1,...,n

.



212 A Analysis and Synthesis Tools for Dynamical Systems

Then, the equilibrium point x is locally asymptotically stable if all eigenvalues
of A have negative real parts, i.e., Re(λi) < 0, ∀i = 1 . . . , n. Moreover, the
equilibrium point x is unstable if at least one eigenvalue of A has a positive
real part, i.e., ∃ i : Re(λi) > 0.

The proof of the above theorem (see [44]) shows that when Re(λi) < 0
for all eigenvalues of A, a suitable Lyapunov function, which works in some
neighbourhood of the equilibrium point x, is given by the quadratic form

V (x) = (x− x)TP (x− x),

where P is the solution of the Lyapunov equation

ATP + PA = −Q,

with Q being any positive definite symmetric matrix.
Note that if the linearised system is such that all eigenvalues of A are in

the left half complex plane, but at least one of them is located on the complex
axis, then one cannot conclude anything from the linear approximation about
the stability of the equilibrium point of the original nonlinear system.

A.2.1.3 LaSalle’s Theory

As has already been discussed, Lyapunov stability theory provides an impor-
tant tool for analysing the stability of an equilibrium state without solving
the system equations. To prove asymptotic stability using Lyapunov theory
the condition

V̇ (x) < 0, ∀x ∈ G− {x}, G ⊂ Rn

must be checked. This means that V̇ (x) should be strictly negative for all
x ∈ G − {x}. In some cases, finding a candidate Lyapunov function V (x)
satisfying the weaker condition

V̇ (x) ≤ 0, ∀x ∈ G (A.21)

may be much easier. In this case, V̇ (x) is not necessarily strictly negative for
x 	= x, hence Lyapunov’s stability theorem A.2 cannot be applied.

LaSalle was able to show that if in a domain containing the equilibrium
state x it is possible to find a Lyapunov function whose derivative along
the trajectories of the system is negative semidefinite and if it is possible
to establish that the only solution of the system satisfying the condition
V̇ (x) = 0 is the trivial solution x(t) = x, then x is asymptotically stable [51].
To formally state LaSalle’s invariance theorem, it is necessary to introduce a
few definitions.

Definition A.10. A set G ⊆ Rn is called an invariant set with respect to
system (A.8) if
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x(0) ∈ G =⇒ x(t) ∈ G, ∀t ∈ R. (A.22)

Moreover, the set G is said to be a positively invariant set if

x(0) ∈ G =⇒ x(t) ∈ G, ∀t ≥ 0. (A.23)

That is, a set is invariant if, for any initial state in the set, it is possible to
find a suitable initial time such that the resulting trajectory stays in the set
for all future times.

Definition A.11. A function V (x) such that

‖x− x‖ → +∞ =⇒ V (x) → +∞

is said to be proper or radially unbounded.

Definition A.12. A function V (x) : Ω ⊂ Rn → [0,+∞) is said to be proper
in Ω if

lim
x→∂Ω

V (x) = +∞

where ∂Ω is the boundary of the set Ω.

Theorem A.7 (LaSalle’s theorem). Let Ω ⊂ G be a compact set that is
positively invariant with respect to (A.8). Let V : G → R be a continuously
differentiable function such that V̇ (x) ≤ 0 in Ω. Let E be the set of all points
in Ω where V̇ (x) = 0. Let M be the largest invariant set in E. Then every
solution starting in Ω approaches M as t → +∞.

As a consequence, Theorems A.2 and A.4 may be modified as follows.

Corollary A.2. Consider the autonomous system

ẋ = f(x) (A.24)

and let x = x be an equilibrium point of the system. Let the function V : G →
R be a continuously differentiable positive definite function on the domain
G ⊂ Rn containing the equilibrium state x, such that V̇ (x) ≤ 0 in G.

Let E = {x ∈ G | V̇ (x) = 0} and suppose that no solution can stay
identically in E, other than the trivial solution. Then, the equilibrium state
x is asymptotically stable.

Corollary A.3. Consider the autonomous system (A.24) and let x = x be
an equilibrium point of the system. Let the function V : Rn → R be a contin-
uously differentiable, radially unbounded, positive definite function such that
V̇ (x) ≤ 0 for all x ∈ Rn. Let E = {x ∈ Rn | V̇ (x) = 0} and suppose that no
solution can stay identically in E, other than the trivial solution. Then, the
equilibrium state x is globally asymptotically stable.
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Figure A.2 Representation of the vector field in a second-order system

A.2.2 A Special Case: Second-order Dynamical
Systems

Second-order systems are of particular interest in the study of dynamical
systems, mainly because the system solutions can be pictorially represented
by curves in the plane. Further, they also play an important role in some
parts of this book and therefore deserve a dedicated treatment.

An autonomous, time-invariant second-order nonlinear dynamical system
is a system of the form (A.8) that can be represented by two scalar equations
of the form

ẋ1 = f1(x1, x2), (A.25)
ẋ2 = f2(x1, x2).

Assume that f(x) = [f1(x) f2(x)]T , with x = [x1 x2]T , satisfies the assump-
tions of Theorem A.1 and let x(t) = [x1(t) x2(t)]T be the unique solution
associated with the initial condition x0 = [x10 x20]T . The locus in the plane
(x1, x2) described by the solution x(t) is a curve passing through x0, usu-
ally called the trajectory of system (A.25). The (x1, x2) plane is called the
state plane. Thus, x(t) represents a point in the state plane and the right-
hand side of (A.25) represents the velocity vector at that point. Hence, f(x)
can be considered as a vector field , in that with each point x of the state
plane we associate a vector f(x), which is tangent to the trajectory in x, see
Figure A.2.

The collection of all trajectories in the state plane is often called the state
portrait of system (A.25). Often, it is interesting to investigate the qualitative
behaviour of such portrait, as it can reveal many interesting features of the
system solution. This can be done by solving the nonlinear equation (A.25) for
a large number of initial conditions via commonly available software routines
and plotting the corresponding trajectories in the state plane.
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Figure A.3 Qualitative portrait of the trajectories of system (A.26)
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A.2.2.1 Qualitative Analysis of Linear Systems

We now study the qualitative behaviour of the trajectories in the case of
linear systems. To this end, consider the second-order linear time-invariant
system

ẋ = Ax, (A.26)

where A is a 2×2 real matrix. For simplicity, we limit the analysis to the case
of A having two distinct eigenvalues λ1 and λ2 (see, e.g., [44,126] for the more
general case). Then, there exists a square and non-singular matrix T such
that, with a coordinate change x̃ = Tx, the system in the new coordinates
has the form

˙̃x = TAT−1x̃ = Adx̃, (A.27)

with Ad diagonal, i.e.,

Ad =
[
λ1 0
0 λ2

]
. (A.28)

Hence, the system solution x(t) associated with the initial condition x0 is
given by

x(t) = T−1eAd tT x0 = T−1

[
eλ1t 0
0 eλ2t

]
T x0, (A.29)

which finally yields
x(t) = k1e

λ1t + k2e
λ2t, (A.30)

where the constant vectors k1 and k2 depend on the initial condition x0. In
this setting, the following cases can be distinguished:

(a) Both eigenvalues are real and λ2 < λ1 < 0: the origin, which is an isolated
equilibrium, is called a stable node (see Figure A.3 (a)). Note that if the
initial state x0 is on one of the two eigenvectors v1 and v2 associated with
the eigenvalues λ1 and λ2, respectively, then the system trajectory will
entirely evolve on the eigenvector itself. In the general case, instead, the
trajectory will asymptotically converge to the origin, where it is tangent
to the eigenvector v1 associated with the slow4 eigenvalue.

