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To Eva, Evička and Alenka



Preface

Max-algebra provides mathematical theory and techniques for solving nonlinear
problems that can be given the form of linear problems, when arithmetical addition
is replaced by the operation of maximum and arithmetical multiplication is replaced
by addition. Problems of this kind are sometimes of a managerial nature, arising in
areas such as manufacturing, transportation, allocation of resources and information
processing technology.

The aim of this book is to present max-algebra as a modern modelling and solu-
tion tool. The first five chapters provide the fundamentals of max-algebra, focusing
on one-sided max-linear systems, the eigenvalue-eigenvector problem and maxpoly-
nomials. The theory is self-contained and covers both irreducible and reducible ma-
trices. Advanced material is presented from Chap. 6 onwards.

The book is intended for a wide-ranging readership, from undergraduate and
postgraduate students to researchers and mathematicians working in industry, com-
merce or management. No prior knowledge of max-algebra is assumed. We concen-
trate on linear-algebraic aspects, presenting both classical and new results. Most of
the theory is illustrated by numerical examples and complemented by exercises at
the end of every chapter.

Chapter 1 presents essential definitions, examples and basic results used through-
out the book. It also introduces key max-algebraic tools: the maximum cycle mean,
transitive closures, conjugation and the assignment problem, and presents their basic
properties and corresponding algorithms. Section 1.3 introduces applications which
were the main motivation for this book and towards which it is aimed: feasibility
and reachability in multi-machine interactive processes. Many results in Chaps. 6–
10 find their use in solving feasibility and reachability problems.

Chapter 2 has a specific aim: to explain two special features of max-algebra par-
ticularly useful for its applications. The first is the possibility of efficiently describ-
ing the set of all solutions to a problem which may otherwise be awkward or even
impossible to do. This methodology may be used to find solutions satisfying further
requirements. The second feature is the ability of max-algebra to describe a class of
problems in combinatorics or combinatorial optimization in algebraic terms. This
chapter may be skipped without loss of continuity whilst reading the book.

vii



viii Preface

Most of Chap. 3 contains material on one-sided systems and the geometry of sub-
spaces. It is presented here in full generality with all the proofs. The main results are:
a straightforward way of solving one-sided systems of equations and inequalities
both algebraically and combinatorially, characterization of bases of max-algebraic
subspaces and a proof that finitely generated max-algebraic subspaces have an es-
sentially unique basis. Linear independence is a rather tricky concept in max-algebra
and presented dimensional anomalies illustrate the difficulties. Advanced material
on linear independence can be found in Chap. 6.

Chapter 4 presents the max-algebraic eigenproblem. It contains probably the first
book publication of the complete solution to this problem, that is, characterization
and efficient methods for finding all eigenvalues and describing all eigenvectors for
any square matrix over R∪{−∞} with all the necessary proofs.

The question of factorization of max-algebraic polynomials (briefly, maxpoly-
nomials) is easier than in conventional linear algebra, and it is studied in Chap. 5.
A related topic is that of characteristic maxpolynomials, which are linked to the
job rotation problem. A classical proof is presented showing that similarly to con-
ventional linear algebra the greatest corner is equal to the principal eigenvalue. The
complexity of finding all coefficients of a characteristic maxpolynomial still seems
to be an unresolved problem but a polynomial algorithm is presented for finding all
essential coefficients.

Chapter 6 provides a unifying overview of the results published in various re-
search papers on linear independence and simple image sets. It is proved that three
types of regularity of matrices can be checked in O(n3) time. Two of them, strong
regularity and Gondran–Minoux regularity, are substantially linked to the assign-
ment problem. The chapter includes an application of Gondran–Minoux regularity
to the minimal-dimensional realization problem for discrete-event dynamic systems.

Unlike in conventional linear algebra, two-sided max-linear systems are substan-
tially harder to solve than their one-sided counterparts. An account of the existing
methodology for solving two-sided systems (homogenous, nonhomogenous, or with
separated variables) is given in Chap. 7. The core ideas are those of the Alternat-
ing Method and symmetrized semirings. This chapter is concluded by the proof of
a result of fundamental theoretical importance, namely that the solution set to a
two-sided system is finitely generated.

Following the complete resolution of the eigenproblem, Chap. 8 deals with the
problem of reachability of eigenspaces by matrix orbits. First it is shown how ma-
trix scaling can be useful in visualizing spectral properties of matrices. This is fol-
lowed by presenting the classical theory of the periodic behavior of matrices in
max-algebra and then it is shown how the reachability question for irreducible ma-
trices can be answered in polynomial time. Matrices whose orbit from every starting
vector reaches an eigenvector are called robust. An efficient characterization of ro-
bustness for both irreducible and reducible matrices is presented.

The generalized eigenproblem is a relatively new and hard area of research. Ex-
isting methodology is restricted to a few solvability conditions, a number of solvable
special cases and an algorithm for narrowing the search for generalized eigenvalues.
An account of these results can be found in Chap. 9. Almost all of Sect. 9.3 is orig-
inal research never published before.



Preface ix

Chapter 10 presents theory and algorithms for solving max-linear programs sub-
ject to one or two-sided max-linear constraints (both minimization and maximiza-
tion). The emphasis is on the two-sided case. We present criteria for the objective
function to be bounded and we prove that the bounds are always attained, if they
exist. Finally, bisection methods for localizing the optimal value with a given preci-
sion are presented. For programs with integer entries these methods turn out to be
exact, of pseudopolynomial computational complexity.

The last chapter contains a brief summary of the book and a list of open problems.
In a text of this size, it would be impossible to give a fully comprehensive account

of max-algebra. In particular this book does not cover (or does so only marginally)
control, discrete-event systems, stochastic systems or case studies; material related
to these topics may be found in e.g. [8, 102] and [112]. On the other hand, max-
algebra as presented in this book provides the linear-algebraic background to the
rapidly developing field of tropical mathematics.

This book is the result of many years of my work in max-algebra. Throughout
the years I worked with many colleagues but I would like to highlight my collabora-
tion with Ray Cuninghame-Green, with whom I was privileged to work for almost
a quarter of a century and whose mathematical style and elegance I will always ad-
mire. Without Ray’s encouragement, for which I am extremely grateful, this book
would never exist. I am also indebted to Hans Schneider, with whom I worked in
recent years, for his advice which played an important role in the preparation of this
book. His vast knowledge of linear algebra made it possible to solve a number of
problems in max-algebra.

I would like to express gratitude to my teachers, in particular to Ernest Jucovič
for his vision and leadership, and to Karel Zimmermann, who in 1974 introduced
me to max-algebra and to Miroslav Fiedler who introduced me to numerical linear
algebra.

Sections 8.3–8.5 of this book have been prepared in collaboration with my re-
search fellow Sergeı̆ Sergeev, whose enthusiasm for max-algebra and achievement
of several groundbreaking results in a short span of time make him one of the most
promising researchers of his generation. His comments on various parts of the book
have helped me to improve the presentation.

Numerical examples and exercises have been checked by my students Abdulhadi
Aminu, Kin Po Tam and Vikram Dokka. I am of course taking full responsibility for
any outstanding errors or omissions.

I wish to thank the Engineering and Physical Sciences Research Council for their
support expressed by the award of three research grants without which many parts
of this book would not exist.

I am grateful to my parents, to my wife Eva and daughters Evička and Alenka for
their tremendous support and love, and for their patience and willingness to sacrifice
many evenings and weekends when I was conducting my research.

Peter ButkovičBirmingham
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Chapter 1
Introduction

In this chapter we introduce max-algebra, give the essential definitions and study the
concepts that play a key role in max-algebra: the maximum cycle mean, transitive
closures, conjugation and the assignment problem. In Sect. 1.3 we briefly introduce
two types of problems that are of particular interest in this book: feasibility and
reachability.

1.1 Notation, Definitions and Basic Properties

Throughout this book1 we use the following notation:

R = R∪ {−∞},
R = R∪ {+∞},
Z = Z∪ {−∞},

a ⊕ b = max(a, b)

and

a ⊗ b= a + b

for a, b ∈R. Note that by definition

(−∞)+ (+∞)=−∞= (+∞)+ (−∞).

By max-algebra we understand the analogue of linear algebra developed for the pair
of operations (⊕,⊗), after extending these to matrices and vectors. This notation
is of key importance since it enables us to formulate and in many cases also solve

1Except Sect. 1.4 and in the proof of Theorem 8.1.4.

P. Butkovič, Max-linear Systems: Theory and Algorithms,
Springer Monographs in Mathematics 151,
DOI 10.1007/978-1-84996-299-5_1, © Springer-Verlag London Limited 2010
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2 1 Introduction

certain nonlinear problems in a way similar to that in linear algebra. Note that we
could alternatively define

a⊕ b=min(a, b)

for a, b ∈ R. The corresponding theory would then be called min-algebra or also
“tropical algebra” [104, 141]. However, in this book, ⊕ will always denote the max
operator.

Some authors use the expression “max-plus algebra”, to highlight the difference
from “max-times algebra” (see Sect. 1.4). We use the shorter version “max-algebra”,
since the structures are isomorphic and we can easily form the adjective “max-
algebraic”. Other names used in the past include “path algebra” [45] and “schedule
algebra” [95].

Max-algebra has been studied in research papers and books from the early
1960’s. Perhaps the first paper was that of R.A. Cuninghame-Green [57] in 1960,
followed by [58, 60, 63, 65] and numerous other articles. Independently, a number of
pioneering articles were published, e.g. by B. Giffler [95, 96], N.N. Vorobyov [144,
145], M. Gondran and M. Minoux [97–100], B.A. Carré [45], G.M. Engel and H.
Schneider [80, 81, 129] and L. Elsner [77]. Intensive development of max-algebra
has followed since 1985 in the works of M. Akian, R. Bapat, R.E. Burkard, G. Co-
hen, B. De Schutter, P. van den Driessche, S. Gaubert, M. Gavalec, R. Goverde,
J. Gunawardena, B. Heidergott, M. Joswig, R. Katz, G. Litvinov, J.-J. Loiseau,
W. McEneaney, G.-J. Olsder, J. Plávka, J.-P. Quadrat, I. Singer, S. Sergeev, E. Wag-
neur, K. Zimmermann, U. Zimmermann and many others. Note that idempotency of
addition makes max-algebra part of idempotent mathematics [101, 108, 110].

Our aim is to develop a theory of max-algebra over R; +∞ appears as a nec-
essary element only when using certain techniques, such as dual operations and
conjugation (see Sect. 1.6.3). We do not attempt to develop a concise max-algebraic

theory over R.
In max-algebra the pair of operations (⊕,⊗) is extended to matrices and vec-

tors similarly as in linear algebra. That is if A = (aij ), B = (bij ) and C = (cij )

are matrices with elements from R of compatible sizes, we write C = A ⊕ B if
cij = aij ⊕ bij for all i, j , C = A ⊗ B if cij =∑⊕

k aik ⊗ bkj = maxk(aik + bkj )

for all i, j and α ⊗ A = A⊗ α = (α ⊗ aij ) for α ∈ R. The symbol AT stands for
the transpose of the matrix A. The standard order ≤ of real numbers is extended to
matrices (including vectors) componentwise, that is, if A= (aij ) and B = (bij ) are
of the same size then A≤ B means that aij ≤ bij for all i, j .

Throughout the book we denote −∞ by ε and for convenience we also denote

by the same symbol any vector or matrix whose every component is ε. If a ∈R then
the symbol a−1 stands for −a.

So 2⊕ 3= 3, 2⊗ 3= 5, 4−1 =−4,

(5,9)⊗
(−3

ε

)

= 2
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and the system
(

1 −3
5 2

)

⊗
(

x1
x2

)

=
(

3
7

)

in conventional notation reads

max(1+ x1,−3+ x2) = 3,

max(5+ x1,2+ x2) = 7.

The possibility of working in a formally linear way is based on the fact that the

following statements hold for a, b, c ∈ R (their proofs are either trivial or straight-
forward from the definitions):

a ⊕ b= b⊕ a

(a ⊕ b)⊕ c= a⊕ (b⊕ c)

a ⊕ ε = a = ε⊕ a

a ⊕ b= a or b

a ⊕ b ≥ a

a ⊕ b= a ⇐⇒ a ≥ b

a ⊗ b= b⊗ a

(a ⊗ b)⊗ c= a⊗ (b⊗ c)

a ⊗ 0= a = 0⊗ a

a ⊗ ε = ε = ε⊗ a

a ⊗ a−1 = 0= a−1 ⊗ a for a ∈R

(a ⊕ b)⊗ c= a⊗ c⊕ b⊗ c

a ≥ b =⇒ a⊕ c ≥ b⊕ c

a ≥ b =⇒ a⊗ c ≥ b⊗ c

a ⊗ c ≥ b⊗ c, c ∈R =⇒ a ≥ b.

Let us denote by I any square matrix, called the unit matrix, whose diagonal
entries are 0 and off-diagonal ones are ε. For matrices (including vectors) A,B,C

and I of compatible sizes over R and a ∈R we have:

A⊕B = B ⊕A

(A⊕B)⊕C =A⊕ (B ⊕C)

A⊕ ε =A= ε⊕A

A⊕B ≥A
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A⊕B =A ⇐⇒ A≥ B

(A⊗B)⊗C =A⊗ (B ⊗C)

A⊗ I =A= I ⊗A

A⊗ ε = ε = ε⊗A

(A⊕B)⊗C =A⊗C ⊕B ⊗C

A⊗ (B ⊕C)=A⊗B ⊕A⊗C

a⊗ (B ⊕C)= a⊗B ⊕ a⊗C

a⊗ (B ⊗C)= B ⊗ (a ⊗C).

It follows that (R,⊕,⊗) is a commutative idempotent semiring and (R
n
,⊕) is a

semimodule (for definitions and further properties see [8, 146, 147]). Hence many
of the tools known from linear algebra are available in max-algebra as well. The
neutral elements are of course different: ε is neutral for ⊕ and 0 for ⊗. In the case
of matrices the neutral elements are the matrix (of appropriate dimensions) with all
entries ε (for ⊕) and I for ⊗.

On the other hand, in contrast to linear algebra, the operation ⊕ is not invertible.
However, ⊕ is idempotent and this provides the possibility of constructing alterna-
tive tools, such as transitive closures of matrices or conjugation (see Sect. 1.6), for
solving problems such as the eigenvalue-eigenvector problem and systems of linear
equations or inequalities.

One of the most frequently used elementary property is isotonicity of both⊕ and
⊗ which we formulate in the following lemma for ease of reference.

Lemma 1.1.1 If A,B,C are matrices over R of compatible sizes and c ∈R then

A≥ B =⇒ A⊕C ≥ B ⊕C,

A≥ B =⇒ A⊗C ≥ B ⊗C,

A≥ B =⇒ C ⊗A≥ C ⊗B,

A≥ B =⇒ c⊗A≥ c⊗B.

Proof The first and last statements follow from the scalar versions immediately
since max-algebraic addition and multiplication by scalars are defined component-
wise. For the second implication assume A≥ B , then A⊕B =A and (A⊕B)⊗C =
A⊗C. Hence A⊗C⊕B⊗C =A⊗C, yielding finally A⊗C ≥ B⊗C. The third
implication is proved in a similar way. �

Corollary 1.1.2 If A,B ∈R

m×n

and x, y ∈R

n

then the following hold:

A≥ B =⇒ A⊗ x ≥ B ⊗ x,

x ≥ y =⇒ A⊗ x ≥A⊗ y.
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Throughout the book, unless stated otherwise, we will assume that m and n

are given integers, m,n ≥ 1, and M and N will denote the sets {1, . . . ,m} and
{1, . . . , n}, respectively.

An n × n matrix is called diagonal, notation diag(d1, . . . , dn), or just diag(d),
if its diagonal entries are d1, . . . , dn ∈ R and off-diagonal entries are ε. Thus
I = diag(0, . . . ,0). Any matrix which can be obtained from the unit (diagonal)
matrix by permuting the rows and/or columns will be called a permutation ma-
trix(generalized permutation matrix). Obviously, for any generalized permutation
matrix A = (aij ) ∈ R

n×n
there is a permutation π of the set N such that for all

i, j ∈N we have:

aij ∈R ⇐⇒ j = π(i). (1.1)

The position of generalized permutation matrices in max-algebra is slightly more
special than in conventional linear algebra as they are the only matrices having an
inverse:

Theorem 1.1.3 [60] Let A= (aij ) ∈R
n×n

. Then a matrix B = (bij ) such that

A⊗B = I = B ⊗A (1.2)

exists if and only if A is a generalized permutation matrix.

Proof Suppose that A is a permutation matrix and π a permutation satisfying (1.1).
Define B = (bij ) ∈R

n×n
so that

bπ(i),i = (ai,π(i))
−1

and

bji = ε if j �= π(i).

It is easily seen then that A⊗B = I = B ⊗A.
Suppose now that (1.2) is satisfied, that is,

∑

k∈N

⊕
aik ⊗ bkj =

∑

k∈N

⊕
bik ⊗ akj =

{
0 if i = j,

ε if i �= j.

Hence for every i ∈N there is an r ∈N such that air ⊗ bri = 0, thus air , bri ∈R. If
there was an ail ∈R for an l �= r then bri ⊗ ail ∈R which would imply

∑

k∈N

⊕
brk ⊗ akl > ε,

a contradiction. Therefore every row of A contains a unique finite entry. It is proved
in a similar way that the same holds about every column of A. Hence A is a gener-
alized permutation matrix. �
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Clearly, if an inverse matrix to A exists then it is unique and we may therefore
denote it by A−1. We will often need to work with the inverse of a diagonal matrix.
If X = diag(x1, . . . , xn), x1, . . . , xn ∈R then

X−1 = diag
(
x−1

1 , . . . , x−1
n

)
.

As usual a matrix A is called blockdiagonal if it consists of blocks and all off-
diagonal blocks are ε.

If A is a square matrix then the iterated product A⊗A⊗ · · · ⊗A, in which the
letter A stands k-times, will be denoted as Ak . By definition A0 = I for any square
matrix A.

The symbol ak applies similarly to scalars, thus ak is simply ka and a0 = 0. This
definition immediately extends to ax = xa for any real x (but not for matrices).

The (i, j) entry of Ak will usually be denoted by a
(k)
ij and should not be confused

with ak
ij , which is the kth power of aij . The symbol a

[k]
ij will be used to denote the

(i, j) entry of the kth matrix in a sequence A[1],A[2], . . . .
Idempotency of ⊕ enables us to deduce the following formula, specific for max-

algebra:

Lemma 1.1.4 The following holds for every A ∈R
n×n

and nonnegative integer k:

(I ⊕A)k = I ⊕A⊕A2 ⊕ · · · ⊕Ak. (1.3)

Proof By induction, straightforwardly from definitions. �

We finish this section with some more terminology and notation used throughout
the book, unless stated otherwise. As an analogue to “stochastic”, A= (aij ) ∈R

m×n

will be called column (row) R-astic [60] if
∑⊕

i∈M aij ∈ R for every j ∈ N (if
∑⊕

j∈N aij ∈ R for every i ∈M), that is, when A has no ε column (no ε row). The
matrix A will be called doubly R-astic if it is both row and column R-astic. Also,
we will call A finite if none of its entries is −∞. Similarly for vectors and scalars.

If

1 ≤ i1 < i2 < · · ·< ik ≤m,

1 ≤ j1 < j2 < · · ·< jl ≤ n,

K = {i1, . . . , ik}, L= {j1, . . . , jl},
then A[K,L] denotes the submatrix

⎛

⎝
ai1j1 · · · ai1jl· · · · · · · · ·
aikj1 · · · aikjl

⎞

⎠

of the matrix A= (aij ) ∈ R
m×n

and x[L] denotes the subvector (xj1, . . . , xjl
)T of

the vector x = (x1, . . . , xn)
T . If K = L then, as usual, we say that A[K,L] is a

principal submatrix of A; A[K,K] will be abbreviated to A[K].
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If X is a set then |X| stands for the size of X. By convention, max∅ = ε.

1.2 Examples

We present a few simple examples illustrating how a nonlinear formulation is con-
verted to a linear one in max-algebra (we briefly say, “max-linear”). This indicates
the key strength of max-algebra, namely converting a nonlinear problem into an-
other one, which is linear with respect to the pair of operators (⊕,⊗). These exam-
ples are introductory; more substantial applications of max-algebra are presented
in Sect. 1.3 and in Chap. 2. The first two examples are related to the role of max-
algebra as a “schedule algebra”, see [95, 96].

Example 1.2.1 Suppose two trains leave two different stations but arrive at the same
station from which a third train, connecting to the first two, departs. Let us denote
the departure times of the trains as x1 and x2, respectively and the duration of the
journeys of the first two trains (including the necessary times for changing the trains)
by a1 and a2, respectively (Fig. 1.1). Let x3 be the earliest departure time of the third
train. Then

x3 =max(x1 + a1, x2 + a2)

which in the max-algebraic notation reads

x3 = x1 ⊗ a1 ⊕ x2 ⊗ a2.

Thus x3 is a max-algebraic scalar product of the vectors (x1, x2) and (a1, a2). If
the departure times of the first two trains is given, then the earliest possible departure
time of the third train is calculated as a max-algebraic scalar product of two vectors.

Example 1.2.2 Consider two flights from airports A and B , arriving at a major air-
port C from which two other connecting flights depart. The major airport has many
gates and transfer time between them is nontrivial. Departure times from C (and
therefore also gate closing times) are given and cannot be changed: for the above
mentioned flights they are b1 and b2. The transfer times between the two arrival and
two departure gates are given in the matrix

A=
(

a11 a12
a21 a22

)

.

Fig. 1.1 Connecting train
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Fig. 1.2 Transfer between connecting flights

Durations of the flights from A to C and B to C are d1 and d2, respectively. The
task is to determine the departure times x1 and x2 from A and B , respectively, so
that all passengers arrive at the departure gates on time, but as close as possible to
the closing times (Fig. 1.2).

We can express the gate closing times in terms of departure times from airports
A and B:

b1 =max(x1 + d1 + a11, x2 + d2 + a12)

b2 =max(x1 + d1 + a21, x2 + d2 + a22).

In max-algebraic notation this system gets a more formidable form, of a system of
linear equations:

b=A⊗ x.

We will see in Sects. 3.1 and 3.2 how to solve such systems. For those that have
no solution, Sect. 3.5 provides a simple max-algebraic technique for finding the
“tightest” solution to A⊗ x ≤ b.

Example 1.2.3 One of the most common operational tasks is to find the shortest dis-
tances between all pairs of places in a network for which a direct-distances matrix,
say A= (aij ), is known. We will see in Sect. 1.4 that there is no substantial differ-
ence between max-algebra and min-algebra and for continuity we will consider the
task of finding the longest distances. Consider the matrix A2 =A⊗A: its elements
are

∑

k∈N

⊕
aik ⊗ akj =max

k∈N
(aik + akj ),
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that is, the weights of longest i − j paths of length 2 (if any) for all i, j ∈N . Simi-
larly the elements of Ak (k = 1,2, . . . .) are the weights of longest paths of length k

for all pairs of places. Therefore the matrix

A⊕A2 ⊕ · · · (1.4)

represents the weights of longest paths of all lengths. In particular, its diagonal en-
tries are the weights of longest cycles in the network. It is known that the longest-
distances matrix exists if and only if there is no cycle of positive weight in the net-
work (Lemma 1.5.4). Assuming this, and under the natural assumption aii = 0 for
all i ∈ N , we will prove later in this chapter that the infinite series (1.4) converges
and is equal to An−1, where n is the number of places in the network. Thus the
longest- (and shortest-) distances matrix can max-algebraically be described simply
as a power of the direct-distances matrix.

1.3 Feasibility and Reachability

Throughout the years (since the 1960’s) max-algebra has found a considerable num-
ber of practical interpretations [8, 51, 60, 91]. Note that [102] is devoted to applica-
tions of max-algebra in the Dutch railway system.

One of the aims of this book is to study problems in max-algebra that are mo-
tivated by feasibility or reachability problems. In this section we briefly introduce
these type of problems.

1.3.1 Multi-machine Interactive Production Process:
A Managerial Application

The first model is of special significance as it is used as a basis for subsequent
models. It is called the multi-machine interactive production process [58] (MMIPP)
and is formulated as follows.

Products P1, . . . ,Pm are prepared using n machines (or processors), every ma-
chine contributing to the completion of each product by producing a partial product.
It is assumed that every machine can work for all products simultaneously and that
all these actions on a machine start as soon as the machine starts to work. Let aij be
the duration of the work of the j th machine needed to complete the partial product
for Pi (i = 1, . . . ,m; j = 1, . . . , n). If this interaction is not required for some i and
j then aij is set to −∞. Let us denote by xj the starting time of the j th machine
(j = 1, . . . , n). Then all partial products for Pi (i = 1, . . . ,m) will be ready at time

max(x1 + ai1, . . . , xn + ain).
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Hence if b1, . . . , bm are given completion times then the starting times have to sat-
isfy the system of equations:

max(x1 + ai1, . . . , xn + ain)= bi for all i ∈M.

Using max-algebra this system can be written in a compact form as a system of
linear equations:

A⊗ x = b. (1.5)

The matrix A is called the production matrix. The problem of solving (1.5) is a feasi-
bility problem. A system of the form (1.5) is called a one-sided system of max-linear
equations (or briefly a one-sided max-linear system or just a max-linear system).
Such systems are studied in Chap. 3.

1.3.2 MMIPP: Synchronization and Optimization

Now suppose that independently, as part of a wider MMIPP, k other machines pre-
pare partial products for products Q1, . . . ,Qm and the duration and starting times
are bij and yj , respectively. Then the synchronization problem is to find starting
times of all n+ k machines so that each pair (Pi,Qi) (i = 1, . . . ,m) is completed
at the same time. This task is equivalent to solving the system of equations

max(x1 + ai1, . . . , xn + ain)=max(y1 + bi1, . . . , yk + bik) (i ∈M). (1.6)

It may also be given that Pi is not completed before a particular time ci and similarly
Qi not before time di . Then the equations are

max(x1+ai1, . . . , xn+ain, ci)=max(y1+bi1, . . . , yk+bik, di) (i ∈M). (1.7)

Again, using max-algebra and denoting K = {1, . . . , k} we can write this system as
a system of linear equations:

∑

j∈N

⊕
aij ⊗ xj ⊕ ci =

∑

j∈K

⊕
bij ⊗ yj ⊕ di (i ∈M). (1.8)

To distinguish such systems from those of the form (1.5), the system (1.7) (and also
(1.8)) is called a two-sided system of max-linear equations (or briefly a two-sided
max-linear system). Such systems are studied in Chap. 7. It is shown there that we
may assume without loss of generality that (1.8) has the same variables on both
sides, that is, in the matrix-vector notation it has the form

A⊗ x ⊕ c= B ⊗ x ⊕ d.

This is another feasibility problem; Chap. 7 provides solution methods for this
generalization.
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Another variant of (1.6) is the task when n= k and the starting times are linked,
for instance it is required that there be a fixed interval between the starting times of
the first and second system, that is, the starting times xj , yj of each pair of machines
differ by the same value. If we denote this (unknown) value by λ then the equations
read

max(x1 + ai1, . . . , xn + ain)=max(λ+ x1 + bi1, . . . , λ+ xn + bin) (1.9)

for i = 1, . . . ,m. In max-algebraic notation this system gets the form

∑

j∈N

⊕
aij ⊗ xj = λ⊗

∑

j∈N

⊕
bij ⊗ xj (i ∈M) (1.10)

which in a compact form is a “generalized eigenproblem”:

A⊗ x = λ⊗B ⊗ x.

This is another feasibility problem and is studied in Chap. 9.
In applications it may be required that the starting times be optimized with re-

spect to a given criterion. In Chap. 10 we consider the case when the objective
function is max-linear, that is,

f (x)= f T ⊗ x =max(f1 + x1, . . . , fn + xn)

and f (x) has to be either minimized or maximized. Thus the studied max-linear
programs (MLP) are of the form

f T ⊗ x −→min or max

subject to

A⊗ x ⊕ c= B ⊗ x ⊕ d.

This is an example of a reachability problem.

1.3.3 Steady Regime and Its Reachability

Other reachability problems are obtained when the MMIPP is considered as a multi-
stage rather than a one-off process.

Suppose that in the MMIPP the machines work in stages. In each stage all ma-
chines simultaneously produce components necessary for the next stage of some or
all other machines. Let xi(r) denote the starting time of the r th stage on machine
i (i = 1, . . . , n) and let aij denote the duration of the operation at which the j th
machine prepares a component necessary for the ith machine in the (r + 1)st stage
(i, j = 1, . . . , n). Then

xi(r + 1)=max(x1(r)+ ai1, . . . , xn(r)+ ain) (i = 1, . . . , n; r = 0,1, . . .)
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or, in max-algebraic notation

x(r + 1)=A⊗ x(r) (r = 0,1, . . .)

where A= (aij ) is, as before, the production matrix. We say that the system reaches
a steady regime [58] if it eventually moves forward in regular steps, that is, if for
some λ and r0 we have x(r + 1)= λ⊗ x(r) for all r ≥ r0. This implies A⊗ x(r)=
λ⊗ x(r) for all r ≥ r0. Therefore a steady regime is reached if and only if for some
λ and r , x(r) is a solution to

A⊗ x = λ⊗ x.

Systems of this form describe the max-algebraic eigenvalue-eigenvector problem
and can be considered as two-sided max-linear systems with a parameter. Obviously,
a steady regime is reached immediately if x(0) is a (max-algebraic) eigenvector of
A corresponding to a (max-algebraic) eigenvalue λ (these concepts are defined and
studied in Chap. 4). However, if the choice of a start-time vector is restricted, we
may need to find out for which vectors a steady regime will be reached. The set of
such vectors will be called the attraction space. The problem of finding the attraction
space for a given matrix is a reachability problem (see Sects. 8.4 and 8.5).

Another reachability problem is to characterize production matrices for which a
steady regime is reached with any start-time vector, that is, the attraction space is
the whole space (except ε). In accordance with the terminology in control theory
such matrices are called robust and it is the primary objective of Sect. 8.6 to provide
a characterization of such matrices.

Note that a different type of reachability has been studied in [88].

1.4 About the Ground Set

The semiring (R,⊕,⊗) could be introduced in more general terms as follows: Let G
be a linearly ordered commutative group (LOCG). Let us denote the group operation
by ⊗ and the linear order by ≤. Thus G = (G,⊗,≤), where G is a set. We can
then denote G = G ∪ {ε}, where ε is an adjoined element such that ε < a for all
a ∈ G, and define a ⊕ b = max(a, b) for a, b ∈ G and extend ⊗ to G by setting
a ⊗ ε = ε = ε ⊗ a. It is easily seen that (G,⊕,⊗) is an idempotent commutative
semiring (see p. 3). Max-algebra as defined in Sect. 1.1 corresponds to the case
when G is the additive group of reals, that is, G = (R,+,≤) where ≤ is the natural
ordering of real numbers. This LOCG will be denoted by G0 and called the principal
interpretation [60].

Let us list a few other linearly ordered commutative groups which will be use-
ful later in the book (here R

+ (Q+,Z
+) are the sets of positive reals (rationals,

integers), Z2 is the set of even integers):

G1 = (R,+,≥),

G2 = (R+, ·,≤),
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G3 = (Z,+,≤),

G4 = (Z2,+,≤),

G5 = (Q+, ·,≤),

G6 = (Z+,+,≥).

Obviously both G1 and G2 are isomorphic with G0 (the isomorphism in the first
case is f (x) = −x, in the second case it is f (x) = log(x)). This book presents
results for max-algebra over the principal interpretation but due to the isomorphism
these results usually immediately extend to max-algebra over G1 and G2. A rare
exception is strict visualization (Theorem 8.1.4), where the proof has to be done in
G2 and then transformed to G0. Many (but not all) of the results in this book are
applicable to general LOCG. In a few cases we will present results for groups other
than G0, G1 and G2. The theory corresponding to G1 is usually called min-algebra,
or tropical algebra.

A linearly ordered group G = (G,⊗,≤) is called dense if for any a, b ∈G, a < b,
there is a c ∈G satisfying a < c < b; it is called sparse if it is not dense. A group
(G,⊗) is called radicable if for any a ∈G and positive integer k there is a b ∈G

satisfying bk = a. Observe that in a radicable group

a <
√

a⊗ b < b

if a < b and so every radicable group is dense.
Thus G0, G1, G2 and G5 are dense, G3, G4, G6 are sparse, G0, G1 and G2 are radica-

ble and G3, G4, G5, G6 are not. It will turn out in Sect. 6.2 that the density of groups
is important for strong regularity of matrices and in Sect. 4.2 that radicability is
crucial for the existence of eigenvalues.

1.5 Digraphs and Matrices

We will often use the language of directed graphs (briefly digraphs). A digraph is an
ordered pair D = (V ,E) where V is a nonempty finite set (of nodes) and E ⊆ V ×V

(the set of arcs). A subdigraph of D is any digraph D′ = (V ′,E′) such that V ′ ⊆ V

and E′ ⊆E. If e= (u, v) ∈E for some u,v ∈ V then we say that e is leaving u and
entering v. Any arc of the form (u,u) is called a loop.

Let D = (V ,E) be a given digraph. A sequence π = (v1, . . . , vp) of nodes in D

is called a path (in D) if p = 1 or p > 1 and (vi, vi+1) ∈E for all i = 1, . . . , p− 1.
The node v1 is called the starting node and vp the endnode of π , respectively. The
number p − 1 is called the length of π and will be denoted by l(π). If u is the
starting node and v is the endnode of π then we say that π is a u− v path. If there
is a u− v path in D then v is said to be reachable from u, notation u→ v. Thus
u→ u for any u ∈ V . If π is a u− v path and π ′ is a v −w path in D, then π ◦ π ′
stands for the concatenation of these two paths.
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A path (v1, . . . , vp) is called a cycle if v1 = vp and p > 1 and it is called an
elementary cycle if, moreover, vi �= vj for i, j = 1, . . . , p − 1, i �= j . If there is no
cycle in D then D is called acyclic. Note that the word “cycle” will also be used to
refer to cyclic permutations, see Sect. 1.6.4, as no confusion should arise from the
use of the same word in completely different circumstances.

A digraph D is called strongly connected if u→ v for all nodes u,v in D. A sub-
digraph D′ of D is called a strongly connected component of D if it is a maximal
strongly connected subdigraph of D, that is, D′ is a strongly connected subdigraph
of D and if D′ is a subdigraph of a strongly connected subdigraph D′′ of D then
D′ = D′′. All strongly connected components of a given digraph D = (V ,E) can
be identified in O(|V |+ |E|) time [142]. Note that a digraph consisting of one node
and no arc is strongly connected and acyclic; however, if a strongly connected di-
graph has at least two nodes then it obviously cannot be acyclic. Because of this
singularity we will have to assume in some statements that |V |> 1.

If A= (aij ) ∈ R
n×n

then the symbol FA (ZA) will denote the digraph with the
node set N and arc set E = {(i, j);aij > ε} (E = {(i, j);aij = 0}). ZA will be
called the zero digraph of the matrix A. If FA is strongly connected then A is called
irreducible and reducible otherwise.

Lemma 1.5.1 If A ∈R
n×n

is irreducible and n > 1 then A is doubly R-astic.

Proof It follows from irreducibility that an arc leaving and an arc entering a node
exist for every node in FA. Hence every row and column of A has a finite entry. �

Note that a matrix may be reducible even if it is doubly R-astic (e.g. I ).

Lemma 1.5.2 If A ∈R
n×n

is column R-astic and x �= ε then Ak ⊗ x �= ε for every
nonnegative integer k. Hence if A ∈ R

n×n
is column R-astic then Ak is column

R-astic for every such k. This is true in particular when A is irreducible and n > 1.

Proof If xj �= ε and aij �= ε then the ith component of A⊗ x is finite and the first
statement follows by repeating this argument; the second one by setting x to be any
column of A. The third one follows from Lemma 1.5.1. �

Lemma 1.5.3 If A ∈R
n×n

is row or column R-astic then FA contains a cycle.

Proof Without loss of generality suppose that A = (aij ) is row R-astic and let
i1 ∈N be any node. Then ai1i2 > ε for some i2 ∈ N . Similarly ai2i3 > ε for some
i3 ∈ N and so on. Hence FA has arcs (i1, i2), (i2, i3), . . . . By finiteness of N in
the sequence i1, i2, . . . , some ir will eventually recur; this proves the existence of a
cycle in FA. �

A weighted digraph is D = (V ,E,w) where (V ,E) is a digraph and w is a
real function on E. All definitions for digraphs are naturally extended to weighted
digraphs. If π = (v1, . . . , vp) is a path in (V ,E,w) then the weight of π is
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w(π)=w(v1, v2)+w(v2, v3)+· · ·+w(vp−1, vp) if p > 1 and ε if p = 1. A path π

is called positive if w(π) > 0. In contrast, a cycle σ = (u1, . . . , up) is called a zero
cycle if w(uk,uk+1)= 0 for all k = 1, . . . , p−1. Since w stands for “weight” rather
than “length”, from now on we will use the word “heaviest path/cycle” instead of
“longest path/cycle”.

The following is a basic combinatorial optimization property.

Lemma 1.5.4 If D = (V ,E,w) is a weighted digraph with no positive cycles then
for every u,v ∈ V a heaviest u− v path exists if at least one u− v path exists. In
this case at least one heaviest u− v path has length |V | or less.

Proof If π is a u − v path of length greater than |V | then it contains a cycle as
a subpath. By successive deletions of all such subpaths (necessarily of nonpos-
itive weight) we obtain a u − v path π ′ of length not exceeding |V | such that
w(π ′) ≥ w(π). A heaviest u − v path of length |V | or less exists since the set of
such paths is finite, and the statement follows. �

Given A = (aij ) ∈ R
n×n

the symbol DA will denote the weighted digraph
(N,E,w) where FA = (N,E) and w(i, j) = aij for all (i, j) ∈ E. If
π = (i1, . . . , ip) is a path in DA then we denote w(π,A) = w(π) and it now fol-
lows from the definitions that w(π,A)= ai1i2 + ai2i3 + · · · + aip−1ip if p > 1 and ε

if p = 1.
If D = (N,E,w) is an arc-weighted digraph with the weight function w :E→R

then AD will denote the matrix (aij ) ∈R
n×n

defined by

aij =
{

w(i, j), if (i, j) ∈E,

ε, else,
for all i, j ∈N.

AD will be called the direct-distances matrix of the digraph D.
If D = (N,E) is a digraph and K ⊆ N then D[K] denotes the induced subdi-

graph of D, that is

D[K] = (K,E ∩ (K ×K)).

It follows from the definitions that DA[K] =D[K].
Various types of transformations between matrices will be used in this book. We

say that matrices A and B are

• equivalent (notation A≡ B) if B = P−1⊗A⊗P for some permutation matrix P ,
that is, B can be obtained by a simultaneous permutation of the rows and columns
of A;

• directly similar (notation A∼ B) if B = C ⊗A⊗D for some diagonal matrices
C and D, that is, B can be obtained by adding finite constants to the rows and/or
columns of A;

• similar (notation A ≈ B) if B = P ⊗ A⊗Q for some generalized permutation
matrices P and Q, that is, B can be obtained by permuting the rows and/or
columns and by adding finite constants to the rows and columns of A.
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We also say that B is obtained from A by diagonal similarity scaling (briefly,
matrix scaling, or just scaling) if

B =X−1 ⊗A⊗X

for some diagonal matrix X. Clearly all these four relations are relations of equiva-
lence.

Observe that A and B are similar if they are either directly similar or equivalent.
Scaling is a special case of direct similarity.

If A∼ B then FA = FB ; if A≈ B then FA can be obtained from FB by a renum-
bering of the nodes and finally, if A ≡ B then DA can be obtained from DB by a
renumbering of the nodes.

Matrix scaling preserves crucial spectral properties of matrices and we conclude
this section by a simple but important statement that is behind this fact (more prop-
erties of this type can be found in Lemma 8.1.1):

Lemma 1.5.5 Let A = (aij ),B = (bij ) ∈ R
n×n

and B = X−1 ⊗ A ⊗ X where
X = diag(x1, . . . , xn), x1, . . . , xn ∈ R. Then w(σ,A) = w(σ,B) for every cycle σ

in FA(= FB).

Proof B =X−1 ⊗A⊗X implies

bij =−xi + aij + xj

for all i, j ∈N , hence for σ = (i1, . . . , ip−1, ip = i1) we have

w(σ,B)= bi1i2 + bi2i3 + · · · + bip−1i1

=−xi1 + ai1i2 + xi2 − · · · − xip−1 + aip−1i1 + xi1

= ai1i2 + ai2i3 + · · · + aip−1i1 =w(σ,A). �

1.6 The Key Players

Since the operation ⊕ in max-algebra is not invertible, inverse matrices are almost
non-existent (Theorem 1.1.3) and thus some tools used in linear algebra are unavail-
able. It was therefore necessary to develop an alternative methodology that helps to
solve basic problems such as systems of inequalities and equations, the eigenvalue-
eigenvector problem, linear dependence and so on.

In this section we introduce and prove basic properties of the maximum cycle
mean and transitive closures. We also discuss conjugation and the assignment prob-
lem. All these four concepts will play a key role in solving problems in max-algebra.
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1.6.1 Maximum Cycle Mean

Everywhere in this book, given A ∈R
n×n

, the symbol λ(A) will stand for the max-
imum cycle mean of A, that is:

λ(A)=max
σ

μ(σ,A), (1.11)

where the maximization is taken over all elementary cycles in DA, and

μ(σ,A)= w(σ,A)

l(σ )
(1.12)

denotes the mean of a cycle σ . Clearly, λ(A) always exists since the number of
elementary cycles is finite. It follows from this definition that DA is acyclic if and
only if λ(A)= ε.

Example 1.6.1 If

A=
⎛

⎝
−2 1 −3

3 0 3
5 2 1

⎞

⎠

then the means of elementary cycles of length 1 are −2,0,1, of length 2 are
2,1,5/2, of length 3 are 3 and 2/3. Hence λ(A)= 3.

Lemma 1.6.2 λ(A) remains unchanged if the maximization in (1.11) is taken over
all cycles.

Proof We only need to prove that μ(σ,A)≤ λ(A) for any cycle σ in DA.
Let σ be a cycle. Then σ can be partitioned into elementary cycles σ1, . . . , σt

(t ≥ 1). Hence

μ(σ,A) = w(σ,A)

l(σ )
=
∑t

i=1 w(σi,A)
∑t

i=1 l(σi)

≤
∑t

i=1 l(σi)λ(A)
∑t

i=1 l(σi)
= λ(A). �

The maximum cycle mean of a matrix is of fundamental importance in max-
algebra because for any square matrix A it is the greatest (max-algebraic) eigenvalue
of A, and every eigenvalue of A is the maximum cycle mean of some principal
submatrix of A (see Sects. 1.6.2, 2.2.2 and Chap. 4 for details).

In this subsection we first prove a few basic properties of λ(A) that will be useful
later on and then we show how it can be calculated.

Lemma 1.6.3 If A= (aij ) ∈R
n×n

is row or column R-astic then λ(A) > ε. This is
true in particular when A is irreducible and n > 1.
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Proof The statement follows from Lemmas 1.5.1 and 1.5.3. �

Lemma 1.6.4 Let A ∈ R
n×n

. Then for every α ∈ R the sets of arcs (and therefore
also the sets of cycles) in DA and Dα⊗A are equal and μ(σ,α⊗A)= α⊗μ(σ,A)

for every cycle σ in DA.

Proof For any A= (aij ) ∈R
n×n

, cycle σ = (i1, . . . , ik, i1) and α ∈R we have

μ(σ,α⊗A) = α + ai1i2 + α+ ai2i3 + · · · + α + aik−1ik + α+ aiki1

k

= α + ai1i2 + ai2i3 + · · · + aik−1ik + aiki1

k
= α⊗μ(σ,A). �

A matrix A is called definite if λ(A)= 0 [45, 60]. Thus a matrix is definite if and
only if all cycles in DA are nonpositive and at least one has weight zero.

Theorem 1.6.5 Let A ∈ R
n×n

and α ∈ R. Then λ(α ⊗ A) = α ⊗ λ(A) for any
α ∈R. Hence (λ(A))−1 ⊗A is definite whenever λ(A) > ε.

Proof For any A ∈R
n×n

and α ∈R we have by Lemma 1.6.4:

λ(α⊗A) = max
σ

μ(σ,α⊗A)=max
σ

α⊗μ(σ,A)

= α⊗max
σ

μ(σ,A)= α⊗ λ(A).

Also, λ((λ(A))−1 ⊗A)= λ(A)−1 ⊗ λ(A)= 0. �

The matrix (λ(A))−1 ⊗A will be denoted in this book by Aλ.
For A ∈R

n×n
we denote

Nc(A)= {i ∈N; ∃σ = (i = i1, . . . , ik, i1) in DA : μ(σ,A)= λ(A)}.
The elements of Nc(A) are called critical nodes or eigennodes of A since they play
an essential role in solving the eigenproblem (Lemma 4.2.3). And a cycle σ is called
critical (in DA) if μ(σ,A)= λ(A). Hence Nc(A) is the set of the nodes of all critical
cycles in DA. If i, j ∈Nc(A) belong to the same critical cycle then i and j are called
equivalent and we write i ∼ j ; otherwise they are called nonequivalent and we write
i � j . Clearly, ∼ constitutes a relation of equivalence on Nc(A).

Lemma 1.6.6 Let A ∈R
n×n

. Then for every α ∈R we have Nc(α⊗A)=Nc(A).

Proof By Lemma 1.6.4 we have

μ(σ,α⊗A)= α⊗μ(σ,A)
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for any A ∈ R
n×n

and α ∈ R. Hence the critical cycles in DA and Dα⊗A are the
same. �

The critical digraph of A is the digraph C(A) with the set of nodes N ; the set
of arcs, notation Ec(A), is the set of arcs of all critical cycles. A strongly connected
component of C(A) is called trivial if it consists of a single node without a loop,
nontrivial otherwise. Nontrivial strongly connected components of C(A) will be
called critical components.

Remark 1.6.7 [8, 102] It is not difficult to prove from the definitions that all cycles
in a critical digraph are critical. We will see this as Corollary 8.1.7.

Computation of the maximum cycle mean from the definition is difficult except
for small matrices since the number of elementary cycles in a digraph may be pro-
hibitively large in general. The task of finding the maximum cycle mean of a ma-
trix was studied also in combinatorial optimization, independently of max-algebra.
Publications presenting a method are e.g. [60, 72, 106, 109, 144]. One of the first
methods was Vorobyov’s O(n4) formula, following directly from Lemma 1.6.2 and
the longest path interpretation of matrix powers, see Example 1.2.3:

λ(A)=max
k∈N

max
i∈N

a
(k)
ii

k

where Ak = (a
(k)
ij ), k ∈N .

Example 1.6.8 For the matrix A of Example 1.6.1 we get

A2 =
⎛

⎝
4 1 4
8 5 4
6 6 5

⎞

⎠ ,

A3 =
⎛

⎝
9 6 5
9 9 8

10 7 9

⎞

⎠ ,

hence λ(A)=max(1,5/2,9/3)= 3.

A linear programming method has been designed in [60], see Remark 1.6.30.
Another one is Lawler’s [109] of computational complexity O(n3 logn) based on
Theorem 1.6.5 and existing O(n3) methods for checking the existence of a positive
cycle. It uses a bivalent search for a value of α such that λ(α⊗A)= 0.

We present Karp’s algorithm [106] which finds the maximum cycle mean of an
n × n matrix A in O(n|E|) time where E is the set of arcs of DA. Note that for
the computation of the maximum cycle mean of a matrix we may assume without
loss of generality that A is irreducible since any cycle is wholly contained in one
strongly connected component and, as already mentioned, all strongly connected
components can be recognized in O(|V | + |E|) time [142]. Let A= (aij ) ∈ R

n×n
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and s ∈ N be an arbitrary fixed node of DA = (N,E, (aij )). For every j ∈ N , and
every positive integer k we define Fk(j) as the maximum weight of an s − j path
of length k; if no such path exists then Fk(j)= ε.

Theorem 1.6.9 (Karp) If A= (aij ) ∈R
n×n

is irreducible then

λ(A)=max
j∈N

min
k∈N

Fn+1(j)− Fk(j)

n+ 1− k
. (1.13)

Proof The statement holds for n= 1. If n > 1 then λ(A) > ε. By subtracting λ(A)

from the weight of every arc of DA the value of Fk(j) decreases by kλ(A) and thus
the right-hand side in (1.13) decreases by λ(A). Hence it is sufficient to prove that

max
j∈N

min
k∈N

Fn+1(j)− Fk(j)

n+ 1− k
= 0 (1.14)

if A is definite. If A is definite then there are no positive cycles in DA and by
Lemma 1.5.4 a heaviest s − j path of length n or less exists for every j ∈N (since
at least one such path exists by strong connectivity of DA). Let us denote this max-
imum weight by w(j). Then

Fn+1(j)≤w(j)=max
k∈N

Fk(j),

hence

min
k∈N

(Fn+1(j)− Fk(j)) = Fn+1(j)−max
k∈N

Fk(j)

= Fn+1(j)−w(j)≤ 0

holds for every j ∈N . It remains to show that equality holds for at least one j . Let
σ be a cycle of weight zero and i be any node in σ . Let π be any s − i path of
maximum weight w(i). Then π extended by any number of repetitions of σ is also
an s− i path of weight w(i) and therefore any subpath of such an extension starting
at s is also a heaviest path from s to its endnode. By using a sufficient number of
repetitions of σ we may assume that the extension of π is of length n+ 1 or more.
Let us denote one such extension by π ′. A subpath of π ′ starting at s of length n+1
exists. Its endnode is the sought j . �

The quantities Fk(j) can be computed by the recurrence

Fk(j)= max
(i,j)∈E

(Fk−1(i)+ aij ) (k = 2, . . . , n+ 1) (1.15)

with the initial conditions F1(j) = asj for all j ∈ N . The computation of Fk(j)

from (1.15) for a fixed k and for all j requires O(|E|) operations as every arc will
be used once. Hence the number of operations needed for the computation of all
quantities Fk(j) (j ∈ N,k = 1, . . . , n + 1) is O(n|E|). The application of (1.13)



1.6 The Key Players 21

is obviously O(n2). By connectivity we have n ≤ |E| and the overall complexity
bound O(n|E|) now follows.

Specially designed algorithms find the maximum cycle mean for some types of
matrices with computational complexity lower than O(n3) [33, 94, 122]. See also
[46, 121].

There are also other, fast methods for finding the maximum cycle mean for gen-
eral matrices whose performance bound is not known. See for instance Howard’s
algorithm or the power method [8, 17, 49, 77, 78, 84, 102].

1.6.2 Transitive Closures

1.6.2.1 Transitive Closures, Eigenvectors and Subeigenvectors

Given A ∈R
n×n

we define the following infinite series

�(A)=A⊕A2 ⊕A3 ⊕ · · · (1.16)

and

�(A)= I ⊕ �(A)= I ⊕A⊕A2 ⊕A3 ⊕ · · · . (1.17)

If these series converge to matrices that do not contain +∞, then the matrix �(A)

is called the weak transitive closure of A and �(A) is the strong transitive closure
of A. These names are motivated by the digraph representation if A is a {0,−1}
matrix since the existence of arcs (i, j) and (j, k) in Z�(A) implies that also the arc
(i, k) exists.

The matrices �(A) and �(A) are of fundamental importance in max-algebra.
This follows from the fact that they enable us to efficiently describe all solutions
(called eigenvectors, if different from ε) to

A⊗ x = λ⊗ x, λ ∈R (1.18)

in the case of �(A), and all finite solutions to

A⊗ x ≤ λ⊗ x, λ ∈R (1.19)

in the case of �(A). Solutions to (1.19) different from ε are called subeigenvectors.
The possibility of finding all (finite) solutions is an important feature of max-algebra
and we illustrate the benefits of this on an application in Sect. 2.1.

If A ∈ R
n×n

and λ ∈ R, we will denote the set of finite subeigenvectors by
V ∗(A,λ), that is

V ∗(A,λ)= {x ∈R
n;A⊗ x ≤ λ⊗ x},

and for convenience also

V ∗(A)= V ∗(A,λ(A)),

V ∗0 (A)= V ∗(A,0).
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We will first show how �(A) and �(A) can be used for finding one solution
to (1.18) and (1.19), respectively. Then we describe all finite solutions to (1.19)
using �(A). The description of all solutions to (1.18) will follow from the theory
presented in Chap. 4.

It has been observed in Example 1.2.3 that the entries of A2 = A ⊗ A are the
weights of heaviest paths of length 2 for all pairs of nodes in DA. Similarly the
elements of Ak (k = 1,2, . . . .) are the weights of heaviest paths of length k for all
pairs of nodes. Therefore the matrix �(A) (if the infinite series converges) represents
the weights of heaviest paths of any length for all pairs of nodes. Motivated by this
fact �(A) is also called the metric matrix corresponding to the matrix A [60]. Note
that �(A) is often called the Kleene star [3].

1.6.2.2 Weak Transitive Closure

If λ(A)≤ 0 then all cycles in DA have nonpositive weights and so by Lemma 1.5.4
we have:

Ak ≤A⊕A2 ⊕ · · · ⊕An (1.20)

for every k ≥ 1, and therefore �(A) for any matrix with λ(A)≤ 0, and in particular
for definite matrices, exists and is equal to A⊕A2⊕ · · · ⊕An. On the other hand if
λ(A) > 0 then a positive cycle in DA exists, thus the value of at least one position
in Ak is unbounded as k −→∞ and, consequently, at least one entry of �(A) is
+∞. Also, �(A) is finite if A is irreducible since �(A) is the matrix of the weights
of heaviest paths in DA and in a strongly connected digraph there is a path between
any pair of nodes. We have proved:

Proposition 1.6.10 Let A ∈ R
n×n

. Then (1.16) converges to a matrix with no +∞
if and only if λ(A)≤ 0. If λ(A)≤ 0 then

�(A)=A⊕A2 ⊕ · · · ⊕Ak

for every k ≥ n. If A is also irreducible and n > 1 then �(A) is finite.

A matrix A = (aij ) ∈ R
n×n

is called increasing if aii ≥ 0 for all i ∈ N . Obvi-
ously, A= I ⊕A when A is increasing and so then there is no difference between
�(A) and �(A).

Lemma 1.6.11 If A= (aij ) ∈R
n×n

is increasing then x ≤A⊗x for every x ∈R
n
.

Hence

A≤A2 ≤A3 ≤ · · · . (1.21)

Proof If A is increasing then I ≤A and thus x = I ⊗ x ≤A⊗ x for any x ∈ R
n

by
Corollary 1.1.2. The rest follows by taking the individual columns of A for x and
repeating the argument. �



1.6 The Key Players 23

A matrix A= (aij ) ∈R
n×n

is called strongly definite if it is definite and increas-
ing. Since the diagonal entries of A are the weights of cycles (loops) we have that
aii = 0 for all i ∈N if A is strongly definite.

Proposition 1.6.12 If A ∈R
n×n

is strongly definite then

�(A)= �(A)=An−1 =An =An+1 = · · · .

Proof Since A≤A2 ≤A3 ≤ · · · we have �(A)=A⊕A2⊕ · · · ⊕Ak =Ak for any
k ≥ n straightforwardly by Proposition 1.6.10. Also, we deduce that all diagonal
entries of all powers are nonnegative; they are all actually zero as a positive diagonal
entry would indicate a positive cycle. To prove the case k = n− 1 consider a

(n−1)
ij

and a
(n)
ij , that is, the (i, j) entries in An−1 and An for some i, j ∈N , respectively. If

a
(n−1)
ij < a

(n)
ij (1.22)

then i �= j (since all diagonal entries in all powers are zero) and the greatest weight
of an i−j path, say π , of length n is greater than the greatest weight of an i−j path
of length n−1. However π contains a cycle, say σ , as a subpath. Since w(σ,A)≤ 0
by removing σ from π we obtain an i − j path, say π ′, l(π ′) < n,w(π ′,A) ≥
w(π,A) which contradicts (1.22). Hence a

(n−1)
ij = a

(n)
ij for all i, j ∈N . �

Remark 1.6.13 As a by-product of Proposition 1.6.12 we may compile a simple
and fast power method [65] for finding �(A) if A is strongly definite, since we only
need to find a sufficiently high power of A. We calculate A2,A4 = (A2)2,A8 =
(A4)2, . . . ,A2k

, . . . and we stop as soon as 2k ≥ n−1, that is, when k ≥ log2(n−1),
yielding an O(n3 logn) method.

Another useful property of strongly definite matrices immediately follows from
Lemma 1.6.11:

Lemma 1.6.14 If A ∈ R
n×n

is strongly definite and x ∈ R
n

then A⊗ x = x if and
only if A⊗ x ≤ x.

1.6.2.3 Strong Transitive Closure (Kleene Star)

The matrix �(A) also has some remarkable properties. A key to understanding these
is Lemma 1.1.4 which immediately implies another formula:

�(A)= �(I ⊕A). (1.23)

Proposition 1.6.15 If A ∈R
n×n

and λ(A)≤ 0 then

�(A) = I ⊕A⊕ · · · ⊕An−1, (1.24)

(�(A))k =�(A) (1.25)
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for every k ≥ 1 and

A⊗�(A)= �(A). (1.26)

Proof If λ(A) ≤ 0 then I ⊕ A is both definite and increasing, hence by (1.23),
Lemma 1.1.4 and Proposition 1.6.12 we have

�(A)= �(I ⊕A)= (I ⊕A)n−1 = I ⊕A⊕ · · · ⊕An−1.

The other two formulae straightforwardly follow from the first. �

Corollary 1.6.16 A = (aij ) ∈ R
n×n

is a Kleene star if and only if A2 = A and
aii = 0 for all i ∈N .

Suppose λ(A)≤ 0, then by (1.20)

A⊗ �(A)=A2 ⊕ · · · ⊕An+1 ≤A⊕A2 ⊕ · · · ⊕An+1 = �(A)

and similarly by (1.24)

A⊗�(A)=A⊕ · · · ⊕An = �(A)≤�(A).

Hence every column of �(A) or �(A) is a solution to A⊗ x ≤ x if λ(A) ≤ 0. If,
moreover, A is also increasing then

�(A)= �(A)=An−1 =An =An+1 = · · ·

and so A⊗�(A)=�(A) and A⊗ �(A)= �(A). We readily deduce:

Proposition 1.6.17 If A ∈ R
n×n

is strongly definite then every column of
�(A)(= �(A)) is a solution to A⊗ x = x.

We will show in Chap. 4 how to use �(A) for finding all solutions to A⊗ x = x

for definite matrices A. Consequently, this will enable us to describe all solutions
and all finite solutions to A⊗ x = λ⊗ x.

Now we use the strong transitive closure to provide a description of all finite
solutions to A⊗ x ≤ λ⊗ x for any λ ∈R and all solutions for λ≥ λ(A) and λ > ε.
Note that A⊗ x ≤ λ⊗ x may have a solution x ∈ R

n
, x �= ε even if λ < λ(A), see

Theorem 4.5.14.
Observe that if A= ε then every x ∈R

n
is a solution to A⊗ x ≤ λ⊗ x.

Theorem 1.6.18 [40, 59, 80, 128] Let A= (aij ) ∈R
n×n

,A �= ε. Then the following
statements hold:

(a) A⊗ x ≤ λ⊗ x has a finite solution if and only if λ≥ λ(A) and λ > ε.
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(b) If λ≥ λ(A) and λ > ε then

V ∗(A,λ)= {�(λ−1 ⊗A)⊗ u;u ∈R
n}.

(c) If λ≥ λ(A) and λ > ε then

A⊗ x ≤ λ⊗ x, x ∈R
n

if and only if

x =�(λ−1 ⊗A)⊗ u, u ∈R
n
.

Proof (a) Suppose A⊗ x ≤ λ⊗ x, x ∈R
n. Since A �= ε we have λ > ε. If λ(A)= ε

then also λ > λ(A). Suppose now that λ(A) > ε, thus DA contains a cycle. Let
σ = (i1, . . . , ik, ik+1 = i1) be any cycle in DA. Then we have

aii i2 + xi2 ≤ λ+ xi1

ai2i3 + xi3 ≤ λ+ xi2

· · ·
aiki1 + xi1 ≤ λ+ xik .

If we add up these inequalities and simplify, we get

λ≥ ai1i2 + ai2i3 + · · · + aik−1ik + aiki1

k
= μ(σ,A).

It follows that λ≥maxσ μ(σ,A)= λ(A).
For the converse suppose λ ≥ λ(A) and λ > ε, thus λ(λ−1 ⊗ A) ≤ 0 and take

u ∈R
n. We show that

A⊗ x ≤ λ⊗ x, x ∈R
n

is satisfied by x =�(λ−1⊗A)⊗ u. Since �(λ−1⊗A) ≥ I we have that x ≥ u and
thus x ∈R

n. Also,

�(λ−1 ⊗A)⊗ x = (�(λ−1 ⊗A))2 ⊗ u=�(λ−1 ⊗A)⊗ u= x

by (1.25). Hence we have

(λ−1 ⊗A)⊗ x ≤�(λ−1 ⊗A)⊗ x = x

and the statement follows.
(b) Suppose λ≥ λ(A), λ > ε and A⊗ x ≤ λ⊗ x, x ∈R

n, thus

(λ−1 ⊗A)⊗ x ≤ x

and

x ⊕ (λ−1 ⊗A)⊗ x = x.
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Hence

(I ⊕ λ−1 ⊗A)⊗ x = x,

and by (1.3) and (1.24) we have

�(λ−1 ⊗A)⊗ x = (I ⊕ λ−1 ⊗A)n−1 ⊗ x = x.

The proof of sufficiency follows the second part of the proof of (a).
(c) The proof is the same as that of part (b) except the reasoning that x ∈R

n. �

1.6.2.4 Two properties of subeigenvectors

The following two statements provide information that will be helpful later on.

Lemma 1.6.19 Let A ∈R
n×n

and λ(A) > ε. If x ∈ V ∗(A) and (i, j) ∈Ec(A) then

aij ⊗ xj = λ(A)⊗ xi.

Proof The inequality aij ⊗xj ≤ λ(A)⊗xi for all i, j follows from Theorem 1.6.18.
Suppose it is strict for some (i, j) ∈ Ec(A). Since (i, j) belongs to a critical cycle,
say σ = (j1 = i, j2 = j, j3, . . . , jk, jk+1 = j1), we have

ajrjr+1 ⊗ xjr+1 ≤ λ(A)⊗ xjr

for all r = 1, . . . , k. Since the first of these inequalities is strict, by multiplying them
out using ⊗ and cancellations of all xj we get the strict inequality

aj1j2 ⊗ · · · ⊗ ajkj1 < (λ(A))k,

which is a contradiction with the assumption that σ is critical. �

Lemma 1.6.20 The set V ∗(A,λ) is convex for any A ∈R
n×n

and λ ∈R.

Proof If λ= ε then V ∗(A,λ) is either empty (if A �= ε) or R
n (if A= ε).

If λ > ε then A⊗ x ≤ λ⊗ x is in conventional notation equivalent to

aij + xj ≤ λ+ xi

for all i, j ∈N such that aij > ε; which is a system of conventional linear inequali-
ties, hence the solution set is convex. �
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1.6.2.5 Computation of Transitive Closures

We finish this section with computational observations. The product of two
n× n matrices from the definition uses O(n3) operations of ⊕ and ⊗ and unlike in
conventional linear algebra a faster way of finding this product does not seem to be
known (see Chap. 11 for a list of open problems). This implies that the computation
of �(A) (and therefore also �(A)) for a matrix A with λ(A)≤ 0 from the definition
needs O(n4) operations. However, a classical method can do better:

Algorithm 1.6.21 FLOYD−WARSHALL
Input: A= (aij ) ∈R

n×n
.

Output: �(A)= (γij ) or an indication that there is a positive cycle in DA (and
hence �(A) contains +∞).

γij := aij for all i, j ∈N

for all p = 1, . . . , n do
for all i = 1, . . . , n, i �= p do

for all j = 1, . . . , n, i �= p do
begin
if γij < γip + γpj then γij := γip + γpj

if i = j and γij > 0 then stop (Positive cycle exists)
end

Theorem 1.6.22 [120] The algorithm FLOYD−WARSHALL is correct and termi-
nates after O(n3) operations.

Proof Correctness: Let

G[p] = (γ [p]ij

)

be the matrix obtained at the end of the (p− 1)st run of the main (outer) loop of the
algorithm, p = 1,2, . . . , n+ 1. Hence the algorithm starts with the matrix G[1] =A

and constructs a sequence of matrices

G[2], . . . ,G[n+1].

The formula used in the algorithm is

γ
[p+1]
ij :=max

(
γ
[p]
ij , γ

[p]
ip + γ

[p]
pj

)
(i, j ∈N; i, j �= p). (1.27)

It is sufficient to prove that each γ
[p]
ij (i, j ∈N,p = 1, . . . , n+ 1) calculated in this

way is the greatest weight of an i − j path not containing nodes p,p+ 1, . . . , n as
intermediate nodes because then G[n+1] is the matrix of weights of heaviest paths
(without any restriction) for all pairs of nodes, that is, �(A). We show this by in-
duction on p.

The statement is true for p = 1 because G[1] = A is the direct-distances matrix
(in which no intermediate nodes are allowed).
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For the second induction step realize that a heaviest i − j path, say π , not con-
taining nodes p + 1, . . . , n as intermediate nodes either does or does not contain
node p. In the first case it consists of two subpaths, without loss of generality both
elementary, one being an i−p path, the other a p− j path; neither of them contains
node p as an intermediate node. By optimality both are heaviest paths and therefore
the weight of π is γ

[p]
ip + γ

[p]
pj . In the second case π is a heaviest i− j path not con-

taining p, thus its weight is γ
[p]
ij . The correctness of the transition formula (1.27)

now follows.
Complexity bound: Two inner nested loops, each of length n − 1, contain two

lines which require a constant number of operations. The outer loop has length n,
thus the complexity bound is O(n(n− 1)2)=O(n3). �

Example 1.6.23 For the matrix A of Example 1.6.1 we have λ(A) = 3, hence by
subtracting 3 from every entry of A we obtain the definite matrix Aλ:

⎛

⎝
−5 −2 −6

0 −3 0
2 −1 −2

⎞

⎠ .

We may calculate �(Aλ) from the definition as Aλ ⊕A2
λ ⊕A3

λ. Since

A2
λ =
⎛

⎝
−2 −5 −2

2 −1 −2
0 0 −1

⎞

⎠ , A3
λ =
⎛

⎝
0 −3 −4
0 0 −1
1 −2 0

⎞

⎠

we see that

�(Aλ)=
⎛

⎝
0 −2 −2
2 0 0
2 0 0

⎞

⎠ .

Alternatively we may use the algorithm FLOYD−WARSHALL:

Aλ =
⎛

⎝
−5 −2 −6

0 −3 0
2 −1 −2

⎞

⎠p = 1−−−→

⎛

⎝
−5 −2 −6

0 −2 0
2 0 −2

⎞

⎠

p = 2−−−→

⎛

⎝
−2 −2 −2

0 −2 0
2 0 0

⎞

⎠p = 3−−−→

⎛

⎝
0 −2 −2
2 0 0
2 0 0

⎞

⎠ .

Remark 1.6.24 The transitive closure of Boolean matrices A (in conventional linear
algebra) can be calculated in O(n2+mαlog(m)) time [115], where m is the number
of strongly connected components of DA and α is the matrix multiplication constant
(currently α = 2.376 [56]). This immediately yields an O(n2 +mα log(m)) algo-
rithm for finding the weak and strong transitive closures of matrices over {0,−∞}
in max-algebra. Note that the transitive closure of every irreducible matrix over
{0,−∞} is the zero matrix.
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1.6.3 Dual Operators and Conjugation

Other tools that help to overcome the difficulties caused by the absence of subtrac-
tion and matrix inversion are the dual pair of operations (⊕′,⊗′) and the matrix

conjugation respectively [59, 60]. These are defined as follows. For a, b ∈R set

a⊕′ b = min(a, b),

a⊗′ b = a + b if {a, b} �= {−∞,+∞}
and

(−∞)⊗′ (+∞)=+∞= (+∞)⊗′ (−∞).

The pair of operations (⊕′,⊗′) is extended to matrices (including vectors) in the
same way as (⊕,⊗) and it is easily verified that all properties described in Sect. 1.1
hold dually if ⊕ is replaced by ⊕′, ⊗ by ⊗′ and by reverting the inequality signs.

