
Chapter 4
Eigenvalues and Eigenvectors

This chapter provides an account of the max-algebraic eigenvalue-eigenvector the-
ory for square matrices over R. The algorithms presented and proved here enable us
to find all eigenvalues and bases of all eigenspaces of an n×n matrix in O(n3) time.
These results are of fundamental importance for solving the reachability problems
in Chap. 8 and elsewhere.

We start with definitions and basic properties of the eigenproblem, then continue
by proving one of the most important results in max-algebra, namely that for every
matrix the maximum cycle mean is the greatest eigenvalue, which motivates us to
call it the principal eigenvalue. We then show how to describe the corresponding
(principal) eigenspace. Next we present the Spectral Theorem, that enables us to find
all eigenvalues of a matrix. It also makes it possible to characterize matrices with
finite eigenvectors. Finally, we discuss how to efficiently describe all eigenvectors
of a matrix.

4.1 The Eigenproblem: Basic Properties

Given A ∈ R
n×n

, the task of finding the vectors x ∈ R
n
, x �= ε (eigenvectors) and

scalars λ ∈ R (eigenvalues) satisfying

A ⊗ x = λ ⊗ x (4.1)

is called the (max-algebraic) eigenproblem. For some applications it may be suffi-
cient to find one eigenvalue-eigenvector pair; however, in this chapter we show that
all eigenvalues can be found and all eigenvectors can efficiently be described for
any matrix.

The eigenproblem is of key importance in max-algebra. It has been studied since
the 1960’s [58] in connection with the analysis of the steady-state behavior of pro-
duction systems (see Sect. 1.3.3). Full solution of the eigenproblem in the case of
irreducible matrices has been presented in [60] and [98], see also [11, 61] and [144].
A general spectral theorem for reducible matrices has appeared in [84] and [12], and
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72 4 Eigenvalues and Eigenvectors

partly in [48]. An application of the max-algebraic eigenproblem to the conventional
eigenproblem and in music theory can be found in [79].

For A ∈ R
n×n

and λ ∈ R we denote by V (A,λ) the set consisting of ε and all
eigenvectors of A corresponding to λ, and by �(A) the set of all eigenvalues of A,
that is

V (A,λ) =
{
x ∈ R

n;A ⊗ x = λ ⊗ x
}

and

�(A) =
{
λ ∈ R;V (A,λ) �= {ε}

}
.

We also denote by V (A) the set consisting of ε and all eigenvectors of A, that is

V (A) =
⋃

λ∈�(A)

V (A,λ).

Finite eigenvectors are of special significance for both theory and applications
and we denote:

V +(A,λ) = V (A,λ) ∩ R
n

and

V +(A) = V (A) ∩ R
n.

We start by presenting basic properties of eigenvalues and eigenvectors. The set
{α ⊗ x;x ∈ S} for α ∈ R and S ⊆ R

n
will be denoted α ⊗ S.

Proposition 4.1.1 Let A,B ∈ R
n×n

,α ∈ R, λ,μ ∈ R and x, y ∈ R
n
. Then

(a) V (α ⊗ A) = V (A),
(b) �(α ⊗ A) = α ⊗ �(A),
(c) V (A,λ) ∩ V (B,μ) ⊆ V (A ⊕ B,λ ⊕ μ),
(d) V (A,λ) ∩ V (B,μ) ⊆ V (A ⊗ B,λ ⊗ μ),
(e) V (A,λ) ⊆ V (Ak,λk) for all integers k ≥ 0,
(f) x ∈ V (A,λ) =⇒ α ⊗ x ∈ V (A,λ),
(g) x, y ∈ V (A,λ) =⇒ x ⊕ y ∈ V (A,λ).

Proof If A ⊗ x = λ ⊗ x then (α ⊗ A) ⊗ x = (α ⊗ λ) ⊗ x which proves (a) and (b).
If A ⊗ x = λ ⊗ x and B ⊗ x = μ ⊗ x then

(A ⊕ B) ⊗ x = A ⊗ x ⊕ B ⊗ x

= λ ⊗ x ⊕ μ ⊗ x

= (λ ⊕ μ) ⊗ x

and

(A ⊗ B) ⊗ x = A ⊗ (B ⊗ x)
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= A ⊗ μ ⊗ x

= μ ⊗ A ⊗ x

= μ ⊗ λ ⊗ x

which prove (c) and (d). Statement (e) follows by a repeated use of (d) and setting
A = B .

If A ⊗ x = λ ⊗ x then A ⊗ (α ⊗ x) = λ ⊗ (α ⊗ x) which proves (f).
Finally, if A ⊗ x = λ ⊗ x and A ⊗ y = λ ⊗ y then

A ⊗ (x ⊕ y) = A ⊗ x ⊕ A ⊗ y

= λ ⊗ (x ⊕ y)

and (g) follows. �

It follows from Proposition 4.1.1 that V (A,λ) is a subspace for every λ ∈ �(A);
it will be called an eigenspace (corresponding to the eigenvalue λ).

Remark 4.1.2 By (c) and (e) of Proposition 4.1.1 we have: If A ∈ R
n×n

and
ε < λ(A) ≤ 0 then V (A) ⊆ V (�(A)). In particular,

V (Aλ,0) ⊆ V (�(Aλ),0).

The next statement summarizes spectral properties that are unaffected by a si-
multaneous permutation of the rows and columns.

Proposition 4.1.3 Let A,B ∈ R
n×n

and B = P −1 ⊗ A ⊗ P , where P is a permu-
tation matrix. Then

(a) A is irreducible if and only if B is irreducible.
(b) The sets of cycle lengths in DA and DB are equal.
(c) A and B have the same eigenvalues.
(d) There is a bijection between V (A) and V (B) described by:

V (B) =
{
P −1 ⊗ x;x ∈ V (A)

}
.

Proof To prove (a) and (b) note that B is obtained from A by simultaneous permuta-
tions of the rows and columns. Hence DB differs from DA by the numbering of the
nodes only and the statements follow. For (c) and (d) we observe that B ⊗ z = λ⊗ z

if and only if A ⊗ P ⊗ z = λ ⊗ P ⊗ z, that is, z ∈ V (B) if and only if z = P −1 ⊗ x

for some x ∈ V (A). �

Remark 4.1.4 The eigenvectors as defined by (4.1) are also called right eigenvectors
in contrast to left eigenvectors that are defined by the equation

yT ⊗ A = yT ⊗ λ.
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By the rules for transposition we have that y is a left eigenvector of A if and only
if y is a right eigenvector of AT (corresponding to the same eigenvalue), and hence
the task of finding left eigenvectors for A is converted to the task of finding right
eigenvectors for AT .

4.2 Maximum Cycle Mean is the Principal Eigenvalue

When solving the eigenproblem a crucial role is played by the concepts of the maxi-
mum cycle mean and that of a definite matrix. The aim of this section is to prove that
the maximum cycle mean is an eigenvalue of every square matrix over R. We will
first solve the extreme case when λ(A) = ε and then we prove that the columns
of �(Aλ) with zero diagonal entries are eigenvectors corresponding to λ(A) if
λ(A) > ε.

Recall that the maximum cycle mean of A = (aij ) ∈ R
n×n

is

λ(A) = max
ai1i2 + ai2i3 + · · · + aik−1ik + aiki1

k

where the maximization is taken over all (elementary) cycles (i1, . . . , ik, i1) in DA

(k = 1, . . . , n), see Lemma 1.6.2. Due to the convention max∅ = ε, it follows from
this definition that λ(A) = ε if and only if DA is acyclic.

Lemma 4.2.1 Let A = (aij ) ∈ R
n×n

have columns A1,A2, . . . ,An. If λ(A) = ε

then �(A) = {ε}, at least one column of A is ε and the eigenvectors of A are exactly
the vectors (x1, . . . , xn)

T ∈ R
n
, x �= ε such that xj = ε whenever Aj �= ε (j ∈ N ).

Hence V (A,ε) = {G⊗z; z ∈ R
n}, where G ∈ R

n×n
has columns g1, g2, . . . and for

all j ∈ N :

gj =
{

ej , if Aj = ε,

ε, if Aj �= ε.