(b) Both eigenvalues are real and λ2 > λ1 > 0: the origin, which is an
isolated equilibrium, is called a unstable node (see Figure A.3 (b)). The
state portrait is similar to the previous case, except for the fact that the
trajectories now move away from the origin.

(c) Both eigenvalues are real and λ2 < λ1 = 0: in this case the matrix A is
singular, hence the system has an infinity of equilibrium points (forming
an equilibrium subspace), which are all the points of the state plane
spanned by the eigenvector v1 associated with the zero eigenvalue λ1.
Thus, all trajectories are parallel to the eigenvector v2 associated with
the non-zero eigenvalue λ2 and move toward the equilibrium subspace

4 We call λ1 the slow eigenvalue, with respect to λ2, as the condition λ2 < λ1 < 0
implies that (see also Equation A.30) eλ1 t goes to zero more slowly than eλ2 t.
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(see Figure A.3 (c)). Such equilibrium point is sometimes called a stable
saddle-node.

(d) Both eigenvalues are real and λ2 > λ1 = 0: this case is analogous to the
previous one except for the fact that the trajectories now move away from
the equilibrium subspace (see Figure A.3 (d)). Such equilibrium point is
sometimes called an unstable saddle-node.

(e) Both eigenvalues are real and λ2 > 0, λ1 < 0: the origin, which is an
isolated equilibrium, is called a saddle (see Figure A.3 (e)).

(f) The eigenvalues are complex conjugates, i.e., λ1,2 = α± jβ

• If α < 0 the origin, which is an isolated equilibrium, is called a stable
focus (see Figure A.3 (f)). In this case the trajectories spiral toward
the origin.

• If α > 0 the origin, which is an isolated equilibrium, is called a unstable
focus (see Figure A.3 (g)). In this case the trajectories spiral away from
the origin.

• If α = 0 the origin, which is an isolated equilibrium, is called a centre
(see Figure A.3 (h)) and the trajectories are closed curves encircling
the origin.

Note that, in the general case of an n×n A matrix, it is always possible to
group its eigenvalues into three different classes, according to the sign of their
real part: n− eigenvalues with negative real part, n+ eigenvalues with positive
real part and n0 eigenvalues with zero real part. Obviously, n = n−+n++n0.
The associated eigenvectors form three disjoint invariant subspaces: S−, S+

and S0, respectively, of dimension n+, n− and n0. Accordingly, initial states
belonging to S− generate trajectories that converge to zero, whereas initial
states belonging to S+ generate trajectories that grow to infinity. Due to this
fact, S− is referred to as a stable manifold and S+ as an unstable manifold .
The subspace S0 is called the centre manifold : the trajectories generated
from an initial state x0 ∈ S0 can either be bounded (but not convergent to
the origin), if the system is marginally stable, or can tend to infinity but
with a slower than exponential rate, in the case of a so-called weakly unstable
system.

Systems that do not possess a centre manifold, hence that do not have
any eigenvalue with zero real part, are called hyperbolic (the same term is
used for indicating the equilibrium points of an hyperbolic system, which
are called hyperbolic equilibrium points). The system (and corresponding
equilibrium points) are called attractors if n = n−, hence S− ≡ Rn and
repulsors if n = n+, hence S+ ≡ Rn. Finally, systems with a non-empty
centre manifold, i.e., which possess eigenvalues with zero real part, are called
non-hyperbolic (the same term is used for indicating the equilibrium points of
a non-hyperbolic system, which are called non-hyperbolic equilibrium points).
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Figure A.4 Stable (a) and unstable (b) limit cycles

A.2.2.2 Limit Cycles

In dynamical systems, oscillations are a very important phenomenon. A sys-
tem is said to oscillate if it admits a non-trivial periodic solution, i.e., if there
exists a T > 0 such that

x(t+ T ) = x(t), ∀ t ≥ 0. (A.31)

The term non-trivial refers to the fact that we want to exclude constant
solutions that correspond to equilibrium points. These solutions indeed satisfy
condition (A.31), but do not represent oscillations in the usual sense. The
closed curve formed by a periodic solution in the state plane is called an
orbit or a periodic orbit .

A limit cycle is an isolated periodic orbit (or, equivalently, an isolated
periodic solution). The term isolated means that nearby trajectories are not
closed. In fact, they either spiral toward (Figure A.4 (a)) or away (Figure A.4
(b)) from the limit cycle itself. If all neighbouring trajectories approach the
limit cycle, this is called stable or attracting. If, on the contrary, all nearby
trajectories move away from the limit cycle, it is called unstable.

Note that limit cycles are inherently nonlinear phenomena. As we have
seen before in the case when the origin is a centre, linear systems admit
trajectories that are orbits, but they are not isolated. In fact, if x(t) is a
periodic solution, so is αx(t), for any non-negative α. Thus, in the case of
linear systems, there is a continuum of closed orbits.

In general, it is difficult to say if a system admits a limit cycle, or any
periodic orbit. For second-order systems, periodic orbits have a particular
importance as, due to Corollary A.1, they divide the state space into two
parts: the interior and the exterior of the periodic (closed) orbit. This makes
it possible to define specific criteria for analysing the presence or the absence
of periodic orbits that do not generalise to higher-order systems.
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For the purpose of this book, we focus on discussing a result that gives a
condition for the existence of periodic orbits, which is known as the Poincaré–
Bendixon theorem. The idea behind this theorem is linked to Corollary A.1.
Suppose in fact that a second-order system possesses a periodic orbit O in
the state plane. Due to the fact that different trajectories cannot intersect, a
trajectory starting in the region of the state plane inside the orbit is forced
to remain there forever. So, what can happen to such a bounded trajectory
as time grows to infinity? If the region within the periodic orbit O contains
asymptotically stable equilibrium points, then intuition says that the trajec-
tory might approach one of them. However, if there are no equilibrium points,
or only repulsor ones, then the (bounded) trajectory will eventually approach
the periodic orbit, as it cannot wander forever within the region O.

Figure A.5 Computation of the index of a closed curve

Before stating the theorem, we introduce an additional, crucial tool to
relate the existence of periodic orbits and equilibrium points. These results
are known as index theory, and are mainly due to the work of Poincaré.