The conjugate of A= (aij ) ∈ R
m×n

is A∗ = −AT ∈ R
n×m

. The significance of
the dual operators and conjugation is indicated by the following statement which
will be proved in Sect. 3.2, where we also show more of their properties.

Theorem 1.6.25 [59] If A ∈R
m×n

, b ∈R
m

and x ∈R
n

then

A⊗ x ≤ b if and only if x ≤A∗ ⊗′ b.

Corollary 1.6.26 If A ∈R
m×n

and v ∈R
m

then A⊗ (A∗ ⊗′ v)≤ v.

Corollary 1.6.27 If A ∈R

m×n

and B ∈R

m×k

then

A⊗ (A∗ ⊗′ B)≤ B.

Conjugation can also be used to conveniently express the maximum cycle mean
of A in terms of its finite subeigenvectors:

Lemma 1.6.28 Let A ∈R
n×n

and λ(A) > ε. If z ∈ V ∗(A) then

λ(A)= z∗ ⊗A⊗ z= min
x∈Rn

x∗ ⊗A⊗ x.

Proof It follows from the definition of V ∗(A) that z∗ ⊗A⊗ z≤ λ(A). At the same
time

z∗ ⊗A⊗ z= max
i,j∈N

(−zi + aij + zj )≥ λ(A)

by Lemma 1.6.19.
On the other hand, if x∗⊗A⊗x = λ for x ∈R

n then A⊗x ≤ λ⊗x and λ≥ λ(A)

by Theorem 1.6.18. �
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We conclude this subsection by an observation that was proved many years ago
and inspired a linear programming method for finding λ(A) [60, 80, 128]. See
also [40].

Theorem 1.6.29 If A= (aij ) ∈R
n×n

then

λ(A)= inf{λ;A⊗ x ≤ λ⊗ x, x ∈R
n}. (1.28)

If λ(A) > ε or A= ε then the infimum in (1.28) is attained.

Proof The statement follows from Theorem 1.6.18 and Lemma 1.6.28. �

Note that using the spectral theory of Sect. 4.5 we will be able to prove a more
general result, Theorem 4.5.14.

Remark 1.6.30 If λ(A) > ε then formula (1.28) suggests that λ(A) is the optimal
value of the linear program

λ−→min

s.t.

λ+ xi − xj ≥ aij , (i, j) ∈ FA.

This idea was used in [60] to design a linear programming method for finding the
maximum cycle mean of a matrix.

1.6.4 The Assignment Problem and Its Variants

By Pn we denote in this book the set of all permutations of the set N . The symbol
id will stand for the identity permutation. As usual, cyclic permutations (or, briefly,
cycles if no confusion arises) are of the form σ : i1 −→ i2 −→ · · · −→ ik −→ i1.
We will also write σ = (i1i2 · · · ik). Every permutation of the set N can be written
as a product of cyclic permutations of subsets of N , called constituent cycles. For
instance, if n= 5 then the permutation

π =
(

1 2 3 4 5
4 5 1 3 2

)

is the product of cyclic permutations 1−→ 4−→ 3−→ 1 and 2−→ 5−→ 2, that
is, π = (143)(25).

Let A= (aij ) ∈ R
n×n

. The max-algebraic permanent (or briefly permanent) of
A is

maper(A)=
∑

π∈Pn

⊕∏

i∈N

⊗
ai,π(i),
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which in conventional notation reads

maper(A)= max
π∈Pn

∑

i∈N

ai,π(i).

For π ∈ Pn the value

w(π,A)=
∏

i∈N

⊗
ai,π(i) =

∑

i∈N

ai,π(i)

is called the weight of the permutation π (with respect to A). The problem of finding
a permutation π ∈ Pn of maximum weight (called optimal permutation or optimal
solution) is the assignment problem for the matrix A solvable in O(n3) time using
e.g. the Hungarian method (see for instance [21, 22, 120] or textbooks on combina-
torial optimization). Hence the max-algebraic permanent of A is the optimal value
to the assignment problem for A and, in contrast to the linear-algebraic permanent,
it can be found efficiently. To mark this link we denote the set of optimal solutions
to the assignment problem by ap(A), that is,

ap(A)= {π ∈ Pn;w(π,A)=maper(A)}.
The permanent plays a key role in a number of max-algebraic problems because

of the absence of the determinant due to the lack of subtraction. It turns out that the
structure of the set of optimal solutions is related to some max-algebraic properties,
in particular to questions such as the regularity of matrices.

Example 1.6.31 If

A=
⎛

⎝
3 7 2
4 1 5
2 6 3

⎞

⎠

then maper(A)= 14, ap(A)= {(123), (1)(23), (12)(3)}.

A very simple property, on which the Hungarian method is based, is that the set
of optimal solutions to the assignment problem for A does not change by adding a
constant to a row or column of A. We can express this fact conveniently in max-
algebraic terms: adding the constants c1, . . . , cn to the rows and d1, . . . , dn to the
columns of A means to multiply C ⊗ A ⊗ D, where C = diag(c1, . . . , cn) and
D = (d1, . . . , dn).

Lemma 1.6.32 If A∼ B then ap(A)= ap(B).

Proof Let π ∈ Pn and B = C ⊗A⊗D. Then

w(π,B) =
∏

i∈N

⊗
bi,π(i) =

∏

i∈N

⊗
ci ⊗ ai,π(i) ⊗ dπ(i)

=
∏

i∈N

⊗
ci ⊗

∏

i∈N

⊗
ai,π(i) ⊗

∏

i∈N

⊗
dπ(i) = c⊗w(π,A)⊗ d,
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where c=∏⊗i∈N ci and d =∏⊗i∈N di . Hence optimal permutations for B are exactly
the same as for A. �

The Hungarian method applied to a matrix A assumes without loss of gener-
ality that w(π,A) is finite for at least one π ∈ Pn or, equivalently, maper(A) > ε

(otherwise ap(A) = Pn). Any such matrix is transformed by adding suitable con-
stants to the rows and columns to produce a nonpositive matrix B with w(π,B)= 0
for at least one π ∈ Pn and thus maper(B) = 0. By Lemma 1.6.32 we have
ap(A) = ap(B). Because of the special form of B we then have that optimal per-
mutations for B (and A) are exactly those that select only zeros from B that is

ap(A)= ap(B)= {π ∈ Pn;bi,π(i) = 0}.

Example 1.6.33 The Hungarian method transforms the matrix A of Example 1.6.31
using

C = diag(−4,−5,−3), D = diag(1,−3,0)

to
⎛

⎝
0 0 −2
0 −7 0
0 0 0

⎞

⎠ ,

from which we can readily identify ap(A).

We may immediately deduce from the Hungarian method the following, other-
wise rather nontrivial statement:

Theorem 1.6.34 Let A ∈ R
n×n

and suppose that w(π,A) is finite for at least one
π ∈ Pn. Then diagonal matrices C,D such that

maper(C ⊗A⊗D)= 0

and

C ⊗A⊗D ≤ 0

exist and can be found in O(n3) time.

The assignment problem plays a prominent role in various max-algebraic prob-
lems, see Chaps. 5, 6, 7 and 9. Therefore we will now discuss some computational
aspects of the assignment problem relevant to max-algebra. First we mention that
the diagonal entries in C and D in Theorem 1.6.34 are components of a dual optimal
solution when the assignment problem is considered as a linear program and there-
fore using the duality of linear programming it is possible to improve the complexity
bound in that theorem if an optimal solution is known [22, 120]:
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Theorem 1.6.35 Let A ∈ R
n×n

and suppose that a π ∈ ap(A) is known. Then di-
agonal matrices C,D such that

maper(C ⊗A⊗D)= 0

and

C ⊗A⊗D ≤ 0

can be found in O(n) time.

It will be essential in Chap. 6 to decide whether an optimal permutation to the as-
signment problem is unique, that is, whether |ap(A)| = 1. If this is the case then we
say that A has strong permanent. For answering this question (see Theorem 1.6.39
below) it will be useful to transform a given matrix by permuting the rows and/or
columns to a form where the diagonal entries of the matrix form an optimal so-
lution, that is, where id ∈ ap(A). We say that A ∈ R

n×n
is diagonally dominant

if id ∈ ap(A). We therefore first make some observations on diagonally dominant
matrices.

It is a straightforward matter to transform any square matrix to a diagonally dom-
inant by suitably permuting the rows and/or columns once an optimal permutation
has been found for this matrix. This transformation clearly does not change the size
of the set of optimal permutations and can be described as a multiplication of the
matrix by permutation matrices, that is, a transformation of the matrix to a similar
one. Using Lemma 1.6.32 we readily get:

Lemma 1.6.36 If A≈ B then |ap(A)| = |ap(B)|.

An example of a class of diagonally dominant matrices is the set of strongly
definite matrices, since the weight of every permutation is the sum of the weights of
constituent cycles, which are all nonpositive and the weight of id is 0.

A nonpositive matrix with zero diagonal is called normal (thus every normal ma-
trix is strongly definite but not conversely). A normal matrix whose all off-diagonal
elements are negative is called strictly normal. Obviously, a strictly normal matrix
has strong permanent. We have

strictly normal=⇒ normal=⇒ strongly definite =⇒ diagonally dominant.
(1.29)

As a consequence of Theorem 1.6.34 we have:

Theorem 1.6.37 Every square matrix A with finite maper(A) is similar to a normal
matrix, that is, there exist generalized permutation matrices P and Q such that
P ⊗A⊗Q is normal.

A normal matrix similar to a matrix A may not be unique. Any such matrix will
be called a normal form of A.
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Corollary 1.6.38 A normal form of any square matrix A ∈ R
n×n

with finite
maper(A) can be found using the Hungarian method in O(n3) time.

Not every square matrix is similar to a strictly normal (for instance a constant
matrix). This question is related to strong regularity of matrices in max-algebra and
will be revisited in Chap. 6.

We are now ready to present a method for checking whether a matrix has strong
permanent. Let A = (aij ) ∈ R

n×n
. If maper(A) = ε then A does not have strong

permanent. Suppose now that maper(A) > ε. Due to the Hungarian method we can
find a normal matrix B similar to A. By Lemma 1.6.36 A has strong permanent if
and only if B has the same property. Every permutation is a product of elementary
cycles, therefore if w(π,B)= 0 for some π �= id then at least one of the constituent
cycles of π is of length two or more or, equivalently, there is a cycle of length two
or more in the digraph ZB . Conversely, every such cycle can be extended using the
complementary diagonal zeros in B to a permutation of zero weight with respect
to B , different from id. Thus we have:

Theorem 1.6.39 [24] A square matrix has strong permanent if and only if the zero
digraph of any (and thus of all) of its normal forms contains no cycles other than
the loops (that is, it becomes acyclic once all loops are removed).

Checking that a digraph is acyclic can be done using standard techniques [120]
in linear time expressed in terms of the number of arcs.

Note that an early paper [82] on matrix scaling contains results which are closely
related to Theorem 1.6.39.

Another aspect of the assignment problem that will be useful is the following
simple transformation: Once an optimal solution to the assignment problem for a
matrix A is known, it is trivial to permute the columns of A so that id ∈ ap(A). By
subtracting the diagonal entries from their columns we readily get a matrix that is
not only diagonally dominant but also has all diagonal entries equal to 0. Hence this
matrix is strongly definite. We summarize:

Proposition 1.6.40 If A ∈ R
n×n

has finite maper(A) then there is a generalized
permutation matrix Q such that A⊗Q is strongly definite. The matrix Q can be
found using O(n3) operations.

Finally we discuss the question of parity of optimal permutations for the assign-
ment problem, which will be useful in Chap. 6.

As usual [111], we define the sign of a cyclic permutation (cycle) σ = (i1i2 · · · ik)
as sgn(σ )= (−1)k−1. The integer k is called the length of the cycle σ . If π1, . . . , πr

are the constituent cycles of a permutation π ∈ Pn then the sign of π is

sgn(π)= sgn(π1) · · · sgn(πk).
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A permutation π is odd if sgn(π) = −1 and even otherwise. We denote the set of
odd (even) permutations of N by P−n (P+n ). Straightforwardly from the definitions
we get:

Lemma 1.6.41 If π is an odd permutation then at least one of the constituent cycles
of π has an even length.

In Chap. 6 it will important to decide whether all permutations in ap(A) are of
the same parity. We therefore denote

ap+(A) = ap(A)∩ P+n ,

ap−(A) = ap(A)∩ P−n

and

maper+(A) = max
π∈P+n

∑

i∈N

ai,π(i),

maper−(A) = max
π∈P−n

∑

i∈N

ai,π(i).

Example 1.6.42 For the matrix A of Example 1.6.31 we have

ap+(A) = {(123)},
ap−(A) = {(1)(23), (12)(3)}

and

maper+(A)=maper(A)=maper−(A).

It is obvious that the following three statements are equivalent:

ap+(A) �= ap(A) �= ap−(A),

maper+(A)=maper−(A),

ap+(A) �= ∅ and ap−(A) �= ∅.
Adding a constant to a row or column affects neither ap+(A) nor ap−(A). On

the other hand a permutation of the rows or columns either swaps these two sets or
leaves them unchanged. Hence we deduce:

Lemma 1.6.43 If A ≈ B then either ap+(A) = ap+(B) and ap−(A) = ap−(B) or
ap+(A)= ap−(B) and ap−(A)= ap+(B).

Due to Lemma 1.6.43 and Theorem 1.6.37 we may assume that A is normal,
thus id ∈ ap(A) and therefore the question whether all optimal permutations are
of the same parity reduces to deciding whether ap−(A) �= ∅. Since A is normal
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ap(A)= {π ∈ Pn;ai,π(i) = 0}. If π ∈ ap(A) then all constituent cyclic permutations
of π can be identified as cycles in the digraph ZA. We say that a cycle in a digraph
is odd (even) if its length is odd (even). If π ∈ ap−(A) then at least one of its con-
stituent cycles is of odd parity and therefore its corresponding cycle in ZA is even
(Lemma 1.6.41). Also conversely, if there is an even cycle, say (i1, i2, . . . , ik, i1) in
ZA then the corresponding cyclic permutation σ : i1 −→ i2 −→ · · · −→ ik −→ i1
is of odd parity and when complemented by loops (i, i) for i ∈N − {i1, i2, . . . , ik},
the obtained permutation is odd, since loops are even cyclic permutations. We can
summarize:

Theorem 1.6.44 The problem of deciding whether all optimal permutations for an
assignment problem are of the same parity is polynomially equivalent to the prob-
lem of deciding whether a digraph contains an even cycle (“Even Cycle Problem”).
Once an even cycle in ZA is known, optimal permutations of both parities can read-
ily be identified.

Remark 1.6.45 The computational complexity of the Even Cycle Problem was un-
resolved for almost 30 years until 1999 when an O(n3) algorithm was published
[124].

Note that the problem of finding maper+(A) and maper−(A) has still unresolved
computational complexity [29].

We close this subsection by a max-algebraic analogue of the van der Waerden
Conjecture. Recall that an n× n matrix A= (aij ) is called doubly stochastic, if all
aij ≥ 0 and all row and column sums of A equal 1.

Theorem 1.6.46 [20] (Max-algebraic van der Waerden Conjecture) Among all dou-
bly stochastic n×n matrices the max-algebraic permanent obtains its minimum for
the matrix A= (aij ), where aij = 1

n
for all i, j ∈N .

Proof We have maper(A) = maxπ∈Pn

∑
1≤i≤n ai,π(i) = 1. Assume that there is a

doubly stochastic matrix X = (xij ) with maxπ∈Pn

∑
1≤i≤n xi,π(i) < 1. Then we get

for all permutations π :
∑

1≤i≤n xi,π(i) < 1. This holds in particular for the permuta-
tions πk which map i to i + k modulo n for i = 1,2, . . . , n and k = 0,1, . . . , n− 1.
Thus we get

n=
n∑

i=1

n∑

j=1

xij =
n−1∑

k=0

n∑

i=1

xi,πk(i) < n,

a contradiction. Therefore the matrix A yields the least optimal value for the max-
algebraic permanent. �

1.7 Exercises

Exercise 1.7.1 Evaluate the following expressions:
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(a) 14⊗ 32 ⊕ 3⊗ 58 (all operations are max-algebraic). [The result is 43]

(b)

(
4 −1 5
0 3 −2

)

⊗
⎛

⎝
7 1
−3 4

5 3

⎞

⎠. [
(

11 8
3 7

)
]

(c) 3⊗A2 ⊕A3, where A=
(

2 0
−1 3

)

. [
(

7 6
5 9

)
]

(d) A ⊗ A∗,A∗ ⊗ A, where A =
⎛

⎝
3 2
1 5

−3 0

⎞

⎠. [A ⊗ A∗ =
(

0 2 6
3 0 5

−2 −4 0

)

, A∗ ⊗ A =
(

0 4
1 0

)
]

Exercise 1.7.2 Prove that (A⊕B)∗ =A∗ ⊕′B∗ and (A⊗B)∗ = B∗ ⊗′A∗ hold for
any matrices A and B of compatible sizes. Use this to find A⊗′A∗,A∗ ⊗′A for the
matrix A of Exercise 1.7.1(d).

Exercise 1.7.3 About each of the matrices below decide whether it is definite and
whether it is increasing. If it is definite then find also its weak transitive closure.

(a)

(−2 −1
3 0

)

. [Not increasing; not definite, positive cycle (1,2,1)]

(b)

(−1 2
−3 −4

)

. [Not increasing; not definite, there is no zero cycle]

(c)

(
0 2

−3 −4

)

. [Definite but not increasing,
(

0 2
−3 −1

)
]

(d)

(
3 2

−5 0

)

. [Increasing; not definite, positive cycle (1,1)]

(e)

(
0 1

−2 0

)

. [Definite and increasing (hence strongly definite),
(

0 1
−2 0

)
]

(f)

⎛

⎜
⎜
⎝

0 2 −4 1
−3 0 −2 0
−5 1 0 1
−4 −2 −3 0

⎞

⎟
⎟
⎠. [Definite and increasing (hence strongly definite),

( 0 2 0 2
−3 0 −2 0
−2 1 0 1
−4 −2 −3 0

)

]

(g)

⎛

⎜
⎜
⎝

0 2 −4 1
−3 0 −2 0
−5 2 0 1
−4 −2 −1 0

⎞

⎟
⎟
⎠. [Increasing; not definite, positive cycle (2,4,3)]

Exercise 1.7.4 (Symmetric matrices) Let A ∈R
n×n be symmetric. Prove then that:

(a) λ(A)=maxi,j aij .
(b) There is a symmetric matrix B in normal form such that ap(A) = ap(B). [See

[19]]
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(c) If A is also diagonally dominant then λ(A) = maxi aii and a best nondiago-
nal permutation has the form (k, l) ◦ id. Deduce then that both maper+(A) and
maper−(A) can be found in O(n2) time. [See [29]]

Exercise 1.7.5 (Monge matrices) A matrix A ∈R
n×n is called Monge if aij +akl ≥

ail + akj for all i, j, k, l such that 1≤ i ≤ k ≤ n and 1≤ j ≤ l ≤ n. Prove that

(a) Every Monge matrix is diagonally dominant.
(b) If A is Monge and normal then a best nondiagonal permutation has the form

(k, k + 1) ◦ id.
Deduce then that both maper+(A) and maper−(A) can be found in O(n)

time. [See [29]]

Exercise 1.7.6 (Matrix sums) For each of the following relations prove or disprove
that it holds for all matrices A,B ∈R

n×n:

(a) maper(A⊕ B) ≥ maper(A)⊕maper(B). [true; take π ∈ ap(A) and show that
w(π,A)≤maper(A⊕B)]

(b) maper(A⊕B)≤maper(A)⊕maper(B). [false]
(c) λ(A⊕ B) ≥ λ(A)⊕ λ(B). [true; take σ critical in A and show that μ(σ,A) ≤

λ(A⊕B)]
(d) λ(A⊕B)≤ λ(A)⊕ λ(B). [false]

Exercise 1.7.7 (Matrix products) For each of the following relations prove or dis-
prove that it holds for all matrices A,B ∈R

n×n:

(a) maper(A⊗B)≥maper(A)⊗maper(B). [true]
(b) maper(A⊗B)≤maper(A)⊗maper(B). [false]
(c) λ(A⊗B)≥ λ(A)⊗ λ(B). [false]
(d) λ(A⊗B)≤ λ(A)⊗ λ(B). [false]
(e) λ(A⊗B)= λ(A⊗B). [true]

Exercise 1.7.8 (AA∗ products) Let A ∈ R
n×n and P be a matrix product formed

as follows: Write the letters A and A∗ alternatingly starting by any of them, insert
the product signs ⊗ and ⊗′alternatingly between them and insert brackets so that a
meaningful algebraic expression is obtained. Prove that if the total number of letters
is odd then P is equal to the first symbol; if the total number is even then P is equal
to the product of the first two letters. [See [60]]

Exercise 1.7.9 Two cross city line trains arrive at the central railway station C.
One arrives at platform 1 from suburb A after a 40 minute journey, the other one at
platform 7 from suburb B , journey time 30 minutes. Two trains connecting to both
these trains leave from platforms 3 and 10 at 10.20 and 10.25, respectively. Find the
latest times at which the cross city line trains should depart from A and B so that the
passengers can board the connecting trains. Describe this problem as a problem of
solving a max-algebraic system of simultaneous equations. Take into account times
for changing the trains between platforms given in the following table:
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Platform 3 10

1 6 15
7 8 4

[
(

46 38
55 34

)
⊗ x =

(
80
85

)
, departures: 9.30, 9.42]

Exercise 1.7.10 INDULGE produces milk chocolate bars in department D1 and
drinking chocolate in department D2. Production runs in stages. D1 also simulta-
neously prepares milk (pasteurization etc.) for use by both departments in the next
stage and similarly, D2 also prepares cocoa powder for both departments. At ev-
ery stage each department prepares sufficient amount of milk and powder for both
departments to run the next stage. The milk preparation takes 2 hours, cocoa pow-
der 5, production of bars 3 and drinking chocolate 6 hours. Set up max-algebraic
equations for starting times of the departments in stages 2,3, . . . depending on the
starting times of the first stage. Then find the starting times of stages 2,3, . . . if (a)
both departments start to work at the same time, (b) D1 starts 3 hours earlier than
D2, (c) D1 starts 5 hours later than D2. You may assume that at the beginning of
the first stage there are sufficient amounts of both cocoa powder and milk in stock
to run the first stage.

[x(r + 1)=
(

3 5
2 6

)

⊗ x(r) (r = 0,1, . . .);

(a) (0,0)T , (5,6)T , (11,12)T , (17,18)T , . . . ; (b) (0,3)T , (8,9)T , (14,15)T ,
(20,21)T , . . . ; (c) (5,0)T , (8,7)T , (12,13)T , (18,19)T , . . .]

Exercise 1.7.11 The matrix

A=
⎛

⎝
2 4 3
1 1 5
0 1 0

⎞

⎠

is the technological matrix of an MMIPP with starting vector x = (0,0,0)T . Gen-
erate the starting time vectors of the first stages until periodicity is reached. De-
scribe the periodic part by a formula. (This question is revisited in Exercise 9.4.2.)
[(4,5,1)T , (9,6,6)T , (11,11,9)T , (15,14,12)T , (18,17,15)T ; λ(A)= 3;

x(r + 1)= 3⊗ x(r)= (15+ 3(r − 4),14+ 3(r − 4),12+ 3(r − 4))T (r ≥ 4)]

Exercise 1.7.12 The same task as in Exercise 1.7.11 but for the production matrix

A=
⎛

⎝
4 1 3
3 0 3
5 2 4

⎞

⎠ .

[(4,3,5)T , (8,8,9)T , (12,12,13)T ; λ(A) = 4; x(r + 1) = 4 ⊗ x(r) =
(8+ 3(r − 2),8+ 3(r − 2),9+ 3(r − 2))T (r ≥ 2)]



Chapter 2
Max-algebra: Two Special Features

The aim of this chapter is to highlight two special features of max-algebra which
make it unique as a modelling and solution tool: the ability to efficiently describe
all solutions to some problems where it would otherwise be awkward or impossible
to do so; and the potential to describe combinatorial problems algebraically.

First we show an example of a problem where max-algebra can help to efficiently
find all solutions and, consequently, find a solution satisfying additional require-
ments (Sect. 2.1).

Then in Sect. 2.2 we show that using max-algebra a number of combinatorial and
combinatorial optimization problems can be formulated in algebraic terms. Based
on this max-algebra may, to some extent, be considered “an algebraic encoding” of
combinatorics [27].

This chapter may be skipped without loss of continuity in reading this book.

2.1 Bounded Mixed-integer Solution to Dual Inequalities:
A Mathematical Application

2.1.1 Problem Formulation

A special feature of max-algebra is the ability to efficiently describe the set of all
solutions to some problems in contrast to standard approaches, using which we can
usually find one solution. Finding all solutions may be helpful for identifying so-
lutions that satisfy specific additional requirements. As an example consider the
systems of the form

xi − xj ≥ bij (i, j = 1, . . . , n) (2.1)

where B = (bij ) ∈R
n×n. In [55] the matrix of the left-hand side coefficients of this

system is called the dual network matrix. It is the transpose of the constraint matrix
of a circulation problem in a network (such as the maximum flow or minimum-cost

P. Butkovič, Max-linear Systems: Theory and Algorithms,
Springer Monographs in Mathematics 151,
DOI 10.1007/978-1-84996-299-5_2, © Springer-Verlag London Limited 2010
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flow problem) and inequalities of the form (2.1) therefore appear as dual inequal-
ities for this type of problems. These facts motivate us to call (2.1) the system of
dual inequalities (SDI). The aim of this section is to show that using standard max-
algebraic techniques it is possible to generate the set of all solutions to (2.1) (which
is of size n2 × n) using n generators. This description enables us then to find, or to
prove that it does not exist, a bounded mixed-integer solution to the system of dual
inequalities, that is, a vector x = (x1, . . . , xn)

T satisfying:

xi − xj ≥ bij , (i, j ∈N)

uj ≥ xj ≥ lj , (j ∈N)

xj integer, (j ∈ J )

⎫
⎬

⎭
(2.2)

where u= (u1, . . . , un)
T , l = (l1, . . . , ln)

T ∈R
n and J ⊆N = {1, . . . , n} are given.

We will refer to this problem as BMISDI. Note that without loss of generality uj

and lj may be assumed to be integer for j ∈ J . This type of a system of inequalities
has been studied for instance in [55] where it has been proved that a related mixed-
integer feasibility question is NP-complete.

We will show that, in general, the application of max-algebra leads to a pseu-
dopolynomial algorithm for solving BMISDI. However, an explicit solution is de-
scribed in the case when B is integer (but still a mixed-integer solution is wanted).
This implies that BMISDI can be solved using O(n3) operations when B is an in-
teger matrix. Note that when J = ∅ then BMISDI is polynomially solvable since
it is a set of constraints of a linear program. When J = N and B is integer then
BMISDI is also polynomially solvable since the matrix of the system is totally uni-
modular [120].

2.1.2 All Solutions to SDI and All Bounded Solutions

The system of inequalities

xi − xj ≥ bij (i, j ∈N)

is equivalent to

max
j∈N

(
bij + xj

)≤ xi (i ∈N).

In max-algebraic notation this reads

∑⊕
j∈N

bij ⊗ xj ≤ xi (i ∈N)

or in the compact form

B ⊗ x ≤ x. (2.3)

Recall that using the notation introduced in Sect. 1.6.2 the set of finite solutions
to (2.3) is V ∗0 (B).

The next theorem is straightforwardly deduced from Theorem 1.6.18.
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Theorem 2.1.1 If B ∈R
n×n then

1. V ∗0 (B) �= ∅ if and only if λ(B)≤ 0.
2. If V ∗0 (B) �= ∅ then

V ∗0 (B)= {�(B)⊗ z; z ∈R
n
}
.

We can now use Theorems 2.1.1 and 1.6.25 to describe all bounded solutions
to SDI.

Corollary 2.1.2 The set of all solutions x to SDI satisfying x ≤ u is
{
�(B)⊗ z; z≤ (�(B))∗ ⊗′ u}

and if this set is nonempty then the vector �(B)⊗ ((�(B))∗ ⊗′ u) is the greatest
element of this set. Hence the inequality

l ≤�(B)⊗ ((�(B))∗ ⊗′ u)

is necessary and sufficient for the existence of a solution to SDI satisfying l ≤ x ≤ u.

2.1.3 Solving BMISDI

We start with another corollary to Theorem 2.1.1.

Corollary 2.1.3 A necessary condition for BMISDI to have a solution is that
λ(B)≤ 0. If this condition is satisfied then BMISDI is equivalent to finding a vector
z ∈R

n such that

l ≤�(B)⊗ z≤ u

and

(�(B)⊗ z)j ∈ Z for j ∈ J.

In the rest of this subsection we will assume without loss of generality (Theo-
rem 2.1.1) that λ(B)≤ 0.

Theorem 2.1.4 Let A ∈R
n×n, b ∈R

n and J ⊆N . Let b̃ be defined by

b̃j =
⌊
bj

⌋
for j ∈ J,

b̃j = bj for j /∈ J.

Then the following are equivalent:

1. There exists a z ∈R
n such that l ≤A⊗ z≤ b and

(A⊗ z)j ∈ Z for j ∈ J.
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2. There exists a z ∈R
n such that l ≤A⊗ z≤ b̃ and

(A⊗ z)j ∈ Z for ∈ J.

3. There exists a z ∈R
n such that l ≤A⊗ z≤A⊗ (A∗ ⊗′ b̃) and

(A⊗ z)j ∈ Z for j ∈ J.

Proof 1.⇐⇒ 2. is trivial, 2.⇐⇒ 3. follows from Theorem 1.6.25, Corollary 1.6.26
and Lemma 1.1.1. �

Theorem 2.1.4 enables us to compile the following algorithm.

Algorithm 2.1.5 BMISDI
Input: B ∈R

n×n,u, l ∈R
n and J ⊆N .

Output: x satisfying (2.2) or an indication that no such vector exists.

1. A :=�(B), x := u

2. xj := �xj � for j ∈ J

3. z :=A∗ ⊗′ x, x :=A⊗ z

4. If l � x then stop (no solution)
5. If l ≤ x and xj ∈ Z for j ∈ J then stop else go to 2.

Theorem 2.1.6 [30] The algorithm BMISDI is correct and requires O(n3 + n2L)

operations of addition, maximum, minimum, comparison and integer part, where

L=
∑

j∈J

(
uj − lj

)
.

Proof If the algorithm terminates at step 4 then there is no solution by the repeated
use of Theorem 2.1.4.

The sequence of vectors x constructed by this algorithm is nonincreasing by
Corollary 1.6.26 and hence x = A⊗ z ≤ u if it terminates at step 5. The remaining
requirements of (2.2) are satisfied explicitly due to the conditions in step 5.

Computational complexity: The calculation of �(B) is O(n3) by Theorem 1.6.22.
Each run of the loop between steps 2 and 5 is O(n2). In every iteration at least one
component of xj , j ∈ J decreases by one and the statement now follows from the
fact that all xj range between lj and uj . �

Example 2.1.7 Let

B =
⎛

⎝
−2 2.7 −2.1
−3.8 −1 −5.2

1.6 3.5 −3

⎞

⎠ ,



2.1 Bounded Mixed-integer Solution to Dual Inequalities: A Mathematical Application 45

u= (5.2,0.8,7.4)T and J = {1,3} (l is not specified). The algorithm BMISDI will
find:

A=�(B)=
⎛

⎝
0 2.7 −2.1

−3.6 0 −5.2
1.6 4.3 0

⎞

⎠ ,

x = (5,0.8,7)T ,

z=A∗ ⊗′ x =
⎛

⎝
0 3.6 −1.6

−2.7 0 −4.3
2.1 5.2 0

⎞

⎠⊗′ x =
⎛

⎝
4.4
0.8
6

⎞

⎠

and

x =A⊗ z= (4.4,0.8,6)T .

Now x1 /∈ Z so the algorithm continues by another iteration: x = (4,0.8,6)T ,

z=A∗ ⊗′ x = (4,0.8,6)T

and

x =A⊗ z= (4,0.8,6)T ,

which is a solution (provided that l ≤ x since otherwise there is no solution) to the
BMISDI since x1, x3 ∈ Z.

2.1.4 Solving BMISDI for Integer Matrices

In this subsection we prove that a solution to the BMISDI can be found explicitly if
B is integer. The following will be useful (the proof below is a simplification of the
original proof due to [132]):

Theorem 2.1.8 [30] Let A ∈ Z
n×n, b ∈ R

n and A ⊗ x = b for some x ∈ R
n. Let

J ⊆N and b̃ be defined by

b̃k = �bk� for ∈ J,

b̃k = bk for k /∈ J.

Then there exists an x̃ ∈R
n such that

A⊗ x̃ ≤ b̃

and

(A⊗ x̃)k = b̃k for k ∈ J.
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Proof Without loss of generality assume that bk /∈ Z for some k ∈ J , then the set

S = {s ∈N;aks + xs > �bk� for some k ∈ J }
is nonempty and xs /∈ Z for every s ∈ S since A is integer. Let x̃ ∈R

n be defined by
x̃j = �xj� for j ∈ S and x̃j = xj otherwise. Clearly x̃ ≤ x and so A⊗ x̃ ≤A⊗ x by
Lemma 1.1.1. Hence maxj∈N(akj + x̃j ) ≤ bk = b̃k for all k /∈ J . At the same time
maxj∈N(akj + x̃j )= �bk� = b̃k for all k ∈ J . �

For the main application, Theorem 2.1.10 below, it will be convenient to de-
duce from the statement of Theorem 2.1.8 a property of the greatest solution x to
A⊗ x ≤ b̃ (Corollary 1.6.26):

Corollary 2.1.9 Under the assumptions of Theorem 2.1.8 and using the same nota-
tion, if x =A∗ ⊗′ b̃ then

A⊗ x ≤ b̃

and

(A⊗ x)k = b̃k for k ∈ J.

Proof The inequality follows from Corollary 1.6.26. Let x̃ be the vector described
in Theorem 2.1.8. By Theorem 1.6.25 we have x̃ ≤ x implying that

b̃k = (A⊗ x̃)k ≤ (A⊗ x)k ≤ b̃k for k ∈ J

which concludes the proof. �

Finally, we are prepared to use max-algebra and explicitly describe a solution to
BMISDI in the case when B is an integer matrix:

Theorem 2.1.10 Let B ∈ Z
n×n, λ(B)≤ 0,A=�(B), b=A⊗ (A∗ ⊗′ u) and b̃ be

defined by

b̃k = �bk� for k ∈ J

and

b̃k = bk for k /∈ J.

Then the BMISDI has a solution if and only if

l ≤A⊗
(
A∗ ⊗′ b̃

)
,

and x̂ =A⊗(A∗⊗′ b̃) is then the greatest solution (that is, y ≤ x̂ for any solution y).

Proof Note first that A is an integer matrix and we therefore may apply Corol-
lary 2.1.9 to A.
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“If”: By Corollary 1.6.26 x̂ ≤ b̃ ≤ b ≤ u. Let us take in Corollary 2.1.9 (and
Theorem 2.1.8) x =A∗ ⊗′ u. Then x̂ =A⊗ x and so x̂k ∈ Z for k ∈ J .

“Only if”: Let y be a solution. Then y = A⊗ w ≤ u for some w ∈ R
n, thus by

Theorem 1.6.25

w ≤A∗ ⊗′ u
and so

y =A⊗w ≤A⊗ (A∗ ⊗′ u)= b.

Since yk ∈ Z for k ∈ J we also have

A⊗w = y ≤ b̃.

Hence by Theorem 1.6.25

w ≤A∗ ⊗′ b̃
and by Lemma 1.1.1 then

l ≤ y =A⊗w ≤A⊗
(
A∗ ⊗′ b̃

)
= x̂.

We also have x̂ ≤ b̃ ≤ b ≤ u by Corollary 1.6.26 and x̂k ∈ Z for k ∈ J by Corol-
lary 2.1.9 as above, hence x̂ is the greatest solution. �

Example 2.1.11 Let

B =
⎛

⎝
−2 2 −2
−3 −1 −4

1 3 −3

⎞

⎠ ,

u= (3.5,0.8,5.7)T and J = {1,3} (l is not specified). Then we have:

A=�(B)=
⎛

⎝
0 2 −2

−3 0 −4
1 3 0

⎞

⎠ ,

A∗ ⊗′ u=
⎛

⎝
0 3 −1

−2 0 −3
2 4 0

⎞

⎠⊗′ u=
⎛

⎝
3.5
0.8
4.8

⎞

⎠ ,

b=A⊗ (A∗ ⊗′ u)=
⎛

⎝
3.5
0.8
4.8

⎞

⎠ ,

b̃=
⎛

⎝
3

0.8
4

⎞

⎠
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and

x̂ =A⊗
(
A∗ ⊗′ b̃

)
= (3,0.8,4)T .

By Theorem 2.1.10 x̂ is the greatest solution to the BMISDI provided that l ≤ x̂

(otherwise there is no solution).

2.2 Max-algebra and Combinatorial Optimization

There is a number of combinatorial and combinatorial optimization problems
closely related to max-algebra. In some cases max-algebra provides an efficient and
elegant algebraic encoding of these problems. Although computational advantages
do not necessarily follow from the max-algebraic formulation, for some problems
this connection may help to deduce useful information [27].

2.2.1 Shortest/Longest Distances: Two Connections

Perhaps the most striking example is the shortest-distances problem which is one of
the best known combinatorial optimization problems:

Given an n× n matrix A of direct distances between n places, find the matrix Ã

of shortest distances (that is, the matrix of the lengths of shortest paths between any
pair of places).

It is known that the shortest-distances matrix exists if and only if there are no
negative cycles in DA. For the shortest-distances problem we may assume without
loss of generality that all diagonal elements of A are 0.

We could continue from this and show a link to min-algebra; however, to be con-
sistent with the rest of the book we shall formulate these results in max-algebraic
terms, similarly as in Example 1.2.3. Hence the considered combinatorial optimiza-
tion problem is:

Given an n× n matrix A of direct distances between n places, find the matrix Ã

of longest distances (that is, the matrix of the lengths of longest paths between any
pair of places).

We may assume that all diagonal elements of A are 0 and that there are no posi-
tive cycles in DA, thus A is strongly definite. We have seen in Sect. 1.6.2 that �(A)

is exactly Ã. By Proposition 1.6.12 then Ã=An−1. We have:

Theorem 2.2.1 If A ∈ R
n×n is a strongly definite direct-distances matrix then all

matrices Aj (j ≥ n− 1) are equal to the longest-distances matrix for DA. Hence,
the kth column (k = 1, . . . , n) of Aj (j ≥ n− 1) is the vector of longest distances to
node k in DA.

One benefit of this result is that the longest- (and similarly shortest-) distances
matrix for a strongly definite direct-distances matrix A can be found simply by
repeated max-algebraic squaring of A, that is,
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A2,A4,A8,A16, . . .

until a power Aj (j ≥ n− 1) is reached (see Sect. 1.6.2).
However, there exists another max-algebraic interpretation of the longest-

distances problem. We have seen in Proposition 1.6.17 that for a strongly definite
matrix A every column v of Aj (j ≥ n− 1) is an eigenvector of A, that is,

A⊗ v = v.

Corollary 2.2.2 If A ∈ R
n×n is a strongly definite direct-distances matrix then ev-

ery vector of longest-distances to a node in DA is a max-algebraic eigenvector of A

corresponding to the eigenvalue 0.

2.2.2 Maximum Cycle Mean

The maximum cycle mean of a matrix (denoted λ(A) for a matrix A), has been
defined in Sect. 1.6.1. As already mentioned, the problem of calculating λ(A) was
studied independently in combinatorial optimization [106, 109]. At the same time
the maximum cycle mean is very important in max-algebra. It is

• the eigenvalue of every matrix,
• the greatest eigenvalue of every matrix,
• the only eigenvalue whose corresponding eigenvectors may be finite.

Moreover, every eigenvalue of a matrix is the maximum cycle mean of some
principal submatrix of that matrix.

All these and other aspects of the maximum cycle mean are proved in Chap. 4.
Let us mention here a dual feature of the maximum cycle mean (see Corollary 4.5.6
and Theorem 1.6.29):

Theorem 2.2.3 If A ∈R
n×n

then

(a) λ(A) is the greatest eigenvalue of A, that is

λ(A)=max
{
λ ∈R;A⊗ x = λ⊗ x, x ∈R

n
, x �= ε

}

and, dually
(b)

λ(A)= inf
{
λ ∈R;A⊗ x ≤ λ⊗ x, x ∈R

n
}

.

2.2.3 The Job Rotation Problem

Characteristic maxpolynomials of matrices in max-algebra (Sect. 5.3) are related to
the following job rotation problem. Suppose that a company with n employees re-
quires these workers to swap their jobs (possibly on a regular basis) in order to avoid
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exposure to monotonous tasks (for instance manual workers at an assembly line,
guards in a gallery or ride operators in a theme park). It may also be required that
to maintain stability of service only a certain number of employees, say k (k < n),
actually swap their jobs. With each pair old job−new job a quantity may be associ-
ated expressing the cost (for instance for additional training) or the preference of the
worker for this particular change. So the aim may be to select k employees and to
suggest a schedule of the job swaps between them so that the sum of the parameters
corresponding to these changes is either minimum or maximum. This task leads to
finding a k × k principal submatrix of A for which the optimal assignment prob-
lem value is minimal or maximal (some entries can be set to +∞ or −∞ to avoid
an assignment to the same or infeasible job). More formally, we deal with the best
principal submatrix problem (BPSM):

Given a real n× n matrix A, for every k ≤ n find a k× k principal submatrix of
A whose optimal assignment problem value is maximal.

Note that solving the assignment problem for all
(
n
k

)
principal submatrices for

each k would be computationally difficult since
∑n

k=1

(
n
k

)= 2n− 1. No polynomial
method for solving BPSM seems to be known, although its modification obtained
after removing the word principal is known [73] and is polynomially solvable. This
can also be seen from the following simple observation: Let Ã be the (2n− k)×
(2n − k) matrix obtained from an n × n matrix A ∈ R

n×n by adding n − k rows
and n− k columns (k < n) so that the entries in the intersection of these columns
are −∞ and the remaining new entries are zero, see Fig. 2.1. If the assignment
problem is solved for Ã then every permutation selects 2n − k entries from Ã. If
A is finite then any optimal (maximizing) permutation avoids selecting entries from
the intersection of the new columns and rows. But as it selects n− k elements from
the new rows and n − k different elements from the new columns, it will select
exactly 2n − k − 2(n − k) = k elements from A. No two of these k elements are
from the same row or from the same column and so they represent a selection of k

independent entries from a k×k submatrix of A. Their sum is maximum as the only
elements taken from outside A are zero. So the best k × k submatrix problem can
readily be solved as the classical assignment problem for a special matrix of order
2n− k.

Unfortunately no similar trick seems to exist, that would enable us to find a best
principal submatrix.

Fig. 2.1 Solving the best
submatrix problem
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Let us denote by δk the optimal value in the assignment problem for a best princi-
pal submatrix of order k (k = 1, . . . , n). It will be proved in Sect. 5.3 that δ1, . . . , δn

are coefficients of the max-algebraic characteristic polynomial of A. It is not known
whether the problem of finding all these quantities is an NP-complete or polyno-
mially solvable problem (see Chap. 11). However, in Sect. 5.3.3 we will present a
polynomial algorithm, based on the max-algebraic interpretation, for finding some
and in some cases all these coefficients. Note that there is an indication that the prob-
lem of finding all coefficients is likely to be polynomially solvable as the following
result suggests:

Theorem 2.2.4 [20] If the entries of A ∈ R
n×n are polynomially bounded, then

the best principal submatrix problem for A and all k, k ≤ n, can be solved by a
randomized polynomial algorithm.

2.2.4 Other Problems

In the table below (where SD stands for “strongly definite”) is an overview of com-
binatorial or combinatorial optimization problems that can be formulated as max-
algebraic problems [27]. The details of most of these links will be presented in the
subsequent chapters.

Max-algebra Combinatorics Combinatorial
(0-1 entries) Optimization

maper(A) Term rank Optimal value to the
assignment problem

A⊗ x = b

∃x Set covering
∃!x Minimal set covering

�(A) if A SD Transitive closure Longest distances matrix

A⊗ x = λ⊗ x

λ Maximum cycle mean
x Balancing coefficients
x if A SD Connectivity to a node Longest distances
x if A SD Scaling to normal form

GM regularity � ∃ even directed cycle All optimal permutations
0-1 sign-nonsingularity of the same parity

Strong regularity Digraph acyclic Unique optimal
permutation

Characteristic ∃ exact cycle cover Best principal submatrix
polynomial ∃ principal submatrix (JRP)

with > 0 permanent
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2.3 Exercises

Exercise 2.3.1 The assignment problem for A= (aij ) ∈ R
n×n can be described as

a (conventional) linear program

f (x)=
∑

i,j∈N

aij xij −→max

s.t.
∑

j∈N

aij xij = 1, i ∈N,

∑

i∈N

aij xij = 1, j ∈N,

xij ≥ 0.

Its dual is

g (u, v)=
∑

i∈N

ui +
∑

j∈N

vj −→min

s.t.

ui + vj ≥ aij , i, j ∈N.

Show using max-algebra that f max = gmin =maper(A).
(Hint: First show that f ≤ g and then prove the rest by using the results on the

eigenproblem for strongly definite matrices.)

Exercise 2.3.2 A matrix A = (aij ) ∈ R
n×n is called pyramidal if aij ≥ ars when-

ever max(i, j) < max(r, s). Prove that δk = maper(Ak), where Ak is the principal
submatrix of A determined by the first k row and column indices. [See [37].]



Chapter 3
One-sided Max-linear Systems
and Max-algebraic Subspaces

Recall that one-sided max-linear systems are systems of equations of the form

A⊗ x = b (3.1)

where A ∈R
m×n

and b ∈R
m

. They are closely related to systems of inequalities

A⊗ x ≤ b. (3.2)

Both were studied already in the first papers on max-algebra [57, 144] and the theory
has further evolved in the 1960’s and 1970’s [149, 150], and later [24, 27].

It should be noted that one-sided max-linear systems can be solved more easily
than their linear-algebraic counterparts. Also, unlike in conventional linear algebra,
systems of inequalities (3.2) always have a solution x ∈ R

n
and the task of finding

a solution to (3.1) is strongly related to the same task for the systems of inequalities.
Note that, in contrast, the two-sided systems studied in Chap. 7 are much more
difficult to solve.

In this chapter we will pay attention to two approaches for solving the one-sided
systems, combinatorial and algebraic. Since the solvability question is essentially
deciding whether a vector (b) is in a subspace (generated by the columns of A), later
in this chapter we present a general theory of max-algebraic subspaces including the
concepts of generators, independence and bases. We also briefly discuss unsolvable
systems.

3.1 The Combinatorial Method

Let A = (aij ) ∈ R
m×n

and b = (b1, . . . , bm)T ∈ R
m

. The set of solutions to (3.1)
will be denoted by S(A,b) or just S if no confusion can arise, that is,

S(A,b)=
{
x ∈R

n;A⊗ x = b
}

,

P. Butkovič, Max-linear Systems: Theory and Algorithms,
Springer Monographs in Mathematics 151,
DOI 10.1007/978-1-84996-299-5_3, © Springer-Verlag London Limited 2010
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and A1, . . . ,An will stand for the columns of A.
We start with trivial cases. If b= ε then

S(A,b)=
{
x = (x1, . . . , xn)

T ∈R
n;xj = ε if Aj �= ε, j ∈N

}
,

in particular S(A,b) = R
n

if A = ε. If A = ε and b �= ε then S(A,b) = ∅. Hence
we assume in what follows that A �= ε and b �= ε.

If bk = ε for some k ∈ M then for any x ∈ S(A,b) we have xj = ε if
akj �= ε, j ∈N ; consequently the kth equation may be removed from the system
together with every column Aj where akj �= ε (if any) and setting the corresponding
xj = ε. Hence there is no loss of generality to assume that b ∈ R

m (however, we
will not always make this assumption).

If b ∈ R
m and A has an ε row then S(A,b)= ∅. If Aj = ε, j ∈ N then xj may

take on any value in a solution x. Hence we may also suppose without loss of gen-
erality that A is doubly R-astic.

Let A be column R-astic and b ∈ R
m. A key role is played by the vector

x = (x1, . . . , xn)
T where

xj =
(

max
i∈M

aij ⊗ b−1
i

)−1

for j ∈N . Obviously, x ∈R
n and

xj =min
{
bi ⊗ a−1

ij ; i ∈M,aij ∈R

}

for j ∈N . Where appropriate we will denote x = x(A,b). We will also denote

Mj (A,b)=
{
i ∈M;xj = bi ⊗ a−1

ij

}

for j ∈N . We will abbreviate Mj(A,b) by Mj if no confusion can arise.
The combinatorial method follows from the next theorem.

Theorem 3.1.1 [57, 149] Let A ∈R
m×n

be doubly R-astic and b ∈R
m. Then

(a) A⊗ x(A,b)≤ b,
(b) x ≤ x(A,b) for every x ∈ S(A,b),
(c) x ∈ S(A,b) if and only if x ≤ x(A,b) and

⋃

j :xj=xj

Mj =M, (3.3)

(d) (A⊗ x)i = bi for at least one i ∈M .

Proof (a) Let k ∈M,j ∈N and suppose that akj ∈R. Then

akj ⊗ xj ≤ akj ⊗ bk ⊗ a−1
kj = bk.
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This inequality follows immediately if akj = ε. Hence

∑

j∈N

⊕ (
akj ⊗ xj

)≤ bk for all k ∈M

and the statement follows.
(b) Let x ∈ S(A,b), i ∈M,j ∈N . Then aij ⊗ xj ≤ bi thus x−1

j ≥ aij ⊗ b−1
i and

so x−1
j ≥maxi∈M aij ⊗ b−1

i . Therefore

xj ≤
(

max
i∈M

aij ⊗ b−1
i

)−1

= xj .

(c) Suppose first x ∈ S(A,b). We only need to prove M ⊆⋃j :xj=xj
Mj . Let

k ∈M . Since bk = akj ⊗ xj > ε for some j ∈ N and x−1
j ≥ x−1

j ≥ aij ⊗ b−1
i for

every i ∈M , we have x−1
j = akj ⊗ b−1

k = maxi∈M aij ⊗ b−1
i . Hence k ∈Mj and

xj = xj .
Suppose now x ≤ x(A,b) and that (3.3) holds. Let k ∈ M,j ∈ N . Then

akj ⊗ xj ≤ bk if akj = ε. If akj �= ε then

akj ⊗ xj ≤ akj ⊗ xj ≤ akj ⊗ bk ⊗ a−1
kj = bk. (3.4)

Therefore A⊗ x ≤ b. At the same time k ∈Mj for some j ∈N satisfying xj = xj .
For this j both inequalities in (3.4) are equalities and thus A⊗ x = b.

(d) If (A⊗ x)i < bi for all i ∈M then A⊗ (α ⊗ x) ≤ b for some α > 0 and so
(due to the finiteness of x) α⊗ x would be a greater solution to A⊗ x ≤ b than x, a
contradiction with (b). �

It follows that x = x(A,b) is always a solution to A⊗ x ≤ b, and A⊗ x = b has
a solution if and only if x(A,b) is a solution. Because of the special role of x, this
vector is called the principal solution to A⊗ x = b and A⊗ x ≤ b [60]. Note that
the principal solution may not be a solution to A⊗ x = b. More precisely, we have:

Corollary 3.1.2 Let A ∈ R
m×n

be doubly R-astic and b ∈ R
m. Then the following

three statements are equivalent:

(a) S(A,b) �= ∅,
(b) x ∈ S(A,b),
(c)
⋃

j∈N Mj =M .

The combinatorial aspect of systems A⊗ x = b will become even more apparent
when we deduce a criterion for unique solvability:

Corollary 3.1.3 Let A ∈R
m×n

be doubly R-astic and b ∈R
m. Then S(A,b)= {x}

if and only if
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(a)
⋃

j∈N Mj =M and
(b)
⋃

j∈N ′ Mj �=M for any N ′ ⊆N,N ′ �=N .

Example 3.1.4 Consider the system
⎛

⎜
⎜
⎜
⎜
⎝

−2 2 2
−5 −3 −2

ε ε 3
−3 −3 2

1 4 ε

⎞

⎟
⎟
⎟
⎟
⎠
⊗
⎛

⎝
x1
x2
x3

⎞

⎠=

⎛

⎜
⎜
⎜
⎜
⎝

3
−2

1
0
5

⎞

⎟
⎟
⎟
⎟
⎠

.

The matrix (aij ⊗ b−1
i ) is

⎛

⎜
⎜
⎜
⎜
⎝

−5 −1 −1
−3 −1 0

ε ε 2
−3 −3 2
−4 −1 ε

⎞

⎟
⎟
⎟
⎟
⎠

.

Hence x = (3,1,−2)T ,M1 = {2,4},M2 = {1,2,5},M3 = {3,4}. The vector x is a
solution since

⋃

j=1,2,3

Mj =M. (3.5)

However, M2 ∪M3 =M as well and no other union of the sets M1,M2,M3 is equal
to M . Therefore we may describe the whole solution set:

S(A,b)=
{
(x1, x2, x3)

T ∈R
3;x1 ≤ 3, x2 = 1, x3 =−2

}
.

Note that if a22 =−3 is reduced, say to−4, then (3.5) still holds but none of the sets
M1,M2,M3 may be omitted without violating this equality. Therefore x is a unique
solution to this (new) system. If we further reduce a12 = 2, say to 1 then (3.5) is not
satisfied any more and the system has no solution.

It is easily seen that the principal solution to A⊗ x = b can be found in O(mn)

time and the same effort is sufficient for checking that it actually is a solution to this
system.

The previous statements already indicate that the task of solving one-sided max-
linear systems is essentially a combinatorial problem. To make it even more visible,
let us consider the following problems:

(UNIQUE) SOLVABILITY: Given A ∈ R
m×n

and b ∈ R
m does the system

A⊗ x = b have a (unique) solution?
(MINIMAL) SET COVERING [126]: Given a finite set M and subsets

M1, . . . ,Mn of M , is
⋃

j∈N

Mj =M
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(is
⋃

j∈N

Mj =M but
⋃

j∈N
j �=k

Mj �=M

for any k ∈N)?
Corollaries 3.1.2 and 3.1.3 show that for every linear system it is possible to

straightforwardly find a finite set and a collection of its subsets so that SOLVABIL-
ITY is equivalent to SET COVERING and UNIQUE SOLVABILITY is equivalent
to MINIMAL SET COVERING.

This correspondence is two-way, as the statements below suggest. Let us as-
sume without loss of generality that M and its subsets M1, . . . ,Mn are given. Define
A= (aij ) ∈R

m×n as follows:

aij =
{

1 if i ∈Mj

0 else
for all i ∈M, j ∈N,

b= 0.

The following are corollaries of Theorem 3.1.1.

Theorem 3.1.5
⋃

j∈N Mj =M if and only if A⊗ x = b has a solution.

Theorem 3.1.6
⋃

j∈N Mj =M and
⋃

j∈N ′ Mj �=M for any N ′ ⊆ N,N ′ �= N if
and only if A⊗ x = b has a unique solution.

We have demonstrated that every max-linear system is an algebraic representa-
tion of a set covering problem, and conversely. This has various consequences. For
instance the task of finding a solution to A⊗ x = b with the minimum number of
components equal to x is polynomially equivalent to the minimum cardinality set
cover problem and is therefore NP-complete [83]. Standard textbooks on combina-
torial optimization such as [120] are recommended for more explanation on the set
covering problem or for an explanation of NP-completeness.

Note that an interesting generalization of the combinatorial method to the
infinite-dimensional case can be found in [5].

3.2 The Algebraic Method

In some theoretical and practical applications it may be helpful to express the princi-
pal solution algebraically rather than combinatorially. We start with inequalities. As
already seen in Theorem 3.1.1, the systems of one-sided inequalities always have
a solution and can be solved as easily as equations (unlike their linear-algebraic

counterparts). The algebraic method slightly extends this result to any A ∈ R
m×n
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and b ∈R

m

. Key statements are the following lemma and theorem; the reader is re-
ferred to p. 1 and Sect. 1.6.3 for the necessary definitions and conventions on ±∞.

For consistency we will denote in this section a−1 (that is −a) for a ∈R by a∗.

Lemma 3.2.1 If a, b ∈R then x ∈R satisfies the inequality

a⊗ x ≤ b (3.6)

if and only if

x ≤ a∗ ⊗′ b. (3.7)

Proof The statement holds when a, b ∈R since a∗ ⊗′ b=−a + b. If a =+∞ and
b =−∞ then x =−∞ is the unique solution to (3.6) and (3.7) reads x ≤−∞. In

all other cases when a, b ∈ {−∞,+∞} the solution set to (3.6) is R and (3.7) reads
x ≤+∞. �

Theorem 3.2.2 [59] If A ∈R

m×n

, b ∈R

m

and x ∈R

n

then

A⊗ x ≤ b if and only if x ≤A∗ ⊗′ b.

Proof The following are equivalent (Lemma 3.2.1 is used in the third equivalence):

A⊗ x ≤ b,

∑

j∈N

⊕
(aij ⊗ xj )≤ bi for all i ∈M,

aij ⊗ xj ≤ bi for all i ∈M,j ∈N,

xj ≤ (aij )
∗ ⊗′ bi for all i ∈M,j ∈N,

xj ≤ a∗ji ⊗′ bi for all i ∈M,j ∈N,

xj ≤
∑

i∈M

⊕′
(a∗ji ⊗′ bi) for all j ∈N,

x ≤A∗ ⊗′ b. �

It follows from the definition of the principal solution x (p. 54) that x =A∗ ⊗′ b
if A is doubly R-astic and b ∈R

m. We will therefore extend this definition and call

A∗ ⊗′ b the principal solution for any A ∈R

m×n

and b ∈R

m

.

Corollary 3.2.3 If A ∈R
m×n

, b ∈R
m

and c ∈R
n
then

(a) x is the greatest solution to A⊗ x ≤ b, that is

A⊗ (A∗ ⊗′ b)≤ b,
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(b) A⊗ x = b has a solution if and only if x is a solution and
(c)

A⊗ (A∗ ⊗′ (A⊗ c)
)=A⊗ c.

Proof (a) x is a solution since it satisfies the condition of Theorem 3.2.2 and that
theorem is also saying that x ≤ x if A⊗ x ≤ b, hence x is greatest.

(b) Suppose A⊗ x = b for some x ∈R
n
. By Theorem 3.2.2 x ≤ x and by Corol-

lary 1.1.2 we then have

b=A⊗ x ≤A⊗ x ≤ b.

This implies A⊗ x = b.
(c) The equation A⊗ x = A⊗ c has a solution, thus by (b) A∗ ⊗′ (A⊗ c) is a

solution and the statement follows. �

It will be useful to have an immediate generalization of these results to matrix
inequalities:

Corollary 3.2.4 If A ∈R

m×n

,B ∈R

m×k

,C ∈R

n×l

and X = A∗ ⊗′ B then

(a) X is the greatest solution to A⊗X ≤ B , that is

A⊗ (A∗ ⊗′ B)≤ B,

(b) A⊗X = B has a solution if and only if X is a solution and
(c)

A⊗ (A∗ ⊗′ (A⊗C)
)=A⊗C.

Proof This corollary follows immediately since A ⊗ X ≤ B is equivalent to the
system of one-sided max-linear systems:

A⊗Xr ≤ Br (r = 1, . . . , k)

where X1, . . . ,Xk and B1, . . . ,Bk are the columns of X and B , respectively. �

3.3 Subspaces, Generators, Extremals and Bases

Being motivated by the results of the previous sections of this chapter we now
present the theory of max-linear subspaces, independence and bases. The main ben-
efit for the aims of this book is the result that every finitely generated subspace has
an essentially unique basis. We will also show how to find a basis of a finitely gen-
erated subspace which will be of fundamental importance in Chap. 4 where we use
this result for finding the bases of eigenspaces. Our presentation follows the lines of
[43] and confirms the results of [69] developed for subspaces of R

n ∪ {ε}. Some of
the results of this section have been proved in [60, 103, 105, 147].
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Let S ⊆R
n
. The set S is called a max-algebraic subspace if

α⊗ u⊕ β ⊗ v ∈ S

for every u,v ∈ S and α,β ∈R. The adjective “max-algebraic” will usually be omit-
ted.

A vector v = (v1, . . . , vn)
T ∈R

n
is called a max-combination of S if

v =
∑

x∈S

⊕
αx ⊗ x, αx ∈R (3.8)

where only a finite number of αx are finite. The set of all max-combinations of
S is denoted by span(S). We set span(∅) = {ε}. It is easily seen that span(S) is a
subspace. If span(S)= T then S is called a set of generators for T .

A vector v ∈ S is called an extremal in S if v = u⊕w for u,v ∈ S implies v = u

or v = w. Clearly, if v ∈ S is an extremal in S and α ∈ R then α ⊗ v is also an
extremal in S.

Note that terminology varies in the max-algebraic literature and, for instance,
extremals are called vertices in [76, 105] and irreducible elements in [146].

Let v = (v1, . . . , vn)
T ∈ R

n
, v �= ε. The max-norm or just norm of v is

‖v‖ =max(v1, . . . , vn); v is called scaled if ‖v‖ = 0. The set S is called scaled
if all its elements are scaled.

The set S is called dependent if v is a max-combination of S − {v} for some
v ∈ S. Otherwise S is independent. The set S is called totally dependent if every
v ∈ S is a max-combination of S − {v}. Note that ∅ is both independent and totally
dependent and {ε} is totally dependent.

Let S,T ⊆ R
n
. The set S is called a basis of T if it is an independent set of

generators for T . The set {ei ∈R
n; i = 1, . . . , n} defined by

ei
j =
{

0 if j = i

ε if j �= i

is a basis of R
n
; it will be called standard.

We start with two simple lemmas.

Lemma 3.3.1 Let S be a set of generators of a subspace T ⊆ R
n

and let v be a
scaled extremal in T . Then v ∈ S.

Proof Let v be a max-combination (3.8). Since the number of finite αx is finite and
v is an extremal we deduce by induction that v = αx ⊗ x for some αx ∈R. But both
v and x are scaled and therefore v = x yielding v ∈ S. �

Lemma 3.3.2 The set of scaled extremals of a subspace is independent.

Proof Let E �= ∅ be the set of extremals of a subspace T and v ∈ E. By applying
Lemma 3.3.1 to the subspace T ′ = span(E − {v}) we get v /∈ T ′ and the statement
follows. �
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If v = (v1, . . . , vn)
T ∈R

n
then the support of v is defined by

Supp(v)= {j ∈N;vj ∈R
}
.

We will use the following notation. If j ∈ Supp(v) then v(j) = v−1
j ⊗ v. For any

j ∈N and S ⊆R
n

we denote

S (j)= {v (j) ;v ∈ S, j ∈ Supp(v)} .
An element of v ∈ S is called minimal in S if u≤ v,u ∈ S imply u= v. If S ⊆ R

n

is a subspace, v ∈ S and j ∈ Supp(v) then we denote

Dj (v)= {u ∈ S (j) ;u≤ v (j)} .
The following will be important for the main results of this section.

Proposition 3.3.3 Let S ⊆R
n
. Then the following are equivalent:

(a) v ∈ span(S).
(b) For each j ∈ Supp(v) there is an xj ∈ S such that j ∈ Supp(xj ) and

xj (j) ∈Dj(v).

Proof If (b) holds then v =∑⊕
j∈Supp(v) αj ⊗ xj , where αj = vj ⊗

(
x

j
j

)−1.

Let now v ∈ span(S). Then for each j ∈ Supp(v) there is an xj ∈ S with
αj ⊗ xj ≤ v and (αj ⊗ xj )j ≤ vj . Clearly, αj = vj ⊗

(
x

j
j

)−1 and (b) follows. �

The following immediate corollary is an analogue of Carathéodory’s Theorem
and was essentially proved in [76] and [103].

Corollary 3.3.4 Let S ⊆ R
n
. Then v ∈ span(S) if and only if v ∈ span{x1, . . . , xk}

for some x1, . . . , xk ∈ S where k ≤ |Supp(v)|.

We add another straightforward corollary that will be used later on.

Corollary 3.3.5 Let T ⊆ R
n

be a subspace and Q be a set of generators for T .
Let U ⊆Q and S =Q−U . Then S generates T if and only if each v ∈Q satisfies
condition (b) of Proposition 3.3.3.

The next statement provides two criteria for a vector to be an extremal.

Proposition 3.3.6 Let T ⊆ R
n

be a subspace and S be a set of generators for T .
Let v ∈ S, v �= ε. Then the following are equivalent:

(a) v is an extremal in T .
(b) v(j) is minimal in T (j) for some j ∈ Supp(v).
(c) v(j) is minimal in S(j) for some j ∈ Supp(v).
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Proof (a)=⇒ (c): If |Supp(v)| = 1 then v(j) is minimal in S(j). So suppose that
|Supp(v)| > 1 and v(j) is not minimal in S(j) for any j ∈ Supp(v). Then for
each j ∈ Supp(v) there is an xj ∈ S(j) such that xj ≤ v(j), xj �= v(j). Therefore
v =∑⊕

j∈Supp(v) vj ⊗ xj , and v is proportional with none of xj . Hence v is not an
extremal in T .

(c)=⇒ (b): Let u ∈ T and assume that j ∈ Supp(v) and u(j) ≤ v(j). We need
to show that u(j) = v(j). By Proposition 3.3.3 the inequality w(j) ≤ u(j) holds
for some w ∈ S. Thus w(j) ≤ u(j) ≤ v(j) and by (c) it follows that w(j) = u(j)

= v(j).
(b)=⇒ (a): Let v(j) be minimal in T (j) for some j ∈ Supp(v) and suppose that

v = u⊕ w for some u,w ∈ T . Then both u ≤ v and w ≤ v and either uj = vj or
wj = vj , say (without loss of generality) uj = vj . Hence u(j)≤ v(j) and it follows
from (b) that u(j)= v(j). Therefore also u= v and (a) follows. �

We can now easily deduce a corollary that shows the crucial role of extremals:
they are generators.

Corollary 3.3.7 Let T ⊆ R
n

be a subspace. If Dj(v) has a minimal element for
each v ∈ T and each j ∈ Supp(v) then T is generated by its extremals.

Proof Suppose that xj is a minimal element of Dj(v). Since, for u ∈ T (j), the
inequality u ≤ xj implies u ∈ Dj(v), xj is also a minimal element of T (j). The
statement now follows by combining Propositions 3.3.3 and 3.3.6. �

The following fundamental result was essentially proved in [147]. Here we
slightly reformulate it: every set of generators S of a subspace T can be partitioned
as E ∪ F where E is a set of extremals for T and the remainder F is redundant.

Theorem 3.3.8 Let T ⊆ R
n

be a subspace and S be a set of scaled generators
for T . Let E be a set of scaled extremals in T . Then

(a) E ⊆ S.
(b) Let F = S −E. Then for any v ∈ F the set S − {v} is (also) a set of generators

for T .

Proof Part (a) repeats Lemma 3.3.1.
To prove (b), let v ∈ F . Since v is not an extremal, by Proposition 3.3.6 for

each j ∈ Supp(v) there is a zj ∈ T such that zj (j) < v(j). Since T = span(S),
by Proposition 3.3.3 there is also an yj ∈ S satisfying yj (j) ≤ zj (j) < v(j). Ob-
viously, yj �= v and by applying Proposition 3.3.3 again we get that v is a max-
combination of {yj ; j ∈ Supp(v)} where yj ∈ S are different from v. Thus in any
max-combination involving v, this vector can be replaced by a max-combination of
vectors in S − {v} which completes the proof. �

The following refinement of Theorem 3.3.8 will also be useful.
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Theorem 3.3.9 Let E be the set of scaled extremals in a subspace T . Let S ⊆ T

consist of scaled vectors. Then the following are equivalent:

(a) S is a minimal set of generators for T .
(b) S =E and S generates T .
(c) S is a basis for T .

Proof (a)=⇒ (b): By Theorem 3.3.8 we have S = E ∪ F where every element of
F is redundant in S. But since S is a minimal set of generators, we have F = ∅.
Hence S =E.

