
Chapter 9
Generalized Eigenproblem

This chapter deals with the generalized eigenproblem (GEP) in max-algebra defined
as follows:

Given A,B ∈ R
m×n

, find all λ ∈ R (generalized eigenvalues) and x ∈ R
n
, x �= ε

(generalized eigenvectors) such that

A ⊗ x = λ ⊗ B ⊗ x. (9.1)

When λ ∈ R and x ∈ R
n
, x �= ε satisfying (9.1) exist then we say that GEP is

solvable or also that (A,B) is solvable. Obviously, the eigenproblem is obtained
from the GEP when B = I or λ = ε and we will therefore assume in this chapter
that λ > ε.

It is likely that GEP is much more difficult than the eigenproblem. This is indi-
cated by the fact that the GEP for a pair of real matrices may have no generalized
eigenvalue, a finite number or a continuum of generalized eigenvalues [70]. It is
known [135] that the union of any system of closed (possibly one-element) inter-
vals is the set of generalized eigenvalues for suitably taken A and B .

GEP has been studied in [15] and [70]. The first of these papers solves the prob-
lem completely when m = 2 and special cases for general m and n, the second
solves some other special cases. No solution method seems to be known either for
finding a λ or an x �= ε satisfying (9.1) for general real matrices. Obviously, once
λ is fixed, the GEP reduces to a two-sided max-linear system (Chap. 7). We there-
fore concentrate on the question of finding the generalized eigenvalues. First we
will study basic properties and solvable special cases of GEP. In Sect. 9.3 we then
present a method for narrowing the search for generalized eigenvalues for a pair of
real square matrices. It is based on the solvability conditions for two-sided systems
formulated using symmetrized semirings (Sect. 7.5).

A motivation for the GEP is given in Sect. 1.3.2.
Given A,B ∈ R

m×n
we denote the set of generalized eigenvalues by �(A,B),

the set containing ε and all generalized eigenvectors corresponding to λ ∈ R by
V (A,B,λ) and the set of all generalized eigenvectors by V (A,B), that is:
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V (A,B,λ) = {
x ∈ R

n;A ⊗ x = λ ⊗ B ⊗ x
}
, λ ∈ R,

V (A,B) = {
x ∈ R

n;A ⊗ x = λ ⊗ B ⊗ x,λ ∈ R
}

and

�(A,B) = {
λ ∈ R;V (A,B,λ) �= {ε}}.

9.1 Basic Properties of the Generalized Eigenproblem

In this section we present some properties of the GEP provided that A and B are
finite matrices [70]. We therefore assume that A = (aij ), B = (bij ) ∈ R

m×n are
given matrices and, as before, we denote M = {1, . . . ,m} and N = {1, . . . , n}. We
will also denote:

C = (cij ) = (aij ⊗ b−1
ij )

and

D = (dij ) = (bij ⊗ a−1
ij ).

Theorem 9.1.1 If (A,B) is solvable and λ ∈ �(A,B) then C satisfies

max
i∈M

min
j∈N

cij ≤ λ ≤ min
i∈M

max
j∈N

cij . (9.2)

Proof No row of λ⊗B strictly dominates the corresponding row of A, so for every i

there is a j such that aij ≥ λ⊗bij , i.e. λ ≤ cij . Hence for all i we have λ ≤ maxj cij ,
thus λ ≤ mini maxj cij . Similarly, no row of A strictly dominates the corresponding
row of λ ⊗ B , yielding for all i: λ ≥ minj cij , thus λ ≥ maxi minj cij . �

The interval [maxi∈M minj∈N cij ,mini∈M maxj∈N cij ] is called the feasible in-
terval for the generalized eigenproblem (9.1).

Example 9.1.2 If A = ( 1 2
−1 0

)
and B = ( 0 1

0 1

)
then (A,B) is not solvable because

C = ( 1 1
−1 −1

)
does not satisfy (9.2).

Recall that for a square matrix A the symbol λ(A) stands for the maximum cycle
mean of A. We now also denote by λ′(A) the minimum cycle mean.

