
Chapter 5
Maxpolynomials. The Characteristic
Maxpolynomial

The aim of this chapter is to study max-algebraic polynomials, that is, expressions
of the form

p(z) =
∑⊕

r=0,...,p

cr ⊗ zjr , (5.1)

where cr , jr ∈ R. The number jp is called the degree of p(z) and p + 1 is called its
length.

We will consider (5.1) both as formal algebraic expressions with z as an inde-
terminate and as max-algebraic functions of z. We will abbreviate “max-algebraic
polynomial” to “maxpolynomial”. Note that jr are not restricted to integers and so
(5.1) covers expressions such as

8.3 ⊗ z−7.2 ⊕ (−2.6) ⊗ z3.7 ⊕ 6.5 ⊗ z12.3. (5.2)

In conventional notation p(z) has the form

max
r=0,...,p

(cr + jrz)

and if considered as a function, it is piecewise linear and convex.
Each expression cr ⊗ zjr will be called a term of the maxpolynomial p(z). For a

maxpolynomial of the form (5.1) we will always assume

j0 < j1 < · · · < jp,

where p is a nonnegative integer. If cp = 0 = j0 then p(z) is called standard.
Clearly, every maxpolynomial p(z) can be written as

c ⊗ zj ⊗ q(z), (5.3)

where q(z) is a standard maxpolynomial. For instance (5.2) is of degree 12.3 and
length 3. It can be written as

6.5 ⊗ z−7.2 ⊗ q(z),
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where q(z) is the standard maxpolynomial

1.8 ⊕ (−9.1) ⊗ z10.9 ⊕ z19.5.

There are many similarities with conventional polynomial algebra, in particular
(see Sect. 5.1) there is an analogue of the fundamental theorem of algebra, that
is, every maxpolynomial factorizes to linear terms (although these terms do not
correspond to “roots” in the conventional terminology). However, there are aspects
that make this theory different. This is caused, similarly as in other parts of max-
algebra, by idempotency of addition, which for instance yields the formula

(a ⊕ b)k = ak ⊕ bk (5.4)

for all a, b, k ∈ R. This property has a significant impact on many results. Perhaps
the most important feature that makes max-algebraic polynomial theory different is
the fact that the functional equality p(z) = q(z) does not imply equality between p

and q as formal expressions. For instance (1 ⊕ z)2 is equal by (5.4) to 2 ⊕ z2 but
at the same time expands to 2 ⊕ 1 ⊗ z ⊕ z2 by basic arithmetic laws. Hence the ex-
pressions 2 ⊕ 1 ⊗ z⊕ z2 and 2 ⊕ z2 are identical as functions. This demonstrates the
fact that some terms of maxpolynomials, do not actually contribute to the function
value. In our example 1⊗ z ≤ 2⊕ z2 for all z ∈ R. This motivates the following def-
initions: A term cs ⊗ zjs of a maxpolynomial

∑⊕
r=0,...,pcr ⊗ zjr is called inessential

if

cs ⊗ zjs ≤
∑⊕

r �=s

cr ⊗ zjr

holds for every z ∈ R and essential otherwise. Clearly, an inessential term can be
removed from [reinstated in] a maxpolynomial ad lib when this maxpolynomial is
considered as a function. Note that the terms c0 ⊗ zj0 and cp ⊗ zjp are essential in
any maxpolynomial

∑⊕
r=0,...,pcr ⊗ zjr .

Lemma 5.0.1 If the term cs ⊗ zjs , 0 < s < p, is essential in the maxpolynomial∑⊕
r=0,...,pcr ⊗ zjr then

cs − cs+1

js+1 − js

>
cs−1 − cs

js − js−1
.

Proof Since the term cs ⊗ zjs is essential and the sequence {jr}pr=0 is increasing
there is an α ∈ R such that

cs + jsα > cs−1 + js−1α

and

cs + jsα > cs+1 + js+1α.

Hence
cs − cs+1

js+1 − js

> α >
cs−1 − cs

js − js−1
. �
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We will first analyze general properties of maxpolynomials yielding an analogue
of the fundamental theorem of algebra and we will also briefly study maxpolyno-
mial equations. Then we discuss characteristic maxpolynomials of square matrices.
Maxpolynomials, including characteristic maxpolynomials, were studied in [8, 20,
62, 65, 71]. The material presented in Sect. 5.1 follows the lines of [65] with kind
permission of Academic Press.

5.1 Maxpolynomials and Their Factorization

One of the aims in this section is to seek factorization of maxpolynomials. We will
see that unlike in conventional algebra it is always possible to factorize a maxpoly-
nomial as a function (although not necessarily as a formal expression) into linear
factors over R with a relatively small computational effort. We will therefore first
study expressions of the form

∏⊗

r=1,...,p

(βr ⊕ z)er (5.5)

where βr ∈ R and er ∈ R (r = 1, . . . , p) and show how they can be multiplied out;
this operation will be called evolution. We call expressions (5.5) a product form and
will assume

β1 < · · · < βp. (5.6)

The constants βr will be called corners of the product form (5.5). Note that (5.5) in
conventional notation reads

∑

r=1,...,p

er max (βr , z) .

Hence, a factor (ε ⊕ z)e is the same as the linear function ez of slope e. A factor
(β⊕z)e , β ∈ R, is constant eβ while z ≤ β and linear function ez if z ≥ β . Therefore
(5.5) is the function b(z) + f (z)z, where

b(z) =
∑

z≤βs

esβs, f (z) =
∑

z>βs

es .

Every product form is a piecewise linear function with constant slope between
any two corners, and for z < β1 and z > βp . It follows that a product form is con-
vex when all exponents er are positive. However, this function may, in general, be
nonconvex and therefore we cannot expect each product form to correspond to a
maxpolynomial as a function.

Let us first consider product forms

(z ⊕ β1) ⊗ (z ⊕ β2) ⊗ · · · ⊗ (z ⊕ βp), (5.7)
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that is, product forms where all exponents are 1 and all βr ∈ R (and still
β1 < · · · < βp). Such product forms will be called simple.

We can multiply out any simple product form using basic arithmetic laws as in
conventional algebra. This implies that the coefficient at zk (k = 0, . . . , p) of the
obtained maxpolynomial is

∑⊕

1≤i1<···<ir≤p

βi1 ⊗ βi2 ⊗ · · · ⊗ βir , (5.8)

where r = p − k. Note that (5.8) is 0 if r = 0. However, due to (5.6) this coefficient
significantly simplifies, namely (5.8) is actually the same as

βk+1 ⊗ · · · ⊗ βp

when k < p and 0 when k = p. Hence the maxpolynomial obtained by multiplying
out a simple product form (5.7) is of length p + 1 and can be found as follows.