(b)=⇒ (c): E is independent and generating.
(c) =⇒ (a): By independence of S the span of a proper subset of S is strictly

contained in span(S). �

Theorem 3.3.9 shows that if a subspace has a (scaled) basis then it must be its set
of (scaled) extremals, hence the basis is essentially unique. Note that a maximal in-
dependent set in a subspace T may not be a basis for T as is shown by the following
example.

Example 3.3.10 Let T ⊆ R
2

consist of all (x1, x2)
T with x1 ≥ x2 > ε. If 0 > a >

b > ε then {(0, a)T , (0, b)T } is a maximal independent set in T but it does not
generate T .

We now deduce a few corollaries of Theorem 3.3.9. The first one can be found
in [76, 105] and [131].

Corollary 3.3.11 If T is a finitely generated subspace then its set of scaled ex-
tremals is nonempty and it is the unique scaled basis for T .

Proof Since T is finitely generated there exists a minimal set of generators S. By
Theorem 3.3.9 S =E and S is a basis. �

The next corollaries are related to totally dependent sets.

Corollary 3.3.12 If S is a nonempty scaled totally dependent set then S is infinite.

Proof Suppose that S is finite and let T = span(S). By Corollary 3.3.11 T con-
tains scaled extremals, which by Theorem 3.3.8 are contained in S, given that
T = span(S). But then S is not totally dependent, a contradiction. �

Corollary 3.3.13 Let T ⊆R
n

be a subspace. Then the following are equivalent:

(a) There is no extremal in T .
(b) There exists a totally dependent set of generators for T .
(c) Every set of generators for T is totally dependent.
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Proof Since there always is a set of generators for T (e.g. the set T itself), each of
(b) and (c) is equivalent to (a) by Theorem 3.3.8. �

A subspace S in R
n

is called open if S − {ε} is open in the Euclidean topology.

Corollary 3.3.14 Let T ⊆ R
n ∪ {ε}, n > 1, be a subspace. If T − {ε} is open then

every generating set for T is totally dependent (and hence T has no basis).

Proof It is sufficient to show that there is no scaled extremal in T since the result
then follows from Theorem 3.3.8. Let v ∈ T − {ε}. Since T is open there exist
vectors wp ∈ T (p = k, l), where w

p
p < vp and w

p
i = vi for i �= p. Hence v =

wk ⊕wl and v �=wk, v �=wl . Therefore there are no scaled extremals in T . �

An example of an open subspace is T =R
n ∪ {ε}. For this particular case Corol-

lary 3.3.14 was proved in [69]. Another example consists of all vectors (a, b)T with
a, b ∈R, a > b.

More geometric and topological properties of max-algebraic subspaces can be
found in [43, 52–54, 87, 89] and [103].

3.4 Column Spaces

We have seen a number of corollaries of the key result, Theorem 3.3.9. We shall
now link the first of these corollaries, Corollary 3.3.11, to the results of the previous
sections of this chapter. As usual the column space of a matrix A ∈ R

m×n
with

columns A1, . . . ,An is the set

Col(A)=
{
∑

j∈N

⊕
xj ⊗Aj ;xj ∈R

}

=
{
A⊗ x;x ∈R

n
}

.

Since α⊗A⊗ x ⊕ β ⊗A⊗ y =A⊗ (α⊗ x ⊕ β ⊗ y), we readily see that any col-
umn space is a subspace. Observe that by finding a solution to a system A⊗ x = b

we prove that b ∈ Col(A). A natural task then is to find a basis of this subspace.
Corollary 3.3.11 guarantees that such a basis exists and is unique up to scalar mul-
tiples of its elements. Note that for a formal proof we would have to first remove
repeated columns as they would be indistinguishable in a set of columns, but they
may be re-instated after deducing the uniqueness of the basis since the expression
“multiples of a vector v” also covers vectors identical with v. We summarize:

Theorem 3.4.1 For every A ∈R
m×n

there is a matrix B ∈R
m×k

, k ≤ n, consisting
of some columns of A such that no two columns of B are equal and the set of column
vectors of B is a basis of Col(A). This matrix B is unique up to the order and scalar
multiples of its columns.
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It remains to show how to find a basis of the column space of a matrix, say A.
If a column, say Ak is a max-combination of the remaining columns and A′ arises
from A by removing Ak then Col(A)= Col(A′) since in every max-combination of
the columns of A, the vector Ak may be replaced by a max-combination of the other
columns, that is, columns of A′. By repeating this process until no column is a max-
combination of the remaining columns, we arrive at a set that satisfies both require-
ments in the definition of a basis. Every check of linear independence is equivalent
to solving an m × (n − 1) one-sided system and can therefore be performed us-
ing O(mn) operations, thus the whole process is O(mn2). Although asymptotically
equally efficient, a method called the A-test, essentially described in the following
theorem, is more compact:

Theorem 3.4.2 [60] Let A ∈R
m×n

be a matrix with columns A1, . . . ,An and A be
the matrix arising from A∗ ⊗′ A after replacing the diagonal entries by ε. Then for
all j ∈ N the vector Aj is equal to the j th column of A⊗ A if and only if Aj is a
max-combination of the other columns of A. The elements of the j th column of A
then provide the coefficients to express the max-combination.

Proof See [60], Theorem 16-2. �

Example 3.4.3 Let

A=
⎛

⎝
1 1 2 ε 5
1 0 4 1 5
1 ε −1 1 0

⎞

⎠ .

Then

A∗ ⊗′ A=

⎛

⎜
⎜
⎜
⎜
⎝

−1 −1 −1
−1 0 −ε

−2 −4 1
−ε −1 −1
−5 −5 0

⎞

⎟
⎟
⎟
⎟
⎠
⊗′
⎛

⎝
1 1 2 ε 5
1 0 4 1 5
1 ε −1 1 0

⎞

⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

0 −1 −2 0 −1
0 ε 1 ε 4
−3 ε 0 ε 1

0 ε −2 ε −1
−4 ε −3 ε 0

⎞

⎟
⎟
⎟
⎟
⎠

.

Hence

A⊗A =
⎛

⎝
1 0 2 1 5
1 · · · 2 · · · 5
1 · · · · · · · · · 0

⎞

⎠ .

We deduce

A1 = 0⊗A2 ⊕−3⊗A3 ⊕ 0⊗A4 ⊕−4⊗A5
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A5 =−1⊗A1 ⊕ 4⊗A2 ⊕ 1⊗A3 ⊕−1⊗A4

and the basis of Col(A) is {A2,A3,A4}.
The number of vectors in any basis of a finitely generated subspace T is called

the dimension of T , notation dim(T ). Unlike in linear algebra, the dimensions of
max-algebraic subspaces are unrelated to the numbers of components of the vectors
in these subspaces. This has been observed in the early years of max-algebra and
the following two statements describe the anomaly.

Theorem 3.4.4 [60] Let m ≥ 3 and k ≥ 2. There exist k vectors in R
m

, none of
which is a max-combination of the others.

Proof It is sufficient to find k such vectors for m= 3. Consider

A=
⎛

⎝
0 0 · · · 0
1 2 · · · k

−1 −2 · · · −k

⎞

⎠

and apply the A-test to A

A∗ ⊗′ A=

⎛

⎜
⎜
⎝

0 −1 1
0 −2 2
· · · · · · · · ·

0 −k k

⎞

⎟
⎟
⎠⊗′

⎛

⎝
0 0 · · · 0
1 2 · · · k

−1 −2 · · · −k

⎞

⎠

=

⎛

⎜
⎜
⎝

0 −1 · · · −k+ 1
−1 0 · · · −k+ 2
· · · · · · · · · · · ·

−k+ 1 −k + 2 · · · 0

⎞

⎟
⎟
⎠ .

Hence all entries in the first row of the matrix

A⊗A =
⎛

⎝
0 0 · · · 0
1 2 · · · k

−1 −2 · · · −k

⎞

⎠⊗

⎛

⎜
⎜
⎝

ε −1 · · · −k+ 1
−1 ε · · · −k+ 2
· · · · · · · · · · · ·

−k + 1 −k+ 2 · · · ε

⎞

⎟
⎟
⎠

are−1 yielding that no column of A⊗A is equal to the corresponding column in A.
Using the A-test we deduce that none of the columns of A is a max-combination of
the others. �

Theorem 3.4.5 [60] Every real 2× n matrix, n≥ 2, has two columns such that all
other columns are a max-combination of these two columns.

Proof Let A = (aij ) ∈ R
2×n. We may assume without loss of generality that the

order of the columns is such that

a11 ⊗ a−1
21 ≤ a12 ⊗ a−1

22 ≤ · · · ≤ a1n ⊗ a−1
2n . (3.9)
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It is sufficient to prove that the system
(

a11 a1n

a21 a2n

)

⊗ x =
(

a1k

a2k

)

has a solution for every k = 1, . . . , n. From (3.9) we deduce for every k:

a11 ⊗ a−1
1k ≤ a21 ⊗ a−1

2k ,

a1n ⊗ a−1
1k ≥ a2n ⊗ a−1

2k ,

which imply 2 ∈ M1 and 1 ∈ M2 and the statement now follows by Corol-
lary 3.1.2. �

These results indicate that the question of a dimension in max-algebra is more
complicated than that in conventional linear algebra. We will return to this in
Chap. 6.

3.5 Unsolvable Systems

If a system A ⊗ x = b has no solution then the question of a best approximation
of b by the mapping x �−→ A ⊗ x arises. For this we need to introduce the con-
cept of a distance between two vectors. We shall consider the distance based on
the Chebyshev norm for which a quick answer follows from our previous results. If
x = (x1, . . . , xn)

T , y = (y1, . . . , yn)
T ∈ R

n then the Chebyshev distance of x and y

is ξ(x, y)=maxj∈N |xj − yj |. Max-algebraically,

ξ (x, y)=
∑

j∈N

⊕ (
xj ⊗ y−1

j ⊕ x−1
j ⊗ yj

)
.

It is easily verified that

ξ (α⊗ x, y)≤ |α| ⊗ ξ (x, y) (3.10)

for any α ∈R.
For the approximation of b by A⊗ x we distinguish two important cases:

Case 1 When x has to satisfy the condition A⊗x ≤ b (recall that this system always
has a solution). In MMIPP (see p. 9) b corresponds to required completion
times and A⊗ x is the actual completion times vector. Thus the approxima-
tion using a Chebyshev distance of A⊗ x and b subject to A⊗ x ≤ b can
be described as “minimal earliness subject to zero tardiness” [60].

Case 2 When x is unrestricted, x ∈R
n.

The following two theorems show that the principal solution plays a key role in
the answers to both questions. Recall that x(A,b) is finite if A is doubly R-astic and
b finite.
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Theorem 3.5.1 [60] Let A ∈R
m×n

be doubly R-astic, b ∈R
m,x = x(A,b) and

Q=
{
x ∈R

n;A⊗ x ≤ b
}

.

Then

ξ (A⊗ x, b)=min
x∈Q

ξ (A⊗ x, b) .

Proof It follows from Theorem 3.1.1 that x ∈ Q if and only if x ≤ x. By Corol-
lary 1.1.2 then

A⊗ x ≤A⊗ x ≤ b

for every x ∈Q. �

Theorem 3.5.2 [60] Let A ∈ R
m×n

be doubly R-astic, b ∈ R
m,x = x(A,b),

μ2 = ξ(A⊗ x, b) and y = μ⊗ x. Then

ξ (A⊗ y, b)= min
x∈Rn

ξ (A⊗ x, b) .

Proof Since A⊗ x ≤ b and (A⊗ x)i = bi for some i ∈M (Theorem 3.1.1) we have
ξ(A⊗ y, b)= μ.

Suppose ξ(A ⊗ z, b) < ξ(A ⊗ y, b) for some z ∈ R
n and let ρ = ξ(A ⊗ z, b).

Then ρ < μ and

A⊗ z≤ ρ ⊗ b.

Hence

A⊗
(
ρ−1 ⊗ z

)
≤ b

and so by Theorem 3.5.1 and (3.10)

μ2 = ξ (A⊗ x, b)≤ ξ
(
A⊗

(
ρ−1 ⊗ z

)
, b
)
≤
∣
∣
∣ρ−1

∣
∣
∣⊗ ξ (A⊗ z, b)= ρ2.

It follows that μ≤ ρ, a contradiction, hence the statement. �

There are other ways of approximating b using A⊗ x, for instance by permuting
the components of A⊗ x [42]. For more types of approximation see e.g. [47].
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3.6 Exercises

Exercise 3.6.1 Describe the solution set to the system A⊗ x = b, where

A=

⎛

⎜
⎜
⎜
⎜
⎝

3 2 4
6 7 6
2 4 8
0 2 3
3 1 8

⎞

⎟
⎟
⎟
⎟
⎠

, b=

⎛

⎜
⎜
⎜
⎜
⎝

−p

1
1

−4
1

⎞

⎟
⎟
⎟
⎟
⎠

in terms of the real parameter p. [No solution for p < 2 or p > 3; (−5,≤−6,−7)T

for p = 2; unique solution (−3− p,−6,−7)T if 2 < p < 3; (≤−6,−6,−7)T for
p = 3]

Exercise 3.6.2 As in the previous question but for A⊗ x ≤ b.
⎡

⎢
⎢
⎢
⎢
⎣

x ≤
⎛

⎝
−3 −6 −2 0 −3
−2 −7 −4 −2 −1
−4 −6 −8 −3 −8

⎞

⎠⊗′

⎛

⎜
⎜
⎜
⎜
⎝

−p

1
1

−4
1

⎞

⎟
⎟
⎟
⎟
⎠
=
⎛

⎝
max (−p− 3,−1)

max (−p− 2, 0)

max (−p− 4,−5)

⎞

⎠

⎤

⎥
⎥
⎥
⎥
⎦

Exercise 3.6.3 Find the scaled basis of the column space of the matrix

A=
⎛

⎝
3 −2 0 3 2
1 1 −2 6 3
4 3 1 8 0

⎞

⎠ .

[{(−1,−3,0)T , (−5,−2,0)T , (−1,0,−3)T }.]

Exercise 3.6.4 For A and b with p = 0 of Exercise 3.6.1 find the Chebyshev best
approximation of b by A⊗ x over the set {x ∈R

n;A⊗ x ≤ b} and then over R
n.

⎡

⎢
⎢
⎢
⎢
⎣

⎛

⎜
⎜
⎜
⎜
⎝

−2
1
1
−4

1

⎞

⎟
⎟
⎟
⎟
⎠

for x =
⎛

⎝
−5
−6
−7

⎞

⎠ ;

⎛

⎜
⎜
⎜
⎜
⎝

−1
2
2
−3

2

⎞

⎟
⎟
⎟
⎟
⎠

for x =
⎛

⎝
−4
−5
−6

⎞

⎠

⎤

⎥
⎥
⎥
⎥
⎦

Exercise 3.6.5 Find the Chebyshev best approximation of b by A⊗ x over the set
{x ∈R

n;A⊗ x ≤ b} and then over R
n for A= ( 3 1

2 5

)
and b= ( 2

0

)
.

[(
1
0

)

for x =
(−2
−5

)

;
(

3/2
1/2

)

for =
(−3/2
−9/2

)]

Exercise 3.6.6 Let A ∈R
m×2. Prove that there exist positions (k,1) and (l,2) in A

such that for any b, for which A⊗x = b has a solution, (k,1) is a column maximum



70 3 One-sided Max-linear Systems and Max-algebraic Subspaces

in column 1 of (diag(b))−1 ⊗ A and (l,2) is a column maximum in column 2 of
this matrix, respectively. [See [42]]

Exercise 3.6.7 Prove that the following problem is NP-complete. Given A ∈R
m×n

and b ∈ R
m

, decide whether it is possible to permute the components of b so that
for the obtained vector b′ the system A⊗ x = b′ has a solution. [See [31]]



Chapter 4
Eigenvalues and Eigenvectors

This chapter provides an account of the max-algebraic eigenvalue-eigenvector the-
ory for square matrices over R. The algorithms presented and proved here enable us
to find all eigenvalues and bases of all eigenspaces of an n×n matrix in O(n3) time.
These results are of fundamental importance for solving the reachability problems
in Chap. 8 and elsewhere.

We start with definitions and basic properties of the eigenproblem, then continue
by proving one of the most important results in max-algebra, namely that for every
matrix the maximum cycle mean is the greatest eigenvalue, which motivates us to
call it the principal eigenvalue. We then show how to describe the corresponding
(principal) eigenspace. Next we present the Spectral Theorem, that enables us to find
all eigenvalues of a matrix. It also makes it possible to characterize matrices with
finite eigenvectors. Finally, we discuss how to efficiently describe all eigenvectors
of a matrix.

4.1 The Eigenproblem: Basic Properties

Given A ∈ R
n×n

, the task of finding the vectors x ∈ R
n
, x �= ε (eigenvectors) and

scalars λ ∈R (eigenvalues) satisfying

A⊗ x = λ⊗ x (4.1)

is called the (max-algebraic) eigenproblem. For some applications it may be suffi-
cient to find one eigenvalue-eigenvector pair; however, in this chapter we show that
all eigenvalues can be found and all eigenvectors can efficiently be described for
any matrix.

The eigenproblem is of key importance in max-algebra. It has been studied since
the 1960’s [58] in connection with the analysis of the steady-state behavior of pro-
duction systems (see Sect. 1.3.3). Full solution of the eigenproblem in the case of
irreducible matrices has been presented in [60] and [98], see also [11, 61] and [144].
A general spectral theorem for reducible matrices has appeared in [84] and [12], and

P. Butkovič, Max-linear Systems: Theory and Algorithms,
Springer Monographs in Mathematics 151,
DOI 10.1007/978-1-84996-299-5_4, © Springer-Verlag London Limited 2010
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partly in [48]. An application of the max-algebraic eigenproblem to the conventional
eigenproblem and in music theory can be found in [79].

For A ∈ R
n×n

and λ ∈ R we denote by V (A,λ) the set consisting of ε and all
eigenvectors of A corresponding to λ, and by �(A) the set of all eigenvalues of A,
that is

V (A,λ)=
{
x ∈R

n;A⊗ x = λ⊗ x
}

and

�(A)=
{
λ ∈R;V (A,λ) �= {ε}

}
.

We also denote by V (A) the set consisting of ε and all eigenvectors of A, that is

V (A)=
⋃

λ∈�(A)

V (A,λ).

Finite eigenvectors are of special significance for both theory and applications
and we denote:

V +(A,λ)= V (A,λ)∩R
n

and

V +(A)= V (A)∩R
n.

We start by presenting basic properties of eigenvalues and eigenvectors. The set
{α⊗ x;x ∈ S} for α ∈R and S ⊆R

n
will be denoted α⊗ S.

Proposition 4.1.1 Let A,B ∈R
n×n

,α ∈R, λ,μ ∈R and x, y ∈R
n
. Then

(a) V (α⊗A)= V (A),
(b) �(α⊗A)= α⊗�(A),
(c) V (A,λ)∩ V (B,μ)⊆ V (A⊕B,λ⊕μ),
(d) V (A,λ)∩ V (B,μ)⊆ V (A⊗B,λ⊗μ),
(e) V (A,λ)⊆ V (Ak,λk) for all integers k ≥ 0,
(f) x ∈ V (A,λ)=⇒ α⊗ x ∈ V (A,λ),
(g) x, y ∈ V (A,λ)=⇒ x ⊕ y ∈ V (A,λ).

Proof If A⊗ x = λ⊗ x then (α⊗A)⊗ x = (α⊗ λ)⊗ x which proves (a) and (b).
If A⊗ x = λ⊗ x and B ⊗ x = μ⊗ x then

(A⊕B)⊗ x =A⊗ x ⊕B ⊗ x

= λ⊗ x ⊕μ⊗ x

= (λ⊕μ)⊗ x

and

(A⊗B)⊗ x =A⊗ (B ⊗ x)
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=A⊗μ⊗ x

= μ⊗A⊗ x

= μ⊗ λ⊗ x

which prove (c) and (d). Statement (e) follows by a repeated use of (d) and setting
A= B .

If A⊗ x = λ⊗ x then A⊗ (α⊗ x)= λ⊗ (α⊗ x) which proves (f).
Finally, if A⊗ x = λ⊗ x and A⊗ y = λ⊗ y then

A⊗ (x ⊕ y)=A⊗ x ⊕A⊗ y

= λ⊗ (x ⊕ y)

and (g) follows. �

It follows from Proposition 4.1.1 that V (A,λ) is a subspace for every λ ∈�(A);
it will be called an eigenspace (corresponding to the eigenvalue λ).

Remark 4.1.2 By (c) and (e) of Proposition 4.1.1 we have: If A ∈ R
n×n

and
ε < λ(A)≤ 0 then V (A)⊆ V (�(A)). In particular,

V (Aλ,0)⊆ V (�(Aλ),0).

The next statement summarizes spectral properties that are unaffected by a si-
multaneous permutation of the rows and columns.

Proposition 4.1.3 Let A,B ∈ R
n×n

and B = P−1 ⊗A⊗ P , where P is a permu-
tation matrix. Then

(a) A is irreducible if and only if B is irreducible.
(b) The sets of cycle lengths in DA and DB are equal.
(c) A and B have the same eigenvalues.
(d) There is a bijection between V (A) and V (B) described by:

V (B)=
{
P−1 ⊗ x;x ∈ V (A)

}
.

Proof To prove (a) and (b) note that B is obtained from A by simultaneous permuta-
tions of the rows and columns. Hence DB differs from DA by the numbering of the
nodes only and the statements follow. For (c) and (d) we observe that B⊗ z= λ⊗ z

if and only if A⊗ P ⊗ z= λ⊗ P ⊗ z, that is, z ∈ V (B) if and only if z= P−1 ⊗ x

for some x ∈ V (A). �

Remark 4.1.4 The eigenvectors as defined by (4.1) are also called right eigenvectors
in contrast to left eigenvectors that are defined by the equation

yT ⊗A= yT ⊗ λ.
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By the rules for transposition we have that y is a left eigenvector of A if and only
if y is a right eigenvector of AT (corresponding to the same eigenvalue), and hence
the task of finding left eigenvectors for A is converted to the task of finding right
eigenvectors for AT .

4.2 Maximum Cycle Mean is the Principal Eigenvalue

When solving the eigenproblem a crucial role is played by the concepts of the maxi-
mum cycle mean and that of a definite matrix. The aim of this section is to prove that
the maximum cycle mean is an eigenvalue of every square matrix over R. We will
first solve the extreme case when λ(A) = ε and then we prove that the columns
of �(Aλ) with zero diagonal entries are eigenvectors corresponding to λ(A) if
λ(A) > ε.

Recall that the maximum cycle mean of A= (aij ) ∈R
n×n

is

λ(A)=max
ai1i2 + ai2i3 + · · · + aik−1ik + aiki1

k

where the maximization is taken over all (elementary) cycles (i1, . . . , ik, i1) in DA

(k = 1, . . . , n), see Lemma 1.6.2. Due to the convention max∅ = ε, it follows from
this definition that λ(A)= ε if and only if DA is acyclic.

Lemma 4.2.1 Let A = (aij ) ∈ R
n×n

have columns A1,A2, . . . ,An. If λ(A) = ε

then �(A)= {ε}, at least one column of A is ε and the eigenvectors of A are exactly
the vectors (x1, . . . , xn)

T ∈ R
n
, x �= ε such that xj = ε whenever Aj �= ε (j ∈ N ).

Hence V (A, ε)= {G⊗z; z ∈R
n}, where G ∈R

n×n
has columns g1, g2, . . . and for

all j ∈N :

gj =
{

ej , if Aj = ε,

ε, if Aj �= ε.

Proof Suppose λ(A)= ε and A⊗ x = λ⊗ x for some λ ∈R, x �= ε. Hence

max
j=1,...,n

(
aij + xj

)= λ+ xi (i = 1, . . . , n).

For every i ∈N there is a j ∈N such that

aij + xj = λ+ xi.

Thus if, say xi1 > ε, and i = i1 then there are i2, i3, . . . such that

aii i2 + xi2 = λ+ xi1

ai2i3 + xi3 = λ+ xi2

. . . .
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where xi1, xi2, xi3, . . . > ε. This process will eventually cycle. Let us assume without
loss of generality that the cycle is (i1, . . . , ik, ik+1 = i1). Hence the last equation in
the above system is

aiki1 + xi1 = λ+ xik .

In all these equations both sides are finite. If we add them up and simplify, we get

ai1i2 + ai2i3 + · · · + aik−1ik + aiki1 = kλ

showing that a cycle in DA exists, a contradiction to λ(A) = ε. Therefore
�(A)∩R= ∅. At the same time A has an ε column by Lemma 1.5.3. If the j th
column is ε then A⊗ x = λ(A)⊗ x for any vector x whose components are all ε,
except for the j th which may be of any finite value. Hence �(A)= {ε} and the rest
of the lemma follows. �

Since Lemma 4.2.1 completely solves the case λ(A) = ε, we may now assume
that we deal with matrices whose maximum cycle mean is finite. Recall that the
matrix Aλ = (λ(A))−1 ⊗A is definite for any A ∈R

n×n
whenever λ(A) > ε (The-

orem 1.6.5).

Proposition 4.2.2 Let A ∈R
n×n

and λ(A) > ε. Then

V (A)= V (λ(A)−1 ⊗A).

Proof The statement follows from part (a) of Proposition 4.1.1. �

Thus by Lemma 4.2.1, Proposition 4.1.1 (parts (a) and (b)) and Proposition 4.2.2
the task of finding all eigenvalues and eigenvectors of a matrix has been reduced to
the same task for definite matrices.

Recall that �(A) was defined in Sect. 1.6.2 as the series A⊕A2 ⊕A3 ⊕ · · · and
that

�(A)=A⊕A2 ⊕ · · · ⊕An

if and only if λ(A)≤ 0 (Proposition 1.6.10).
Let us denote the columns of �(A) = (γij ) by g1, . . . , gn. Recall that if A is

definite then the values γij (i, j ∈N ) represent the weights of heaviest i−j paths in
DA (Sect. 1.6.2). The significance of �(A) for matrices with λ(A)≤ 0 is indicated
by the fact that for such matrices

A⊗ �(A)=A2 ⊕ · · · ⊕An+1 ≤ �(A)

due to (1.20), thus yielding

A⊗ gj ≤ gj for every j ∈N. (4.2)

An important point of the max-algebraic eigenproblem theory is that in (4.2)
actually equality holds whenever A is definite and j ∈Nc(A):
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Lemma 4.2.3 Let A= (aij ) ∈R
n×n

. If A is definite, g1, . . . , gn are the columns of
�(A) and j ∈Nc(A) then A⊗ gj = gj .

Proof Let j ∈Nc(A) and i ∈N . Then by (4.2)

max
r=1,...,n

(air + γrj )≤ γij

and we need to prove that actually equality holds. We may assume without loss
of generality γij > ε (otherwise the wanted equality follows). Let (i, k, . . . , j) be a
heaviest i− j path. If k = j then γij = aij = aij +γjj . If k �= j then γij = aik+γkj .
In each case there is an r such that air + γrj = γij . �

Before we summarize our results in the main statement of this section, we give a
practical description of the set of critical nodes Nc(A). Since there are no cycles of
weight more than 0 in DA for definite matrices A but at least one has weight 0, we
have then that for a definite matrix A at least one diagonal entry in �(A) is 0 and all
diagonal entries are 0 or less since the kth diagonal entry is the greatest weight of a
cycle in DA containing node k.

It also follows for any definite matrix A that zero diagonal entries in �(A) exactly
correspond to critical nodes, that is, we have

Nc(A)= {j ∈N;γjj = 0}. (4.3)

By Lemma 4.2.3 zero is an eigenvalue of every definite matrix. Hence Proposi-
tion 4.1.1 (part 2), Lemmas 4.2.1, 4.2.2, 1.6.6 and 4.2.3 and (4.3) imply:

Theorem 4.2.4 λ(A) is an eigenvalue for any matrix A ∈ R
n×n

. If λ(A) > ε then
up to n eigenvectors of A corresponding to λ(A) can be found among the columns
of �(Aλ). More precisely, every column of �(Aλ) with zero diagonal entry is an
eigenvector of A with corresponding eigenvalue λ(A).

In view of Theorem 4.2.4 we will call λ(A) the principal eigenvalue of A.
Note that when the result of Theorem 4.2.4 is generalized to matrices over lin-

early ordered commutative groups then the concept of radicability of the underlying
group (see Sect. 1.4) is crucial, since otherwise it is not possible to guarantee the
existence of the maximum cycle mean. Therefore in groups that are not radicable,
such as the additive group of integers, an eigenvalue of a matrix may not exist.

4.3 Principal Eigenspace

The results of the previous section enable us to present a complete description of all
eigenvectors corresponding to the principal eigenvalue. Such eigenvectors will be
called principal and V (A,λ(A)) will be called the principal eigenspace of A. Our
aim in this section is to describe bases of V (A,λ(A)).
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The columns of �(Aλ) with zero diagonal entry are principal eigenvectors by
Theorem 4.2.4. We will call them the fundamental eigenvectors [60] of A (FEV).
Clearly, every max-combination of fundamental eigenvectors is also a principal
eigenvector.

We will use Theorem 4.2.4 and

• prove that there are no principal eigenvectors other than max-combinations of
fundamental eigenvectors,

• identify fundamental eigenvectors that are multiples of the others, and
• prove that by removing fundamental eigenvectors that are multiples of the others

we produce a basis of the principal eigenspace, that is, none of the remaining
columns is a max-combination of the others.

We start with a technical lemma.

Lemma 4.3.1 [65] Let A ∈ R
n×n

, λ(A) > ε and g1, . . . , gn be the columns of
�(Aλ) = (γij ). If x = (x1, . . . , xn)

T ∈ V (A,λ(A)) and xi > ε (i ∈ N ) then there
is an s ∈Nc(A) such that

xi = xs + γis .

Proof Let Aλ = (dij ) and i ∈ N , xi > ε. Then Aλ ⊗ x = x by Proposition 4.1.1
(parts (a) and (b)) and Nc(A)=Nc(Aλ) by Lemma 1.6.6. This implies that there is
a sequence of indices i1 = i, i2, . . . such that

xi1 = di1i2 + xi2

xi2 = di2i3 + xi3

. . .

(4.4)

This sequence will eventually cycle. Let us assume that the cycle is

(ir , . . . , ik, ik+1 = ir ).

For this subsequence we have

xir = dir ir+1 + xir+1

. . .

xik = dikir + xir .

In all these equations both sides are finite. If we add them up and simplify, we get

dir ir+1 + · · · + dikir = 0

and hence ik ∈Nc(Aλ)=Nc(A).
If we add up the first k − 1 equations in (4.4) and simplify, we get

xi1 = di1i2 + · · · + dik−1ik + xik .
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Since di1i2 + · · · + dik−1ik is the weight of an i1 − ik path in DAλ and γi1ik is the
weight of a heaviest i1 − ik path, we have

xi1 ≤ γi1ik + xik .

At the same time x ∈ V (�(Aλ)) (see Remark 4.1.2) and so

xi1 =
∑⊕

j∈N

γi1j ⊗ xj ≥ γi1ik + xik .

Hence ik is the sought s. �

We are ready to prove that there are no principal eigenvectors other than max-
combinations of fundamental eigenvectors:

Lemma 4.3.2 Suppose that A = (aij ) ∈ R
n×n

, λ(A) > ε and g1, . . . , gn are the
columns of �(Aλ)= (γij ). If x = (x1, . . . , xn)

T ∈ V (A,λ(A)) then

x =
∑⊕

j∈Nc(A)

xj ⊗ gj .

Proof Let x = (x1, . . . , xn)
T ∈ V (A,λ(A)). We have

Aλ ⊗ x = x (4.5)

by Proposition 4.1.1 (parts (a) and (b)) and Nc(A)=Nc(Aλ) by Lemma 1.6.6. This
implies (see Remark 4.1.2) that x ∈ V (�(Aλ),0), yielding

x =
∑⊕

j∈N

xj ⊗ gj ≥
∑⊕

j∈Nc(A)

xj ⊗ gj .

We need to prove that the converse inequality holds too, that is, for every i ∈N there
is an s ∈Nc(A) such that

xi ≤ xs + γis .

If xi = ε then this is trivially true. If xi > ε then it follows from Lemma 4.3.1. �

Clearly, when considering all possible max-combinations of a set of fundamental
eigenvectors (or, indeed, of any vectors), we may remove from this set fundamental
eigenvectors that are multiples of some other. To be more precise, we say that two
fundamental eigenvectors gi and gj are equivalent if gi = α ⊗ gj for some α ∈ R

and nonequivalent otherwise. We characterize equivalent fundamental eigenvectors
using the equivalence of eigennodes in the next statement (note that the relation
i ∼ j has been defined in Sect. 1.6.1):
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Theorem 4.3.3 [60] Suppose that A= (aij ) ∈ R
n×n

, λ(A) > ε and g1, . . . , gn are
the columns of �(Aλ) = (γij ). If i, j ∈ Nc(A) then gi = α ⊗ gj for some α ∈ R if
and only if i ∼ j .

Proof Recall that Nc(A)=Nc(Aλ) by Lemma 1.6.6.
Let i, j ∈ Nc(Aλ). If gi = α ⊗ gj , α ∈ R then γji = α ⊗ γjj = α and

γij = α−1 ⊗ γii = α−1. Hence the heaviest i − j path extended by the heaviest
j − i path is a cycle of weight α−1⊗ α = 0, thus i ∼ j . Conversely, let i ∼ j and α

be the weight of the j − i subpath of the critical cycle containing both i and j . Then
for any k ∈N we have γki = α⊗ γkj since ≥ follows from the definition of γki and
> would imply α−1 ⊗ γki > γkj . But α−1 is the weight of the i − j subpath of the
critical cycle containing both i and j and thus α−1 ⊗ γki is the weight of a k − j

path which is a contradiction with the maximality of γkj . Hence gi = α⊗ gj . �

Note that if i ∼ j then we also write gi ∼ gj .
From the last two theorems we can readily deduce:

Corollary 4.3.4 [60] Suppose that A= (aij ) ∈R
n×n

, λ(A) > ε and g1, . . . , gn are
the columns of �(Aλ). Then

V (A,λ (A))=
{ ∑⊕

j∈N∗c (A)

αj ⊗ gj ;αj ∈R, j ∈N∗
c (A)

}

where N∗
c (A) is any maximal set of nonequivalent eigennodes of A.

Clearly, any set N∗
c (A) in Corollary 4.3.4 can be obtained by taking exactly one

gk for each equivalence class in (Nc(A),∼). The results on bases in Chap. 3 enable
us now to easily describe bases of principal eigenspaces and, consequently, to define
the principal dimension.

Theorem 4.3.5 [6] Suppose that A = (aij ) ∈ R
n×n

, λ(A) > ε and g1, . . . , gn are
the columns of �(Aλ). Then V (A,λ(A)) is a nontrivial subspace and we obtain
a basis of V (A,λ(A)) by taking exactly one gk for each equivalence class in
(Nc(A),∼).

Proof V (A,λ(A)) is a subspace by Proposition 4.1.1 (parts (f) and (g)). It is non-
trivial due to (4.3) and Lemma 4.2.3. By Corollary 3.3.11 it remains to prove that
every gk, k ∈Nc(A), is an extremal.

Let k ∈ Nc(A) be fixed and suppose that gk = u⊕ v where u,v ∈ V (A,λ(A)).
Then by Lemma 4.3.2 we have:

u=
∑⊕

j∈N∗c (A)

αj ⊗ gj
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and

v =
∑⊕

j∈N∗c (A)

βj ⊗ gj

where N∗
c (A) is a fixed maximal set of nonequivalent eigennodes of A and

αj ,βj ∈R. We may assume without loss of generality that gk ∈ N∗
c (A) and thus

gk � gh for any h ∈N∗
c (A),h �= k. Hence

gk =
∑⊕

j∈N∗c (A)

δj ⊗ gj

where δj = αj ⊕ βj . Clearly δk ≤ 0. Suppose δk < 0 then

gk =
∑⊕

j∈N∗c (A)
j �=k

δj ⊗ gj .

It follows that

0= γkk =
∑⊕

j∈N∗c (A)
j �=k

δj ⊗ γkj = δh ⊗ γkh

for some h ∈N∗
c (A),h �= k. At the same time

γhk =
∑⊕

j∈N∗c (A)
j �=k

δj ⊗ γhj ≥ δh ⊗ γhh = δh.

Therefore

γkh ⊗ γhk ≥ δ−1
h ⊗ δh = 0.

The last inequality is in fact equality since there are no positive cycles in D�(Aλ),
implying that k ∼ h, a contradiction. Hence δk = 0. Then (without loss of generality)
αk = 0 implying u≥ gk = u⊕ v and thus u= gk . �

The dimension of the principal eigenspace of A will be called the principal di-
mension of A and will be denoted pd(A). It follows from Theorems 4.3.3 and 4.3.5
that pd(A) is equal to the number of critical components of C(A) or, equivalently,
to the size of any basis of the column space of the matrix consisting of fundamental
eigenvectors of A. Since this basis can be found in O(n3) time (Sect. 3.4), pd(A)

can be found with the same computational effort.

Remark 4.3.6 It is easily seen that λ(AT ) = λ(A), �(AT ) = (�(A))T and
Nc(A

T )=Nc(A). Hence an analogue of Theorem 4.3.5 in terms of rows of �(Aλ)

for left principal eigenvectors immediately follows. See also Remark 4.1.4.
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Example 4.3.7 Consider the matrix

A=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

7 9 5 5 3 7
7 5 2 7 0 4
8 0 3 3 8 0
7 2 5 7 9 5
4 2 6 6 8 8
3 0 5 7 1 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The maximum cycle mean is 8, attained by three critical cycles: (1,2,1), (5,5) and
(4,5,6,4). Thus λ(A)= 8, pd(A)= 2 and

�(Aλ)=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 −1 0 1 1
−1 0 2 −1 0 0

0 1 −1 0 1 1
−1 0 −1 0 1 1
−2 −1 −2 −1 0 0
−2 −1 −2 −1 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Critical components have node sets {1,2} and {4,5,6}. Hence the first and second
columns of �(Aλ) are multiples of each other and similarly the fourth, fifth and
sixth columns. For the basis of V (A,λ(A)) we may take for instance the first and
fourth columns.

Example 4.3.8 Consider the matrix

A=

⎛

⎜
⎜
⎝

0 3
1 −1

2
1

⎞

⎟
⎟
⎠ ,

where the missing entries are ε. Then λ(A)= 2, Nc(A)= {1,2,3}, critical compo-
nents have node sets {1,2} and {3}, pd(A)= 2. We can compute

�(Aλ)=

⎛

⎜
⎜
⎝

0 1
−1 0

0
−1

⎞

⎟
⎟
⎠ ,

hence a basis of the principal eigenspace is

{g2, g3} =
{
(1,0, ε, ε)T , (ε, ε,0, ε)T

}
.
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4.4 Finite Eigenvectors

The aim in this chapter is to show how to find all eigenvalues and describe all eigen-
vectors of a matrix. To achieve this goal, in this section we will study the set of finite
eigenvectors. We will show how to efficiently describe all finite eigenvectors.

We will continue to use the notation �(Aλ) = (γij ) if λ(A) > ε. Recall that
Nc(A)=Nc(Aλ) by Lemma 1.6.6.

We will present the main results of this section in the following order:

• A proof that the maximum cycle mean is the only possible eigenvalue correspond-
ing to finite eigenvectors.

• Criteria for the existence of finite eigenvectors.
• Description of all finite eigenvectors.
• A proof that irreducible matrices have only finite eigenvectors.

The first result shows that λ(A) is the only possible eigenvalue corresponding to
finite eigenvectors. Note that if A= ε then every finite vector of a suitable dimension
is an eigenvector of A and all correspond to the unique eigenvalue λ(A)= ε.

Theorem 4.4.1 [60] Let A= (aij ) ∈R
n×n

. If A �= ε and V +(A) �= ∅ then λ(A) > ε

and A⊗ x = λ(A)⊗ x for every x ∈ V +(A).

Proof Let x = (x1, . . . , xn)
T ∈ V +(A). We have

max
j=1,...,n

(
aij + xj

)= λ+ xi (i = 1, . . . , n)

for some λ ∈R. Since A �= ε the LHS is finite for at least one i and thus λ > ε.
For every i ∈N there is a j ∈N such that

aij + xj = λ+ xi.

Hence, if i = i1 is any fixed index then there are indices i2, i3, . . . such that

aii i2 + xi2 = λ+ xi1,

ai2i3 + xi3 = λ+ xi2,

. . . .

This process will eventually cycle. Let us assume without loss of generality that the
cycle is (i1, . . . , ik, ik+1 = i1), otherwise we remove the necessary first elements of
this sequence. Hence the last equation in the above system is

aiki1 + xi1 = λ+ xik .

In all these equations both sides are finite. If we add them up and simplify, we get

λ= ai1i2 + ai2i3 + · · · + aik−1ik + aiki1

k
.
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At the same time, if σ = (i1, . . . , ik, ik+1 = i1) is an arbitrary cycle in DA then it
satisfies the system of inequalities obtained from the above system of equations after
replacing = by ≤. Hence

λ≥ ai1i2 + ai2i3 + · · · + aik−1ik + aiki1

k
= μ(σ,A).

It follows that λ=maxσ μ(σ,A)= λ(A). �

Theorem 4.4.1 opens the possibility of answering questions such as the existence
and description of finite eigenvectors.

Lemma 4.4.2 Let A ∈ R
n×n

. If A �= ε and x = (x1, . . . , xn)
T ∈ V +(A) then for

every i ∈N there is an s ∈Nc(A) such that

xi = xs + γis,

where �(Aλ)= (γij ).

Proof Since λ(A) > ε and x ∈ V (A,λ(A)) by Theorem 4.4.1, the statement follows
immediately from Lemma 4.3.1. �

We are ready to formulate the first criterion for the existence of finite eigenvec-
tors.

Theorem 4.4.3 Suppose that A ∈ R
n×n

, λ(A) > ε and g1, . . . , gn are the columns
of �(Aλ)= (γij ). Then

V +(A) �= ∅ ⇐⇒
∑⊕

j∈Nc(A)

gj ∈R
n.

Proof Suppose
∑⊕

j∈Nc(A) gj ∈ R
n. Every gj (j ∈ Nc(A)) is in V (A,λ(A)) by

Lemma 4.2.3 and
∑⊕

j∈Nc(A) gj ∈ V (A) by Proposition 4.1.1. Hence
∑⊕

j∈Nc(A) gj ∈
V +(A).

On the other hand, by Lemma 4.4.2, if x = (x1, . . . , xn)
T ∈ V +(A) then for every

i ∈N there is an s ∈Nc(A) such that γis ∈R and so
∑⊕

j∈Nc(A) gj ∈R
n. �

We can now easily deduce a classical result:

Corollary 4.4.4 [60] Suppose A ∈R
n×n

,A �= ε. Then V +(A) �= ∅ if and only if the
following are satisfied:

(a) λ(A) > ε.
(b) In DA there is

(∀i ∈N)(∃j ∈Nc(A))i→ j.
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Proof By Theorem 4.4.1, A �= ε and V +(A) �= ∅ implies λ(A) > ε. Observe that

∑⊕

j∈Nc(A)

gj ∈R
n⇐⇒

∑⊕

j∈Nc(A)

γij ∈R for all i ∈N.

Hence by Theorem 4.4.3 V +(A) �= ∅ if and only if

(∀i ∈N)(∃j ∈Nc(A))γij ∈R.

However, γij is the greatest weight of an i − j path in DAλ or ε, if there is no such
path, and the statement follows. �

The description of all finite eigenvectors can now easily be deduced:

Theorem 4.4.5 Let A ∈ R
n×n

. If λ(A) > ε, g1, . . . , gn are the columns of �(Aλ)

and V +(A) �= ∅ then

V +(A)=
{ ∑⊕

j∈N∗c (A)

αj ⊗ gj ;αj ∈R

}

, (4.6)

where N∗
c (A) is any maximal set of nonequivalent eigennodes of A.

Proof ⊇ follows from Lemma 4.2.3, Proposition 4.1.1 and Theorem 4.4.3 immedi-
ately. ⊆ follows from Lemma 4.3.2. �

Remark 4.4.6 Note that (4.6) requires αj ∈R and, in general, gj may or may not be
in V +(A). Therefore the subspace V +(A)∪{ε}may or may not be finitely generated
and hence, in general, there is no guarantee that it has a basis.

Example 4.4.7 Consider the matrix

A=

⎛

⎜
⎜
⎝

0 3
1 −1

2
0 1

⎞

⎟
⎟
⎠ ,

where the missing entries are ε. Then λ(A) = 2, Nc(A) = {1,2,3}, critical com-
ponents have node sets {1,2} and {3}, pd(A) = 2. A finite eigenvector exists since
an eigennode is accessible from every node (unlike in the slightly different Exam-
ple 4.3.8). We can compute

�(Aλ)=

⎛

⎜
⎜
⎝

0 1
−1 0

0
−2 −1

⎞

⎟
⎟
⎠ ,
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hence a basis of the principal eigenspace is {(1,0, ε, ε)T , (ε, ε,0,−2)T }. All finite
eigenvectors are max-combinations of the vectors in the basis provided that both
coefficients are finite. However, V +(A)∪ {ε} has no basis.

The following classical complete solution of the eigenproblem for irreducible
matrices is now easy to prove:

Theorem 4.4.8 (Cuninghame-Green [60]) Every irreducible matrix A ∈ R
n×n

(n > 1) has a unique eigenvalue equal to λ(A) and

V (A)− {ε} = V +(A)=
{ ∑⊕

j∈N∗c (A)

αj ⊗ gj ;αj ∈R

}

,

where g1, . . . , gn are the columns of �(Aλ) and N∗
c (A) is any maximal set of

nonequivalent eigennodes of A.

Proof Let A be irreducible, thus λ(A) > ε. Also, �(Aλ) is finite by Proposi-
tion 1.6.10. Every eigenvector of A is also an eigenvector of �(Aλ) with eigenvalue
0 (Remark 4.1.2) but the product of a finite matrix and a vector x �= ε is finite. Hence
an irreducible matrix can only have finite eigenvectors and thus its only eigenvalue
is λ(A) by Theorem 4.4.1.

On the other hand, due to the finiteness of all columns of �(Aλ), by Theo-
rem 4.4.3, V +(A) �= ∅ and the rest follows from Theorem 4.4.5. �

Remark 4.4.9 Note that every 1×1 matrix A over R is irreducible and V (A)−{ε} =
V +(A)=R.

The fact that λ(A) is the unique eigenvalue of an irreducible matrix A was already
proved in [58] and then independently in [144] for finite matrices. Since then it
has been rediscovered in many papers worldwide. The description of V +(A) for
irreducible matrices as given in Corollary 4.4.4 was also proved in [98].

Note that for an irreducible matrix A we have:

V (A)= V +(A)∪ {ε} = {�(Aλ)⊗ z; z ∈R
n
, zj = ε for all j /∈Nc(A)}.

Remark 4.4.10 Since �(Aλ) is finite for an irreducible matrix A, the generators of
V +(A) are all finite if A is irreducible. Hence V +(A) ∪ {ε} = V (A) has a basis in
this case, which coincides with the basis of V (A).

Example 4.4.11 Consider the irreducible matrix

A=

⎛

⎜
⎜
⎝

0 3 0
1 −1 0

0 2
0 1

⎞

⎟
⎟
⎠ ,
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where the missing entries are ε. Then λ(A)= 2, Nc(A)= {1,2,3}, critical compo-
nents have node sets {1,2} and {3}, pd(A)= 2. We can compute

�(Aλ)=

⎛

⎜
⎜
⎝

0 1 −4 −2
−1 0 −5 −3
−3 −2 0 −5
−5 −4 −2 −1

⎞

⎟
⎟
⎠ ,

hence a basis of the principal eigenspace is

{
(1,0,−2,−4)T , (−4,−5,0,−2)T

}
.

4.5 Finding All Eigenvalues

Our next step is to describe all eigenvalues of square matrices over R. The informa-
tion about principal eigenvectors obtained in the previous sections will be substan-
tially used.

We have already seen in Sect. 1.5 that if A,B ∈ R
n×n

are equivalent (A ≡ B),
then DA can be obtained from DB by a renumbering of the nodes and that
B = P−1 ⊗A⊗ P for some permutation matrix P . Hence if A≡ B then A is irre-
ducible if and only if B is irreducible. We also know by Proposition 4.1.3 that V (A)

and V (B) are essentially the same (the eigenvectors of A and B only differ by the
order of their components).

It follows from Theorem 4.4.8 that a matrix with a nonfinite eigenvector cannot
be irreducible. The following lemma provides an alternative and somewhat more
detailed explanation of this simple but remarkable property. It may also be useful
for a good understanding of the structure of the set V (A) for a general matrix A.

Lemma 4.5.1 Let A = (aij ) ∈ R
n×n

and λ ∈ �(A). If x ∈ V (A,λ) − V +(A,λ),
x �= ε, then n > 1,

A≡
(

A(11) ε

A(21) A(22)

)

,

λ= λ(A(22)), and hence A is reducible.

Proof Permute the rows and columns of A simultaneously so that the vector aris-

ing from x by the same permutation of its components is x′ =
(

x(1)

x(2)

)
, where

x(1) = ε ∈R
p

and x(2) ∈R
n−p for some p (1≤ p < n). Denote the obtained matrix

by A′ (thus A≡A′) and let us write blockwise

A′ =
(

A(11) A(12)

A(21) A(22)

)

,
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where A(11) is p× p. The equality A′ ⊗ x′ = λ⊗ x′ now yields blockwise:

A(12) ⊗ x(2) = ε,

A(22) ⊗ x(2) = λ⊗ x(2).

Since x(2) is finite, it follows from Theorem 4.4.4 that λ = λ(A(22)); also clearly
A(12) = ε. �

We already know (Theorem 4.4.8) that all eigenvectors of an irreducible matrix
are finite. We now can prove that only irreducible matrices have this property.

Theorem 4.5.2 Let A= (aij ) ∈R
n×n

. Then V (A)− {ε} = V +(A) if and only if A

is irreducible.

Proof It remains to prove the “only if” part since the “if” part follows from The-

orem 4.4.8. If A is reducible then n > 1 and A ≡
(

A(11) ε

A(21) A(22)

)
, where A(22) is ir-

reducible. By setting λ = λ(A(22)), x(2) ∈ V +(A22), x =
( ε

x(2)

) ∈ R
n

we see that
x ∈ V (A)− V +(A), x �= ε. �

Theorem 4.5.2 does not exclude the possibility that a reducible matrix has fi-
nite eigenvectors. The following spectral theory will, as a by-product, enable us to
characterize all situations when this occurs.

Every matrix A = (aij ) ∈ R
n×n

can be transformed in linear time by simulta-
neous permutations of the rows and columns to a Frobenius normal form (FNF)
[11, 18, 126]

⎛

⎜
⎜
⎝

A11 ε · · · ε

A21 A22 · · · ε

· · · · · · · · · · · ·
Ar1 Ar2 · · · Arr

⎞

⎟
⎟
⎠ (4.7)

where A11, . . . ,Arr are irreducible square submatrices of A. The diagonal blocks
are determined uniquely up to a simultaneous permutation of their rows and
columns: however, their order is not determined uniquely. Since any such form is
essentially determined by strongly connected components of DA, an FNF can be
found in O(|V | + |E|) time [18, 142]. It will turn out later in this section that the
FNF is a particularly convenient form for studying spectral properties of matrices.
Since these are essentially preserved by simultaneous permutations of the rows and
columns (Proposition 4.1.3) we will often assume, without loss of generality, that
the matrix under consideration already is in an FNF.

If A is in an FNF then the corresponding partition of the node set N of DA will
be denoted as N1, . . . ,Nr and these sets will be called classes (of A). It follows
that each of the induced subgraphs DA[Ni] (i = 1, . . . , r) is strongly connected and
an arc from Ni to Nj in DA exists only if i ≥ j . Clearly, every Ajj has a unique
eigenvalue λ(Ajj ). As a slight abuse of language we will, for simplicity, also say
that λ(Ajj ) is the eigenvalue of Nj .
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Fig. 4.1 Condensation
digraph (6 classes)

If A is in an FNF, say (4.7), then the condensation digraph, notation CA, is the
digraph

({N1, . . . ,Nr}, {(Ni,Nj ); (∃k ∈Ni)(∃l ∈Nj)akl > ε}).
Observe that CA is acyclic.

Recall that the symbol Ni →Nj means that there is a directed path from a node
in Ni to a node in Nj in CA (and therefore from each node in Ni to each node in Nj

in DA).
If there are neither outgoing nor incoming arcs from or to an induced subgraph

CA[{Ni1, . . . ,Nis }] (1≤ i1 < · · ·< is ≤ r) and no proper subdigraph has this prop-
erty then the submatrix

⎛

⎜
⎜
⎝

Ai1i1 ε · · · ε

Ai2i1 Ai2i2 · · · ε

· · · · · · · · · · · ·
Aisi1 Aisi2 · · · Aisis

⎞

⎟
⎟
⎠

is called an isolated superblock (or just superblock). The nodes of CA (that is,
classes of A) with no incoming arcs are called the initial classes, those with no
outgoing arcs are called the final classes. Note that an isolated superblock may have
several initial and final classes.

For instance the condensation digraph for the matrix

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

A11 ε ε ε ε ε

∗ A22 ε ε ε ε

∗ ∗ A33 ε ε ε

∗ ε ε A44 ε ε

ε ε ε ε A55 ε

ε ε ε ε ∗ A66

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(4.8)

can be seen in Fig. 4.1 (note that in (4.8) and elsewhere ∗ indicates a submatrix
different from ε). It consists of two superblocks and six classes including three
initial and two final ones.

Lemma 4.5.3 If x ∈ V (A),Ni →Nj and x[Nj ] �= ε then x[Ni] is finite. In partic-
ular, x[Nj ] is finite.
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Proof Suppose that x ∈ V (A,λ) for some λ ∈ R. Fix s ∈ Nj such that xs > ε.
Since Ni →Nj we have that for every r ∈Ni there is a positive integer q such that
brs > ε where B = Aq = (bij ). Since x ∈ V (B,λq) by Proposition 4.1.1 we also
have λq ⊗ xr ≥ brs ⊗ xs > ε. Hence xr > ε. �

We are now able to describe all eigenvalues of any square matrix over R.

Theorem 4.5.4 (Spectral Theorem) Let (4.7) be an FNF of a matrix

A= (aij ) ∈R
n×n

. Then

�(A)=
{
λ(Ajj );λ(Ajj )= max

Ni→Nj

λ(Aii)
}
.

Proof Note that

λ(A)= max
i=1,...,r

λ(Aii) (4.9)

for a matrix A in FNF (4.7).
First we prove the inclusion ⊇. Suppose

λ(Ajj )=max{λ(Aii);Ni →Nj }
for some j ∈ R = {1, . . . , r}. Denote

S2 = {i ∈R;Ni →Nj },
S1 =R − S2

and

Mp =
⋃

i∈Sp

Ni (p = 1,2).

Then λ(Ajj )= λ(A[M2]) and

A≡
(

A[M1] ε

∗ A[M2]
)

.

If λ(Ajj )= ε then at least one column, say the lth in A is ε. We set xl to any real
number and xj = ε for j �= l. Then x ∈ V (A,λ(Ajj )).

If λ(Ajj ) > ε then A[M2] has a finite eigenvector by Theorem 4.4.4, say x̃. Set
x[M2] = x̃ and x[M1] = ε. Then x = (x[M1], x[M2]) ∈ V (A,λ(Ajj )).

Now we prove ⊆. Suppose that x ∈ V (A,λ), x �= ε, for some λ ∈R.
If λ = ε then A has an ε column, say the kth, thus akk = ε. Hence the 1 × 1

submatrix (akk) is a diagonal block in an FNF of A. In the corresponding decom-
position of N one of the sets, say Nj , is {k}. The set {i;Ni → Nj } = {j} and the
theorem statement follows.

If λ > ε and x ∈ V +(A) then λ = λ(A) (cf. Theorem 4.4.1) and the statement
now follows from (4.9).
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If λ > ε and x /∈ V +(A) then similarly as in the proof of Lemma 4.5.1 permute
the rows and columns of A simultaneously so that

x =
(

x(1)

x(2)

)

,

where x(1) = ε ∈R
p
, x(2) ∈R

n−p for some p (1≤ p < n). Hence

A≡
(

A(11) ε

A(21) A(22)

)

and we can assume without loss of generality that both A(11) and A(22) are in an
FNF and therefore also

(
A(11) ε

A(21) A(22)

)

is in an FNF. Let

A(11) =

⎛

⎜
⎜
⎝

Ai1i1 ε · · · ε

Ai2i1 Ai2i2 · · · ε

· · · · · · · · · · · ·
Aisi1 Aisi2 · · · Aisis

⎞

⎟
⎟
⎠

and

A(22) =

⎛

⎜
⎜
⎝

Ais+1is+1 ε · · · ε

Ais+2is+1 Ais+2is+2 · · · ε

· · · · · · · · · · · ·
Aiqis+1 Aiqis+2 · · · Aiqiq

⎞

⎟
⎟
⎠ .

We have

λ= λ(A(22))= λ(Ajj )= max
i=s+1,...,q

λ(Aii),

where j ∈ {s+1, . . . , q}. It remains to say that if Ni →Nj then i ∈ {s+1, . . . , q}. �

The Spectral Theorem has been proved in [84] and, independently, also in [12].
Spectral properties of reducible matrices have also been studied in [10] and [145].
Significant correlation exists between the max-algebraic spectral theory and that for
nonnegative matrices in linear algebra [13, 128], see also [126]. For instance the
Frobenius normal form and accessibility between classes play a key role in both
theories. The maximum cycle mean corresponds to the Perron root for irreducible
(nonnegative) matrices and finite eigenvectors in max-algebra correspond to positive
eigenvectors in the spectral theory of nonnegative matrices. However there are also
differences, see Remark 4.6.8.

Let A be in the FNF (4.7). If

λ(Ajj )= max
Ni→Nj

λ(Aii)
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then Ajj (and also Nj or just j ) will be called spectral. Thus λ(Ajj ) ∈�(A) if j is
spectral but not necessarily the other way round.

Corollary 4.5.5 All initial classes of CA are spectral.

Proof Initial classes have no predecessors and so the condition of the theorem is
satisfied. �

Recall that λ(A) = min{λ; (∃x ∈ R
n)A ⊗ x ≤ λ ⊗ x} if λ(A) > ε (Theo-

rem 1.6.29). In contrast we have:

Corollary 4.5.6

λ(A)=max�(A)

=max
{
λ;
(
∃x ∈R

n
, x �= ε

)
A⊗ x = λ⊗ x

}

for every matrix A ∈R
n×n

.

Proof If A is in an FNF, say (4.7), then λ(A) = maxi=1,...,r λ(Aii) ≥ λ(Ajj ) for
all j . �

We easily deduce two more useful statements:

Corollary 4.5.7 1≤ |�(A)| ≤ n for every A ∈R
n×n

.

Proof Follows from the previous corollary and from the fact that the number of
classes of A is at most n. �

Corollary 4.5.8 V (A)= V (A,λ(A)) if and only if all initial classes have the same
eigenvalue λ(A).

Proof The eigenvalues of all initial classes are in �(A) since all initial classes are
spectral, hence all must be equal to λ(A) if �(A)= {λ(A)}. On the other hand, if all
initial classes have the same eigenvalue λ(A), and λ is the eigenvalue of any spectral
class then

λ≥ λ(A)=max
i

λ(Aii)

since there is a path from some initial class to this class and thus λ= λ(A). �

Figure 4.2 shows a condensation digraph with 14 classes including two initial
classes and four final ones. The integers indicate the eigenvalues of the correspond-
ing classes. The six bold classes are spectral, the others are not.

Note that the unique eigenvalues of all classes (that is, of diagonal blocks of an
FNF) can be found in O(n3) time by applying Karp’s algorithm (see Sect. 1.6) to
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Fig. 4.2 Condensation
digraph

each block. The condition for identifying all spectral submatrices in an FNF pro-
vided in Theorem 4.5.4 enables us to find them in O(r2)≤O(n2) time by applying
standard reachability algorithms to CA.

Example 4.5.9 Consider the matrix

A=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 3
1 1

4
0 3 1
−1 2
1 5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where the missing entries are ε. Then λ(A11) = 2, λ(A22) = 4, λ(A33) = 3,
λ(A44) = 5, r = 4; �(A) = {2,5}, λ(A) = 5, initial classes are N1 and N4 and
there are no other spectral classes. Final classes are N1 and N2.

We will now use the Spectral Theorem to prove two results, Theorems 4.5.10
and 4.5.14, whose proofs are easier when the Spectral Theorem is available. The
first of them has been known for certain types of matrices for some time [65, 102]:
however, using Theorem 4.5.4 we are able to prove it conveniently for any matrix:
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Theorem 4.5.10 Let A ∈R
n×n

. Then

λ(Ak)= (λ(A))k

holds for all integers k ≥ 0.

Proof The proof is trivial if n= 1 or k = 0, so assume n≥ 2, k ≥ 1.
Suppose first that A is irreducible. Let x ∈ V +(A) = V (A,λ(A)) − {ε}.

By Proposition 4.1.1 we have x ∈ V (Ak,λ(Ak)) and thus by Theorem 4.4.1
(λ(A))k = λ(Ak). It also follows that (λ(A))k is the greatest principal eigenvalue
of a diagonal block in any FNF of (possibly reducible) Ak .

Now suppose that A is reducible and without loss of generality let A be in the
FNF (4.7). Then λ(A)= λ(Aii) for some i,1≤ i ≤ r . The matrix Ak is again lower
blockdiagonal and has diagonal blocks Ak

11, . . . ,A
k
ii , . . . ,A

k
rr . These blocks may

or may not be irreducible. However (λ(A))k = (λ(Aii))
k is the greatest principal

eigenvalue of a diagonal block in any FNF of Ak
ii (by the first part of this proof

since Aii is irreducible) and therefore also in any FNF of Ak . This completes the
proof. �

For the second result we need two lemmas.

Lemma 4.5.11 Let A ∈R
n×n

. Then ε ∈�(A) if and only if A has an ε column.

Proof If A⊗ x = ε and xk �= ε then the kth column of A is ε. A similar argument
is used for the converse. �

Lemma 4.5.12 Let A ∈ R
n×n

be irreducible. If A⊗ x ≤ λ⊗ x, x �= ε,λ ∈ R then
x ∈R

n.

Proof The statement is trivial for n= 1. Let n > 1, then λ(A) > ε. Without loss of
generality we assume that A is definite. Then we have

� (A)⊗ x =A⊗ x ⊕A2 ⊗ x ⊕ · · · ⊕An ⊗ x

≤ λ⊗ x ⊕ λ2 ⊗ x ⊕ · · · ⊕ λn ⊗ x

= (λ⊕ · · · ⊕ λn
)⊗ x.

The LHS is finite since �(A) is finite (Proposition 1.6.10) and x �= ε, hence both λ

and x are finite. �

Corollary 4.5.13 Let A ∈R
n×n

be irreducible. Then

λ(A)=min{λ; (∃x ∈R
n
)
A⊗ x ≤ λ⊗ x}

=min
{
λ;
(
∃x ∈R

n
, x �= ε

)
A⊗ x ≤ λ⊗ x

}
.
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Proof The statement is trivial for n= 1. If n > 1 then λ(A) > ε and the first equality
follows from Theorem 1.6.29. The second follows from Lemma 4.5.12. �

We now make another use of Theorem 4.5.4 and prove a more general version of
Theorem 1.6.29:

Theorem 4.5.14 If A ∈R
n×n

then

min
{
λ;
(
∃x ∈R

n
, x �= ε

)
A⊗ x ≤ λ⊗ x

}
=min�(A).

Proof Without loss of generality let A be in the FNF (4.7) and as before
R = {1, . . . , r}. Let

L= inf
{
λ;
(
∃x ∈R

n
, x �= ε

)
A⊗ x ≤ λ⊗ x

}
.

Clearly L≤ min�(A) since for x we may take any eigenvector of A. If ε ∈�(A)

then using x ∈ V (A, ε)−{ε} we deduce that L= ε. We will therefore assume in the
rest of the proof that ε /∈�(A).

Let x ∈R
n
, x �= ε,λ ∈R and A⊗x ≤ λ⊗x. We need to show that λ≥min�(A).

Observe that λ > ε since otherwise x ∈ V (A, ε) − {ε}, a contradiction with
ε /∈�(A). Let us denote

K = {k ∈R;x [Nk] �= ε} .
Take any k ∈K . We have

A [Nk]⊗ x [Nk]≤ (A⊗ x) [Nk]≤ λ⊗ x [Nk] .

Then x[Nk] is finite by Lemma 4.5.12 and so λ≥ λ(A[Nk]) by Theorem 1.6.18.
If ast = ε for all s ∈Ni, i ∈ R and t ∈Nk , then Nk is spectral and the statement

follows.
If ast > ε for some s ∈ Ni, i ∈ R and t ∈ Nk , then xs ≥ λ−1 ⊗ ast ⊗ xt > ε.

Therefore i ∈K and again, as above, by Lemma 4.5.12 x[Ni] is finite. CA is acyclic
and finite, hence after a finite number of repetitions we will reach an i ∈R such that
Ni is initial, and hence also spectral, yielding λ(A[Ni]) > ε (since ε /∈�(A)) and
λ(A[Ni])≥min�(A).

At the same time

A [Ni]⊗ x [Ni]≤ (A⊗ x) [Ni]≤ λ⊗ x [Ni] .

Therefore x[Ni] is finite by Lemma 4.5.12 and by Theorem 1.6.18 we have:

λ≥ λ (A [Ni]) ,

from which the statement follows. �
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4.6 Finding All Eigenvectors

Our final effort in this chapter is to show how to efficiently describe all eigenvectors
of a matrix.

Let A ∈ R
n×n

be in the FNF (4.7), N1, . . . ,Nr be the classes of A and R =
{1, . . . , r}. For the following discussion suppose that λ ∈�(A) is a fixed eigenvalue,
λ > ε, and denote I (λ)= {i ∈R;λ(Ni)= λ,Ni spectral}.

We denote by g1, . . . , gn the columns of �(λ−1 ⊗ A) = (γij ). Note that
λ(λ−1 ⊗A)= λ−1 ⊗ λ(A) may be positive since λ ≤ λ(A) and thus �(λ−1 ⊗ A)

may include entries equal to +∞ (Proposition 1.6.10). However, for i ∈ I (λ) we
have

λ
(
λ−1 ⊗Aii

)
= λ−1 ⊗ λ (Aii)≤ 0

by Theorem 4.5.4 and hence �(λ−1 ⊗Aii) is finite for i ∈ I (λ).
Let us denote

Nc(λ)=
⋃

i∈I (λ)

Nc(Aii)=
{

j ∈N;γjj = 0, j ∈
⋃

i∈I (λ)

Ni

}

.

Two nodes i and j in Nc(λ) are called λ-equivalent (notation i ∼λ j ) if i and j

belong to the same cycle whose mean is λ. Note that if λ= λ(A) then ∼λ coincides
with ∼.

Theorem 4.6.1 [44] Suppose A ∈ R
n×n

and λ ∈�(A),λ > ε. Then gj ∈ R
n

(that
is, gj does not contain +∞) for all j ∈ Nc(λ) and a basis of V (A,λ) can be ob-
tained by taking one gj for each ∼λ equivalence class.

Proof Let us denote M =⋃i∈I (λ) Ni . By Lemma 4.1.3 we may assume without
loss of generality that A is of the form

(• ε

• A[M]
)

.

Hence �(λ−1 ⊗A) is
(• ε

• C

)

where C = �((λ(A[M]))−1 ⊗ A[M]), and the statement now follows by Proposi-
tion 1.6.10 and Theorem 4.3.5 since λ= λ(A[M]) and thus ∼λ equivalence for A is
identical with ∼ equivalence for A[M]. �

Corollary 4.6.2 A basis of V (A,λ) for λ ∈�(A), λ > ε, can be found using O(k3)

operations, where k = |I (λ)| and we have

V (A,λ)= {�(λ−1 ⊗A)⊗ z; z ∈R
n
, zj = ε for all j /∈Nc(λ)}.

Consequently, the bases of all eigenspaces can be found in O(n3) operations.