Corollary 9.1.3 If m = n, (A,B) is solvable and λ ∈ �(A,B) then C satisfies

λ′(C) ≤ λ ≤ λ(C).
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Proof A cycle in DC whose every arc has the weight equal to a row maximum
in C exists. The arc weights on this cycle are all at least the smallest row max-
imum, thus λ(C) ≥ mini∈M maxj∈N cij . The second inequality now follows from
Theorem 9.1.1 and the other inequality by swapping max and min. �

Recall that the conjugate of B is B∗ = (b∗
ij ) = (b−1

ji ). Then the ith element of the
diagonal of A ⊗ B∗ equals

max
j

(aij + b∗
ji) = max

j
(aij ⊗ b−1

ij ) = max
j

cij .

Similarly, the ith element of the diagonal of A ⊗′ B∗ equals minj cij . Hence by
Theorem 9.1.1 we have:

Corollary 9.1.4 If (A,B) is solvable then the greatest element of the diagonal of
A ⊗′ B∗ does not exceed the least element of the diagonal of A ⊗ B∗.

By Corollary 9.1.3 we also have:

Corollary 9.1.5 If (A,B) is solvable and λ ∈ �(A,B) then

λ′(A ⊗′ B∗) ≤ λ ≤ λ(A ⊗ B∗).

The next statement is a remarkable observation on generalized eigenvalues, yet
there is no description of the unique possible value for the eigenvalue.

Theorem 9.1.6 [15] If both (A,B) and (AT ,BT ) are solvable then both these prob-
lems have a unique and identical eigenvalue, that is, there is a real number λ such
that

�(A,B) = {λ} = �(AT ,BT )

provided that �(A,B) �= ∅ and �(AT ,BT ) �= ∅.

Proof Suppose that

A ⊗ x = λ ⊗ B ⊗ x

and

AT ⊗ y = μ ⊗ BT ⊗ y

for some λ,μ,x, y. Then

λ ⊗ yT ⊗ B ⊗ x = yT ⊗ A ⊗ x = xT ⊗ AT ⊗ y

= μ ⊗ xT ⊗ BT ⊗ y = μ ⊗ yT ⊗ B ⊗ x.

Since yT ⊗ B ⊗ x are finite it follows that λ = μ. �
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Corollary 9.1.7 If A,B ∈ R
n×n are symmetric then |�(A,B)| ≤ 1.

The following simple corollary provides in some cases a powerful tool of proving
that the generalized eigenproblem is not solvable:

Corollary 9.1.8 If A,B ∈ R
n×n and (AT ,BT ) has more than one generalized

eigenvalue then (A,B) is not solvable.

9.2 Easily Solvable Special Cases

9.2.1 Essentially the Eigenproblem

If either A or B is a generalized permutation matrix then (9.1) is easily solvable. If
(say) B is a generalized permutation matrix then B has the inverse B−1 and after
multiplying (9.1) by B−1 the GEP is transformed to the eigenproblem. Unfortu-
nately, since in max-algebra matrices other than generalized permutation matrices
do not have an inverse (see Theorem 1.1.3), this case is fairly limited.

9.2.2 When A and B Have a Common Eigenvector

Proposition 9.2.1 [70] A common eigenvector of A and B is a generalized eigen-

vector for A and B; more precisely, if A,B ∈ R
n×n

, λ ⊗ μ−1 ∈ R, then

V (A,λ) ∩ V (B,μ) ⊆ V (A,B,λ ⊗ μ−1).

Proof If x ∈ V (A,λ) ∩ V (B,μ) and λ > ε then μ ∈ R and

A ⊗ x = λ ⊗ x = λ ⊗ μ−1 ⊗ B ⊗ x.

If λ = ε then λ ⊗ μ−1 = ε and the statement trivially follows. �

An example of pairs of matrices having a common eigenvector are commuting
matrices (Theorem 4.7.2). Hence we have:

Theorem 9.2.2 If A,B ∈ R
n×n and A⊗B = B⊗A then both (A,B) and (AT ,BT )

are solvable, with identical, unique generalized eigenvalue.