The constant term is β1 ⊗ · · · ⊗ βp; the term involving zk (k ≥ 1) is obtained by
replacing βk in the term involving zk−1 by z.

We now generalize this procedure to an algorithm for any product form with
positive exponents and finite corners. Product forms with these two properties are
called standard.

Algorithm 5.1.1 EVOLUTION
Input: β1, . . . , βp , e1, . . . , ep ∈ R (parameters of a product form).
Output: Terms of the maxpolynomial obtained by multiplying out (5.5).
t0 := β

e1
1 ⊗ · · · ⊗ β

ep
p

for r = 1, . . . , p do
tr := tr−1 after replacing β

er
r by zer

The general step of this algorithm can also be interpreted as follows:
cr := cr−1 ⊗ (β

er
r )−1 and jr := jr−1 + er with c0 := β

e1
1 ⊗ · · · ⊗ β

ep
p and j0 = 0.

Alternatively, the sequence of pairs {(er , βr)}pr=1 is transformed into the se-
quence

{(cr , jr )}pr=0 =
{(

∑

s≥r

esβs,
∑

s<r

es

)}p+1

r=1

,

where the sum of an empty set is 0 by definition. Note that the algorithm EVOLU-
TION is formulated for general product forms but its correctness is guaranteed for
standard product forms:

Theorem 5.1.2 If the algorithm EVOLUTION is applied to standard product form
(5.5) then the maxpolynomial f (z) = ∑⊕

r=0,...,p tr is standard, has no inessential
terms and is the same function as the product form.
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Proof Let f (z) = ∑⊕
r=0,...,ptr . Then f (z) is standard since all terms involving z

have positive exponents and one of the terms (t0) is constant. The highest order
term (tp) has coefficient zero.

Let r ∈ {0,1, . . . , p} and let z be any value satisfying βr < z < βr+1. Then

tr = cr ⊗ zjr = ze1 ⊗ · · · ⊗ zer ⊗ β
er+1
r+1 ⊗ · · · ⊗ β

ep
p

and f (z) = cr ⊗zjr because any other term has either some z’s replaced by some β’s
(≤ βr < z) or some β’s (≥ βr+1 > z) replaced by z’s and will therefore be strictly
less than tr . At the same time, if βr < z < βr+1, then the value of (5.5) is cr ⊗ zjr

for r = 0,1, . . . , p. We deduce that f (z) and (5.5) are equal for all z ∈ R and hence
f (z) has no inessential terms. �

Example 5.1.3 Let us apply EVOLUTION to the product form (1 ⊕ z) ⊗ (3 ⊕ z)2.
Here

{(er , βr)}pr=1 = {(1,1) , (2,3)} .

We find

t0 = 11 ⊗ 32 = 7,

t1 = z1 ⊗ 32 = 6 ⊗ z,

t2 = z1 ⊗ z2 = z3..

For the inverse operation (that will be called resolution) we first notice that if a
standard maxpolynomial p(z) was obtained by EVOLUTION then two consecutive
terms of p(z) are of the form

· · · ⊕ βer
r ⊗ · · · ⊗ β

ep
p ⊗ ze1+···+er−1 ⊕ β

er+1
r+1 ⊗ · · · ⊗ β

ep
p ⊗ ze1+···+er ⊕ · · · .

By cancelling the common factors we get β
er
r ⊕ zer or, alternatively (βr ⊕ z)er .

Example 5.1.4 Consider the maxpolynomial 7⊕6⊗ z⊕ z3. By cancelling the com-
mon factor for the first two terms we find 1 ⊕ z, for the next two terms we get
6 ⊕ z2 = (3 ⊕ z)2. Hence the product form is (1 ⊕ z) ⊗ (3 ⊕ z)2.

This idea generalizes to nonstandard maxpolynomials as they can always be writ-
ten in the form (5.3).

Example 5.1.5

10 ⊗ z−1 ⊕ 9 ⊕ 3 ⊗ z2 = 3 ⊗ z−1 ⊗
(

7 ⊕ 6 ⊗ z ⊕ z3
)

= 3 ⊗ z−1 ⊗ (1 ⊕ z) ⊗ (3 ⊕ z)2 .



108 5 Maxpolynomials. The Characteristic Maxpolynomial

In fact there is no need to transform a maxpolynomial to a standard one before
we apply the idea of cancellation of common factors and we can straightforwardly
formulate the algorithm:

Algorithm 5.1.6 RESOLUTION
Input: Maxpolynomial

∑⊕
r=0,...,pcr ⊗ zjr .

Output: Product form
∏⊗

r=1,...,p(βr ⊕ z)er .

For each r = 0,1, . . . , p − 1 cancel a common factor cr+1 ⊗ zjr of two consecutive
terms cr ⊗ zjr and cr+1 ⊗ zjr+1 to obtain cr ⊗ c−1

r+1 ⊕ zjr+1−jr = (βr+1 ⊕ z)er+1 .

Observe that er+1 = jr+1 −jr and βr+1 = cr−cr+1
jr+1−jr

for r = 0,1, . . . , p−1. Again,
this algorithm is formulated without specific requirements on the input and we need
to identify the conditions under which it will work correctly.

It will be shown that the algorithm RESOLUTION works correctly if the se-
quence

{
cr − cr+1

jr+1 − jr

}p−1

r=0

is increasing (in which case the sequence {βr} is increasing). A maxpolynomial
satisfying this requirement is said to satisfy the concavity condition. Before we an-
swer the question of the correctness of the algorithm RESOLUTION, we present an
observation that will be useful:

Theorem 5.1.7 The algorithms EVOLUTION and RESOLUTION are mutually in-
verse.

Proof EVOLUTION maps

(er , βr) −→
(

∑

s≥r

esβs,
∑

s<r

es

)
,

while RESOLUTION maps

(cr , jr ) −→
(

jr+1 − jr ,
cr − cr+1

jr+1 − jr

)
.

Hence EVOLUTION applied to the result of RESOLUTION produces
(

∑

s≥r

(js+1 − js)
cs − cs+1

js+1 − js

,
∑

s<r

(js+1 − js)

)

= (cr − cp, jr − j0) = (cr , jr ).

One can similarly deduce that RESOLUTION applied to the result of EVOLUTION
produces (er , βr). �
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This theorem finds an immediate use in the following key statement.

Theorem 5.1.8 For a standard maxpolynomial p(z) satisfying the concavity con-
dition the algorithm RESOLUTION finds a standard product form q(z) such that
p(z) = q(z) for all z ∈ R.

Proof Suppose that the maxpolynomial p(z) satisfies the concavity condition. Then
the sequence

{βr}pr=1 =
{

cr − cr+1

jr+1 − jr

}p−1

r=0

is increasing and finite and er > 0, since jr are increasing. Hence the product form
q(z) produced by RESOLUTION is standard.