96 4 Eigenvalues and Eigenvectors

Using Lemma 4.2.1 and Corollary 4.6.2 we get:

Corollary 4.6.3 If A ∈ R
n×n

, λ ∈ �(A) and the dimension of V (A,λ) is rλ then

there is a column R-astic matrix Gλ ∈R
n×rλ such that

V (A,λ)=
{
Gλ ⊗ z; z ∈R

rλ
}

.

It follows from the proofs of Lemma 4.5.1 and Theorem 4.5.4 that V (A,λ) can
also be found as follows: If I (λ)= {j} then define

M2 =
⋃

Ni→Nj

Ni, M1 =N −M2.

Hence

V (A,λ)= {x;x[M1] = ε, x[M2] ∈ V +(A[M2])}.
If the set I (λ) consists of more than one index then the same process has to be
repeated for each nonempty subset of I (λ), that is, for each J ⊆ I (λ), J �= ∅, we
set S =⋃j∈J Nj and

M2 =
⋃

Ni→S

Ni, M1 =N −M2.

Obviously, this is not a practical way of finding all eigenvectors as considering
all subsets would be computationally infeasible, but it enables us to conveniently
prove another criterion for the existence of finite eigenvectors:

Theorem 4.6.4 [10] V +(A) �= ∅ if and only if λ(A) is the eigenvalue of all final
classes (in all superblocks).

Proof The set M1 in the above construction must be empty to obtain a finite eigen-
vector, hence a class in S must be reachable from every class of its superblock. This
is only possible if S is the set of all final classes since no class is reachable from
a final class (other than the final class itself). Conversely, if all final classes have
the same eigenvalue λ(A) then for λ= λ(A) the set S contains all the final classes,
they are reachable from all classes of their superblocks, and consequently M1 = ∅,
yielding a finite eigenvector. �

Corollary 4.6.5 V +(A) = ∅ if and only if a final class has eigenvalue less than
λ(A).

Example 4.6.6 For the matrix A of Example 4.5.9 each of the two eigenspaces has
dimension 1. Since

�((A11)λ)=
(

0 1
−1 0

)
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V (A,2) is the set of multiples of (1,0, ε, ε, ε, ε)T , similarly V (A,5) is the set of
multiples of (ε, ε, ε, ε, ε,0)T . There are no finite eigenvectors since for the final
class N2 we have λ(A22) < 5.

Remark 4.6.7 Note that a final class with eigenvalue less than λ(A) may not be
spectral and so �(A)= {λ(A)} is possible even if V +(A) = ∅. For instance in the
case of

A=
⎛

⎝
1 ε ε

ε 0 ε

0 0 1

⎞

⎠

we have λ(A)= 1, but V +(A)= ∅.

Remark 4.6.8 Following the terminology of nonnegative matrices in linear algebra
we say that a class is basic if its eigenvalue is λ(A). It follows from Theorem 4.6.4
that V +(A) �= ∅ if basic classes and final classes coincide. Obviously this require-
ment is not necessary for V +(A) �= ∅, which is in contrast to the spectral theory of
nonnegative matrices where for A to have a positive eigenvector it is necessary and
sufficient that basic classes (that is, those whose eigenvalue is the Perron root) are
exactly the final classes [126].

Remark 4.6.9 The principal eigenspace of any matrix may contain either finite
eigenvectors only (for instance when the matrix is irreducible) or only nonfinite
eigenvectors (see Remark 4.6.7), or both finite and non-finite eigenvectors, for in-
stance when A= I .

4.7 Commuting Matrices Have a Common Eigenvector

The theory of commuting matrices in max-algebra seems to be rather modest at the
time when this book goes to print: however, it is known that any two commuting
matrices have a common eigenvector. This will be useful in the theory of two-sided
max-linear systems (Chap. 7) and for solving some special cases of the generalized
eigenproblem (Chap. 9).

Lemma 4.7.1 [70] Let A,B ∈ R
n×n

and A⊗ B = B ⊗A. If x ∈ V (A,λ), λ ∈ R,
then B ⊗ x ∈ V (A,λ).

Proof We have A⊗ x = λ⊗ x and thus

A⊗ (B ⊗ x)= B ⊗ (A⊗ x)= B ⊗ λ⊗ x = λ⊗ (B ⊗ x) . �

Theorem 4.7.2 (Schneider [107]) If A,B ∈ R
n×n

and A ⊗ B = B ⊗ A then
V (A)∩ V (B) �= {ε}, more precisely, for every λ ∈�(A) there is a μ ∈�(B) such
that

V (A,λ)∩ V (B,μ) �= {ε} .
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Proof Let λ ∈�(A) and rλ be the dimension of V (A,λ). By Corollary 4.6.3 there
is a matrix Gλ ∈R

n×rλ such that

V (A,λ)=
{
Gλ ⊗ z; z ∈R

rλ
}

.

Clearly, A⊗Gλ = λ⊗Gλ. It follows from Lemma 4.7.1 that all columns of B⊗Gλ

are in V (A,λ) and hence

B ⊗Gλ =Gλ ⊗C

for some rλ× rλ matrix C. Let v ∈ V (C), v �= ε, thus v ∈ V (C,μ) for some μ ∈R,
and set u=Gλ ⊗ v. Then u �= ε since Gλ is column R-astic and we have:

A⊗ u=A⊗Gλ ⊗ v = λ⊗Gλ ⊗ v = λ⊗ u

and

B ⊗ u= B ⊗Gλ ⊗ v =Gλ ⊗C ⊗ v = μ⊗Gλ ⊗ v = μ⊗ u.

Hence u ∈ V (A,λ)∩ V (B,μ) and u �= ε. �

The proof of Theorem 4.7.2 is constructive and enables us to find a common
eigenvector of commuting matrices: The system B ⊗Gλ =Gλ ⊗ C is a one-sided
system for C and since a solution exists, the principal solution C =G∗λ⊗′ (B⊗Gλ)

is a solution (Corollary 3.2.4).
Note that [107] contains more information on commuting matrices in max-

algebra.

4.8 Exercises

Exercise 4.8.1 Find the eigenvalue, �(Aλ) and the scaled basis of the unique
eigenspace for each of the matrices below:

(a) A=
(

3 6
2 1

)

. [λ (A)= 4;

� (Aλ)=
(

0 2
−2 0

)

,

the scaled basis is {(0,−2)T }.]
(b) A=

(
0 0

−1 0

)

. [λ(A)= 0; �(Aλ)=A, the scaled basis is {(0,−1)T , (0,0)T }.]
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(c) A=

⎛

⎜
⎜
⎝

1 0 4 3
0 1 −3 3
0 1 0 2

−3 −1 0 1

⎞

⎟
⎟
⎠. [λ(A)= 2;

� (Aλ)=

⎛

⎜
⎜
⎝

0 1 2 2
−2 −1 0 1
−2 −1 0 0
−4 −3 −2 −1

⎞

⎟
⎟
⎠ ,

the scaled basis is {(0,−2,−2,−4)T }.]
(d) Find the eigenvalue, �(Aλ) and the scaled basis of the unique eigenspace of the

matrix

A=

⎛

⎜
⎜
⎜
⎜
⎝

4 4 3 8 1
3 3 4 5 4
5 3 4 7 3
2 1 2 3 0
6 6 4 8 1

⎞

⎟
⎟
⎟
⎟
⎠

.

[λ(A)= 5;

� (Aλ)=

⎛

⎜
⎜
⎜
⎜
⎝

0 −1 0 3 −2
0 0 0 3 −1
0 −1 0 3 −2

−3 −4 −3 0 −5
1 1 1 4 0

⎞

⎟
⎟
⎟
⎟
⎠

,

the scaled basis is {(−1,−1,−1,−4,0)T , (−2,−1,−2,−5,0)T }.]

Exercise 4.8.2 Find all eigenvalues and the scaled bases of all eigenspaces of the
matrix

A=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

3 2
2 3

4
3 4
6 1
4 1 7 2

3 0
1 4

0 0 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where the missing entries are ε. [�(A)= {3,4,7,2}, the scaled basis of V (A,3) is

{
(0,−1, ε, ε, ε, ε, ε,−2,−3)T , (−1,0, ε, ε, ε, ε, ε,−3,−4)T

}
,
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the scaled basis of V (A,4) is
{
(ε, ε,0, ε, ε, ε, ε, ε, ε)T

}
,

the scaled basis of V (A,7) is
{
(ε, ε, ε, ε, ε,0,−4, ε, ε)T

}
,

the scaled basis of V (A,2) is
{
(ε, ε, ε, ε, ε, ε, ε,0,−2)T

}
.
]

Exercise 4.8.3 In the matrix A below the sign × indicates a finite entry, all other
off-diagonal entries are ε. Find all spectral indices and all eigenvalues of A, and
decide whether this matrix has finite eigenvectors.

A=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

4
× 3

× 5
7
× 8

× × 2
× × 4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

[Spectral indices: 3,5,6,7, �(A)= {5,8,2,4}, no finite eigenvectors.]

Exercise 4.8.4 Prove that λ(A)= λ(AT ), �(AT )= (�(A))T and Nc(A)=Nc(A
T )

for every square matrix A. Then prove or disprove that �(A)=�(AT ). [false]

Exercise 4.8.5 Prove or disprove each of the following statements:

(a) If A ∈ Z
n×n then A has an integer eigenvector if and only if λ(A) ∈ Z. [true]

(b) If A ∈R
n×n then A has an integer eigenvector if and only if λ(A) ∈ Z. [false]

(c) If A ∈R
n×n then A has an integer eigenvalue and an integer eigenvector if and

only if A ∈ Z
n×n. [false]

Exercise 4.8.6 We say that T = (tij ) ∈R
n×n is triangular if it satisfies the condition

tij < λ(T ) for all i, j ∈ N , i ≤ j . Prove the statement: If A ∈ R
n×n then λ(A) =

λ(B) for every B equivalent to A if and only if A is not equivalent to a triangular
matrix. [See [39]]

Exercise 4.8.7 Show that the maximum cycle mean and an eigenvector for 0− 1
matrices can be found using O(n2) operations. [See [33, 66]]

Exercise 4.8.8 Prove that the following problem is NP-complete: Given A ∈R
n×n

and x ∈ R
n
, decide whether it is possible to permute the components of x so that

the obtained vector is an eigenvector of A. [See [31]]
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Exercise 4.8.9 Let A and B be square matrices of the same order. Prove then that
the set of finite eigenvalues of A⊗ B is the same as the set of finite eigenvalues of
B ⊗A.



Chapter 5
Maxpolynomials. The Characteristic
Maxpolynomial

The aim of this chapter is to study max-algebraic polynomials, that is, expressions
of the form

p(z)=
∑⊕

r=0,...,p

cr ⊗ zjr , (5.1)

where cr , jr ∈R. The number jp is called the degree of p(z) and p+ 1 is called its
length.

We will consider (5.1) both as formal algebraic expressions with z as an inde-
terminate and as max-algebraic functions of z. We will abbreviate “max-algebraic
polynomial” to “maxpolynomial”. Note that jr are not restricted to integers and so
(5.1) covers expressions such as

8.3⊗ z−7.2 ⊕ (−2.6)⊗ z3.7 ⊕ 6.5⊗ z12.3. (5.2)

In conventional notation p(z) has the form

max
r=0,...,p

(cr + jrz)

and if considered as a function, it is piecewise linear and convex.
Each expression cr ⊗ zjr will be called a term of the maxpolynomial p(z). For a

maxpolynomial of the form (5.1) we will always assume

j0 < j1 < · · ·< jp,

where p is a nonnegative integer. If cp = 0 = j0 then p(z) is called standard.
Clearly, every maxpolynomial p(z) can be written as

c⊗ zj ⊗ q(z), (5.3)

where q(z) is a standard maxpolynomial. For instance (5.2) is of degree 12.3 and
length 3. It can be written as

6.5⊗ z−7.2 ⊗ q(z),
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where q(z) is the standard maxpolynomial

1.8⊕ (−9.1)⊗ z10.9 ⊕ z19.5.

There are many similarities with conventional polynomial algebra, in particular
(see Sect. 5.1) there is an analogue of the fundamental theorem of algebra, that
is, every maxpolynomial factorizes to linear terms (although these terms do not
correspond to “roots” in the conventional terminology). However, there are aspects
that make this theory different. This is caused, similarly as in other parts of max-
algebra, by idempotency of addition, which for instance yields the formula

(a⊕ b)k = ak ⊕ bk (5.4)

for all a, b, k ∈ R. This property has a significant impact on many results. Perhaps
the most important feature that makes max-algebraic polynomial theory different is
the fact that the functional equality p(z)= q(z) does not imply equality between p

and q as formal expressions. For instance (1⊕ z)2 is equal by (5.4) to 2⊕ z2 but
at the same time expands to 2⊕ 1⊗ z⊕ z2 by basic arithmetic laws. Hence the ex-
pressions 2⊕1⊗ z⊕ z2 and 2⊕ z2 are identical as functions. This demonstrates the
fact that some terms of maxpolynomials, do not actually contribute to the function
value. In our example 1⊗ z≤ 2⊕ z2 for all z ∈R. This motivates the following def-
initions: A term cs ⊗ zjs of a maxpolynomial

∑⊕
r=0,...,pcr ⊗ zjr is called inessential

if

cs ⊗ zjs ≤
∑⊕

r �=s

cr ⊗ zjr

holds for every z ∈ R and essential otherwise. Clearly, an inessential term can be
removed from [reinstated in] a maxpolynomial ad lib when this maxpolynomial is
considered as a function. Note that the terms c0 ⊗ zj0 and cp ⊗ zjp are essential in
any maxpolynomial

∑⊕
r=0,...,pcr ⊗ zjr .

Lemma 5.0.1 If the term cs ⊗ zjs , 0 < s < p, is essential in the maxpolynomial∑⊕
r=0,...,pcr ⊗ zjr then

cs − cs+1

js+1 − js

>
cs−1 − cs

js − js−1
.

Proof Since the term cs ⊗ zjs is essential and the sequence {jr}pr=0 is increasing
there is an α ∈R such that

cs + jsα > cs−1 + js−1α

and

cs + jsα > cs+1 + js+1α.

Hence
cs − cs+1

js+1 − js

> α >
cs−1 − cs

js − js−1
. �
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We will first analyze general properties of maxpolynomials yielding an analogue
of the fundamental theorem of algebra and we will also briefly study maxpolyno-
mial equations. Then we discuss characteristic maxpolynomials of square matrices.
Maxpolynomials, including characteristic maxpolynomials, were studied in [8, 20,
62, 65, 71]. The material presented in Sect. 5.1 follows the lines of [65] with kind
permission of Academic Press.

5.1 Maxpolynomials and Their Factorization

One of the aims in this section is to seek factorization of maxpolynomials. We will
see that unlike in conventional algebra it is always possible to factorize a maxpoly-
nomial as a function (although not necessarily as a formal expression) into linear
factors over R with a relatively small computational effort. We will therefore first
study expressions of the form

∏⊗

r=1,...,p

(βr ⊕ z)er (5.5)

where βr ∈ R and er ∈ R (r = 1, . . . , p) and show how they can be multiplied out;
this operation will be called evolution. We call expressions (5.5) a product form and
will assume

β1 < · · ·< βp. (5.6)

The constants βr will be called corners of the product form (5.5). Note that (5.5) in
conventional notation reads

∑

r=1,...,p

er max (βr , z) .

Hence, a factor (ε ⊕ z)e is the same as the linear function ez of slope e. A factor
(β⊕z)e , β ∈R, is constant eβ while z≤ β and linear function ez if z≥ β . Therefore
(5.5) is the function b(z)+ f (z)z, where

b(z)=
∑

z≤βs

esβs, f (z)=
∑

z>βs

es .

Every product form is a piecewise linear function with constant slope between
any two corners, and for z < β1 and z > βp . It follows that a product form is con-
vex when all exponents er are positive. However, this function may, in general, be
nonconvex and therefore we cannot expect each product form to correspond to a
maxpolynomial as a function.

Let us first consider product forms

(z⊕ β1)⊗ (z⊕ β2)⊗ · · · ⊗ (z⊕ βp), (5.7)
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that is, product forms where all exponents are 1 and all βr ∈ R (and still
β1 < · · ·< βp). Such product forms will be called simple.

We can multiply out any simple product form using basic arithmetic laws as in
conventional algebra. This implies that the coefficient at zk (k = 0, . . . , p) of the
obtained maxpolynomial is

∑⊕

1≤i1<···<ir≤p

βi1 ⊗ βi2 ⊗ · · · ⊗ βir , (5.8)

where r = p− k. Note that (5.8) is 0 if r = 0. However, due to (5.6) this coefficient
significantly simplifies, namely (5.8) is actually the same as

βk+1 ⊗ · · · ⊗ βp

when k < p and 0 when k = p. Hence the maxpolynomial obtained by multiplying
out a simple product form (5.7) is of length p+ 1 and can be found as follows.

The constant term is β1 ⊗ · · · ⊗ βp; the term involving zk (k ≥ 1) is obtained by
replacing βk in the term involving zk−1 by z.

We now generalize this procedure to an algorithm for any product form with
positive exponents and finite corners. Product forms with these two properties are
called standard.

Algorithm 5.1.1 EVOLUTION
Input: β1, . . . , βp , e1, . . . , ep ∈R (parameters of a product form).
Output: Terms of the maxpolynomial obtained by multiplying out (5.5).
t0 := β

e1
1 ⊗ · · · ⊗ β

ep
p

for r = 1, . . . , p do
tr := tr−1 after replacing β

er
r by zer

The general step of this algorithm can also be interpreted as follows:
cr := cr−1⊗ (β

er
r )−1 and jr := jr−1+ er with c0 := β

e1
1 ⊗ · · · ⊗ β

ep
p and j0 = 0.

Alternatively, the sequence of pairs {(er , βr)}pr=1 is transformed into the se-
quence

{(cr , jr )}pr=0 =
{(
∑

s≥r

esβs,
∑

s<r

es

)}p+1

r=1

,

where the sum of an empty set is 0 by definition. Note that the algorithm EVOLU-
TION is formulated for general product forms but its correctness is guaranteed for
standard product forms:

Theorem 5.1.2 If the algorithm EVOLUTION is applied to standard product form
(5.5) then the maxpolynomial f (z) =∑⊕

r=0,...,p tr is standard, has no inessential
terms and is the same function as the product form.
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Proof Let f (z) =∑⊕
r=0,...,ptr . Then f (z) is standard since all terms involving z

have positive exponents and one of the terms (t0) is constant. The highest order
term (tp) has coefficient zero.

Let r ∈ {0,1, . . . , p} and let z be any value satisfying βr < z < βr+1. Then

tr = cr ⊗ zjr = ze1 ⊗ · · · ⊗ zer ⊗ β
er+1
r+1 ⊗ · · · ⊗ β

ep
p

and f (z)= cr⊗zjr because any other term has either some z’s replaced by some β’s
(≤ βr < z) or some β’s (≥ βr+1 > z) replaced by z’s and will therefore be strictly
less than tr . At the same time, if βr < z < βr+1, then the value of (5.5) is cr ⊗ zjr

for r = 0,1, . . . , p. We deduce that f (z) and (5.5) are equal for all z ∈R and hence
f (z) has no inessential terms. �

Example 5.1.3 Let us apply EVOLUTION to the product form (1⊕ z)⊗ (3⊕ z)2.
Here

{(er , βr)}pr=1 = {(1,1) , (2,3)} .
We find

t0 = 11 ⊗ 32 = 7,

t1 = z1 ⊗ 32 = 6⊗ z,

t2 = z1 ⊗ z2 = z3..

For the inverse operation (that will be called resolution) we first notice that if a
standard maxpolynomial p(z) was obtained by EVOLUTION then two consecutive
terms of p(z) are of the form

· · · ⊕ βer
r ⊗ · · · ⊗ β

ep
p ⊗ ze1+···+er−1 ⊕ β

er+1
r+1 ⊗ · · · ⊗ β

ep
p ⊗ ze1+···+er ⊕ · · · .

By cancelling the common factors we get β
er
r ⊕ zer or, alternatively (βr ⊕ z)er .

Example 5.1.4 Consider the maxpolynomial 7⊕6⊗ z⊕ z3. By cancelling the com-
mon factor for the first two terms we find 1 ⊕ z, for the next two terms we get
6⊕ z2 = (3⊕ z)2. Hence the product form is (1⊕ z)⊗ (3⊕ z)2.

This idea generalizes to nonstandard maxpolynomials as they can always be writ-
ten in the form (5.3).

Example 5.1.5

10⊗ z−1 ⊕ 9⊕ 3⊗ z2 = 3⊗ z−1 ⊗
(

7⊕ 6⊗ z⊕ z3
)

= 3⊗ z−1 ⊗ (1⊕ z)⊗ (3⊕ z)2 .
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In fact there is no need to transform a maxpolynomial to a standard one before
we apply the idea of cancellation of common factors and we can straightforwardly
formulate the algorithm:

Algorithm 5.1.6 RESOLUTION
Input: Maxpolynomial

∑⊕
r=0,...,pcr ⊗ zjr .

Output: Product form
∏⊗

r=1,...,p(βr ⊕ z)er .

For each r = 0,1, . . . , p− 1 cancel a common factor cr+1⊗ zjr of two consecutive
terms cr ⊗ zjr and cr+1 ⊗ zjr+1 to obtain cr ⊗ c−1

r+1 ⊕ zjr+1−jr = (βr+1 ⊕ z)er+1 .

Observe that er+1 = jr+1−jr and βr+1 = cr−cr+1
jr+1−jr

for r = 0,1, . . . , p−1. Again,
this algorithm is formulated without specific requirements on the input and we need
to identify the conditions under which it will work correctly.

It will be shown that the algorithm RESOLUTION works correctly if the se-
quence

{
cr − cr+1

jr+1 − jr

}p−1

r=0

is increasing (in which case the sequence {βr} is increasing). A maxpolynomial
satisfying this requirement is said to satisfy the concavity condition. Before we an-
swer the question of the correctness of the algorithm RESOLUTION, we present an
observation that will be useful:

Theorem 5.1.7 The algorithms EVOLUTION and RESOLUTION are mutually in-
verse.

Proof EVOLUTION maps

(er , βr)−→
(
∑

s≥r

esβs,
∑

s<r

es

)

,

while RESOLUTION maps

(cr , jr )−→
(

jr+1 − jr ,
cr − cr+1

jr+1 − jr

)

.

Hence EVOLUTION applied to the result of RESOLUTION produces
(
∑

s≥r

(js+1 − js)
cs − cs+1

js+1 − js

,
∑

s<r

(js+1 − js)

)

= (cr − cp, jr − j0)= (cr , jr ).

One can similarly deduce that RESOLUTION applied to the result of EVOLUTION
produces (er , βr). �
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This theorem finds an immediate use in the following key statement.

Theorem 5.1.8 For a standard maxpolynomial p(z) satisfying the concavity con-
dition the algorithm RESOLUTION finds a standard product form q(z) such that
p(z)= q(z) for all z ∈R.

Proof Suppose that the maxpolynomial p(z) satisfies the concavity condition. Then
the sequence

{βr}pr=1 =
{

cr − cr+1

jr+1 − jr

}p−1

r=0

is increasing and finite and er > 0, since jr are increasing. Hence the product form
q(z) produced by RESOLUTION is standard.

By an application of EVOLUTION to q(z) we get a maxpolynomial t (z) and
t (z) = q(z) for all z ∈ R by Theorem 5.1.2. At the same time t (z) = p(z) for all
z ∈R by Theorem 5.1.7. Hence the statement. �

Note that the computational complexity of RESOLUTION is O(p).

Lemma 5.1.9 Let p(z) and p′(z) be two maxpolynomials such that
p′(z) = c ⊗ zj ⊗ p(z). Then the concavity condition holds for p(z) if and only
if it holds for p′(z).

Proof Let p(z) and p′(z) be two maxpolynomials such that

p′(z)= c⊗ p(z)

for some c ∈R. Then

c′s − c′s+1 = cs + c− cs+1 − c= cs − cs+1.

If p′(z)= zj ⊗ p(z) for some j ∈R then

j ′s+1 − j ′s = js+1 + j − js − j = js+1 − js

and the statement follows. �

Theorem 5.1.10 A maxpolynomial has no inessential terms if and only if it satisfies
the concavity condition.

Proof Due to Lemma 5.0.1 we only need to prove the “if” part.
By Lemma 5.1.9 we may assume without loss of generality that p(z) is stan-

dard. By applying RESOLUTION and then EVOLUTION the result now follows
by Theorems 5.1.8, 5.1.2 and 5.1.7. �
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It follows from Theorem 5.1.8 that if a standard maxpolynomial p(z) satisfies
the concavity condition then the algorithm RESOLUTION applied to p(z) will pro-
duce a standard product form equal to p(z) as a function. If p(z) does not satisfy
the concavity condition then it contains an inessential term (Theorem 5.1.10). By
removing an inessential term, p(z) as a function does not change. Hence by a re-
peated removal of inessential terms we can find a standard maxpolynomial p′(z)
from p(z) such that p′(z) satisfies the concavity condition and p(z)= p′(z) for all
z ∈R. Formally, this process can be described by the following algorithm:

Algorithm 5.1.11 RECTIFICATION
Input: Standard maxpolynomial p(z)=∑⊕

r=0,...,pcr ⊗ zjr .
Output: Standard maxpolynomial p′(z) with no inessential terms and p′(z)= p(z)

for all z ∈R.
p′(z) := cp−1 ⊗ zjp−1 ⊕ cp ⊗ zjp

s := p− 1, t := p

For r = p− 2,p− 3, . . . ,0 do
begin

Until cs−ct

jt−js
> cr−cs

js−jr
do

begin
Remove cs ⊗ zjs from p′(z), let cs ⊗ zjs and ct ⊗ zjt be the
lowest and second-lowest order term in p′(z), respectively.

end
p′(z) := cr ⊗ zjr ⊕ p′(z), t := s, s := r

end

Clearly, RECTIFICATION runs in O(p) time since every term enters and leaves
p(z) at most once.

We summarize the results of this section:

Theorem 5.1.12 [71] (Max-algebraic Fundamental Theorem of Algebra) For every
maxpolynomial p(z) of length p it is possible to find using O(p) operations a prod-
uct form q(z) such that p(z)= q(z) for all z ∈R. This product form is unique up to
the order of its factors.

Proof Let p(z) be the maxpolynomial
∑⊕

r=0,...,pcr ⊗ zjr . By taking out cp ⊗ zj0

it is transformed to a standard maxpolynomial, say p′(z), which in turn is trans-
formed using RECTIFICATION into a standard maxpolynomial p′′(z) with no
inessential terms. The algorithm RESOLUTION then finds a standard product form
q(z) such that q(z) = p′′(z) for all z ∈ R. By Theorems 5.1.8 and 5.1.10 we have
p′′(z)= p′(z)= p(z) for all z ∈R and the statement follows. �

We may now extend the term “corner” to any maxpolynomial: Corners of a max-
polynomial p(z) are corners of the product form that is equal to p(z) as a function.

It will be important in the next section that it is possible to explicitly describe the
greatest corner of a maxpolynomial:
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Theorem 5.1.13 The greatest corner of p(z)=∑⊕
r=0,...,p cr ⊗ zjr , p > 0, is

max
r=0,...,p−1

cr − cp

jp − jr

.

Proof A corner exists since p > 0. Let γ be the greatest corner of p(z). Then

cp ⊗ zjp ≥ cr ⊗ zjr

for all z≥ γ and for all r = 0,1, . . . , p. At the same time there is an r < p such that

cp ⊗ zjp < cr ⊗ zjr

for all z < γ . Hence γ = maxr=0,1,...,p−1 γr where γr is the intersection point of
cp ⊗ zjp and cr ⊗ zjr , that is

γr = cr − cp

jp − jr

and the statement follows. �

Note that an alternative treatment of maxpolynomials can be found in [8] and in
[2] in terms of convex analysis and (in particular) Legendre–Fenchel transform.

5.2 Maxpolynomial Equations

Maxpolynomial equations are of the form

p(z)= q(z), (5.9)

where p(z) and q(z) are maxpolynomials. Since both p(z) and q(z) are piecewise
linear convex functions, it is clear geometrically that the solution S set to (5.9) is the
union of a finite number of closed intervals in R, including possibly one-element
sets, and unbounded intervals (see Fig. 5.1, where S consists of one closed interval
and two isolated points). Let us denote the set of boundary points of S (that is, the
set of extreme points of the intervals) by S∗. The set S∗ can easily be characterized:

Theorem 5.2.1 [64] Every boundary point of S is a corner of p(z)⊕ q(z).

Proof Let z ∈ S∗. If z is not a corner of p(z) ⊕ q(z) then p(z) ⊕ q(z) does not
change the slope in a neighborhood of z. By the convexity of p(z) and q(z) then
neither p(z) nor q(z) can change slope in a neighborhood of z. But then z is an
interior point to S, a contradiction. �

Theorem 5.2.1 provides a simple solution method for maxpolynomial equations
(5.9). After finding all corners of p(z)⊕ q(z), say β1 < · · ·< βr , it remains
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Fig. 5.1 Solving
maxpolynomial equations

(1) to check which of them are in S, and
(2) if γ1 < · · · < γt are the corners in S then by selecting arbitrary interleaving

points α0, . . . , αt so that

α0 < γ1 < α1 < · · ·< γt < αt

and checking whether αj ∈ S for j = 0, . . . , t , it is decided about each of the
intervals [γj−1, γj ] (j = 1, . . . , t+1) whether it is a subset of S. Here γ0 =−∞
and γt+1 =+∞.

Example 5.2.2 [64] Find all solutions to the equation

9⊕ 8⊗ z⊕ 4⊗ z2 ⊕ z3 = 10⊕ 8⊗ z⊕ 5⊗ z2.

If p(z)= 9⊕ 8⊗ z⊕ 4⊗ z2 ⊕ z3 and q(z)= 10⊕ 8⊗ z⊕ 5⊗ z2 then

p(z)⊕ q(z)= 10⊕ 8⊗ z⊕ 5⊗ z2 ⊕ z3

= (z⊕ 2)⊗ (z⊕ 3)⊗ (z⊕ 5) .

All corners are solutions and by checking the interleaving points (say) 1,2.5,4,6
one can find S = [2,3] ∪ {5}.

5.3 Characteristic Maxpolynomial

5.3.1 Definition and Basic Properties

There are various ways of defining a characteristic polynomial in max-algebra,
briefly characteristic maxpolynomial [62, 99]. We will study the concept defined
in [62].
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Let A= (aij ) ∈R
n×n

. Then the characteristic maxpolynomial of A is

χA(x)=maper(A⊕ x ⊗ I )=maper

⎛

⎜
⎜
⎜
⎝

a11 ⊕ x a12 · · · a1n

a21 a22 ⊕ x · · · a2n

...
...

...

an1 an2 · · · ann ⊕ x

⎞

⎟
⎟
⎟
⎠

.

It immediately follows from this definition that χA(x) is of the form

xn ⊕ δ1 ⊗ xn−1 ⊕ · · · ⊕ δn−1 ⊗ x ⊕ δn,

or briefly,
∑⊕

k=0,...,nδn−k ⊗ xk , where δ0 = 0. Hence the characteristic maxpolyno-
mial of an n × n matrix is a standard maxpolynomial with exponents 0,1, . . . , n,
degree n and length n+ 1 or less.

Example 5.3.1 If

A=
⎛

⎝
1 3 2
0 4 1
2 5 0

⎞

⎠

then

χA(x)=maper

⎛

⎝
1⊕ x 3 2

0 4⊕ x 1
2 5 0⊕ x

⎞

⎠

= (1⊕ x)⊗ (4⊕ x)⊗ (0⊕ x)⊕ 3⊗ 1⊗ 2

⊕ 2⊗ 0⊗ 5⊕ 2⊗ (4⊕ x)⊗ 2⊕ (1⊕ x)⊗ 1⊗ 5⊕ 3⊗ 0⊗ (0⊕ x)

=x3 ⊕ 4⊗ x2 ⊕ 6⊗ x ⊕ 8.

Theorem 5.3.2 [62] If A= (aij ) ∈R
n×n

then

δk =
∑⊕

B∈Pk(A)

maper(B), (5.10)

for k = 1, . . . , n, where Pk(A) is the set of all principal submatrices of A of order k.

Proof The coefficient δk is associated with xn−k in χA(x) and therefore is the max-
imum of the weights of all permutations that select n− k symbols of x and k con-
stants from different rows and columns of a submatrix of A obtained by removing
the rows and columns of selected x. Since x only appear on the diagonal the corre-
sponding submatrices are principal. �

Hence we can readily find δn =maper(A) and δ1 =max(a11, a22, . . . , ann), but
other coefficients cannot be found easily from (5.10) as the number of matrices in
Pk(A) is

(
n
k

)
.
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If considered as a function, the characteristic maxpolynomial is a piecewise linear
convex function in which the slopes of the linear pieces are n and some (possibly
none) of the numbers 0,1, . . . , n − 1. Note that it may happen that δk = ε for all
k = 1, . . . , n and then χA(x) is just xn. We can easily characterize such cases:

Proposition 5.3.3 If A= (aij ) ∈R
n×n

then χA(x)= xn if and only if DA is acyclic.

Proof If DA is acyclic then the weights of all permutations with respect to any
principal submatrix of A are ε and thus all δk = ε. If DA contains a cycle, say
(i1, . . . , ik, i1) for some k ∈N then

maper (A (i1, . . . , ik)) > ε,

thus δk > ε by Theorem 5.3.2. �

Note that the coefficients δk are closely related to the best submatrix problem and
to the job rotation problem, see Sect. 2.2.3.

5.3.2 The Greatest Corner Is the Principal Eigenvalue

By Theorem 5.1.13 we know that the greatest corner of a maxpolynomial
p(z)=∑⊕

r=0,...,pcr ⊗ zjr , p > 0, is

max
r=0,...,p−1

cr − cp

jp − jr

.

If p(x) = χA(x) where A = (aij ) ∈ R
n×n

then p = n, jr = r and cr = δn−r for
r = 0,1, . . . , n with cn = δ0 = 0. Hence the greatest corner of χA(x) is

max
r=0,...,n−1

δn−r

n− r

or, equivalently

max
k=1,...,n

δk

k
. (5.11)

We are ready to prove a remarkable property of characteristic maxpolynomials
resembling the one in conventional linear algebra. As a convention, the greatest
corner of a maxpolynomial with no corners (that is, λ(A)= ε, see Proposition 5.3.3)
is by definition ε.

Theorem 5.3.4 [62] If A= (aij ) ∈R
n×n

then the greatest corner of χA(x) is λ(A).
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Proof The statement is evidently true if λ(A) = ε. Thus assume now that λ(A) >

ε, hence at least one corner exists. Let β be the greatest corner of χA(x) and
k ∈ {1, . . . , n}, then δk =maper(B), where B ∈ Pk(A). We have

maper(B)=w(π,B)=w(π1,B)⊗ · · · ⊗w(πs,B)

for some π ∈ ap(B) and its constituent cycles π1, . . . , πs . We also have

w(πj ,B)≤ (λ(A))l(πj )

for all j = 1, . . . , s. Hence

δk =maper(B)≤ (λ(A))l(π1)+···+l(πs) = (λ(A))k

and so

δk

k
≤ λ(A),

yielding using (5.11):

β ≤ λ(A).

Suppose now λ(A) = w(σ,A)
l(σ )

, σ = (i1, . . . , ir ), r ∈ {1, . . . , n}. Let

B =A(i1, . . . , ir ). Then

δr ≥maper(B)≥w(σ,A)= (λ(A))l(σ ) = (λ(A))r .

Therefore

δr

r
≥ λ(A),

yielding by (5.11):

β ≥ λ(A),

which completes the proof. �

Example 5.3.5 The principal eigenvalue of

A=
⎛

⎝
2 1 4
1 0 1
2 2 1

⎞

⎠

is λ(A)= 3. The characteristic maxpolynomial is

χA(x)= x3 ⊕ 2⊗ x2 ⊕ 6⊗ x ⊕ 7= (x ⊕ 1)⊗ (x ⊕ 3)2

and the greatest corner is 3.
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5.3.3 Finding All Essential Terms of a Characteristic
Maxpolynomial

As already mentioned in Sect. 2.2.3, no polynomial method is known for finding
all coefficients of a characteristic maxpolynomial or, equivalently, to solve the job
rotation problem. Recall (see Sect. 2.2.3) that this question is equivalent to the best
principal submatrix problem (BPSM), which is the task to find the greatest opti-
mal values δk for the assignment problem of all k × k principal submatrices of A,
k = 1, . . . , n. It will be convenient now to denote by BPSM(k) the task of finding
this value for a particular integer k.

We will use the functional interpretation of a characteristic maxpolynomial to
derive a method for finding coefficients of this maxpolynomial corresponding to all
essential terms. Recall that as every maxpolynomial, the characteristic maxpolyno-
mial is a piecewise linear and convex function which can be written using conven-
tional notation as

χA(x)=max(δn, δn−1 + x, δn−2 + 2x, . . . , δ1 + (n− 1)x,nx).

If for some k ∈ {0, . . . , n} the term δn−k ⊗ xk is inessential, then

χA(x)=
∑⊕

i �=k

δn−i ⊗ xi

holds for all x ∈ R, and therefore all inessential terms may be ignored if χA(x) is
considered as a function. We now present an O(n2(m+n logn)) method for finding
all essential terms of a characteristic maxpolynomial for a matrix with m finite en-
tries. It then follows that this method solves BPSM(k) for those k ∈ {1, . . . , n}, for
which δn−k ⊗ xk is essential and, in particular, when all terms are essential then this
method solves BPSM(k) for all k = 1, . . . , n.

We will first discuss the case of finite matrices. Let A= (aij ) ∈ R
n×n be given.

For convenience we will denote χA(x) by z(x) and A⊕ x ⊗ I by A(x)= (a(x)ij ).
Hence

z(x) :=max
π

n∑

i=1

a(x)i,π(i)

and

a(x)ij :=
{

max(x, aii), for i = j,

aij , for i �= j.

Since z(x) is piecewise linear and convex and all its linear pieces are of the form
zk(x) := kx+ δn−k for k = 0,1, . . . , n and constants δn−k , the maxpolynomial z(x)

has at most n corners. Recall that zn(x) := nx, that is, δ0 = 0. The main idea of
the method for finding all linear pieces of z(x) is based on the fact that it is easy to
evaluate z(x) for any real value of x as this is simply maper(A⊕ x⊗ I ), that is, the
optimal value for the assignment problem for A⊕ x ⊗ I . By a suitable choice of
O(n) values of x we will be able to identify all linear pieces of z(x).
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Let x be fixed and π ∈ ap(A(x)) = ap(a(x)ij ) (recall that ap(A) denotes the
set of optimal permutations to the assignment problem for a square matrix A, see
Sect. 1.6.4). We call a diagonal entry a(x)ii of the matrix A(x) active, if x ≥ aii and
if this diagonal position is selected by π , that is, π(i)= i. All other entries will be
called inactive. If there are exactly k active values for a certain x and permutation
π then this means that z(x) = kx + δn−k = xk ⊗ δn−k , that is, the value of z(x) is
determined by the linear piece with the slope k. Here δn−k is the sum of n− k inac-
tive entries of A(x) selected by π . No two of these inactive entries can be from the
same row or column and they are all in the submatrix, say B , obtained by removing
the rows and columns of all active elements. Since all active elements are on the
diagonal, B is principal and the n− k inactive elements form a feasible solution to
the assignment problem for B . This solution is also optimal by optimality of π . This
yields the following:

Proposition 5.3.6 [20] Let x ∈ R and π ∈ Pn. If z(x) = maper(A(x)) =∑n
i=1 a(x)i,π(i), i1, . . . , ik are indices of all active entries and {j1, . . . , jn−k} =

N − {i1, . . . , ik} then A(j1, . . . , jn−k) is a solution to BPSM(n − k) for A and
δn−k =maper(A(j1, . . . , jn−k)).

There may, of course, be several optimal permutations for the same value of x

selecting different numbers of active elements which means that the value of z(x)

may be equal to the function value of several linear pieces with different slopes at x.
We will pay special attention to this question in Proposition 5.3.14 below.

Proposition 5.3.7 [20] If z(x)= zr (x)= zs(x) for some x ∈ R and integers r < s,
then there are no essential terms with the slope k ∈ (r, s) and x is a corner of z(x).

Proof Since zr(x) = δn−r + rx̄ = z(x) ≥ δn−k + kx̄ for every k, we have zr(x) =
δn−r+rx ≥ δn−k+kx = zk(x) for every x < x and k > r , thus z(x)≥ zr(x)≥ zk(x)

for every x < x and for every k > r .
Similarly, z(x) ≥ zs(x) ≥ zk(x) for every x > x and for every k < s. Hence,

z(x)≥ zk(x) for every x and for every integer slope k with r + 1≤ k ≤ s − 1. �

For x ≤ ã = min(a11, a22, . . . , ann), z(x) is given by maxπ

∑n
i=1 ai,π(i) =

maper(A)= δn. Then obviously, z(x)= z0(x)= δn for x ≤ ã.
Now, let α∗ :=maxij aij and let E be the matrix whose entries are all equal to 1.

For x ≥ α∗ the matrix A(x)−α∗ ·E (in conventional notation) has only nonnegative
elements on its main diagonal. All off-diagonal elements are negative. Therefore we
get z(x) = nx = zn(x) for x ≥ α∗. Note that for finding z(x) there is no need to
compute α∗.

The intersection point of z0(x) with zn(x) is x1 = δn

n
. We find z(x1) by solving

the assignment problem maxπ

∑n
i=1 a(x1)i,π(i).

Corollary 5.3.8 If z(x1)= z0(x1) then z(x)=max(z0(x), zn(x)).
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Thus, if z(x1)= z0(x1), we are done and the function z(x) has the form

z(x)=
{

z0(x), for x ≤ x1,

zn(x), for x ≥ x1.
(5.12)

Otherwise we have found a new linear piece of z(x). Let us call it zk(x) := kx +
δn−k , where k is the number of active elements in the corresponding optimal solution
and δn−k is given by δn−k := z(x1)− kx1. We remove x1 from the list.

Next we intersect zk(x) with z0(x) and with zn(x). Let x2 and x3, respectively,
be the corresponding intersection points. We generate a list L := (x2, x3). Let us
choose an element from the list, say x2, and determine z(x2). If z(x2)= z0(x2), then
x2 is a corner of z(x). By Proposition 5.3.7 this means that there are no essential
terms of the characteristic maxpolynomial with slopes between 0 and k. We delete
x2 from L and process a next point from L. Otherwise we have found a new linear
piece of z(x) and can proceed as above. Thus, for every point in the list we either
find a new slope which leads to two new points in the list or we detect that the
currently investigated point is a corner of L. In such a case this point will be deleted
and no new points are generated. If the list L is empty, we are done and we have
already found the function z(x). Every point of the list either leads to a new slope
(and therefore to two new points in L) or it is a corner of z(x), in which case this
point is deleted from L. Therefore only O(n) entries will enter and leave the list.
This means the procedure stops after investigating at most O(n) linear assignment
problems. Thus we have shown:

Theorem 5.3.9 [20] All essential terms of the characteristic maxpolynomial of
A ∈R

n×n can be found in O(n4) steps.

The proof of the following statement is straightforward.

Proposition 5.3.10 Let A= (aij ), B = (bij ) ∈R
n×n, r , s ∈N , ars ≤ brs , aij = bij

for all i, j ∈N , i �= r , j �= s. If π ∈ ap(A) satisfies π(r)= s then π ∈ ap(B).

Corollary 5.3.11 If id ∈ ap(A(x)) then id ∈ ap(A(x)) for all x ≥ x.

Remarks

1. A diagonal element of A(y) may not be active for some y with y > x even if it
is active in A(x). For instance, consider the following 4× 4 matrix A:

⎛

⎜
⎜
⎝

0 0 0 29
0 8 20 0
0 0 12 28

29 28 0 16

⎞

⎟
⎟
⎠ .

For x = 4 the unique optimal permutation is π = (1)(2,3,4) of value 80, for
which the first diagonal element is active. For y = 20 the unique optimal permu-
tation is π = (1,4)(2)(3) of value 98, in which the second and third, but not the
first, diagonal elements of the matrix are active.
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2. If an intersection point x is found by intersecting two linear functions with the
slopes k and k + 1 respectively, this point is immediately deleted from the list L

since it cannot lead to a new essential term (as there is no slope strictly between
k and k+ 1).

3. If at an intersection point y the slope of z(x) changes from k to l with l − k ≥ 2,
then an upper bound for δn−r related to an inessential term rx+ δn−r , k < r < l,
can be obtained by z(y)− ry. Due to the convexity of the function z(x) this is
the least upper bound on δn−r which can be obtained by using the values of z(x).

Taking into account our previous discussion, we arrive at the following algorithm.
The values x which have to be investigated are stored as triples (x, k(l), k(r)) in a
list L. The interpretation of such a triple is that x has been found as the intersection
point of two linear functions with the slopes k(l) and k(r), k(l) < k(r).

Algorithm 5.3.12 ESSENTIAL TERMS
Input: A= (aij ) ∈R

n×n.
Output: All essential terms of the characteristic maxpolynomial of A, in the form
kx + δn−k .

1. Solve the assignment problem with the cost matrix A and set δn := maper(A)

and z0(x) := δn.
2. Determine x1 as the intersection point of z0(x) and zn(x) := nx.
3. Let L := {(x1,0, n)}.
4. If L= ∅, stop. The function z(x) has been found. Otherwise choose an arbitrary

element (xi, ki(l), ki(r)) from L and remove it from L.
5. If ki(r) = ki(l) + 1, then (see Remark 2 above) go to step 4. (xi is a corner

of z(x); for x close to xi the function z(x) has slope ki(l) for x < xi , and ki(r)

for x > xi .)
6. Find z(xi)=maper(A(xi)). Take an arbitrary optimal permutation to the assign-

ment problem for the matrix A(xi) and let ki be the number of active elements
in this solution. Set δn−ki

:= z(xi)− kixi .
7. Set zi(x) := kix + δn−ki

.
8. Intersect zi(x) with the lines having slopes ki(l) and ki(r). Let y1 and y2 be the

intersection points, respectively. Add the triples (y1, ki(l), ki) and (y2, ki, ki(r))

to the list L and go to step 4. [See a refinement of this step after Proposi-
tion 5.3.14.]

Example 5.3.13 Let

A :=

⎛

⎜
⎜
⎝

0 4 −2 3
2 1 3 −1

−2 −3 1 0
7 −2 8 4

⎞

⎟
⎟
⎠ .
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We solve the assignment problem for A by the Hungarian method and transform A

to a normal form. The asterisks indicate entries selected by an optimal permutation:

⎛

⎜
⎜
⎝

−4 0 −6 −1
−1 −2 0 −4
−3 −4 0 −1
−1 −10 0 −4

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

−3 0∗ −6 0
0∗ −2 0 −3
−2 −4 0 0∗

0 −10 0∗ −3

⎞

⎟
⎟
⎠ .

Thus z0(x)= 14.
Now we solve 14= 4x and we get x1 = 3.5. By solving the assignment problem

for x1 = 3.5 we get:

⎛

⎜
⎜
⎝

3.5 4 −2 3
2 3.5 3 −1
−2 −3 3.5 0

7 −2 8 4

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

−0.5 0 −6 −1
−1.5 0 −0.5 −4.5
−5.5 −6.5 0 −3.5
−1 −10 0 −4

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0 0 −6 0
−1 0 −0.5 −3.5
−5 −6.5 0 −2.5
−0.5 −10 0 −3

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0 −0.5 −6.5 0∗
−0.5 0∗ −0.5 −3
−4.5 −6.5 0∗ −2

0∗ −10 0 −2.5

⎞

⎟
⎟
⎠ .

Thus z2(3.5) = 17 and we get z2(x) := 2x + 10. Intersecting this function with
z0(x) and z4(x) yields the two new points x2 := 2 (solving 14 = 2x + 10) and
x3 := 5 (solving 2x+ 10= 4x). Investigating x = 2 shows that the slope changes at
this point from 0 to 2. Thus we have here a corner of z(x). Finding the value z(5)

amounts to solving the assignment problem with the cost matrix

⎛

⎜
⎜
⎝

5 4 −2 3
2 5 3 −1
−2 −3 5 0

7 −2 8 5

⎞

⎟
⎟
⎠ .
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This assignment problem yields the solution z(5)= 20= z4(5). Thus no new essen-
tial term has been found and we have z(x) completely determined as

z(x)=
⎧
⎨

⎩

14 for 0≤ x ≤ 2
2x + 10 for 2≤ x ≤ 5
4x for x ≥ 5.

In max-algebraic terms z(x)= 14⊕ 10⊗ x2 ⊕ x4.

The following proposition enables us to make a computational refinement of the
algorithm ESSENTIAL TERMS. We refer to the assignment problem terminology
introduced in Sect. 1.6.4.

Proposition 5.3.14 Let x ∈ R and let B = (bij ) be a normal form of A(x). Let
C = (cij ) be the matrix obtained from B as follows:

cij =
⎧
⎨

⎩

0, if bij = 0 and (i, j) is inactive,
1, if (i, j) is active,
ε, otherwise.

Then every π ∈ ap(C) [π ∈ ap(−C)] is an optimal solution to the assignment prob-
lem for A(x) with maximal [minimal] number of active elements.

Proof The statement immediately follows from the definitions of C and of a normal
form of a matrix. �

If for some value of x there are two or more optimal solutions to the assignment
problem for A(x) with different numbers of active elements then using Proposi-
tion 5.3.14 we can find an optimal solution with the smallest number and another
one with the greatest number of active elements. This enables us to find two new
lines (rather than one) in step 6 of Algorithm 5.3.12:

(a) zk(x) := kx + δn−k , where k is the minimal number of active elements of an
optimal solution to the assignment problem for A(x) and δn−k is given by
δn−k := z(x)− kx;

(b) zk′(x) := k′x + δn−k′ , where k′ is the maximal number of active elements of
an optimal solution to the assignment problem for A(x) and δn−k′ is given by
δn−k′ := z(x)− k′x.

In step 8 of Algorithm 5.3.12 we then intersect zi(x) with the line having the
slope ki(l) and zk′(x) with the line having slope ki(r).

So far we have assumed in this subsection that all entries of the matrix are finite.
If some (but not all) entries of A are ε, the same algorithm as in the finite case can
be used except that the lowest order finite term has to be found since a number of the
coefficients of the characteristic maxpolynomial may be ε. The following theorem
is useful here. In this theorem we denote

δ =min(0, nAmin), δ =max(0, nAmax),
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where Amin [Amax] is the least [greatest] finite entry of A. We will also denote in
this and the next subsection

K = {k; δk finite}
and

k0 =maxK. (5.13)

Clearly, the lowest-order finite term of the characteristic maxpolynomial is
zk0(x)= δk0 ⊗ xn−k0 .

Theorem 5.3.15 [38] If A ∈ R
n×n

then n− k0 is the number of active elements in
A(x), where x is any real number satisfying

x < δ − δ

and δk0 = z(x)− (n− k0)x.

Proof It is sufficient to prove that if x0 is a point of intersection of two different
linear pieces of χA(x) then

x0 ≥ δ − δ.

Suppose that

δr + (n− r)x0 = δs + (n− s)x0

for some r , s ∈ {0,1, . . . , n}, r > s. Then

(r − s)x0 = δr − δs .

If Amin ≤ 0 then δr ≥ sAmin ≥ nAmin = δ. If Amin ≥ 0 then δr ≥ sAmin ≥ 0 = δ.
Hence δr ≥ δ.

If Amax ≤ 0 then δs ≤ rAmax ≤ 0= δ. If Amax ≥ 0 then δs ≤ rAmax ≤ nAmax =
δ. Hence δs ≤ δ.

We deduce that δr − δs ≥ δ − δ and the rest follows from the fact that r − s ≥ 1
and δ − δ ≤ 0. �

It follows from this result that for a general matrix, k0 can be found using
O(n3) operations. Note that for symmetric matrices this problem can be con-
verted to the maximum cardinality bipartite matching problem and thus solved in
O(n2.5/

√
logn) time [37].

Theorem 5.3.15 enables us to modify the beginning of the algorithm ESSEN-
TIAL TERMS for A ∈ R

n×n
by finding the intersection of the lowest order finite

term zk0(x) (rather than z0(x)) with xn. Moreover, instead of considering the classi-
cal assignment problem we rather formulate the problem in step 6 of the algorithm
as the maximum weight perfect matching problem in a bipartite graph (N,N;E).
This graph has an arc (i, j) ∈ E if and only if aij is finite. It is known [1] that the
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maximum weight perfect matching problem in a graph with m arcs can be solved
by a shortest augmenting path method using Fibonacci heaps in O(n(m+ n logn))

time. Since in the worst case O(n) such maximum weight perfect matching prob-
lems must be solved, we get the following result.

Theorem 5.3.16 [20] If A ∈ R
n×n

has m finite entries, then all essential terms of
χA(x) can be found in O(n2(m+ n logn)) time.

5.3.4 Special Matrices

Although no polynomial method seems to exist for finding all coefficients of a char-
acteristic maxpolynomial for general matrices or even for matrices over {0,−∞},
there are a number of special cases for which this problem can be solved efficiently.
These include permutation, pyramidal, Hankel and Monge matrices and special ma-
trices over {0,−∞} [28, 37, 116].

We briefly discuss two special types: diagonally dominant matrices and matrices
over {0,−∞}.

Proposition 5.3.17 If A= (aij ) ∈R
n×n

is diagonally dominant then so are all prin-
cipal submatrices of A and all coefficients of the characteristic maxpolynomial can
be found by the formula

δk = ai1i1 + ai2i2 + · · · + aikik ,

for k = 1, . . . , n, where ai1i1 ≥ ai2i2 ≥ · · · ≥ ainin .

Proof Let A be a diagonally dominant matrix, B = A(i1, i2, . . . , ik) for some in-
dices i1, i2, . . . , ik and suppose that id /∈ ap(B). Take any π ∈ ap(B) and extend π

to a permutation σ of the set N by setting σ(i) = i for every i /∈ {i1, i2, . . . , ik}.
Then obviously σ is a permutation of a weight greater than that of id ∈ Pn, a con-
tradiction. The formula follows. �

Matrices over T = {0,−∞} have implications for problems outside max-algebra
and in particular for the conventional permanent, which for a real matrix A= (aij )

we denote as usual by per(A), that is

per(A)=
∑

π∈Pn

∏

i∈N

ai,π(i).

If A = (aij ) ∈ T n×n then δk = 0 or δk = −∞ for every k = 1, . . . , n. Clearly,
δk = 0 if and only if there is a k × k principal submatrix of A with k independent
zeros, that is, with k zeros selected by a permutation or, equivalently, k zeros no two
of which are either from the same row or from the same column.
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It is easy to see that if A= (aij ) ∈ T n×n then B = 2A = (2aij )= (bij ) is a zero-
one matrix. If π ∈ Pn then

∏

i∈N

bi,π(i) =
∏

i∈N

2ai,π(i) = 2
∑

i∈N ai,π(i) .

Hence per(B) > 0 is equivalent to

(∃π ∈ Pn) (∀i ∈N) bi,π(i) = 1.

But this is equivalent to

(∃π ∈ Pn) (∀i ∈N) ai,π(i) = 0.

Thus, the task of finding the coefficient δk of the characteristic maxpolynomial
of a square matrix over T is equivalent to the following problem expressed in terms
of the classical permanents:

PRINCIPAL SUBMATRIX WITH POSITIVE PERMANENT: Given an n× n

zero-one matrix A and a positive integer k (k ≤ n), is there a k × k principal sub-
matrix B of A with positive (conventional) permanent?

Another equivalent version for matrices over T is graph-theoretical: Since every
permutation is a product of cycles, δk = 0 means that in DA (and FA) there is a set
of pairwise node-disjoint cycles covering exactly k nodes. Hence deciding whether
δk = 0 is equivalent to the following:

EXACT CYCLE COVER: Given a digraph D with n nodes and a positive integer
k (k ≤ n), is there a set of pairwise node-disjoint cycles covering exactly k nodes
of D?

Finally, it may be useful to see that the value of k0 defined by (5.13) can explicitly
be described for matrices over {0,−∞}:

Theorem 5.3.18 [28] If A ∈ T n×n then k0 = n+maper(A⊕ (−1)⊗ I ).

Proof Since all finite δk are 0 in conventional notation we have:

χA(x)=max
k∈K

(n− k) x.

Therefore, for x < 0:

χA(x)= x.min
k

(n− k)= x.(n− k0),

from which the result follows by setting x =−1. �

5.3.5 Cayley–Hamilton in Max-algebra

A max-algebraic analogue of the Cayley–Hamilton Theorem was proved in [119]
and [140], see also [8]. Some notation used here has been introduced in Sect. 1.6.4.
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Let A= (aij ) ∈R
n×n and v ∈R. Let us denote

p+(A,v)= ∣∣{π ∈ P+n ;w(π,A)= v}∣∣

and

p−(A,v)= ∣∣{π ∈ P−n ;w(π,A)= v}∣∣ .
The following equation is called the (max-algebraic) characteristic equation for A

(recall that max∅ = ε):

λn ⊕
∑⊕

k∈J

cn−k ⊗ λk = c1 ⊗ λn−1 ⊕
∑⊕

k∈J

cn−k ⊗ λk,

where

ck =max

⎧
⎨

⎩
v;
∑

B∈Pk(A)

p+(B, v) �=
∑

B∈Pk(A)

p−(B, v)

⎫
⎬

⎭
, k = 1, . . . , n,

dk = (−1)k

⎛

⎝
∑

B∈Pk(A)

p+(B, ck)−
∑

B∈Pk(A)

p−(B, ck)

⎞

⎠ , k = 1, . . . , n

and

J = {j ;dj > 0}, J = {j ;dj < 0}.

Theorem 5.3.19 (Cayley–Hamilton in max-algebra) Every real square matrix A

satisfies its max-algebraic characteristic equation.

An application of this result in the theory of discrete-event dynamic systems can
be found in Sect. 6.4.

In general it is not easy to find a max-algebraic characteristic equation for a
matrix. However, as the next theorem shows, unlike for characteristic maxpolyno-
mials it is relatively easy to do so for matrices over T = {0,−∞}. Given a matrix
A= (aij ), the symbol 2A will stand for the matrix (2aij ).

Theorem 5.3.20 [28] If A ∈ T n×n then the coefficients dk in the max-algebraic
characteristic equation for A are the coefficients at λn−k of the conventional char-
acteristic polynomial for the matrix 2A.

Proof If A ∈ T n×n then all finite ck are 0. Note that if k ∈ N and maper(B) = ε

for all B ∈ Pk(A) then the term ck ⊗ λn−k does not appear on either side of the
equation. If B = (bij ) ∈ T k×k then p+(B,0) is the number of even permutations
that select only zeros from B . The matrix 2B is zero-one, zeros corresponding
to −∞ in B and ones corresponding to zeros in B . Thus p+(B,0) is the num-
ber of even permutations that select only ones from 2B . Similarly for p−(B,0).
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Since 2B is zero-one, all terms in the standard determinant expansion of 2B are ei-
ther 1 (if the corresponding permutation is even and selects only ones), or−1 (if the
corresponding permutation is odd and selects only ones), or 0 (otherwise). Hence
det 2B = p+(B,0)− p−(B,0). Since

dk = (−1)k
∑

B∈Pk(A)

(
p+(B,0)− p−(B,0)

)
,

it follows that

dk = (−1)k
∑

B∈Pk(A)

det 2B,

which is the coefficient at λn−k of the conventional characteristic polynomial of the
matrix 2A. �

5.4 Exercises

Exercise 5.4.1 Find the standard form of

p(z)= 3⊗ z2.5 ⊕ 2⊗ z4.7 ⊕ 4⊗ z6.2 ⊕ 1⊗ z8.3

and then factorize it using RECTIFICATION and RESOLUTION. [1⊗ z2.5⊗ (2⊕
1⊗ z2.2 ⊕ 3⊗ z3.7 ⊕ z5.8); 1⊗ z2.5 ⊗ (− 1

3.7 ⊕ x)3.7 ⊗ ( 3
2.1 ⊕ z)2.1]

Exercise 5.4.2 Find the characteristic maxpolynomial and characteristic equa-
tion for the following matrices; factorize the maxpolynomial and check whether
χA(x)= LHS⊕RHS of the maxpolynomial equation:

(a) A=
⎛

⎝
3 −2 1
4 0 5
3 1 2

⎞

⎠. [χA(x)= 9⊕ 6⊗ x ⊕ 3⊗ x2 ⊕ x3 = (3⊕ x)3; λ3 ⊕ 9=

3⊗ λ2 ⊕ 6⊗ λ]

(b) A=
⎛

⎝
1 0 −3
2 3 1
4 −2 0

⎞

⎠. [χA(x)= 5⊕4⊗x⊕3⊗x2⊕x3 = (1⊕x)2⊗ (3⊕x);

λ3 ⊕ 4⊗ λ= 3⊗ λ2 ⊕ 5]

(c) A=
⎛

⎝
1 2 5

−1 0 3
1 1 1

⎞

⎠. [χA(x)= 6⊕ 6⊗ x ⊕ 1⊗ x2 ⊕ x3 = (3⊕ x)2 ⊗ (0⊕ x);

λ3 = 1⊗ λ2 ⊕ 6⊗ λ]

Exercise 5.4.3 A square matrix A is called strictly diagonally dominant if ap(A)=
{id}. Find a formula for the characteristic equation of strictly diagonally dominant
matrices. [λn⊕ δ2⊗λn−2⊕ δ4⊗λn−4⊕· · · = δ1⊗λn−1⊕ δ3⊗λn−3⊕ δ5⊗λn−5⊕
· · · where δk = the sum of k greatest diagonal values]



Chapter 6
Linear Independence and Rank. The Simple
Image Set

We introduced a concept of linear independence in Sect. 3.3 in geometric terms. For
finite systems of vectors (such as columns of a matrix) this definition reads:

Vectors a1, . . . , an ∈R
m

are called linearly dependent (LD) if

ak =
∑⊕

i∈N−{k}
αi ⊗ ai

for some k ∈ N and αi ∈ R, i ∈ N − {k}. The vectors a1, . . . , an are linearly inde-
pendent (LI) if they are not linearly dependent. We presented efficient methods for
checking linear independence and for finding the coefficients of linear dependence
in Sect. 3.3. That section also contains results on anomalies of linear independence.
For these and other reasons various alternative concepts of linear independence have
been studied. In most cases they would be equivalent to the above mentioned defini-
tion if formulated in linear algebra; however, in max-algebra they are nonequivalent.

We will discuss and compare two other concepts of independence in this chapter:
strong linear independence [60] and Gondran–Minoux independence [98]. It will be
of particular interest to see and compare these concepts in the setting of square
matrices, that is, to compare regularity, strong regularity and Gondran–Minoux reg-
ularity.

6.1 Strong Linear Independence

In Chap. 3 we introduced the notation

S(A,b)= {x ∈R
n;A⊗ x = b}

for A ∈R
m×n

and b ∈R
m

. Now we also denote for A ∈R
m×n

:

T (A)= {|S(A,b)| ;b ∈R
m}.
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The set T (A) will be called the type of A. Note that the definition of T (A) uses
finite vectors b (see Sect. 3.1).

A set C ⊆ R
n

is said to be max-convex if α ⊗ x ⊕ β ⊗ y ∈ C for every
x, y ∈ C,α,β ∈R with α⊕ β = 0.

Lemma 6.1.1 The set S(A,b) is max-convex for every A ∈R
m×n

and b ∈R
m

.

Proof A⊗ (α⊗ x ⊕ β ⊗ y)= α⊗A⊗ x ⊕ β ⊗B ⊗ y = (α⊕ β)⊗ b= b. �

Regularity and linear independence are closely related to the number of solutions
of max-linear systems. Similarly as in conventional linear algebra the number of
solutions to a max-linear system can only be 0,1 or ∞:

Theorem 6.1.2 [24] |S(A,b)| ∈ {0,1,∞} for any A ∈R
m×n

and b ∈R
m

.

Proof We only need to prove that if a system A⊗ x = b has more than one solution
then it has an infinite number of solutions. Suppose A⊗x = b, A⊗y = b and x �= y

for some x, y ∈R
n
. Then by Lemma 6.1.1 α⊗ x ⊕ β ⊗ y is also a solution for any

α,β ∈R such that α⊕ β = 0. Let without loss of generality xk < yk and take α = 0
and β between xk ⊗ y−1

k and 0. Then α ⊕ β = 0, α ⊗ x ⊕ β ⊗ y is different from
both x and y and there is an infinite number of such vectors. �

For reasons explained at the beginning of Chap. 3, we will concentrate on doubly
R-astic matrices.

Lemma 6.1.3 If A ∈ R
m×n

is doubly R-astic and {1,∞} ⊆ T (A) then
T (A)= {0,1,∞}.

Proof Let A ∈ R
m×n

be doubly R-astic and {1,∞} ⊆ T (A). Suppose that every
column of A has only one finite entry. Then m ≤ n because there are no ε rows. If
m= n then A is a generalized permutation matrix for which T (A)= {1}. If m < n

then A contains an m × m generalized permutation submatrix. By choosing the
remaining n−m variables sufficiently, small we get T (A)= {∞}.

Thus A has a column with at least two finite entries. Therefore the number of
finite entries in A is more than n.

Suppose that in every row there is a finite entry unique in its column. Then m≤ n.
If m < n then a contradiction is obtained as above, hence m= n, there are only m

finite entries, a contradiction. Therefore there is a row, say the kth, whose every
finite entry is nonunique in its column. Hence there is a value, say c, such that
c ⊗ akj <

∑⊕
i �=k aij for all j ∈ N . Then by Corollary 3.1.2 the system A⊗ x = b

has no solution where bk = c−1 and bi = 0 for i �= k. �

We can deduce a full list of types for doubly R-astic matrices.
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Proposition 6.1.4 Each of the sets {1}, {∞}, {0,1}, {0,∞}, {0,1,∞} is the type of
a doubly R-astic matrix and there are no other types of doubly R-astic matrices.

Proof If A ∈ R
m×n

is doubly R-astic and x ∈R
n then A ⊗ x ∈ R

m and
x ∈ S(A,A⊗ x), thus T (A) = {0} is obviously impossible. Due to Theorem 6.1.2
and Lemma 6.1.3, which includes the type {1,∞}, it remains to show that the re-
maining five cases are all possible. The examples of doubly R-astic matrices are (in
the order stated in the proposition):

I,

(
0 ε 0
ε 0 0

)

,

⎛

⎝
0 ε

ε 0
0 0

⎞

⎠ ,

(
0 0
0 0

)

,

(
1 0
0 0

)

.
�

The types T (A) of matrices in conventional linear algebra are {1}, {∞}, {0,1},
{0,∞}. They correspond to the following cases expressed using the linear-algebraic
rank: r(A)=m= n, r(A)=m < n, r(A)= n < m, r(A) < min(m,n).

This comparison is even more striking if we consider finite matrices A in max-
algebra with m≥ 2. For such matrices we can always find a b such that A⊗ x = b

has no solution and another b for which the system has an infinite number of solu-
tions. More precisely:

Theorem 6.1.5 [24] T (A) is either {0,∞} or {0,1,∞} for any A ∈R
m×n, m≥ 2.

Proof If b= a1 then A⊗ x = b has an infinite number of solutions x, where x1 = 0
and x2, . . . , xn are sufficiently small.

If b1 < min{a1j ⊗ a−1
ij ; i ∈ M,i �= 1, j ∈ N} and bi = 0 for all i > 1 then

A⊗ x = b has no solution since then b−1
1 ⊗ a1j > aij for every i ∈M,i �= 1 and

j ∈ N , thus Mj = {1} for all j ∈ N , implying that there is no solution by Corol-
lary 3.1.2. �

We say that the columns of A ∈ R
m×n

are strongly linearly independent (SLI)
if 1 ∈ T (A), that is, the system A ⊗ x = b has a unique solution for at least one
b ∈R

m; otherwise they are called strongly linearly dependent. A square matrix with
strongly linearly independent columns is called strongly regular.

The next three statements are indicating some similarity between max-algebra
and conventional linear algebra.

Lemma 6.1.6 If A ∈ R
m×n

has SLI columns then A is doubly R-astic and if y is
the unique solution to A⊗ x = b for some b then y is finite.