Proof A and B have a common eigenvector corresponding to finite eigenvalues
by Theorem 4.7.2 and so by Proposition 9.2.1 (A,B) is solvable. At the same
time AT and BT are also commuting and by a repeated argument we have that
(AT ,BT ) is solvable. The equality of all generalized eigenvalues now follows by
Theorem 9.1.6. �
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9.2.3 When One of A,B Is a Right-multiple of the Other

Theorem 9.2.3 [70] If one of A,B ∈ R
m×n

is a right-multiple of the other then
(A,B) is solvable.

Proof Suppose e.g. A = B ⊗ P , where P ∈ R
n×n

. Let λ ∈ �(P ) and x ∈ V (P,λ),
x �= ε. Then

A ⊗ x = B ⊗ P ⊗ x = B ⊗ (λ ⊗ x) = λ ⊗ B ⊗ x. �

Example 9.2.4 Suppose

A =
(

4 6
7 9

)
, B =

(
0 1
3 1

)
, P =

(
4 6

−2 0

)
.

Then λ(P ) = 4,

�(λ−1 ⊗ P) =
(

0 2
−6 −4

)

and

x =
(

0
−6

)
, A ⊗ x =

(
4
7

)
, B ⊗ x =

(
0
3

)
.

We can also prove a sufficient condition for λ to attain the upper bound in (9.2)
when (say) A is a right-multiple of B and A,B ∈ R

m×n. Recall that C = (cij ) is the
matrix (aij ⊗ b−1

ij ), D = (dij ) = (bij ⊗ a−1
ij ) and let us denote

L = max
i

min
j

cij

and

U = min
i

max
j

cij .

It follows from the proof of Theorem 9.2.3 and from Theorem 9.1.1 that
λ(P ) ∈ [L,U ] for every P satisfying A = B ⊗ P . If A = B ⊗ P then we have:

A = B ⊗ (B∗ ⊗′ A).

Let us denote B∗ ⊗′ A by P = (pij ) and λ = λ(P ); thus L ≤ λ ≤ U . The follow-
ing technical lemma will help us to characterize in Theorem 9.2.6 when the upper
bound U is attained.

Lemma 9.2.5 If A,B ∈ R
m×n and L′ = maxj mini cij then L′ ≤ λ.
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Proof

λ = λ(P ) ≥ max
i

pii = max
i

min
j

(b∗
ij ⊗ aji)

= max
i

min
j

(aji ⊗ b−1
ji ) = max

i
min

j
cji = max

j
min

i
cij = L′. �

Theorem 9.2.6 [70] If A,B ∈ R
m×n,D has a saddle point and there is a matrix P

such that A = B ⊗ P then λ = U where λ = λ(P ) = λ(B∗ ⊗′ A).

Proof D = (dij ) has a saddle point means

max
i

min
j

dij = min
j

max
i

dij .

Therefore the inverses of both sides are equal:

U = min
i

max
j

cij = max
j

min
i

cij = L′.

Hence by Lemma 9.2.5: L′ = λ = U . �

The following dual statement is proved in a dual way:

Theorem 9.2.7 [70] Let A,B ∈ R
m×n. If there is a matrix P such that A = B ⊗′ P

and C has a saddle point then λ
′ = L where λ

′ = λ′(P ) = λ′(B∗ ⊗′ A).

Even if one of A,B is a right-multiple of the other, the eigenvalue may not be
unique as the following example shows.

Example 9.2.8 With A,B as in Example 9.2.4, we find for the principal solution
matrix P :

P =
(

4 6
3 5

)
, λ(P ) = 5,

�(λ−1 ⊗ P ) =
(−1 1

−2 0

)
,

A ⊗
(

1
0

)
=

(
6
9

)

and

B ⊗
(

1
0

)
=

(
1
4

)
.

Hence for the same A,B we find two solutions to (9.1), with different values of λ.
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9.3 Narrowing the Search for Generalized Eigenvalues

9.3.1 Regularization

In the absence of any method, exact or approximate, for finding generalized eigen-
values for a general pair of matrices, we concentrate now on narrowing the set con-
taining all generalized eigenvalues (if there are any) for finite A and B .

Let C = (cij ),D = (dij ) ∈ R
m×n. The system

C ⊗ x = D ⊗ x (9.3)

is called regular if

cij �= dij

for all i, j . The aim of the method we will present in this section is to identify as
closely as possible the set of generalized eigenvalues for which (9.1) is regular.