By an application of EVOLUTION to q(z) we get a maxpolynomial t (z) and
t (z) = q(z) for all z ∈ R by Theorem 5.1.2. At the same time t (z) = p(z) for all
z ∈ R by Theorem 5.1.7. Hence the statement. �

Note that the computational complexity of RESOLUTION is O(p).

Lemma 5.1.9 Let p(z) and p′(z) be two maxpolynomials such that
p′(z) = c ⊗ zj ⊗ p(z). Then the concavity condition holds for p(z) if and only
if it holds for p′(z).

Proof Let p(z) and p′(z) be two maxpolynomials such that

p′(z) = c ⊗ p(z)

for some c ∈ R. Then

c′
s − c′

s+1 = cs + c − cs+1 − c = cs − cs+1.

If p′(z) = zj ⊗ p(z) for some j ∈ R then

j ′
s+1 − j ′

s = js+1 + j − js − j = js+1 − js

and the statement follows. �

Theorem 5.1.10 A maxpolynomial has no inessential terms if and only if it satisfies
the concavity condition.

Proof Due to Lemma 5.0.1 we only need to prove the “if” part.
By Lemma 5.1.9 we may assume without loss of generality that p(z) is stan-

dard. By applying RESOLUTION and then EVOLUTION the result now follows
by Theorems 5.1.8, 5.1.2 and 5.1.7. �
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It follows from Theorem 5.1.8 that if a standard maxpolynomial p(z) satisfies
the concavity condition then the algorithm RESOLUTION applied to p(z) will pro-
duce a standard product form equal to p(z) as a function. If p(z) does not satisfy
the concavity condition then it contains an inessential term (Theorem 5.1.10). By
removing an inessential term, p(z) as a function does not change. Hence by a re-
peated removal of inessential terms we can find a standard maxpolynomial p′(z)
from p(z) such that p′(z) satisfies the concavity condition and p(z) = p′(z) for all
z ∈ R. Formally, this process can be described by the following algorithm:

Algorithm 5.1.11 RECTIFICATION
Input: Standard maxpolynomial p(z) = ∑⊕

r=0,...,pcr ⊗ zjr .
Output: Standard maxpolynomial p′(z) with no inessential terms and p′(z) = p(z)

for all z ∈ R.
p′(z) := cp−1 ⊗ zjp−1 ⊕ cp ⊗ zjp

s := p − 1, t := p

For r = p − 2,p − 3, . . . ,0 do
begin

Until cs−ct

jt−js
> cr−cs

js−jr
do

begin
Remove cs ⊗ zjs from p′(z), let cs ⊗ zjs and ct ⊗ zjt be the
lowest and second-lowest order term in p′(z), respectively.

end
p′(z) := cr ⊗ zjr ⊕ p′(z), t := s, s := r

end

Clearly, RECTIFICATION runs in O(p) time since every term enters and leaves
p(z) at most once.

We summarize the results of this section:

Theorem 5.1.12 [71] (Max-algebraic Fundamental Theorem of Algebra) For every
maxpolynomial p(z) of length p it is possible to find using O(p) operations a prod-
uct form q(z) such that p(z) = q(z) for all z ∈ R. This product form is unique up to
the order of its factors.

Proof Let p(z) be the maxpolynomial
∑⊕

r=0,...,pcr ⊗ zjr . By taking out cp ⊗ zj0

it is transformed to a standard maxpolynomial, say p′(z), which in turn is trans-
formed using RECTIFICATION into a standard maxpolynomial p′′(z) with no
inessential terms. The algorithm RESOLUTION then finds a standard product form
q(z) such that q(z) = p′′(z) for all z ∈ R. By Theorems 5.1.8 and 5.1.10 we have
p′′(z) = p′(z) = p(z) for all z ∈ R and the statement follows. �

We may now extend the term “corner” to any maxpolynomial: Corners of a max-
polynomial p(z) are corners of the product form that is equal to p(z) as a function.

It will be important in the next section that it is possible to explicitly describe the
greatest corner of a maxpolynomial:
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Theorem 5.1.13 The greatest corner of p(z) = ∑⊕
r=0,...,p cr ⊗ zjr , p > 0, is

max
r=0,...,p−1

cr − cp

jp − jr

.

Proof A corner exists since p > 0. Let γ be the greatest corner of p(z). Then

cp ⊗ zjp ≥ cr ⊗ zjr

for all z ≥ γ and for all r = 0,1, . . . , p. At the same time there is an r < p such that

cp ⊗ zjp < cr ⊗ zjr

for all z < γ . Hence γ = maxr=0,1,...,p−1 γr where γr is the intersection point of
cp ⊗ zjp and cr ⊗ zjr , that is

γr = cr − cp

jp − jr

and the statement follows. �

Note that an alternative treatment of maxpolynomials can be found in [8] and in
[2] in terms of convex analysis and (in particular) Legendre–Fenchel transform.

5.2 Maxpolynomial Equations

Maxpolynomial equations are of the form

p(z) = q(z), (5.9)

where p(z) and q(z) are maxpolynomials. Since both p(z) and q(z) are piecewise
linear convex functions, it is clear geometrically that the solution S set to (5.9) is the
union of a finite number of closed intervals in R, including possibly one-element
sets, and unbounded intervals (see Fig. 5.1, where S consists of one closed interval
and two isolated points). Let us denote the set of boundary points of S (that is, the
set of extreme points of the intervals) by S∗. The set S∗ can easily be characterized:

Theorem 5.2.1 [64] Every boundary point of S is a corner of p(z) ⊕ q(z).

Proof Let z ∈ S∗. If z is not a corner of p(z) ⊕ q(z) then p(z) ⊕ q(z) does not
change the slope in a neighborhood of z. By the convexity of p(z) and q(z) then
neither p(z) nor q(z) can change slope in a neighborhood of z. But then z is an
interior point to S, a contradiction. �

Theorem 5.2.1 provides a simple solution method for maxpolynomial equations
(5.9). After finding all corners of p(z) ⊕ q(z), say β1 < · · · < βr , it remains
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Fig. 5.1 Solving
maxpolynomial equations

(1) to check which of them are in S, and
(2) if γ1 < · · · < γt are the corners in S then by selecting arbitrary interleaving

points α0, . . . , αt so that

α0 < γ1 < α1 < · · · < γt < αt

and checking whether αj ∈ S for j = 0, . . . , t , it is decided about each of the
intervals [γj−1, γj ] (j = 1, . . . , t +1) whether it is a subset of S. Here γ0 = −∞
and γt+1 = +∞.

Example 5.2.2 [64] Find all solutions to the equation

9 ⊕ 8 ⊗ z ⊕ 4 ⊗ z2 ⊕ z3 = 10 ⊕ 8 ⊗ z ⊕ 5 ⊗ z2.