To this end, consider the second-order autonomous and time-invariant
nonlinear system

ẋ = f(x), (A.32)

and assume that f(x) is continuously differentiable. Let C be a simple5 closed
curve not passing through any equilibrium of system (A.32). Note that C
does not need to be a trajectory. Then, at each point x ∈ C, there is a well
defined angle ϕ between the vector field f(x) and the positive x1 axis (see
Figure A.5), which is given by

ϕ = arctan
(
f2

f1

)
. (A.33)

5 A closed curve is said to be simple if it does not intersect itself.
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As the point x moves counterclockwise along C, the angle ϕ varies contin-
uously and it returns to its original position when x gets back to its starting
place. Thus, along one full cycle of x along C, ϕ varies of a multiple of 2π.
Let ϕC be the total angle variation over one cycle. Then the index of the
curve C can be computed as

IC = i, i ∈ N such that ϕC = 2π i. (A.34)

If the simple closed curve C encircles an isolated equilibrium point x,
then IC is called the index of x. Since in this case the index is a property
of the equilibrium alone, C being any simple closed curve encircling it, we
drop the subscript C and indicate the index of a point as I. According to
this definition, and recalling the state portraits of the second-order system
discussed in Section A.2.2.1, it is easy to verify the next lemma.

Lemma A.1. For a second-order system, the following hold:

• the index of a node, a focus or a centre is I = +1;
• the index of a (hyperbolic) saddle is I = −1;
• the index of a periodic orbit is I = +1;
• the index of a closed curve not encircling any equilibrium point is I = 0;

and
• the index of a closed curve is equal to the sum of the indices of the equi-

librium points in the region within it.

Notably, from the above lemma we can derive the following.

Corollary A.4. Inside any periodic orbit O there must be at least one equi-
librium point. If there is only one equilibrium point inside a periodic orbit,
then it cannot be a saddle point. If there is more than one equilibrium point
inside a periodic orbit and they are all hyperbolic, then if N is the number of
nodes and foci and S is the number of saddles, it must be that N − S = 1.

We are now ready to state the following theorem.

Theorem A.8 (Poincaré–Bendixon theorem). Consider the second-order
autonomous and time-invariant nonlinear system (A.32). Let M ∈ R2 be a
closed bounded subset of the state plane, which contains no equilibrium points
and assume that f(x) is continuously differentiable on an open set containing
M . If there exists a trajectory T that is trapped in the region M , i.e., it starts
in M and stays within it for all future time, then either T is a periodic orbit
or asymptotically tends to a periodic orbit as time grows to infinity. In both
cases, the region M contains a periodic orbit.

When applying the Poincaré–Bendixon theorem, the tricky part is to show
that there is indeed a trajectory T trapped in the region M . To do this, the
usual procedure is to construct a trapping region M in the state plane, which
is a closed connected set such that the vector field points inward everywhere
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Figure A.6 Pictorial representation of the Poincaré–Bendixon theorem

on the boundary of M (see Figure A.6). If this is the case, then all trajectories
that start in M are confined within it (thus, M is a positively invariant set).
Then, if we can also show that there are no equilibrium points in M , the
Poincaré–Bendixon theorem applies and ensures that M contains a periodic
orbit. Note, further, that in Figure A.6 the region M is represented as an
annular region because we have seen that the closed orbit must enclose (at
least) an equilibrium point, represented by p in Figure A.6.

The fact that the periodic orbit must contain at least one equilibrium
point combined with the necessity that M be a trapping region leads to a
useful corollary of the Poincaré–Bendixon theorem, known as the Poincaré–
Bendixon criterion.

Corollary A.5 (Poincaré-Bendixon criterion). Consider the second-order
autonomous and time-invariant nonlinear system (A.32). Let M ∈ R2 be a
closed bounded subset of the plane and assume that f(x) is continuously dif-
ferentiable on an open set containing M . Assume further that M contains
either no equilibrium points or only one equilibrium point such that the lin-
earised system at this point has eigenvalues with positive real part (thus the
equilibrium is an unstable node or an unstable focus). If every trajectory T
that starts in M stays within it for all future time, then M contains a periodic
orbit.

Now that we have discussed how the existence of periodic orbits can be
checked, we are interested in introducing a tool which allows us to assess
their stability (or attractiveness): the Poincaré map.

Consider an n-dimensional nonlinear dynamical system (this tool also ap-
plies to systems or order greater than 2, so we discuss it in the general case).
Let S be a surface of dimension n − 1, which is transversal to the system
flow, that is such that there is no point x ∈ S to which the vector f(x) is
tangent (see Figure A.7). The Poincaré map is a mapping from S onto itself,
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Figure A.7 Pictorial representation of the Poincaré map

obtained by monitoring the successive intersections of the system trajectory
with S. Specifically, if xk is the kth intersection, then the Poincaré map is
defined as

xk+1 = P (xk). (A.35)

Suppose now that the map P has an equilibrium point x, i.e., P (x) = x.
Then this implies that a trajectory that starts at x = x returns to x after
some time T . Thus, such a trajectory is a closed orbit for the underlying
nonlinear dynamical system. This means that Poincaré maps allow us to
convert problems about closed orbits in Rn into problems of equilibrium
points of a discrete time dynamical system of order n− 1, which in principle
are easier to analyse.

The problem we want to solve is the following: given an n-dimensional
nonlinear dynamical system ẋ = f(x) which admits a periodic orbit, how can
we say if such a periodic orbit is stable? As we have seen, we can reformulate
such a problem into that of assessing whether the corresponding equilibrium
point x of the Poincaré map is stable. To do this, consider an infinitesimal
perturbation δx0 such that x + δx0 is still on the surface S. If we choose
x + δx0 as initial condition for the system trajectory, after its first return
onto S, we have

x+ δx1 = P (x+ δx0) = P (x) +
∂P

∂x
(x)

∣∣∣∣
x=x

δx0 + Ph.o.t(x)(δx0), (A.36)

where
∂P

∂x
(x)

∣∣∣∣
x=x

=
[
∂Pi

∂xj
(x)

]
{i,j}=1,...,n
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is the Jacobian of the Poincaré map at x = x and Ph.o.t(x)(δx0) indicates
higher-order terms in δx0. As P (x) = x, and assuming that we can neglect
the higher-order terms, Equation A.36 becomes

δx1 =
∂P

∂x
(x)

∣∣∣∣
x=x

δx0. (A.37)

Thus, we can express the stability criterion for the closed orbit in terms
of the eigenvalues λi, i = 1, . . . , n of the Jacobian of the Poincaré map as
follows.

Theorem A.9 (Stability of closed orbits). The closed orbit is locally
asymptotically stable if |λi| < 1 for all eigenvalues of the Jacobian of the
Poincaré map6.

A.3 Nonlinear Design Tools

As can be easily understood, the design of a nonlinear feedback controller
is a very challenging task, as one cannot expect that a single design proce-
dure may apply to all sort of nonlinear systems. Moreover, different control
problems provide specifications and requirements that the designer needs to
meet, and each application domain leads to a different degree of reliability of
the mathematical representation of the underlying physical system. Hence,
many different design tools have been developed for nonlinear systems, each
of which is particularly suitable to come up with a control law that allows the
closed-loop system to possess the desired properties and fulfil the necessary
requirements.