Let us first briefly discuss the values of λ for which this requirement is not
satisfied. There are at most mn such values of λ. We will call these values ex-
treme and the set of extreme values will be denoted by L. More precisely, for
A = (aij ),B = (bij ) ∈ R

m×n we set

L = {λ ∈ R;aij = λ ⊗ bij for some i, j}.
Note that the elements of L are entries of the matrix A − B . Obviously,

|L| ≤ mn (9.4)

and (9.1) is regular for all λ ∈ R−L. Recall that solvability of (9.1) can be checked
for each fixed and in particular extreme value of λ using, say, the Alternating
Method.

Remark 9.3.1 The upper bound in (9.4) can slightly be improved: If for some i we
have cij > dij for all j then (9.3) has no nontrivial solution. Therefore (9.1) has
no nontrivial solution if λ is too big or too small, in particular for λ > maxL and
λ < minL. These two conditions may be slightly refined as follows: aij > λ ⊗ bij

for all j or aij < λ ⊗ bij for all j must not hold for any i = 1, . . . ,m. Hence (9.1)
has no nontrivial solution for λ < λ′ and λ > λ′′ where λ′ is the mth smallest value
in L and λ′′ is the mth greatest value in L (both considered with multiplicities). So
actually only at most mn − 2m extreme values of λ need to be checked individually
by the Alternating Method.

Let us denote the extreme values described in Remark 9.3.1 by λ1, . . . , λt , where
λ1 < · · · < λt and t ≤ mn − 2m. All these values can easily be found among
the entries of A − B and checked individually for being generalized eigenvalues.
Thus we may now concentrate on the real numbers in open intervals (λj , λj+1),
j = 1, . . . , t − 1. We will call these intervals regular and we will also call every real
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number regular if it belongs to a regular interval. It follows that there are at most
mn−2m−1 regular intervals to be considered. In the rest of this section we assume
that one such interval, say J , has been fixed, and we consider (9.1) only for λ ∈ J .

9.3.2 A Necessary Condition for Generalized Eigenvalues

Symmetrized semirings have been introduced in Sect. 7.5 and they have been used
to derive necessary conditions for the existence of a nontrivial solution to two-sided
systems. We now reformulate this to obtain a necessary condition for generalized
eigenvalues.

Recall first that S = R × R and the operations ⊕ and ⊗ are extended to S as
follows:

(a, a′) ⊕ (b, b′) = (a ⊕ b, a′ ⊕ b′),

(a, a′) ⊗ (b, b′) = (a ⊗ b ⊕ a′ ⊗ b′, a ⊗ b′ ⊕ a′ ⊗ b).

Also, �(a, a′) = (a′, a) and (a, a′) is called balanced if a = a′. The determinant
of A = (aij ) ∈ S

n×n has been defined as

det(A) =
∑

σ∈Pn

⊕
(

sgn(σ ) ⊗
∏

i∈N

⊗
ai,σ (i)

)

,

and we know that

|det(A)| = maper|A|,
see Proposition 7.5.6.

The next statement follows from Theorem 7.5.4 and Corollary 7.5.5. We denote
here and in the rest of this section

C(λ) = A � λ ⊗ B.

Corollary 9.3.2 Let A,B ∈ R
n×n and λ ∈ R. Then a necessary condition that the

system A ⊗ x = λ ⊗ B ⊗ x have a nontrivial solution is that C(λ) has balanced
determinant.

The idea of narrowing the search for the eigenvalues is based on Corollary 9.3.2:
We show how to find all λ for which C(λ) has balanced determinant. It turns out that
this can be done using a polynomial number of operations in terms of n. This method
may in some cases identify all eigenvalues, see Examples 9.3.7 and 9.3.8. In general
however, it finds only a superset of generalized eigenvalues, see Example 9.3.9.

If λ is regular then C = A�λ⊗B has no balanced entry. The following statement
is a reformulation of Theorem 7.5.7 (note that the matrix C̃ has been defined just
before that theorem):
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Corollary 9.3.3 Let A,B ∈ R
n×n, λ be regular. Then C(λ) has balanced determi-

nant if and only if C̃(λ) is not SNS.