Proof The statement follows straightforwardly from the definitions. �

Theorem 6.1.7 A doubly R-astic matrix A ∈ R
m×n

has strongly linearly indepen-
dent columns if and only if it contains a strongly regular n× n submatrix.
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Proof Suppose that A is doubly R-astic and the unique solution to A ⊗ x = b is
x ∈ R

n. It also follows from Corollary 3.1.3 that for every j ∈ N there is at least
one i ∈Mj such that i /∈Mk for all k �= j . Let us denote this index i by ij (take
any in the case of a tie). Consider the subsystem with row indices i1, i2, . . . , in (and
with all column indices). This is an n× n system with a unique column maximum
in every column and in every row. Hence again by Corollary 3.1.3 this system has a
unique solution and so A contains an n× n strongly regular submatrix.

Suppose now that A′ ∈ R
n×n

is a strongly regular submatrix of A. Then there
exists a b′ ∈R

n such that A′ ⊗ x = b′ has a unique solution, say z. Take b=A⊗ z.
Then b ∈ R

m and the system A ⊗ x = b has a solution. If it had more than one
solution then the subsystem A′ ⊗ x = b′ would also have more than one solution.
Hence A⊗ x = b has a unique solution, which completes the proof. �

Corollary 6.1.8 If a matrix A ∈ R
m×n

has strongly linearly independent columns
then m≥ n.

The question of checking whether the columns of a given matrix are SLI may be
of interest. It seems that currently no polynomial method for answering this question
exists, see Chap. 11. On the other hand it is possible to check strong regularity of an
n× n matrix in O(n3) time. This is presented in the next section and it enables us,
using Theorem 6.1.7, to decide SLI (with nonpolynomial complexity) by checking
n× n submatrices for strong regularity.

6.2 Strong Regularity of Matrices

6.2.1 A Criterion of Strong Regularity

Recall that A ∈R
n×n

is called strongly regular if the system A⊗x = b has a unique
solution for some b ∈ R

n. Our aim now is to characterize strongly regular matrices
and the sets of vectors b for which A ⊗ x = b has a unique solution. Recall that
a strongly regular matrix is doubly R-astic (Lemma 6.1.6) and we will therefore
assume throughout that A has this property. By the same lemma we need to consider
f (x)=A⊗x as a mapping R

n −→R
n. The set {A⊗x;x ∈R

n} is the set of images
of this mapping. We will therefore call this set the image set and denote it by Im(A).
Clearly, Im(A)⊆ Col(A) and Col(A)= Im(A)∪ {ε} if A is finite.

We also define

SA =
{
b ∈R

n;A⊗ x = b has a unique solution
}
.

The set SA is called the simple image set of A. The elements of Im(A) and SA

will be called images and simple images, respectively. Observe that SA ⊆ Im(A) for
every A and SA �= ∅ if and only if A is strongly regular.
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A unique column maximum in every column and in every row is a feature that
characterizes every uniquely solvable square system. To see this just realize that
(see Corollary 3.1.3) A⊗ x = b has a unique solution for b ∈ R

n if and only if the
sets M1(A,b), . . . ,Mn(A,b) form a minimal covering of the set N = {1, . . . , n}. It
is easily seen that this is only possible if all the sets M1(A,b), . . . ,Mn(A,b) are
one-element and pairwise-disjoint.

If a square matrix has a unique column maximum in every column and in every
row then the column maxima determine a permutation of the set N whose weight
is strictly greater than the weight of any other permutation and thus this matrix
has strong permanent (see Sect. 1.6.4). In other words, if A is a square matrix and
A⊗ x = 0 has a unique solution then A has strong permanent. However, a normal-
ization of a system A⊗ x = b means to multiply A by a diagonal matrix from the
left. Lemma 1.6.32 states that this does not affect ap(A) and so we have proved:

Proposition 6.2.1 If A ∈R
n×n

is strongly regular then A has strong permanent.

The converse is also true (see the next theorem) and therefore verifying that a
matrix is strongly regular is converted to the checking that it has strong permanent.
This can be done by checking that a digraph is acyclic (see Sect. 1.6.4) and therefore
is solvable using O(n3) operations.

Theorem 6.2.2 (Criterion of strong regularity) A square matrix over R is strongly
regular if and only if it has strong permanent.

This result has originally been proved in [36] for finite matrices over linearly
ordered commutative groups; however, it is the aim of this subsection to present a
simpler proof, which is similar to that in [26]. We refer to terminology introduced
in Sect. 1.6.4 and start with a few lemmas and a theorem that may be of interest also
on their own:

Lemma 6.2.3 If A ∈R
n×n

is strongly regular then maper(A) is finite.

Proof The statement immediately follows from Proposition 6.2.1. �

Lemma 6.2.4 If A≈ B then A is strongly regular if and only if B is strongly regu-
lar.

Proof Permutations of the rows and columns of A as well as ⊗ multiplying them
by finite constants does not affect the existence of a unique solution to a max-linear
system. �

Due to Corollary 1.6.38 and (1.29) we may now assume without loss of generality
that the doubly R-astic matrix whose strong regularity we wish to check is strongly
definite.
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Lemma 6.2.5 If A = (aij ) ∈ R
n×n

is strongly definite and b ∈ SA then
B = (b−1

i ⊗ aij ) has column maxima only on the diagonal.

Proof A⊗ x = b has a unique solution, thus by Corollary 3.1.3 the column max-
ima are unique and determine a permutation, say π . Hence, if π �= id then w(π,A)

> w(id,A), which is a contradiction since A is strongly definite and therefore diag-
onally dominant by (1.29). �

If A is a square matrix then Ã will stand for the matrix obtained from A after
replacing all diagonal entries by ε.

Theorem 6.2.6 If A ∈R
n×n

is strongly definite then

SA =
{
b ∈R

n; Ã⊗ b ≤ g⊗ b for some g < 0
}
.

Proof Let A= (aij ) ∈R
n×n

be strongly definite and Ã= (̃aij ). Then we have:

b is a simple image of A

⇐⇒ A⊗ x = b has a unique solution

⇐⇒ B =
(
b−1
i ⊗ aij

)
has column maxima only on the diagonal

(Lemma 6.2.5)

⇐⇒
(
b−1
i ⊗ aij ⊗ bj

)
is strictly normal

⇐⇒ (∀i �= j)
(
b−1
i ⊗ aij ⊗ bj < 0

)

⇐⇒ (∃g < 0) (∀i, j)
(
b−1
i ⊗ ãij ⊗ bj ≤ g

)

⇐⇒ (∃g < 0) (∀i, j)
(
ãij ⊗ bj ≤ g⊗ bi

)

⇐⇒ (∃g < 0) (∀i)
(

max
j

(
ãij ⊗ bj

)≤ g⊗ bi

)

⇐⇒ (∃g < 0)
(
Ã⊗ b ≤ g⊗ b

)
. �

Corollary 6.2.7 If A ∈ R
n×n

is strongly definite then A is strongly regular if and
only if the set

{
b ∈R

n; Ã⊗ b ≤ g⊗ b
}

is nonempty for some g < 0.

For the proof of our principal result, Theorem 6.2.2, we need to prove a few more
properties:
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Lemma 6.2.8 If A ∈ R
n×n

is strongly definite then A has strong permanent if and
only if every cycle in DÃ is negative.

Proof If A is strongly definite then w(π,A) ≤ 0 = w(id,A) for every π ∈ Pn. If
π ∈ Pn then w(π,A)=w(π1,A)⊗ · · · ⊗w(πk,A), where π1, . . . , πk are the con-
stituent cycles. Hence A has strong permanent if and only if all cycles of length two
or more in DA are negative. This is equivalent to saying that all cycles in DÃ are
negative. �

Lemma 6.2.9 If A ∈R
n×n

and B =A⊗Q where Q is a generalized permutation
matrix then SA = SB . That is the simple image set of a matrix is unaffected by adding
constants to its columns.

Proof (A⊗Q)⊗ x =A⊗ (Q⊗ x) hence

(A⊗Q)⊗ x = b

has a unique solution if and only if

A⊗ z= b

has a unique solution and x =Q−1 ⊗ z. �

We are ready to prove Theorem 6.2.2.

Proof By Proposition 1.6.40 and Lemma 6.2.9 we may assume without loss of gen-
erality that A is strongly definite.

Due to Proposition 6.2.1 it remains to prove the “if” part.
By Lemma 6.2.8 every cycle in DÃ is negative. Hence λ(Ã) < 0.
If Ã �= ε then by Theorem 1.6.18 for any g ≥ λ(Ã) and g > ε there is a solution

x ∈ R
n to Ã⊗ x ≤ g ⊗ x. If Ã = ε then Ã⊗ x ≤ g ⊗ x is satisfied by any g and

x ∈ R
n. Hence the statement now follows by Corollary 6.2.7 by taking g = λ(Ã) if

λ(Ã) > ε and any g ∈R, g < 0, otherwise. �

Corollary 6.2.10 If A ∈ R
n×n

is strongly definite then A is strongly regular if and
only if λ(Ã) < 0.

Due to Theorems 1.6.18 and 6.2.6 we also have:

Corollary 6.2.11 Let A ∈ R
n×n

be strongly definite and strongly regular. If Ã �= ε

then

SA =
{
�
(
g−1 ⊗ Ã

)
⊗ x;x ∈R

n, λ(Ã)≤ g < 0, g �= ε
}

.

If Ã= ε then SA =R
n.
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Example 6.2.12 Let

A=
⎛

⎝
1 2 3
1 0 5
5 6 3

⎞

⎠ .

Then the weights of all permutations are 4,12,10,8,12,6; |ap(A)| = 2, A does
not have strong permanent and hence is not strongly regular. For matrices of higher
orders this would be decided algorithmically by checking whether the associated di-
graph is acyclic after a transformation to a normal form. We illustrate on the current
matrix how this might be done:

A−→ B =
⎛

⎝
2 3 1
0 5 1
6 3 5

⎞

⎠

−→ C =
⎛

⎝
0 −2 −4

−2 0 −4
4 −2 0

⎞

⎠

−→G=
⎛

⎝
0 0 0

−4 0 −2
0 −4 0

⎞

⎠ .

Here B is a diagonally dominant matrix obtained from A by moving the first col-
umn to become the last; C is strongly definite, obtained from B by subtracting the
diagonal elements from their columns and G is normal, obtained from C using the
Hungarian method by adding 4 and 2 to the first and second rows, respectively and
subtracting 4 and 2 from the first and second columns, respectively. The digraph ZG̃

contains arcs (1,2), (1,3) and (3,1) and thus also the cycle (1,3,1). This confirms
that A does not have strong permanent (Theorem 1.6.39).

Example 6.2.13 Let

A=
⎛

⎝
1 2 3
1 0 5
5 4 3

⎞

⎠ .

Then the weights of all permutations are 4,12,8,8,10,6; |ap(A)| = 1, A has strong
permanent and hence is strongly regular. The unique optimal permutation is π =
(1,2,3). As in the previous example we now illustrate how this would be done
algorithmically by transforming A to a normal form:

A−→ B =
⎛

⎝
2 3 1
0 5 1
4 3 5

⎞

⎠

−→ C =
⎛

⎝
0 −2 −4

−2 0 −4
2 −2 0

⎞

⎠
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−→G=
⎛

⎝
0 0 −2

−4 0 −4
0 −2 0

⎞

⎠ .

Here B =A⊗Q1, where

Q1 =
⎛

⎝
ε ε 0
0 ε ε

ε 0 ε

⎞

⎠ ,

C = B ⊗Q2 where Q2 = diag(−2,−5,−5),
G= P ⊗C ⊗Q3, where P = diag(2,0,0) and Q3 = diag(−2,0,0).
The digraph ZG̃ contains arcs (1,2) and (3,1) and is therefore acyclic which

confirms that A is strongly regular.
Since C =A⊗Q, where Q is the generalized permutation matrix Q1 ⊗Q2, by

Lemma 6.2.9 we have SA = SC and we can find a simple image of A as suggested
by Corollary 6.2.11: Set g = λ(C̃)=−1 (say) and calculate

�
(
g−1 ⊗ C̃

)
=�

⎛

⎝
ε −1 −3

−1 ε −3
3 −1 ε

⎞

⎠=
⎛

⎝
0 −1 −3
0 −1 −3
3 2 0

⎞

⎠ .

The column space of �(g−1 ⊗ C̃) is one-dimensional and every multiple of the
vector (0,0,3)T is a simple image of both C and A.

6.2.2 The Simple Image Set

The simple image set (SIS) of strongly definite matrices is fully described by The-
orem 6.2.6 and Corollary 6.2.11. We will now present some further properties of
simple image sets [26], in particular their relation to eigenspaces.

Let us first consider strongly definite matrices. Since

Ak+1 ⊗ x =Ak ⊗ (A⊗ x) ,

we have Im(Ak+1) ⊆ Im(Ak) for every k natural. It follows then from Proposi-
tion 1.6.12 that for a strongly definite matrix A

Im (A)⊇ Im
(
A2
)
⊇ Im

(
A3
)
⊇ · · ·

⊇ Im
(
An−1

)
= Im

(
An
)= Im

(
An+1

)
= · · · = V (A),

see Fig. 6.1. It turns out that if A is strongly definite then A is strongly regular if
and only if V (A) has nonempty interior, which is then SA. More precisely, we have
the following result, whose proof is omitted here.
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Fig. 6.1 SA = int(V (A))

Theorem 6.2.14 [26] If A ∈ R
n×n is strongly definite and strongly regular then

SA = int(V (A)) or, equivalently, SA = int(Im(Ak)) for every k ≥ n− 1.

Recall that by Proposition 1.6.40 for any square matrix A ∈R
n×n there is a gener-

alized permutation matrix Q so that A⊗Q is strongly definite. Using Lemma 6.2.9
we can remove the assumption that A is strongly definite and deduce the following:

Corollary 6.2.15 If A ∈R
n×n is strongly regular then

SA = int(V (A⊗Q))

or, equivalently, SA = int(Im((A⊗Q)k)) for every k ≥ n− 1, where Q is any per-
mutation matrix such that A⊗Q is strongly definite.

Example 6.2.16 Consider the matrix A of Example 6.2.13. By Corollary 6.2.15 we
deduce that SA = int(V (C)).

Lemma 6.2.17 If A ∈R
n×n

is strongly definite then the set of finite eigenvectors of
A is convex.

Proof If A is strongly definite then �(A) = {0}. By Lemma 1.6.14 we then have
V (A)= V ∗0 (A). The latter is convex by Lemma 1.6.20. �

Theorem 6.2.18 Let A ∈ R
n×n be strongly definite. Then A is strongly regular if

and only if the topological dimension of V (A) is n.

Proof Let A ∈ R
n×n be strongly definite. It follows from Theorem 6.2.14 that A is

strongly regular if and only if int(V (A)) �= ∅. But V (A) for strongly definite matri-
ces is convex (Lemma 6.2.17) and thus this property is equivalent to the topological
dimension of V (A) being n [125]. �

Recall that pd(A) stands for the (max-algebraic) dimension of the principal
eigenspace of A, that is, the maximal number of nonequivalent fundamental eigen-
vectors of A or, equivalently, the number of critical components of C(A).



6.2 Strong Regularity of Matrices 137

Theorem 6.2.19 If A ∈R
n×n be strongly definite. Then A is strongly regular if and

only if pd(A)= n.

Proof If A is not strongly regular then DA and therefore also D�(A) contains a zero
cycle of length two or more. By Theorem 4.3.3 then at least two columns of �(A)

are multiples of each other. Hence pd(A) < n.
If A is strongly regular then the critical cycles are exactly loops at all nodes and

so C(A) has n critical components. Hence pd(A)= n. �

For a strongly definite matrix A ∈ R
n×n it follows from Theorems 6.2.18

and 6.2.19 that pd(A) = n if and only if the topological dimension of the princi-
pal eigenspace is n. In fact equality holds between these two types of dimension,
see Exercise 6.6.5.

6.2.3 Strong Regularity in Linearly Ordered Groups

In this subsection we use terminology and notation introduced in Sect. 1.4.
A generalization of Theorem 6.2.2 to linearly ordered commutative groups is

straightforward provided that the group is radicable. It is less straightforward but
still possible to prove this theorem when the underlying group is dense, but it is
not true for sparse groups such as G3. For instance the matrix A = ( 1 0

0 0

)
over the

additive group of integers has strong permanent but it is not possible to add integer
constants to its rows so that both column maxima would be strict and in different
rows.

An alternative criterion for sparse groups is based on the existence of the smallest
positive element, which we denote here as α. Observe that if we denote for A ∈
R

n×n
and g < 0:

Ug (A)= {b ∈R
n;A⊗ b ≤ g⊗ b

}

then

g1 ≤ g2 =⇒Ug1 (A)⊆Ug2 (A) .

Using Corollary 6.2.7 we deduce:

Theorem 6.2.20 If G is a sparse linearly ordered commutative group, α is the small-
est positive element of this group and A is an n× n strongly definite matrix over G
then A is strongly regular if and only if Uα−1(Ã) �= ∅ or, equivalently, there is no
positive cycle in Dα⊗Ã.

Example 6.2.21 Consider the matrix A = ( 0 0
−2 0

)
. In G3 (see Sect. 1.4) α = 1 and

α⊗Ã= ( ε 1
−1 ε

)
, hence A is strongly regular. In G4 we have α = 2 and α⊗Ã= ( ε 2

0 ε

)
,

hence there is a positive cycle in Dα⊗Ã and thus A is not strongly regular.
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6.2.4 Matrices Similar to Strictly Normal Matrices

We continue our analysis in the principal interpretation and discuss the question
raised in Sect. 1.6.4: Which matrices are similar to strictly normal ones? Recall that
every matrix is similar to a normal matrix (Theorem 1.6.37) and normal matrices
are strongly definite.

So, assume that A= (aij ) ∈R
n×n

is strongly definite and that b ∈R
n is a vector

for which the system A⊗ x = b has a unique solution, thus ap(A)= {id}. Let

B = diag(b−1
1 , b−1

2 , . . . , b−1
n )⊗A⊗ diag(b1, b2, . . . , bn).

Then ap(B) = ap(A) = {id} and B has a unique column maximum in every row
and column and it also has zero diagonal. Hence B is strictly normal. We deduce
that strong regularity is a sufficient condition for a matrix to be similar to a strictly
normal one.

Conversely, if A is strongly definite and

diag(c1, . . . , cn)⊗A⊗ diag(b1, b2, . . . , bn)

is strictly normal then ci ⊗ bi = 0 for all i ∈ N , yielding ci = b−1
i for all i ∈ N .

Therefore in

diag(b−1
1 , b−1

2 , . . . , b−1
n )⊗A

all column maxima are on the diagonal only and thus A⊗ x = b has a unique solu-
tion. We have proved:

Theorem 6.2.22 Let A ∈R
n×n

be strongly definite. Then

diag(c1, . . . , cn)⊗A⊗ diag(b1, b2, . . . , bn)

is strictly normal if and only if ci = b−1
i for all i ∈N and the system A⊗ x = b has

a unique solution.

Corollary 6.2.23 Let A ∈R
n×n

be a matrix with finite maper(A). Then A is similar
to a strictly normal matrix if and only if A has strong permanent or, equivalently, if
and only if A is strongly regular.

6.3 Gondran–Minoux Independence and Regularity

Another concept of linear independence in max-algebra is Gondran–Minoux inde-
pendence. In this section we restrict our attention to finite matrices. We say that the
vectors a1, . . . , an ∈R

m are Gondran–Minoux dependent (GMD) if

∑⊕

j∈S

αj ⊗ aj =
∑⊕

j∈T

αj ⊗ aj (6.1)
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holds for some α1, . . . , αn ∈ R and two nonempty, disjoint subsets S and T of the
set N . If the vectors are not GMD then we call them Gondran–Minoux indepen-
dent (GMI). A square matrix with Gondran–Minoux independent columns is called
Gondran–Minoux regular.

In the formulation of a Gondran–Minoux regularity criterion below we use the
symbols introduced in Sect. 1.6.4. This result was first presented in [99]. It was later
revisited in [25].

Theorem 6.3.1 (Gondran–Minoux) Let A ∈R
n×n. Then the following hold:

(a) A is Gondran–Minoux regular if and only if either ap(A)⊆ P+n or ap(A)⊆ P−n
(equivalently, either ap+(A)= ∅ or ap−(A)= ∅);

(b) If permutations π ∈ ap+(A),σ ∈ ap−(A) are known then the sets S and T and
all αj in (6.1) can be found using O(n2) operations.

Proof (a) Suppose that (6.1) holds for nonempty, disjoint subsets S and T of the set
N and α1, . . . , αn ∈ R. We prove that ap+(A) �= ∅ and ap−(A) �= ∅. The converse
will follow from part (b).

By Lemma 1.6.43 it is sufficient to prove that ap+(B) �= ∅ and ap−(B) �= ∅ for
some matrix B , A≈ B . Let us permute the columns of the matrix
A⊗ diag(α1, . . . , αn) so that S = {1, . . . , k} for some k. Denote the obtained matrix
by A′ = (a′ij ) and its columns by a′1, . . . , a′n. Then

∑⊕

j≤k

a′j =
∑⊕

j>k

a′j .

Let us denote this vector by c= (c1, . . . , cn)
T . Let B = (bij ) be any matrix obtained

from the matrix (c−1
i ⊗ a′ij ) by permuting its rows so that id ∈ ap(B). Then B has

the following two properties:

bij ≤ 0 for all i, j ∈N

and

(∀i) (∃j1 ≤ k) (∃j2 > k)bij1 = 0= bij2 .

We construct a sequence of indices as follows: Let i1 = 1; if ir has already been
defined and ir ≤ k then ir+1 is any j > k such that bir j = 0 and if ir > k then ir+1
is any j ≤ k such that bir j = 0. By finiteness of N , ir = is for some r, s and s < r .
Let r, s be the first such indices and set

L= {is , is+1, . . . , ir−1} .
Clearly, if is ≤ k then is+1 > k, is+2 ≤ k, . . . and hence (using a similar reason if
is > k) the size of L is even. Set π(it )= it+1 for t = s, s+1, . . . , r−1 and π(i)= i

for i ∈N −L. Hence

w(π,B)=
∏⊗

i /∈L

bii ⊗
∏⊗

i∈L

bi,π(i)
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=
∏⊗

i /∈L

bii ⊗
∏⊗

i∈L

0

≥
∏⊗

i∈N

bii

=w(id,B)

≥w(π,B).

Hence π ∈ ap(B) and π ∈ P−n , thus π ∈ ap−(B) an id ∈ ap+(B).
(b) Suppose now that π ∈ ap+(A),σ ∈ ap−(A) are known. By Theorem 1.6.35 a

matrix A′ ≈ A with maper(A′)= 0 and A′ ≤ 0 can be found in O(n) time. We can
then permute the columns of A′ in O(n2) time so that for the obtained matrix A′′
we have π ′ = id ∈ ap(A′′) and thus A′′ is normal. A permutation σ ′ ∈ ap−(A′′) can
be derived from σ in O(n) time. At least one of the constituent cyclic permutations
of σ ′ is of odd parity and thus of even length (see Sect. 1.6.4) and it can also be
found in O(n) time. By a simultaneous permutation of the rows and columns of A′′
in O(n2) time we produce a matrix where this odd cycle is (1,2, . . . , k) for some
even integer k ≥ 2. We denote the obtained normal matrix as B = (bij ). The matrix
B has the form:

1 2 3 . . . k k + 1 . . . n

1 0 0
2 0 0
3 0
...

. . . 0
k 0 0

k + 1 0

...
. . .

n 0

Let us assign indices 1,3, . . . , k−1 to S; 2,4, . . . , k to T and set α1 = · · · = αk = 0.
If k = n then (6.1) is satisfied for B . Suppose now that k < n. We will set all
αk+1, . . . , αn to certain nonpositive values and therefore (6.1) will hold for the first
k equations independently of the choice of these values and of the assignment of the
columns to S and T . To ensure equality in the rows k + 1, . . . , n we first compute
for all i = k+ 1, . . . , n:

Li =
∑⊕

j∈S

bij ⊗ αj

and

Ri =
∑⊕

j∈T

bij ⊗ αj .
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Let us denote

I = {i > k;Li �=Ri} .
If I = ∅ and S ∪ T = N then we have (6.1) for B . If S ∪ T �= N we set for every
j ∈N − S ∪ T :

αj =min
i

Li

and assign j to S or T arbitrarily; the statement then follows for B .
If I �= ∅ then let s ∈ I be any index satisfying

Ls ⊕Rs =max
i∈I

(Li ⊕Ri). (6.2)

Set S′ = S ∪ {s} and T ′ = T if Ls < Rs and set S′ = S and T ′ = T ∪ {s} if Ls > Rs .
In both cases take αs = Ls ⊕Rs . Let us denote

L′i =
∑⊕

j∈S′
bij ⊗ αj

and

R′i =
∑⊕

j∈T ′
bij ⊗ αj .

Since

bss ⊗ αs = αs = Ls ⊕Rs

we then get L′s =R′s . At the same time

bis ⊗ αs ≤ αs = Ls ⊕Rs (6.3)

holds for all i > k and therefore Li =Ri ≥ Ls ⊕Rs implies L′i =R′i .
Let

I ′ = {i > k;L′i �=R′i
}
.

As above we assume that I ′ �= ∅. Let q ∈ I ′ be defined by

L′q ⊕R′q =max
i∈I ′
(
L′i ⊕R′i

)
.

Then

L′q ⊕R′q ≤ Ls ⊕Rs (6.4)

because either L′q ⊕ R′q = bqs ⊗ αs and then (6.4) follows from (6.3) or,
L′q ⊕R′q > bqs ⊗ αs , implying L′i = Li and R′i = Ri , yielding q ∈ I and thus
(6.4) follows from (6.2). This also shows that if we continue in this way after
resetting S′ −→ S,T ′ −→ T ,L′i −→ Li , R′i −→ Ri, I

′ −→ I, q −→ s then the
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process will be monotone (Ls ⊕ Rs will be nonincreasing) and therefore once

Li =Ri ≥ Ls⊕Rs , it will always imply L′i =R′i (but note that if Li =Ri < Ls⊕Rs

then the ith equation may be violated at the end of the current iteration). Hence after

at most n− k repetitions we will have I = ∅ and we proceed as explained above for

this case.

All computations necessary for assigning j and setting αj are O(n), hence the

overall computational complexity is O(n2). In order to get (6.1) for A, we only

need to carry out the inverse permutations of the rows and columns of B to get this

identity for A′′ and A′ and similarly the inverse transformation of A′, which will

yield the result for A. All these operations are O(n2). �

Example 6.3.2 We illustrate the method for finding the decomposition (6.1) pre-

sented in the previous proof on the following 9× 9 matrix where the transformation

to B has already been made (with an even cycle of length k = 4). Note that the

entries in the last row are αj .

S T S T

0 0
0 0

0 0
0 0
−8 −3 −4 −4 0 −1 −1
−5 −8 −6 −5 −1 0 −6
−1 −3 −7 −4 0 −2 0

0 0 −3 −5 −2 −4 −3 0
−6 −7 −8 −7 −2 −1 −4 0

0 0 0 0 −2 −3 −1 −4 −4

By applying the procedure we obtain successively:

I = {5,7,9} , s = 7, T := T ∪ {7} , α7 =−1,

I = {5,9} , s = 5, S := S ∪ {5} , α5 =−2,

I = {6,9} , s = 6, T := T ∪ {6} , α6 =−3,

I = ∅, S := S ∪ {8,9} , α8 = α9 =−4 (say).

Hence S = {1,3,5,8,9}, T = {2,4,6,7}. The sets Li,Ri develop in individual iter-

ations as follows:
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Li Ri

0 0
0 0
0 0
0 0

−4 −3
−5 −5
−1 −3

0 0
−6 −7

,

Li Ri

0 0
0 0
0 0
0 0

−4 −2
−5 −5
−1 −1

0 0
−6 −5

,

Li Ri

0 0
0 0
0 0
0 0

−2 −2
−3 −5
−1 −1

0 0
−4 −5

,

Li Ri

0 0
0 0
0 0
0 0

−2 −2
−3 −3
−1 −1

0 0
−4 −4

.

As a consequence of Theorems 6.3.1 and 1.6.44 we have:

Corollary 6.3.3 [25] Let A ∈ R
n×n and let B be any normal form of A. Then A is

Gondran–Minoux regular if and only if ZB does not contain an even cycle.

Using Theorem 1.6.44 and the subsequent Remark 1.6.45 we deduce:

Corollary 6.3.4 The problem of deciding whether a given matrix A ∈ R
n×n is

Gondran–Minoux regular can be solved using O(n3) operations.

Corollary 6.3.5 Every strongly regular matrix is Gondran–Minoux regular.

The analogue of Theorem 6.1.7 is not true for Gondran–Minoux independence;
this is demonstrated by a counterexample in [4]. In this example a 6 × 7 matrix
is presented whose rows are Gondran–Minoux independent but none of the 6× 6
submatrices is Gondran–Minoux regular.

Nevertheless we can prove an analogue of Corollary 6.1.8:

Theorem 6.3.6 If a matrix A ∈ R
m×n has Gondran–Minoux independent columns

then m≥ n.

Proof Let A = (aij ) ∈ R
m×n and m < n. We shall show that A has Gondran–

Minoux dependent columns.
Since the Gondran–Minoux independence of columns is not affected by ⊗ mul-

tiplying the columns by constants, we may assume without loss of generality that
the last row of A is zero. Let B be an m × m submatrix of A with greatest value
of maper(B). We may assume that B consists of the first m columns of A and
that id ∈ ap(B) (if necessary, we appropriately permute the columns of A). Let
C be the n × n matrix obtained by adding n − m zero rows to A. Then clearly
maper(C)=maper(B) and ap(C) contains any permutation that is an extension of
id from ap(B) to a permutation of N . As A already had one zero row and we have
added at least another one, C has at least two zero rows, thus ap(C) contains at least
one pair of permutations of different parities (see Fig. 6.2).
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Fig. 6.2 To Theorem 6.3.6

Hence, by Theorem 6.3.1 C is not Gondran–Minoux regular and if we denote the
columns of C by c1, . . . , cn then

∑⊕

j∈S

αj ⊗ cj =
∑⊕

j∈T

αj ⊗ cj

holds for some real numbers αj and two nonempty, disjoint subsets S and T of
the set N . This vector equality restricted to the first m components then yields the
Gondran–Minoux dependence of the columns of A. �

6.4 An Application to Discrete-event Dynamic Systems

In this section we present an application of the max-algebraic Cayley–Hamilton
Theorem (Theorem 5.3.19) and Gondran–Minoux Theorem (Theorem 6.3.1) in the
theory of discrete-event dynamic systems.

Given A ∈R
n×n

and b, c ∈R
n
, the sequence {gj }∞j=0, where

gj = cT ⊗Aj ⊗ b

for all j = 0,1,2, . . . , is called a discrete-event dynamic system (DEDS) with start-
ing vector b and observation vector c. The scalars gj are called Markov parameters
of the system and the triple (A,b, c) is called a realization of the DEDS of dimen-
sion n.

Suppose that (A,b, c) is a realization of a DEDS {gj }∞j=0, and consider the Han-
kel matrices

Hr =

⎛

⎜
⎜
⎝

g0 g1 · · · gr

g1 g2 · · · gr+1
· · · · · · · · · · · ·
gr gr+1 · · · g2r

⎞

⎟
⎟
⎠

for r = 0,1, . . . . By Theorem 5.3.19 there exist α0, α1, . . . , αn ∈R and disjoint sets
S,T ⊆ {0,1, . . . , n} such that

∑⊕

j∈S

αj ⊗Aj =
∑⊕

j∈T

αj ⊗Aj .
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If we multiply this equation by Ak (k positive integer) and then by cT from the left
and by b from the right we obtain

∑

j∈S

⊕
αj ⊗ gj+k =

∑

j∈T

⊕
αj ⊗ gj+k

for any positive integer k. Hence

∑

j∈S

⊕
αj ⊗ hj =

∑

j∈T

⊕
αj ⊗ hj ,

where h0, h1, . . . , hr are the columns of Hr . Using Theorem 6.3.1 we deduce:

Theorem 6.4.1 Let G= {gj }∞j=0 be a real sequence and r > 0 an integer. If either

ap+(Hr)= ∅ or ap−(Hr)= ∅ then no realization of G of dimension r or less exists.

The minimal-dimensional realization problem (that is, the task of finding a re-
alization of a given sequence of Markov parameters of minimal dimension) seems
to be unresolved and hard for general sequences; however, using Theorem 6.4.1
it is possible to solve this question for some types of DEDS, such as for convex
sequences. Let us recall that a sequence {gj }∞j=0 is called convex if

gj + gj−2 ≥ 2gj−1

for every natural number j ≥ 2. The following is providing a useful tool:

Proposition 6.4.2 [67] If {gj }∞j=0 is convex then

(a) id ∈ ap(Hr) for every r = 0,1, . . .;
(b) If ap(H0)= ap(H1)= · · · = ap(Hr−1)= {id} and ap(Hr) �= {id} then

ap (Hr)= {id, (1) (2) . . . (r − 1) (r, r + 1)} .

Corollary 6.4.3 If {gj }∞j=0 is convex then n=min{r; ap(Hr) �= {id}} if and only if
n is the least integer satisfying

g2n + g2n−2 = 2gn−1.

It is easily seen that for A= diag(d1, . . . , dn), b= 0, c= (c1, . . . , cn)
T the DEDS

is {gj }∞j=0, where

gj =
∑

i∈N

⊕
ci ⊗ d

j
i

or, in conventional notation

gj =max
i∈N

(ci + jdi) .
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Hence the sequence {gj }∞j=0 is convex and has a constant slope starting from some
j = j0. This indicates that for a convex sequence of Markov parameters which ul-
timately has a constant slope and the transient (that is, the beginning of the se-
quence before the slope becomes constant) is strictly convex, a realization of di-
mension "j0/2# + 1 can be found [67]. For such sequences, in conjunction with
Corollary 6.4.3 this provides a minimal-dimensional realization.

The minimal-dimensional realization problem for general convex sequences can
also be efficiently solved [90]. The basic principles are the same but the proof of
minimality is more evolved and requires different methodology.

6.5 Conclusions

In Sect. 3.3 and this chapter we have studied three concepts of independence in max-
algebra: linear independence, strong linear independence and Gondran–Minoux
independence. From the presented theory it follows that linear independence im-
plies strong linear independence and strong linear independence implies Gondran–
Minoux independence. For square matrices these three concepts turn to regularity,
strong regularity and Gondran–Minoux regularity.

Following the resolution of the even cycle problem now all three types of regu-
larity for an n×n matrix can be checked in O(n3) time; however, checking SLI and
GMI in polynomial time seems to be an unresolved problem (see Chap. 11).

Note that further theory of strong regularity can be found in [113].

6.6 Exercises

Exercise 6.6.1 For each of the following matrices decide whether they are strongly
regular and whether they are Gondran–Minoux regular:

(a) A=
⎛

⎝
1 2 4

−4 0 2
1 3 1

⎞

⎠ [strongly regular, hence also Gondran–Minoux regular]

(b) A=
⎛

⎝
1 2 5

−4 0 2
1 3 1

⎞

⎠ [Gondran–Minoux regular but not strongly regular]

(c) A =
⎛

⎝
1 2 5

−1 0 3
1 1 1

⎞

⎠ [Not Gondran–Minoux regular, hence also not strongly

regular]
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Exercise 6.6.2 Decide whether the matrix below has strongly linearly independent
columns:

A=

⎛

⎜
⎜
⎝

1 2 5
−4 0 2

1 3 1
1 3 0

⎞

⎟
⎟
⎠

[It has, consider the 3× 3 submatrix consisting of rows 1,3,4]

Exercise 6.6.3 In the following matrix A find a 3 × 3 submatrix whose max-
algebraic permanent is greatest without checking all 3× 3 submatrices (a solution
to this question can be found by inspection):

A=

⎛

⎜
⎜
⎜
⎜
⎝

1 3 0
2 −1 4
5 6 3
1 2 2
4 1 3

⎞

⎟
⎟
⎟
⎟
⎠

.

(Hint: Subtract the column maximum from each column.)

Exercise 6.6.4 Prove the statement: Let A ∈ R
n×n

and M be any maximal set of
nonequivalent eigennodes of A. Then the submatrix

�((λ (A))−1 ⊗A)[M]

is strongly regular.

Exercise 6.6.5 Let A ∈R
n×n

be strongly definite. Prove that pd(A) is equal to the
topological dimension of the principal eigenspace. (Hint: Show that the topological
dimension is equal to the number of strongly connected components of the critical
digraph. See [139])

Exercise 6.6.6 A real square matrix is called typical if no two entries have the same
fractional part. Prove the statement: If A is typical and Im(A) contains an integer
vector then A is strongly regular.

Exercise 6.6.7 Consider systems Ax = b in nonnegative linear algebra (A and B

are nonnegative, with conventional addition and multiplication). Show that

(a) T (A) are the same as in max-algebra;
(b) If A is positive, the possible types of T (A) are {0,∞}, {0,1} and {0,1,∞}.

(Hint: Consider convex sets in the plane.)
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Exercise 6.6.8 (Izhakian linear dependence) Let A ∈ R
n×n

. Show that A is not
strongly regular if and only if the following condition is satisfied: there exists x

such that the maximum in each expression (A⊗ x)i is attained twice.
(Hint: Use the method used in the proof of Theorem 6.3.1.)



Chapter 7
Two-sided Max-linear Systems

Unlike in conventional linear algebra, moving from the task of finding a solution to
a one-sided max-linear system of the form

A⊗ x = b

to finding a solution to a two-sided system

A⊗ x ⊕ c= B ⊗ x ⊕ d, (7.1)

where A,B ∈ R
m×n

and c, d ∈ R
m

, means a significant change of difficulty of
the problem. Instead of finding a pre-image of a max-linear mapping we now have
to find a vector in the intersection of two column spaces without the possibility
of converting this task to the first one. The good news is that the solution set to
(7.1) is finitely generated (Theorem 7.6.1), and that we feel reasonably confident in
being able to solve such systems, see the pseudopolynomial Alternating Method of
Sect. 7.3 and the corresponding Matlab codes downloadable from

http://web.mat.bham.ac.uk/P.Butkovic/software/index.htm.

Yet, a basic question remains open to date: are two-sided systems polynomially
solvable? It follows from the results in [14] that two-sided systems are polynomially
equivalent to mean payoff games, a well-known hard problem in NP ∩ Co − NP.
Thus, there is good reason to hope that the answer to the question is affirmative.

If c = d = ε in (7.1) then this system has the form A⊗ x = B ⊗ x and is called
homogeneous, otherwise it is nonhomogeneous. A system of the form

A⊗ x = B ⊗ y, (7.2)

where A ∈ R
m×n

and B ∈ R
m×k

is a special homogeneous system and will be
called a system with separated variables. In fact we can transform nonhomogeneous
systems into homogeneous and these in turn into systems with separated variables
(see Sect. 7.4). We will, of course, be interested in nontrivial solutions, that is, when

P. Butkovič, Max-linear Systems: Theory and Algorithms,
Springer Monographs in Mathematics 151,
DOI 10.1007/978-1-84996-299-5_7, © Springer-Verlag London Limited 2010
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x �= ε for homogeneous systems and when
(
x
y

) �= ε for systems with separated vari-
ables. In some cases (such as the Alternating Method) we will restrict our attention
to finite solutions.

We start by presenting a few easily solvable special cases, then we continue with
the Alternating Method for solving the systems with separated variables with a proof
of pseudopolynomial computational complexity and then we show how to convert
general systems to systems with separated variables. A proof of finite generation of
the solution set concludes this chapter. Nonhomogeneous systems are also studied
in Chap. 10 in connection with max-linear programs.

Note that the generalized eigenproblem

A⊗ x = λ⊗B ⊗ x,

which will be studied in Chap. 9, may be seen as a generalization of both the eigen-
problem and two-sided linear systems. It is providing, among other benefits, useful
information about the two-sided systems. For instance, it follows that compared to
the general case a randomly considered system A⊗ x = B ⊗ x is less likely to have
a nontrivial solution if both A and B are symmetric.

An alternative approach to solving two-sided systems can be found in [148].

7.1 Basic Properties

For A,B ∈R
m×n

and c, d ∈R
m

we denote

S (A,B, c, d)=
{
x ∈R

n;A⊗ x ⊕ c= B ⊗ x ⊕ d
}

and

S (A,B)=
{
x ∈R

n;A⊗ x = B ⊗ x
}

.

Proposition 7.1.1 For any A,B ∈ R
m×n

and c, d ∈ R
m

the set S(A,B, c, d) is
max-convex and the set S(A,B) is a subspace.

Proof Let α,β ∈R and α⊕ β = 0. Then

A⊗ (α⊗ x ⊕ β ⊗ y)⊕ c

=A⊗ (α⊗ x ⊕ β ⊗ y)⊕ α⊗ c⊕ β ⊗ c

= α⊗ (A⊗ x ⊕ c)⊕ β ⊗ (A⊗ y ⊕ c)

= α⊗ (B ⊗ x ⊕ d)⊕ β ⊗ (B ⊗ y ⊕ d)

= B ⊗ (α⊗ x ⊕ β ⊗ y)⊕ α⊗ d ⊕ β ⊗ d

= B ⊗ (α⊗ x ⊕ β ⊗ y)⊕ d.

Hence S(A,B, c, d) is max-convex; the second statement is proved similarly. �
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Corollary 7.1.2 The solution set of a homogeneous system with separated variables
is a subspace.

If A has an ε row, say the kth then in a solution
(
x
y

)
to (7.2) yj = ε if bkj > ε.

All such variables yj and the kth equation may removed from the system. Similarly,
if B has an ε row. If one of A and B has an ε column then any such column may
be removed from the system with no affect on the solution set. We may therefore
assume without loss of generality that A and B are doubly R-astic.

7.2 Easily Solvable Special Cases

In some situations it is not difficult to solve two-sided systems. For instance all
solutions (if any) to the systems of the form

A⊗ x = α⊗ x,

where A ∈ R
n×n

and α ∈ R is given, can easily be found using the techniques of
Chap. 4. This readily generalizes to the systems

A⊗ x = P ⊗ x,

where A ∈ R
n×n

and P is a generalized permutation matrix since the inverse to P

exists. Let us discuss now a few other, less trivial, yet simple cases.

7.2.1 A Classical One

Special two-sided systems have been studied already in early works on max-algebra
[97, 100] see also [8]. The best known example perhaps is the system

x =A⊗ x ⊕ b. (7.3)

If λ(A)≤ 0 then �(A)= I ⊕A⊕A2⊕· · ·⊕An−1 by Proposition 1.6.10 and hence

A⊗�(A)⊗ b⊕ b=
(
A⊕A2 ⊕ · · · ⊕An

)
⊗ b⊕ b

=
(
I ⊕A⊕A2 ⊕ · · · ⊕An

)
⊗ b

= (I ⊕ � (A))⊗ b=�(A)⊗ b,

proving that �(A)⊗ b is a solution to (7.3). This solution is unique when λ(A) < 0
[8, 102].



152 7 Two-sided Max-linear Systems

7.2.2 Idempotent Matrices

Another special case is related to idempotent matrices, that is, square matrices
A ∈R

n×n
such that

A⊗A=A.

If A is idempotent then �(A)= A and so λ(A)≤ 0 by Proposition 1.6.10. Also, A

is definite if A �= ε since then A⊗ v = v for some column v �= ε, which means that
0 ∈�(A).

In the next statement we consider finite matrices.

Theorem 7.2.1 [23] If A,B ∈R
n×n are increasing and idempotent then the follow-

ing are equivalent:

(a) A⊗ x = B ⊗ y is satisfied by some x, y ∈R
n
, x, y �= ε.

(b) A⊕B is definite.
(c) A⊗ x = B ⊗ x is satisfied by some x ∈R

n
, x �= ε.

Proof (a)=⇒ (b) The vector z=A⊗ x = B ⊗ y is finite and

(A⊕B)⊗ z=A⊗ z⊕B ⊗ z=A⊗ (A⊗ x)⊕B ⊗ (B ⊗ y)

=A⊗ x ⊕B ⊗ y = z⊕ z= z.

(b)=⇒ (c) If A⊕B is definite then for some z ∈R
n we have

z= (A⊕B)⊗ z=A⊗ z⊕B ⊗ z,

hence A⊗ z≤ z,B⊗ z≤ z but these inequalities are satisfied with equality because
A,B are increasing. Thus (c) follows.

(c)=⇒ (a) Trivial. �

7.2.3 Commuting Matrices

We also briefly discuss the case of commuting matrices.

Theorem 7.2.2 If A,B ∈R
n×n

and A⊗B = B⊗A then the two-sided max-linear
system with separated variables

A⊗ x = B ⊗ y

has a nontrivial solution and this solution can be found by solving the eigenproblem
for one of A and B .
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Proof If Ak = ε then set y = ε, xk = 0 and xj = ε for j �= k. Similarly, if B has an
ε column.

Suppose now that both A and B are column R-astic. Let z ∈ V (A,λ), λ ∈ R,
z �= ε, then by Lemma 4.7.1 B ⊗ z ∈ V (A,λ) and B ⊗ z �= ε since B is column
R-astic. Also, λ > ε because A is column R-astic. Therefore we have λ⊗ z �= ε and

A⊗ (B ⊗ z)= λ⊗ (B ⊗ z)= B ⊗ (λ⊗ z) .

It remains to set x = B ⊗ z and y = λ⊗ z. �

Note that it follows from the proof of Theorem 7.2.2 that a solution (x, y) with
x �= ε and y �= ε exists, provided that both A and B are commuting column R-astic
matrices.

Corollary 7.2.3 If A,B ∈ R
n×n

, A ⊗ B = B ⊗ A and ϕ(t),ψ(t) are max-
polynomials then the two-sided max-linear system

ϕ (A)⊗ x =ψ (B)⊗ y

has a nontrivial solution, and this solution can be found by solving the eigenproblem
for one of ϕ(A) and ψ(B).

Proof If A⊗B = B ⊗A then also ϕ(A)⊗ψ(B)=ψ(B)⊗ ϕ(A). �

7.2.4 Essentially One-sided Systems

If in a system (7.2), where A and B are doubly R-astic, one of the vectors x, y is one-
dimensional, then we have an essentially one-sided system and solution methods
from Chap. 3 can be applied immediately. However, in this case we can describe the
unique scaled basis of this set. This will be useful in the context of attraction spaces
(Sect. 8.5).

Let us assume without loss of generality that y is one-dimensional. Thus B is a
one-column matrix. Since B is assumed to be doubly R-astic, it is finite. We may
then assume that B = 0 and the system is

A⊗ x = y.

Note that by eliminating the variable y and equating all left-hand sides we can write
this system equivalently as a chain of equations

∑⊕

j∈N

a1j xj =
∑⊕

j∈N

a2j ⊗ xj = · · · =
∑⊕

j∈N

amj ⊗ xj . (7.4)
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Since A is doubly R-astic, we have maxi∈M aij > ε for every j ∈ N . Using the
substitution

zj =
(

max
i∈M

aij

)−1 ⊗ xj , j ∈N, (7.5)

we can now assume that the system is

A⊗ z= y, (7.6)

where all column maxima in A are 0 (and y is a single variable). By Theorem 3.1.1( z
y

) ∈R
n+1 is a scaled solution to (7.6) if and only if y = 0, z≤ 0 and for the sets

Mj =
{
i ∈M;aij = 0

}
, j ∈N,

we have
⋃

j :xj=0

Mj =M. (7.7)

Let us denote the solution set to (7.6) by S. It turns out that zero is the only
possible value of any finite component of a scaled extremal in S:

Proposition 7.2.4 [134] Let
( z

0

) ∈ S be a scaled vector and ε < zj < 0 for some
j ∈N . Then

( z
0

)
is not an extremal of S.

Proof Let K< := {j ∈ N; ε < zj < 0} and K0 := {j ∈ N; zj = 0}, and define vec-

tors
(

v0

0

) ∈R
n+1

and
(

v(k)

0

) ∈R
n+1

for each k ∈K< by

v0
j =
{

0, if j ∈K0

ε, otherwise
, vj (k)=

{
0, if j ∈K0 ∪ {k}
ε, otherwise

.

Observe that both
(

v0

0

)
and
(

v(k)

0

)
for any k ∈ K<, are (at least two) solutions

to (7.4), different from
( z

0

)
. We have:

(
z

0

)

=
(

v0

0

)

⊕
∑⊕

k∈K<

zk ⊗
(

v(k)

0

)

,

hence
( z

0

)
is not an extremal. �

We have seen above that
( z

y

) ∈ R
n+1 is a scaled solution to (7.6) if and only

if y = 0, z ≤ 0 and (7.7) holds, that is, the sets Mj, j ∈ K form a covering of M ,
where

K = {j ∈N; zj = 0}.
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Recall that a covering is called minimal if it does not contain any proper subcover-
ing. We will now also say that a covering is nearly minimal if it contains no more
than one proper subcovering. Hence, a covering Mj, j ∈K is nearly minimal if and
only if there exists no more than one r ∈K such that Mj, j ∈K\{r} is also a cover-
ing. Recall that by ej (j ∈N ) we denote the vector that has the j th coordinate zero
and all other are ε.

Proposition 7.2.5 [134] The unique scaled basis of S consists of the vectors of the
form

(
vK

0

)
, where vK =∑⊕

j∈K ej , and Mj, j ∈ K is a nearly minimal covering
of M .

Proof By Corollary 3.3.11 we only need to prove that a vector is an extremal in S

if and only if it is
(

vK

0

)
for a nearly minimal covering of M .

Let
( v

0

)
be an extremal of S. By Proposition 7.2.4, all its finite components are

zero and thus v = vK for some K ⊆N , such that Mj, j ∈K is a covering of M . If
K is not nearly minimal, then there exist r and s such that Mj, j ∈K[r] :=K\{r}
and Mj, j ∈ K[s] := K\{s} are both coverings of M . Then

(
vK[r]

0

)
and
(

vK[s]
0

)
are

both solutions to (7.6) and
(

vK

0

)= ( vK[r]
0

)⊕ ( vK[s]
0

)
, hence

(
vK

0

)
is not an extremal.

Conversely, if
(

vK

0

)
is a scaled solution but not an extremal, then there exist

( u
0

) �= ( vK

0

)
and
(w

0

) �= ( vK

0

)
such that

(
vK

0

)= ( u
0

)⊕ (w0
)
. Evidently

( u
0

)≤ ( vK

0

)
and

(w
0

) ≤ ( vK

0

)
. By Proposition 7.2.4 we can represent

( u
0

)
and
(w

0

)
as combinations

of solutions to (7.6) over {0, ε}. These solutions correspond to coverings, which are
proper subcoverings of Mj, j ∈K . At least two of these coverings are different from
each other, hence K is not nearly minimal. �

Thus, the problem of finding the unique scaled basis of system (7.6) is equivalent
to the problem of finding all nearly minimal subcoverings of Mj, j ∈N .

The following special case will also be useful. Here we denote for every i ∈M :

Li =
{
j ∈N;aij = 0

}
.

Corollary 7.2.6 If L1, . . . ,Lm are pairwise disjoint, then the unique scaled basis
of S is the set of vectors

(
vK

0

)
, where vK =∑⊕

j∈K ej , and K is an index set which
contains exactly one index from each set Li (i ∈M).

Proof In this case there are no nearly minimal coverings of M other than minimal.
If K is an index set which contains exactly one index from each set Li (i ∈M) then
Mj, j ∈K is a minimal covering of M . �
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7.3 Systems with Separated Variables—The Alternating Method

Consider the problem of solving max-linear systems with separated variables:

Given A ∈R
m×n

and B ∈R
m×k

find x ∈ R
n, y ∈R

k such that

A⊗ x = B ⊗ y. (7.8)

The method we will present finds a finite solution to (7.8) or decides that no such
solution exists. We will therefore assume in this section that “solution” means finite
solution. As explained at the beginning of this chapter, we may assume without loss
of generality that A and B are doubly R-astic. Note that the product of a doubly
R-astic matrix and a finite vector is a finite vector.

The algebraic method for solving one-sided systems (Sect. 3.2) will be helpful
for solving (7.8). Recall that for any A ∈ R

m×n
and b ∈R

m
the vector x =A∗ ⊗′ b

(the principal solution) is the greatest solution to A⊗ x ≤ b, and A⊗ x = b has
a solution if and only if x is a solution. So a rather natural idea is starting from
some x = x(0) to take for y(0) the principal solution to B ⊗ y = A⊗ x(0), then
for x(1) the principal solution to A⊗ x = B ⊗ y(0), for y(1) the principal solution
to B ⊗ y = A ⊗ x(1) and so on. It is probably not immediately obvious whether
the sequences {x(k)}∞k=0, {y(k)}∞k=0 yield anything useful. We will show that under
reasonable assumptions they either converge to a solution to (7.8) or we can deduce
that there is no solution. But first we formally present the algorithm. This section is
based on [68].

Algorithm 7.3.1 ALTERNATING METHOD

Input: A ∈R
m×n

, B ∈R
m×k

, doubly R-astic.
Output: A solution (x, y) to (7.8) or an indication that no such solution exists.
Let x(0) ∈R

n be any vector.
r := 0
again:
y(r) := B∗ ⊗′ (A⊗ x(r))

x(r + 1) :=A∗ ⊗′ (B ⊗ y(r))

If xi(r + 1) < xi(0) for every i ∈N then stop (no solution)
If A⊗ x(r + 1)= B ⊗ y(r) then stop ((x(r + 1), y(r)) is a solution)
Go to again

Example 7.3.2 Let

A=
⎛

⎝
3 −∞ 0
1 1 0

−∞ 1 2

⎞

⎠ , B =
⎛

⎝
1 1
3 2
3 1

⎞

⎠ .

Then

A∗ =
⎛

⎝
−3 −1 +∞
+∞ −1 −1

0 0 −2

⎞

⎠ , B∗ =
(−1 −3 −3
−1 −2 −1

)

.
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Set (randomly) x(0)= (5,3,1)T . The algorithm then finds

r = 0: x (0)=
⎛

⎝
5
3
1

⎞

⎠ , A⊗ x (0)=
⎛

⎝
8
6
4

⎞

⎠ , y (0)=
(

1
3

)

,

B ⊗ y (0)=
⎛

⎝
4
5
4

⎞

⎠ ;

r = 1: x (1)=
⎛

⎝
1
3
2

⎞

⎠ , A⊗ x (1)=
⎛

⎝
4
4
4

⎞

⎠ , y (1)=
(

1
2

)

,

B ⊗ y (1)=
⎛

⎝
3
4
4

⎞

⎠ ;

r = 2: x (2)=
⎛

⎝
0
3
2

⎞

⎠ , A⊗ x (2)=
⎛

⎝
3
4
4

⎞

⎠ .

Since A⊗x(2)= B⊗y(1), the algorithm stops yielding the solution (x(2), y(1)).

In order to prove correctness of the Alternating Method, first recall that by Corol-
lary 3.2.4 the following hold for any matrices U,V,W of compatible sizes:

U ⊗ (U∗ ⊗′ W )≤W, (7.9)

U ⊗ (U∗ ⊗′ (U ⊗W)
)=U ⊗W. (7.10)

The following operators will be useful:

π : y −→A∗ ⊗′ (B ⊗ y)

and

ψ : x −→ B∗ ⊗′ (A⊗ x) .

Hence the Alternating Method generates the pair-sequence

{(x (r) , y (r))}r=0,1,...

satisfying

x (r + 1)= π (y (r)) (7.11)

and

y (r)=ψ (x (r)) . (7.12)

Let x ∈R
n, y ∈R

k . We shall say that (x, y) is stable if (x, y)= (π(y),ψ(x)).
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Lemma 7.3.3 Every stable pair (x, y) is a solution.

Proof If (x, y) is stable then using (7.9) we have

A⊗ x =A⊗ π (y)=A⊗ (A∗ ⊗′ (B ⊗ y)
)≤ B ⊗ y

= B ⊗ψ (x)= B ⊗ (B∗ ⊗′ (A⊗ x)
)≤A⊗ x,

implying equality between all terms and hence also the lemma statement. �

A solution that is stable will be called a stable solution.

Lemma 7.3.4 If (x, y) is a solution then (π(y),ψ(x)) is a stable solution.

Proof If (x, y) is a solution then using (7.10) we have

ψ (π (y))= B∗ ⊗′ (A⊗ (A∗ ⊗′ (B ⊗ y)
))

= B∗ ⊗′ (A⊗ (A∗ ⊗′ (A⊗ x)
))

= B∗ ⊗′ (A⊗ x)=ψ (x) .

Similarly, π (ψ (x))= π (y), whence (π (y) ,ψ (x)) is stable and therefore a solu-
tion. �

The next two lemmas present important monotonicity features of the Alternating
Method, which will be crucial for the proof of performance.

Lemma 7.3.5 The sequence {A(x(r))}r=0,1,... is nonincreasing.

Proof Applying (7.9) to (7.11) and (7.12) we get

A⊗ x (r + 1)≤ B ⊗ y (r)≤A⊗ x (r) . �

Lemma 7.3.6 The sequence {x(r)}r=0,1,... is nonincreasing.

Proof x(r + 1)= π(y(r))= π(B∗ ⊗′ (A⊗ x(r))). This implies that x(r + 1) is an
isotone function of the nonincreasing A⊗ x(r). �

The next lemma and theorem are a further preparation for the proof of correctness
of the Alternating Method.

Lemma 7.3.7 If a solution exists then the sequence {x(r)}r=0,1,... is lower-bounded
for any x(0).

Proof For any stable solution (x, y) and α ∈ R it is immediate that α ⊗ (x, y) is
also a stable solution, and α may be chosen small enough so that α ⊗ x ≤ x(0).
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By Lemma 7.3.4 if a solution exists then a stable solution (u, v) exists such that
x(0)≥ u. And if x(r)≥ u for some r then by (7.9) and isotonicity we have

x (r + 1)= (π ◦ψ) (x (r))≥ (π ◦ψ)(u)= π (v)= u

and the result follows by induction. �

Theorem 7.3.8 If all components of x(r) or y(r) have properly decreased after a
number of steps of the Alternating Method then (7.8) has no solution.

Proof In the proof of Lemma 7.3.7 the value of α may be taken so that α⊗ x ≤ x(0)

but with equality in at least one component. Lemmas 7.3.6 and 7.3.7 then imply
that component of x(r) remains fixed in value for all r ≥ 0. Moreover it is clear
that analogues of Lemmas 7.3.5, 7.3.6 and 7.3.7 are provable for the sequence
{y(r)}r=0,1,.... �

We are ready to prove the correctness of the Alternating Method and deduce
corollaries.

Theorem 7.3.9 The pair-sequence {(x(r), y(r))}r=0,1,... generated by the Alternat-
ing Method converges if and only if a solution exists. Convergence is then mono-
tonic, to a stable solution, for any choice of x(0) ∈R

n.

Proof If (x(r), y(r))−→ (ξ, η) then (ξ, η) by Lemma 7.3.7 and by continuity

(ξ, η)= lim (x (r + 1) , y (r))= lim (π (y (r)) ,ψ (x (r)))= (π (η) ,ψ (ξ)) .

Hence (ξ, η) is stable, thus a stable solution by Lemma 7.3.3.
Conversely, if a solution exists the monotonic convergence of {x(r)} follows from

Lemmas 7.3.6 and 7.3.7, and that of {y(r)} by isotonicity and continuity. �

If all finite entries in (7.8) are integer, A,B are doubly R-astic and x(0) is an in-
teger vector then the integrality is preserved throughout the work of the Alternating
Method. Hence if a solution exists, it will be found in a finite number of steps. We
may summarize these observations in the following.

Theorem 7.3.10 If A ∈ Z
m×n

and B ∈ Z
m×k

are doubly R-astic and a solution
to (7.8) exists then the Alternating Method starting from an x(0) ∈ Z

n will find an
integer solution in a finite number of steps.

In the integer case we may estimate the computational complexity of the Alter-
nating Method provided that x(0) is an integer vector and at least one of A,B is
finite (and as before, the other one is doubly R-astic). We will now assume without
loss of generality that A is finite.
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Theorem 7.3.11 If A ∈ Z
m×n, B ∈ Z

m×k
and the Alternating Method starts with

x(0) ∈ Z
n then it will terminate after at most

(n− 1)
(
1+ γ ∗ ⊗A∗ ⊗A⊗ γ

)

iterations where γ = x(0).

Proof Suppose first that a solution exists. By Theorem 7.3.8, there is a component
of γ , say γj , that will not change during the run of the Alternating Method; let us
call such a component a sleeper. The algorithm will halt as soon as A⊗ x does not
change. This is guaranteed to happen at the latest when all components of x become
so small compared to γj that they will not affect the value of A⊗ x, more precisely
when for every k and i

aik + xk ≤ aij + γj ,

that is, when xk ≤ ukj , where

ukj =min
i

(
aij + γj − aik

)= (A∗ ⊗′ A)
kj
+ γj .

This inequality means that the nonsleeper xk has become dominated by the
sleeper γj . Since xk is nonincreasing, the domination will persist in subsequent
iterations. Since the value of j is not known we guarantee domination for xk by
considering all components as potential sleepers, that xk is certainly dominated if it
falls in value below

βk =min
j

ukj =min
j

((
A∗ ⊗′ A)

kj
+ γj

)
= (A∗ ⊗′ A⊗′ γ )

k
.

Hence the fall of xk before domination is at most

wk = γk − βk + 1.

There at most n− 1 nonsleepers and at every iteration at least one nonsleeper falls
by at least 1 (otherwise A⊗ x does not change and the algorithm stops). Hence the
total number of iterations before domination is not exceeding

(n− 1)max
k

wk = (n− 1)max
k

(γk − βk + 1)= (n− 1)
(
1+ β∗ ⊗ γ

)

= (n− 1)
(
1+ γ ∗ ⊗A∗ ⊗A⊗ γ

)
.

If a solution does not exist then after at most (n−1)(1+γ ∗⊗A∗⊗A⊗γ ) iterations
all components of x fall (since otherwise A⊗x does not change, yielding a solution)
and the algorithm stops indicating infeasibility. �

If C ∈R
n×n

, λ(C) > ε, then it follows from Lemma 1.6.28 that

min
x∈ Rn

x∗ ⊗C ⊗ x = z∗ ⊗C ⊗ z= λ (C) ,
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where z is any finite subeigenvector of C. Therefore (by Theorem 7.3.11) a plausible
vector to start the Alternating Method with is a finite subeigenvector of A∗⊗A. Note
that A∗ ⊗A is finite since A is finite and thus all eigenvectors of A∗ ⊗A are finite
(subeigenvectors). Then the number of iterations is bounded by

(n− 1)
(
1+ λ(A∗ ⊗A)

)
.

Let K(A) = max{|aij |; i ∈M,j ∈ N} for any matrix A ∈ R
m×n. It is easily seen

that

|λ(A)| ≤K (A) .

Also, let C = (cij ) = A∗ ⊗ A. Then C is increasing and K(C) ≤ 2K(A), thus
0≤ λ(C)≤ 2K(A). At the same time the individual (four) lines in the main loop
of the Alternating Method require

O ((mn+mk)+ (mn+mk)+ n+ (mn+mk +m))

operations (including comparisons). Hence the computational complexity of the Al-
ternating Method is

(n− 1) (1+ 2K (A))O (m(n+ k))=O (mn(n+ k)K (A)) . (7.13)

We conclude:

Theorem 7.3.12 The Alternating Method is pseudopolynomial if applied to in-
stances with integer entries where one of the matrices A,B is finite and the other
one is doubly R-astic.

The Alternating Method as stated here is not polynomial [132]. To see this con-
sider the system A⊗ x = B ⊗ y with

A=
⎛

⎝
1 1
0 k

0 0

⎞

⎠ , B =
⎛

⎝
0 1
0 k

0 0

⎞

⎠

and starting vector x0 = (k/2,0), which is an eigenvector of A∗ ⊗ A. It can be
verified that the Alternating Method will produce a sequence of vectors starting
from x0 in which the first component will decrease in every iteration by 1 until it
eventually reaches (0,0)T , a solution to A⊗ x = B ⊗ y.

Remark 7.3.13 In [136] the concept of cyclic projectors is studied. It enabled the
author to generalize the Alternating Method to the case of homogeneous multi-sided
systems, and to prove using the cellular decomposition idea, that the Alternating
Method converges in a finite number of iterations to a finite solution of a multi-
sided system with real entries, if such a solution exists. The paper also present new
bounds on the number of iterations of the Alternating Method, expressed in terms
of the Hilbert projective distance.
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7.4 General Two-sided Systems

Following the presentation of a pseudopolynomial method for finding a solution to
systems with separated variables in the previous section, a question arises whether
the general two-sided systems can be converted to those with separated variables.
The answer is affirmative and will be given next.

Consider a general two-sided system (7.1). We start with a cancellation rule that
in many cases significantly simplifies it.

Lemma 7.4.1 (Cancellation Law) Let v,w,a, b ∈ R, a > b. Then for any real x

we have

v⊕ a⊗ x =w⊕ b⊗ x (7.14)

if and only if

v⊕ a ⊗ x =w. (7.15)

Proof If x satisfies (7.14) then LHS ≥ a ⊗ x > b⊗ x. Hence RHS =w and (7.15)
follows. If (7.15) holds then w ≥ a⊗ x > b⊗ x and thus w =w⊕ b⊗ x. �

It follows from Lemma 7.4.1 that from a two-sided system we may always re-
move a term involving a variable without changing the solution set if a term with the
same variable appears on the other side of the same equation with a greater coeffi-
cient. This is, of course, not possible if the coefficients of a variable on both sides
of an equation are equal. Also conversely, if a variable appears on one side only we
may “reinstate” it on the other side with any coefficient smaller than the existing
one. Thus for instance when studying systems where every equation contains each
variable on at least one side with a finite coefficient, we may assume without loss of
generality that all coefficients of such a system are finite.

As another consequence we have that if a column (row) of A is R-astic then we
may assume without loss of generality that so is the corresponding column (row) of
B and vice versa.

If for a variable the corresponding columns in both A and B are ε then these
columns and variable may be removed without affecting the solution set of (7.1).
Similarly, if for some i both the ith rows of A and B are ε then either this system has
no solution (when ci �= di ) or is satisfied by any x (when ci = di ). In the latter case
the ith equation may be removed. Hence we may assume without loss of generality
that both A and B are doubly R-astic.

By introducing an extra variable, say xn+1, (7.1) can be converted to a homoge-
neous system

Ã⊗ z= B̃ ⊗ z (7.16)

where Ã= (A|c), B̃ = (B|d) and z= (z1, . . . , zn+1)
T . This conversion is supported

by the following:
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Lemma 7.4.2 Let A,B ∈ R
m×n

and c, d ∈ R
m

. Then (7.1) has a solution if and
only if (7.16) has a solution with zn+1 = 0.

Proof It follows immediately from the definitions. �

It is easily seen that if all entries in a homogeneous system are finite then a
nontrivial solution exists if and only if a finite solution exists. Hence we have a
slight modification of Lemma 7.4.2:

Lemma 7.4.3 Let A,B ∈ R
m×n and c, d ∈ R

m. Then (7.1) has a solution if and
only if (7.16) has a nontrivial solution.

Consider now homogeneous systems of the form

A⊗ x = B ⊗ x (7.17)

where A,B ∈ R
m×n

are (without loss of generality) doubly R-astic. System (7.17)
is equivalent to

A⊗ x = y

B ⊗ x = y

or, in compact form
(

A

B

)

⊗ x =
(

I

I

)

⊗ y. (7.18)

This is a system with separated variables and both
(

A
B

)
and
(

I
I

)
are doubly R-astic.

Hence the Alternating Method may immediately be applied to this system with guar-
anteed convergence as specified in Theorem 7.3.9.

To achieve a complexity result based on Theorem 7.3.12 and (7.13) we will as-
sume that A,B ∈ Z

m×n. As discussed above, this case actually covers all systems
with entries from Z with every variable appearing on at least one side of each equa-
tion with a finite coefficient. Then

(
A
B

)
is finite and

(
I
I

)
is doubly R-astic. Hence

if we denote K(A|B) for convenience by K and we use the fact that (7.18) has 2m

equations and n+m variables we deduce by (7.13) that the Alternating Method ap-
plied to this system will terminate in a finite number of steps and its computational
complexity is

O (2mn(n+m)K)=O (mn(m+ n)K) . (7.19)

We conclude:

Theorem 7.4.4 Homogeneous system (7.17) with finite, integer matrices A,B can
be solved using the Alternating Method in pseudopolynomial time.
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7.5 The Square Case: An Application of Symmetrized Semirings

Symmetrized semirings [8, 86] are sometimes useful to study two-sided systems of
equations in max-algebra. We now give a brief account of this theory and its appli-
cation to two-sided systems, although their practical use for solving the two-sided
systems is rather limited, since in general they only provide a necessary solvabil-
ity condition. Another application of this idea is to the generalized eigenproblem
(Chap. 9).