In this section we introduce the feedback stabilisation problem, and then
state a specific result that shows how a dynamical control law can be designed
so that the closed-loop system is stabilised around a desired equilibrium point
without the need to know in advance which is the associated (constant) con-
trol input and which also ensures a bounded control action.

Before stating the main result employed in this book, we introduce the
problem of equilibrium stabilisation. Guaranteeing that the equilibrium of
interest can be stabilised via feedback, in fact, is the basic requirement that
the controller has to fulfil. In typical control problems there are also additional
requirements like achieving desired convergence rates, meeting constraints
on the control input, achieving the attenuation or rejection of measurable
or unmeasurable disturbances acting on the system and ensuring robustness
against modeling uncertainties.

6 Note that the condition |λi| < 1, ∀i = 1 . . . , n is the discrete time counterpart of
the condition Re(λi) < 0, ∀i = 1 . . . , n for the continuous time case.
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The basic feedback stabilisation problem for a nonlinear system time-
invariant of the form

ẋ = f(x, u) (A.38)

is that of finding a feedback control law

u = g(x) (A.39)

such that the origin (recall that, in view of (A.10), without loss of generality
any equilibrium point can be translated to the origin) is an asymptotically
stable equilibrium of the closed-loop system

ẋ = f(x, g(x)). (A.40)

The control law (A.40) is usually called a static state feedback, because it
is an algebraic function of the state x. Conversely, a dynamic state feedback
is a control law of the form

u = g(x, z), (A.41)

where z is the solution of the dynamical system

ż = f(z, x). (A.42)

If the state x is not available for feedback but we can design a control law
based only on the measurable output y, the resulting stabilisation problem
is called output feedback stabilisation. This entails the design of a control law
for the system

ẋ = f(x, u), (A.43)
y = h(x, u),

of the form
u = g(y) (A.44)

in the case of static output feedback or of the form

u = g(y, z), (A.45)
ż = f(y, z)

in the case of dynamic output feedback.
Further, we point out again that even if the aforementioned stabilisation

problem is defined with reference to an equilibrium point at the origin, the
same formulation can be used to stabilise the system around an arbitrary
equilibrium (or steady-state) point xss. To do this, we of course require the
existence of an associated steady-state value of the input, uss, which can
maintain the state of the closed-loop system at x = xss, i.e., so that it
ensures



A.3 Nonlinear Design Tools 225

f(xss, uss) = 0. (A.46)

To recast the problem as one of stabilising the origin, it is sufficient to
perform a change of coordinates in exactly the same way as discussed in
Section A.2, i.e., defining

x̃ = x− xss, (A.47)
ũ = u− uss,

which allows the closed-loop system to be expressed as

˙̃x = f(x̃+ xss, ũ+ uss) := f̃(x̃, ũ), (A.48)

where f̃(0, 0) = 0.
Within the context of feedback stabilisation, we now introduce a result

given in [4], which provides a method for the design of a stabilising dynamic
feedback control law. The proof is constructive, as it shows how to design the
stabilising feedback and prove the stability of the closed-loop system equilib-
rium via Lyapunov’s methods. It is therefore reported and briefly commented
on here.

Proposition A.1. Consider the system

ẋ = f(x) + g(x)u, (A.49)

with state x ∈ Rn and control u ∈ R. Suppose that there exists an unknown
constant control u = uss and a positive definite and proper function V (x)
such that

V̇ (x) =
dV
dx

f(x) +
dV
dx

g(x)uss < 0 (A.50)

for all non-zero x. Then, for any umin and umax such that umin ≤ uss ≤ umax,
there exists a dynamic control law, which does not require prior knowledge of
uss, namely

u = θ,

θ̇ = Θ(x, θ),
(A.51)

with θ(0) ∈ (umin, umax), such that the equilibrium (x, θ) = (0, uss) of the
closed-loop system (A.49),(A.51) is stable in the sense of Lyapunov, the vari-
able x converges to zero and, along the trajectories of the closed-loop system,
θ(t) = u(t) ∈ [umin, umax].

Proof. Consider the function

V (x) + ω(θ), (A.52)

where (see Figure A.8)

ω(θ) = ln(umax − θ)τ/k − ln(θ − umin)(τ+1)/k, (A.53)
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Figure A.8 The function ω(θ)

with k > 0, τ =
uss − umax

umax − umin
< 0 and τ + 1 > 0. Note that V (x) + ω(θ) is

positive definite and proper in Ωxθ = {(x, θ) ∈ R(n+1) | umin < θ < umax}.
Then, differentiation with respect to time gives

V̇ (x) + ω̇(θ) =
∂V

∂x

[
f(x) + g(x)θ

]
+
∂ω

∂θ
θ̇

=
∂V

∂x

[
f(x) + g(x)uss

]
+
∂V

∂x
g(x)(θ − uss) +

∂ω

∂θ
θ̇.

(A.54)

Setting

θ̇ =
∂V

∂x
g(x)σ(θ), (A.55)

with
σ(θ) = k(θ − umax)(θ − umin) (A.56)

and noting that

θ − uss +
∂ω

∂θ
σ(θ) = 0

yields

V̇ (x) + ω̇(θ) =
∂V

∂x

[
f(x) + g(x)uss

]
+
∂V

∂x
g(x)

[
θ − uss +

∂ω

∂θ
σ(θ)

]
=

∂V

∂x

[
f(x) + g(x)uss

]
< 0

(A.57)

for all non-zero x. As a result the closed-loop system
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ẋ = f(x) + g(x)θ,
θ̇ = Θ(x, θ)

(A.58)

has a locally stable equilibrium (x, θ) = (0, uss) and any trajectory starting
in the set Ωxθ converges asymptotically to the equilibrium (0, uss) and θ(t) =
u(t) ∈ [umin, umax],∀t.


�

Note that Lemma A.1 shows that if the system (A.49) admits a glob-
ally asymptotically stable equilibrium associated with the constant control
u = uss, then it is possible to design a dynamic control law that does not re-
quire precise knowledge of the value uss, yielding a closed-loop system with a
locally stable equilibrium such that lim

t→+∞x(t) = 0. Note that, in general, this

dynamic control law requires that the state of the system can be measured.
Further, the dynamic control law proposed in the proof of Lemma A.1

requires only the knowledge of an upper and lower bound on the constant
input uss and ensures a bounded control action. This is a particularly im-
portant feature in engineering applications, where actuator saturation must
always be taken into account.

A.4 Summary

This chapter has reviewed some concepts from stability theory and dynamical
systems analysis that are useful for analysing nonlinear systems.

Specifically, background definitions concerning the stability of equilibrium
points were provided, as well as the main notions of Lyapunov’s stability
theory. In particular, the various concepts of stability, i.e., asymptotic stabil-
ity, global asymptotic stability and exponential stability, which characterise
different aspects of the behaviour of dynamical systems, have been briefly
described.

