
Chapter 8
Measuring Networks

Abstract We have adopted the view of graphs and, more generally, cell complexes
as a domain upon which we may apply the tools of calculus to formulate differential
equations and to analyze data. An important aspect of the discrete differential opera-
tors is that the operators are defined by the topology of the domain itself. Therefore,
in an effort to provide a complete treatment of these differential operators, we ex-
amine in this chapter the properties of the network which may be extracted from
the structure of these operators. In addition to the network properties extracted di-
rectly from the differential operators, we also review other methods for measuring
the structural properties of a network. Specifically, the properties of the network that
we consider are based on distances, partitioning, geometry, and topology. Our partic-
ular focus will be on the measurement of these properties from the graph structure.
Applications will illustrate the use of these measures to predict the importance of
nodes and to relate these measures to other properties of the subject being modeled
by the network.

Measures of network properties have been important in several applications. Graph
measures may be used to summarize node or network properties to help understand
the network. These measures may also be used to make predictions about the sepa-
rability of the network or the importance of individual nodes or edges. A different
use of graph measures has been to predict properties of the subject which is being
modeled computationally as a network. For example, a series of network measures
have been used to determine whether the configuration of a network of cells inside
tissue imaged in a histological section can predict cancer [101, 180]. These network
measures have also been widely used in chemical graph theory to predict various
structural and behavioral properties of molecules. In this chapter, we review sev-
eral types of measures that describe the connectedness, topology, or geometry of
a network and then give applications of these measures in social networking and
chemical graph theory. Readers wishing to explore the network measurement topic
further are referred to the excellent review article of Costa et al. [89].
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268 8 Measuring Networks

8.1 Measures of Graph Connectedness

In 1947 the chemist H. Wiener observed that a particular measure on the graph that
represents an alkane molecule allows one to predict the boiling point of the com-
pound. Pursuing this line of research led Wiener to show that this same distance
measure could be used to calculate a series of chemical properties that had previ-
ously escaped prediction. When interest in this work was reawakened in the 1970s,
it triggered a search within chemical graph theory for other distance-based “topo-
logical indices” that could be used to predict various properties of molecules (see
Sect. 8.5.2 for a detailed example of this line of work). More recently, a set of similar
measures has been used to describe the characteristics of complex networks. Almost
all of these quantities are derived from measures of distance on a graph, which we
now review.

8.1.1 Graph Distance

We first review the distance between two nodes on a weighted graph that was defined
in Chap. 4. (If there are no weights specified and the graph is embedded in R

N ,
then the edge weights can be set to reflect the Euclidean length of the edge.) If we
consider a graph with any set of positive weights associated to the edge set, then
given these edge weights we may define the distance between any pair of nodes
using the distance operator D(·, ·) as

D(vi, vj ) = min
�i,j

∑

eij ∈�i,j

w(eij ), (8.1)

where w(eij ) is the distance weight of edge eij , �i,j is a set of edges representing a
path between vi and vj , and we define D(vi, vi) = 0. The optimal path connecting
the pair of nodes is called the shortest path, and thus the distance is defined as
the length of the shortest path between the pair of nodes along the edges of the
graph. If no path connects vi and vj (the graph is disconnected), then we define
the corresponding distance as D(vi, vj ) = ∞. When the weights are positive, the
distance defined in this way establishes a formal metric between nodes on the graph,
since the distance is nonnegative, symmetric, discernible and satisfies the triangle
inequality (see Sect. 4.4).

A metric can be defined for any graph with positive edge weights by defin-
ing the distance between any pair of nodes by the length of the shortest path
connecting them.

There are many fast algorithms available to compute the distance between two
nodes. The most common algorithm for computing distance is Dijkstra’s algorithm
[108] which may be applied to any connected graph with nonnegative weights.
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8.1.2 Node Centrality

Armed with the notion of distance between two nodes given by (8.1), we may ex-
amine the importance of a particular node by considering the distance between the
node and the rest of the network. Measures of node importance are called node
centrality measures due to the use of distances to determine how “central” a node
is within a network (for a more extensive review of node centrality, see [247]). The
most natural method for using distance to measure the centrality of a particular node
is to examine the distance from the node to all other nodes in the graph. This mea-
sure of node centrality is known as the total distance of a node vi , which is defined
as

TD(vi) =
∑

vj

D(vi, vj ). (8.2)

The total distance is proportional to the closeness measure of a node, which is de-
fined as the average distance from the node to all other nodes in the graph, i.e.,

Closeness(vi) = 1

n − 1
TD(vi), (8.3)

where n is the number of nodes in the graph, n = |V|. Total distance for a single
node may be computed efficiently by Dijkstra’s algorithm.