The problem of checking whether a (0,1,−1) matrix is SNS or not is equiva-
lent to the even cycle problem in digraphs [18] and therefore polynomially solvable
(Remark 1.6.45). Therefore the necessary solvability condition in Corollary 9.3.3
can be checked in polynomial time for any fixed regular value of λ. This will be
used later in Sect. 9.3.4. However, C(λ) may have balanced determinant for a con-
tinuum of values of λ (see Example 9.3.8) and therefore we also need a tool which
enables us to make the same decision for an interval. This tool will be presented in
Sect. 9.3.4. As a preparation we first show in Sect. 9.3.3 how to find maper|C(λ)|
as a function of λ ∈ J .

9.3.3 Finding maper|C(λ)|

In this subsection we show how to efficiently find the function

f (λ) = maper|C(λ)|.
This will be used in the next section to produce a method for finding all regular
values of λ ∈ J for which C̃(λ) is not SNS.

Recall first that |C(λ)| = (aij ⊕ λ ⊗ bij ) = (cij (λ)) and for every λ ∈ J we have

aij �= λ ⊗ bij

for all i, j ∈ N . Therefore for every λ ∈ J and for all i, j ∈ N the entry
cij (λ) = aij ⊕ λ ⊗ bij is equal to exactly one of aij and λ ⊗ bij . Observe that
f (λ) = maper|C(λ)| is the maximum of n! terms. Each term is a ⊗ product of n

entries cij (λ), hence of the form b ⊗ λk , where b ∈ R and k is a natural number
between 0 and n. Since b ⊗ λk in conventional notation is simply kλ + b, we de-
duce that f (λ) is the maximum of a finite number of linear functions and therefore a
piecewise linear convex function. Note that the slopes of all linear pieces of f (λ) are
natural numbers between 0 and n. Recall that f (λ) for any particular λ can easily be
found by solving the assignment problem for |C(λ)|. It follows that all linear pieces
can therefore efficiently be identified. We now describe one possible way of finding
these linear functions: Assume for a while that the linear pieces of smallest and
greatest slope are known, let us denote them fl(λ) = al ⊗ λl and fh(λ) = ah ⊗ λh,
respectively. If l = h then there is nothing to do, so assume l �= h. We start by finding
the intersection point of fl and fh, that is, say, λ1 satisfying fl(λ1) = fh(λ1). Calcu-
late f (λ1) = maper|C(λ1)|. If f (λ1) = fl(λ1) = fh(λ1) then there is no linear piece
other than fl and fh. Otherwise f (λ1) > fl(λ1) = fh(λ1). Let r be the number of λ

terms appearing in an optimal permutation (if there are several optimal permutations
with various numbers of λ appearances then take any). Since r is the slope of the
linear piece we have l < r < h. Then ar = f (λ1) − rλ1 and fr(λ) = ar ⊗ λr . This
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term is a new linear piece and we then repeat this procedure with fl and fr and fr

and fh, and so on. At every step a new linear piece is discovered unless all linear
pieces have already been found. Hence the number of iterations is at most n − 1.

For finding fl and fh it will be convenient to use the independent ones problem
(IOP) for 0 − 1 square matrices:

Given a 0 − 1 matrix M = (mij ) ∈ R
n×n, find the greatest number of ones in M

so that no two are from the same row or column or, equivalently, so that there is a
π ∈ Pn selecting all these ones.

Clearly, IOP is a special case of the assignment problem, and therefore easily
solvable. Note that in combinatorial terminology IOP is known as the maximum
cardinality bipartite matching problem solvable in O(n2.5) time [22]. In general we
say that a set of positions in a matrix are independent if no two of them belong to
the same row or column.

Now we discuss how to find fl and fh. The values of l and h are obviously the
smallest and biggest number of independent entries in |C(λ)| containing λ and these
can be found by solving the corresponding IOP. For h this problem can be described
by the matrix M = (mij ) with mij = 1 when |cij (λ)| = λ ⊗ bij and 0 otherwise and
for l by E − M , where E is the all-one matrix.