The most useful theorems of the Lyapunov’s direct method were recalled,
together with the main results of Lyapunov’s linearisation method. Further,
the special class of second-order dynamical systems was given special atten-
tion, with the purpose of showing how to classify the systems equilibrium
points and qualitatively describe their trajectories. The important concept
of closed orbits and limit cycles was presented, together with mathematical
tools to investigate their existence and stability properties.

As for the synthesis part, we introduced the general framework of feedback
stabilisation. Based on that, we discussed a specific instance of Lyapunov-
based controller design employed in this book for the design of nonlinear
braking controllers.



Appendix B

Signal Processing of Wheel Encoders

B.1 Introduction

In this book different braking control approaches and estimation problems are
presented. In practice, all of them rely on the ability to correctly process the
measured signals in order to extract the relevant information to be employed
for either control or estimation purposes.

This appendix presents the signal processing issues that need to be dealt
with in order to manage the measurements coming from the wheel encoder
signals, which are the basic sensors on board of any vehicle equipped with
active control systems.

Specifically, we illustrate the management of the wheel encoder signals
with specific reference to the most common algorithms used to estimate veloc-
ity from the measurements of these sensors. For these algorithms, we discuss
advantages and disadvantages in terms of estimation error and estimation de-
lay as these features may affect the control algorithms properties and impact
on the closed-loop system performance.

Further, we discuss the wheel radius calibration, which constitutes another
fundamental step for correct wheel speed computation.

Finally, a spectral analysis of the wheel speed signals allows us to highlight
which dynamic components appear in these signals and to discuss how such
signals must be filtered in order to be properly employed within active braking
control systems.

B.2 Wheel Encoders’ Signals

There are mainly two types of instruments to measure rotational speed:
electromagnetic speedometers and digital speedometers. The electromagnetic

229
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speedometer was invented in 1902 and it is based on the measurement of the
current generated by a rotating magnet.

In the past few years, the electro-magnetic speedometer has been replaced
by the digital speedometer (or discrete position encoder). Different types of
discrete position encoders exist but they all fall under the same functional
definition. They may employ different technologies (Hall’s effect or optical
sensors, for example), but are mainly made of two elements: a rotating part
with teeth (or lines) and a fixed sensor that detects the passage of a line
outputting a pulse for each line.

Note that some of the available encoders provide as first output a sinusoidal
signal, whose amplitude and frequency depend on the current wheel speed.
However, the last generation of such type of encoders is complemented with a
digital chip that extracts a square wave from the sinusoidal signal. The latter
is then seen as a sequence of pulses, which is processed for vehicle speed
estimation.

Figure B.1 Example of a wheel encoder installed on a motorbike

Figure B.1 depicts the rear wheel encoder of a motorbike. Digital encoders
do not directly measure the rotational velocity, which must be reconstructed
from the pulses received. The velocity estimation problem is usually addressed
with two approaches: either model-based or signal-based techniques can be
applied.

All techniques that assume the availability of a model of the system whose
velocity is under estimation fall in the model-based approach category. In the
literature, the problem has been addressed with techniques such as model
reference adaptive systems [57, 76], sliding mode observers [82], neural net-
works [11, 46], Kalman filters [10] and extended Kalman filters [6, 97]. These
techniques have had many successful applications in electrical motors for
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which simple and fairly accurate models exist. Conversely, in the automo-
tive field accurate wheel models are rare, since the dynamics is affected by
the highly nonlinear and uncertain tyre–road friction description; this reason
makes the non-model-based approach more suited for automotive applica-
tions.

Signal-based approaches are based on signal processing techniques; the
signal processing community has produced plenty of algorithms; there are so-
lutions based on first-order approximations of the velocity [42,43,66], higher-
order approximations [14], exact polynomial interpolation [36], least squares
interpolation of the position trajectory [56] and on linear or nonlinear numer-
ical integration methods [103, 104]. Each of the above-mentioned algorithms
has its advantages and disadvantages, which depend on velocity and accelera-
tion; in fact, it was shown through simulations that for a system with a wide
range of speed values a globally optimal velocity estimator does not exist,
see [56,78].

The same result is achieved in [9] with the help of analytical tools. It
should be noted that, despite the numerous available signal-based methods,
they can all be seen as refinements, specialisations or improvements of two
basic algorithms for speed estimation: the lines per period algorithm and the
fixed position algorithm.

Although the limitations and features of these two methods are known to
the signal processing community, it is worth providing the derivation of their
properties in an analytical way.

To this end, the next section is devoted to deriving analytical closed-form
models of the error and delay properties of the two basic algorithms. This
analysis is then used to draw guidelines for the choice of the estimation
algorithm for a given application. Note that it may happen that the braking
control system engineer is provided with angular speed signals that have
already been processed, as there are digital chips available on the market
that are directly attached to the encoder sensor. Even if this is the case, it
is advisable that the control engineer be well aware of the vehicle estimation
method used and of how it works, as it may pose some limitations on the
control system design phase.

B.2.1 Velocity Estimation Algorithms

As has already been mentioned the velocity estimation algorithm available in
the literature can be classified into two families: the lines-per -period (LPP)
algorithms and the fixed-position algorithms, also called 1/ΔT. Both algo-
rithms will now be studied, and the two main features that characterise their
behaviour, i.e., the estimation error and the estimation delay, will be dis-
cussed.
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B.2.1.1 The Lines-per-period Algorithm

In the LPP algorithm (also known as fixed-time algorithm) the speed ω̂LPP

is estimated every sampling period of duration Ts, as the ratio between the
angular rotation and the sampling interval, i.e.,

ω̂LPP =
nc

2π
N

Ts
, (B.1)

where nc is the number of teeth counted in the last sampling period and N is
the number of teeth of the encoder (note that even if the encoder tooth has
a finite width, the processing hardware detects only the ascending fronts).
The main source of estimation error is the position measurement truncation
[19], caused by the impossibility of counting a fractional number of lines.
The truncation induces a succession of underestimation and overestimation
errors, whose pattern can either repeat itself after a finite number of sampling
intervals or not. A periodic pattern is generated if and only if there exists a
least common multiple between the sampling interval Ts and the time interval
TT between two successive teeth.

Formally, as the sampling interval Ts is always a non-negative rational
number1 (Ts ∈ Q+), the existence of a least common multiple is guaranteed
only if also TT ∈ Q+. Nonetheless (see [64]), TT is a function of the speed ω;
then, with probability 1 (the rational numbers are a zero Lebesgue measure
set) TT is irrational, that is TT ∈ R+\Q+ almost surely. Hence, the analytical
expression of the estimation error is derived here in the general case TT ∈
R+\Q+.