Denote S= R×R and extend ⊕ and ⊗ to S as follows:

(a, a′)⊕ (b, b′)= (a ⊕ b, a′ ⊕ b′),

(a, a′)⊗ (b, b′)= (a ⊗ b⊕ a′ ⊗ b′, a⊗ b′ ⊕ a′ ⊗ b).

It is easy to check that ε = (−∞,−∞) is the neutral element of S with respect
to ⊕ and (0,−∞) is the neutral element with respect to ⊗.

If x = (a, a′) then �x stands for (a′, a), x � y means x ⊕ (�y), the modulus
of x ∈ S is |x| = a ⊕ a′, the balance operator is x• = x � x = (|x|, |x|). Note that
we are using the symbol | · | for both the modulus of an element of a symmetrized
semiring and for the absolute value of a real number since no confusion should arise.
The following identities are easily verified from the definitions:

�(�x)= x

�(x ⊕ y)= (�x)⊕ (�y)

�(x ⊗ y)= (�x)⊗ y.

Lemma 7.5.1 Let x, y ∈ S. Then the following hold:

(a) |x ⊕ y| = |x| ⊕ |y|,
(b) |x ⊗ y| = |x| ⊗ |y|,
(c) |� x| = |x|.

Proof Let x = (a, b), y = (c, d). Then |x ⊕ y| = a ⊕ c ⊕ b ⊕ d and |x| ⊕ |y| =
a⊕ b⊕ c⊕ d , hence the first identity. Also, we have

|x ⊗ y| = (a⊗ c⊕ b⊗ d)⊕ (a ⊗ d ⊕ b⊗ c)

= (a⊕ b)⊗ (c⊕ d)= |x| ⊗ |y| .
Part (c) is trivial. �

Let x = (a, a′), y = (b, b′). We say that x balances y (notation x  y) if
a⊕ b′ = a′ ⊕ b. Note that although  is reflexive and symmetric, it is not transi-
tive.

If x = (a, b) then x is called sign-positive (sign-negative), if a > b (a < b) or
x = ε; x is called signed if it is either sign-positive or sign-negative; x is called
balanced if a = b, otherwise it is called unbalanced. Thus, ε is the only element of
S that is both signed and balanced.
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Proposition 7.5.2 Let x, y ∈ S. Then x⊗y is balanced if either of x, y is balanced;
x ⊕ y is balanced if both x and y are balanced.

Proof Straightforwardly from the definitions. �

Due to the bijective semiring morphism t −→ (t,−∞) we will identify, when ap-
propriate, the elements of R and the sign-positive elements of S of the form (t,−∞).
Conversely, a sign-positive element (a, b) may be identified with a ∈ R. So for in-
stance 3 may denote the real number as well as the element (3,−∞) of S. By these
conventions we may write 3 � 2= 3,3 � 7=�7,3 � 3= 3•.

The following are easily proved (see Exercise 7.7.6) for x, y,u, v ∈ S:

x  y,u v =⇒ x ⊕ u y ⊕ v, (7.20)

x  y =⇒ x ⊗ u y ⊗ u, (7.21)

x  y and x = (a, a′), y = (b, b′) are sign-positive=⇒ a = b. (7.22)

The operations ⊕ and ⊗ are extended to matrices and vectors over S in the
same way as in linear algebra;  is extended componentwise. A vector is called
sign-positive (sign-negative, signed), if all its components are sign-positive (sign-
negative, signed). The properties mentioned above hold if they are appropriately
modified for vectors. For more details see [123].

Proposition 7.5.3 [123] Let A,B ∈ R
m×n

. To every solution x ∈ R
n

of the system
A⊗ x = B ⊗ x there exists a sign-positive solution to the system of linear balances
(A � B)⊗ x  ε, and conversely.

Proof Let A,B ∈R
m×n

. Then the following are equivalent:

A⊗ x = B ⊗ x, x ∈R
n
,

A⊗ x B ⊗ x, x sign-positive,

A⊗ x � B ⊗ x  ε, x sign-positive,

(A � B)⊗ x  ε, x sign-positive. �

We now define the determinant of matrices in symmetrized semirings. The (sym-
metrized) sign of a permutation σ is sgn(σ )= 0 if σ is even and it is �0 if σ is odd,
see Sect. 1.6.4. The determinant of A= (aij ) ∈ S

n×n is

det(A)=
∑⊕

σ∈Pn

(

sgn (σ )⊗
∏⊗

i∈N

ai,σ (i)

)

.

The following is an analogue of the classical result in conventional linear algebra
and is proved essentially in the same way.
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Theorem 7.5.4 [123] Let A ∈ S
n×n. Then the system of balances A⊗ x  ε has a

signed nontrivial (i.e. �= ε) solution if and only if A has balanced determinant.

Since a signed vector may or may not be sign-positive, it is not true in general,
that the system A⊗ x = B ⊗ x has a nontrivial solution if and only if A � B has a
balanced determinant (see Proposition 7.5.3). But the necessary condition obviously
follows:

Corollary 7.5.5 Let A,B ∈ R
n×n

and C = A � B . Then a necessary condition
that the system A⊗ x = B ⊗ x have a nontrivial solution is that C has balanced
determinant.

We therefore need a method for deciding whether a given square matrix has bal-
anced determinant. In principle this is, of course, possible by calculating the deter-
minant. However, such a computation is only practical for matrices of small sizes
(see Examples 7.5.8, 7.5.9 and 7.5.10), since unlike in conventional linear algebra
there is no obvious way to avoid considering all n! permutations. We will show that
this task can be converted using the max-algebraic permanent (or, in conventional
terms, the assignment problem) to the question of sign-nonsingularity of matrices.

Recall that the max-algebraic permanent of A= (aij ) ∈R
n×n

is

maper(A)=
∑⊕

σ∈Pn

∏⊗

i∈N

ai,σ (i).

Clearly, since maper(A) = maxσ∈Pn

∑
i∈N ai,σ (i), the value of maper(A) can be

found by solving the linear assignment problem for A (see Sect. 1.6.4). Recall that
we denoted

ap(A)=
{

σ ∈ Pn;maper(A)=
∑

i∈N

ai,σ (i)

}

.

We refer the reader to Sect. 1.6.4 for definitions and more details on the relation
between the max-algebraic permanent and the assignment problem. We only recall
that perhaps the best known solution method for the assignment problem is the Hun-
garian method of computational complexity O(n3). This algorithm transforms A to
a nonpositive matrix B = (bij ) with ap(A) = ap(B) and maper(B) = 0. Thus for
π ∈ ap(B) we have bi,π(i) = 0 for all i ∈ N . If bij = 0 for some i, j ∈ N then a
π ∈ ap(B) with j = π(i) may or may not exist. But this can easily be decided by
checking that maper(Bij )= 0 where Bij is the matrix obtained from B by removing
row i and column j .

If C = (cij ) ∈ S
n×n then we denote |C| = (|cij |) ∈ R

n×n
. We also have

det(C)= (d+(C), d−(C)) or, for simplicity just (d+, d−), and so
|det(C)| = d+ ⊕ d−.

Proposition 7.5.6 For every C = (cij ) ∈ S
n×n we have:

|det (C)| =maper |C| . (7.23)
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Proof By a repeated use of Lemma 7.5.1 we have

|det (C)| =
∣
∣
∣
∣

∑⊕

σ∈Pn

(

sgn (σ )⊗
∏⊗

i∈N

ci,σ (i)

)∣
∣
∣
∣=
∑⊕

σ∈Pn

∣
∣
∣
∣sgn (σ )⊗

∏⊗

i∈N

ci,σ (i)

∣
∣
∣
∣

=
∑⊕

σ∈Pn

∣
∣
∣
∣

∏⊗

i∈N

ci,σ (i)

∣
∣
∣
∣=
∑⊕

σ∈Pn

∏⊗

i∈N

∣
∣ci,σ (i)

∣
∣=maper |C| .

�

A square (0,1,−1) matrix is called sign-nonsingular (SNS) [18] if at least one
term of its standard determinant expansion is nonzero and all nonzero terms have
the same sign.

Given C = (cij ) ∈ S
n×n we define C̃ = (̃cij ) to be the n× n (0,1,−1) matrix

satisfying

c̃ij = 1 if j = σ (i) for some σ ∈ ap |C| and cij is sign-positive,

c̃ij =−1 if j = σ (i) for some σ ∈ ap |C| and cij is sign-negative,

c̃ij = 0 else.

The matrix C̃ can easily be constructed since, as mentioned above, it is straight-
forward to check whether j = σ(i) for some σ ∈ ap|C|.

Theorem 7.5.7 [86] Let C ∈ S
n×n. A sufficient condition that C have balanced

determinant is that C̃ is not SNS. If C has no balanced entry then this condition is
also necessary.

Proof If C̃ is not SNS then either all terms of the standard determinant expansion
of C̃ are zero or there are two nonzero terms of opposite signs. In the first case every
permutation σ ∈ ap|C| selects a balanced element, thus by Proposition 7.5.2 every
permutation has balanced weight and so det(C) is balanced. In the second case
there are σ,σ ′ ∈ ap|C| such that sgn(σ )w(σ, C̃) = 1 and sgn(σ )w(σ ′, C̃) = −1.
Hence det(C) contains two maximal terms, one sign-positive and the other one sign-
negative. Therefore det(C) is balanced.

Suppose now that det(C) is balanced. Since C has no balanced entry, det(C)

contains a sign-positive and a sign-negative entry of maximal value. For the corre-
sponding permutations σ,σ ′ ∈ ap|C| we then have that they contribute to standard
determinant expansion of C̃ with +1 and −1 and so C̃ is not SNS. �

The problem of checking whether a (0,1,−1) matrix is SNS or not is equivalent
to the even cycle problem in digraphs [18, 143] and therefore polynomially solvable
(Remark 1.6.45). Therefore the necessary solvability condition in Corollary 7.5.5
can be checked in polynomial time and enables us to prove for some systems that
no nontrivial solution to A⊗ x = B ⊗ x exists. Yet, it does not provide a solution
method for solving the two-sided systems as this condition is not sufficient in gen-
eral.
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Note that in the examples below the question whether the determinant is balanced
is decided directly using the definition and the sign-nonsingularity is not used. This
would not be practical for matrices of bigger sizes.

Example 7.5.8 Let

A=
⎛

⎝
3 8 2
7 1 4
0 6 3

⎞

⎠ , B =
⎛

⎝
4 4 3
2 3 4
3 2 1

⎞

⎠ .

Then

C =
⎛

⎝
�4 8 �3

7 �3 4•
�3 6 3

⎞

⎠ ,

d+ =max
(
10,15•,9

)
,

d− =max
(
16,14•,18

)
,

maper |C| = 18.

Since d+ �= d−, the determinant of C = A � B is unbalanced and so the system
A⊗ x = B ⊗ x has no nontrivial solution.

Example 7.5.9 Let

A=
⎛

⎝
3 8 2
7 1 4
0 5 3

⎞

⎠ , B =
⎛

⎝
5 5 5
3 4 5
5 3 2

⎞

⎠ .

Then

C =
⎛

⎝
�5 8 �5

7 �4 �5
�5 5 3

⎞

⎠ ,

d+ =max (12,18,14) ,

d− =max (17,15,18) ,

maper |C| = 18= d+ = d−.

Hence det(A � B) is balanced, and indeed x = (2,1,4)T is a solution to
A⊗ x = B ⊗ x.

Example 7.5.10 Let

A=
(

4 6
7 9

)

, B =
(

0 1
3 1

)

.
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C =
(

4 6
7 9

)

and

maper |C| = 13= d+ = d−.

Hence the determinant is balanced but no nontrivial solution to A⊗x = B⊗x exists
as (by the cancellation law) B is effectively ε.

7.6 Solution Set is Finitely Generated

In this section the set S(A,B)= {x ∈ R
n;A⊗ x = B ⊗ x} will be denoted shortly

by S. Also, in this section only, the letter I denotes an index set (not the unit matrix).
The aim of this section is to prove the following fundamental result:

Theorem 7.6.1 [35] If A,B ∈R
m×n

then S is finitely generated, that is, there is an
integer w ≥ 1 and a matrix T ∈R

n×w
such that

S =
{
T ⊗ z; z ∈R

w
}

.

Lemma 7.6.2 [35] If A,B ∈ R
1×n

then there is an integer w ≥ 1 and a matrix
T ∈R

n×w
such that

S =
{
T ⊗ z; z ∈R

w
}

.

We postpone the proof of the lemma for a while and first prove the theorem.

Proof of Theorem 7.6.1 Let us denote (in this proof only) the rows of A and B

by A1, . . . ,Am and B1, . . . ,Bm, respectively. By Lemma 7.6.2 there is a matrix
T1 ∈R

n×w1 for some integer w1 ≥ 1 such that

{
x ∈ R

n;A1 ⊗ x = B1 ⊗ x
}
=
{
T1 ⊗ z(1); z(1) ∈R

w1
}

.

Similarly, there is an integer w2 ≥ 1 and a matrix T2 ∈R
w1×w2 such that

{
z(1) ∈ R

w1;A2 ⊗ T1 ⊗ z(1) = B2 ⊗ T1 ⊗ z(1)
}
=
{
T2 ⊗ z(2); z(2) ∈R

w2
}

.

This process continues until at the end we have that there is an integer wm ≥ 1 and
a matrix Tm ∈R

wm−1×wm such that
{
z(m−1) ∈ R

wm−1;Am ⊗ T1 ⊗ · · · ⊗ Tm−1 ⊗ z(m−1)
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= Bm ⊗ T1 ⊗ · · · ⊗ Tm−1 ⊗ z(m−1)
}

=
{
Tm ⊗ z(m); z(m) ∈R

wm
}

.

We now show that for the wanted T we can take T1⊗· · ·⊗Tm and w =wm. Suppose
first that x = T ⊗ z for some z ∈R

w
and k ∈M . Then

Ak ⊗ (T ⊗ z)=Ak ⊗ T1 ⊗ · · · ⊗ Tm ⊗ z

= (Ak ⊗ T1 ⊗ · · · ⊗ Tk−1)⊗ Tk ⊗ (Tk+1 ⊗ · · · ⊗ Tm ⊗ z)

= (Bk ⊗ T1 ⊗ · · · ⊗ Tk−1)⊗ Tk ⊗ (Tk+1 ⊗ · · · ⊗ Tm ⊗ z)

by the definition of Tk . Hence Ak ⊗ (T ⊗ z)= Bk ⊗ (T ⊗ z) and thus T ⊗ z ∈ S.
Suppose now that x ∈ S. Then A1 ⊗ x = B1 ⊗ x, thus

x = T1 ⊗ z(1), z(1) ∈R
w1

.

At the same time A2 ⊗ x = B2 ⊗ x and so

A2 ⊗ T1 ⊗ z(1) = B2 ⊗ T1 ⊗ z(1)

implying

z(1) = T2 ⊗ z(2), z(2) ∈R
w2

and therefore x = T1 ⊗ z(1) = T1 ⊗ T2 ⊗ z(2). By induction then

x = T1 ⊗ T2 ⊗ · · · ⊗ Tm ⊗ z(m), z(m) ∈R
wm

. �

One equation of the form A⊗ x = B ⊗ x can be written as follows:

∑⊕

j∈N

aj ⊗ xj =
∑⊕

j∈N

bj ⊗ xj . (7.24)

Due to Lemma 7.4.1 we may assume without loss of generality that

aj �= bj =⇒ min
(
aj , bj

)= ε (7.25)

holds for every j ∈N . Hence after a suitable renumbering of variables this equation
can symbolically be written as

(ε, . . . , ε, e, . . . , e, a, . . . , a, ε, . . . ε)⊗ x = (ε, . . . , ε, e, . . . , e, ε, . . . ε, b, . . . , b)⊗ x.

This form corresponds to the partition of N into four subsets:

I = {j ∈N;aj = bj = ε
}
,

J = {j ∈N;aj = bj �= ε
}
,
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K = {j ∈N;aj > bj

}
,

L= {j ∈N;aj < bj

}
.

We now define five sets of vectors:

ei =
(
ei

1, . . . , e
i
n

)T
, i ∈ I,

where (as before) ei
j = ε, if j �= i and ei

j = 0, if j = i;

ri =
(
ri

1, . . . , r
i
n

)T
, i ∈ J,

where ri
j = ε, if j �= i and ri

j = a−1
i = b−1

i , if j = i;

sk,l =
(
s
k,l
1 , . . . , sk,l

n

)T
, k ∈K, l ∈ L,

where s
k,l
j = ε, if j /∈ {k, l}, s

k,l
j = a−1

k , if j = k and s
k,l
j = b−1

l , if j = l;

ri,h =
(
r
i,h
1 , . . . , ri,h

n

)T
, i ∈ J,h ∈K ∪L,

where r
i,h
j = ri

j , if j �= h, r
i,h
j = a−1

h , if j = h ∈K and r
i,h
j = b−1

h , if j = h ∈ L;

sk,l,h =
(
s
k,l,h
1 , . . . , sk,l,h

n

)T
, k ∈K, l ∈ L,h ∈K ∪L− {k, l} ,

where s
k,l,h
j = s

k,l
j , if j �= h, s

k,l,h
j = a−1

h , if j = h ∈ K − {k} and s
k,l,h
j = b−1

h , if
j = h ∈ L− {l}.

Lemma 7.6.3 Equation (7.24) has a nontrivial solution if and only if

I ∪ J ∪ (K ×L) �= ∅.

Proof If I ∪ J ∪ (K × L) �= ∅ then at least one of the vectors ei, i ∈ I ; ri , i ∈ J ;
sk,l, k ∈K, l ∈ L exists and each of these vectors is a nontrivial solution.

If I ∪ J ∪ (K ×L)= ∅ then I = J =K ×L= ∅. Since I ∪ J ∪K ∪L=N and
K ∩L= ∅ we have either that L= ∅ and K =N or K = ∅ and L=N . In the first
case equation (7.24) reduces to

max
i∈N

ai ⊗ xi = ε

and ai > ε for all i ∈N which implies that x = ε is the unique solution. The second
case can be dealt with in the same way. �

We are now ready to present the proof of the key lemma.
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Proof of Lemma 7.6.2 We prove that y ∈ R
n

is a solution to (7.24) if and only if it
can be written in the form

y =
∑⊕

i∈I

πi ⊗ ei ⊕
∑⊕

i∈J

ρi ⊗ ri ⊕
∑⊕

k∈K,l∈L

σk,l ⊗ sk,l

⊕
∑⊕

i∈J,h∈K∪L

ρi,h ⊗ ri,h ⊕
∑⊕

k∈K,l∈L,h∈K∪L−{k,l}
σk,l,h ⊗ sk,l,h (7.26)

where πi, ρi, σ k,l, ρi,h, σ k,l,h ∈R. Note that if the index sets in this summation are
empty then by Lemma 7.6.3 S = {ε} and we may take any w ≥ 1 and set T = ε.

It is easily seen that each of the vectors ei, i ∈ I ; ri , i ∈ J ; sk,l, k ∈ K, l ∈ L;
ri,h, i ∈ J,h ∈K ∪L; sk,l,h, k ∈K, l ∈ L,h ∈K ∪L− {k, l} is a solution to (7.24)
and thus by Proposition 7.1.1 also their max-algebraic linear combination is in S.

It remains to prove that every solution can be expressed as in (7.26). Let
x = (x1, . . . , xn)

T ∈ S and let

v =
∑⊕

j∈N

aj ⊗ xj =
∑⊕

j∈N

bj ⊗ xj .

At least one of the following will occur:

Case 1: v = ε.
Case 2: v �= ε and v = aj ⊗ xj = bj ⊗ xj for some j ∈ J .
Case 3: v �= ε and v = af ⊗ xf = bg ⊗ xg for some f ∈K and g ∈ L.

In Case 1 xi = ε for all i ∈ J ∪K ∪L and thus it is sufficient to set πi = xi for
all i ∈ I and all other coefficients set to ε.

In Case 2 we have aj = bj > ε and ai ⊗ xi ≤ v, bi ⊗ xi ≤ v for all i ∈ N ,
implying

a−1
j ⊗ ai ⊗ xi ≤ xj ,

b−1
j ⊗ bi ⊗ xi ≤ xj .

}

(7.27)

Set

πi = xi, i ∈ I,

ρi = ai ⊗ xi, i ∈ J,

ρj,h = ah ⊗ xh,h ∈K,

ρj,h = bh ⊗ xh,h ∈ L,

and set ρi,h = ε for all i ∈ J − {j}, h ∈K ∪ L and also all other coefficients to ε.
Let y be defined by (7.26), we show that y = x.

Let t ∈ I . Then

yt =
∑⊕

i∈I

πi ⊗ ei
t = πt ⊗ et

t = xt ⊗ 0= xt .
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Take t ∈ J − {j}. Then

yt =
∑⊕

i∈J

ρi ⊗ ri
t ⊕
∑⊕

h∈K∪L

ρj,h ⊗ r
j,h
t

= ρt ⊗ a−1
t ⊕ ε = at ⊗ xt ⊗ a−1

t = xt

since here t /∈K ∪L and t �= j . Also, using (7.27) we have

yj = ρj ⊗ a−1
j ⊕

∑⊕

h∈K

ρj,h ⊗ r
j
j ⊕
∑⊕

h∈L

ρj,h ⊗ r
j
j

= xj ⊕
∑⊕

h∈K

ah ⊗ xh ⊗ a−1
j ⊕

∑⊕

h∈L

bh ⊗ xh ⊗ b−1
j = xj .

Now take t ∈K . Then

yt =
∑⊕

i∈J,h∈K∪L

ρi,h ⊗ r
i,h
t =

∑⊕

h∈K

ρj,h ⊗ r
j,h
t

= ρj,t ⊗ r
j,t
t = at ⊗ xt ⊗ a−1

t = xt .

Similarly it can be shown that yt = xt for t ∈ L.
In Case 3 we have af , bg > ε and for all i ∈N there is

a−1
f ⊗ ai ⊗ xi ≤ xf ,

b−1
g ⊗ bi ⊗ xi ≤ xg.

}

(7.28)

Set

πi = xi, i ∈ I,

ρi = ai ⊗ xi, i ∈ J,

σf,g = af ⊗ xf = bg ⊗ xg,

σ f,g,h = ah ⊗ xh, if h ∈K,

= bh ⊗ xh, if h ∈ L,

and all other coefficients to ε. Let y be again defined by (7.26), and take any t ∈ I .
Then

yt =
∑⊕

i∈I

πi ⊗ ei
t = πt ⊗ et

t = xt ⊗ 0= xt .

Take t ∈ J . Then

yt =
∑⊕

i∈J

ρi ⊗ ri
t
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= ρt ⊗ a−1
t = at ⊗ xt ⊗ a−1

t = xt .

Now take t ∈K − {f }. Then

yt = σf,g ⊗ s
f,g
t ⊕

∑⊕

h∈K∪L−{f,g}
σf,g,h ⊗ s

f,g,h
t

= ε⊕ σf,g,t ⊗ s
f,g,t
t = at ⊗ xt ⊗ a−1

t = xt ,

since t /∈ {f,g}. Also, using (7.28) we have

yf = σf,g ⊗ s
f,g
f ⊕

∑⊕
h∈K∪L−{f,g} σ

f,g,h ⊗ s
f,g,h
f

= af ⊗ xf ⊗ a−1
f ⊕

∑⊕

h∈K∪L−{f,g}
ah ⊗ xh ⊗ a−1

f = xf .

The subcase t ∈ L can be proved in a similar way. �

Alongside the theoretical value, the constructive proofs of Theorem 7.6.1 and
Lemma 7.6.2 show how to solve systems A⊗x = B⊗x. The number of variables is
likely to grow rapidly during this process and so the method is unlikely to be useful
except for the systems with a small number of variables and equations. Obviously,
columns of a matrix Ti that are a max-combination of the others may be eliminated.
We will illustrate this in the two examples below. Note that the A-test specified in
Theorem 3.4.2 may be used to find and eliminate the linearly dependent columns.

There are several improvements of this method; one of them can be found in [7].

Example 7.6.4 Let

A=
⎛

⎝
3 2 ε

ε ε 2
2 0 3

⎞

⎠ , B =
⎛

⎝
3 ε 0
0 ε 2
ε 0 3

⎞

⎠ .

Then for the first equation we have I = ∅, J = {1},K = {2},L= {3} and thus

r1 = (−3, ε, ε)T ,

s2,3 = (ε,−2,0)T ,

r1,2 = (−3,−2, ε)T ; r1,3 = (−3, ε,0)T .

Hence w1 = 4 and

T1 =
⎛

⎝
−3 ε −3 −3

ε −2 −2 ε

ε 0 ε 0

⎞

⎠ .

Therefore

A2 ⊗ T1 = (ε, ε,2)⊗ T1 = (ε,2, ε,2)T ,
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B2 ⊗ T1 = (0, ε,2)⊗ T1 = (−3,2,−3,2)T .

For the equation A2 ⊗ T1 ⊗ z(1) = B2 ⊗ T1 ⊗ z(1) we then get I = ∅, J = {2,4},
K = ∅,L= {1,3} and thus

r2 = (ε,−2, ε, ε)T , r4 = (ε, ε, ε,−2)T ;
r2,1 = (3,−2, ε, ε)T , r2,3 = (ε,−2,3, ε)T ;
r4,1 = (3, ε, ε,−2)T , r4,3 = (ε, ε,3,−2)T .

Hence w1 = 6 and

T2 =

⎛

⎜
⎜
⎝

ε ε 3 ε 3 ε

−2 ε −2 −2 ε ε

ε ε ε 3 ε 3
ε −2 ε ε −2 −2

⎞

⎟
⎟
⎠ .

Therefore

T1 ⊗ T2 =
⎛

⎝
ε −5 0 0 0 0

−4 ε −4 1 ε 1
−2 −2 −2 −2 −2 −2

⎞

⎠ .

By inspection we see that columns 4 and 6 are equal and column 3 is the max-
algebraic sum of columns 1 and 5, thus we may remove redundant columns 3 and 6
and continue to work with the reduced matrix

T ′ =
⎛

⎝
ε −5 0 0

−4 ε 1 ε

−2 −2 −2 −2

⎞

⎠ .

Since

A3 ⊗ T ′ = (1,1,2,2) , B3 ⊗ T ′ = (1,1,1,1) ,

for the equation A3 ⊗ T ′ ⊗ z(2) = B3 ⊗ T ′ ⊗ z(2) we then get I = ∅, J = {1,2},
K = {3,4},L= ∅ and thus

r1 = (−1, ε, ε, ε)T , r2 = (ε,−1, ε, ε)T ;
r1,3 = (−1, ε,−2, ε)T , r1,4 = (−1, ε, ε,−2)T ;
r2,3 = (ε,−1,−2, ε)T , r2,4 = (ε,−1, ε,−2)T .

Hence w3 = 6 and

T = T ′ ⊗ T3

= T ′ ⊗

⎛

⎜
⎜
⎝

−1 ε −1 −1 ε ε

ε −1 ε ε −1 −1
ε ε −2 ε −2 ε

ε ε ε −2 ε −2

⎞

⎟
⎟
⎠
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=
⎛

⎝
ε −6 −2 −2 −2 −2

−5 ε −1 −5 −1 ε

−3 −3 −3 −3 −3 −3

⎞

⎠ .

Columns 4 and 5 are dependent and so we conclude that x is a solution to
A⊗ x = B ⊗ x if and only if

x =
⎛

⎝
ε −6 −2 −2

−5 ε −1 ε

−3 −3 −3 −3

⎞

⎠⊗ z

where z ∈R
4
.

Example 7.6.5 Let A = ( 1 0
0 1

)
,B = ( ε 0

0 ε

)
. Then for the first equation we have

I = ∅, J = {2}, K = {1}, L= ∅ and thus

r2 = (ε,0)T ,

r2,1 = (−1,0)T .

Hence w1 = 2 and T1 =
(

ε −1
0 0

)
. Therefore

A2 ⊗ T1 = (1,1)T

and

B2 ⊗ T1 = (ε,−1)T .

For the equation A2 ⊗ T1 ⊗ z(1) = B2 ⊗ T1 ⊗ z(1) we then get I = ∅, J = ∅,
K = {1,2},L= ∅ and thus by Lemma 7.6.3 the system A ⊗ x = B ⊗ x has only
the trivial solution.

7.7 Exercises

Exercise 7.7.1 Let

A=

⎛

⎜
⎜
⎝

4 6
1 2
3 0
6 6

⎞

⎟
⎟
⎠ , B =

⎛

⎜
⎜
⎝

7 1
3 0
0 3
1 8

⎞

⎟
⎟
⎠ .

Use the Gondran−Minoux Theorem to prove that the system A⊗ x = B⊗ y has no
nontrivial solution.

Exercise 7.7.2 Simplify each of the following systems using the cancellation law
and then find a nontrivial solution or prove that there is none:
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(a)

3⊗ x1 ⊕ 4⊗ x2 ⊕ 7⊗ x3 = 5⊗ x1 ⊕ 1⊗ x2 ⊕ 2⊗ x3

6⊗ x1 ⊕ 3⊗ x2 ⊕ 1⊗ x3 = 5⊗ x1 ⊕ 2⊗ x2 ⊕ 4⊗ x3.

[No solution]
(b)

1⊗ x1 ⊕ 4⊗ x2 ⊕ 2⊗ x3 = 0⊗ x1 ⊕ 5⊗ x2 ⊕ 3⊗ x3

2⊗ x1 ⊕ 1⊗ x2 ⊕ 6⊗ x3 = 1⊗ x1 ⊕ 7⊗ x2 ⊕ 0⊗ x3.

[(4,0,2)T ]

Exercise 7.7.3 Find a nontrivial solution to the system A⊗ x = B ⊗ x, where

A=
⎛

⎝
−4 3 0 2

5 −1 6 3
7 3 0 4

⎞

⎠ , B =
⎛

⎝
0 2 6 1
3 5 0 7
2 12 6 3

⎞

⎠ .

[x = (7,2,0,5)T ]

Exercise 7.7.4 Find a nontrivial solution to the system A⊗ x = B ⊗ y, where

A=
⎛

⎝
5 8 1
3 6 2
5 0 3

⎞

⎠ , B =
⎛

⎝
4 2 8 1
3 0 5 0
2 −3 4 1

⎞

⎠ .

[x = (1,2,0)T , y = (1,8,0,5)T ]

Exercise 7.7.5 Show that if A,B have all entries from {0,−∞} then the system
A⊗ x = B ⊗ x can be solved in polynomial time. (Hint: Transform the system to
an equivalent one where A and B have no ε rows.)

Exercise 7.7.6 Prove (7.20), (7.21) and (7.22).

Exercise 7.7.7 For each of the matrices below decide whether it is sign-nonsingular:

(a) A=
⎛

⎝
1 0 −1
1 −1 −1
0 1 1

⎞

⎠. [Not SNS]

(b) A=
⎛

⎝
1 1 −1

−1 0 1
1 1 1

⎞

⎠. [Not SNS]
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(c) A=
⎛

⎝
1 1 −1

−1 0 −1
0 1 1

⎞

⎠. [SNS]

Exercise 7.7.8 For each pair of matrices A,B below consider the system A⊗ x =
B ⊗ x. Find C = A � B and decide whether C̃ is SNS. Then decide whether the
system has a nontrivial solution and find one if applicable.

(a) A=
⎛

⎝
3 1 7
2 4 0
6 3 5

⎞

⎠ ,B =
⎛

⎝
2 3 2
4 0 3
2 1 7

⎞

⎠. [C̃ is SNS, no nontrivial solution]

(b) A =
⎛

⎝
6 1 2
1 5 0
2 1 6

⎞

⎠ ,B =
⎛

⎝
4 5 5
2 3 1
7 3 1

⎞

⎠. [C̃ is not SNS, a solution is x =

(3,0,4)T ]

Exercise 7.7.9 Show by an example that ∇ is not transitive.



Chapter 8
Reachability of Eigenspaces

One of the aims of this book is analysis of multi-machine interactive production pro-
cesses (see Sect. 1.3.3). Recall that in these processes machines M1, . . . ,Mn work
interactively and in stages. In each stage all machines simultaneously produce com-
ponents necessary for the next stage of some or all other machines. If xi(k) denotes
the starting time of the kth stage on machine i, and aij denotes the duration of the
operation at which machine Mj prepares the component necessary for machine Mi

in the (k + 1)st stage then

xi(k + 1)=max(x1(k)+ ai1, . . . , xn(k)+ ain) (i = 1, . . . , n; k = 0,1, . . .)

or, in max-algebraic notation,

x(k + 1)=A⊗ x(k) (k = 0,1, . . .)

where A = (aij ). We say that the system reaches a steady regime if it eventually
moves forward in regular steps, that is, if for some λ and k0 we have x(k + 1) =
λ⊗ x(k) for all k ≥ k0. Obviously, a steady regime is reached immediately if x(0)

is an eigenvector of A corresponding to an eigenvalue λ. However, if the choice of
a start-time vector is restricted we may need to find out for which vectors a steady
regime will eventually be reached. Since x(k)= Ak ⊗ x(0) for every natural k, we
get the following generic question:

Q: Given A ∈R
n×n

and x ∈ R
n

is there an integer k ≥ 0 such that Ak ⊗ x is an
eigenvector of A? That is, does

Ak+1 ⊗ x = λ⊗Ak ⊗ x,

Ak ⊗ x �= ε,

}

(8.1)

hold for some λ ∈R?
Clearly, λ in (8.1) is one of the eigenvalues of A and therefore λ= λ(A) if A is

irreducible.
In general, if λ > ε and Ak ⊗ x is an eigenvector of A associated with λ then

Ak+1 ⊗ x =A⊗ (Ak ⊗ x)= λ⊗ (Ak ⊗ x) �= ε

P. Butkovič, Max-linear Systems: Theory and Algorithms,
Springer Monographs in Mathematics 151,
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and hence Ak+1 ⊗ x is also an eigenvector of A. However, if λ= ε then Ak+1 ⊗ x

may not be an eigenvector even if Ak ⊗ x is, for instance when

A=
(

ε 0
ε ε

)

, x =
(

0
0

)

, k = 1,

in which case A⊗ x = (0, ε)T , A2 ⊗ x = (ε, ε)T . We will therefore require λ > ε

in (8.1).
Recall that A ∈R

n×n
may have up to n eigenspaces, corresponding to a different

eigenvalue each (Chap. 4, Theorem 4.5.4, Corollary 4.5.7). Being motivated by the
task Q, we define for A = (aij ) ∈ R

n×n
and x ∈ R

n
the orbit of A with starting

vector x as the sequence

O(A,x)= {Ak ⊗ x}k=0,1,....

If O(A,x) contains an eigenvector of a matrix B then we say that an eigenspace
of B is reachable by orbit O(A,x). If A = B then we say an eigenspace of A is
reachable with starting vector x.

Although the answer to Q may be negative, some periodic behavior can always
be guaranteed provided that the production matrix is irreducible. This is due to one
of the fundamental results of max-algebra, the Cyclicity Theorem (Theorem 8.3.5):

For any irreducible matrix A ∈ R
n×n

there exist positive integers p and T such
that

Ak+p = (λ(A))p ⊗Ak (8.2)

holds for every integer k ≥ T .
The smallest value of p satisfying (8.2) is called the period of A. If p is the

period of A then the least value of T satisfying (8.2) is called the transient of the
sequence {Ak}∞k=0.

It is easily seen that Ak ⊗ x �= ε for all k if A is irreducible and x �= ε

(Lemma 1.5.2). It follows that for any irreducible matrix A a generalized periodic
regime will be reached with any starting vector x �= ε:

Ak+p ⊗ x = (λ(A))p ⊗Ak ⊗ x,

Ak ⊗ x �= ε.

}

(8.3)

We will use the notions of a period and transient for matrix orbits in a way similar
to matrix sequences. The arising operational task then is to find the period of an
orbit:

Q1: Given A ∈ R
n×n

and x ∈ R
n
, find the period of O(A,x), that is, the least

integer p such that for some T (8.3) is satisfied for all k ≥ T .
Given A ∈ R

n×n
and a positive integer p, the p-attraction space, Attr(A,p), is

the set of all vectors x ∈ R
n
, for which there exists an integer T such that (8.3)

holds for every k ≥ T [16]. Using this concept we may formulate another related
question:
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Q2: Given A ∈ R
n×n

, x ∈ R
n

and a positive integer p decide whether
x ∈Attr(A,p).

Note that Q2 for p = 1 is identical with Q. Also, observe that due to Theo-
rem 4.5.10, conditions (8.3) may be written as:

Ap ⊗ (Ak ⊗ x) = (λ(A)p)⊗ (Ak ⊗ x),

Ak ⊗ x �= ε,

that is, (8.3) for a given matrix A and vector x means to find the smallest value
of p for which an eigenspace of Ap is reachable by O(A,x). Note also that by
Theorem 7.6.1 every attraction space is a finitely generated subspace.

It may be of practical interest to characterize matrices, called robust, for which a
steady regime is reached with any start-time vector, that is, matrices A ∈R

n×n
such

that an eigenspace of A is reachable with any vector x ∈ R
n
, x �= ε. Hence we will

also be interested in the following:
Q3: Given A ∈R

n×n
, is it robust?

In this chapter we will address Q1 and Q2 for irreducible matrices and Q3 for
both irreducible and reducible matrices. We will also analyze a number of related
questions, such as estimates of the transient and computation of periodic powers of
a matrix.

If λ(A) > ε and (8.3) is multiplied by (λ(A))−k−p then the obtained identity
reads

Bk+p ⊗ x = Bk ⊗ x �= ε,

where B is the definite matrix (λ(A))−1⊗A. Therefore in Q1−Q3 we may assume
without loss of generality that A is definite.

A first step towards our goal is to present in Sect. 8.1 the diagonal scaling of
matrices as a tool for the visualization of spectral properties of matrices. Then, in
Sect. 8.2, we study how eigenspaces change with matrix powers.

Sections 8.3, 8.4 and 8.5 present periodic properties of matrices and methods for
solving questions Q1 and Q2. They have been prepared in cooperation with Sergeı̆
Sergeev.

Finally, robustness (question Q3) is studied in Sect. 8.6.

8.1 Visualization of Spectral Properties by Matrix Scaling

Recall that for x = (x1, . . . , xn)
T ∈ R

n
we denote diag(x) = diag(x1, . . . , xn); if

x ∈R
n and X = diag(x) then

X−1 = diag
(
x−1

1 , . . . , x−1
n

)
.

A useful tool in our discussion will be that of a matrix scaling [41, 81, 127, 129]
introduced in Sect. 1.5, that is, an operator that assigns to a square matrix A a matrix
X−1 ⊗A⊗X, where X is a diagonal matrix. Using matrix scaling it is possible to
simplify the structure of a matrix, yet preserving many of its properties. In particular,
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it enables us to “visualize” some features, such as entries corresponding to the arcs
on critical cycles.

First we show that matrix scaling does not change essential spectral properties of
matrices [60, 80] and then we show the visualization effect. Recall that pd(A) stands
for the principal dimension of A, that is, the dimension of the principal eigenspace
of A.

Lemma 8.1.1 Let A,B∈R
n×n

and B=X−1⊗A⊗X, where X=diag(x1, . . . , xn),
x1, . . . , xn ∈R.

(a) A is irreducible if and only if B is irreducible.
(b) λ(A)= λ(B).
(c) Nc(A) and Nc(B) are equal and have the same equivalence classes.
(d) pd(A)= pd(B).
(e) For all integers k ≥ 1 and x ∈R

n
we have:

Bk =X−1 ⊗Ak ⊗X.

(f) �(B)=X−1 ⊗ �(A)⊗X and �(B)=X−1 ⊗�(A)⊗X.
(g) For all integers p ≥ 1 we have: z ∈R

n
satisfies

Ak+p ⊗ z=Ak ⊗ z

if and only if y =X−1 ⊗ z satisfies

Bk+p ⊗ y = Bk ⊗ y.

Proof DB has the same node set and arc set as DA and so the first statement follows.
By Lemma 1.5.5 w(σ,A)=w(σ,B) for every cycle σ and so (b) and consequently
also (c) and (d) follow (recall that by Corollary 4.4.5 pd(A) is equal to the number
of critical components of A). Clearly,

(X−1 ⊗A⊗X)k =X−1 ⊗Ak ⊗X,

which proves (e).
For (f) we have using (e):

�(B) =
∑

j∈N

⊕
(X−1 ⊗A⊗X)j =

∑

j∈N

⊕
(X−1 ⊗Aj ⊗X)

= X−1 ⊗
(∑

j∈N

⊕
Aj

)

⊗X =X−1 ⊗ �(A)⊗X.

Similarly for �(B).
Statement (g) is proved readily using (e). �

Lemma 8.1.1 implies that the tasks Q1−Q3 are invariant with respect to matrix
scaling. In what follows we will use a special type of scaling, namely a scaling that
visualizes spectral properties of matrices.
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We say that A= (aij ) ∈R
n×n

is visualized if

aij ≤ λ(A) for all i, j ∈N

and

aij = λ(A) for all (i, j) ∈Ec(A).

A visualized matrix is called strictly visualized if

aij = λ(A) if and only if (i, j) ∈Ec(A).

A matrix A with λ(A) = ε cannot be scaled to a visualized one unless A= ε.
We will show in Theorem 8.1.4 below that every matrix with λ(A) > ε can be
transformed to a strictly visualized one using matrix scaling. However, we will also
present a weaker scaling result in Theorem 8.1.3, as it is much simpler and in many
cases sufficient.

Observe that X−1 ⊗ A ⊗ X is visualized [strictly visualized] if and only if
X−1 ⊗Aλ ⊗X is visualized [strictly visualized]. Therefore we may assume with-
out loss of generality that the matrix we need to scale to a visualized or strictly
visualized one, is definite (but we will not always need to do so).

We start with a technical lemma. Let us denote �(A)= (�ij ).

Lemma 8.1.2 If A ∈R
n×n

is definite then

aij ⊗�ji ≤ 0

for all i, j ∈N and

aij ⊗�ji = 0 ⇐⇒ (i, j) ∈Ec(A).

Proof Since A is definite, aii ≤ 0 = �ii for any i ∈ N and aii = 0 if and only if
(i, i) ∈Ec(A).

Suppose now i �= j . Then �ij = γij . Recall that �(A) = (γij ) is the matrix of
the greatest weights of paths in DA (Sect. 1.6.2). Therefore aij ⊗�ji is the weight
of a heaviest cycle in DA containing arc (i, j). Since A is definite, this value is
nonpositive for any (i, j) ∈E and it is zero exactly when (i, j) ∈Ec(A). �

Theorem 8.1.3 [41, 43, 136, 139] Let A ∈R
n×n

, λ(A) > ε and

(�ij )=�
(
(λ(A))−1 ⊗A

)
.

(a) If x ∈ V ∗(A) and X = diag(x) then X−1 ⊗A⊗X is visualized; this is true in
particular for x =∑⊕

k∈N �.k .
(b) If A is irreducible, αk > 0 for k ∈N ,

∑
k∈N αk = 1 and x =∑k∈N αk�.k (con-

ventional convex combination with positive coefficients), then X−1 ⊗A⊗X is
strictly visualized.
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Proof (a) By Theorem 1.6.18 x−1
i ⊗ aij ⊗ xj ≤ λ(A) for all i, j ∈ N ; equality for

(i, j) ∈Ec(A) follows from Lemma 1.6.19.
(b) We assume without loss of generality that A is definite. Recall that �(A) is

finite for A irreducible. By Lemma 1.6.20 x is a finite solution to A⊗ x ≤ x. Hence
x ∈ V ∗(A) by Theorem 1.6.18 and by part (a) X−1 ⊗A⊗X is visualized.

For strong visualization we need to show that (i, j) /∈Ec(A) implies aij ⊗ xj < xi .
This inequality is equivalent to

aij +
∑

k∈N

αk�jk <
∑

k∈N

αk�ik

or
∑

k∈N

αk(aij +�jk) <
∑

k∈N

αk�ik. (8.4)

Since every �·k is a solution to A⊗ x ≤ x we have

aij +�jk ≤�ik (8.5)

for all k ∈N and for k = i this inequality is strict because �ii = 0 and aij ⊗�ji < 0
by Lemma 8.1.2. If we now multiply each inequality (8.5) by αk and add them all
up, we get (8.4). �

We will now prove that actually every matrix A with finite λ(A) can be scaled to
a strictly visualized one. This result will not be used in this book and the rest of this
section may be skipped without loss of continuity. To prove the strict visualization
result, we transform this problem from the principal interpretation to “max-times
algebra” (that is, from G0 to G2, see Sect. 1.4). It is essential that all statements re-
ferred to in the proof of part (b) of Theorem 8.1.3, that is, part (a) of Theorem 8.1.3,
Theorem 1.6.18 and Lemmas 1.6.19, 8.1.2, 1.6.20 have immediate analogues in G2.
The proofs of the first four follow the lines of the proofs of these statements in
G0, except that ⊗ stands for multiplication rather than for addition. In the case of
Lemma 1.6.20 the reasoning is slightly different as the system of inequalities now
reads

aij xj ≤ λxi.

But as it is again a system of linear inequalities (although a different one), the set of
nonnegative solutions is convex.

We are ready to prove the main result of this section, that is, part (b) of Theo-
rem 8.1.3, modified by the removal of the irreducibility assumption:

Theorem 8.1.4 If A ∈ R
n×n

and λ(A) > ε then there exists x ∈ R
n such that

X−1 ⊗A⊗X is strictly visualized, where X = diag(x).

Proof We assume without loss of generality that A is definite. Take (in conventional
notation) B = (bij )= (2aij ). Then the inequalities

aij + xj ≤ xi, i, j ∈N, x1, . . . , xn finite (8.6)
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are equivalent (in conventional notation) to

bij yj ≤ yi, i, j ∈N, y1, . . . , yn positive. (8.7)

A solution to (8.7) can be converted to a solution of (8.6) by setting xj = log2 yj ,
j ∈N . The same applies when the inequalities are strict.

Let �(B)= (�ij ) in G2, αk > 0 for k ∈ N,
∑

k∈N αk = 1 and y =∑k∈N αk�.k

(conventional convex combination with positive coefficients). The vector y is pos-
itive as every row of the nonnegative matrix �(B) has at least one positive en-
try (namely 1 on the diagonal). It is now proved exactly as in part (b) of Theo-
rem 8.1.3 that Y−1⊗B⊗Y is strictly visualized (in G2), where Y = diag(y). Hence
X−1⊗A⊗X is strictly visualized in the principal interpretation, where X = diag(x)

and xj = logyj for all j ∈N . �

Remark 8.1.5 Note that unlike (8.6), the system (8.7) is also homogeneous (in the
conventional sense) and it is therefore feasible to take for y in Theorem 8.1.4 any
linear combination (in particular the sum) of the columns of �(B) with positive
coefficients instead of a convex combination.

Example 8.1.6 Consider

A=
(

0 ε

1 0

)

in G0, thus λ(A)= 0. Following the notation in the proof of Theorem 8.1.4 we have

B =
(

1 0
2 1

)

in G2. Hence �(B) = B and using Remark 8.1.5 we take for y the (conventional)
sum of the columns of B , that is, y = (1,3)T . Hence x = (0, log2 3)T and

X−1 ⊗A⊗X =
(

0 ε

1− log2 3 0

)

.

More information on matrix scaling including a complete description of all
matrix scalings producing visualized or strictly visualized matrices can be found
in [139].

Recall that a cycle in a weighted digraph is called a zero cycle if all arcs of this
cycle have zero weight.

Corollary 8.1.7 If A ∈ R
n×n

is definite, B = X−1 ⊗ A⊗ X and B is visualized,
then a cycle σ is critical in DA if and only if σ is a zero cycle in DB . Consequently,
C(A)= C(B) and thus every cycle in the critical digraph of A is critical.
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8.2 Principal Eigenspaces of Matrix Powers

In the analysis of principal eigenspaces of matrix powers a crucial role is played by
Theorem 8.2.1 below. This theorem applies to definite, nonpositive matrices. Note
that the statements proved in the previous section show how a general matrix A

can be transformed to a definite, nonpositive matrix B with the same set of critical
cycles (which, in the case of B , is the set of zero cycles).

We start with key definitions. If D′ is a strongly connected component of a di-
graph D then the greatest common divisor of all directed cycles in D′ is called the
cyclicity of D′. The cyclicity of D, notation σ(D), is the least common multiple of
the cyclicities of all strongly connected components of D. The cyclicity of a digraph
consisting of a single node and no arc is 1 by definition. The cyclicity of a digraph
can be found in linear time [74]. The digraph D is called primitive if σ(D)= 1 and
imprimitive otherwise. The cyclicity of A ∈R

n×n
, notation σ(A), is the cyclicity of

its critical digraph C(A). We will use the adjectives “primitive” and “imprimitive”
for matrices in the same way as for their critical digraphs.

A matrix A = (aij ) ∈ R
n×n

is called 0-irreducible if the zero digraph ZA is
strongly connected. Since a strongly connected digraph with two or more nodes
contains at least one cycle, every 0-irreducible nonpositive matrix of order two or
more is definite.

Theorem 8.2.1 below is an application of ([18], Theorem 3.4.5).

Theorem 8.2.1 (Brualdi–Ryser) Let A ∈ R
n×n

, n > 1 be a 0-irreducible and non-
positive matrix and let σ be the cyclicity of A. Let k be a positive integer. Then there
is a permutation matrix P such that P−1 ⊗ Ak ⊗ P has r 0-irreducible diagonal
blocks where r = gcd(k, σ ) and all elements outside these blocks are negative. The
cyclicity of each of these blocks is σ/r .

Corollary 8.2.2 Let A ∈ R
n×n

be a matrix with λ(A) > ε. Suppose that C(A) has
only one critical component and let σ be the cyclicity of A.

(a) If k is a positive integer then C(Ak) has r critical components, where
r = gcd(k, σ ). The cyclicity of each of these components is σ/r .

(b) pd(Ak)= 1 for every k ≥ 1 if and only if σ = 1.

Proof Follows from Theorems 8.1.7, 8.2.1 and Lemma 4.1.3. �

As another application we immediately have the following classical result when
([18], Theorem 3.4.5) is applied to DA:

Corollary 8.2.3 Let A ∈R
n×n

be irreducible, n > 1 and σ = σ(DA).

(a) Ak, k ≥ 1, is equivalent to a blockdiagonal matrix with gcd(k, σ ) irreducible
diagonal blocks.

(b) Ak is irreducible for every positive integer k if and only if DA is primitive.
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Since C(A) is a subdigraph of DA, we have that if C(A) is primitive then also
DA is primitive, yielding the following (recall that the primitivity of a matrix is
determined by the primitivity of C(A) rather than DA):

Corollary 8.2.4 If A ∈R
n×n

is primitive and irreducible then Ak is irreducible for
all k ≥ 1.

It will also be useful to know that the definiteness of an irreducible matrix A is
preserved blockwise in the powers of A.

Lemma 8.2.5 If A ∈ R
n×n

is definite and irreducible then every diagonal block of
Ak is definite for all k ≥ 1.

Proof Let x ∈ V (A) and Ak[J ] be a diagonal block of Ak for some J ⊆ N . Then
x is finite and Ak[J ] ⊗ x[J ] = x[J ]. Since Ak[J ] is irreducible, it has only one
eigenvalue and hence is definite. �

Spectral properties of matrix powers play an important role in solving reachabil-
ity problems. Next we summarize some of these properties.

Theorem 8.2.6 [34] Let k,n be positive integers and A= (aij ) ∈R
n×n

.

(a) �((λ(Ak))−1 ⊗Ak)≤ �((λ(A))−1 ⊗A).
(b) Nc(A)=Nc(A

k) and the equivalence classes of Nc(A
k) are either equal to the

equivalence classes of Nc(A) or are their refinements.
(c) If gj , g

′
j (j ∈ Nc(A)) are the fundamental eigenvectors of A and Ak respec-

tively, then gj ≥ g′j for all j ∈Nc(A).
(d) If σi is the cyclicity of the ith connected component of C(A) then this component

splits into gcd(σi, k) connected components of C(Ak). The cyclicity of each of
these components is σi/gcd(σi, k).

(e) pd(Ak)=∑i gcd(σi, k).

Proof (a) Denote (λ(A))−1 ⊗A as B . Then the LHS is

�(Bk)= Bk ⊕B2k ⊕ · · · ⊕Bnk ≤ �(B)

because by (1.20) Br ≤ �(B) for every natural r > 0.
(b) Nc(A)⊇Nc(A

k) follows from part (a) immediately since in a metric matrix
all diagonal elements are nonpositive and the j th diagonal entry is zero if and only
if j is a critical node.

Now let j ∈ Nc(A) and σ = (j = j0, j1, . . . , jr = j) be any critical cycle in A

(and B) containing j , thus w(σ,B)= 0. Let us denote

π = (j = j0, jk(mod r), j2k(mod r), . . . , jrk(mod r) = j)
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and Bk by C = (cij ). Then for all i = 0,1, . . . , r − 1 we have (all indices are mod r

and, for convenience, we write here c(i, j) rather than cij , similarly b(i, j)):

c(jik, jik+k)≥ b(jik, jik+1)+ b(jik+1, jik+2)+ · · · + b(jik+k−1, jik+k)

since c(jik, jik+k) is the weight of a heaviest path of length k from jik to jik+k with
respect to B and the RHS is the weight of one such path. Therefore

w
(
π, (λ(Ak))−1 ⊗Ak

)=w(π,Bk)≥ (w(σ,B))k = 0.

Hence, equality holds, as there are no positive cycles in (λ(Ak))−1 ⊗Ak . This im-
plies that π is a critical cycle with respect to Ak and so j ∈Nc(A

k).
If w is the weight of an arc (u, v) on a critical cycle for Ak then there is a path

from u to v having the total weight w with respect to A. Therefore all nodes on
a critical cycle for Ak belong to one critical cycle for A. Hence the refinement
statement.

(c) Follows from part (a) immediately.
(d) It now follows from Theorems 8.1.7 and Theorem 8.2.1.
(e) Follows from part (d) immediately. �

8.3 Periodic Behavior of Matrices

8.3.1 Spectral Projector and the Cyclicity Theorem

For A ∈ R
n×n

it will be practical in Sects. 8.3–8.5 to denote the Kleene star
�(A) (see Sect. 1.6) by A∗ = (a∗ij ) (so A∗ does not denote here the conjugate
matrix). The rows of A∗ will be denoted by ρ1(A

∗), . . . , ρn(A
∗), the columns by

τ1(A
∗), . . . , τn(A

∗), or just ρ1, . . . , ρn, τ1, . . . , τn.
Recall that if A ∈R

n×n
and λ(A)≤ 0 (and in particular when A is definite) then

�(A)=A⊕A2 ⊕ · · · ⊕An

and

A∗ = I ⊕A⊕A2 ⊕ · · · ⊕An−1 = I ⊕ �(A).

The columns of �(A) are denoted g1, . . . , gn. Hence τj = gj for all j ∈Nc(A) and
τj differs from gj for j /∈Nc(A) only on the diagonal position where τj has a zero
whereas gj has a negative value.

Let Q(A)= (qij ) ∈R
n×n

be the matrix with entries

qij =
∑

k∈Nc(A)

⊕
a∗ik ⊗ a∗kj , i, j ∈N. (8.8)

Hence Q(A)=∑⊕
k∈Nc(A) Q

[k](A), where Q[k](A), or just Q[k] is the outer product
τk(A

∗)⊗ ρk(A
∗).
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Proposition 8.3.1 [8] Let A ∈R
n×n

be definite and Q=Q(A). Then

A⊗Q=Q⊗A=Q=Q2.

Proof Since the columns of Q[k] are multiples of τk , for every k ∈ Nc(A) all
columns of Q[k] are principal eigenvectors of A and so A⊗Q=Q. By symmetry
the same is true about the rows of Q[k] and so also Q⊗A=Q (see Remark 4.3.6).

We also have (Q[k])2 = τk ⊗ (ρk ⊗ τk) ⊗ ρk = τk ⊗ ρk = Q[k] since ρk ⊗ τk

is the kth diagonal entry of (A∗)2 = A∗ which is 0. To prove Q2 = Q it is suffi-
cient to show that Q[k] ⊗Q[l] ≤Q[k] ⊕Q[l]. The proof of this inequality is left to
Exercise 8.7.4. �

By Proposition 8.3.1, if A is definite and x ∈ R
n

then Q ⊗ x ∈ V (A,0) and
Q2 ⊗ x =Q⊗ x. Therefore Q(A) is called the spectral projector of A.

The following observation will be useful:

Proposition 8.3.2 Let A ∈ R
n×n

be definite and Q = Q(A). Then for any
i ∈Nc(A) the ith row (column) of Q is equal to ρi (τi ).

Proof Since (A∗)2 =A∗ (see Proposition 1.6.15), we have for all i, j = 1, . . . , n:

qij =
∑

k∈Nc(A)

⊕
a∗ik ⊗ a∗kj ≤

∑

k∈N

⊕
a∗ik ⊗ a∗kj = a∗ij .

If i ∈Nc(A) and j ∈N then

qij =
∑

k∈Nc(A)

⊕
a∗ik ⊗ a∗kj ≥ a∗ii ⊗ a∗ij = a∗ij

and the statement for rows follows. The statement for the columns is proved simi-
larly. �

Spectral projectors are closely related to the periodicity questions, as the follow-
ing fundamental result suggests, proved both in [8] and [102]. For finite, strongly
definite matrices it also appears in [60], Sect. 27.3, where Q(A) is called the orbital
matrix.

Theorem 8.3.3 Let A ∈ R
n×n

be irreducible, primitive and definite. Then there is
an integer R such that Ar =Q(A) for all r ≥R.

The statement of Theorem 8.3.3 is also true for a blockdiagonal matrix whose ev-
ery block is primitive and definite. This will be important for the subsequent theory
and we therefore present it in detail. For a set S ⊆ Z and k ∈ Z we denote

k + S = S + k = {k+ s; s ∈ S}.
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Theorem 8.3.4 Let A ∈R
n×n

be a blockdiagonal matrix whose every block is prim-
itive and definite. Then there is an integer R such that Ar =Q(A) for all r ≥R.

Proof Let A1, . . . ,As be the diagonal blocks of A and N1, . . . ,Ns be the corre-
sponding partition of N , that is, Ai = A(Ni), i = 1, . . . , s. Let us denote |Ni | = ni

for all i. Hence Nc(Ai) ⊆ {1, . . . , ni}. By Theorem 8.3.3 for each i ∈ {1, . . . , s}
there is an Ri such that for all r ≥Ri we have:

Ar
i =Q(Ai)=

∑

k∈Nc(Ai)

⊕
Q[k](Ai),

where Q[k](Ai) is the outer product τk(A
∗
i )⊗ ρk(A

∗
i ).

Denote n(i) =∑1≤j<i nj , i = 1, . . . , s (thus n(1) = 0). Then

Nc(A)=
s⋃

i=1

N ′
c(Ai),

where

N ′
c(Ai)=Nc(Ai)+ n(i).

Thus we have

Q(A)=
∑

k∈Nc(A)

⊕
Q[k](A)=

∑

i=1,...,s

⊕ ∑

k∈N ′c(Ai)

⊕
Q[k](A)

where Q[k](A) is the outer product τk(A
∗)⊗ ρk(A

∗).
Let r ≥ R = max(R1, . . . ,Rs). The matrix Ar is blockdiagonal and its diago-

nal blocks are Ar
1, . . . ,A

r
s . Consequently, A∗ is also blockdiagonal and its diago-

nal blocks are (A1)
∗, . . . , (As)

∗. Hence for i ∈ {1, . . . , s} and k ∈N ′
c(Ai), we have

k = k′ + n(i), k′ ∈Nc(Ai) and

τk(A
∗)=

⎛

⎝
ε

τk′(A∗i )
ε

⎞

⎠ , ρk(A
∗)= (ε|ρk′(A

∗
i )|ε),

where in both expressions the first ε is of dimension n(i) and the second of dimen-
sion n− n(i) − ni . It follows that the n× n matrix

Bk;i = τk(A
∗)⊗ ρk(A

∗)

has all entries ε except for Bk;i[Ni], which is

τk′(A
∗
i )⊗ ρk′(A

∗
i )=Q[k′](Ai).

Therefore
∑

k∈N ′c(Ai)

⊕
Bk;i[Ni] =

∑

k′∈Nc(Ai)

⊕
Q[k′](Ai)=Q(Ai)=Ar

i .
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Finally, we deduce:

Q(A) =
∑

i=1,...,s

⊕ ∑

k∈N ′c(Ai)

⊕
Q[k](A)=

∑

i=1,...,s

⊕ ∑

k∈N ′c(Ai)

⊕
Bk;i

=
∑

i=1,...,s

⊕

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

ε · · · ε · · · ε

. . .

ε · · · Ar
i · · · ε

. . .

ε · · · ε · · · ε

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

Ar
1 ε ε ε

ε Ar
2 ε ε

ε ε
. . . ε

ε ε ε Ar
s

⎞

⎟
⎟
⎟
⎠
=Ar.

�

If σ is the cyclicity of A, it follows from Proposition 8.2.6, part (d), that all com-
ponents of C(Aσ ) are primitive and thus Aσ is primitive. The matrix Aσ may not
be irreducible, but is blockdiagonal with gcd(σ,σ (DA)) = σ(DA) blocks (Corol-
lary 8.2.3). Each block is irreducible (Corollary 8.2.3), definite (Lemma 8.2.5) and
primitive. By Theorem 8.3.4

(Aσ )r = (Aσ )r+1 =Q(Aσ )

for all r sufficiently large (observe that �(Aσ ) = {0} and so V (Aσ ) indeed is an
eigenspace). This also implies that for any k large enough, k ≡ s modσ , we have
for some r :

Ak =As+rσ =As+rσ+σ =Ak+σ .

Recall that if λ(A) > ε then (λ(A))−1 ⊗A is definite and clearly

((λ(A))−1 ⊗A)k = (λ(A))−k ⊗Ak.

We can now deduce one of the fundamental results of max-algebra (note that we did
not prove the minimality of σ(A)):

Theorem 8.3.5 (Cyclicity Theorem) For every irreducible matrix A ∈ R
n×n

the
cyclicity of A is the period of A, that is, the smallest natural number p for which
there is an integer T such that

Ak+p = (λ(A))p ⊗Ak (8.9)

for every k ≥ T .

Recall that the smallest value of T for which (8.9) holds is called the transient
of {Ak} and will be denoted by T (A). A matrix A for which there is a p and T
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such that (8.9) holds for k ≥ T is called ultimately periodic. Thus every irreducible
matrix is ultimately periodic.

Theorem 8.3.5 has been proved for finite matrices in [60]. A proof for general
matrices was presented in [50], see also [51] for an overview without proofs. A proof
in a different setting covering the case of finite matrices is given in [118]. The gen-
eral irreducible case is also proved in [6, 8, 92, 102]. A generalization to the re-
ducible case is studied in [93, 114] (see Theorem 8.6.9). Periodic behavior of matrix
powers is also studied in [75].

Recall that the entries of Ar are denoted by a
(r)
ij , in contrast to ar

ij , which denote
the r th powers of aij .

It will be important that the entries a
(r)
ij , where either i or j is critical, may

become periodic much faster than the noncritical part of A:

Theorem 8.3.6 [117, 133] Let A ∈R
n×n

be irreducible. Critical rows and columns
of Ar are periodic for r ≥ n2, that is, there exists a positive integer q such that for
all i ∈Nc(A) and j ∈N , or for all j ∈Nc(A) and i ∈N we have:

a
(r+q)
ij = (λ(A))q ⊗ a

(r)
ij .

Proof Without loss of generality we prove this statement for the rows of definite
matrices only. Let i ∈ Nc(A). Then there is a critical cycle of length li to which i

belongs. Hence a
(kli )
ii = 0 for all k ≥ 1. Since for all m < k and s = 1, . . . , n we have

a
(mli )
is = a

((k−m)li )
ii ⊗ a

(mli )
is ≤ a

(kli )
is ,

it follows that

a
(kli )
is =

∑

m=1,...,k

⊕
a

(mli )
is . (8.10)

Entries a
(kli )
is are maximal weights of paths of length k with respect to the matrix Ali .

Since the weights of all cycles are less than or equal to 0 and paths of length n or
more are not elementary, the maximum is achieved at k ≤ n (see Lemma 1.5.4).
Using (8.10) we obtain that a

((t+1)li )
is = a

(tli )
is for all t ≥ n. Further for any d ,

0≤ d ≤ li − 1,

a
(tli+d)
is =

∑

j∈N

⊕
a

(tli )
ij ⊗ a

(d)
js ,

and it follows that a
((t+1)li+d)
is = a

(tli+d)
is for all t ≥ n. Hence a

(k)
is is periodic for

k ≥ nli , and all these sequences, for any i ∈Nc(A) and any s, become periodic for
k ≥ n2. �

We will denote by Tc(A) the least integer such that the critical rows and columns
of Ar are periodic for r ≥ Tc(A). It follows from Theorem 8.3.6 that Tc(A)≤ n2.



8.3 Periodic Behavior of Matrices 193

Remark 8.3.7 The statement of Theorem 8.3.3 has found a remarkable generaliza-
tion in [138] where it has been proved that for any (reducible) matrix A all pow-
ers Ar, r ≥ 3n2, can be expressed as a max-algebraic sum of terms of the form
C ⊗ Sr ⊗ R, called CSR products. All these terms can be found in O(n4 logn)

time. Here C and R are extracted from the columns and rows of a certain Kleene
star (the same for both) and C⊗R is the spectral projector Q(A) if A is irreducible.
The matrix S is diagonally similar to the Boolean incidence matrix of a certain
critical digraph. It is shown that the powers have a well-defined ultimate behav-
ior, where certain terms are totally or partially suppressed, thus leading to ultimate
C ⊗ Sr ⊗ R terms and the corresponding ultimate expansion. This generalizes the
Cyclicity Theorem to reducible matrices. The expansion is then used to derive an
O(n4 logn) method for solving the question whether the orbit of a reducible matrix
is ultimately periodic with any starting vector.

8.3.2 Cyclic Classes and Ultimate Behavior of Matrix Powers

Imprimitive digraphs have interesting combinatorial structure which plays a key
role in solving the reachability problem (Sect. 8.6 below). We briefly introduce this
structure similarly as in [18], Sect. 3.4.

Note first that the length of every cycle is the sum of the lengths of elementary
cycles and therefore the greatest common divisor of all cycles is equal to the greatest
common divisor of elementary cycles.

Let D be a strongly connected digraph with cyclicity σ . Let i and j be any two
nodes of D and σi and σj be the greatest common divisor of cycles containing
i and j , respectively. Let α be a cycle of some length r containing i. By strong
connectivity, there is a path from i to j , say β , of length s and a path from j to i,
say γ , of length t . Clearly, combinations of β and γ and that of α,β and γ yield
cycles containing j , of length s + t and r + s + t . Since σj is a divisor of both,
it is also a divisor of r . Since α was arbitrary, σj divides the length of every cycle
containing i and thus σj divides σi . By symmetry also σi divides σj and so σi = σj .
Since i and j were arbitrary, we have σi = σj = σ . If β ′ is another path from i to j ,
say of length s′, then σ divides both s + t and s′ + t and thus s ≡ s′ modσ .

We therefore deduce that by fixing a node, say i, we can partition the set of nodes
N into σ mutually disjoint nonempty subsets C1, . . . ,Cσ as follows:

Ck = {j ∈N; the length of each i − j path is k modσ},
for k = 1, . . . , σ . Clearly, the length of any (and therefore all) paths with the starting
node in Ck and endnode in Cl is l − k modσ . We also have i ∈ Cσ . Every arc in
D leaves a node in Ck and enters a node in Ck+1 for some k, 1 ≤ k ≤ σ , where
Cσ+1 = C1. We will use notation [i] for the class containing node i. Clearly, for any
i and j there is an integer t , 0 ≤ t ≤ σ − 1 such that for the length l of any path
starting in [i] and terminating in [j ] we have l ≡ t modσ . We will write [i]→t [j ].
Clearly, if [i]→t [j ] then [j ]→σ−t [i].
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The sets [1], . . . , [σ ] will be called cyclic classes of D.
We will now apply cyclic classes to critical digraphs of matrices. They may con-

sist of several connected components, in which case we will treat each component
separately.