If p(z) = 9 ⊕ 8 ⊗ z ⊕ 4 ⊗ z2 ⊕ z3 and q(z) = 10 ⊕ 8 ⊗ z ⊕ 5 ⊗ z2 then

p(z) ⊕ q(z) = 10 ⊕ 8 ⊗ z ⊕ 5 ⊗ z2 ⊕ z3

= (z ⊕ 2) ⊗ (z ⊕ 3) ⊗ (z ⊕ 5) .

All corners are solutions and by checking the interleaving points (say) 1,2.5,4,6
one can find S = [2,3] ∪ {5}.

5.3 Characteristic Maxpolynomial

5.3.1 Definition and Basic Properties

There are various ways of defining a characteristic polynomial in max-algebra,
briefly characteristic maxpolynomial [62, 99]. We will study the concept defined
in [62].
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Let A = (aij ) ∈ R
n×n

. Then the characteristic maxpolynomial of A is

χA(x) = maper(A ⊕ x ⊗ I ) = maper

⎛

⎜⎜⎜⎝

a11 ⊕ x a12 · · · a1n

a21 a22 ⊕ x · · · a2n

...
...

...

an1 an2 · · · ann ⊕ x

⎞

⎟⎟⎟⎠ .

It immediately follows from this definition that χA(x) is of the form

xn ⊕ δ1 ⊗ xn−1 ⊕ · · · ⊕ δn−1 ⊗ x ⊕ δn,

or briefly,
∑⊕

k=0,...,nδn−k ⊗ xk , where δ0 = 0. Hence the characteristic maxpolyno-
mial of an n × n matrix is a standard maxpolynomial with exponents 0,1, . . . , n,
degree n and length n + 1 or less.

Example 5.3.1 If

A =
⎛

⎝
1 3 2
0 4 1
2 5 0

⎞

⎠

then

χA(x) =maper

⎛

⎝
1 ⊕ x 3 2

0 4 ⊕ x 1
2 5 0 ⊕ x

⎞

⎠

= (1 ⊕ x) ⊗ (4 ⊕ x) ⊗ (0 ⊕ x) ⊕ 3 ⊗ 1 ⊗ 2

⊕ 2 ⊗ 0 ⊗ 5 ⊕ 2 ⊗ (4 ⊕ x) ⊗ 2 ⊕ (1 ⊕ x) ⊗ 1 ⊗ 5 ⊕ 3 ⊗ 0 ⊗ (0 ⊕ x)

=x3 ⊕ 4 ⊗ x2 ⊕ 6 ⊗ x ⊕ 8.

Theorem 5.3.2 [62] If A = (aij ) ∈ R
n×n

then

δk =
∑⊕

B∈Pk(A)

maper(B), (5.10)

for k = 1, . . . , n, where Pk(A) is the set of all principal submatrices of A of order k.

Proof The coefficient δk is associated with xn−k in χA(x) and therefore is the max-
imum of the weights of all permutations that select n − k symbols of x and k con-
stants from different rows and columns of a submatrix of A obtained by removing
the rows and columns of selected x. Since x only appear on the diagonal the corre-
sponding submatrices are principal. �

Hence we can readily find δn = maper(A) and δ1 = max(a11, a22, . . . , ann), but
other coefficients cannot be found easily from (5.10) as the number of matrices in
Pk(A) is

(
n
k

)
.
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If considered as a function, the characteristic maxpolynomial is a piecewise linear
convex function in which the slopes of the linear pieces are n and some (possibly
none) of the numbers 0,1, . . . , n − 1. Note that it may happen that δk = ε for all
k = 1, . . . , n and then χA(x) is just xn. We can easily characterize such cases:

Proposition 5.3.3 If A = (aij ) ∈ R
n×n

then χA(x) = xn if and only if DA is acyclic.

Proof If DA is acyclic then the weights of all permutations with respect to any
principal submatrix of A are ε and thus all δk = ε. If DA contains a cycle, say
(i1, . . . , ik, i1) for some k ∈ N then

maper (A (i1, . . . , ik)) > ε,

thus δk > ε by Theorem 5.3.2. �

Note that the coefficients δk are closely related to the best submatrix problem and
to the job rotation problem, see Sect. 2.2.3.

5.3.2 The Greatest Corner Is the Principal Eigenvalue

By Theorem 5.1.13 we know that the greatest corner of a maxpolynomial
p(z) = ∑⊕

r=0,...,pcr ⊗ zjr , p > 0, is

max
r=0,...,p−1

cr − cp

jp − jr

.

If p(x) = χA(x) where A = (aij ) ∈ R
n×n

then p = n, jr = r and cr = δn−r for
r = 0,1, . . . , n with cn = δ0 = 0. Hence the greatest corner of χA(x) is

max
r=0,...,n−1

δn−r

n − r

or, equivalently

max
k=1,...,n

δk

k
. (5.11)

We are ready to prove a remarkable property of characteristic maxpolynomials
resembling the one in conventional linear algebra. As a convention, the greatest
corner of a maxpolynomial with no corners (that is, λ(A) = ε, see Proposition 5.3.3)
is by definition ε.

Theorem 5.3.4 [62] If A = (aij ) ∈ R
n×n

then the greatest corner of χA(x) is λ(A).
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Proof The statement is evidently true if λ(A) = ε. Thus assume now that λ(A) >

ε, hence at least one corner exists. Let β be the greatest corner of χA(x) and
k ∈ {1, . . . , n}, then δk = maper(B), where B ∈ Pk(A). We have

maper(B) = w(π,B) = w(π1,B) ⊗ · · · ⊗ w(πs,B)

for some π ∈ ap(B) and its constituent cycles π1, . . . , πs . We also have

w(πj ,B) ≤ (λ(A))l(πj )

for all j = 1, . . . , s. Hence

δk = maper(B) ≤ (λ(A))l(π1)+···+l(πs) = (λ(A))k

and so

δk

k
≤ λ(A),

yielding using (5.11):

β ≤ λ(A).

Suppose now λ(A) = w(σ,A)
l(σ )

, σ = (i1, . . . , ir ), r ∈ {1, . . . , n}. Let

B = A(i1, . . . , ir ). Then

δr ≥ maper(B) ≥ w(σ,A) = (λ(A))l(σ ) = (λ(A))r .