Proof Suppose λ(A) = ε and A ⊗ x = λ ⊗ x for some λ ∈ R, x �= ε. Hence

max
j=1,...,n

(
aij + xj

) = λ + xi (i = 1, . . . , n).

For every i ∈ N there is a j ∈ N such that

aij + xj = λ + xi.

Thus if, say xi1 > ε, and i = i1 then there are i2, i3, . . . such that

aii i2 + xi2 = λ + xi1

ai2i3 + xi3 = λ + xi2

. . . .
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where xi1, xi2, xi3, . . . > ε. This process will eventually cycle. Let us assume without
loss of generality that the cycle is (i1, . . . , ik, ik+1 = i1). Hence the last equation in
the above system is

aiki1 + xi1 = λ + xik .

In all these equations both sides are finite. If we add them up and simplify, we get

ai1i2 + ai2i3 + · · · + aik−1ik + aiki1 = kλ

showing that a cycle in DA exists, a contradiction to λ(A) = ε. Therefore
�(A) ∩ R = ∅. At the same time A has an ε column by Lemma 1.5.3. If the j th
column is ε then A ⊗ x = λ(A) ⊗ x for any vector x whose components are all ε,
except for the j th which may be of any finite value. Hence �(A) = {ε} and the rest
of the lemma follows. �

Since Lemma 4.2.1 completely solves the case λ(A) = ε, we may now assume
that we deal with matrices whose maximum cycle mean is finite. Recall that the
matrix Aλ = (λ(A))−1 ⊗ A is definite for any A ∈ R

n×n
whenever λ(A) > ε (The-

orem 1.6.5).

Proposition 4.2.2 Let A ∈ R
n×n

and λ(A) > ε. Then

V (A) = V (λ(A)−1 ⊗ A).

Proof The statement follows from part (a) of Proposition 4.1.1. �

Thus by Lemma 4.2.1, Proposition 4.1.1 (parts (a) and (b)) and Proposition 4.2.2
the task of finding all eigenvalues and eigenvectors of a matrix has been reduced to
the same task for definite matrices.

Recall that �(A) was defined in Sect. 1.6.2 as the series A ⊕ A2 ⊕ A3 ⊕ · · · and
that

�(A) = A ⊕ A2 ⊕ · · · ⊕ An

if and only if λ(A) ≤ 0 (Proposition 1.6.10).
Let us denote the columns of �(A) = (γij ) by g1, . . . , gn. Recall that if A is

definite then the values γij (i, j ∈ N ) represent the weights of heaviest i −j paths in
DA (Sect. 1.6.2). The significance of �(A) for matrices with λ(A) ≤ 0 is indicated
by the fact that for such matrices

A ⊗ �(A) = A2 ⊕ · · · ⊕ An+1 ≤ �(A)

due to (1.20), thus yielding

A ⊗ gj ≤ gj for every j ∈ N. (4.2)

An important point of the max-algebraic eigenproblem theory is that in (4.2)
actually equality holds whenever A is definite and j ∈ Nc(A):
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Lemma 4.2.3 Let A = (aij ) ∈ R
n×n

. If A is definite, g1, . . . , gn are the columns of
�(A) and j ∈ Nc(A) then A ⊗ gj = gj .

Proof Let j ∈ Nc(A) and i ∈ N . Then by (4.2)

max
r=1,...,n

(air + γrj ) ≤ γij

and we need to prove that actually equality holds. We may assume without loss
of generality γij > ε (otherwise the wanted equality follows). Let (i, k, . . . , j) be a
heaviest i − j path. If k = j then γij = aij = aij +γjj . If k �= j then γij = aik +γkj .
In each case there is an r such that air + γrj = γij . �

Before we summarize our results in the main statement of this section, we give a
practical description of the set of critical nodes Nc(A). Since there are no cycles of
weight more than 0 in DA for definite matrices A but at least one has weight 0, we
have then that for a definite matrix A at least one diagonal entry in �(A) is 0 and all
diagonal entries are 0 or less since the kth diagonal entry is the greatest weight of a
cycle in DA containing node k.

It also follows for any definite matrix A that zero diagonal entries in �(A) exactly
correspond to critical nodes, that is, we have

Nc(A) = {j ∈ N;γjj = 0}. (4.3)

By Lemma 4.2.3 zero is an eigenvalue of every definite matrix. Hence Proposi-
tion 4.1.1 (part 2), Lemmas 4.2.1, 4.2.2, 1.6.6 and 4.2.3 and (4.3) imply:

Theorem 4.2.4 λ(A) is an eigenvalue for any matrix A ∈ R
n×n

. If λ(A) > ε then
up to n eigenvectors of A corresponding to λ(A) can be found among the columns
of �(Aλ). More precisely, every column of �(Aλ) with zero diagonal entry is an
eigenvector of A with corresponding eigenvalue λ(A).

In view of Theorem 4.2.4 we will call λ(A) the principal eigenvalue of A.
Note that when the result of Theorem 4.2.4 is generalized to matrices over lin-

early ordered commutative groups then the concept of radicability of the underlying
group (see Sect. 1.4) is crucial, since otherwise it is not possible to guarantee the
existence of the maximum cycle mean. Therefore in groups that are not radicable,
such as the additive group of integers, an eigenvalue of a matrix may not exist.

4.3 Principal Eigenspace

The results of the previous section enable us to present a complete description of all
eigenvectors corresponding to the principal eigenvalue. Such eigenvectors will be
called principal and V (A,λ(A)) will be called the principal eigenspace of A. Our
aim in this section is to describe bases of V (A,λ(A)).



4.3 Principal Eigenspace 77

The columns of �(Aλ) with zero diagonal entry are principal eigenvectors by
Theorem 4.2.4. We will call them the fundamental eigenvectors [60] of A (FEV).
Clearly, every max-combination of fundamental eigenvectors is also a principal
eigenvector.

We will use Theorem 4.2.4 and

• prove that there are no principal eigenvectors other than max-combinations of
fundamental eigenvectors,

• identify fundamental eigenvectors that are multiples of the others, and
• prove that by removing fundamental eigenvectors that are multiples of the others

we produce a basis of the principal eigenspace, that is, none of the remaining
columns is a max-combination of the others.

We start with a technical lemma.

Lemma 4.3.1 [65] Let A ∈ R
n×n

, λ(A) > ε and g1, . . . , gn be the columns of
�(Aλ) = (γij ). If x = (x1, . . . , xn)

T ∈ V (A,λ(A)) and xi > ε (i ∈ N ) then there
is an s ∈ Nc(A) such that

xi = xs + γis .

Proof Let Aλ = (dij ) and i ∈ N , xi > ε. Then Aλ ⊗ x = x by Proposition 4.1.1
(parts (a) and (b)) and Nc(A) = Nc(Aλ) by Lemma 1.6.6. This implies that there is
a sequence of indices i1 = i, i2, . . . such that

xi1 = di1i2 + xi2

xi2 = di2i3 + xi3

. . .

(4.4)

This sequence will eventually cycle. Let us assume that the cycle is

(ir , . . . , ik, ik+1 = ir ).

For this subsequence we have

xir = dir ir+1 + xir+1

. . .

xik = dikir + xir .

In all these equations both sides are finite. If we add them up and simplify, we get

dir ir+1 + · · · + dikir = 0

and hence ik ∈ Nc(Aλ) = Nc(A).
If we add up the first k − 1 equations in (4.4) and simplify, we get

xi1 = di1i2 + · · · + dik−1ik + xik .
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Since di1i2 + · · · + dik−1ik is the weight of an i1 − ik path in DAλ and γi1ik is the
weight of a heaviest i1 − ik path, we have

xi1 ≤ γi1ik + xik .

At the same time x ∈ V (�(Aλ)) (see Remark 4.1.2) and so

xi1 =
∑⊕

j∈N

γi1j ⊗ xj ≥ γi1ik + xik .

Hence ik is the sought s. �

We are ready to prove that there are no principal eigenvectors other than max-
combinations of fundamental eigenvectors:

Lemma 4.3.2 Suppose that A = (aij ) ∈ R
n×n

, λ(A) > ε and g1, . . . , gn are the
columns of �(Aλ) = (γij ). If x = (x1, . . . , xn)

T ∈ V (A,λ(A)) then

x =
∑⊕

j∈Nc(A)

xj ⊗ gj .