Lemma 8.3.8 Let A ∈ R
n×n

be definite and irreducible, σ = σ(A), and let t ≥ 0
be such that tσ ≥ T (A). Then the following hold for every integer l ≥ 0 and
k = 1, . . . , n:

Atσ+l
k· =

∑

i∈Nc(A)

⊕
a

(tσ )
ki ⊗Atσ+l

i· ,

Atσ+l
·k =

∑

i∈Nc(A)

⊕
a

(tσ )
ik ⊗Atσ+l

·i .
(8.11)

Proof The matrix B = Aσ is primitive, definite and blockdiagonal. Due to Theo-
rem 8.3.4, for any r ≥ T (B) we have

b
(r)
kj =

∑

i∈Nc(A)

⊕
b∗ki ⊗ b∗ij (8.12)

for k, j = 1, . . . , n. By Proposition 8.3.2, if u ∈Nc(A) or v ∈Nc(A), then b∗uv = b
(r)
uv

for all r ≥ T (B). Hence for any tσ ≥ T (A) (8.12) implies

a
(tσ )
kj =

∑

i∈Nc(A)

⊕
a

(tσ )
ki ⊗ a

(tσ )
ij . (8.13)

In the matrix notation, this is equivalent to:

Atσ
k· =

∑

i∈Nc(A)

⊕
a

(tσ )
ki ⊗Atσ

i·

and similarly for the columns:

Atσ
·k =

∑

i∈Nc(A)

⊕
a

(tσ )
ik ⊗Atσ

·i .

Multiplying the last two identities by any power Al , we obtain (8.11). �

In the proof of the next theorem we will use the following “Bellman-type” prin-
ciple

a
(r)
ij ⊗ a

(s)
jk ≤ a

(r+s)
ik , ∀i, j, k, r, s, (8.14)

which immediately follows from the fact that Ar ⊗As =Ar+s .

Theorem 8.3.9 Let A ∈ R
n×n

be a definite and irreducible matrix, σ = σ(A) and
let i, j ∈Nc(A) be such that [i]→l [j ], for some l ≥ 0.
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(a) For any r ≥ Tc(A) there exists an integer t ≥ 0 such that

a
(tσ+l)
ij Ar·i =Ar+l

·j , a
(tσ+l)
ij Ar

j · =Ar+l
i· . (8.15)

(b) If A is visualized, then for all r ≥ Tc(A)

Ar·i =Ar+l
·j , Ar

j · =Ar+l
i· . (8.16)

Proof Let i, j ∈Nc(A). If [i]→l [j ] then [j ]→s [i], where l+ s = σ . Hence there
exists a critical path of length tσ + l, for some integer t ≥ 0, connecting i to j , and
a critical path of length uσ + s, for some integer u≥ 0, connecting j to i. Thus

a
(tσ+l)
ij ⊗ a

(uσ+s)
j i = 0, (8.17)

and in the visualized case

a
(tσ+l)
ij = a

(uσ+s)
j i = 0. (8.18)

Combining this with (8.14) we obtain:

Ar·i =Ar·i ⊗ a
(tσ+l)
ij ⊗ a

(uσ+s)
j i ≤Ar+tσ+l

·i ⊗ a
(uσ+s)
j i ≤A

r+(t+u+1)σ
·i .

Since r ≥ Tc(A), by Theorem 8.3.6 we have Ar·i =A
r+(t+u+1)σ
·i , hence all inequali-

ties hold with equality. Now multiply the equality

Ar·i =Ar+tσ+l
·i ⊗ a

(uσ+s)
j i

by a
(tσ+l)
ij :

a
(tσ+l)
ij ⊗Ar·i =Ar+tσ+l

·i ⊗ a
(uσ+s)
j i ⊗ a

(tσ+l)
ij

and the statement for columns now follows by (8.17) and Theorem 8.3.6. The proof
for the rows is similar and part (b) follows from (8.18). �

Letting l = 0 in Theorem 8.3.9 we obtain the following.

Corollary 8.3.10 Let A ∈R
n×n

be definite, irreducible and r ≥ Tc(A). All rows of
Ar with indices in the same cyclic class are equal, and the statement holds similarly
for the columns.

Theorem 8.3.9 says that for any power Ar for r ≥ Tc(A) (and in particular for
r ≥ n2), the critical columns (or rows) can be obtained from the critical columns
(or rows) of the spectral projector Q(Aσ ) by permuting the sets of columns (or
rows) which correspond to the cyclic classes of the critical digraph. Lemma 8.3.8
adds to this that all noncritical columns (or rows) of any periodic power are in the
subspace spanned by the critical columns (or rows). Since all columns of Q(Aσ )

are eigenvectors of Aσ , we conclude the following.
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Theorem 8.3.11 If A ∈ R
n×n

is definite and irreducible then all powers Ar for
r ≥ T (A) have the same column span, which is the eigenspace V (Aσ ).

Theorem 8.3.11 enables us to say that V (Aσ ) is the ultimate column span of A.
Similarly, we have the ultimate row span which is V ((AT )σ ). These subspaces are
generated by critical columns (or rows) of the Kleene star (Aσ )∗. For a basis of
this subspace, we can take any set of columns (Aσ )∗ (equivalently Q(Aσ ) or Atσ

for tσ ≥ T (A)), whose indices form a minimal set of representatives of all cyclic
classes of C(A) or, equivalently, any maximal set of nonequivalent eigennodes of
Nc(A) (see Lemma 4.3.2).

8.4 Solving Reachability

Let A ∈R
n×n

be definite and p a positive integer. Recall that the p-attraction space
Attr(A,p) is the set of all vectors for which there exists an integer r such that Ar ⊗
x = Ar+p ⊗ x �= ε (and hence this is also true for all integers greater than or equal
to r). Actually we may speak of any r ≥ T (A), due to the following observation.

Proposition 8.4.1 Let A be irreducible and definite, p positive integer and x ∈R
n
.

Then

As ⊗ x =As+p ⊗ x

for some s ≥ T (A) if and only if

Ar ⊗ x =Ar+p ⊗ x

for all r ≥ T (A).

Proof Let x satisfy As ⊗ x =As+p ⊗ x for some s ≥ T (A), then it also satisfies

Al ⊗ x =Al+p ⊗ x

for all l > s (to see this, multiply the first equation by Al−s ).
Due to periodicity, for all k, T (A)≤ k ≤ s, there exists l > s such that Ak =Al .

Hence Ak ⊗ x =Ak+p ⊗ x also holds if T (A)≤ k ≤ s. �

Corollary 8.4.2 Attr(A,p)=Attr(Ap,1).

Proof By Proposition 8.4.1, Attr(A,p) is the solution set to the system Ar ⊗ x =
Ar+p ⊗ x for any r ≥ T (A), in particular for multiples of p, which proves the
statement. �

An equation of Ar ⊗ x = Ar+p ⊗ x whose index is in Nc(A) will be called
critical, and the subsystem consisting of all critical equations will be called the
critical subsystem.



8.4 Solving Reachability 197

Lemma 8.4.3 Let A be irreducible and definite and let r ≥ T (A). Then Ar ⊗ x =
Ar+p ⊗ x is equivalent to its critical subsystem.

Proof Consider a noncritical equation Ar
k· ⊗ x = A

r+p
k· ⊗ x. Using Lemma 8.3.8 it

can be written as
∑

i∈Nc(A)

⊕
a

(r)
ki ⊗Ar

i· ⊗ x =
∑

i∈Nc(A)

⊕
a

(r)
ki ⊗A

r+p
i· ⊗ x,

hence it is a max-combination of equations in the critical subsystem. �

We are ready to present a method for deciding whether x ∈Attr(A,p), as well as
other related problems which we formulate below. We assume in all that A ∈R

n×n

is a given irreducible and definite matrix and σ = σ(A).
For ease of reference we denote:

P1. For a given x ∈R
n

and positive integer p, decide whether x ∈Attr(A,p).
P2. For a given k, 0≤ k < σ , compute the periodic power As where s ≡ k modσ .
P3. For a given x ∈R

n
compute the period of O(A,x).

Observe that P1 is identical with Q2 and P3 with Q1 formulated at the beginning
of this chapter. The proof of the next statement is constructive and provides algo-
rithms for solving P1−P3. Note that a similar argument was used in the max-min
setting [130].

Theorem 8.4.4 [133] For any irreducible matrix A ∈ R
n×n

, the problems P1–P3
can be solved in O(n3 logn) time.

Proof Suppose that k and p are given. First note that using the Karp and
Floyd−Warshall algorithms (see Chap. 1) we can compute both λ(A) and a finite
eigenvector of A, and find all critical nodes in O(n3) time (see Theorem 8.1.3
and Corollary 8.1.7). Further we can identify all cyclic classes of C(A) by
Balcer−Veinott condensation in O(n2) operations [9]. We can now assume that
A is definite and visualized.

By Theorem 8.3.6 the critical rows and columns become periodic for r ≥ n2. To
find the critical rows and columns of the required power s ≥ T (A), we first compute
Ar for one (arbitrary) exponent r ≥ n2 which can be done in O(logn) matrix squar-
ing (A,A2,A4, . . .) and takes O(n3 logn) time. Then following Theorem 8.3.9, we
shift the rows and columns of Ar to obtain the critical rows and columns of As (to
do this as described in (8.16) we assume that r ∈ [i], s ∈ [j ] and [i] −→l [j ] for
some i, j, l). This requires O(n2) operations. In a similar way we find the critical
rows of As+p .

By Lemma 8.4.3 we can solve P1 by the verification of the critical subsystem
of As ⊗ x = As+p ⊗ x which takes O(n2) operations. Using linear dependence of
Lemma 8.3.8 the remaining noncritical submatrix of As and As+p for any s ≥ T (A)

such that s ≡ k modσ , can be computed in O(n3) time. This solves P2.
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As the noncritical rows of A are generated by the critical ones, the period of
O(A,x) is determined by the critical components. For a visualized matrix we know
that Ar+t

i· =Ar
j · for all i, j ∈Nc(A) such that [i]→t [j ]. This implies (Ar+t⊗x)i =

(Ar ⊗ x)j for [i] →t [j ], that is, to determine the period we only need the critical
subvector of Ar ⊗ x for any fixed r ≥ n2. Indeed, for any i ∈ Nc(A) and r ≥ n2

the sequence {(Ar+t ⊗ x)i}t≥0 can be represented as a sequence of critical indices
of Ar ⊗ x determined by a permutation on cyclic classes of the strongly connected
component C to which i belongs. That is if in C we have

[i1] −→ [i2] −→ · · · −→ [iσ ] −→ [i1],
where σ = σ(C), then we take a sequence {jr}σr=1 such that jr ∈ [ir ]. This se-
quence can be taken randomly since by Corollary 8.3.10 all rows and columns of Ar

with indices from the same cyclic class are equal. Now we consider the sequence
xj1, . . . , xjσ

and find its period. Even by checking all possible periods it takes no
more than σ 2 ≤ n2 operations. The period of Ar ⊗ x is then the least common mul-
tiple of periods found for each strongly connected component. It remains to note
that all operations above do not require more than O(n3) time. This solves P3. �

Example 8.4.5 We will examine problems P2 and P3 on the following strictly visu-
alized 9× 9 matrix:

A=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1 0 −1 −1 −9 −7 −10 −4 −8
0 −1 0 −1 −10 −1 −10 −9 −4

−1 −1 −1 0 −2 −3 −2 −6 −6
0 −1 −1 −1 −10 −6 −10 −6 −1

−10 −2 −8 −1 −1 0 −1 −10 −1
−5 −5 −10 −9 −1 −1 0 −3 −6
−9 −10 −7 −10 0 −1 −1 −8 −8
−75 −80 −77 −83 −80 −77 −82 −2 −0.5
−84 −81 −77 −80 −78 −77 −78 −0.5 −2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The critical components of A, see Fig. 8.1, have node sets {1,2,3,4} and {5,6,7}.
The cyclicities are σ1 = 2, σ2 = 3, so σ(A) = lcm(2,3) = 6. Let us denote
M = {8,9}.

The matrix can be decomposed into blocks

A=
⎛

⎝
A11 A12 A1M

A21 A22 A2M

AM1 AM2 AMM

⎞

⎠ ,

where the submatrices A11 and A22 correspond to two critical components of C(A),
see Fig. 8.1. They are

A11 =

⎛

⎜
⎜
⎝

−1 0 −1 −1
0 −1 0 −1
−1 −1 −1 0

0 −1 −1 −1

⎞

⎟
⎟
⎠
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Fig. 8.1 Critical digraph in
Example 8.4.5

and

A22 =
⎛

⎝
−1 0 −1
−1 −1 0

0 −1 −1

⎞

⎠ .

The noncritical principal submatrix

AMM =
( −2 −0.5
−0.5 −2

)

.

It can be checked that the powers of A become periodic after T (A)= 154.
We will consider the following instances of problems P2 and P3:

P2. Compute Ar for r ≥ T (A) and r ≡ 2 mod 6.

P3. For a given x ∈R
9
, find the period of {Ak ⊗ x}.

Solving P2. We perform 7 squarings A,A2,A4, . . . to raise A to the power 128 >

9× 9. This brings us to the matrix

A128 =

⎛

⎜
⎜
⎜
⎝

A
(128)
11 A

(128)
12 A

(128)
1M

A
(128)
21 A

(128)
22 A

(128)
2M

A
(128)
M1 A

(128)
M2 A

(128)
MM

⎞

⎟
⎟
⎟
⎠

,
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where

A
(128)
11 =

⎛

⎜
⎜
⎝

0 −1 0 −1
−1 0 −1 0

0 −1 0 −1
−1 0 −1 0

⎞

⎟
⎟
⎠ , A

(128)
22 =

⎛

⎝
−1 −1 0

0 −1 −1
−1 0 −1

⎞

⎠ ,

all entries of A
(128)
12 and A

(128)
21 are −1 and

A
(128)
1M =

⎛

⎜
⎜
⎝

−2.5 −1
−1.5 −2
−2.5 −1
−1.5 −2

⎞

⎟
⎟
⎠ , A

(128)
2M =

⎛

⎝
−1.5 −2
−2.5 −2
−2.5 −1

⎞

⎠ ,

A
(128)
M1 =

⎛

⎜
⎜
⎝

−76 −75.5
−75 −76.5
−76 −75.5
−75 −76.5

⎞

⎟
⎟
⎠

T

, A
(128)
M2 =

⎛

⎝
−76 −76.5
−76 −76.5
−76 −76.5

⎞

⎠

T

.

We are lucky since 128 ≡ 2 mod 6, thus we already have true critical columns
and rows of Ar . However, the noncritical principal submatrix of A128 is

A
(128)
MM =

( −64 −65.5
−65.5 −64

)

.

It can be checked that this is not the noncritical submatrix of Ar that we seek (recall
that T (A)= 154). Hence, it remains to compute the principal noncritical submatrix
A

(r)
MM .
We note that A132 has critical rows and columns of the spectral projector Q(A),

since 132 is a multiple of σ = 6. In A132, the critical rows and columns 1−4 are
the same as those of A128, since σ1 = 2 and both 128 and 132 are even. The critical
rows 5−7 can be computed from those of A128 by cyclic permutation (5,6,7). Since
A

(128)
M1 and A

(128)
M2 happen to have equal columns, all blocks in A132 are the same as

in A128 above (after a similar block decomposition of A132), except for

A
(132)
22 =

⎛

⎝
0 −1 −1

−1 0 −1
−1 −1 0

⎞

⎠ , A
(132)
2M =

⎛

⎝
−2.5 −2
−2.5 −1
−1.5 −2

⎞

⎠ .

Now the remaining noncritical submatrix of Ar can be computed using linear de-
pendence of Lemma 8.3.8, which now reads

A
(r)
·k =

∑

i=1,...,7

⊕
a

(132)
ik ⊗A

(128)
·i , k = 8,9.



8.4 Solving Reachability 201

This yields

A
(r)
MM =

(−76.5 −77
−78 −76.5

)

.

Solving P3. We examine the orbit period of Ak⊗ x for x = x1, x2, x3, x4, where

x1 = (1, 2, 3, 4, 5, 6, 7, 8, 9)T ,

x2 = (1, 2, 3, 4, 0, 0, 0, 0, 0)T ,

x3 = (0, 0, 1, 1, 0, 0, 1, 1, 1)T ,

x4 = (0, 0, 1, 1, 0, 0, 0, 0, 0)T .

Let us compute y =A128 ⊗ x for x = x1, x2, x3, x4:

y1 =A128 ⊗ x1 = (8, 7, 8, 7, 7, 7, 8, ×, ×)T ,

y2 =A128 ⊗ x2 = (3, 4, 3, 4, 3, 3, 3, ×, ×)T ,

y3 =A128 ⊗ x3 = (1, 1, 1, 1, 1, 0, 0, ×, ×)T ,

y4 =A128 ⊗ x4 = (1, 1, 1, 1, 0, 0, 0, ×, ×)T .

Here × correspond to noncritical entries that are not needed. The cyclic classes in
the first critical component have node sets C1 = {1,3}, C2 = {2,4}, and the cyclic
classes in the second have node sets C3 = {5}, C4 = {6} and C5 = {7}, see Fig. 8.2.

Fig. 8.2 Cyclic classes in
Example 8.4.5
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From Theorem 8.4.4 it follows that the coordinate sequences

{(Ar ⊗ x)i, r ≥ T (A)}
are

y1, y2, y1, y2, . . . , for i = 1,2,3,4,

y5, y6, y7, y5, y6, y7, . . . , for i = 5,6,7.

Note that the first sequence has been taken randomly from four possibilities:

y1, y2, y1, y2, . . . ,

y3, y4, y3, y4, . . . ,

y1, y4, y1, y4, . . . ,

y3, y2, y3, y2, . . . .

The second sequence is uniquely determined since all cyclic classes in C2 are one-
element.

From y1, . . . , y4 above we deduce that the orbit of x1 is of the largest possible
period 6, the orbit of x2 is of period 2 (that is, x2 ∈ Attr(A,2)), the orbit of x3

is of period 3 (that is, x3 ∈ Attr(A,3)), and the orbit of x4 is of period 1 (that is,
x4 ∈Attr(A,1)).

8.5 Describing Attraction Spaces

For applications it may be important to decide not only whether a vector is in an
attraction space but also to describe the whole attraction space as efficiently as pos-
sible and thus to provide a choice of starting time vectors leading to stability of
processes such as MMIPP. In this section we discuss the systems

Ar ⊗ x =Ar+1 ⊗ x, (8.19)

which fully describe attraction spaces Attr(A,1) provided that r is sufficiently big.
We will therefore call such systems attraction systems. The task of finding Ar for
such r has been solved in Sect. 8.4. The results of this section enable us to simplify
these systems for irreducible matrices A.

Note that if the critical digraph is strongly connected then for an irreducible ma-
trix A there is a v ∈R

n−{ε} such that V (A)= {α⊗v;α ∈R}. The attraction space
is then described by the essentially one-sided system

Ar ⊗ x = v⊗ y,

where y is a single variable. Therefore the unique scaled basis of the attraction
space can be found using the results of Sect. 7.2.4. If, moreover, all nodes of A are
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critical, then Corollary 7.2.6 offers an even simpler way of finding the basis, see
Remark 8.5.6. The case when there is only one critical cycle has been analysed in
more detail in [16].

8.5.1 The Core Matrix

Let A ∈ R
n×n

be irreducible. We will assume that the critical nodes of DA are the
first (say) c nodes. Suppose also that C(A) consists of nc strongly connected compo-
nents Cμ with cyclicities σμ, for μ= 1, . . . , nc. Let c be the number of noncritical
nodes. Further it will be convenient to consider, together with these components,
also noncritical, that is, trivial, components Cμ for μ= nc + 1, . . . , nc + c, whose
node sets Nμ consist of just one noncritical node, and the sets of arcs are empty.

Consider the block decomposition of Ar for r ≥ 1, induced by the subsets Nμ

for μ = 1, . . . , nc + c. The submatrix of Ar extracted from the rows in Nμ and

columns in Nν will be denoted by A
(r)
μν . If A is visualized and definite, we define the

corresponding core matrix ACore = (αμν), μ,ν = 1, . . . , nc + c by

αμν =max{aij ; i ∈Nμ, j ∈Nν}. (8.20)

The entries of (ACore)∗ will be denoted by α∗μν . Their role is shown in the next
theorem.

Theorem 8.5.1 [137] Let A ∈ R
n×n

be an irreducible, definite, visualized matrix
and r ≥ Tc(A). Let μ,ν ∈ {1, . . . , nc + c} be such that at least one of these indices
is critical. Then the maximal entry of the block A

(r)
μν is equal to α∗μν and therefore

this entry appears in every row and column of A
(r)
μν .

Proof The entry α∗μν is the maximal weight over paths from μ to ν in DACore . Take
one such path, say (μ1, . . . ,μl) of maximal weight, where μ1 := μ and μl = ν.
With this path we can associate a path π in DA defined by π = τ1 ◦ σ1 ◦ τ2 ◦ · · · ◦
σl−1 ◦ τl , where τi are paths containing only critical arcs, which entirely belong to
the components Cμi

, and σi are arcs of maximal weight from Cμi
to Cμi+1 . Such a

path π exists since any two nodes in the same component Cμ can be connected to
each other by critical paths if μ is critical, and Cμ consists just of one node if μ is
noncritical. The weights of τi are 0, hence the weight of π is equal to α∗μν . It follows
from the definition of αμν and α∗μν that α∗μν is the greatest weight of a path from Cμ

to Cν . As at least one of the indices μ,ν is critical, there is freedom in the choice of
the paths τ1 or τl which can be of arbitrary length. Assume without loss of generality
that μ is critical. Then for any r exceeding the length of σ1 ◦τ2 ◦ · · · ◦σl−1 ◦τl which
we denote by lμν , the block A

(r)
μν contains an entry equal to α∗μν , which is the greatest

entry of the block. Taking the maximum T ′(A) of lμν over all ordered pairs (μ, ν)

with μ or ν critical, we obtain the claim for r ≥ T ′(A). Evidently, T ′(A) can be
replaced by Tc(A). �
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Further we observe that the dimensions of periodic powers can be reduced. The
rows and columns with indices in the same cyclic class coincide in any power
Ar , where r ≥ Tc(A) and A is definite and visualized (Theorem 8.3.9). Hence
after an appropriate permutation of the rows and columns, the blocks of Ar , for
μ,ν = 1, . . . , nc + c and r ≥ Tc(A), are of the form

A(r)
μν =

⎛

⎜
⎝

ã
(r)
s1t1
⊗Os1t1 . . . ã

(r)
s1tm

⊗Os1tm
...

. . .
...

ã
(r)
skt1
⊗Oskt1 . . . ã

(r)
sktm

⊗Osktm

⎞

⎟
⎠ , (8.21)

where k (resp. m) are cyclicities of Cμ (resp. Cν ), indices s1, . . . , sk and t1, . . . , tm
correspond to cyclic classes of Cμ and Cν , respectively, and Ositj are zero matrices
of appropriate dimensions. We assume that Cμ has just one cyclic class if μ is
noncritical.

Formula (8.21) defines the matrix Ã(r) ∈R
(̃c+c)×(̃c+c)

, where c̃ is the total num-
ber of cyclic classes, as the matrix with entries ã

(r)
si tj

. By (8.21), this matrix has
blocks

Ã(r)
μν =

⎛

⎜
⎝

ã
(r)
s1t1

. . . ã
(r)
s1tm

...
. . .

...

ã
(r)
skt1

. . . ã
(r)
sktm

⎞

⎟
⎠ . (8.22)

It follows that Ã(r1+r2) = Ã(r1)⊗ Ã(r2) for all r1, r2 ≥ Tc(A). In other words, the
multiplication of any two powers A(r1) and A(r2) for r1, r2 ≥ Tc(A) reduces to the
multiplication of Ã(r1) and Ã(r2).

Let σ = σ(A). If we take r = σ t+ l ≥ T (A) (instead of Tc(A) above) and denote
Ã := Ã(σ t+1), then due to the periodicity we obtain

Ã(σ t+l) = Ã((σ t+1)l) = Ãl = Ãσ t+l , (8.23)

so that Ã(r) can be regarded as the r th power of Ã, for all r ≥ T (A).

8.5.2 Circulant Properties

A matrix A= (aij ) ∈R
m×n

will be called circulant, if aij = aps whenever p = i+ t

(mod m) and s = j + t (mod n) for all i ∈M,j ∈N, t ≥ 1. For instance

A=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 2 0 1 2 0 1 2
2 0 1 2 0 1 2 0 1
1 2 0 1 2 0 1 2 0
0 1 2 0 1 2 0 1 2
2 0 1 2 0 1 2 0 1
1 2 0 1 2 0 1 2 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(8.24)
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is circulant. Note that if m= n then there exist scalars α1, . . . , αn such that aij = αd

whenever j − i = d (mod n) and a circulant matrix then has the form:

A=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

α1 α2 α3 · · · αn

αn α1 α2
. . . αn−1

αn−1 αn α1
. . . αn−2

...
. . .

. . .
. . .

...

α2 α3 . . . . . . α1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (8.25)

A matrix A ∈ R
m×n

will be called block k × k circulant if there exist scalars
α1, . . . , αk and a block decomposition A = (Aij ), i, j = 1, . . . , k such that
Aij = αd ⊗Oij if j − i = d (mod k), where Oij are zero matrices.

A matrix A= (aij ) ∈ R
m×n

will be called d-periodic when aij = ais if (s − j)

modn is a multiple of d , and aji = asi if (s − j) modm is a multiple of d .
The matrix (8.24) indicates that a rectangular m× n circulant matrix consists of

ordinary d× d circulant blocks, where d = gcd(m,n). In particular, it is d-periodic.
Also, there exist conventional permutation matrices P and Q such that B = PAQ is
block d × d circulant:

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 1 1 1 2 2 2
0 0 0 1 1 1 2 2 2
2 2 2 0 0 0 1 1 1
2 2 2 0 0 0 1 1 1
1 1 1 2 2 2 0 0 0
1 1 1 2 2 2 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Observe that if A ∈R
m×n

is circulant and m and n are coprime then A is constant.
We formalize these observations in the following.

Proposition 8.5.2 Let A ∈R
m×n

be circulant and d = gcd(m,n).

(a) A is d-periodic.
(b) There exist conventional permutation matrices P and Q such that PAQ is a

block d × d circulant.

Proof (a) There are integers t1 and t2 such that d = t1m+ t2n. Using the definition
of a circulant matrix we obtain aij = ais , if s = j + t1m (mod n), and hence if
s = j + d (mod n). Similarly for the rows, we obtain that aji = asi , if s = j + t2n

(mod m), and hence if s = j + d (mod m).
(b) As A is d-periodic, all rows such that i + d = j (mod m) are equal, so

that {1, . . . ,m} can be divided into d groups with m/d indices each, in such a way
that Ai· = Aj ·, if i and j belong to the same group. We can find a permutation
matrix P such that A′ = PA will have rows A′1· = · · · = A′d· = A1·, A′d+1· = · · · =
A′2d· = A2·, and so on. Similarly, we can find a permutation matrix Q such that
A′′ = PAQ will have columns A′′·1 = · · · = A′′·d = A′·1, A′′·d+1 = · · · = A′′·2d = A′·2,
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and so on. Then A′′ has blocks A′′ij for i, j = 1, . . . , d of dimension n/d × m/d ,
where A′′ij = aij ⊗Oij , and Oij is a zero matrix. As A is d-periodic, the submatrix
extracted from the first d rows and columns is circulant. Hence A′′ is block d × d

circulant. �

Proposition 8.5.3 Let A ∈ R
n×n

be an irreducible, definite and visualized matrix
which admits block decomposition (8.21), σ = σ(A) and r ≥ T (A). Let Cμ,Cν be
two (possibly equal) components of C(A), and d = gcd(σμ,σν).

(a) Ã
(r)
μν is circulant.

(b) For any critical μ and ν, there is a permutation P such that (P T ÃP )
(r)
μν is a

block d × d circulant matrix.
(c) If r is a multiple of σ , then Ã

(r)
μμ are circulant Kleene stars, where all off-

diagonal entries are negative.

Proof (a) Using (8.16) and notation (8.22) we see that for all (i, j) and (k, l) such
that k = i + t (modσμ) and l = j + t (modσν),

ã
(r)
sktl
= ã

(r+t)
si tl

= ã
(r)
si tj

.

(b) If μ= ν then P = I , and if μ �= ν then P is any permutation matrix such that
its subpermutations for Nμ and Nν are given by P and Q of Proposition 8.5.2.

(c) Part (a) shows that Ã
(r)
μμ are circulants for any r ≥ T (A) and critical μ. If r is a

multiple of σ , then Ã
(r)
μμ are submatrices of Ãσ =Q(Ãσ ) and hence of (Ãσ )∗. This

implies, using Corollary 1.6.16, that they are Kleene stars. As the μth component of
C(Ã) is just a cycle of length σμ, the corresponding component of C(Ãσ ) consists

of σμ loops, showing that the off-diagonal entries of Ã
(r)
μμ are negative. �

8.5.3 Max-linear Systems Describing Attraction Spaces

Let A ∈ R
n×n

be definite and irreducible. It follows from Sect. 8.4, in particular
Theorem 8.4.4, that the coefficients of the system Ar ⊗ x = Ar+p ⊗ x for integers
p ≥ 1 and r ≥ T (A) can be found using O(n3 logn) operations, by means of matrix
squaring and permutation of cyclic classes. Due to Corollary 8.4.2 we may assume
without loss of generality that p = 1.

Next we show how the specific circulant structure of Ar at r ≥ T (A) can be
exploited, to derive a more efficient system of equations for the attraction space
Attr(A,1). Due to Theorem 8.5.1 the core matrix

ACore = {αμν; μ,ν = 1, . . . , nc + c},
and its Kleene star

(ACore)∗ = {α∗μν; μ,ν = 1, . . . , nc + c}
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will be of special importance. We will use the notation

M(r)
ν (i)= {j ∈Nν; a

(r)
ij = α∗μν}, i ∈Nμ, ∀ν : Cν �= Cμ,

K(r)(i)= {t > c; a
(r)
it = α∗μν(t)}, i ∈Nμ,

(8.26)

where Cμ and Cν are strongly connected components of C(A), Nμ and Nν are
their node sets and ν(t) in the second definition denotes the index of the noncritical
component which consists of the node t . The sets M

(r)
ν (i) defined in (8.26) are

nonempty for any r ≥ Tc(A), due to Theorems 8.3.9 and 8.5.1.
The results of Sect. 8.5.2 yield the following properties of M

(r)
ν (i) and K(r)(i).

Proposition 8.5.4 Let A ∈ R
n×n

be an irreducible, definite and visualized matrix,
r ≥ Tc(A) and μ,ν ∈ {1, . . . , nc}.
1. If [i]→t [j ] and i, j ∈Nμ then M

(r+t)
ν (i)=M

(r)
ν (j) and K(r+t)(i)=K(r)(j).

2. Each M
(r)
ν (i) is the union of some cyclic classes of Cν .

3. Let i ∈ Nμ and d = gcd(σμ,σν). Then, if [p] ⊆M
(r)
ν (i) and [p] →d [s] then

[s] ⊆M
(r)
ν (i).

4. Let i, j ∈Nμ and p, s ∈Nν . Let [i] →t [j ] and [p] →t [s]. Then [p] ⊆M
(r)
ν (i)

if and only if [s] ⊆M
(r)
ν (j).

Next we establish the cancellation rules which will enable us to simplify systems
of equations for the attraction space Attr(A,1).

Recall first that by Lemma 7.4.1, if a < c, then

{x; a ⊗ x ⊕ b= c⊗ x ⊕ d} = {x; b= c⊗ x ⊕ d}. (8.27)

Consider now a chain of equations
∑

i∈N

⊕
a1ixi ⊕ c1 =

∑

i∈N

⊕
a2ixi ⊕ c2 = · · · =

∑

i∈N

⊕
anixi ⊕ cn. (8.28)

Suppose that α1, . . . , αn ∈ R are such that ali ≤ αi for all l and i, and
Sl = {i;ali = αi} for l = 1, . . . , n. Let Sl be such that

⋃n
l=1 Sl = {1, . . . , n}. By

repeatedly applying the elementary cancellation law (8.27), we obtain that (8.28) is
equivalent to

∑

i∈S1

⊕
αixi ⊕ c1 =

∑

i∈S2

⊕
αixi ⊕ c2 = · · · =

∑

i∈Sn

⊕
αixi ⊕ cn. (8.29)

We will refer to the equivalence between (8.28) and (8.29), as to the chain cancel-
lation.

We may now formulate the following key result.

Theorem 8.5.5 [137] Let A ∈ R
n×n

be an irreducible, definite and visualized ma-
trix and r ≥ T (A) be a multiple of σ = σ(A). Then the system Ar ⊗ x =Ar+1 ⊗ x
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is equivalent to

∑

k∈[i]

⊕
xk ⊕

∑

ν �=μ

⊕(
α∗μν ⊗

∑

k∈M
(r)
ν (i)

⊕
xk

)

⊕
∑

t∈K(r)(i)

⊕
α∗μν(t) ⊗ xt

=
∑

k∈[j ]

⊕
xk ⊕

∑

ν �=μ

⊕(
α∗μν ⊗

∑

k∈M
(r)
ν (j)

⊕
xk

)

⊕
∑

t∈K(r)(j)

⊕
α∗μν(t) ⊗ xt , (8.30)

where μ = 1, . . . , nc and [i] and [j ] range over all pairs of cyclic classes in Cμ

such that [i]→1 [j ].

Proof By Lemma 8.4.3 Ar ⊗ x = Ar+1 ⊗ x is equivalent to its critical subsystem.
Consider critical equations of Ar ⊗ x =Ar+1 ⊗ x:

∑

k

⊕
a

(r)
ik ⊗ xk =

∑

k

⊕
a

(r+1)
ik ⊗ xk, i = 1, . . . , c. (8.31)

Take i, j ∈ {1, . . . , c} such that [i]→1 [j ]. Then by Theorem 8.3.9,

a
(r+1)
ik = a

(r)
jk ,

hence the critical subsystem of Ar ⊗ x =Ar+1 ⊗ x is as follows:

∑

k

⊕
a

(r)
ik ⊗ xk =

∑

k

⊕
a

(r)
jk ⊗ xk, ∀i, j : [i]→1 [j ]. (8.32)

Proposition 8.5.3, part (c), implies that all principal submatrices of Ar extracted
from critical components have circulant block structure. In this structure, all en-
tries of the diagonal blocks are equal to 0, and the entries of all off-diagonal blocks
are strictly less than 0. Hence we can apply the chain cancellation (equivalence be-
tween (8.28) and (8.29)) and obtain the first terms on both sides of (8.30). By Theo-
rem 8.5.1 each block Aμν contains an entry equal to α∗μν . For a noncritical ν(t), this
readily implies that the corresponding subcolumn Aμν(t) contains an entry α∗

μν(t)
.

Applying the chain cancellation we obtain the last terms on both sides of (8.30).
From the block circulant structure of Aμν with both μ and ν critical, see Proposi-
tions 8.5.3 or 8.5.4, we deduce that each column of such a block also contains an
entry equal to α∗μν . Applying the chain cancellation we obtain the remaining terms
in (8.30). �

It follows that (8.19) is equivalent to (8.30). As Attr(A, t)=Attr(At ,1), this sys-
tem can also be used to describe more general attraction spaces. It is only necessary
to substitute C(At ) for C(A) and the entries of ((At )Core)∗ for α∗μν (the dimension
of this matrix will be different in general, see Theorem 8.2.6 part (d)).
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We note that (8.30) naturally breaks into several chains of equations correspond-
ing to individual strongly connected components of C(A). Let μ ∈ {1, . . . , nc} and
consider the subsystem of (8.32) corresponding to Cμ. It is a single chain of equa-
tions. Denote the common value of all sides in this chain by zμ. Then, the subsystem
can be written in the form P ⊗x = (zμ, . . . , zμ)T , where each row of P corresponds
to one side of the chain. Therefore the whole system (8.32) can equivalently be writ-

ten as R ⊗ x = H ⊗ z, where H = (hiμ) ∈ R
c̃×nc (̃c is the total number of cyclic

classes) has entries

hiμ =
{

0, if i ∈Nμ,

ε, otherwise.
(8.33)

Remark 8.5.6 If all nodes of A are critical and the critical digraph is strongly con-
nected then the sets of variables on individual sides in (8.30) are pairwise disjoint,
corresponding to individual cyclic classes. In this case the unique scaled basis of the
attraction space of A is described by Corollary 7.2.6.

Theorem 8.5.5 can be used for finding the attraction system in a way different
from matrix scaling and permutation of cyclic classes [134]. This method is more
efficient if the number of strongly connected components of C(A) and the number
of noncritical nodes are small relative to n.

Example 8.5.7 Consider the following 9× 9 definite, strictly visualized matrix:

A=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−8 0 −1 −8 −8 −9 −4 −5 −1
−4 −5 0 −2 −6 0 −7 −3 −9
−7 −9 −8 0 −8 −4 −6 −9 −10
−8 −8 −10 −7 0 −4 −6 −10 −1
−2 −8 −7 −4 −8 0 −3 −1 −10

0 −1 −2 −7 −10 −6 −3 −6 −1
−10 −7 −7 −7 −6 −1 −5 0 −9
−8 −3 −6 −8 −6 −8 −5 −10 0
−4 −3 −5 −6 −6 −10 0 −6 −9

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The critical digraph of this matrix consists of two strongly connected components,
comprising 6 and 3 nodes respectively. They are shown in Figs. 8.3 and 8.4, together
with their cyclic classes. Note that σ(A)= lcm(gcd(6,3),3)= 3. The components
of C(A) induce block decomposition

A=
(

A11 A12
A21 A22

)

, (8.34)
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Fig. 8.3 Critical digraph in
Example 8.5.7

Fig. 8.4 Cyclic classes in
Example 8.5.7
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where

A11 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−8 0 −1 −8 −8 −9
−4 −5 0 −2 −6 0
−7 −9 −8 0 −8 −4
−8 −8 −10 −7 0 −4
−2 −8 −7 −4 −8 0

0 −1 −2 −7 −10 −6

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

A22 =
⎛

⎝
−5 0 −9
−5 −10 0

0 −6 −9

⎞

⎠ .

(8.35)

The core matrix and its Kleene star are equal to

ACore = (ACore)∗ =
(

0 −1
−1 0

)

. (8.36)

By calculating A,A2, . . . we obtain that the powers of A become periodic after
T (A)= 6. In the block decomposition of A6 induced by (8.34), we have the follow-
ing circulants:

A
(6)
11 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 −1 −2 0 −1 −2
−2 0 −1 −2 0 −1
−1 −2 0 −1 −2 0

0 −1 −2 0 −1 −2
−2 0 −1 −2 0 −1
−1 −2 0 −1 −2 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, A
(6)
12 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−2 −1 −1
−1 −2 −1
−1 −1 −2
−2 −1 −1
−1 −2 −1
−1 −1 −2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(8.37)

A
(6)
21 =

⎛

⎝
−3 −1 −2 −3 −1 −2
−2 −3 −1 −2 −3 −1
−1 −2 −3 −1 −2 −3

⎞

⎠ , A
(6)
22 =

⎛

⎝
0 −3 −2

−2 0 −3
−3 −2 0

⎞

⎠ .

(8.38)

The corresponding blocks of reduced power Ã(6) are

Ã
(6)
11 =

⎛

⎝
0 −1 −2
−2 0 −1
−1 −2 0

⎞

⎠ , Ã
(6)
12 =

⎛

⎝
−2 −1 −1
−1 −2 −1
−1 −1 −2

⎞

⎠ ,

Ã
(6)
11 =

⎛

⎝
−3 −1 −2
−2 −3 −1
−1 −2 −3

⎞

⎠ , Ã
(6)
12 =

⎛

⎝
0 −3 −2

−2 0 −3
−3 −2 0

⎞

⎠ .

Note that Ã
(6)
11 and Ã

(6)
22 are Kleene stars, with all off-diagonal entries negative.
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Using (8.37) and (8.38), we see that the attraction system consists of two chains
of equations, namely

x1 ⊕ x4 ⊕ (x8 − 1)⊕ (x9 − 1) = x2 ⊕ x5 ⊕ (x7 − 1)⊕ (x9 − 1)

= x3 ⊕ x6 ⊕ (x7 − 1)⊕ (x8 − 1)

and

(x2 − 1)⊕ (x5 − 1)⊕ x7 = (x3 − 1)⊕ (x6 − 1)⊕ x8

= (x1 − 1)⊕ (x4 − 1)⊕ x9.

Note that only 0 and −1, the coefficients of (ACore)∗ (which is equal to ACore in
this example), appear in this system.

8.6 Robustness of Matrices

8.6.1 Introduction

In this section we deal with Q3, that is, with the task of recognizing robust matri-
ces. We start with a few basic observations and then analyze the problem first for
irreducible and then for reducible matrices.

Let A= (aij ) ∈ R
n×n

and recall that Attr(A,1) is the set of all starting vectors
from which the orbit reaches the eigenspace, that is

Attr(A,1)= {x ∈R
n;O(A,x)∩ V (A) �= {ε}}.

Clearly,

V (A)− {ε} ⊆Attr(A,1)⊆R
n − {ε}

and so robust matrices are exactly those for which Attr(A,1)=R
n − {ε}.

It may happen that Attr(A,1) = V (A) − {ε}, for instance when A is the irre-
ducible matrix

(−1 0
0 −1

)

.

Here λ(A)= 0 and by Theorem 4.4.4

V (A)− {ε} = {α⊗ (0,0)T ;α ∈R}.
Since

A⊗
(

a

b

)

= (max(a − 1, b),max(a, b− 1))T ,
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we have that A ⊗ ( a
b

)
is an eigenvector of A if and only if a = b, that is, A ⊗ x

is an eigenvector of A if and only if x is an eigenvector of A. Hence Attr(A,1) =
V (A)− {ε}.

Attr(A,1) may also be different from both V (A)− {ε} and R
n − {ε}: Consider

the irreducible matrix

A=
⎛

⎝
−1 0 −1

0 −1 −1
−1 −1 0

⎞

⎠ .

Here λ(A) = 0 and x = (−2,−2,0)T is not an eigenvector of A but A ⊗ x =
(−1,−1,0)T is, showing that Attr(A,1) �= V (A) − {ε}. At the same time if
y = (0,−1,0)T then Ak ⊗ y is y for k even and (−1,0,0)T for k odd, showing
that y /∈Attr(A,1).

Lemma 8.6.1 If A,B ∈R
n×n

and A≡ B then A is robust if and only if B is robust.

Proof B = P−1 ⊗A⊗ P for some permutation matrix P . Hence

Bk+1 ⊗ x = P−1 ⊗Ak+1 ⊗ P ⊗ x = P−1 ⊗ λ⊗Ak ⊗ P ⊗ x

= λ⊗Bk ⊗ x. �

Due to Lemma 8.6.1 we may without loss of generality investigate robustness of
matrices arising from a given matrix by a simultaneous permutation of the rows and
columns.

We finish this introduction by excluding a pathological case:

Lemma 8.6.2 A matrix with an ε column is not robust. This is true in particular if
one of its eigenvalues is ε.

Proof If (say) the kth column of A is ε then A⊗ x = ε for any x ∈ R
n

such that
xi = ε for i �= k. Hence A is not robust.

The second statement follows from Lemma 4.5.11. �

8.6.2 Robust Irreducible Matrices

Characterization of robustness for irreducible matrices using the results of the previ-
ous sections is relatively easy. We will also deduce a few corollaries of the following
main result.

Theorem 8.6.3 Let A ∈ R
n×n

be column R-astic and |�(A)| = 1 (that is,
�(A)= {λ(A)}). Then A is robust if and only if the period of A is 1.



214 8 Reachability of Eigenspaces

Proof Suppose that the period of A is 1. Let x ∈ R
n − {ε} and k ≥ T (A). Then

Ak ⊗ x ∈ R
n − {ε} by Lemma 1.5.2, Ak+1 ⊗ x = λ⊗ Ak ⊗ x and so A is robust

(and all columns of Ak are eigenvectors of A).
Now let A be robust and x be the j th column of A. Then x ∈R

n − {ε} and thus
there is an integer kj such that Ak+1 ⊗ x = λ(A) ⊗ Ak ⊗ x for all k ≥ kj . So, if
k0 =max(k1, . . . , kn) then Ak+2 = λ(A)⊗Ak+1 for all k ≥ k0, and thus the period
of A is 1. �

Recall that every irreducible n×n matrix (n > 1) is column R-astic (Lemma 1.5.1),
but not conversely.

Note that if A is the 1× 1 matrix (ε) then A is irreducible, σ(A) = 1 but A is
not robust. This is an exceptional case that has to be excluded in the statements that
follow.

Corollary 8.6.4 [34, 102] Let A ∈R
n×n

,A �= ε be irreducible. Then A is robust if
and only if A is primitive.

Proof Every irreducible matrix has a unique eigenvalue and if A �= ε then it is also
R-astic. The period of A is σ(A) by Theorem 8.3.5 and the statement now follows
from Theorem 8.6.3. �

Corollary 8.6.5 Let A ∈ R
n×n

,A �= ε be irreducible. If A is primitive, x �= ε then
Ak ⊗ x is finite for all sufficiently large k.

Proof If A is primitive then A is robust, thus for x ∈ R
n
, x �= ε, and all sufficiently

large k we have Ak ⊗ x ∈ V (A)− {ε} = V +(A) since A is irreducible. �

Example 8.6.6 For the irreducible matrix A of Example 4.3.7 we have that the
cyclicity of the critical component with the node set {1,2} is 2, and that of the
component on {4,5,6} is gcd {1,3} = 1. Hence σ(A)= σ(C(A)) = lcm {1,2} = 2
and so A is not robust.

The following classical sufficient condition for robustness now easily follows:

Corollary 8.6.7 [65] Let A= (aij ) ∈R
n×n

,A �= ε be irreducible. Then A is robust
if aii = λ(A) for every i ∈Nc(A).

Proof If aii = λ(A) for every i ∈ Nc(A) then a cycle of length one exists in every
component of the critical digraph, hence A is primitive and so A is robust. �

We also deduce that the powers of a robust irreducible matrix remain irreducible:

Corollary 8.6.8 Let A ∈ R
n×n

be irreducible and robust. Then Ak is irreducible
for every positive integer k.

Proof The statement follows from Corollary 8.2.4. �
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8.6.3 Robust Reducible Matrices

Robustness of reducible matrices is not very strongly related to ultimate periodic-
ity (unlike for irreducible matrices). However and although it will not be directly
used in this book, for the sake of completeness we present a (slightly reformulated)
generalization of the Cyclicity Theorem to reducible matrices:

Theorem 8.6.9 [114] (General Cyclicity Theorem) A matrix A ∈ R
n×n

is ulti-
mately periodic if and only if each irreducible diagonal block of the FNF of A has
the same eigenvalue.

The rest of this subsection is based on [44].
Recall that if A = (aij ) ∈ R

n×n
is in the FNF (4.7) and N1, . . . ,Nr are the

classes of A then we have denoted R = {1, . . . , r}. If i ∈R then we now also denote
Ti = {j ∈R;Nj −→Ni} and Mi =⋃j∈Ti

Nj . A class Ni of A is called trivial if
Ni contains only one index, say k, and akk = ε.

We start with a lemma. Without loss of generality we assume in the rest of this
subsection that A is in the FNF (4.7).

Lemma 8.6.10 [85] If every nontrivial class of A ∈ R
n×n

has eigenvalue 0 and
period 1 then Ak+1 =Ak for some k.

Proof We prove the statement by induction on the number of classes.
If A has only one class then either this class is trivial or A is irreducible. In both

cases the statement follows immediately.
If A has at least two classes then by Lemma 4.1.3 we can assume without loss of

generality:

A=
(

A11 ε

A21 A22

)

and thus

Ak =
(

Ak
11 ε

Bk Ak
22

)

,

where

Bk =
∑

i+j=k−1

⊕
Ai

22 ⊗A21 ⊗A
j

11.

By the induction hypothesis there are k1 and k2 such that

A
k1+1
11 =A

k1
11 and A

k2+1
22 =A

k2
22.

It is sufficient now to prove that

Bk =
∑⊕{

Ai
22 ⊗A21 ⊗A

j

11; i ≤ k2, j ≤ k1, i = k2 or j = k1
}

(8.39)

holds for all k ≥ k1 + k2 + 1.
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For all i, j we have

Ai
22 ⊗A21 ⊗A

j

11 =Ai′
22 ⊗A21 ⊗A

j ′
11,

where i′ = min(i, k2), j
′ = min(j, k1). If i + j + 1 = k ≥ k1 + k2 + 1 then either

i ≥ k2 or j ≥ k1. Hence either i′ = k2 or j ′ = k1 and therefore ≤ in (8.39) follows.
For ≥ let i = k2 (say) and j ≤ k1. Since k ≥ k1 + k2 + 1 ≥ j + i + 1, we have
k− j − 1≥ i = k2 and thus

Ai
22 ⊗A21 ⊗A

j

11 =A
k−j−1
22 ⊗A21 ⊗A

j

11 ≤ Bk. �

We are ready to prove one of the key results of this book.

Theorem 8.6.11 [44] Let A ∈ R
n×n

be column R-astic and in the FNF (4.7),
N1, . . . ,Nr be the classes of A and R = {1, . . . , r}. Then A is robust if and only
if the following hold:

1. All nontrivial classes N1, . . . ,Nr are spectral.
2. If i, j ∈R,Ni,Nj are nontrivial and i /∈ Tj and j /∈ Ti then λ(Ni)= λ(Nj ).
3. σ(Ajj )= 1 for all j ∈R.

Proof If r = 1 then A is irreducible and the statement follows by Theorem 8.6.4.
We will therefore assume r ≥ 2 in this proof.

Let A be robust, we prove that 1.−3. hold.

1. Let i ∈ R,Aii �= ε and x ∈ R
n

be defined by taking any xs ∈ R for s ∈Mi and
xs = ε for s /∈Mi . Then Ak+1 ⊗ x = λ⊗Ak ⊗ x for some k and λ ∈�(A). Let
z=Ak ⊗ x. Then z[Mi] is finite since A[Mi] has no ε row and

A[Mi] ⊗ z[Mi] = (A⊗ z)[Mi] = λ⊗ z[Mi],
hence z[Mi] ∈ V +(A[Mi]). By Lemma 8.6.2 λ > ε and so by Theorem 4.4.4
then λ(Nt )≤ λ(Ni) for all t ∈ Ti . Hence Ni is spectral.

2. Suppose i, j ∈R,Ni,Nj are nontrivial and i /∈ Tj , j /∈ Ti . Let x ∈R
n

be defined
by taking any

x[Ni] ∈ V +(A[Ni]),
x[Nj ] ∈ V +(A[Nj ])

and xs = ε for s ∈N −Ni ∪Nj . Then Ak+1 ⊗ x = λ⊗Ak ⊗ x for some k and
λ ∈�(A). Denote z=Ak⊗x. Then z[Nj ] is finite. Since i /∈ Tj we have auv = ε

for all u ∈Ni and v ∈Nj . Hence

λ⊗ z[Nj ] = (A⊗ z)[Nj ] =A[Nj ] ⊗ z[Nj ]
and so by Theorem 4.4.4 λ(Nj )= λ. Similarly it is proved that λ(Ni)= λ.
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3. Let j ∈R and A[Nj ] �= ε (otherwise the statement follows trivially). Let x ∈R
n

be any vector such that x �= ε and xs = ε for s /∈Nj . Then Ak+1⊗x = λ⊗Ak⊗x

for some k and λ ∈�(A). Let z=Ak ⊗ x. Since

z[Nj ] = (A[Nj ])k ⊗ x[Nj ],
we may assume without loss of generality that z[Nj ] �= ε. At the same time

A[Nj ] ⊗ z[Nj ] = (A⊗ z)[Nj ] = λ⊗ z[Nj ]
and thus z[Nj ] ∈ V (A[Nj ]). Hence A[Nj ] is irreducible and robust. Thus by
Theorem 8.6.4 we have σ(A[Nj ])= σ(Ajj )= 1.

Suppose now that conditions 1.–3. are satisfied. We prove then that A is robust
by induction on the number of classes of A. As already observed at the beginning
of this proof, the case r = 1 follows from Theorem 8.6.4. Suppose now that r ≥ 2
and let x ∈R

n
, x �= ε. Let

U = {i ∈N; (∃j)i −→ j, xj �= ε}.
We have

(Ak ⊗ x)[U ] = (A[U ])k ⊗ x[U ]
and

(Ak ⊗ x)i = ε

for i /∈ U . Therefore we may assume without loss of generality that U =N . Let M

be a final class in CA, clearly x[M] �= ε by the definition of U . Let us denote

S = {i ∈N; (∃j ∈M)(i −→ j)}
and

S′ =N − S.

By Lemma 4.1.3 we may assume without loss of generality that

A=
⎛

⎝
A11 ε ε

A21 A22 A23
ε ε A33

⎞

⎠ ,

where the individual blocks correspond (in this order) to the sets M,S −M and S′
respectively. Let us define xk =Ak ⊗ x for all integers k ≥ 0. We also set

xk
1 = xk[M],

xk
2 = xk[S −M],

xk
3 = xk[S′].
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Obviously,

xk+1
1 = A11 ⊗ xk

1 ,

xk+1
2 = A21 ⊗ xk

1 ⊕A22 ⊗ xk
2 ⊕A23 ⊗ xk

3 ,

xk+1
3 = A33 ⊗ xk

3 .

Assume first that M is nontrivial. Then λ(A11) �= ε and by taking (if necessary)
(λ(A11))

−1 ⊗ A instead of A, we may assume without loss of generality that
λ(A11)= 0. By assumption 3 and Theorem 8.3.5 we have A

k1+1
11 =A

k1
11 for some k1.

By assumption 2 every class of A33 has eigenvalue 0. Since each of these classes
has also period 1 by assumption 3, it follows from Lemma 8.6.10 that A

k3+1
33 =A

k3
33

for some k3. We may also assume without loss of generality that

x0
1 = x1

1 = x2
1 = · · ·

and

x0
3 = x1

3 = x2
3 = · · · .

Therefore

xk+1
2 =A21 ⊗ x0

1 ⊕A22 ⊗ xk
2 ⊕A23 ⊗ x0

3 .

Let v =A21 ⊗ x0
1 ⊕A23 ⊗ x0

3 . We deduce that

xk
2 =Ak

22 ⊗ x0
2 ⊕ (Ak−1

22 ⊕ · · · ⊕A0
22)⊗ v (8.40)

for all k. Moreover, λ(A22) ≤ λ(A11) = 0 since M is spectral by assumption 1.
Hence

Ak−1
22 ⊕ · · · ⊕A0

22 = �(A22)

for all k ≥ n. Note that x0
1 is finite as an eigenvector of the irreducible matrix A11.

Also, since every node in S has access to M , the vector

�(A22)⊗A21 ⊗ x0
1

is finite and hence also �(A22)⊗v is finite. If λ(A22) < 0 then Ak
22⊗x0

2 −→−∞ as
k −→∞ and we deduce that xk

2 = �(A22)⊗ v for all k large enough. If λ(A22)= 0
then

A
k2+1
22 =A

k2
22

by the induction hypothesis and thus

xk
2 =A

k2
22 ⊗ x0

2 ⊕ �(A22)⊗ v

for all k ≥max(k1, k2, k3).
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Fig. 8.5 Condensation
digraph of a robust matrix

It remains to consider the case when A11 is trivial. Then xk
1 = ε for all k ≥ 1 and

we have
(

xk+1
2

xk+1
3

)

=
(

A22 A23
ε A33

)

⊗
(

xk
2

xk
3

)

for all k ≥ 1. We apply the induction hypothesis to the matrix

(
A22 A23

ε A33

)

and deduce that xk+1 = xk for k sufficiently large. This completes the proof. �

An example of the condensation digraph of a robust reducible matrix can be seen
in Fig. 8.5, where the nodes correspond to primitive classes with unique eigenvalues
λ1, λ2, λ3, λ4 and λ1 < λ2 < λ3 < λ4.

Example 8.6.12 Let

A=
⎛

⎝
2 ε ε

ε 1 ε

0 0 0

⎞

⎠ ,

thus r = 3,�(A)= {0,1,2},Nj = {j}, j = 1,2,3. If

x =
⎛

⎝
0
0
0

⎞

⎠ ,
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then O(A,x) is
⎛

⎝
2
1
0

⎞

⎠ ,

⎛

⎝
4
2
2

⎞

⎠ ,

⎛

⎝
6
3
4

⎞

⎠ ,

⎛

⎝
8
4
6

⎞

⎠ , . . . ,

which obviously will never reach an eigenvector. The reason is that 1 /∈ T2, 2 /∈ T1
but λ(N1) �= λ(N2).

Example 8.6.13 Let

A=
⎛

⎝
2 ε ε

ε ε ε

0 0 0

⎞

⎠ ,

thus r = 3,�(A) = {0,2},Nj = {j}, j = 1,2,3. This matrix is robust since both
nontrivial classes (N1 and N3) are spectral, σ(Aii) = 1 (i = 1,2,3) and there are
no nontrivial classes Ni,Nj such that i /∈ Tj and j /∈ Ti . Indeed, if

x =
⎛

⎝
0
0
0

⎞

⎠ ,

then O(A,x) is
⎛

⎝
2
ε

0

⎞

⎠ ,

⎛

⎝
4
ε

2

⎞

⎠ ,

⎛

⎝
6
ε

4

⎞

⎠ ,

⎛

⎝
8
ε

6

⎞

⎠ , . . . ,

hence an eigenvector is reached in the first step.

8.6.4 M-robustness

Note that in this subsection the symbol M has a reserved meaning. Requirements
1.−3. of Theorem 8.6.11 imply that every robust matrix A either has only one su-
perblock or |�(A)| = 1. Obviously this restricts the concept of robustness for re-
ducible matrices quite significantly. Therefore we present an alternative concept of
robustness and provide a criterion which will enable us to characterize a wider class
of matrices displaying robustness properties reflecting the rich spectral structure of
reducible matrices.

We start with a simple observation.

Lemma 8.6.14 Let A = (A′ ε
··· A[M]

)
be column R-astic, x ∈ R

n
, M ⊆ N and

y =Ak ⊗ x. If x[N −M] = ε then y[N −M] = ε.

Proof Straightforward. �
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Let x ∈ R
n
. Recall that the set {j ∈ N;xj > ε} is called the support of x, nota-

tion Supp(x). Lemma 8.6.14 implies that if M is the support of an eigenvector and
Supp(x)⊆M for some x ∈R

n
then Supp(Ak ⊗ x)⊆M for all positive integers k.

This motivates the following definitions:
Let A= (aij ) ∈ R

n×n
be in an FNF. Then M ⊆ N is called regular if for some

λ there is an x ∈ V (A,λ) with x[M] finite and x[N −M] = ε. We also denote
λ= λ(M).

Remark 8.6.15 Even if M is regular there still may exist an x ∈ V (A,λ(M)) with
xj = ε for some j ∈M .

Since for a given matrix the finiteness structure of all eigenvectors is well de-
scribed (Theorem 4.6.4), we aim to characterize matrices for which an eigenvector
in V (A,λ(M)) for a given regular set M is reached with any starting vector whose
support is a subset of M .

It follows from the description of V (A) (Sect. 4.6) that M is regular if and only
if there exist spectral indices i1, . . . , is for some s such that

M = {i ∈N; i→Ni1 ∪ · · · ∪Nis }.
Let M ⊆N . We denote

R
n
(M)= {x ∈R

n − {ε}; (∀j ∈N −M)(xj = ε)}.

Let A = (aij ) ∈ R
n×n

be a column R-astic matrix in an FNF and M ⊆ N be
regular. Then A will be called M-robust if

(∀x ∈R
n
(M)) (∃k) Ak ⊗ x ∈ V (A,λ(M)).

Theorem 8.6.16 Let A = (aij ) ∈ R
n×n

be a column R-astic matrix in an FNF,
M ⊆N be regular and B =A[M]. Then A is M-robust if and only if σ(B)= 1.

Proof Without loss of generality let A= (A[N−M] ε
··· B

)
.

Suppose that A is M-robust. Take x = Aj , j ∈ M . Then x ∈ R
n
(M) because

A (and therefore also B) is column R-astic and there is a kj such that Ak ⊗ Aj ∈
V (A,λ(M)) for all k ≥ kj . Since Aj =

( ε
Aj [M]

)
, we have

A⊗ (Ak ⊗Aj)=
(

ε

B ⊗ (Bk ⊗Aj [M])
)

= λ(M)⊗
(

ε

Bk ⊗Aj [M]
)

.

Hence, for k ≥maxj∈M kj there is

Bk+2 = λ(M)⊗Bk+1,

that is, σ(B)= 1 with λ= λ(M).
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Suppose now Bk+1 = λ⊗Bk for some λ and for all k ≥ k0. If the FNF of B is

B =
⎛

⎜
⎝

B1 ε
...

. . .

· · · · Br

⎞

⎟
⎠

then

Bk =
⎛

⎜
⎝

Bk
1 ε
...

. . .

· · · · Bk
r

⎞

⎟
⎠

and so Bk+1
i = λ⊗Bk

i (i = 1, . . . , r). But since every Bi is irreducible, λ= λ(Bi)=
λ(M) (i = 1, . . . , r). Let M =M1 ∪ · · · ∪Mr be the partition of M determined by
the FNF of B . Let x ∈R

n
(M),

x =

⎛

⎜
⎜
⎜
⎝

x[N −M] = ε

x[M1]
...

x[Mr ]

⎞

⎟
⎟
⎟
⎠

and let

s =min{i;x[Mi] �= ε}.
Denote y =Ak ⊗ x,

y =

⎛

⎜
⎜
⎜
⎝

y[N −M]
y[M1]

...

y[Mr ]

⎞

⎟
⎟
⎟
⎠

.

Clearly, y[N −M] = ε and

y[Ms] = Bk ⊗ x[Ms] �= ε

since Bs is irreducible (note that using Corollary 8.6.5 it would be possible to prove
here that y[Mi] is finite for all i ≥ s). Hence y ∈R

n
(M). At the same time

Bk+1 ⊗ x[M] = λ⊗Bk ⊗ x[M]
and

y =
(

ε

Bk ⊗ x[M]
)

.

Therefore

A⊗ y =
(

ε

B ⊗Bk ⊗ x[M]
)

= λ(M)⊗
(

ε

Bk ⊗ x[M]
)

= λ(M)⊗ y.

We conclude that y ∈ V (A,λ(M)). �



8.7 Exercises 223

8.7 Exercises

Exercise 8.7.1 Are any of the matrices in Exercises 1.7.11 and 1.7.12 robust? [Both
are robust]

Exercise 8.7.2 Use matrix scaling to obtain a visualized matrix from the matrix

A=

⎛

⎜
⎜
⎝

1 −4 6 0
1 2 4 2
1 −1 2 3

−2 5 4 0

⎞

⎟
⎟
⎠

and then deduce the cyclicity of A.
⎡

⎢
⎢
⎣

⎛

⎜
⎜
⎝

1 −6 4 −1
3 2 4 3
3 −1 2 4

−1 4 3 0

⎞

⎟
⎟
⎠ , σ (A)= 3

⎤

⎥
⎥
⎦

Exercise 8.7.3 For the matrix

A=

⎛

⎜
⎜
⎜
⎜
⎝

4 4 3 8 1
3 3 4 5 4
5 3 4 7 3
2 1 2 3 0
6 6 4 8 1

⎞

⎟
⎟
⎟
⎟
⎠

of Exercise 4.8.1 find the critical digraph C(A), all strongly connected components
of C(A) and their cyclicities and the cyclicity of A. Is A robust? [N1 = {1,3,4},
N2 = {2,5}; σ(N1)= 1, σ(N2)= 2, σ(A)= 2, A is not robust]

Exercise 8.7.4 Let A ∈R
n×n

be definite and denote by ρ1, . . . , ρn (τ1, . . . , τn) the
rows (columns) of �(A). Prove then that Q[k] ⊗Q[l] ≤Q[k] ⊕Q[l], where Q[r] is
the outer product τr ⊗ ρT

r (see Proposition 8.3.1).

Exercise 8.7.5 The digraphs of Figs. 8.6, 8.7 and 8.8 are condensation digraphs
of reducible matrices A,B,C in the FNF, whose all diagonal blocks are primitive.
The integers in the digraphs stand for the unique eigenvalues of the corresponding
diagonal blocks. Decide about each matrix whether it is robust. [A is not, B and C

are]

Exercise 8.7.6 Prove that if A is an irreducible matrix then every subeigenvector
of A is in the attraction space of A. [Hint: Use the Cyclicity Theorem]
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Fig. 8.6 Condensation
digraph for the matrix A of
Exercise 8.7.5

Fig. 8.7 Condensation
digraph for the matrix B of
Exercise 8.7.5
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Fig. 8.8 Condensation
digraph for the matrix C of
Exercise 8.7.5



Chapter 9
Generalized Eigenproblem

This chapter deals with the generalized eigenproblem (GEP) in max-algebra defined
as follows:

Given A,B ∈R
m×n

, find all λ ∈R (generalized eigenvalues) and x ∈R
n
, x �= ε

(generalized eigenvectors) such that

A⊗ x = λ⊗B ⊗ x. (9.1)

When λ ∈ R and x ∈ R
n
, x �= ε satisfying (9.1) exist then we say that GEP is

solvable or also that (A,B) is solvable. Obviously, the eigenproblem is obtained
from the GEP when B = I or λ = ε and we will therefore assume in this chapter
that λ > ε.

It is likely that GEP is much more difficult than the eigenproblem. This is indi-
cated by the fact that the GEP for a pair of real matrices may have no generalized
eigenvalue, a finite number or a continuum of generalized eigenvalues [70]. It is
known [135] that the union of any system of closed (possibly one-element) inter-
vals is the set of generalized eigenvalues for suitably taken A and B .

GEP has been studied in [15] and [70]. The first of these papers solves the prob-
lem completely when m = 2 and special cases for general m and n, the second
solves some other special cases. No solution method seems to be known either for
finding a λ or an x �= ε satisfying (9.1) for general real matrices. Obviously, once
λ is fixed, the GEP reduces to a two-sided max-linear system (Chap. 7). We there-
fore concentrate on the question of finding the generalized eigenvalues. First we
will study basic properties and solvable special cases of GEP. In Sect. 9.3 we then
present a method for narrowing the search for generalized eigenvalues for a pair of
real square matrices. It is based on the solvability conditions for two-sided systems
formulated using symmetrized semirings (Sect. 7.5).

A motivation for the GEP is given in Sect. 1.3.2.
Given A,B ∈ R

m×n
we denote the set of generalized eigenvalues by �(A,B),

the set containing ε and all generalized eigenvectors corresponding to λ ∈ R by
V (A,B,λ) and the set of all generalized eigenvectors by V (A,B), that is:

P. Butkovič, Max-linear Systems: Theory and Algorithms,
Springer Monographs in Mathematics 151,
DOI 10.1007/978-1-84996-299-5_9, © Springer-Verlag London Limited 2010

227

http://dx.doi.org/10.1007/978-1-84996-299-5_9
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V (A,B,λ) = {x ∈R
n;A⊗ x = λ⊗B ⊗ x

}
, λ ∈R,

V (A,B) = {x ∈R
n;A⊗ x = λ⊗B ⊗ x,λ ∈R

}

and

�(A,B)= {λ ∈R;V (A,B,λ) �= {ε}}.

9.1 Basic Properties of the Generalized Eigenproblem

In this section we present some properties of the GEP provided that A and B are
finite matrices [70]. We therefore assume that A = (aij ), B = (bij ) ∈ R

m×n are
given matrices and, as before, we denote M = {1, . . . ,m} and N = {1, . . . , n}. We
will also denote:

C = (cij )= (aij ⊗ b−1
ij )

and

D = (dij )= (bij ⊗ a−1
ij ).

Theorem 9.1.1 If (A,B) is solvable and λ ∈�(A,B) then C satisfies

max
i∈M

min
j∈N

cij ≤ λ≤min
i∈M

max
j∈N

cij . (9.2)

Proof No row of λ⊗B strictly dominates the corresponding row of A, so for every i

there is a j such that aij ≥ λ⊗bij , i.e. λ≤ cij . Hence for all i we have λ≤maxj cij ,
thus λ≤mini maxj cij . Similarly, no row of A strictly dominates the corresponding
row of λ⊗B , yielding for all i: λ≥minj cij , thus λ≥maxi minj cij . �

The interval [maxi∈M minj∈N cij ,mini∈M maxj∈N cij ] is called the feasible in-
terval for the generalized eigenproblem (9.1).