Therefore

δr

r
≥ λ(A),

yielding by (5.11):

β ≥ λ(A),

which completes the proof. �

Example 5.3.5 The principal eigenvalue of

A =
⎛

⎝
2 1 4
1 0 1
2 2 1

⎞

⎠

is λ(A) = 3. The characteristic maxpolynomial is

χA(x) = x3 ⊕ 2 ⊗ x2 ⊕ 6 ⊗ x ⊕ 7 = (x ⊕ 1) ⊗ (x ⊕ 3)2

and the greatest corner is 3.
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5.3.3 Finding All Essential Terms of a Characteristic
Maxpolynomial

As already mentioned in Sect. 2.2.3, no polynomial method is known for finding
all coefficients of a characteristic maxpolynomial or, equivalently, to solve the job
rotation problem. Recall (see Sect. 2.2.3) that this question is equivalent to the best
principal submatrix problem (BPSM), which is the task to find the greatest opti-
mal values δk for the assignment problem of all k × k principal submatrices of A,
k = 1, . . . , n. It will be convenient now to denote by BPSM(k) the task of finding
this value for a particular integer k.

We will use the functional interpretation of a characteristic maxpolynomial to
derive a method for finding coefficients of this maxpolynomial corresponding to all
essential terms. Recall that as every maxpolynomial, the characteristic maxpolyno-
mial is a piecewise linear and convex function which can be written using conven-
tional notation as

χA(x) = max(δn, δn−1 + x, δn−2 + 2x, . . . , δ1 + (n − 1)x,nx).

If for some k ∈ {0, . . . , n} the term δn−k ⊗ xk is inessential, then

χA(x) =
∑⊕

i �=k

δn−i ⊗ xi

holds for all x ∈ R, and therefore all inessential terms may be ignored if χA(x) is
considered as a function. We now present an O(n2(m+n logn)) method for finding
all essential terms of a characteristic maxpolynomial for a matrix with m finite en-
tries. It then follows that this method solves BPSM(k) for those k ∈ {1, . . . , n}, for
which δn−k ⊗ xk is essential and, in particular, when all terms are essential then this
method solves BPSM(k) for all k = 1, . . . , n.

We will first discuss the case of finite matrices. Let A = (aij ) ∈ R
n×n be given.

For convenience we will denote χA(x) by z(x) and A ⊕ x ⊗ I by A(x) = (a(x)ij ).
Hence

z(x) := max
π

n∑

i=1

a(x)i,π(i)

and

a(x)ij :=
{

max(x, aii), for i = j,

aij , for i �= j.

Since z(x) is piecewise linear and convex and all its linear pieces are of the form
zk(x) := kx + δn−k for k = 0,1, . . . , n and constants δn−k , the maxpolynomial z(x)

has at most n corners. Recall that zn(x) := nx, that is, δ0 = 0. The main idea of
the method for finding all linear pieces of z(x) is based on the fact that it is easy to
evaluate z(x) for any real value of x as this is simply maper(A ⊕ x ⊗ I ), that is, the
optimal value for the assignment problem for A ⊕ x ⊗ I . By a suitable choice of
O(n) values of x we will be able to identify all linear pieces of z(x).
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Let x be fixed and π ∈ ap(A(x)) = ap(a(x)ij ) (recall that ap(A) denotes the
set of optimal permutations to the assignment problem for a square matrix A, see
Sect. 1.6.4). We call a diagonal entry a(x)ii of the matrix A(x) active, if x ≥ aii and
if this diagonal position is selected by π , that is, π(i) = i. All other entries will be
called inactive. If there are exactly k active values for a certain x and permutation
π then this means that z(x) = kx + δn−k = xk ⊗ δn−k , that is, the value of z(x) is
determined by the linear piece with the slope k. Here δn−k is the sum of n − k inac-
tive entries of A(x) selected by π . No two of these inactive entries can be from the
same row or column and they are all in the submatrix, say B , obtained by removing
the rows and columns of all active elements. Since all active elements are on the
diagonal, B is principal and the n − k inactive elements form a feasible solution to
the assignment problem for B . This solution is also optimal by optimality of π . This
yields the following:

Proposition 5.3.6 [20] Let x ∈ R and π ∈ Pn. If z(x) = maper(A(x)) =∑n
i=1 a(x)i,π(i), i1, . . . , ik are indices of all active entries and {j1, . . . , jn−k} =

N − {i1, . . . , ik} then A(j1, . . . , jn−k) is a solution to BPSM(n − k) for A and
δn−k = maper(A(j1, . . . , jn−k)).

There may, of course, be several optimal permutations for the same value of x

selecting different numbers of active elements which means that the value of z(x)

may be equal to the function value of several linear pieces with different slopes at x.
We will pay special attention to this question in Proposition 5.3.14 below.

Proposition 5.3.7 [20] If z(x) = zr (x) = zs(x) for some x ∈ R and integers r < s,
then there are no essential terms with the slope k ∈ (r, s) and x is a corner of z(x).

Proof Since zr(x) = δn−r + rx̄ = z(x) ≥ δn−k + kx̄ for every k, we have zr(x) =
δn−r +rx ≥ δn−k +kx = zk(x) for every x < x and k > r , thus z(x) ≥ zr(x) ≥ zk(x)

for every x < x and for every k > r .
Similarly, z(x) ≥ zs(x) ≥ zk(x) for every x > x and for every k < s. Hence,

z(x) ≥ zk(x) for every x and for every integer slope k with r + 1 ≤ k ≤ s − 1. �

For x ≤ ã = min(a11, a22, . . . , ann), z(x) is given by maxπ

∑n
i=1 ai,π(i) =

maper(A) = δn. Then obviously, z(x) = z0(x) = δn for x ≤ ã.
Now, let α∗ := maxij aij and let E be the matrix whose entries are all equal to 1.

For x ≥ α∗ the matrix A(x)−α∗ ·E (in conventional notation) has only nonnegative
elements on its main diagonal. All off-diagonal elements are negative. Therefore we
get z(x) = nx = zn(x) for x ≥ α∗. Note that for finding z(x) there is no need to
compute α∗.

The intersection point of z0(x) with zn(x) is x1 = δn

n
. We find z(x1) by solving

the assignment problem maxπ

∑n
i=1 a(x1)i,π(i).

Corollary 5.3.8 If z(x1) = z0(x1) then z(x) = max(z0(x), zn(x)).
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Thus, if z(x1) = z0(x1), we are done and the function z(x) has the form

z(x) =
{

z0(x), for x ≤ x1,

zn(x), for x ≥ x1.
(5.12)

Otherwise we have found a new linear piece of z(x). Let us call it zk(x) := kx +
δn−k , where k is the number of active elements in the corresponding optimal solution
and δn−k is given by δn−k := z(x1) − kx1. We remove x1 from the list.