Proof Let x = (x1, . . . , xn)
T ∈ V (A,λ(A)). We have

Aλ ⊗ x = x (4.5)

by Proposition 4.1.1 (parts (a) and (b)) and Nc(A) = Nc(Aλ) by Lemma 1.6.6. This
implies (see Remark 4.1.2) that x ∈ V (�(Aλ),0), yielding

x =
∑⊕

j∈N

xj ⊗ gj ≥
∑⊕

j∈Nc(A)

xj ⊗ gj .

We need to prove that the converse inequality holds too, that is, for every i ∈ N there
is an s ∈ Nc(A) such that

xi ≤ xs + γis .

If xi = ε then this is trivially true. If xi > ε then it follows from Lemma 4.3.1. �

Clearly, when considering all possible max-combinations of a set of fundamental
eigenvectors (or, indeed, of any vectors), we may remove from this set fundamental
eigenvectors that are multiples of some other. To be more precise, we say that two
fundamental eigenvectors gi and gj are equivalent if gi = α ⊗ gj for some α ∈ R

and nonequivalent otherwise. We characterize equivalent fundamental eigenvectors
using the equivalence of eigennodes in the next statement (note that the relation
i ∼ j has been defined in Sect. 1.6.1):
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Theorem 4.3.3 [60] Suppose that A = (aij ) ∈ R
n×n

, λ(A) > ε and g1, . . . , gn are
the columns of �(Aλ) = (γij ). If i, j ∈ Nc(A) then gi = α ⊗ gj for some α ∈ R if
and only if i ∼ j .

Proof Recall that Nc(A) = Nc(Aλ) by Lemma 1.6.6.
Let i, j ∈ Nc(Aλ). If gi = α ⊗ gj , α ∈ R then γji = α ⊗ γjj = α and

γij = α−1 ⊗ γii = α−1. Hence the heaviest i − j path extended by the heaviest
j − i path is a cycle of weight α−1 ⊗ α = 0, thus i ∼ j . Conversely, let i ∼ j and α

be the weight of the j − i subpath of the critical cycle containing both i and j . Then
for any k ∈ N we have γki = α ⊗ γkj since ≥ follows from the definition of γki and
> would imply α−1 ⊗ γki > γkj . But α−1 is the weight of the i − j subpath of the
critical cycle containing both i and j and thus α−1 ⊗ γki is the weight of a k − j

path which is a contradiction with the maximality of γkj . Hence gi = α ⊗ gj . �

Note that if i ∼ j then we also write gi ∼ gj .
From the last two theorems we can readily deduce:

Corollary 4.3.4 [60] Suppose that A = (aij ) ∈ R
n×n

, λ(A) > ε and g1, . . . , gn are
the columns of �(Aλ). Then

V (A,λ (A)) =
{ ∑⊕

j∈N∗
c (A)

αj ⊗ gj ;αj ∈ R, j ∈ N∗
c (A)

}

where N∗
c (A) is any maximal set of nonequivalent eigennodes of A.

Clearly, any set N∗
c (A) in Corollary 4.3.4 can be obtained by taking exactly one

gk for each equivalence class in (Nc(A),∼). The results on bases in Chap. 3 enable
us now to easily describe bases of principal eigenspaces and, consequently, to define
the principal dimension.

Theorem 4.3.5 [6] Suppose that A = (aij ) ∈ R
n×n

, λ(A) > ε and g1, . . . , gn are
the columns of �(Aλ). Then V (A,λ(A)) is a nontrivial subspace and we obtain
a basis of V (A,λ(A)) by taking exactly one gk for each equivalence class in
(Nc(A),∼).

Proof V (A,λ(A)) is a subspace by Proposition 4.1.1 (parts (f) and (g)). It is non-
trivial due to (4.3) and Lemma 4.2.3. By Corollary 3.3.11 it remains to prove that
every gk, k ∈ Nc(A), is an extremal.

Let k ∈ Nc(A) be fixed and suppose that gk = u ⊕ v where u,v ∈ V (A,λ(A)).
Then by Lemma 4.3.2 we have:

u =
∑⊕

j∈N∗
c (A)

αj ⊗ gj
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and

v =
∑⊕

j∈N∗
c (A)

βj ⊗ gj

where N∗
c (A) is a fixed maximal set of nonequivalent eigennodes of A and

αj ,βj ∈ R. We may assume without loss of generality that gk ∈ N∗
c (A) and thus

gk � gh for any h ∈ N∗
c (A),h �= k. Hence

gk =
∑⊕

j∈N∗
c (A)

δj ⊗ gj

where δj = αj ⊕ βj . Clearly δk ≤ 0. Suppose δk < 0 then

gk =
∑⊕

j∈N∗
c (A)

j �=k

δj ⊗ gj .

It follows that

0 = γkk =
∑⊕

j∈N∗
c (A)

j �=k

δj ⊗ γkj = δh ⊗ γkh

for some h ∈ N∗
c (A),h �= k. At the same time

γhk =
∑⊕

j∈N∗
c (A)

j �=k

δj ⊗ γhj ≥ δh ⊗ γhh = δh.

Therefore

γkh ⊗ γhk ≥ δ−1
h ⊗ δh = 0.

The last inequality is in fact equality since there are no positive cycles in D�(Aλ),
implying that k ∼ h, a contradiction. Hence δk = 0. Then (without loss of generality)
αk = 0 implying u ≥ gk = u ⊕ v and thus u = gk . �

The dimension of the principal eigenspace of A will be called the principal di-
mension of A and will be denoted pd(A). It follows from Theorems 4.3.3 and 4.3.5
that pd(A) is equal to the number of critical components of C(A) or, equivalently,
to the size of any basis of the column space of the matrix consisting of fundamental
eigenvectors of A. Since this basis can be found in O(n3) time (Sect. 3.4), pd(A)

can be found with the same computational effort.

Remark 4.3.6 It is easily seen that λ(AT ) = λ(A), �(AT ) = (�(A))T and
Nc(A

T ) = Nc(A). Hence an analogue of Theorem 4.3.5 in terms of rows of �(Aλ)

for left principal eigenvectors immediately follows. See also Remark 4.1.4.
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Example 4.3.7 Consider the matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

7 9 5 5 3 7
7 5 2 7 0 4
8 0 3 3 8 0
7 2 5 7 9 5
4 2 6 6 8 8
3 0 5 7 1 2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The maximum cycle mean is 8, attained by three critical cycles: (1,2,1), (5,5) and
(4,5,6,4). Thus λ(A) = 8, pd(A) = 2 and

�(Aλ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 −1 0 1 1
−1 0 2 −1 0 0

0 1 −1 0 1 1
−1 0 −1 0 1 1
−2 −1 −2 −1 0 0
−2 −1 −2 −1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Critical components have node sets {1,2} and {4,5,6}. Hence the first and second
columns of �(Aλ) are multiples of each other and similarly the fourth, fifth and
sixth columns. For the basis of V (A,λ(A)) we may take for instance the first and
fourth columns.

Example 4.3.8 Consider the matrix

A =

⎛
⎜⎜⎝

0 3
1 −1

2
1

⎞
⎟⎟⎠ ,

where the missing entries are ε. Then λ(A) = 2, Nc(A) = {1,2,3}, critical compo-
nents have node sets {1,2} and {3}, pd(A) = 2. We can compute

�(Aλ) =

⎛
⎜⎜⎝

0 1
−1 0

0
−1

⎞
⎟⎟⎠ ,

hence a basis of the principal eigenspace is

{g2, g3} =
{
(1,0, ε, ε)T , (ε, ε,0, ε)T

}
.
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4.4 Finite Eigenvectors

The aim in this chapter is to show how to find all eigenvalues and describe all eigen-
vectors of a matrix. To achieve this goal, in this section we will study the set of finite
eigenvectors. We will show how to efficiently describe all finite eigenvectors.

We will continue to use the notation �(Aλ) = (γij ) if λ(A) > ε. Recall that
Nc(A) = Nc(Aλ) by Lemma 1.6.6.