Example 9.1.2 If A = ( 1 2
−1 0

)
and B = ( 0 1

0 1

)
then (A,B) is not solvable because

C = ( 1 1
−1 −1

)
does not satisfy (9.2).

Recall that for a square matrix A the symbol λ(A) stands for the maximum cycle
mean of A. We now also denote by λ′(A) the minimum cycle mean.

Corollary 9.1.3 If m= n, (A,B) is solvable and λ ∈�(A,B) then C satisfies

λ′(C)≤ λ≤ λ(C).
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Proof A cycle in DC whose every arc has the weight equal to a row maximum
in C exists. The arc weights on this cycle are all at least the smallest row max-
imum, thus λ(C) ≥ mini∈M maxj∈N cij . The second inequality now follows from
Theorem 9.1.1 and the other inequality by swapping max and min. �

Recall that the conjugate of B is B∗ = (b∗ij )= (b−1
ji ). Then the ith element of the

diagonal of A⊗B∗ equals

max
j

(aij + b∗ji)=max
j

(aij ⊗ b−1
ij )=max

j
cij .

Similarly, the ith element of the diagonal of A ⊗′ B∗ equals minj cij . Hence by
Theorem 9.1.1 we have:

Corollary 9.1.4 If (A,B) is solvable then the greatest element of the diagonal of
A⊗′ B∗ does not exceed the least element of the diagonal of A⊗B∗.

By Corollary 9.1.3 we also have:

Corollary 9.1.5 If (A,B) is solvable and λ ∈�(A,B) then

λ′(A⊗′ B∗)≤ λ≤ λ(A⊗B∗).

The next statement is a remarkable observation on generalized eigenvalues, yet
there is no description of the unique possible value for the eigenvalue.

Theorem 9.1.6 [15] If both (A,B) and (AT ,BT ) are solvable then both these prob-
lems have a unique and identical eigenvalue, that is, there is a real number λ such
that

�(A,B)= {λ} =�(AT ,BT )

provided that �(A,B) �= ∅ and �(AT ,BT ) �= ∅.

Proof Suppose that

A⊗ x = λ⊗B ⊗ x

and

AT ⊗ y = μ⊗BT ⊗ y

for some λ,μ,x, y. Then

λ⊗ yT ⊗B ⊗ x = yT ⊗A⊗ x = xT ⊗AT ⊗ y

= μ⊗ xT ⊗BT ⊗ y = μ⊗ yT ⊗B ⊗ x.

Since yT ⊗B ⊗ x are finite it follows that λ= μ. �
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Corollary 9.1.7 If A,B ∈R
n×n are symmetric then |�(A,B)| ≤ 1.

The following simple corollary provides in some cases a powerful tool of proving
that the generalized eigenproblem is not solvable:

Corollary 9.1.8 If A,B ∈ R
n×n and (AT ,BT ) has more than one generalized

eigenvalue then (A,B) is not solvable.

9.2 Easily Solvable Special Cases

9.2.1 Essentially the Eigenproblem

If either A or B is a generalized permutation matrix then (9.1) is easily solvable. If
(say) B is a generalized permutation matrix then B has the inverse B−1 and after
multiplying (9.1) by B−1 the GEP is transformed to the eigenproblem. Unfortu-
nately, since in max-algebra matrices other than generalized permutation matrices
do not have an inverse (see Theorem 1.1.3), this case is fairly limited.

9.2.2 When A and B Have a Common Eigenvector

Proposition 9.2.1 [70] A common eigenvector of A and B is a generalized eigen-

vector for A and B; more precisely, if A,B ∈R
n×n

, λ⊗μ−1 ∈R, then

V (A,λ)∩ V (B,μ)⊆ V (A,B,λ⊗μ−1).

Proof If x ∈ V (A,λ)∩ V (B,μ) and λ > ε then μ ∈R and

A⊗ x = λ⊗ x = λ⊗μ−1 ⊗B ⊗ x.

If λ= ε then λ⊗μ−1 = ε and the statement trivially follows. �

An example of pairs of matrices having a common eigenvector are commuting
matrices (Theorem 4.7.2). Hence we have:

Theorem 9.2.2 If A,B ∈R
n×n and A⊗B = B⊗A then both (A,B) and (AT ,BT )

are solvable, with identical, unique generalized eigenvalue.

Proof A and B have a common eigenvector corresponding to finite eigenvalues
by Theorem 4.7.2 and so by Proposition 9.2.1 (A,B) is solvable. At the same
time AT and BT are also commuting and by a repeated argument we have that
(AT ,BT ) is solvable. The equality of all generalized eigenvalues now follows by
Theorem 9.1.6. �
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9.2.3 When One of A,B Is a Right-multiple of the Other

Theorem 9.2.3 [70] If one of A,B ∈ R
m×n

is a right-multiple of the other then
(A,B) is solvable.

Proof Suppose e.g. A= B ⊗ P , where P ∈R
n×n

. Let λ ∈�(P ) and x ∈ V (P,λ),
x �= ε. Then

A⊗ x = B ⊗ P ⊗ x = B ⊗ (λ⊗ x)= λ⊗B ⊗ x. �

Example 9.2.4 Suppose

A=
(

4 6
7 9

)

, B =
(

0 1
3 1

)

, P =
(

4 6
−2 0

)

.

Then λ(P )= 4,

�(λ−1 ⊗ P)=
(

0 2
−6 −4

)

and

x =
(

0
−6

)

, A⊗ x =
(

4
7

)

, B ⊗ x =
(

0
3

)

.

We can also prove a sufficient condition for λ to attain the upper bound in (9.2)
when (say) A is a right-multiple of B and A,B ∈R

m×n. Recall that C = (cij ) is the
matrix (aij ⊗ b−1

ij ), D = (dij )= (bij ⊗ a−1
ij ) and let us denote

L=max
i

min
j

cij

and

U =min
i

max
j

cij .

It follows from the proof of Theorem 9.2.3 and from Theorem 9.1.1 that
λ(P ) ∈ [L,U ] for every P satisfying A= B ⊗ P . If A= B ⊗ P then we have:

A= B ⊗ (B∗ ⊗′ A).

Let us denote B∗ ⊗′A by P = (pij ) and λ= λ(P ); thus L≤ λ≤U . The follow-
ing technical lemma will help us to characterize in Theorem 9.2.6 when the upper
bound U is attained.

Lemma 9.2.5 If A,B ∈R
m×n and L′ =maxj mini cij then L′ ≤ λ.
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Proof

λ = λ(P )≥max
i

pii =max
i

min
j

(b∗ij ⊗ aji)

= max
i

min
j

(aji ⊗ b−1
ji )=max

i
min

j
cji =max

j
min

i
cij = L′. �

Theorem 9.2.6 [70] If A,B ∈R
m×n,D has a saddle point and there is a matrix P

such that A= B ⊗ P then λ=U where λ= λ(P )= λ(B∗ ⊗′ A).

Proof D = (dij ) has a saddle point means

max
i

min
j

dij =min
j

max
i

dij .

Therefore the inverses of both sides are equal:

U =min
i

max
j

cij =max
j

min
i

cij = L′.

Hence by Lemma 9.2.5: L′ = λ=U . �

The following dual statement is proved in a dual way:

Theorem 9.2.7 [70] Let A,B ∈R
m×n. If there is a matrix P such that A= B ⊗′ P

and C has a saddle point then λ
′ = L where λ

′ = λ′(P )= λ′(B∗ ⊗′ A).

Even if one of A,B is a right-multiple of the other, the eigenvalue may not be
unique as the following example shows.

Example 9.2.8 With A,B as in Example 9.2.4, we find for the principal solution
matrix P :

P =
(

4 6
3 5

)

, λ(P )= 5,

�(λ−1 ⊗ P )=
(−1 1
−2 0

)

,

A⊗
(

1
0

)

=
(

6
9

)

and

B ⊗
(

1
0

)

=
(

1
4

)

.

Hence for the same A,B we find two solutions to (9.1), with different values of λ.
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9.3 Narrowing the Search for Generalized Eigenvalues

9.3.1 Regularization

In the absence of any method, exact or approximate, for finding generalized eigen-
values for a general pair of matrices, we concentrate now on narrowing the set con-
taining all generalized eigenvalues (if there are any) for finite A and B .

Let C = (cij ),D = (dij ) ∈R
m×n. The system

C ⊗ x =D⊗ x (9.3)

is called regular if

cij �= dij

for all i, j . The aim of the method we will present in this section is to identify as
closely as possible the set of generalized eigenvalues for which (9.1) is regular.

Let us first briefly discuss the values of λ for which this requirement is not
satisfied. There are at most mn such values of λ. We will call these values ex-
treme and the set of extreme values will be denoted by L. More precisely, for
A= (aij ),B = (bij ) ∈R

m×n we set

L= {λ ∈R;aij = λ⊗ bij for some i, j}.
Note that the elements of L are entries of the matrix A−B . Obviously,

|L| ≤mn (9.4)

and (9.1) is regular for all λ ∈R−L. Recall that solvability of (9.1) can be checked
for each fixed and in particular extreme value of λ using, say, the Alternating
Method.

Remark 9.3.1 The upper bound in (9.4) can slightly be improved: If for some i we
have cij > dij for all j then (9.3) has no nontrivial solution. Therefore (9.1) has
no nontrivial solution if λ is too big or too small, in particular for λ > maxL and
λ < minL. These two conditions may be slightly refined as follows: aij > λ⊗ bij

for all j or aij < λ⊗ bij for all j must not hold for any i = 1, . . . ,m. Hence (9.1)
has no nontrivial solution for λ < λ′ and λ > λ′′ where λ′ is the mth smallest value
in L and λ′′ is the mth greatest value in L (both considered with multiplicities). So
actually only at most mn− 2m extreme values of λ need to be checked individually
by the Alternating Method.

Let us denote the extreme values described in Remark 9.3.1 by λ1, . . . , λt , where
λ1 < · · · < λt and t ≤ mn − 2m. All these values can easily be found among
the entries of A − B and checked individually for being generalized eigenvalues.
Thus we may now concentrate on the real numbers in open intervals (λj , λj+1),
j = 1, . . . , t − 1. We will call these intervals regular and we will also call every real
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number regular if it belongs to a regular interval. It follows that there are at most
mn−2m−1 regular intervals to be considered. In the rest of this section we assume
that one such interval, say J , has been fixed, and we consider (9.1) only for λ ∈ J .

9.3.2 A Necessary Condition for Generalized Eigenvalues

Symmetrized semirings have been introduced in Sect. 7.5 and they have been used
to derive necessary conditions for the existence of a nontrivial solution to two-sided
systems. We now reformulate this to obtain a necessary condition for generalized
eigenvalues.

Recall first that S = R × R and the operations ⊕ and ⊗ are extended to S as
follows:

(a, a′)⊕ (b, b′) = (a⊕ b, a′ ⊕ b′),

(a, a′)⊗ (b, b′) = (a⊗ b⊕ a′ ⊗ b′, a⊗ b′ ⊕ a′ ⊗ b).

Also, �(a, a′)= (a′, a) and (a, a′) is called balanced if a = a′. The determinant
of A= (aij ) ∈ S

n×n has been defined as

det(A)=
∑

σ∈Pn

⊕
(

sgn(σ )⊗
∏

i∈N

⊗
ai,σ (i)

)

,

and we know that

|det(A)| =maper|A|,
see Proposition 7.5.6.

The next statement follows from Theorem 7.5.4 and Corollary 7.5.5. We denote
here and in the rest of this section

C(λ)=A � λ⊗B.

Corollary 9.3.2 Let A,B ∈ R
n×n and λ ∈ R. Then a necessary condition that the

system A ⊗ x = λ ⊗ B ⊗ x have a nontrivial solution is that C(λ) has balanced
determinant.

The idea of narrowing the search for the eigenvalues is based on Corollary 9.3.2:
We show how to find all λ for which C(λ) has balanced determinant. It turns out that
this can be done using a polynomial number of operations in terms of n. This method
may in some cases identify all eigenvalues, see Examples 9.3.7 and 9.3.8. In general
however, it finds only a superset of generalized eigenvalues, see Example 9.3.9.

If λ is regular then C =A�λ⊗B has no balanced entry. The following statement
is a reformulation of Theorem 7.5.7 (note that the matrix C̃ has been defined just
before that theorem):
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Corollary 9.3.3 Let A,B ∈ R
n×n, λ be regular. Then C(λ) has balanced determi-

nant if and only if C̃(λ) is not SNS.

The problem of checking whether a (0,1,−1) matrix is SNS or not is equiva-
lent to the even cycle problem in digraphs [18] and therefore polynomially solvable
(Remark 1.6.45). Therefore the necessary solvability condition in Corollary 9.3.3
can be checked in polynomial time for any fixed regular value of λ. This will be
used later in Sect. 9.3.4. However, C(λ) may have balanced determinant for a con-
tinuum of values of λ (see Example 9.3.8) and therefore we also need a tool which
enables us to make the same decision for an interval. This tool will be presented in
Sect. 9.3.4. As a preparation we first show in Sect. 9.3.3 how to find maper|C(λ)|
as a function of λ ∈ J .

9.3.3 Finding maper|C(λ)|

In this subsection we show how to efficiently find the function

f (λ)=maper|C(λ)|.
This will be used in the next section to produce a method for finding all regular
values of λ ∈ J for which C̃(λ) is not SNS.

Recall first that |C(λ)| = (aij ⊕ λ⊗ bij )= (cij (λ)) and for every λ ∈ J we have

aij �= λ⊗ bij

for all i, j ∈ N . Therefore for every λ ∈ J and for all i, j ∈ N the entry
cij (λ)= aij ⊕ λ⊗ bij is equal to exactly one of aij and λ ⊗ bij . Observe that
f (λ) = maper|C(λ)| is the maximum of n! terms. Each term is a ⊗ product of n

entries cij (λ), hence of the form b ⊗ λk , where b ∈ R and k is a natural number
between 0 and n. Since b ⊗ λk in conventional notation is simply kλ+ b, we de-
duce that f (λ) is the maximum of a finite number of linear functions and therefore a
piecewise linear convex function. Note that the slopes of all linear pieces of f (λ) are
natural numbers between 0 and n. Recall that f (λ) for any particular λ can easily be
found by solving the assignment problem for |C(λ)|. It follows that all linear pieces
can therefore efficiently be identified. We now describe one possible way of finding
these linear functions: Assume for a while that the linear pieces of smallest and
greatest slope are known, let us denote them fl(λ)= al ⊗ λl and fh(λ)= ah ⊗ λh,
respectively. If l = h then there is nothing to do, so assume l �= h. We start by finding
the intersection point of fl and fh, that is, say, λ1 satisfying fl(λ1)= fh(λ1). Calcu-
late f (λ1)=maper|C(λ1)|. If f (λ1)= fl(λ1)= fh(λ1) then there is no linear piece
other than fl and fh. Otherwise f (λ1) > fl(λ1)= fh(λ1). Let r be the number of λ

terms appearing in an optimal permutation (if there are several optimal permutations
with various numbers of λ appearances then take any). Since r is the slope of the
linear piece we have l < r < h. Then ar = f (λ1)− rλ1 and fr(λ)= ar ⊗ λr . This
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term is a new linear piece and we then repeat this procedure with fl and fr and fr

and fh, and so on. At every step a new linear piece is discovered unless all linear
pieces have already been found. Hence the number of iterations is at most n− 1.

For finding fl and fh it will be convenient to use the independent ones problem
(IOP) for 0− 1 square matrices:

Given a 0− 1 matrix M = (mij ) ∈R
n×n, find the greatest number of ones in M

so that no two are from the same row or column or, equivalently, so that there is a
π ∈ Pn selecting all these ones.

Clearly, IOP is a special case of the assignment problem, and therefore easily
solvable. Note that in combinatorial terminology IOP is known as the maximum
cardinality bipartite matching problem solvable in O(n2.5) time [22]. In general we
say that a set of positions in a matrix are independent if no two of them belong to
the same row or column.

Now we discuss how to find fl and fh. The values of l and h are obviously the
smallest and biggest number of independent entries in |C(λ)| containing λ and these
can be found by solving the corresponding IOP. For h this problem can be described
by the matrix M = (mij ) with mij = 1 when |cij (λ)| = λ⊗ bij and 0 otherwise and
for l by E −M , where E is the all-one matrix.

Now we show how to find al and ah. Let dij = bij if cij (λ) = λ ⊗ bij and
dij = aij if cij (λ)= aij (note that by regularity of λ only one of these two possibil-
ities occurs for λ ∈ J ). For finding al and ah we need to determine permutations π

and σ that maximize
∑

i∈N di,π(i) and
∑

i∈N di,σ (i) and select l and h entries con-
taining λ, respectively. To achieve this we interpret the two above mentioned IOPs as
assignment problems and describe their solution sets using matrices Mh and Ml ob-
tained by the Hungarian method (that is, nonpositive matrices whose max-algebraic
permanent is zero). It remains then to replace all entries in D = (dij ) corresponding
to nonzero entries in Mh and Ml by −∞ and solve the assignment problem for the
obtained matrices.

9.3.4 Narrowing the Search

In this subsection we show how to efficiently find the set of all regular values of λ

for which det(C(λ)) is balanced. This set will be denoted by S. We use essentially
the fact that the decision whether det(C(λ)) is balanced can be made efficiently for
any individual value of λ (Corollary 9.3.3). The following will be useful:

Lemma 9.3.4 Let f (x), g(x),h(x) be piecewise linear convex functions on R,
f (x) = g(x)⊕ h(x) for all x ∈ R. Suppose a, b ∈ R are such that f is linear on
[a, b]. If g(x)= h(x) for at least one x ∈ (a, b) then g(x)= h(x) for all x ∈ [a, b].

Proof Suppose g(x0) = h(x0), x0 ∈ (a, b). Hence g(x0) = h(x0) = f (x0). If
g(x) < f (x) for an x ∈ [a, b], without loss of generality for x ∈ [a, x0), then by
convexity of g and linearity of f we have that g(x) > f (x) for all x ∈ (x0, b), a
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contradiction. Therefore g(x) = f (x) for all x ∈ [a, b] and similarly h(x) = f (x)

for all x ∈ [a, b]. �

Recall that as before J is a regular interval. Let us denote

det(C(λ))= (d+(C(λ)), d−(C(λ))
)
,

or just (d+(λ), d−(λ)). Then C(λ) for λ ∈ J has balanced determinant if and only
if

d+(λ)= d−(λ). (9.5)

It follows from the results of the previous section that the piecewise linear convex
function

|det(C(λ))| = d+(λ)⊕ d−(λ)=maper|C(λ)|
can efficiently be found. By the same argument as for maper|C(λ)| we see that
both d+(λ) and d−(λ) are max-algebraic polynomials in λ (hence piecewise lin-
ear and convex functions) containing at most n + 1 powers of λ between 0 and
n. No method other than exhaustive search (requiring n! permutation evaluations)
seems to be known for finding d+(λ) and d−(λ) separately for any particular λ

[29]; however, for a fixed λ ∈R−L by Corollary 9.3.3 we can decide in polynomial
time whether d+(λ) = d−(λ) or not. Since d+(λ)⊕ d−(λ) = maper|C(λ)| then if
maper|C(λ)| is known, using Lemma 9.3.4 we can easily find all values of λ ∈ J

satisfying d+(λ) = d−(λ) by checking this equality for any point strictly between
any two consecutive breakpoints and for the breakpoints of maper|C(λ)|. We sum-
marize these observations in the following:

Theorem 9.3.5 If the set S = {λ ∈ J ;d+(λ)= d−(λ)} is nonempty then it consists
of some of the breakpoints of maper|C(λ)| and a number (possibly none) of closed
intervals whose endpoints are pairs of adjacent breakpoints of maper|C(λ)|. All
these can be identified in O(n3) time.

Proof The statement is essentially proved by Lemma 9.3.4. We only need to add
that each interval whose endpoints are adjacent breakpoints of maper|C(λ)| can
be decided by checking d+(λ) = d−(λ) for one (arbitrary) internal point of the
interval and that the number of breakpoints is at most n and therefore the number of
intervals is at most n− 1. The equality d+(λ)= d−(λ) for a fixed λ can be decided
in polynomial time by Theorem 9.3.3. �

We summarize our work in the following procedure for finding all regular values
of λ for which det(C(λ)) is balanced:

Algorithm 9.3.6 NARROWING THE EIGENVALUE SEARCH
Input: A,B ∈R

n×n and a regular interval J .
Output: The set S = {λ ∈ J ;d+(λ)= d−(λ)}.
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1. S := ∅.
2. C(λ) :=A � λ⊗B .
3. Find f (λ) = maper|C(λ)| as a function of λ, that is, find all breakpoints and

linear pieces of f (λ).

4. For every breakpoint λ0 of f (λ) do: If C̃(λ0) is not SNS then S := S ∪ {λ0}.
5. For any two consecutive breakpoints a, b and arbitrarily taken λ0 ∈ (a, b) do: If

C̃(λ0) is not SNS then S := S ∪ (a, b).

9.3.5 Examples

In the first two examples below we demonstrate that the described method for nar-
rowing the search for eigenvalues may actually find all eigenvalues. Note that in
these examples all matrices are of small sizes and therefore the functions d+(λ) and
d−(λ) are explicitly evaluated; however, for bigger matrices this would not be prac-
tical and the method described in Sect. 9.3.4 would be used as an efficient tool for
finding all regular values of λ for which d+(λ)= d−(λ).

The third example illustrates the situation when the algorithm narrows the fea-
sible interval containing the eigenvalues but a significant proportion of the final
interval still consists of real numbers that are not eigenvalues.

Example 9.3.7 Let

A=
⎛

⎝
3 8 2
7 1 4
0 6 3

⎞

⎠ , B =
⎛

⎝
4 4 3
2 3 4
3 2 1

⎞

⎠ .

Then

A−B =
⎛

⎝
−1 4 −1

5 −2 0
−3 4 2

⎞

⎠

and L= {−3,−2,−1,0,2,4,5}. For λ <−1 all terms on the RHS of the first equa-
tion in A⊗ x = λ⊗B ⊗ x are strictly less than the corresponding terms on the left
and therefore there is no nontrivial solution to A⊗ x = λ⊗ B ⊗ x. Similarly, for
λ > 4 all these terms are greater than their counterparts on the left. Hence we only
need to investigate regular intervals (−1,0), (0,2) and (2,4) and extreme points
−1,0,2,4.

For λ ∈ (−1,0) we have

|C(λ)| =
⎛

⎝
4+ λ 8 3+ λ

7 3+ λ 4
3+ λ 6 3

⎞

⎠ ,
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d+(λ)=max(10+ 2λ,14+ λ,9+ 3λ),

d−(λ)=max(16+ λ,15+ λ,18),

maper|C(λ)| = 18.

Since d+(λ) �= d−(λ) for λ ∈ (−1,0), there are no eigenvalues in this interval.
For λ ∈ (0,2) we have

|C(λ)| =
⎛

⎝
4+ λ 8 3+ λ

7 3+ λ 4+ λ

3+ λ 6 3

⎞

⎠ ,

d+(λ)=max(10+ 2λ,15+ 2λ,9+ 3λ),

d−(λ)=max(16+ λ,14+ 2λ,18),

maper|C(λ)| =max(18,16+ λ,15+ 2λ,9+ 3λ).

For λ ∈ (0,2) there is only one breakpoint for maper|C(λ)| at λ0 = 3/2. Since
d+(λ) = d−(λ) for λ = λ0, this value is the only candidate for an eigenvalue in
(0,2). It is not difficult to verify that x = (2,0,3.5)T is a corresponding eigenvec-
tor.

For λ ∈ (2,4) we have

|C(λ)| =
⎛

⎝
4+ λ 8 3+ λ

7 3+ λ 4+ λ

3+ λ 6 1+ λ

⎞

⎠ ,

d+(λ)=max(15+ 2λ,16+ λ,9+ 3λ),

d−(λ)=max(16+ λ,14+ 2λ,8+ 3λ),

maper|C(λ)| = 15+ 2λ.

Since d+(λ) �= d−(λ) for λ ∈ (2,4), there are no eigenvalues in this interval.
Let us consider the extreme point λ = 0: In this small example we solve the

system A⊗ x = B ⊗ x by direct analysis but note that in general the Alternating
Method would be used. By the cancellation law (Lemma 7.4.1) the two-sided system
A⊗ x = B ⊗ x is equivalent to the one with

A=
⎛

⎝
ε 8 ε

7 ε 4
ε 6 3

⎞

⎠ , B =
⎛

⎝
4 ε 3
ε 3 4
3 ε ε

⎞

⎠ .

Here from the first equation either x2 =−4+ x1 or x2 =−5+ x3. In the first case
the third equation yields max(2+x1,3+x3)= 3+x1, thus x1 = x3. By substituting
into the second equation then x1 =−4+ x2, a contradiction. In the second case the
third equation yields again x1 = x3, which implies a contradiction in the same way.
Hence λ= 0 is not an eigenvalue and a similar analysis would show that neither are
the remaining three extreme values.
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We conclude that �(A,B)= {3/2}.

Example 9.3.8 Let A =
(

4 6
7 9

)
,B =

(
0 1
3 1

)
. It is easily seen that J = (4,5) is the

unique regular interval. For λ ∈ (4,5) we have

|C(λ)| =
(

λ 6
3+ λ 9

)

and

maper|C(λ)| =max(9+ λ,9+ λ)= 9+ λ= d−(λ)= d+(λ).

Hence every λ ∈ J satisfies the necessary condition. In fact all these values are
eigenvalues as x = (6, λ)T is a corresponding eigenvector (for every λ ∈ J ). This
vector is also an eigenvector for λ ∈ {4,5} and thus �(A,B)= [4,5].

Example 9.3.9 [132] Let

A=
⎛

⎝
0 1/2 1
1 0 0
0 0 1

⎞

⎠ , B =
⎛

⎝
0 −2 −2

−2 0 0
0 −2 −2

⎞

⎠ .

Consider only the regular interval J = (0,2). For λ ∈ J we have

|C(λ)| =
⎛

⎝
λ 1/2 1
1 λ λ

λ 0 1

⎞

⎠ ,

d+(λ)=max(1+ 2λ,2),

and

d−(λ)=max(1+ 2λ,5/2).

We deduce that d−(λ)= d+(λ) if and only if λ≥ 3/4. Hence the algorithm returns
S = [3/4,2]. However, there are no eigenvalues in (1,2). To see this, realize that
for λ ∈ J the system (9.1) simplifies using the cancellation rules and then by setting
x1 = 0 to:

(1/2)⊗ x2 ⊕ 1⊗ x3 = λ,

1= λ⊗ x2 ⊕ λ⊗ x3,

x2 ⊕ 1⊗ x3 = λ.

The second equation is equivalent to x2 ⊕ x3 = 1 − λ. Hence, if λ > 1 and x =
(0, x2, x3)

T is a solution then both x2 and x3 are negative, thus x2⊕ 1⊗ x3 < 1 < λ,
a contradiction. Note that all λ ∈ [3/4,1] are eigenvalues since for such λ the vector
(0,1− λ,λ− 1)T is a solution to (9.1).
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9.4 Exercises

Exercise 9.4.1 Use Theorem 9.3.3 to give an alternative proof that λ(A) is the
unique eigenvalue for any irreducible matrix A.

Exercise 9.4.2 Show that the generalized eigenproblem has no nontrivial solution
for the matrices

A=
(

3 5 4
7 9 8

)

, B =
(

7 4 1
3 5 2

)

.

[The feasible interval is empty]

Exercise 9.4.3 Find all extreme values in the feasible interval for the generalized
eigenproblem with matrices

A=
(

3 5 4
0 3 7

)

, B =
(

7 4 1
3 5 2

)

.

[(−3,−2,1,3)T ]

Exercise 9.4.4 Prove the following: Let A,B ∈ R
n×n. Then (A,B) is solvable if

and only if there exist P,Q such that A⊗ P = B ⊗Q and (P,Q) is solvable.

Exercise 9.4.5 Prove or disprove: If A,B ∈R
n×n and A= B ⊗Q then λ(B) is the

greatest corner of the maxpolynomial maper(A⊕ λ⊗B). [false]

Exercise 9.4.6 Find all generalized eigenvalues if

A=
(

0 1 2
0 2 4

)

, B =
(

0 0 0
0 1 2

)

.

[0,1,2]



Chapter 10
Max-linear Programs

If f ∈ R
n

then the function f (x) = f T ⊗ x defined on R
n

is called a max-linear
function. In this chapter we develop methods for solving max-linear programming
problems (briefly, max-linear programs), that is, methods for minimizing or maxi-
mizing a max-linear function subject to constraints expressed by max-linear equa-
tions. Since one-sided max-linear systems are substantially easier to solve than the
two-sided, we deal with these two problems separately. Note that if f (x) is a max-
linear function then −f (x) may not be of the same type. Therefore unlike in con-
ventional linear programming, in max-linear programming it is not possible to con-
vert minimization of a max-linear function to a maximization of the same type of
objective function by considering −f (x) instead of f (x).

The following will be useful and is easily derived from basic properties presented
in Chap. 1:

Lemma 10.0.7 Let f (x)= f T ⊗ x be a max-linear function on R
n
. Then

(a) f (x) is max-additive and max-homogenous, that is, f (α ⊗ x ⊕ β ⊗ y) =
α⊗ f (x)⊕ β ⊗ f (y) for every x, y ∈R

n
and α,β ∈R.

(b) f (x) is isotone, that is, f (x)≤ f (y) for every x, y ∈R
n
, x ≤ y.

Note that in the rest of this chapter we will assume that f ∈ R
n. This chapter is

based on the results presented in [32]. Related software can be downloaded from
http://web.mat.bham.ac.uk/P.Butkovic/software/index.htm.

10.1 Programs with One-sided Constraints

Max-linear programs with one-sided constraints have been known for some time
[149]. They are of the form

f (x)= f T ⊗ x −→min or max

P. Butkovič, Max-linear Systems: Theory and Algorithms,
Springer Monographs in Mathematics 151,
DOI 10.1007/978-1-84996-299-5_10, © Springer-Verlag London Limited 2010
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subject to

A⊗ x = b, (10.1)

where f = (f1, . . . , fn)
T ∈R

n, A= (aij ) ∈R
m×n and b= (b1, . . . , bm)T ∈R

m are
given. The systems A⊗x = b were studied in Chap. 3 and we will denote as before:

S = {x ∈R
n;A⊗ x = b}

and x = (x1, . . . , xn)
T , where xj = mini∈M bi ⊗ a−1

ij for j ∈ N . Recall that by
Theorem 3.1.1 then x ≤ x for every x ∈ S and x ∈ S if and only if x ≤ x and

⋃

j :xj=xj

Mj =M,

where for j ∈N we define

Mj = {i ∈M;xj = bi ⊗ a−1
ij }.

The task of minimizing (maximizing) f (x) = f T ⊗ x subject to (10.1) will be
denoted by MLPmin

1 (MLPmax
1 ). The sets of optimal solutions will be denoted Smin

1
and Smax

1 respectively. It follows from Theorem 3.1.1 and from isotonicity of f (x)

that x ∈ Smax
1 , whenever S �= ∅. We now present a simple algorithm which solves

MLPmin
1 .

Algorithm 10.1.1 ONEMAXLINMIN (one-sided max-linear minimization)
Input: A ∈R

m×n, b ∈R
m and c ∈R

n.
Output: x ∈ Smin

1 .

1. Find x and Mj , j ∈N .
2. Sort (fj ⊗ xj ; j ∈N), without loss of generality let

f1 ⊗ x1 ≤ f2 ⊗ x2 ≤ · · · ≤ fn ⊗ xn.

3. J := {1}, r := 1.
4. If

⋃

j∈J

Mj =M

then stop (xj = xj for j ∈ J and xj small enough for j /∈ J ).
5. r := r + 1, J := J ∪ {r}.
6. Go to 4.

Note that “small enough” in step 4 may be for instance

xj ≤ f−1
j ⊗ fr ⊗ xr .

Theorem 10.1.2 The algorithm ONEMAXLINMIN is correct and its computational
complexity is O(mn2).
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Proof Correctness is obvious and computational complexity follows from the fact
that the loop 4.−6. is repeated at most n times and each run is O(mn). Step 1 is
O(mn) and step 2 is O(n logn). �

Note that the problem of minimizing certain objective functions subject to one-
sided max-linear constraints is NP-complete, see Exercise 10.3.1.

10.2 Programs with Two-sided Constraints

10.2.1 Problem Formulation and Basic Properties

Our main goal in this chapter is to present the necessary theory and methods for find-
ing an x ∈R

n (if it exists) that minimizes (maximizes) the function f (x)= f T ⊗ x

subject to

A⊗ x ⊕ c= B ⊗ x ⊕ d, (10.2)

where f = (f1, . . . , fn)
T ∈ R

n, c = (c1, . . . , cm)T , d = (d1, . . . , dm)T ∈ R
m,

A= (aij ) and B = (bij ) ∈ R
m×n are given matrices and vectors. These two prob-

lems will be denoted by MLPmin (MLPmax). We now denote

S = {x ∈R
n;A⊗ x ⊕ c= B ⊗ x ⊕ d

}
,

Smin = {x ∈ S;f (x)≤ f (z) for all z ∈ S}
and

Smax = {x ∈ S;f (x)≥ f (z) for all z ∈ S} .
Systems of two-sided max-linear equations are investigated in Chap. 7 and we

will follow the terminology introduced there. It has been shown in Sect. 7.4 how the
general systems of the form (10.2) can be converted to homogenous systems with
separated variables (Lemma 7.4.3) and hence be solved using the (pseudopolyno-
mial) Alternating Method. Since now we assume finiteness of A and B , a two-sided
system has a nontrivial solution if and only if it has a finite solution, thus this con-
version is slightly more straightforward and is expressed as follows:

Proposition 10.2.1 Let A,B ∈ R
m×n, c, d ∈ R

m and E = (A|c), F = (B|d) be
matrices arising from A and B respectively by adding the vectors c and d as the
last column. Let

Sh =
{
z ∈R

n+1;E ⊗ z= F ⊗ z
}

.

If x ∈ S then (x|0) ∈ Sh and conversely, if z = (z1, . . . , zn+1)
T ∈ Sh then

z−1
n+1 ⊗ (z1, . . . , zn)

T ∈ S.
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Proof The statement follows straightforwardly from the definitions. �

In what follows we will need a slight reformulation of the computational com-
plexity formula (7.19):

Theorem 10.2.2 Let E = (eij ), F = (fij ) ∈ Z
m×n and K ′ =K(E|F). There is an

algorithm of computational complexity O(mn(m+ n)K ′) that finds an x satisfying

E ⊗ z= F ⊗ z (10.3)

or decides that no such x exists.

Proof It follows from (7.19) immediately. �

Proposition 10.2.1 and Theorem 10.2.2 show that the feasibility question for
MLPmax and MLPmin can be solved in pseudopolynomial time for instances with
integer entries. We will use this result to develop bisection methods for solving
MLPmin and MLPmax. We will prove that these methods need a polynomial number
of feasibility checks if all entries are integer and hence overall are also of pseu-
dopolynomial complexity.

The Alternating Method of Sect. 7.3 is an iterative procedure that starts with an
arbitrary vector and then only uses the operations of +, −, max and min applied
to the starting vector and the entries of E, F . Hence using Proposition 10.2.1 we
deduce:

Theorem 10.2.3 If all entries in a homogenous max-linear system are integer and
the system has a nontrivial solution then this system has an integer solution. The
same is true for nonhomogenous max-linear systems.

Using the cancellation law (7.4.1) we have:

Lemma 10.2.4 Let α,α′ ∈R, α′ < α and f (x)= f T ⊗ x, f ′(x)= f ′T ⊗ x where
f ′j < fj for every j ∈N . Then the following holds for every x ∈R: f (x)= α if and
only if f (x)⊕ α′ = f ′(x)⊕ α.

For the bisection method it will be important to know that attainment of a value
can be checked by converting this question to feasibility. The following proposition
explains how this can be done.

Proposition 10.2.5 f (x) = α for some x ∈ S if and only if the following nonho-
mogenous max-linear system has a solution:

A⊗ x ⊕ c= B ⊗ x ⊕ d,

f (x)⊕ α′ = f ′(x)⊕ α,

where α′ < α, f ′(x)= f ′T ⊗ x and f ′j < fj for every j ∈N .
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Proof The statement follows from Lemma 7.4.1 and Lemma 10.2.4. �

This result has a useful consequence for programs with integer entries.

Corollary 10.2.6 If all entries in MLPmax or MLPmin are integer then an integer
objective function value is attained by a real feasible solution if and only if it is
attained by an integer feasible solution.

Proof It follows immediately from Theorem 10.2.3 and Proposition 10.2.5. �

For a computational complexity estimate it will be useful to know the compu-
tational complexity of the attainment of a value. To do this, for given MLPmin or
MLPmax we denote in this chapter

K =max
{∣
∣aij

∣
∣ ,
∣
∣bij

∣
∣ , |ci | ,

∣
∣dj

∣
∣ ,
∣
∣fj

∣
∣ ; i ∈M,j ∈N

}
. (10.4)

Corollary 10.2.7 If all entries in MLPmax or MLPmin and α are integer then the
decision problem whether f (x) = α for some x ∈ S ∩ Z

n can be solved using
O(mn(m+ n)K ′) operations where K ′ =max(K + 1, |α|).

Proof For α′ and f ′j in Proposition 10.2.5 we can take α−1 and fj −1 respectively.
Using Proposition 10.2.1, Theorem 10.2.2 and Proposition 10.2.5 the computational
complexity then is

O
(
(m+ 1) (n+ 1) (m+ n+ 2)K ′)=O

(
mn(m+ n)K ′) . �

Before we compile bisection methods for MLPmin and MLPmax we need to prove
a simple property of max-linear programs, which justifies the bisection search.

Proposition 10.2.8 If x, y ∈ S, f (x) = α < β = f (y) then for every γ ∈ (α,β)

there is a z ∈ S satisfying f (z)= γ .

Proof Let λ = 0, μ = β−1 ⊗ γ , z = λ ⊗ x ⊕ β ⊗ y. Then λ ⊕ μ = 0, z ∈ S by
Proposition 7.1.1 and by Lemma 10.0.7 we have

f (z)= λ⊗ f (x)⊕μ⊗ f (y)= α⊕ β−1 ⊗ γ ⊗ β = γ. �

10.2.2 Bounds and Attainment of Optimal Values

We start by proving criteria for the existence of optimal solutions. For simplicity we
denote inf x∈Sf (x) by f min, similarly sup x∈Sf (x) by f max.

First let us consider the lower bound. We may assume without loss of generality
that in (10.2) we have c ≥ d . Let M> = {i ∈M; ci > di}. For r ∈M> we denote

Lr =min
k∈N

fk ⊗ cr ⊗ b−1
rk
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and

L= max
r∈M>

Lr.

Recall that max∅ =−∞ by definition.

Lemma 10.2.9 If c ≥ d then f (x)≥ L for every x ∈ S.

Proof If M> = ∅ then the statement follows trivially since L=−∞. Let x ∈ S and
r ∈M>. Then

(B ⊗ x)r ≥ cr

and so

xk ≥ cr ⊗ b−1
rk

for some k ∈ N . Hence f (x) ≥ fk ⊗ xk ≥ fk ⊗ cr ⊗ b−1
rk ≥ Lr and the theorem

statement follows. �

A very simple criterion for the existence of a lower bound is given in the next
statement.

Theorem 10.2.10 f min =−∞ if and only if c= d .

Proof If c= d then α⊗ x ∈ S for any x ∈R
n and every α < 0 small enough. Hence

by letting α −→−∞ we have f (α⊗ x)= α⊗ f (x)−→−∞.
If c �= d then without loss of generality c ≥ d and the statement now follows by

Lemma 10.2.9 since L >−∞. �

Let us now discuss the upper bound. We prove two lemmas before presenting the
main result, Theorem 10.2.13.

Lemma 10.2.11 Let c ≥ d . If x ∈ S and (A ⊗ x)i > ci for all i ∈ M then
x′ = α⊗ x ∈ S and (A⊗ x′)i = ci for some i ∈M , where

α =max
i∈M

(
ci ⊗ (A⊗ x)−1

i

)
. (10.5)

Proof Let x ∈ S. If

(A⊗ x)i > ci

for every i ∈M then A⊗ x = B ⊗ x. For every α ∈R we also have

A⊗ (α⊗ x)= B ⊗ (α⊗ x) .

It follows from the choice of α that

(A⊗ (α⊗ x))i = α⊗ (A⊗ x)i ≥ ci
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for every i ∈M , with equality for at least one i ∈M . Hence x′ ∈ S and the lemma
follows. �

Let us denote

U =max
r∈M

max
j∈N

fj ⊗ a−1
rj ⊗ cr .

Lemma 10.2.12 If c ≥ d then the following hold:

(a) If x ∈ S and (A⊗ x)r ≤ cr for some r ∈M then f (x)≤U .
(b) If A⊗ x = B ⊗ x has no nontrivial solution then f (x)≤U for every x ∈ S.

Proof (a) Since

arj ⊗ xj ≤ cr

for all j ∈N , we have

f (x)≤max
j∈N

fj ⊗ a−1
rj ⊗ cr ≤U.

(b) If S = ∅ then the statement holds trivially. Let x ∈ S. Then

(A⊗ x)r ≤ cr

for some r ∈M since otherwise A ⊗ x = B ⊗ x, and the statement now follows
from (a). �

Theorem 10.2.13 f max =+∞ if and only if A⊗ x = B ⊗ x has a nontrivial solu-
tion.

Proof We may assume without loss of generality that c ≥ d . If A⊗ x = B ⊗ x has
no solution then the statement follows from Lemma 10.2.12. If it has a solution,
say z, z �= ε, then for all sufficiently large α ∈R we have

A⊗ (α⊗ z)= B ⊗ (α⊗ z)≥ c⊕ d

and hence α⊗ z ∈ S. The statement now follows by letting α −→+∞. �

Theorem 10.2.13 provides a criterion for the existence of an upper bound, which
is less simple than that for the lower bound, but still enables us to answer this ques-
tion in pseudopolynomial time.

We can now discuss the question of attainment of f min and f max. In both cases
the answer is affirmative: We will show that the maximal (minimal) value is attained
if S �= ∅ and f max <+∞ [f min >−∞]. Due to continuity of f this will be proved
by showing that both for minimization and maximization the set S can be reduced
to a compact subset. To achieve this we denote for j ∈N :

hj =min

(

min
r∈M

a−1
rj ⊗ cj , min

r∈M
b−1
rj ⊗ dj , f

−1
j ⊗L

)

, (10.6)
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h′j =min

(

min
r∈M

a−1
rj ⊗ cj , min

r∈M
b−1
rj ⊗ dj

)

(10.7)

and h= (h1, . . . , hn)
T , h′ = (h′1, . . . , h′n)T . Clearly, h′ is finite. Note that h is finite

if and only if f min >−∞.
First we show the attainment of f min.

Proposition 10.2.14 For any x ∈ S there is an x′ ∈ S such that x′ ≥ h and
f (x)= f (x′).

Proof Let x ∈ S. It is sufficient to set x′ = x ⊕ h since if xj < hj , j ∈ N then xj

is not active on any side of any equation or in the objective function and therefore
changing xj to hj will not affect validity of any equation or the objective function
value. �

Corollary 10.2.15 If f min >−∞ and S �= ∅ then there is a compact set S such that

f min =min
x∈S

f (x).

Proof Note that h is finite since f min > −∞. By Proposition 10.2.14 there is an
x̃ ∈ S, x̃ ≥ h. Then

S = S ∩
{
x ∈R

n;hj ≤ xj ≤ f−1
j ⊗ f (x̃), j ∈N

}

is a compact subset of S and x̃ ∈ S. If there was a y ∈ S such that

f (y) < min
x∈S

f (x)≤ f (x̃)

then by Proposition 10.2.14 there is a y′ ≥ h, y′ ∈ S, f (y′)= f (y). Hence

fj ⊗ y′j ≤ f (y′)= f (y)≤ f (x̃)

for every j ∈N and thus y′ ∈ S, f (y′) < minx∈S f (x), a contradiction. �

Now we prove the attainment of f max.

Proposition 10.2.16 For any x ∈ S there is an x′ ∈ S such that x′ ≥ h′ and
f (x)≤ f (x′).

Proof Let x ∈ S and j ∈N . It is sufficient to set x′ = x ⊕ h′, since if xj < h′j then
xj is not active on any side of any equation and therefore changing xj to h′j does
not invalidate any equation. The rest follows from isotonicity of f (x). �

Let

S
′ = S ∩ {x ∈R

n;h′j ≤ xj ≤ f−1
j ⊗U,j ∈N}.
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Corollary 10.2.17 If f max <+∞ then

f max =max
x∈S

′ f (x).

Proof The statement follows immediately from Proposition 10.2.16, Theo-
rem 10.2.13 and Lemma 10.2.12. �

The next statement summarizes the desired result:

Corollary 10.2.18 If S �= ∅ and f min > −∞ [f max < +∞] then Smin �= ∅
[Smax �= ∅].

We conclude this subsection by a technical statement that will be useful in the
algorithms.

It follows from Lemma 10.2.9 that f max > L. However this information is not
useful if c= d , since then L=−∞. Because we will need a lower bound for f max,
even when c= d , we define L′ = f (h′) and formulate the following.

Corollary 10.2.19 If x ∈ S then x′ = x ⊕ h′ satisfies f (x′) ≥ L′ and thus
f max ≥ L′.

10.2.3 The Algorithms

In this subsection we present the minimization and maximization algorithms for
the case of real entries; those for integer entries are presented in the next sec-
tion.

It follows from Proposition 10.2.1 and Theorem 10.2.2 that in pseudopolynomial
time either a feasible solution to (10.2) can be found or it can be decided that no
such solution exists. Due to Theorems 10.2.10 and 10.2.13 we can also recognize
the cases when the objective function is unbounded. We may therefore assume that
a feasible solution exists, the objective function is bounded (from below or above
depending on whether we wish to minimize or maximize) and hence an optimal
solution exists (Corollary 10.2.18). If x0 ∈ S is found then using the scaling (if
necessary) proposed in Lemma 10.2.11 or Corollary 10.2.19 we find (another) x0

satisfying L ≤ f (x0) ≤ U or L′ ≤ f (x0) ≤ U (see Lemmas 10.2.9 and 10.2.12).
The use of the bisection method applied to either (L,f (x0)) or (f (x0),U) for find-
ing a minimizer or maximizer of f (x) is then justified by Proposition 10.2.8. The
algorithms are based on the fact that (see Proposition 10.2.5) checking the existence
of an x ∈ S satisfying f (x)= α for a given α ∈R, can be converted to a feasibility
problem. They stop when the interval of uncertainty is shorter than a given precision
ε > 0.



252 10 Max-linear Programs

Algorithm 10.2.20 MAXLINMIN (max-linear minimization)
Input: A = (aij ), B = (bij ) ∈ R

m×n, f = (f1, . . . , fn)
T ∈ R

n, c = (c1, . . . , cm)T ,
d = (d1, . . . , dm)T ∈R

m, c ≥ d , c �= d , ε > 0.
Output: x ∈ S such that f (x)− f min ≤ ε.

1. If L= f (x) for some x ∈ S then stop (f min = L).
2. Find an x0 ∈ S. If (A ⊗ x0)i > ci for all i ∈ M then scale x0 by α defined

in (10.5).
3. L(0) := L,U(0) := f (x0), r := 0.
4. α := 1

2 (L(r)+U(r)).
5. Check whether f (x)= α is satisfied by some x ∈ S and in the positive case find

one.
If yes then U(r + 1) := α, L(r + 1) := L(r).
If not then U(r + 1) :=U(r), L(r + 1) := α.

6. r := r + 1.
7. If U(r)−L(r)≤ ε then stop else go to 4.

Theorem 10.2.21 The algorithm MAXLINMIN is correct and the number of itera-
tions before termination is

O

(

log2
U −L

ε

)

.

Proof Correctness follows from Proposition 10.2.8 and Lemma 10.2.9. Since
c �= d we have at the end of step 2: f (x0) ≥ L > −∞ (Lemma 10.2.9) and
U(0) := f (x0)≤U by Lemma 10.2.12. Thus the number of iterations is
O(log2

U−L
ε

), since after every iteration the interval of uncertainty is halved. �

The maximization algorithm has many similarities with the minimization algo-
rithm; however, for the proof we need to consider it separately.

Algorithm 10.2.22 MAXLINMAX (max-linear maximization)
Input: A = (aij ), B = (bij ) ∈ R

m×n, f = (f1, . . . , fn)
T ∈ R

n, c = (c1, . . . , cm)T ,
d = (d1, . . . , dm)T ∈R

m, ε > 0.
Output: x ∈ S such that f max − f (x)≤ ε or an indication that f max =+∞.

1. If U = f (x) for some x ∈ S then stop (f max =U ).
2. Check whether A⊗ x = B ⊗ x has a solution. If yes, stop (f max =+∞).
3. Find an x0 ∈ S and set x0 := x0 ⊕ h′ where h′ is as defined in (10.7).
4. L(0) := f (x0), U(0) :=U , r := 0.
5. α := 1

2 (L(r)+U(r)).
6. Check whether f (x)= α is satisfied by some x ∈ S and in the positive case find

one.
If yes then U(r + 1) :=U(r), L(r + 1) := α.
If not then U(r + 1) := α, L(r + 1) := L(r).

7. r := r + 1.
8. If U(r)−L(r)≤ ε then stop else go to 5.
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Theorem 10.2.23 The algorithm MAXLINMAX is correct and the number of itera-
tions before termination is

O

(

log2
U −L′

ε

)

.

Proof Correctness follows from Proposition 10.2.8 and Lemma 10.2.12. By
Lemma 10.2.12 and Corollary 10.2.19 U ≥ f (x0) ≥ L′ and thus the number of
iterations is O(log2

U−L′
ε

), since after every iteration the interval of uncertainty is
halved. �

10.2.4 The Integer Case

The algorithms of the previous section may immediately be applied to MLPmin or
MLPmax when all input data are integer. However, we show that in such a case
f min and f max are integers and therefore the algorithms find an exact solution once
the interval of uncertainty is of length one, since then either L(r) or U(r) is the
optimal value. Note that L and U are now integers and integrality of L(r) and U(r)

can easily be maintained during the run of the algorithms. This implies that the
algorithms will find exact optimal solutions in a finite number of steps and we will
prove that their computational complexity is pseudopolynomial. The symbol f r(k)

will stand for the fractional part of k ∈ Z, that is, f r(k)= k − �k�.

Theorem 10.2.24 If A, B , c, d , f are integer, S �= ∅ and f min > −∞ then
Smin ∩Z

n �= ∅ (and therefore f min ∈ Z).

Proof Due to Corollary 10.2.18 it is sufficient to prove that for any z ∈ S there is
a z∗ ∈ S ∩ Z

n such that f (z∗) ≤ f (z). Let z = (z1, . . . , zn)
T ∈ S. Without loss of

generality, suppose z /∈ Z
n and denote

N(z)= {j ∈N; zj /∈ Z
}
,

J =
{

j ∈N (z) ;f r
(
zj

)= min
k∈N(z)

f r (zk)

}

.

Let z′j = �zj � for j ∈ J and z′j = zj otherwise. Then z′ ≤ z, thus f (z′)≤ f (z),
and z′ ∈ S since the validity of equations is unaffected: if zj , j ∈ J was active on one
side of an equation then zk for some k ∈ J is active on the other side, by minimality
there are no terms in this equation between aij and aij + zj and so the new values
of both sides are aij ; if zj , j ∈ J was not active then the transition z −→ z′ does
not affect this equation at all. After at most n repetitions of this operation we get the
sequence z′, z′′, z′′′, . . . , whose last term is the wanted z∗ ∈ Z

n. �

Theorem 10.2.25 If A, B , c, d , f are integer, S �= ∅ and f max < +∞ then
f max ∈ Z (and therefore Smax ∩Z

n �= ∅).
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Proof Suppose c ≥ d , f max /∈ Z and let z = (z1, . . . , zn)
T ∈ Smax. For any x ∈ R

n

denote

F(x)= {j ∈N;fj ⊗ xj = f (x)
}
.

We take one fixed j ∈ F(z) (hence zj /∈ Z) and show that it is possible to increase
zj without invalidating any equation, which will be a contradiction.

Due to integrality of all entries it is not possible that equality in an equation is
achieved by both integer and noninteger components of z. Hence the increase of zj

only forces the noninteger components of z to increase.
At the same time an equality of the form (A⊗ z)i = ci (if any) cannot be attained

by noninteger components, thus aij ⊗ zj < ci and bij ⊗ zj < ci whenever zj /∈ Z

and (A⊗ z)i = ci , hence there is always scope for an increase of zj /∈ Z. �

Integer modifications of the algorithms are now straightforward since L, L′ and
U are also integer: we only need to ensure that the algorithms start from an integer
vector (see Theorem 10.2.3) and that the integrality of both ends of the intervals
of uncertainty is maintained, for instance by taking one of the integer parts of the
middle of the interval.

We start with the minimization. Note that

L,L′,U ∈ [−3K,3K], (10.8)

where K has been defined by (10.4).

Algorithm 10.2.26 INTEGER MAXLINMIN (integer max-linear minimization)
Input: A = (aij ), B = (bij ) ∈ Z

m×n, f = (f1, . . . , fn)
T ∈ Z

n, c = (c1, . . . , cm)T ,
d = (d1, . . . , dm)T ∈ Z

m, c ≥ d , c �= d .
Output: x ∈ Smin ∩Z

n.

1. If L= f (x) for some x ∈ S ∩Z
n then stop (f min = L).

2. Find x0 ∈ S ∩ Z
n. If (A⊗ x0)i > ci for all i ∈M then scale x0 by α defined in

(10.5).
3. L(0) := L, U(0) := f (x0), r := 0.
4. α := � 1

2 (L(r)+U(r))�.
5. Check whether f (x)= α is satisfied by some x ∈ S ∩Z

n and in the positive case
find one.

If x exists then U(r + 1) := α, L(r + 1) := L(r).
If it does not then U(r + 1) :=U(r), L(r + 1) := α.

6. r := r + 1.
7. If U(r)−L(r)= 1 then stop (U(r)= f min) else go to 4.

Theorem 10.2.27 The algorithm INTEGER MAXLINMIN is correct and terminates
after using O(mn(m+ n)K logK) operations.

Proof Correctness follows from the correctness of MAXLINMIN and from The-
orem 10.2.24. For computational complexity first note that the number of itera-
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tions is O(log(U − L)) ≤ O(log 6K) = O(logK). The computationally prevail-
ing part of the algorithm is the checking whether f (x) = α for some x ∈ S ∩ Z

n

when α is given. By Corollary 10.2.7 this can be done using O(mn(m + n)K ′)
operations where K ′ = max(K + 1, |α|). Since α ∈ [L,U ], using (10.8) we have
K ′ = O(K). Hence the computational complexity of checking whether f (x) = α

for some x ∈ S ∩Z
n is O(mn(m+ n)K) and the statement follows. �

Again, for the same reasons as before, we present the maximization algorithm in
full.

Algorithm 10.2.28 INTEGER MAXLINMAX (integer max-linear maximization)
Input: A = (aij ), B = (bij ) ∈ Z

m×n, f = (f1, . . . , fn)
T ∈ Z

n, c = (c1, . . . , cm)T ,
d = (d1, . . . , dm)T ∈ Z

m.
Output: x ∈ Smax ∩Z

n or an indication that f max =+∞.

1. If U = f (x) for some x ∈ S ∩Z
n then stop (f max =U ).

2. Check whether A⊗ x = B ⊗ x has a solution. If yes, stop (f max =+∞).
3. Find an x0 ∈ S ∩Z

n and set x0 := x0 ⊕ h′ where h′ is as defined in (10.7).
4. L(0) := f (x0), U(0) :=U, r := 0.
5. α := " 1

2 (L(r)+U(r))#.
6. Check whether f (x)= α is satisfied by some x ∈ S ∩Z

n and in the positive case
find one.

If x exists then U(r + 1) :=U(r), L(r + 1) := α.
If not then U(r + 1) := α, L(r + 1) := L(r).

7. r := r + 1.
8. If U(r)−L(r)= 1 then stop (L(r)= f max) else go to 5.

Theorem 10.2.29 The algorithm INTEGER MAXLINMAX is correct and termi-
nates after using O(mn(m+ n)K logK) operations.

Proof Correctness follows from the correctness of MAXLINMAX and from The-
orem 10.2.25. The computational complexity part follows the lines of the proof of
Theorem 10.2.27 after replacing L by L′. �

10.2.5 An Example

Let us consider the max-linear program (minimization) in which

f = (3,1,4,−2,0)T ,

A=
⎛

⎝
17 12 9 4 9
9 0 7 9 10

19 4 3 7 11

⎞

⎠ ,
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B =
⎛

⎝
2 11 8 10 9

11 0 12 20 3
2 13 5 16 4

⎞

⎠ ,

c=
⎛

⎝
12
15
13

⎞

⎠ , d =
⎛

⎝
12
12
3

⎞

⎠

and the starting vector is

x0 = (−6,0,3,−5,2)T .

Clearly, f (x0)= 7, M> = {2,3} and the lower bound is

L= max
r∈M>

min
k∈N

fk ⊗ cr ⊗ b−1
rk

=max (min (7,16,7,−7,12) ,min (14,1,12,−5,9))=−5.

Record of the run of INTEGER MAXLINMIN for this problem:
Iteration 1: Check whether L=−5 is attained by f (x) for some x ∈ S by solving

the system

⎛

⎜
⎜
⎝

17 12 9 4 9 12
9 0 7 9 10 15

19 4 3 7 11 13
3 1 4 −2 0 −6

⎞

⎟
⎟
⎠⊗w =

⎛

⎜
⎜
⎝

2 11 8 10 9 12
11 0 12 20 3 12

2 13 5 16 4 3
2 0 3 −3 −1 −5

⎞

⎟
⎟
⎠⊗w.

There is no solution, hence L(0) := −5, U(0) := 7, r := 0, α := 1.
Check whether f (x)= 1 is satisfied by some x ∈ S by solving

⎛

⎜
⎜
⎝

17 12 9 4 9 12
9 0 7 9 10 15

19 4 3 7 11 13
3 1 4 −2 0 0

⎞

⎟
⎟
⎠⊗w =

⎛

⎜
⎜
⎝

2 11 8 10 9 12
11 0 12 20 3 12

2 13 5 16 4 3
2 0 3 −3 −1 1

⎞

⎟
⎟
⎠⊗w.

There is a solution x = (−6,0,−3,−5,1)T . Hence U(1) := 1, L(1) := −5, r := 1,
U(1)−L(1) > 1.

Iteration 2: Check whether f (x)=−2 is satisfied by some x ∈ S by solving

⎛

⎜
⎜
⎝

17 12 9 4 9 12
9 0 7 9 10 15

19 4 3 7 11 13
3 1 4 −2 0 −3

⎞

⎟
⎟
⎠⊗w =

⎛

⎜
⎜
⎝

2 11 8 10 9 12
11 0 12 20 3 12

2 13 5 16 4 3
2 0 3 −3 −1 −2

⎞

⎟
⎟
⎠⊗w.

There is no solution. Hence U(2) := 1, L(2) := −2, r := 2, U(2)−L(2) > 1.
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Iteration 3: Check whether f (x)= 0 is satisfied by some x ∈ S by solving
⎛

⎜
⎜
⎝

17 12 9 4 9 12
9 0 7 9 10 15

19 4 3 7 11 13
3 1 4 −2 0 −1

⎞

⎟
⎟
⎠⊗w =

⎛

⎜
⎜
⎝

2 11 8 10 9 12
11 0 12 20 3 12
2 13 5 16 4 3
2 0 3 −3 −1 0

⎞

⎟
⎟
⎠⊗w.

There is no solution. Hence U(3) := 1, L(3) := 0, U(1)−L(1)= 1, stop, f min = 1,
an optimal solution is x = (−6,0,−3,−5,1)T .

10.3 Exercises

Exercise 10.3.1 Prove that the problem of minimizing the function

2x1 + · · · + 2xn

subject to one-sided max-linear constraints A⊗ x = b is NP-complete. (Hint: Find
a polynomial transformation of the classical minimum set covering problem to this
problem with a matrix A over {0,−1}, b= 0)

Exercise 10.3.2 Find a minimizer of the function max(x1, x2, x3, x4, x5) subject to
the constraints A⊗ x ⊕ c= B ⊗ x ⊕ d , where

A=
⎛

⎝
49 31 82 38 35
44 51 79 81 94
45 51 64 53 88

⎞

⎠ , B =
⎛

⎝
55 21 23 23 44
62 30 84 17 31
59 47 19 23 92

⎞

⎠ ,

c=
⎛

⎝
43
18
90

⎞

⎠ , d =
⎛

⎝
98
44
11

⎞

⎠ .

[xmin = (19,19,16,19,−2)T ]

Exercise 10.3.3 Find a maximizer of the function max(x1, x2, x3, x4, x5) subject to
the constraints A⊗ x ⊕ c= B ⊗ x ⊕ d , where

A=
⎛

⎝
95 49 46 44 92
23 89 2 62 74
61 76 82 79 18

⎞

⎠ , B =
⎛

⎝
41 41 35 14 60
94 89 81 20 27
92 6 1 20 20

⎞

⎠ ,

c=
⎛

⎝
2
75
45

⎞

⎠ , d =
⎛

⎝
93
47
42

⎞

⎠ .

[xmax = (−2,14,8,11,1)T ]



Chapter 11
Conclusions and Open Problems

The aim of this book is two-fold: to provide an introductory text to max-algebra and
to present results on advanced topics. Chapters 1–5 aim to be a guide through basic
max-algebra, and possibly to accompany an undergraduate or postgraduate course.
Chapters 6–10 are focused on more advanced topics with emphasis on feasibility
and reachability.

In the case of feasibility the most important results are: complete resolution of the
eigenvalue-eigenvector problem using O(n3) algorithms; methods for solving two-
sided systems of max-linear equations of pseudopolynomial computational com-
plexity; full characterization of strongly regular matrices and the simple image sets
of max-linear mappings; O(n3) algorithms for three presented types of matrix reg-
ularity and a polynomial algorithm for finding all essential coefficients of a charac-
teristic maxpolynomial.

Basic reachability problems are solvable in polynomial time. These include the
question of reachability of eigenspaces by matrix orbits (for irreducible matrices)
and robustness (for irreducible and reducible matrices). Max-linear programs with
two-sided constraints can be solved in pseudopolynomial time for problems with
integer entries.

There are a number of problems that seem to be unresolved at the time of printing
this book. We list some of them:

OP1: Is it possible to multiply out two n × n matrices in max-algebra in time
better than O(n3)?

OP2: Although strong regularity and Gondran–Minoux regularity can be checked
in O(n3) time, it is still not clear whether it is possible to check the strong linear
independence or Gondran–Minoux independence in polynomial time.

OP3: Although the question of the existence of permutations of both parities,
optimal for the assignment problem for a matrix, is decidable in O(n3) time, it is
not clear whether the best optimal permutations of both parities can be found in
polynomial time.

OP4: Although the two-sided max-linear systems with integer entries are solv-
able in pseudopolynomial time, it is still not clear whether this problem is polyno-
mially solvable or NP-complete.

P. Butkovič, Max-linear Systems: Theory and Algorithms,
Springer Monographs in Mathematics 151,
DOI 10.1007/978-1-84996-299-5_11, © Springer-Verlag London Limited 2010

259

http://dx.doi.org/10.1007/978-1-84996-299-5_11


260 11 Conclusions and Open Problems

OP5: Although all essential coefficients of a characteristic maxpolynomial can
be found in polynomial time, it is still not clear whether the problem of finding all
coefficients is polynomially solvable or NP-complete.

OP6: Can the pseudopolynomial algorithms for solving max-linear programs
with finite entries be extended to problems with non-finite entries?

OP7: Although it is clear that the greatest corner of a characteristic maxpolyno-
mial is equal to the principal eigenvalue, it is not clear how to interpret the other
corners.

OP8: One of the hardest problems in max-algebra seems to be the generalized
eigenproblem. Although some progress is presented in Chap. 9, probably no method
is available of any kind, exact or approximate (including heuristics), to find at least
one generalized eigenvalue for general matrices. In particular, we know that there is
at most one generalized eigenvalue if the matrices are symmetric (Theorem 9.1.6),
yet there is no clear description of the unique (possible) eigenvalue.
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150. Zimmermann, U. (1981). Annals of discrete mathematics: Vol. 10. Linear and combinatorial
optimization in ordered algebraic structures. Amsterdam: North-Holland.



Index

A
A-test, 65
Algorithm

ALTERNATING METHOD, 156
BMISDI, 44
ESSENTIAL TERMS, 119
EVOLUTION, 106
FLOYD-WARSHALL, 27
INTEGER MAXLINMAX, 255
INTEGER MAXLINMIN, 254
Karp’s, 19
MAXLINMAX, 252
MAXLINMIN, 252
NARROWING THE EIGENVALUE

SEARCH, 237
ONEMAXLINMIN, 244
RECTIFICATION, 110
RESOLUTION, 108

Arc, 13
Attraction space, 180
Attraction system, 202

B
Balance operator, 164
Basis, 60

standard, 60

C
Cancellation law, 162
Chebyshev distance, 67
Class of a matrix, 87

final, 88
initial, 88
spectral, 91

Component
critical, 19
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I
Image set, 130
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Gondran-Minoux regular, 139
Hankel, 144
idempotent, 152
increasing, 22
irreducible, 14
M-robust, 221
metric, 22
normal, 33
normal form of, 33
orbit of, 180

starting vector, 180
period of, 180
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trivial, 215
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Max-linear program, 243
Max-linear system
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two-sided, 10, 149
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Max-norm, 60
Maximum cycle mean, see cycle mean
Maxpolynomial, 103

characteristic, 113
degree of, 103
length of, 103
standard, 103
term of, 103

inessential/essential, 104
Method

Hungarian, 31
Min-algebra, 2, 13
Modulus, 164
Multi-machine interactive production process,
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N
Node, 13

critical, 18
reachable, 13
spectral, 91
starting, 13

Nodes
equivalent, 18
λ-equivalent, 95

Nontrivial solutions, 149
Number

regular, 234

O
Observation vector, 144

P
Path, 13

length of, 13
weight of, 14

Permanent, 30, 166
strong, 33

Permutation
cyclic, 30

length of, 34
even, 35
odd, 35
optimal, 31
sign of, 34
symmetrized sign of, 165
weight of, 31

Principal interpretation, 12
Problem

EXACT CYCLE COVER, 124
independent ones, 236
linear assignment, 31
minimal-dimensional realization, 145
PRINCIPAL SUBMATRIX WITH

POSITIVE PERMANENT, 124
shortest-distances, 48
synchronization, 10

Product form, 105
corner of, 105
simple, 106
standard, 106

Program
max-linear, 11

R
Realization (of a DEDS), 144
Resolution, 107

S
Semimodule, 4
Semiring

commutative idempotent, 4
Sequence

convex, 145
Set

dependent, 60
independent, 60
max-convex, 128
of generators, 60
regular, 221
scaled, 60
totally dependent, 60

Set covering, 56
minimal, 56
nearly minimal, see covering

Simple image set, 130
Sleeper, 160
Solution

principal, 55
stable, 158

Span of a set, 60
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Steady regime, 12, 179
Subdigraph, 13

induced, 15
Subeigenvector, 21
Submatrix

principal, 6
Subspace, 60

dimension of, 66
Superblock, 88
Symmetrized semiring, 164

T
Theorem

Carathéodory’s, 61
Cayley-Hamilton, 124
Cuninghame-Green, 83, 85
Cyclicity, 191
General Cyclicity, 215
Gondran-Minoux, 139
Karp, 20

Schneider, 97
Transient of matrix sequences/orbits, 180
Transitive closure of a matrix

strong, 21
weak, 21

Tropical algebra, 2, 13

V
Vector

scaled, 60
sign-negative, 165
sign-positive, 165
signed, 165
support of, 61

Vectors
Gondran-Minoux dependent/independent,

138
linearly dependent/independent, 127
strongly linearly independent/dependent,
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