Next we intersect zk(x) with z0(x) and with zn(x). Let x2 and x3, respectively,
be the corresponding intersection points. We generate a list L := (x2, x3). Let us
choose an element from the list, say x2, and determine z(x2). If z(x2) = z0(x2), then
x2 is a corner of z(x). By Proposition 5.3.7 this means that there are no essential
terms of the characteristic maxpolynomial with slopes between 0 and k. We delete
x2 from L and process a next point from L. Otherwise we have found a new linear
piece of z(x) and can proceed as above. Thus, for every point in the list we either
find a new slope which leads to two new points in the list or we detect that the
currently investigated point is a corner of L. In such a case this point will be deleted
and no new points are generated. If the list L is empty, we are done and we have
already found the function z(x). Every point of the list either leads to a new slope
(and therefore to two new points in L) or it is a corner of z(x), in which case this
point is deleted from L. Therefore only O(n) entries will enter and leave the list.
This means the procedure stops after investigating at most O(n) linear assignment
problems. Thus we have shown:

Theorem 5.3.9 [20] All essential terms of the characteristic maxpolynomial of
A ∈ R

n×n can be found in O(n4) steps.

The proof of the following statement is straightforward.

Proposition 5.3.10 Let A = (aij ), B = (bij ) ∈ R
n×n, r , s ∈ N , ars ≤ brs , aij = bij

for all i, j ∈ N , i �= r , j �= s. If π ∈ ap(A) satisfies π(r) = s then π ∈ ap(B).

Corollary 5.3.11 If id ∈ ap(A(x)) then id ∈ ap(A(x)) for all x ≥ x.

Remarks

1. A diagonal element of A(y) may not be active for some y with y > x even if it
is active in A(x). For instance, consider the following 4 × 4 matrix A:

⎛

⎜⎜⎝

0 0 0 29
0 8 20 0
0 0 12 28

29 28 0 16

⎞

⎟⎟⎠ .

For x = 4 the unique optimal permutation is π = (1)(2,3,4) of value 80, for
which the first diagonal element is active. For y = 20 the unique optimal permu-
tation is π = (1,4)(2)(3) of value 98, in which the second and third, but not the
first, diagonal elements of the matrix are active.
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2. If an intersection point x is found by intersecting two linear functions with the
slopes k and k + 1 respectively, this point is immediately deleted from the list L

since it cannot lead to a new essential term (as there is no slope strictly between
k and k + 1).

3. If at an intersection point y the slope of z(x) changes from k to l with l − k ≥ 2,
then an upper bound for δn−r related to an inessential term rx + δn−r , k < r < l,
can be obtained by z(y) − ry. Due to the convexity of the function z(x) this is
the least upper bound on δn−r which can be obtained by using the values of z(x).

Taking into account our previous discussion, we arrive at the following algorithm.
The values x which have to be investigated are stored as triples (x, k(l), k(r)) in a
list L. The interpretation of such a triple is that x has been found as the intersection
point of two linear functions with the slopes k(l) and k(r), k(l) < k(r).

Algorithm 5.3.12 ESSENTIAL TERMS
Input: A = (aij ) ∈ R

n×n.
Output: All essential terms of the characteristic maxpolynomial of A, in the form
kx + δn−k .

1. Solve the assignment problem with the cost matrix A and set δn := maper(A)

and z0(x) := δn.
2. Determine x1 as the intersection point of z0(x) and zn(x) := nx.
3. Let L := {(x1,0, n)}.
4. If L = ∅, stop. The function z(x) has been found. Otherwise choose an arbitrary

element (xi, ki(l), ki(r)) from L and remove it from L.
5. If ki(r) = ki(l) + 1, then (see Remark 2 above) go to step 4. (xi is a corner

of z(x); for x close to xi the function z(x) has slope ki(l) for x < xi , and ki(r)

for x > xi .)
6. Find z(xi) = maper(A(xi)). Take an arbitrary optimal permutation to the assign-

ment problem for the matrix A(xi) and let ki be the number of active elements
in this solution. Set δn−ki

:= z(xi) − kixi .
7. Set zi(x) := kix + δn−ki

.
8. Intersect zi(x) with the lines having slopes ki(l) and ki(r). Let y1 and y2 be the

intersection points, respectively. Add the triples (y1, ki(l), ki) and (y2, ki, ki(r))

to the list L and go to step 4. [See a refinement of this step after Proposi-
tion 5.3.14.]

Example 5.3.13 Let

A :=

⎛

⎜⎜⎝

0 4 −2 3
2 1 3 −1

−2 −3 1 0
7 −2 8 4

⎞

⎟⎟⎠ .
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We solve the assignment problem for A by the Hungarian method and transform A

to a normal form. The asterisks indicate entries selected by an optimal permutation:

⎛

⎜⎜⎝

−4 0 −6 −1
−1 −2 0 −4
−3 −4 0 −1
−1 −10 0 −4

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

−3 0∗ −6 0
0∗ −2 0 −3

−2 −4 0 0∗
0 −10 0∗ −3

⎞

⎟⎟⎠ .

Thus z0(x) = 14.
Now we solve 14 = 4x and we get x1 = 3.5. By solving the assignment problem

for x1 = 3.5 we get:

⎛

⎜⎜⎝

3.5 4 −2 3
2 3.5 3 −1

−2 −3 3.5 0
7 −2 8 4

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

−0.5 0 −6 −1
−1.5 0 −0.5 −4.5
−5.5 −6.5 0 −3.5

−1 −10 0 −4

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

0 0 −6 0
−1 0 −0.5 −3.5
−5 −6.5 0 −2.5

−0.5 −10 0 −3

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

0 −0.5 −6.5 0∗
−0.5 0∗ −0.5 −3
−4.5 −6.5 0∗ −2

0∗ −10 0 −2.5

⎞

⎟⎟⎠ .

Thus z2(3.5) = 17 and we get z2(x) := 2x + 10. Intersecting this function with
z0(x) and z4(x) yields the two new points x2 := 2 (solving 14 = 2x + 10) and
x3 := 5 (solving 2x + 10 = 4x). Investigating x = 2 shows that the slope changes at
this point from 0 to 2. Thus we have here a corner of z(x). Finding the value z(5)

amounts to solving the assignment problem with the cost matrix

⎛

⎜⎜⎝

5 4 −2 3
2 5 3 −1

−2 −3 5 0
7 −2 8 5

⎞

⎟⎟⎠ .
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This assignment problem yields the solution z(5) = 20 = z4(5). Thus no new essen-
tial term has been found and we have z(x) completely determined as

z(x) =
⎧
⎨

⎩

14 for 0 ≤ x ≤ 2
2x + 10 for 2 ≤ x ≤ 5
4x for x ≥ 5.

In max-algebraic terms z(x) = 14 ⊕ 10 ⊗ x2 ⊕ x4.

The following proposition enables us to make a computational refinement of the
algorithm ESSENTIAL TERMS. We refer to the assignment problem terminology
introduced in Sect. 1.6.4.