Now we show how to find al and ah. Let dij = bij if cij (λ) = λ ⊗ bij and
dij = aij if cij (λ) = aij (note that by regularity of λ only one of these two possibil-
ities occurs for λ ∈ J ). For finding al and ah we need to determine permutations π

and σ that maximize
∑

i∈N di,π(i) and
∑

i∈N di,σ (i) and select l and h entries con-
taining λ, respectively. To achieve this we interpret the two above mentioned IOPs as
assignment problems and describe their solution sets using matrices Mh and Ml ob-
tained by the Hungarian method (that is, nonpositive matrices whose max-algebraic
permanent is zero). It remains then to replace all entries in D = (dij ) corresponding
to nonzero entries in Mh and Ml by −∞ and solve the assignment problem for the
obtained matrices.

9.3.4 Narrowing the Search

In this subsection we show how to efficiently find the set of all regular values of λ

for which det(C(λ)) is balanced. This set will be denoted by S. We use essentially
the fact that the decision whether det(C(λ)) is balanced can be made efficiently for
any individual value of λ (Corollary 9.3.3). The following will be useful:

Lemma 9.3.4 Let f (x), g(x),h(x) be piecewise linear convex functions on R,
f (x) = g(x) ⊕ h(x) for all x ∈ R. Suppose a, b ∈ R are such that f is linear on
[a, b]. If g(x) = h(x) for at least one x ∈ (a, b) then g(x) = h(x) for all x ∈ [a, b].

Proof Suppose g(x0) = h(x0), x0 ∈ (a, b). Hence g(x0) = h(x0) = f (x0). If
g(x) < f (x) for an x ∈ [a, b], without loss of generality for x ∈ [a, x0), then by
convexity of g and linearity of f we have that g(x) > f (x) for all x ∈ (x0, b), a
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contradiction. Therefore g(x) = f (x) for all x ∈ [a, b] and similarly h(x) = f (x)

for all x ∈ [a, b]. �

Recall that as before J is a regular interval. Let us denote

det(C(λ)) = (
d+(C(λ)), d−(C(λ))

)
,

or just (d+(λ), d−(λ)). Then C(λ) for λ ∈ J has balanced determinant if and only
if

d+(λ) = d−(λ). (9.5)

It follows from the results of the previous section that the piecewise linear convex
function

|det(C(λ))| = d+(λ) ⊕ d−(λ) = maper|C(λ)|
can efficiently be found. By the same argument as for maper|C(λ)| we see that
both d+(λ) and d−(λ) are max-algebraic polynomials in λ (hence piecewise lin-
ear and convex functions) containing at most n + 1 powers of λ between 0 and
n. No method other than exhaustive search (requiring n! permutation evaluations)
seems to be known for finding d+(λ) and d−(λ) separately for any particular λ

[29]; however, for a fixed λ ∈ R−L by Corollary 9.3.3 we can decide in polynomial
time whether d+(λ) = d−(λ) or not. Since d+(λ) ⊕ d−(λ) = maper|C(λ)| then if
maper|C(λ)| is known, using Lemma 9.3.4 we can easily find all values of λ ∈ J

satisfying d+(λ) = d−(λ) by checking this equality for any point strictly between
any two consecutive breakpoints and for the breakpoints of maper|C(λ)|. We sum-
marize these observations in the following:

Theorem 9.3.5 If the set S = {λ ∈ J ;d+(λ) = d−(λ)} is nonempty then it consists
of some of the breakpoints of maper|C(λ)| and a number (possibly none) of closed
intervals whose endpoints are pairs of adjacent breakpoints of maper|C(λ)|. All
these can be identified in O(n3) time.

Proof The statement is essentially proved by Lemma 9.3.4. We only need to add
that each interval whose endpoints are adjacent breakpoints of maper|C(λ)| can
be decided by checking d+(λ) = d−(λ) for one (arbitrary) internal point of the
interval and that the number of breakpoints is at most n and therefore the number of
intervals is at most n − 1. The equality d+(λ) = d−(λ) for a fixed λ can be decided
in polynomial time by Theorem 9.3.3. �

We summarize our work in the following procedure for finding all regular values
of λ for which det(C(λ)) is balanced:

Algorithm 9.3.6 NARROWING THE EIGENVALUE SEARCH
Input: A,B ∈ R

n×n and a regular interval J .
Output: The set S = {λ ∈ J ;d+(λ) = d−(λ)}.
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1. S := ∅.
2. C(λ) := A � λ ⊗ B .
3. Find f (λ) = maper|C(λ)| as a function of λ, that is, find all breakpoints and

linear pieces of f (λ).