First, notice that for any value of the angular speed ω, there always exists
an integer k (which implicitly depends on ω, namely k = k(ω)) such that

kTT < Ts < (k + 1)TT . (B.2)

Using (B.1), such an expression can be rewritten as

2πk
NTs

< ω <
2π(k + 1)
NTs

. (B.3)

If TT ∈ Q+\Q+, the under/overestimation pattern never repeats itself. In-
stead, letting t → +∞, Ts assumes all the possible relative positions with
respect to TT . More specifically, the sampling instant can occur in any po-
sition [0, TT ] between two pulses, and the probability of this occurrence is
uniformly distributed [64]. Accordingly, the probabilities of counting k and
k + 1 lines, respectively, are given by

pnc=k =
(k + 1)TT − Ts

TT
, pnc=k+1 =

Ts − kTT

TT
. (B.4)

1 The set of non-negative rational numbers is indicated with Q+.
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Based on these relations and recalling (B.1), the expected value of the
overall estimation error eLPP can be computed as

E[eLPP] = pnc=kE[eLPP{nc=k}] + pnc=k+1E[eLPP{nc=k+1}]

=
(k + 1)TT − Ts

TT

[ 2π
N

TT
−
k 2π

N

Ts

]
︸ ︷︷ ︸

eLPP{nc=k}

+
Ts − kTT

TT

[ 2π
N

TT
−

(k + 1) 2π
N

Ts

]
︸ ︷︷ ︸

eLPP{nc=k+1}

(B.5)

=
2π
N

TT

{
((k + 1)TT − Ts)

[
ωN

2π
− k

Ts

]
+ (Ts − kTT )

[
ωN

2π
− k + 1

Ts

]}
=

2π
N

2πTsTT
[ωNTsTT − 2πTs] =

2π
N

2πTT

[
ωN

2π
ωN

− 2π
]

= 0.

Hence, (B.5) shows that the overall estimation error is zero-mean, as the
under and overestimation errors compensate each other. Based on (B.5), the
variance of the overall estimation error has the form

Var[eLPP] = pnc=kE[eLPP{nc=k}]2 + pnc=k+1E[eLPP{nc=k+1}]2

=
(k + 1)TT − Ts

TT

[ 2π
N

TT
−
k 2π

N

Ts

]2

+
Ts − kTT

TT

[ 2π
N

TT
−

(k + 1) 2π
N

Ts

]2

,

which, after some manipulations, can be finally expressed as

Var[eLPP] = −ω2 +
(2k(ω) + 1)

Ts

2π
N
ω − k(ω)(k(ω) + 1)

T 2
s

(
2π
N

)2

. (B.6)

Notice from (B.6) that the error variance has a non-trivial dependency on
the problem data (the actual speed ω, the encoder resolution 2π/N and the
sampling time Ts).

As for the estimation delay, in the LPP algorithm it is only due to sam-
pling; hence, it is constant and equal to 1

2Ts. Figures B.2(a) and B.2(b) depict
the standard deviation of the relative error and the estimation delay as func-
tions of the angular velocity. The relative error is defined as the ratio (in
percent) of the estimation error and the (true) angular velocity.

For convenience, the angular velocity has been also converted into longi-
tudinal speed assuming a tyre radius r = 0.3 m. Figure B.2(a) shows the
dependence of the standard deviation of the estimation error and of the esti-
mation delay on the sampling period (with Ts = {5, 10, 20} ms), for a 48-teeth
encoder; in Figures B.3(a) and B.3(b) the characteristic parameters are plot-
ted for three different encoder resolutions (N = {32, 48, 64}) and for Ts =
5 ms.

The figures clearly show the main features and trade-offs of the LPP al-
gorithm, which can be summarised as follows:
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(a)

(b)

Figure B.2 Standard deviation of the estimation error (a) and delay (b) for different
sampling periods and N = 48

• The choice of the sampling period is affected by a trade-off: longer sampling
periods guarantee smaller errors but yield larger delays.

• From the signal processing standpoint, the choice of the number of teeth
is easier: the higher the number of teeth the better the precision, without
estimation delay degradation. Only mechanical and manufacturing consid-
erations, besides cost restrictions, limit the number of teeth.

• The relative error variance is zero when the sampling time Ts is exactly
a multiple of TT . As has already been pointed out, this event occurs with
probability 0.

B.2.1.2 The Fixed-position Algorithm

The second type of algorithm used for speed estimation is usually referred to
as the fixed position algorithm or 1/ΔT (see, e.g., [19, 130]).

In this case, the angular speed is estimated as

ω̂Δ =
2π
N⌊

TT

Δt

⌋
Δt

, (B.7)
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(a)

(b)

Figure B.3 Standard deviation of the estimation error (a) and delay (b) for different
wheel encoder resolutions and Ts = 5 ms

where the symbol �·� indicates the floor truncation of a real number. For
this algorithm, the condition Δt < TT must be fulfilled, where Δt is the
microprocessor clock time resolution; note that this corresponds to an upper
bound on the maximum measurable speed, i.e., ω < 2π/NΔt.

The corresponding estimation error eΔ has the form

eΔ =
2π
N

TT
−

2π
N⌊

TT

Δt

⌋
Δt

. (B.8)

Note that (B.8) shows that the estimation error for the 1/ΔT speed estima-
tion algorithm is zero when the time interval between two lines is a multiple
of the clock time resolution.

As a function of ω, the estimation error has a sawtooth behaviour, which
is bounded; the envelope of the worst-case estimation error, say ēΔ, is given
by

ēΔ =
2π
N

TT
−

2π
N

TTΔt
,
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which can be further simplified and finally written as

ēΔ =
2π
N

[
Δt

TT (ω)(TT (ω) −Δt)

]
. (B.9)

As can be seen from (B.9), the envelope of the sawtooth is a quadratic func-
tion of the speed. Instead, if the relative estimation error is computed, such
an envelope becomes a linear function of the speed.

Finally, under the assumption that Δt < TT , the estimation delay is given
by

dΔ = TT (ω) +
Ts

2
. (B.10)

As TT (ω) is inversely proportional to the speed, notice that at low speed the
delay dΔ is the critical feature of this estimation approach. Figures B.4(a)
and B.4(b) depict the relative error upper bound (in percent) and the estima-
tion delay as functions of longitudinal and angular velocity; they are plotted
for three different encoder resolutions N = {32, 48, 64}, with Δt = 1 μs and
Ts = 1 ms.

Notice from Equation B.10 that the sampling period is not a critical pa-
rameter for this type of algorithm; as a matter of fact, provided that the
maximum measurable speed requirement is satisfied it only affects the delay,
with a Ts/2 contribution).

It is clear that this estimation algorithm guarantees a very high measure-
ment precision. However, the estimation delay becomes critical at low speed;
this time delay is critically dependent on the encoder resolution. Figure B.4(b)
shows that – assuming that the maximum acceptable delay is 10 ms – using
a 48-teeth encoder this limit is reached below approximately 18 km/h. Note
that this is another consideration that must be taken into account for braking
controller design, as it affects the overall data transmission delay, which must
be accounted for. This issue makes impact also on the design of the activation
and deactivation logic (see Section 3.7) by determining the maximum speed
value below which the closed-loop control must be disengaged.