Proposition 5.3.14 Let x ∈ R and let B = (bij ) be a normal form of A(x). Let
C = (cij ) be the matrix obtained from B as follows:

cij =
⎧
⎨

⎩

0, if bij = 0 and (i, j) is inactive,
1, if (i, j) is active,
ε, otherwise.

Then every π ∈ ap(C) [π ∈ ap(−C)] is an optimal solution to the assignment prob-
lem for A(x) with maximal [minimal] number of active elements.

Proof The statement immediately follows from the definitions of C and of a normal
form of a matrix. �

If for some value of x there are two or more optimal solutions to the assignment
problem for A(x) with different numbers of active elements then using Proposi-
tion 5.3.14 we can find an optimal solution with the smallest number and another
one with the greatest number of active elements. This enables us to find two new
lines (rather than one) in step 6 of Algorithm 5.3.12:

(a) zk(x) := kx + δn−k , where k is the minimal number of active elements of an
optimal solution to the assignment problem for A(x) and δn−k is given by
δn−k := z(x) − kx;

(b) zk′(x) := k′x + δn−k′ , where k′ is the maximal number of active elements of
an optimal solution to the assignment problem for A(x) and δn−k′ is given by
δn−k′ := z(x) − k′x.

In step 8 of Algorithm 5.3.12 we then intersect zi(x) with the line having the
slope ki(l) and zk′(x) with the line having slope ki(r).

So far we have assumed in this subsection that all entries of the matrix are finite.
If some (but not all) entries of A are ε, the same algorithm as in the finite case can
be used except that the lowest order finite term has to be found since a number of the
coefficients of the characteristic maxpolynomial may be ε. The following theorem
is useful here. In this theorem we denote

δ = min(0, nAmin), δ = max(0, nAmax),
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where Amin [Amax] is the least [greatest] finite entry of A. We will also denote in
this and the next subsection

K = {k; δk finite}
and

k0 = maxK. (5.13)

Clearly, the lowest-order finite term of the characteristic maxpolynomial is
zk0(x) = δk0 ⊗ xn−k0 .

Theorem 5.3.15 [38] If A ∈ R
n×n

then n − k0 is the number of active elements in
A(x), where x is any real number satisfying

x < δ − δ

and δk0 = z(x) − (n − k0)x.

Proof It is sufficient to prove that if x0 is a point of intersection of two different
linear pieces of χA(x) then

x0 ≥ δ − δ.

Suppose that

δr + (n − r)x0 = δs + (n − s)x0

for some r , s ∈ {0,1, . . . , n}, r > s. Then

(r − s)x0 = δr − δs .

If Amin ≤ 0 then δr ≥ sAmin ≥ nAmin = δ. If Amin ≥ 0 then δr ≥ sAmin ≥ 0 = δ.
Hence δr ≥ δ.

If Amax ≤ 0 then δs ≤ rAmax ≤ 0 = δ. If Amax ≥ 0 then δs ≤ rAmax ≤ nAmax =
δ. Hence δs ≤ δ.

We deduce that δr − δs ≥ δ − δ and the rest follows from the fact that r − s ≥ 1
and δ − δ ≤ 0. �

It follows from this result that for a general matrix, k0 can be found using
O(n3) operations. Note that for symmetric matrices this problem can be con-
verted to the maximum cardinality bipartite matching problem and thus solved in
O(n2.5/

√
logn) time [37].

Theorem 5.3.15 enables us to modify the beginning of the algorithm ESSEN-
TIAL TERMS for A ∈ R

n×n
by finding the intersection of the lowest order finite

term zk0(x) (rather than z0(x)) with xn. Moreover, instead of considering the classi-
cal assignment problem we rather formulate the problem in step 6 of the algorithm
as the maximum weight perfect matching problem in a bipartite graph (N,N;E).
This graph has an arc (i, j) ∈ E if and only if aij is finite. It is known [1] that the
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maximum weight perfect matching problem in a graph with m arcs can be solved
by a shortest augmenting path method using Fibonacci heaps in O(n(m + n logn))

time. Since in the worst case O(n) such maximum weight perfect matching prob-
lems must be solved, we get the following result.

Theorem 5.3.16 [20] If A ∈ R
n×n

has m finite entries, then all essential terms of
χA(x) can be found in O(n2(m + n logn)) time.

5.3.4 Special Matrices

Although no polynomial method seems to exist for finding all coefficients of a char-
acteristic maxpolynomial for general matrices or even for matrices over {0,−∞},
there are a number of special cases for which this problem can be solved efficiently.
These include permutation, pyramidal, Hankel and Monge matrices and special ma-
trices over {0,−∞} [28, 37, 116].

We briefly discuss two special types: diagonally dominant matrices and matrices
over {0,−∞}.

Proposition 5.3.17 If A = (aij ) ∈ R
n×n

is diagonally dominant then so are all prin-
cipal submatrices of A and all coefficients of the characteristic maxpolynomial can
be found by the formula

δk = ai1i1 + ai2i2 + · · · + aikik ,

for k = 1, . . . , n, where ai1i1 ≥ ai2i2 ≥ · · · ≥ ainin .

Proof Let A be a diagonally dominant matrix, B = A(i1, i2, . . . , ik) for some in-
dices i1, i2, . . . , ik and suppose that id /∈ ap(B). Take any π ∈ ap(B) and extend π

to a permutation σ of the set N by setting σ(i) = i for every i /∈ {i1, i2, . . . , ik}.
Then obviously σ is a permutation of a weight greater than that of id ∈ Pn, a con-
tradiction. The formula follows. �

Matrices over T = {0,−∞} have implications for problems outside max-algebra
and in particular for the conventional permanent, which for a real matrix A = (aij )

we denote as usual by per(A), that is

per(A) =
∑

π∈Pn

∏

i∈N

ai,π(i).

If A = (aij ) ∈ T n×n then δk = 0 or δk = −∞ for every k = 1, . . . , n. Clearly,
δk = 0 if and only if there is a k × k principal submatrix of A with k independent
zeros, that is, with k zeros selected by a permutation or, equivalently, k zeros no two
of which are either from the same row or from the same column.
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It is easy to see that if A = (aij ) ∈ T n×n then B = 2A = (2aij ) = (bij ) is a zero-
one matrix. If π ∈ Pn then

∏

i∈N

bi,π(i) =
∏

i∈N

2ai,π(i) = 2
∑

i∈N ai,π(i) .

Hence per(B) > 0 is equivalent to

(∃π ∈ Pn) (∀i ∈ N) bi,π(i) = 1.

But this is equivalent to

(∃π ∈ Pn) (∀i ∈ N) ai,π(i) = 0.

Thus, the task of finding the coefficient δk of the characteristic maxpolynomial
of a square matrix over T is equivalent to the following problem expressed in terms
of the classical permanents:

PRINCIPAL SUBMATRIX WITH POSITIVE PERMANENT: Given an n × n

zero-one matrix A and a positive integer k (k ≤ n), is there a k × k principal sub-
matrix B of A with positive (conventional) permanent?