We will present the main results of this section in the following order:

• A proof that the maximum cycle mean is the only possible eigenvalue correspond-
ing to finite eigenvectors.

• Criteria for the existence of finite eigenvectors.
• Description of all finite eigenvectors.
• A proof that irreducible matrices have only finite eigenvectors.

The first result shows that λ(A) is the only possible eigenvalue corresponding to
finite eigenvectors. Note that if A = ε then every finite vector of a suitable dimension
is an eigenvector of A and all correspond to the unique eigenvalue λ(A) = ε.

Theorem 4.4.1 [60] Let A = (aij ) ∈ R
n×n

. If A �= ε and V +(A) �= ∅ then λ(A) > ε

and A ⊗ x = λ(A) ⊗ x for every x ∈ V +(A).

Proof Let x = (x1, . . . , xn)
T ∈ V +(A). We have

max
j=1,...,n

(
aij + xj

) = λ + xi (i = 1, . . . , n)

for some λ ∈ R. Since A �= ε the LHS is finite for at least one i and thus λ > ε.
For every i ∈ N there is a j ∈ N such that

aij + xj = λ + xi.

Hence, if i = i1 is any fixed index then there are indices i2, i3, . . . such that

aii i2 + xi2 = λ + xi1,

ai2i3 + xi3 = λ + xi2,

. . . .

This process will eventually cycle. Let us assume without loss of generality that the
cycle is (i1, . . . , ik, ik+1 = i1), otherwise we remove the necessary first elements of
this sequence. Hence the last equation in the above system is

aiki1 + xi1 = λ + xik .

In all these equations both sides are finite. If we add them up and simplify, we get

λ = ai1i2 + ai2i3 + · · · + aik−1ik + aiki1

k
.
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At the same time, if σ = (i1, . . . , ik, ik+1 = i1) is an arbitrary cycle in DA then it
satisfies the system of inequalities obtained from the above system of equations after
replacing = by ≤. Hence

λ ≥ ai1i2 + ai2i3 + · · · + aik−1ik + aiki1

k
= μ(σ,A).

It follows that λ = maxσ μ(σ,A) = λ(A). �

Theorem 4.4.1 opens the possibility of answering questions such as the existence
and description of finite eigenvectors.

Lemma 4.4.2 Let A ∈ R
n×n

. If A �= ε and x = (x1, . . . , xn)
T ∈ V +(A) then for

every i ∈ N there is an s ∈ Nc(A) such that

xi = xs + γis,

where �(Aλ) = (γij ).

Proof Since λ(A) > ε and x ∈ V (A,λ(A)) by Theorem 4.4.1, the statement follows
immediately from Lemma 4.3.1. �

We are ready to formulate the first criterion for the existence of finite eigenvec-
tors.

Theorem 4.4.3 Suppose that A ∈ R
n×n

, λ(A) > ε and g1, . . . , gn are the columns
of �(Aλ) = (γij ). Then

V +(A) �= ∅ ⇐⇒
∑⊕

j∈Nc(A)

gj ∈ R
n.

Proof Suppose
∑⊕

j∈Nc(A) gj ∈ R
n. Every gj (j ∈ Nc(A)) is in V (A,λ(A)) by

Lemma 4.2.3 and
∑⊕

j∈Nc(A) gj ∈ V (A) by Proposition 4.1.1. Hence
∑⊕

j∈Nc(A) gj ∈
V +(A).

On the other hand, by Lemma 4.4.2, if x = (x1, . . . , xn)
T ∈ V +(A) then for every

i ∈ N there is an s ∈ Nc(A) such that γis ∈ R and so
∑⊕

j∈Nc(A) gj ∈ R
n. �

We can now easily deduce a classical result:

Corollary 4.4.4 [60] Suppose A ∈ R
n×n

,A �= ε. Then V +(A) �= ∅ if and only if the
following are satisfied:

(a) λ(A) > ε.
(b) In DA there is

(∀i ∈ N)(∃j ∈ Nc(A))i → j.
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Proof By Theorem 4.4.1, A �= ε and V +(A) �= ∅ implies λ(A) > ε. Observe that

∑⊕

j∈Nc(A)

gj ∈ R
n ⇐⇒

∑⊕

j∈Nc(A)

γij ∈ R for all i ∈ N.

Hence by Theorem 4.4.3 V +(A) �= ∅ if and only if

(∀i ∈ N)(∃j ∈ Nc(A))γij ∈ R.

However, γij is the greatest weight of an i − j path in DAλ or ε, if there is no such
path, and the statement follows. �

The description of all finite eigenvectors can now easily be deduced:

Theorem 4.4.5 Let A ∈ R
n×n

. If λ(A) > ε, g1, . . . , gn are the columns of �(Aλ)

and V +(A) �= ∅ then

V +(A) =
{ ∑⊕

j∈N∗
c (A)

αj ⊗ gj ;αj ∈ R

}
, (4.6)

where N∗
c (A) is any maximal set of nonequivalent eigennodes of A.

Proof ⊇ follows from Lemma 4.2.3, Proposition 4.1.1 and Theorem 4.4.3 immedi-
ately. ⊆ follows from Lemma 4.3.2. �

Remark 4.4.6 Note that (4.6) requires αj ∈ R and, in general, gj may or may not be
in V +(A). Therefore the subspace V +(A)∪{ε} may or may not be finitely generated
and hence, in general, there is no guarantee that it has a basis.

Example 4.4.7 Consider the matrix

A =

⎛
⎜⎜⎝

0 3
1 −1

2
0 1

⎞
⎟⎟⎠ ,

where the missing entries are ε. Then λ(A) = 2, Nc(A) = {1,2,3}, critical com-
ponents have node sets {1,2} and {3}, pd(A) = 2. A finite eigenvector exists since
an eigennode is accessible from every node (unlike in the slightly different Exam-
ple 4.3.8). We can compute

�(Aλ) =

⎛
⎜⎜⎝

0 1
−1 0

0
−2 −1

⎞
⎟⎟⎠ ,
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hence a basis of the principal eigenspace is {(1,0, ε, ε)T , (ε, ε,0,−2)T }. All finite
eigenvectors are max-combinations of the vectors in the basis provided that both
coefficients are finite. However, V +(A) ∪ {ε} has no basis.

The following classical complete solution of the eigenproblem for irreducible
matrices is now easy to prove:

Theorem 4.4.8 (Cuninghame-Green [60]) Every irreducible matrix A ∈ R
n×n

(n > 1) has a unique eigenvalue equal to λ(A) and

V (A) − {ε} = V +(A) =
{ ∑⊕

j∈N∗
c (A)

αj ⊗ gj ;αj ∈ R

}
,

where g1, . . . , gn are the columns of �(Aλ) and N∗
c (A) is any maximal set of

nonequivalent eigennodes of A.

Proof Let A be irreducible, thus λ(A) > ε. Also, �(Aλ) is finite by Proposi-
tion 1.6.10. Every eigenvector of A is also an eigenvector of �(Aλ) with eigenvalue
0 (Remark 4.1.2) but the product of a finite matrix and a vector x �= ε is finite. Hence
an irreducible matrix can only have finite eigenvectors and thus its only eigenvalue
is λ(A) by Theorem 4.4.1.

On the other hand, due to the finiteness of all columns of �(Aλ), by Theo-
rem 4.4.3, V +(A) �= ∅ and the rest follows from Theorem 4.4.5. �

Remark 4.4.9 Note that every 1×1 matrix A over R is irreducible and V (A)−{ε} =
V +(A) = R.

The fact that λ(A) is the unique eigenvalue of an irreducible matrix A was already
proved in [58] and then independently in [144] for finite matrices. Since then it
has been rediscovered in many papers worldwide. The description of V +(A) for
irreducible matrices as given in Corollary 4.4.4 was also proved in [98].

Note that for an irreducible matrix A we have:

V (A) = V +(A) ∪ {ε} = {�(Aλ) ⊗ z; z ∈ R
n
, zj = ε for all j /∈ Nc(A)}.

Remark 4.4.10 Since �(Aλ) is finite for an irreducible matrix A, the generators of
V +(A) are all finite if A is irreducible. Hence V +(A) ∪ {ε} = V (A) has a basis in
this case, which coincides with the basis of V (A).