The comparison of the two estimation algorithms clearly shows that no
globally optimal velocity estimation method exists. Each of the two methods
performs well under different conditions and for different types of hardware.
The LPP algorithm is critical for estimation accuracy, but guarantees small
estimation delay also at low speed. On the other hand the 1/ΔT algorithm
provides high estimation accuracy, but its time delay may be critical at low
speed.
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(a)

(b)

Figure B.4 Relative estimation error (a) and delay (b) for different wheel encoder
resolutions, with Δt = 1 μs and Ts = 1 ms

B.2.2 Wheel Radius Calibration

Starting from the rotational speed of each wheel ωi(t), i = 1, . . . , 4 obtained
from the wheel encoders, the signals must be low pass filtered. The filter cut-
off frequency must be tuned considering both the noise level present in the
measured data and the frequency content of the vehicle dynamics of interest.
A good compromise is usually given by a cut-off frequency between 20 and
30 Hz.

Then, each ωi(t), i = 1, . . . , 4 must be converted into a linear velocity,
that is the wheel speed at the tyre–road contact point. In order to do that,
each rotational speed ωi(t) needs to be multiplied by the corresponding wheel
radius ri. To do this, a reliable measure of the static radius, i.e., the wheel
radius measured when a negligible braking/traction force is applied to the
four wheels, is required.

The nominal wheel radius can be either measured or estimated using an
optical velocity sensor that can accurately measure the vehicle speed, with a
coasting down test. The test consists of a slow deceleration from high speed
to low speed with the transmission disengaged (see Figure B.5).
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Figure B.5 Example of a coasting down test. (a) vehicle (dotted line) and wheel
speed (solid line) after radius calibration, (b) longitudinal acceleration

In this test, the wheel slip can be assumed to be zero and the entire braking
force (see the slightly negative longitudinal acceleration in Figure B.5 after
the idle gear is engaged at time t ∼= 9.5 s) attributed either to aerodynamic
drag or rolling friction. The true vehicle speed v measured via the optical
sensor can be used to calibrate the wheel radius by solving the following
minimisation problem:

ri = argmin
ri

∫ t1

t0

|ωiri − v|dt, i = 1, · · · , 4, (B.11)

where ri, and i = 1, · · · , 4 are the radii of the four wheels and ωi are the
corresponding wheel rotational speeds. The optimisation is done over the
whole coasting-down manoeuvre. Notice that the estimation method de-
scribed in (B.11) is debatable in principle, since the vertical load on the
tyre depends on the load transfer and on the vertical component (lift) of the
aerodynamic forces. A more accurate estimation procedure should provide
a function r(v) and not a constant number. However, in practice, this sim-
plification is usually accepted. An example of radius calibration is shown in
Figure B.6.
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Figure B.6 Wheel static radius calibration results (front-right wheel), measured on
a constant-speed test drive on high-grip asphalt road

After this calibration phase, the linear velocity of the four wheels at the
tyre-road contact points can be computed as

vi(t) = riωi(t), i = 1, . . . , 4 [m/s]. (B.12)

Figure B.7 Comparison between the four wheel linear speeds and the reference
vehicle speed after static wheel radius calibration

To evaluate the results of the calibration phase, Figure B.7 shows the four
wheel speeds computed according to Equation B.12 compared with the ref-
erence vehicle speed in a test with negligible acceleration. In such conditions,
i.e., when the wheel slip λ = (v − ω r)/v is close to zero, each wheel speed
correctly equals the vehicle speed.
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B.3 Analysis and Filtering of the Wheel Encoders’
Signal

In the previous section the properties of the two basic velocity estimation
algorithms were discussed. In the present section, we analyse some measure-
ments of the velocity signal estimated with the fixed position algorithm. Note
that although the experimental data were measured during tests performed
on a motorcycle, the same considerations apply to four-wheeled vehicles.

Some interesting features can be highlighted by studying the spectra of the
estimated wheel angular velocities in the case of a straight run at constant
speed. Figures B.8 and B.9 show the spectra of the two wheels (front and
rear); for comparison purposes, the angular velocities are plotted together
with the front and rear suspension stroke signals and with the engine speed.
The indicated frequencies (1X, 2X, 3X, etc.) represent the rotational speed
harmonics, starting from the fundamental frequency 1X, i.e., the frequency
at which the wheel rolls. Specifically, by inspecting Figures B.8 and B.9, the
following issues are of particular interest:

• Both front and rear speeds are clearly affected by a component at the
fundamental frequency and at its higher harmonics. This can be explained
either by the encoder not being perfectly aligned with the axis of the wheel
or by the teeth of the encoder which are not uniformly distributed around
the encoder itself. Each of these two situations typically occurs in practical
applications.

• The suspension strokes show the intrinsic body resonance of the vehi-
cle; however, it is very interesting to notice that, at the front wheel, the
suspension stroke contains a large component at the fundamental rolling
frequency of the front wheel. This points to a problem with the front
wheel: it is not perfectly balanced (this may be caused by uneven tread
consumption or other asymmetries in the tyre). Notice that this problem
does not exist at the rear wheel, where the wheel noise at 1X is only due
to a measurement problem.

• The speed signal of the front wheel is less noisy than that of the rear wheel,
in particular in the frequency range between 1X and 2X. A comparison
with the spectrum of the engine speed suggests that noise is mainly due to
the transmission (chain pull effect, the anti-hop clutch and the compliance
of the chain all transmit vibrations to the rear wheel).

The above analysis has shown the main disturbances contained in the
rotational speed of the wheel. From a control system design perspective,
any control algorithm that employs the wheel velocity or any other signal
estimated using it may suffer from the component at 1X. The magnitude
of this disturbance is remarkably large and may become critical if it acts
within the closed-loop bandwidth. This limits the bandwidth of any control
system that uses the wheel speed as a feedback signal, and this effect should
be carefully evaluated and considered. To counteract this problem all wheel
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Figure B.8 Power spectra of the front wheel speed (solid line) and front suspension
stroke (dotted line)

Figure B.9 Power spectra of the rear wheel speed (solid line) rear suspension stroke
(dotted line) and engine speed (dashed line)

speed signals experiencing such a disturbance should be filtered, for example
using the adaptive notch-filtering scheme illustrated in Figure B.10.

Figure B.10 Adaptive notch filtering scheme
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Such a filtering approach works as follows. After a first low pass filtering
stage (a first-order low pass filter with a cut-off frequency of approximately
20 Hz can be usually employed to process the considered signal), the 1X
component is removed via a second-order adaptive notch filter (see, e.g.,
[58, 89, 125]). To tune such a notch filter online, the rolling frequency of the
wheel is estimated using a low pass filter with a cut-off frequency of 1 Hz.
Once the rolling frequency is identified its principal harmonic is removed from
the signal by means of the adaptive filter

H(z) =
1 +W (n)z−1 + z−2

1 + bW (n)z−1 + b2z−2
, (B.13)

where W (n) is given by

W (n) = −2 cos
(
f1X(n)
fs

2π
)
,

and f1X is the wheel rolling frequency, fs the sampling frequency and b is a
positive constant smaller than one representing the bandwidth of the notch
filter.