4. For every breakpoint λ0 of f (λ) do: If C̃(λ0) is not SNS then S := S ∪ {λ0}.
5. For any two consecutive breakpoints a, b and arbitrarily taken λ0 ∈ (a, b) do: If

C̃(λ0) is not SNS then S := S ∪ (a, b).

9.3.5 Examples

In the first two examples below we demonstrate that the described method for nar-
rowing the search for eigenvalues may actually find all eigenvalues. Note that in
these examples all matrices are of small sizes and therefore the functions d+(λ) and
d−(λ) are explicitly evaluated; however, for bigger matrices this would not be prac-
tical and the method described in Sect. 9.3.4 would be used as an efficient tool for
finding all regular values of λ for which d+(λ) = d−(λ).

The third example illustrates the situation when the algorithm narrows the fea-
sible interval containing the eigenvalues but a significant proportion of the final
interval still consists of real numbers that are not eigenvalues.

Example 9.3.7 Let

A =
⎛

⎝
3 8 2
7 1 4
0 6 3

⎞

⎠ , B =
⎛

⎝
4 4 3
2 3 4
3 2 1

⎞

⎠ .

Then

A − B =
⎛

⎝
−1 4 −1

5 −2 0
−3 4 2

⎞

⎠

and L = {−3,−2,−1,0,2,4,5}. For λ < −1 all terms on the RHS of the first equa-
tion in A ⊗ x = λ ⊗ B ⊗ x are strictly less than the corresponding terms on the left
and therefore there is no nontrivial solution to A ⊗ x = λ ⊗ B ⊗ x. Similarly, for
λ > 4 all these terms are greater than their counterparts on the left. Hence we only
need to investigate regular intervals (−1,0), (0,2) and (2,4) and extreme points
−1,0,2,4.

For λ ∈ (−1,0) we have

|C(λ)| =
⎛

⎝
4 + λ 8 3 + λ

7 3 + λ 4
3 + λ 6 3

⎞

⎠ ,
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d+(λ) = max(10 + 2λ,14 + λ,9 + 3λ),

d−(λ) = max(16 + λ,15 + λ,18),

maper|C(λ)| = 18.

Since d+(λ) �= d−(λ) for λ ∈ (−1,0), there are no eigenvalues in this interval.
For λ ∈ (0,2) we have

|C(λ)| =
⎛

⎝
4 + λ 8 3 + λ

7 3 + λ 4 + λ

3 + λ 6 3

⎞

⎠ ,

d+(λ) = max(10 + 2λ,15 + 2λ,9 + 3λ),

d−(λ) = max(16 + λ,14 + 2λ,18),

maper|C(λ)| = max(18,16 + λ,15 + 2λ,9 + 3λ).

For λ ∈ (0,2) there is only one breakpoint for maper|C(λ)| at λ0 = 3/2. Since
d+(λ) = d−(λ) for λ = λ0, this value is the only candidate for an eigenvalue in
(0,2). It is not difficult to verify that x = (2,0,3.5)T is a corresponding eigenvec-
tor.

For λ ∈ (2,4) we have

|C(λ)| =
⎛

⎝
4 + λ 8 3 + λ

7 3 + λ 4 + λ

3 + λ 6 1 + λ

⎞

⎠ ,

d+(λ) = max(15 + 2λ,16 + λ,9 + 3λ),

d−(λ) = max(16 + λ,14 + 2λ,8 + 3λ),

maper|C(λ)| = 15 + 2λ.

Since d+(λ) �= d−(λ) for λ ∈ (2,4), there are no eigenvalues in this interval.
Let us consider the extreme point λ = 0: In this small example we solve the

system A ⊗ x = B ⊗ x by direct analysis but note that in general the Alternating
Method would be used. By the cancellation law (Lemma 7.4.1) the two-sided system
A ⊗ x = B ⊗ x is equivalent to the one with

A =
⎛

⎝
ε 8 ε

7 ε 4
ε 6 3

⎞

⎠ , B =
⎛

⎝
4 ε 3
ε 3 4
3 ε ε

⎞

⎠ .