Example 4.4.11 Consider the irreducible matrix

A =

⎛
⎜⎜⎝

0 3 0
1 −1 0

0 2
0 1

⎞
⎟⎟⎠ ,
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where the missing entries are ε. Then λ(A) = 2, Nc(A) = {1,2,3}, critical compo-
nents have node sets {1,2} and {3}, pd(A) = 2. We can compute

�(Aλ) =

⎛
⎜⎜⎝

0 1 −4 −2
−1 0 −5 −3
−3 −2 0 −5
−5 −4 −2 −1

⎞
⎟⎟⎠ ,

hence a basis of the principal eigenspace is

{
(1,0,−2,−4)T , (−4,−5,0,−2)T

}
.

4.5 Finding All Eigenvalues

Our next step is to describe all eigenvalues of square matrices over R. The informa-
tion about principal eigenvectors obtained in the previous sections will be substan-
tially used.

We have already seen in Sect. 1.5 that if A,B ∈ R
n×n

are equivalent (A ≡ B),
then DA can be obtained from DB by a renumbering of the nodes and that
B = P −1 ⊗ A ⊗ P for some permutation matrix P . Hence if A ≡ B then A is irre-
ducible if and only if B is irreducible. We also know by Proposition 4.1.3 that V (A)

and V (B) are essentially the same (the eigenvectors of A and B only differ by the
order of their components).

It follows from Theorem 4.4.8 that a matrix with a nonfinite eigenvector cannot
be irreducible. The following lemma provides an alternative and somewhat more
detailed explanation of this simple but remarkable property. It may also be useful
for a good understanding of the structure of the set V (A) for a general matrix A.

Lemma 4.5.1 Let A = (aij ) ∈ R
n×n

and λ ∈ �(A). If x ∈ V (A,λ) − V +(A,λ),
x �= ε, then n > 1,

A ≡
(

A(11) ε

A(21) A(22)

)
,

λ = λ(A(22)), and hence A is reducible.

Proof Permute the rows and columns of A simultaneously so that the vector aris-

ing from x by the same permutation of its components is x′ =
(

x(1)

x(2)

)
, where

x(1) = ε ∈ R
p

and x(2) ∈ R
n−p for some p (1 ≤ p < n). Denote the obtained matrix

by A′ (thus A ≡ A′) and let us write blockwise

A′ =
(

A(11) A(12)

A(21) A(22)

)
,
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where A(11) is p × p. The equality A′ ⊗ x′ = λ ⊗ x′ now yields blockwise:

A(12) ⊗ x(2) = ε,

A(22) ⊗ x(2) = λ ⊗ x(2).

Since x(2) is finite, it follows from Theorem 4.4.4 that λ = λ(A(22)); also clearly
A(12) = ε. �

We already know (Theorem 4.4.8) that all eigenvectors of an irreducible matrix
are finite. We now can prove that only irreducible matrices have this property.

Theorem 4.5.2 Let A = (aij ) ∈ R
n×n

. Then V (A) − {ε} = V +(A) if and only if A

is irreducible.

Proof It remains to prove the “only if” part since the “if” part follows from The-

orem 4.4.8. If A is reducible then n > 1 and A ≡
(

A(11) ε

A(21) A(22)

)
, where A(22) is ir-

reducible. By setting λ = λ(A(22)), x(2) ∈ V +(A22), x = ( ε

x(2)

) ∈ R
n

we see that
x ∈ V (A) − V +(A), x �= ε. �

Theorem 4.5.2 does not exclude the possibility that a reducible matrix has fi-
nite eigenvectors. The following spectral theory will, as a by-product, enable us to
characterize all situations when this occurs.

Every matrix A = (aij ) ∈ R
n×n

can be transformed in linear time by simulta-
neous permutations of the rows and columns to a Frobenius normal form (FNF)
[11, 18, 126] ⎛

⎜⎜⎝
A11 ε · · · ε

A21 A22 · · · ε

· · · · · · · · · · · ·
Ar1 Ar2 · · · Arr

⎞
⎟⎟⎠ (4.7)

where A11, . . . ,Arr are irreducible square submatrices of A. The diagonal blocks
are determined uniquely up to a simultaneous permutation of their rows and
columns: however, their order is not determined uniquely. Since any such form is
essentially determined by strongly connected components of DA, an FNF can be
found in O(|V | + |E|) time [18, 142]. It will turn out later in this section that the
FNF is a particularly convenient form for studying spectral properties of matrices.
Since these are essentially preserved by simultaneous permutations of the rows and
columns (Proposition 4.1.3) we will often assume, without loss of generality, that
the matrix under consideration already is in an FNF.

If A is in an FNF then the corresponding partition of the node set N of DA will
be denoted as N1, . . . ,Nr and these sets will be called classes (of A). It follows
that each of the induced subgraphs DA[Ni] (i = 1, . . . , r) is strongly connected and
an arc from Ni to Nj in DA exists only if i ≥ j . Clearly, every Ajj has a unique
eigenvalue λ(Ajj ). As a slight abuse of language we will, for simplicity, also say
that λ(Ajj ) is the eigenvalue of Nj .
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Fig. 4.1 Condensation
digraph (6 classes)

If A is in an FNF, say (4.7), then the condensation digraph, notation CA, is the
digraph

({N1, . . . ,Nr}, {(Ni,Nj ); (∃k ∈ Ni)(∃l ∈ Nj)akl > ε}).
Observe that CA is acyclic.

Recall that the symbol Ni → Nj means that there is a directed path from a node
in Ni to a node in Nj in CA (and therefore from each node in Ni to each node in Nj

in DA).
If there are neither outgoing nor incoming arcs from or to an induced subgraph

CA[{Ni1, . . . ,Nis }] (1 ≤ i1 < · · · < is ≤ r) and no proper subdigraph has this prop-
erty then the submatrix

⎛
⎜⎜⎝

Ai1i1 ε · · · ε

Ai2i1 Ai2i2 · · · ε

· · · · · · · · · · · ·
Aisi1 Aisi2 · · · Aisis

⎞
⎟⎟⎠

is called an isolated superblock (or just superblock). The nodes of CA (that is,
classes of A) with no incoming arcs are called the initial classes, those with no
outgoing arcs are called the final classes. Note that an isolated superblock may have
several initial and final classes.

For instance the condensation digraph for the matrix

⎛
⎜⎜⎜⎜⎜⎜⎝

A11 ε ε ε ε ε

∗ A22 ε ε ε ε

∗ ∗ A33 ε ε ε

∗ ε ε A44 ε ε

ε ε ε ε A55 ε

ε ε ε ε ∗ A66

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.8)

can be seen in Fig. 4.1 (note that in (4.8) and elsewhere ∗ indicates a submatrix
different from ε). It consists of two superblocks and six classes including three
initial and two final ones.

Lemma 4.5.3 If x ∈ V (A),Ni → Nj and x[Nj ] �= ε then x[Ni] is finite. In partic-
ular, x[Nj ] is finite.
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Proof Suppose that x ∈ V (A,λ) for some λ ∈ R. Fix s ∈ Nj such that xs > ε.
Since Ni → Nj we have that for every r ∈ Ni there is a positive integer q such that
brs > ε where B = Aq = (bij ). Since x ∈ V (B,λq) by Proposition 4.1.1 we also
have λq ⊗ xr ≥ brs ⊗ xs > ε. Hence xr > ε. �

We are now able to describe all eigenvalues of any square matrix over R.

Theorem 4.5.4 (Spectral Theorem) Let (4.7) be an FNF of a matrix

A = (aij ) ∈ R
n×n

. Then

�(A) =
{
λ(Ajj );λ(Ajj ) = max

Ni→Nj

λ(Aii)
}
.

Proof Note that

λ(A) = max
i=1,...,r

λ(Aii) (4.9)

for a matrix A in FNF (4.7).
First we prove the inclusion ⊇. Suppose

λ(Ajj ) = max{λ(Aii);Ni → Nj }
for some j ∈ R = {1, . . . , r}. Denote

S2 = {i ∈ R;Ni → Nj },
S1 = R − S2

and

Mp =
⋃
i∈Sp

Ni (p = 1,2).