The total distance and closeness both measure node centrality by examining the
distance between a single node and the entire network. Therefore, each quantity pro-
vides an aggregated measure of node centrality. Instead of examining an aggregated
measure of node centrality, we could adopt another view of node centrality by con-
sidering only the worst-case distance between a node and the remaining network.
A measurement of worst-case node centrality is provided by the node eccentricity,
which measures the maximum distance between the node and any other node in the
network. Eccentricity is defined for node vi as

Eccentricity(vi) = max
vj

D(vi, vj ). (8.4)

A different approach to measuring node centrality is to examine the importance of
a node as a link between other pairs of nodes. This betweenness has been charac-
terized numerically as

Betweenness(vi) =
∑

vj ,vk

vi �=vj �=vk

σvj ,vk
(vi)

σvj ,vk

, (8.5)

where σvj ,vk
(vi) indicates the number of shortest paths between vj and vk that pass

through vi , and σvj ,vk
indicates the total number of shortest paths joining vj and

vk . Therefore, the betweenness measure represents the fraction of optimal paths be-
tween every pair of nodes that cross through vi . Calculation of node betweenness
is more expensive than the previous measures due to the fact that it is necessary
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to know the optimal paths between all pairs of nodes. The classic algorithm for
computing all-pairs shortest paths is the Floyd–Warshall algorithm [87], although
Johnson’s algorithm or repeated applications of Dijkstra’s algorithm are considered
more efficient for sparse graphs [87]. Due to the usefulness of the betweenness mea-
sure in practice, specialty algorithms to compute betweenness have been developed
that are faster than computation of the all-pairs shortest paths (the most efficient
specialty algorithm is by Brandes [57]). However, even these specialty algorithms
for computing betweenness are too expensive for large graphs, causing continued
work on fast algorithms to approximate betweenness [16].

Not every measure of node centrality is based on shortest-path distance. Another
common measure of node centrality is simply the number of neighbors of the node
(the node degree). Degree may be a useful measure of node centrality for networks
in which there is a large range of different node degrees, but may be less useful to
describe the importance of nodes in networks for which the degree distribution has
low variance.

8.1.3 Distance-Based Properties of a Graph

Having explored methods for measuring the centrality of nodes from distance calcu-
lations, we may use these methods to define a series of distance-based measures to
describe the “connectedness” of the entire graph. The first of these global measures
is the most successful measure used in chemical graph theory, and was defined by
Wiener. Although many topological indices have since been proposed in the chem-
ical graph theory literature, the measure used by Wiener has had the most success
and influence. This measure is known as the Wiener index or Wiener number
which is defined for a graph G as

W(G) = 1

2

∑

vi

∑

vj

D(vi, vj ). (8.6)

The Wiener index represents the sum of the shortest path lengths between all pairs
of nodes in the graph. Therefore, a graph with a small Wiener index is more well-
connected than a graph (with the same number of nodes) having a large Wiener
index. In the network theory literature, it is more common to use the average path
length which normalizes the distances comprising the Wiener index by the number
of node pairs. The average path length is defined as

AveragePathLength(G) = 2W(G)

n2 − n
= 1

n2 − n

∑

vi

∑

vj

D(vi, vj ). (8.7)

Calculation of the Wiener index and average path length requires knowledge of
the shortest paths between all vertex pairs in a network. Consequently, the Floyd–
Warshall algorithm or the Johnson algorithms [87] are the most common methods
for calculating the Wiener index and average path length.
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The average path length and the Wiener index are measures of the connection
strength between all pairs of nodes in the graph. However, both of these measures
define the connection strength between nodes by the length of the optimal path.
Since these measures are based purely on the length of a single optimal path, they
may not reflect a more global measure of connectedness in the graph defined by
multiple paths. Therefore, a different view of node connectivity is to define the
strength of a connection between two nodes by the number of parallel paths. One
way of measuring the strength of parallel connections is to use the resistance dis-
tance [235] between two nodes when the graph is viewed as an electrical circuit (see
Chap. 3 for more discussion of the effective resistance and circuit analogy). Specifi-
cally, the resistance distance has been used to measure the strength of parallel paths
connecting all pairs of nodes by defining the Kirchhoff index [43, 109]

KI(G) = 1

2

∑

vi

∑

vj

Reff(vi, vj ) = n trace{L†}, (8.8)

where L† indicates the pseudoinverse of the Laplacian matrix and Reff(vi, vj ) is the
effective resistance between nodes vi and vj , as defined in Sect. 4.4. The Kirch-
hoff index of any graph is always smaller than the Wiener index, since D(vi, vj ) ≥
Reff(vi, vj ) implies that W(G) ≥ KI(G). This inequality becomes an equality when
there exists only a single path between all pairs of nodes, i.e., the graph is a tree.