Here from the first equation either x2 = −4 + x1 or x2 = −5 + x3. In the first case
the third equation yields max(2+x1,3+x3) = 3+x1, thus x1 = x3. By substituting
into the second equation then x1 = −4 + x2, a contradiction. In the second case the
third equation yields again x1 = x3, which implies a contradiction in the same way.
Hence λ = 0 is not an eigenvalue and a similar analysis would show that neither are
the remaining three extreme values.
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We conclude that �(A,B) = {3/2}.

Example 9.3.8 Let A =
(

4 6
7 9

)
,B =

(
0 1
3 1

)
. It is easily seen that J = (4,5) is the

unique regular interval. For λ ∈ (4,5) we have

|C(λ)| =
(

λ 6
3 + λ 9

)

and

maper|C(λ)| = max(9 + λ,9 + λ) = 9 + λ = d−(λ) = d+(λ).

Hence every λ ∈ J satisfies the necessary condition. In fact all these values are
eigenvalues as x = (6, λ)T is a corresponding eigenvector (for every λ ∈ J ). This
vector is also an eigenvector for λ ∈ {4,5} and thus �(A,B) = [4,5].

Example 9.3.9 [132] Let

A =
⎛

⎝
0 1/2 1
1 0 0
0 0 1

⎞

⎠ , B =
⎛

⎝
0 −2 −2

−2 0 0
0 −2 −2

⎞

⎠ .

Consider only the regular interval J = (0,2). For λ ∈ J we have

|C(λ)| =
⎛

⎝
λ 1/2 1
1 λ λ

λ 0 1

⎞

⎠ ,

d+(λ) = max(1 + 2λ,2),

and

d−(λ) = max(1 + 2λ,5/2).

We deduce that d−(λ) = d+(λ) if and only if λ ≥ 3/4. Hence the algorithm returns
S = [3/4,2]. However, there are no eigenvalues in (1,2). To see this, realize that
for λ ∈ J the system (9.1) simplifies using the cancellation rules and then by setting
x1 = 0 to:

(1/2) ⊗ x2 ⊕ 1 ⊗ x3 = λ,

1 = λ ⊗ x2 ⊕ λ ⊗ x3,

x2 ⊕ 1 ⊗ x3 = λ.

The second equation is equivalent to x2 ⊕ x3 = 1 − λ. Hence, if λ > 1 and x =
(0, x2, x3)

T is a solution then both x2 and x3 are negative, thus x2 ⊕ 1 ⊗x3 < 1 < λ,
a contradiction. Note that all λ ∈ [3/4,1] are eigenvalues since for such λ the vector
(0,1 − λ,λ − 1)T is a solution to (9.1).
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9.4 Exercises

Exercise 9.4.1 Use Theorem 9.3.3 to give an alternative proof that λ(A) is the
unique eigenvalue for any irreducible matrix A.

Exercise 9.4.2 Show that the generalized eigenproblem has no nontrivial solution
for the matrices

A =
(

3 5 4
7 9 8

)
, B =

(
7 4 1
3 5 2

)
.

[The feasible interval is empty]

Exercise 9.4.3 Find all extreme values in the feasible interval for the generalized
eigenproblem with matrices

A =
(

3 5 4
0 3 7

)
, B =

(
7 4 1
3 5 2

)
.

[(−3,−2,1,3)T ]

Exercise 9.4.4 Prove the following: Let A,B ∈ R
n×n. Then (A,B) is solvable if

and only if there exist P,Q such that A ⊗ P = B ⊗ Q and (P,Q) is solvable.

Exercise 9.4.5 Prove or disprove: If A,B ∈ R
n×n and A = B ⊗ Q then λ(B) is the

greatest corner of the maxpolynomial maper(A ⊕ λ ⊗ B). [false]

Exercise 9.4.6 Find all generalized eigenvalues if

A =
(

0 1 2
0 2 4

)
, B =

(
0 0 0
0 1 2

)
.

[0,1,2]
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