Then λ(Ajj ) = λ(A[M2]) and

A ≡
(

A[M1] ε

∗ A[M2]
)

.

If λ(Ajj ) = ε then at least one column, say the lth in A is ε. We set xl to any real
number and xj = ε for j �= l. Then x ∈ V (A,λ(Ajj )).

If λ(Ajj ) > ε then A[M2] has a finite eigenvector by Theorem 4.4.4, say x̃. Set
x[M2] = x̃ and x[M1] = ε. Then x = (x[M1], x[M2]) ∈ V (A,λ(Ajj )).

Now we prove ⊆. Suppose that x ∈ V (A,λ), x �= ε, for some λ ∈ R.
If λ = ε then A has an ε column, say the kth, thus akk = ε. Hence the 1 × 1

submatrix (akk) is a diagonal block in an FNF of A. In the corresponding decom-
position of N one of the sets, say Nj , is {k}. The set {i;Ni → Nj } = {j} and the
theorem statement follows.

If λ > ε and x ∈ V +(A) then λ = λ(A) (cf. Theorem 4.4.1) and the statement
now follows from (4.9).
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If λ > ε and x /∈ V +(A) then similarly as in the proof of Lemma 4.5.1 permute
the rows and columns of A simultaneously so that

x =
(

x(1)

x(2)

)
,

where x(1) = ε ∈ R
p
, x(2) ∈ R

n−p for some p (1 ≤ p < n). Hence

A ≡
(

A(11) ε

A(21) A(22)

)

and we can assume without loss of generality that both A(11) and A(22) are in an
FNF and therefore also (

A(11) ε

A(21) A(22)

)

is in an FNF. Let

A(11) =

⎛
⎜⎜⎝

Ai1i1 ε · · · ε

Ai2i1 Ai2i2 · · · ε

· · · · · · · · · · · ·
Aisi1 Aisi2 · · · Aisis

⎞
⎟⎟⎠

and

A(22) =

⎛
⎜⎜⎝

Ais+1is+1 ε · · · ε

Ais+2is+1 Ais+2is+2 · · · ε

· · · · · · · · · · · ·
Aiqis+1 Aiqis+2 · · · Aiqiq

⎞
⎟⎟⎠ .

We have

λ = λ(A(22)) = λ(Ajj ) = max
i=s+1,...,q

λ(Aii),

where j ∈ {s+1, . . . , q}. It remains to say that if Ni → Nj then i ∈ {s+1, . . . , q}. �

The Spectral Theorem has been proved in [84] and, independently, also in [12].
Spectral properties of reducible matrices have also been studied in [10] and [145].
Significant correlation exists between the max-algebraic spectral theory and that for
nonnegative matrices in linear algebra [13, 128], see also [126]. For instance the
Frobenius normal form and accessibility between classes play a key role in both
theories. The maximum cycle mean corresponds to the Perron root for irreducible
(nonnegative) matrices and finite eigenvectors in max-algebra correspond to positive
eigenvectors in the spectral theory of nonnegative matrices. However there are also
differences, see Remark 4.6.8.

Let A be in the FNF (4.7). If

λ(Ajj ) = max
Ni→Nj

λ(Aii)
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then Ajj (and also Nj or just j ) will be called spectral. Thus λ(Ajj ) ∈ �(A) if j is
spectral but not necessarily the other way round.

Corollary 4.5.5 All initial classes of CA are spectral.

Proof Initial classes have no predecessors and so the condition of the theorem is
satisfied. �

Recall that λ(A) = min{λ; (∃x ∈ R
n)A ⊗ x ≤ λ ⊗ x} if λ(A) > ε (Theo-

rem 1.6.29). In contrast we have:

Corollary 4.5.6

λ(A) = max�(A)

= max
{
λ;

(
∃x ∈ R

n
, x �= ε

)
A ⊗ x = λ ⊗ x

}

for every matrix A ∈ R
n×n

.

Proof If A is in an FNF, say (4.7), then λ(A) = maxi=1,...,r λ(Aii) ≥ λ(Ajj ) for
all j . �

We easily deduce two more useful statements:

Corollary 4.5.7 1 ≤ |�(A)| ≤ n for every A ∈ R
n×n

.

Proof Follows from the previous corollary and from the fact that the number of
classes of A is at most n. �

Corollary 4.5.8 V (A) = V (A,λ(A)) if and only if all initial classes have the same
eigenvalue λ(A).

Proof The eigenvalues of all initial classes are in �(A) since all initial classes are
spectral, hence all must be equal to λ(A) if �(A) = {λ(A)}. On the other hand, if all
initial classes have the same eigenvalue λ(A), and λ is the eigenvalue of any spectral
class then

λ ≥ λ(A) = max
i

λ(Aii)

since there is a path from some initial class to this class and thus λ = λ(A). �

Figure 4.2 shows a condensation digraph with 14 classes including two initial
classes and four final ones. The integers indicate the eigenvalues of the correspond-
ing classes. The six bold classes are spectral, the others are not.

Note that the unique eigenvalues of all classes (that is, of diagonal blocks of an
FNF) can be found in O(n3) time by applying Karp’s algorithm (see Sect. 1.6) to
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Fig. 4.2 Condensation
digraph

each block. The condition for identifying all spectral submatrices in an FNF pro-
vided in Theorem 4.5.4 enables us to find them in O(r2) ≤ O(n2) time by applying
standard reachability algorithms to CA.

Example 4.5.9 Consider the matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 3
1 1

4
0 3 1

−1 2
1 5

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where the missing entries are ε. Then λ(A11) = 2, λ(A22) = 4, λ(A33) = 3,
λ(A44) = 5, r = 4; �(A) = {2,5}, λ(A) = 5, initial classes are N1 and N4 and
there are no other spectral classes. Final classes are N1 and N2.

We will now use the Spectral Theorem to prove two results, Theorems 4.5.10
and 4.5.14, whose proofs are easier when the Spectral Theorem is available. The
first of them has been known for certain types of matrices for some time [65, 102]:
however, using Theorem 4.5.4 we are able to prove it conveniently for any matrix:
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Theorem 4.5.10 Let A ∈ R
n×n

. Then

λ(Ak) = (λ(A))k

holds for all integers k ≥ 0.

Proof The proof is trivial if n = 1 or k = 0, so assume n ≥ 2, k ≥ 1.
Suppose first that A is irreducible. Let x ∈ V +(A) = V (A,λ(A)) − {ε}.

By Proposition 4.1.1 we have x ∈ V (Ak,λ(Ak)) and thus by Theorem 4.4.1
(λ(A))k = λ(Ak). It also follows that (λ(A))k is the greatest principal eigenvalue
of a diagonal block in any FNF of (possibly reducible) Ak .

Now suppose that A is reducible and without loss of generality let A be in the
FNF (4.7). Then λ(A) = λ(Aii) for some i,1 ≤ i ≤ r . The matrix Ak is again lower
blockdiagonal and has diagonal blocks Ak

11, . . . ,A
k
ii , . . . ,A

k
rr . These blocks may

or may not be irreducible. However (λ(A))k = (λ(Aii))
k is the greatest principal

eigenvalue of a diagonal block in any FNF of Ak
ii (by the first part of this proof

since Aii is irreducible) and therefore also in any FNF of Ak . This completes the
proof. �

For the second result we need two lemmas.

Lemma 4.5.11 Let A ∈ R
n×n

. Then ε ∈ �(A) if and only if A has an ε column.

Proof If A ⊗ x = ε and xk �= ε then the kth column of A is ε. A similar argument
is used for the converse. �

Lemma 4.5.12 Let A ∈ R
n×n

be irreducible. If A ⊗ x ≤ λ ⊗ x, x �= ε,λ ∈ R then
x ∈ R

n.

Proof The statement is trivial for n = 1. Let n > 1, then λ(A) > ε. Without loss of
generality we assume that A is definite. Then we have

� (A) ⊗ x = A ⊗ x ⊕ A2 ⊗ x ⊕ · · · ⊕ An ⊗ x

≤ λ ⊗ x ⊕ λ2 ⊗ x ⊕ · · · ⊕ λn ⊗ x

= (
λ ⊕ · · · ⊕ λn

) ⊗ x.