Figures B.11 and B.12 show the effect of the filtering scheme. In Fig-
ure B.11 the power spectra of the measured signal and the adaptively filtered
one are shown. For comparison purposes, the spectrum of the wheel speed
filtered via a second-order low pass filter is also shown. In order to reach the
same 1X attenuation level of the adaptive structure with a low pass filter, a
cut-off frequency of 4 Hz was required. Note, however, that such a low pass
filter would cancel many of the relevant dynamic features contained in the
signal.

Figure B.11 Power spectra of the speed signal: measured (solid line), low pass
filtered (dotted line) and notch filtered (dashed line)
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Figure B.12 Time histories of the speed signal: measured (solid line), low pass
filtered (dotted line) and notch filtered (dashed line)

The issue is better highlighted with the help of Figure B.12 where the rear
wheel velocity during a soft acceleration is shown. The 4 Hz low pass filter
completely cancels the peak in the velocity, whereas the adaptive filter allows
that feature to be retained.

B.4 Summary

In this appendix the problem of estimating the wheel speed from digital
encoders has been discussed. Closed-form expressions for the estimation delay
and error of the two most common algorithms used for this task have been
derived. These expressions allowed us to draw guidelines and conclusions on
the best choice of the estimation algorithm given the available hardware and
working conditions. Further, we discussed how to perform the calibration of
the wheel radius, which is another crucial step in computing velocity from
encoder signals.

In the second part of the Appendix some filtering issues were discussed.
They are mainly due to encoder mounting errors or uneven consumption
of the tyre tread, which result in a noise component acting at the rolling
frequency of the wheel. Finally, an adaptive filtering strategy which allows
one to filter the noise without removing the wheel relevant dynamics was
discussed.
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62. Ljung, L., Söderström, T.: Theory and Practice of Recursive Identification. MIT
Press, Cambridge, MA (1983)

63. Mancosu, F.: Data from tire as a full system to be used in the vehicle. In: Tire
Technology 2005, Cologne, Germany (2005). Oral presentation
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74. Pasillas-Lépine, W.: Hybrid modeling and limit cycle analysis for a class of
five-phase anti-lock brake algorithms. Vehicle System Dynamics 44(2), 173–188
(2006)

75. Pasterkamp, W., Pacejka, H.B.: The tire as a sensor to estimate friction. Vehicle
System Dynamics 27, 409–422 (1997)

76. Peng, F., Fukao, T.: Robust speed identification for speed sensorless vector con-
trol of induction motors. IEEE Transactions on Industry Applications 30(5),
1234–1240 (1994)



References 249

77. Petersen, I.: Wheel slip control in ABS brakes using gain scheduled optimal
control with constraints. Master’s thesis, Norwegian University of Science and
Technology, Trondheim, Norway (2003)

78. Phillips, S., Branicky, M.: Velocity estimation using quantized measurements.
In: Proceedings of the IEEE Conference on Decision and Control, pp. 4847–4852
(2003)

79. Pirelli Pneumatici S.p.A.: Method and system for controlling the behaviour of
a vehicle by controlling its tyres. European Patent 1202867B1 (2004)

80. Piyabongkarn, D., Rajamani, R., Lew, J., Yu, H.: On the use of torque-biasing
systems for electronic stability control: limitations and possibilities. IEEE Trans-
actions on Control Systems Technology 15(3), 581–589 (2007)

81. Poussot-Vassal: Robust multivariable linear parameter varying automotive
global chassis control. Ph.D. thesis, Grenoble INP, GIPSA-lab, Grenoble, France
(2008)

82. Proca, A., Keyhani, A., Akdag, A.: Sensorless sliding-mode control of induction
motors using operating condition dependent models. IEEE Transactions on
Energy Conversion 18(2), 205–212 (2003)

83. Quinn, B., Fernandes, M.: A fast technique for the estimation of frequency.
Biometrika 78(3), 489–497 (1991)

84. Rajamani, R.: Vehicle Dynamics and Control. Mechanical Engineering Series,
Springer, New York (2006)

85. Ray, L.: Nonlinear state and tire force estimation for advanced vehicle control.
IEEE Transactions on Control Systems Technology 3(1), 117–124 (1995)

86. Ray, L.: Nonlinear tire force estimation and road friction identification: simula-
tion and experiments. Automatica 33(10), 1819–1833 (1997)

87. Robert Bosch GmbH: Automotive Handbook, 7th Edition. Wiley, New York
(2008)

88. SAE Society of Automotive Engineers, Warrendale, PA: Antilock Brake Review
(1992). SAE Standard: J2246

89. Savaresi, S.M., Bittanti, S., So, H.: Closed-form unbiased frequency estimation
of a noisy sinusoid using notch filters. IEEE Transactions on Automatic Control
48(7), 1285–1292 (2003)

90. Savaresi, S.M., Tanelli, M., Cantoni, C.: Mixed slip-deceleration control in au-
tomotive braking systems. ASME Journal of Dynamic Systems, Measurement
and Control 129(1), 20–31 (2006)

91. Savaresi, S.M., Tanelli, M., Cantoni, C., Charalambakis, D., Previdi, F., Bit-
tanti, S.: Slip-deceleration control in anti-lock braking systems. In: Proceedings
of the 16th IFAC World Congress, Prague, Czech Republic (2005)

92. Savaresi, S.M., Tanelli, M., Langthaler, P., Del Re, L.: Identification of tire–
road contact forces by in-tire accelerometers. In: Proceedings of the 14th IFAC
Symposium on System Identification, SYSID 2006 (2006)

93. Savaresi, S.M., Tanelli, M., Langthaler, P., Del Re, L.: New regressors for the
identification of tire deformation in road vehicles via in-tire accelerometers.
Transactions on Control Systems Technology 16, 769–780 (2008)

94. Sawase, K., Sano, Y.: Application of active yaw control to vehicle dynamics by
utilizing driving/braking force. JSAE Review 20(2), 289–295 (1999)

95. Schinkel, M., Hunt, K.: Anti-lock braking control using a sliding mode like ap-
proach. In: Proceedings of the American Control Conference, Anchorage, Alaska
(2002)

96. Semmler, S., Fischer, D., Isermann, R., Schwarz, R., Rieth, P.: Estimation of
vehicle velocity using brake-by-wire actuators. In: Proceedings of the 15th IFAC
World Congress, Barcelona, Spain (2002)

97. Shi, K., Chan, T., Wong, Y., Ho, S.: Speed estimation on an induction motor
drive using an optimized extended kalman filter. IEEE Transactions on Indus-
trial Electronics 49, 124–133 (2002)



250 References

98. Skogestad, S., Postlethwaite, I.: Multivariable feedback control: analysis and
design. Wiley, New York (2005)
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