Another equivalent version for matrices over T is graph-theoretical: Since every
permutation is a product of cycles, δk = 0 means that in DA (and FA) there is a set
of pairwise node-disjoint cycles covering exactly k nodes. Hence deciding whether
δk = 0 is equivalent to the following:

EXACT CYCLE COVER: Given a digraph D with n nodes and a positive integer
k (k ≤ n), is there a set of pairwise node-disjoint cycles covering exactly k nodes
of D?

Finally, it may be useful to see that the value of k0 defined by (5.13) can explicitly
be described for matrices over {0,−∞}:

Theorem 5.3.18 [28] If A ∈ T n×n then k0 = n + maper(A ⊕ (−1) ⊗ I ).

Proof Since all finite δk are 0 in conventional notation we have:

χA(x) = max
k∈K

(n − k) x.

Therefore, for x < 0:

χA(x) = x.min
k

(n − k) = x.(n − k0),

from which the result follows by setting x = −1. �

5.3.5 Cayley–Hamilton in Max-algebra

A max-algebraic analogue of the Cayley–Hamilton Theorem was proved in [119]
and [140], see also [8]. Some notation used here has been introduced in Sect. 1.6.4.



5.3 Characteristic Maxpolynomial 125

Let A = (aij ) ∈ R
n×n and v ∈ R. Let us denote

p+(A,v) = ∣∣{π ∈ P +
n ;w(π,A) = v}∣∣

and

p−(A,v) = ∣∣{π ∈ P −
n ;w(π,A) = v}∣∣ .

The following equation is called the (max-algebraic) characteristic equation for A

(recall that max∅ = ε):

λn ⊕
∑⊕

k∈J

cn−k ⊗ λk = c1 ⊗ λn−1 ⊕
∑⊕

k∈J

cn−k ⊗ λk,

where

ck = max

⎧
⎨

⎩v;
∑

B∈Pk(A)

p+(B, v) �=
∑

B∈Pk(A)

p−(B, v)

⎫
⎬

⎭ , k = 1, . . . , n,

dk = (−1)k

⎛

⎝
∑

B∈Pk(A)

p+(B, ck) −
∑

B∈Pk(A)

p−(B, ck)

⎞

⎠ , k = 1, . . . , n

and

J = {j ;dj > 0}, J = {j ;dj < 0}.

Theorem 5.3.19 (Cayley–Hamilton in max-algebra) Every real square matrix A

satisfies its max-algebraic characteristic equation.

An application of this result in the theory of discrete-event dynamic systems can
be found in Sect. 6.4.

In general it is not easy to find a max-algebraic characteristic equation for a
matrix. However, as the next theorem shows, unlike for characteristic maxpolyno-
mials it is relatively easy to do so for matrices over T = {0,−∞}. Given a matrix
A = (aij ), the symbol 2A will stand for the matrix (2aij ).

Theorem 5.3.20 [28] If A ∈ T n×n then the coefficients dk in the max-algebraic
characteristic equation for A are the coefficients at λn−k of the conventional char-
acteristic polynomial for the matrix 2A.

Proof If A ∈ T n×n then all finite ck are 0. Note that if k ∈ N and maper(B) = ε

for all B ∈ Pk(A) then the term ck ⊗ λn−k does not appear on either side of the
equation. If B = (bij ) ∈ T k×k then p+(B,0) is the number of even permutations
that select only zeros from B . The matrix 2B is zero-one, zeros corresponding
to −∞ in B and ones corresponding to zeros in B . Thus p+(B,0) is the num-
ber of even permutations that select only ones from 2B . Similarly for p−(B,0).
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Since 2B is zero-one, all terms in the standard determinant expansion of 2B are ei-
ther 1 (if the corresponding permutation is even and selects only ones), or −1 (if the
corresponding permutation is odd and selects only ones), or 0 (otherwise). Hence
det 2B = p+(B,0) − p−(B,0). Since

dk = (−1)k
∑

B∈Pk(A)

(
p+(B,0) − p−(B,0)

)
,

it follows that

dk = (−1)k
∑

B∈Pk(A)

det 2B,

which is the coefficient at λn−k of the conventional characteristic polynomial of the
matrix 2A. �

5.4 Exercises

Exercise 5.4.1 Find the standard form of

p(z) = 3 ⊗ z2.5 ⊕ 2 ⊗ z4.7 ⊕ 4 ⊗ z6.2 ⊕ 1 ⊗ z8.3

and then factorize it using RECTIFICATION and RESOLUTION. [1 ⊗ z2.5 ⊗ (2 ⊕
1 ⊗ z2.2 ⊕ 3 ⊗ z3.7 ⊕ z5.8); 1 ⊗ z2.5 ⊗ (− 1

3.7 ⊕ x)3.7 ⊗ ( 3
2.1 ⊕ z)2.1]

Exercise 5.4.2 Find the characteristic maxpolynomial and characteristic equa-
tion for the following matrices; factorize the maxpolynomial and check whether
χA(x) = LHS ⊕ RHS of the maxpolynomial equation:

(a) A =
⎛

⎝
3 −2 1
4 0 5
3 1 2

⎞

⎠. [χA(x) = 9 ⊕ 6 ⊗ x ⊕ 3 ⊗ x2 ⊕ x3 = (3 ⊕ x)3; λ3 ⊕ 9 =

3 ⊗ λ2 ⊕ 6 ⊗ λ]

(b) A =
⎛

⎝
1 0 −3
2 3 1
4 −2 0

⎞

⎠. [χA(x) = 5⊕4⊗x ⊕3⊗x2 ⊕x3 = (1⊕x)2 ⊗ (3⊕x);

λ3 ⊕ 4 ⊗ λ = 3 ⊗ λ2 ⊕ 5]

(c) A =
⎛

⎝
1 2 5

−1 0 3
1 1 1

⎞

⎠. [χA(x) = 6 ⊕ 6 ⊗ x ⊕ 1 ⊗ x2 ⊕ x3 = (3 ⊕ x)2 ⊗ (0 ⊕ x);

λ3 = 1 ⊗ λ2 ⊕ 6 ⊗ λ]

Exercise 5.4.3 A square matrix A is called strictly diagonally dominant if ap(A) =
{id}. Find a formula for the characteristic equation of strictly diagonally dominant
matrices. [λn ⊕ δ2 ⊗λn−2 ⊕ δ4 ⊗λn−4 ⊕· · · = δ1 ⊗λn−1 ⊕ δ3 ⊗λn−3 ⊕ δ5 ⊗λn−5 ⊕
· · · where δk = the sum of k greatest diagonal values]
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