The LHS is finite since �(A) is finite (Proposition 1.6.10) and x �= ε, hence both λ

and x are finite. �

Corollary 4.5.13 Let A ∈ R
n×n

be irreducible. Then

λ(A) = min{λ; (∃x ∈ R
n
)
A ⊗ x ≤ λ ⊗ x}

= min
{
λ;

(
∃x ∈ R

n
, x �= ε

)
A ⊗ x ≤ λ ⊗ x

}
.



94 4 Eigenvalues and Eigenvectors

Proof The statement is trivial for n = 1. If n > 1 then λ(A) > ε and the first equality
follows from Theorem 1.6.29. The second follows from Lemma 4.5.12. �

We now make another use of Theorem 4.5.4 and prove a more general version of
Theorem 1.6.29:

Theorem 4.5.14 If A ∈ R
n×n

then

min
{
λ;

(
∃x ∈ R

n
, x �= ε

)
A ⊗ x ≤ λ ⊗ x

}
= min�(A).

Proof Without loss of generality let A be in the FNF (4.7) and as before
R = {1, . . . , r}. Let

L = inf
{
λ;

(
∃x ∈ R

n
, x �= ε

)
A ⊗ x ≤ λ ⊗ x

}
.

Clearly L ≤ min�(A) since for x we may take any eigenvector of A. If ε ∈ �(A)

then using x ∈ V (A,ε)−{ε} we deduce that L = ε. We will therefore assume in the
rest of the proof that ε /∈ �(A).

Let x ∈ R
n
, x �= ε,λ ∈ R and A⊗x ≤ λ⊗x. We need to show that λ ≥ min�(A).

Observe that λ > ε since otherwise x ∈ V (A,ε) − {ε}, a contradiction with
ε /∈ �(A). Let us denote

K = {k ∈ R;x [Nk] �= ε} .

Take any k ∈ K . We have

A [Nk] ⊗ x [Nk] ≤ (A ⊗ x) [Nk] ≤ λ ⊗ x [Nk] .

Then x[Nk] is finite by Lemma 4.5.12 and so λ ≥ λ(A[Nk]) by Theorem 1.6.18.
If ast = ε for all s ∈ Ni, i ∈ R and t ∈ Nk , then Nk is spectral and the statement

follows.
If ast > ε for some s ∈ Ni, i ∈ R and t ∈ Nk , then xs ≥ λ−1 ⊗ ast ⊗ xt > ε.

Therefore i ∈ K and again, as above, by Lemma 4.5.12 x[Ni] is finite. CA is acyclic
and finite, hence after a finite number of repetitions we will reach an i ∈ R such that
Ni is initial, and hence also spectral, yielding λ(A[Ni]) > ε (since ε /∈ �(A)) and
λ(A[Ni]) ≥ min�(A).

At the same time

A [Ni] ⊗ x [Ni] ≤ (A ⊗ x) [Ni] ≤ λ ⊗ x [Ni] .

Therefore x[Ni] is finite by Lemma 4.5.12 and by Theorem 1.6.18 we have:

λ ≥ λ (A [Ni]) ,

from which the statement follows. �
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4.6 Finding All Eigenvectors

Our final effort in this chapter is to show how to efficiently describe all eigenvectors
of a matrix.

Let A ∈ R
n×n

be in the FNF (4.7), N1, . . . ,Nr be the classes of A and R =
{1, . . . , r}. For the following discussion suppose that λ ∈ �(A) is a fixed eigenvalue,
λ > ε, and denote I (λ) = {i ∈ R;λ(Ni) = λ,Ni spectral}.

We denote by g1, . . . , gn the columns of �(λ−1 ⊗ A) = (γij ). Note that
λ(λ−1 ⊗ A) = λ−1 ⊗ λ(A) may be positive since λ ≤ λ(A) and thus �(λ−1 ⊗ A)

may include entries equal to +∞ (Proposition 1.6.10). However, for i ∈ I (λ) we
have

λ
(
λ−1 ⊗ Aii

)
= λ−1 ⊗ λ (Aii) ≤ 0

by Theorem 4.5.4 and hence �(λ−1 ⊗ Aii) is finite for i ∈ I (λ).
Let us denote

Nc(λ) =
⋃

i∈I (λ)

Nc(Aii) =
{
j ∈ N;γjj = 0, j ∈

⋃
i∈I (λ)

Ni

}
.

Two nodes i and j in Nc(λ) are called λ-equivalent (notation i ∼λ j ) if i and j

belong to the same cycle whose mean is λ. Note that if λ = λ(A) then ∼λ coincides
with ∼.

Theorem 4.6.1 [44] Suppose A ∈ R
n×n

and λ ∈ �(A),λ > ε. Then gj ∈ R
n

(that
is, gj does not contain +∞) for all j ∈ Nc(λ) and a basis of V (A,λ) can be ob-
tained by taking one gj for each ∼λ equivalence class.

Proof Let us denote M = ⋃
i∈I (λ) Ni . By Lemma 4.1.3 we may assume without

loss of generality that A is of the form
(• ε

• A[M]
)

.

Hence �(λ−1 ⊗ A) is
(• ε

• C

)

where C = �((λ(A[M]))−1 ⊗ A[M]), and the statement now follows by Proposi-
tion 1.6.10 and Theorem 4.3.5 since λ = λ(A[M]) and thus ∼λ equivalence for A is
identical with ∼ equivalence for A[M]. �

Corollary 4.6.2 A basis of V (A,λ) for λ ∈ �(A), λ > ε, can be found using O(k3)

operations, where k = |I (λ)| and we have

V (A,λ) = {�(λ−1 ⊗ A) ⊗ z; z ∈ R
n
, zj = ε for all j /∈ Nc(λ)}.

Consequently, the bases of all eigenspaces can be found in O(n3) operations.



96 4 Eigenvalues and Eigenvectors

Using Lemma 4.2.1 and Corollary 4.6.2 we get:

Corollary 4.6.3 If A ∈ R
n×n

, λ ∈ �(A) and the dimension of V (A,λ) is rλ then

there is a column R-astic matrix Gλ ∈ R
n×rλ such that

V (A,λ) =
{
Gλ ⊗ z; z ∈ R

rλ
}

.

It follows from the proofs of Lemma 4.5.1 and Theorem 4.5.4 that V (A,λ) can
also be found as follows: If I (λ) = {j} then define

M2 =
⋃

Ni→Nj

Ni, M1 = N − M2.

Hence

V (A,λ) = {x;x[M1] = ε, x[M2] ∈ V +(A[M2])}.
If the set I (λ) consists of more than one index then the same process has to be
repeated for each nonempty subset of I (λ), that is, for each J ⊆ I (λ), J �= ∅, we
set S = ⋃

j∈J Nj and

M2 =
⋃

Ni→S

Ni, M1 = N − M2.

Obviously, this is not a practical way of finding all eigenvectors as considering
all subsets would be computationally infeasible, but it enables us to conveniently
prove another criterion for the existence of finite eigenvectors:

Theorem 4.6.4 [10] V +(A) �= ∅ if and only if λ(A) is the eigenvalue of all final
classes (in all superblocks).

Proof The set M1 in the above construction must be empty to obtain a finite eigen-
vector, hence a class in S must be reachable from every class of its superblock. This
is only possible if S is the set of all final classes since no class is reachable from
a final class (other than the final class itself). Conversely, if all final classes have
the same eigenvalue λ(A) then for λ = λ(A) the set S contains all the final classes,
they are reachable from all classes of their superblocks, and consequently M1 = ∅,
yielding a finite eigenvector. �

Corollary 4.6.5 V +(A) = ∅ if and only if a final class has eigenvalue less than
λ(A).

Example 4.6.6 For the matrix A of Example 4.5.9 each of the two eigenspaces has
dimension 1. Since

�((A11)λ) =
(

0 1
−1 0

)
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V (A,2) is the set of multiples of (1,0, ε, ε, ε, ε)T , similarly V (A,5) is the set of
multiples of (ε, ε, ε, ε, ε,0)T . There are no finite eigenvectors since for the final
class N2 we have λ(A22) < 5.

Remark 4.6.7 Note that a final class with eigenvalue less than λ(A) may not be
spectral and so �(A) = {λ(A)} is possible even if V +(A) = ∅. For instance in the
case of

A =
⎛
⎝

1 ε ε

ε 0 ε

0 0 1

⎞
⎠

we have λ(A) = 1, but V +(A) = ∅.

Remark 4.6.8 Following the terminology of nonnegative matrices in linear algebra
we say that a class is basic if its eigenvalue is λ(A). It follows from Theorem 4.6.4
that V +(A) �= ∅ if basic classes and final classes coincide. Obviously this require-
ment is not necessary for V +(A) �= ∅, which is in contrast to the spectral theory of
nonnegative matrices where for A to have a positive eigenvector it is necessary and
sufficient that basic classes (that is, those whose eigenvalue is the Perron root) are
exactly the final classes [126].

Remark 4.6.9 The principal eigenspace of any matrix may contain either finite
eigenvectors only (for instance when the matrix is irreducible) or only nonfinite
eigenvectors (see Remark 4.6.7), or both finite and non-finite eigenvectors, for in-
stance when A = I .

4.7 Commuting Matrices Have a Common Eigenvector

The theory of commuting matrices in max-algebra seems to be rather modest at the
time when this book goes to print: however, it is known that any two commuting
matrices have a common eigenvector. This will be useful in the theory of two-sided
max-linear systems (Chap. 7) and for solving some special cases of the generalized
eigenproblem (Chap. 9).

Lemma 4.7.1 [70] Let A,B ∈ R
n×n

and A ⊗ B = B ⊗ A. If x ∈ V (A,λ), λ ∈ R,
then B ⊗ x ∈ V (A,λ).

Proof We have A ⊗ x = λ ⊗ x and thus

A ⊗ (B ⊗ x) = B ⊗ (A ⊗ x) = B ⊗ λ ⊗ x = λ ⊗ (B ⊗ x) . �

Theorem 4.7.2 (Schneider [107]) If A,B ∈ R
n×n

and A ⊗ B = B ⊗ A then
V (A) ∩ V (B) �= {ε}, more precisely, for every λ ∈ �(A) there is a μ ∈ �(B) such
that

V (A,λ) ∩ V (B,μ) �= {ε} .
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Proof Let λ ∈ �(A) and rλ be the dimension of V (A,λ). By Corollary 4.6.3 there
is a matrix Gλ ∈ R

n×rλ such that

V (A,λ) =
{
Gλ ⊗ z; z ∈ R

rλ
}

.

Clearly, A⊗Gλ = λ⊗Gλ. It follows from Lemma 4.7.1 that all columns of B ⊗Gλ

are in V (A,λ) and hence

B ⊗ Gλ = Gλ ⊗ C

for some rλ × rλ matrix C. Let v ∈ V (C), v �= ε, thus v ∈ V (C,μ) for some μ ∈ R,
and set u = Gλ ⊗ v. Then u �= ε since Gλ is column R-astic and we have:

A ⊗ u = A ⊗ Gλ ⊗ v = λ ⊗ Gλ ⊗ v = λ ⊗ u

and

B ⊗ u = B ⊗ Gλ ⊗ v = Gλ ⊗ C ⊗ v = μ ⊗ Gλ ⊗ v = μ ⊗ u.

Hence u ∈ V (A,λ) ∩ V (B,μ) and u �= ε. �

The proof of Theorem 4.7.2 is constructive and enables us to find a common
eigenvector of commuting matrices: The system B ⊗ Gλ = Gλ ⊗ C is a one-sided
system for C and since a solution exists, the principal solution C = G∗

λ ⊗′ (B ⊗Gλ)

is a solution (Corollary 3.2.4).
Note that [107] contains more information on commuting matrices in max-

algebra.

4.8 Exercises

Exercise 4.8.1 Find the eigenvalue, �(Aλ) and the scaled basis of the unique
eigenspace for each of the matrices below:

(a) A =
(

3 6
2 1

)
. [λ (A) = 4;

� (Aλ) =
(

0 2
−2 0

)
,

the scaled basis is {(0,−2)T }.]
(b) A =

(
0 0

−1 0

)
. [λ(A) = 0; �(Aλ) = A, the scaled basis is {(0,−1)T , (0,0)T }.]
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(c) A =

⎛
⎜⎜⎝

1 0 4 3
0 1 −3 3
0 1 0 2

−3 −1 0 1

⎞
⎟⎟⎠. [λ(A) = 2;

� (Aλ) =

⎛
⎜⎜⎝

0 1 2 2
−2 −1 0 1
−2 −1 0 0
−4 −3 −2 −1

⎞
⎟⎟⎠ ,

the scaled basis is {(0,−2,−2,−4)T }.]
(d) Find the eigenvalue, �(Aλ) and the scaled basis of the unique eigenspace of the

matrix

A =

⎛
⎜⎜⎜⎜⎝

4 4 3 8 1
3 3 4 5 4
5 3 4 7 3
2 1 2 3 0
6 6 4 8 1

⎞
⎟⎟⎟⎟⎠

.

[λ(A) = 5;

� (Aλ) =

⎛
⎜⎜⎜⎜⎝

0 −1 0 3 −2
0 0 0 3 −1
0 −1 0 3 −2

−3 −4 −3 0 −5
1 1 1 4 0

⎞
⎟⎟⎟⎟⎠

,

the scaled basis is {(−1,−1,−1,−4,0)T , (−2,−1,−2,−5,0)T }.]

Exercise 4.8.2 Find all eigenvalues and the scaled bases of all eigenspaces of the
matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 2
2 3

4
3 4
6 1
4 1 7 2

3 0
1 4

0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the missing entries are ε. [�(A) = {3,4,7,2}, the scaled basis of V (A,3) is

{
(0,−1, ε, ε, ε, ε, ε,−2,−3)T , (−1,0, ε, ε, ε, ε, ε,−3,−4)T

}
,
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the scaled basis of V (A,4) is
{
(ε, ε,0, ε, ε, ε, ε, ε, ε)T

}
,

the scaled basis of V (A,7) is
{
(ε, ε, ε, ε, ε,0,−4, ε, ε)T

}
,

the scaled basis of V (A,2) is
{
(ε, ε, ε, ε, ε, ε, ε,0,−2)T

}
.
]

Exercise 4.8.3 In the matrix A below the sign × indicates a finite entry, all other
off-diagonal entries are ε. Find all spectral indices and all eigenvalues of A, and
decide whether this matrix has finite eigenvectors.

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
× 3

× 5
7
× 8

× × 2
× × 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

[Spectral indices: 3,5,6,7, �(A) = {5,8,2,4}, no finite eigenvectors.]

Exercise 4.8.4 Prove that λ(A) = λ(AT ), �(AT ) = (�(A))T and Nc(A) = Nc(A
T )

for every square matrix A. Then prove or disprove that �(A) = �(AT ). [false]

Exercise 4.8.5 Prove or disprove each of the following statements:

(a) If A ∈ Z
n×n then A has an integer eigenvector if and only if λ(A) ∈ Z. [true]

(b) If A ∈ R
n×n then A has an integer eigenvector if and only if λ(A) ∈ Z. [false]

(c) If A ∈ R
n×n then A has an integer eigenvalue and an integer eigenvector if and

only if A ∈ Z
n×n. [false]

Exercise 4.8.6 We say that T = (tij ) ∈ R
n×n is triangular if it satisfies the condition

tij < λ(T ) for all i, j ∈ N , i ≤ j . Prove the statement: If A ∈ R
n×n then λ(A) =

λ(B) for every B equivalent to A if and only if A is not equivalent to a triangular
matrix. [See [39]]

Exercise 4.8.7 Show that the maximum cycle mean and an eigenvector for 0 − 1
matrices can be found using O(n2) operations. [See [33, 66]]

Exercise 4.8.8 Prove that the following problem is NP-complete: Given A ∈ R
n×n

and x ∈ R
n
, decide whether it is possible to permute the components of x so that

the obtained vector is an eigenvector of A. [See [31]]
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Exercise 4.8.9 Let A and B be square matrices of the same order. Prove then that
the set of finite eigenvalues of A ⊗ B is the same as the set of finite eigenvalues of
B ⊗ A.
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