When computing the Wiener index or Kirchhoff index for a weighted graph, care
must be taken in the interpretation of the weights. Weights are incorporated in the
definition of the distance measure (8.1) required by the Wiener index, and weights
are also incorporated in the definition of the Laplacian matrix (2.96) required by
the Kirchhoff index. However, in Chap. 2 we saw that the roles of the prescribed
weights are not the same in these two cases. Given a weighted graph, one must take
care to choose, depending on the problem and on the origin of the weights, whether
the weights are “distance weights” or “affinity weights”. Chapter 2 contains a dis-
cussion of these two interpretations of weights, and there it is shown that distance
weights correspond to the primal metric tensor and affinity weights to the dual met-
ric tensor. If the measures of distance are to be equivalent when quantified using the
distance operator and using the Laplacian operator, distance weights must be used
in the definition of the distance measure, and affinity weights in the definition of the
Laplacian.1 Specifically, for the two measures to operate using the same underlying
metric on a single graph, i.e., for the two measures to be compatible, the weights
used in the Laplacian matrix must be the reciprocal of the prescribed edge weights
used in the distance measure. For example, in the case of a tree the two indices
should be equal. However, improper interpretation of the weights will cause the two
calculated indices to be unequal (i.e., using distance weights for both measures or

1In the circuit theory analogy, for the two indices to be compatible the prescribed edge weights of
a weighted graph are interpreted as resistances when measuring the Wiener index, and the same
prescribed edge weights on the weighted graph are interpreted as conductances when measuring
the Kirchhoff index.
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affinity weights for both measures will not yield the same value). Therefore, the
comparison of the Wiener index and the Kirchhoff index provides a good example
of the importance of distinguishing these two interpretations of the prescribed edge
weights.

The quasi-Wiener index was also introduced [109, 279] to measure the strength
of parallel paths connecting all pairs of nodes by calculating the eigenvalues of
the Laplacian matrix. However, Gutman and Mohar proved that the quasi-Wiener
index and the Kirchhoff index are equal for all graphs [182] and therefore we do not
discuss the quasi-Wiener index any further.

Although the authors are not aware of any attempts to use topological indices
defined on the edge Laplacian to measure other aspects of the graph (or the chemical
properties of the molecule), the measures above suggest an easy extension to global
edge–face (edge–cycle) relationships. Specifically, a higher-order Kirchhoff index
could be defined as

Higher-OrderKI(G) = m trace{L†
1}, (8.9)

where m = |E| and L1 is the edge Laplacian (see Chap. 2). If the graph cycle set
constitutes a basis (see Chap. 4), then the edge Laplacian matrix has full rank and
the pseudoinverse is replaced by the true inverse of the edge Laplacian matrix. Re-
call from Chap. 4 that a set of |E| − |V| + 1 independent cycles will form a basis.
This measure of the higher-order Kirchhoff index does not retain its original inter-
pretation in terms of the effective resistance, since the effective resistance between
two edges does not have a conventional definition. Despite losing this interpreta-
tion, this measure on the edge Laplacian matrix provides a value that indicates the
relative “connectedness” of the edges via their incident nodes and cycles.

The Wiener index, average path length and Kirchhoff index all provide an aggre-
gate measure of distance between all nodes in the graph. As before, we may use the
definition of node eccentricity to define a measure of worst-case distance between
all nodes. Specifically, the definition of node eccentricity allows for the definition
of the graph radius and graph diameter

Radius(G) = min
vi

Eccentricity(vi), (8.10a)

Diameter(G) = max
vi

Eccentricity(vi). (8.10b)

A node for which Eccentricity(vi) = Radius(G) is called a graph center and a node
for which Eccentricity(vi) = Diameter(G) is called a peripheral node.

Figure 8.1 gives an example of these distance-based measures used to describe
a tree and a small lattice. The distance-based measures considered in this section
have all been applied to measure some aspect of connectedness in a graph. In the
next section we consider measures of graph separability.
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Fig. 8.1 Distance measures on two example graphs, displaying betweenness, TD and eccentricity
for each node. Greater values of these quantities are represented by darker shading. Each example
uses normalized values for the node quantities and unit weights for all edges. (Left) Measures for
tree example: Radius = 2, Diameter = 3, Wiener Index = 28, Average Path Length = 1.8667,
Kirchhoff Index = 28, Higher-Order Kirchhoff Index = 0. (Right) Measures for lattice exam-
ple: Radius = 4, Diameter = 8, Wiener Index = 1000, Average Path Length = 3.333, Kirchhoff
Index = 338.03, Higher-Order Kirchhoff Index = 814.42. From the node eccentricity examples
we can determine which nodes are centers and which nodes are peripheral. Tree graph: all nodes
with one neighbor are peripheral and the other two nodes are centers. Lattice graph: the corner
nodes are peripheral and the middle node is the only center
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8.2 Measures of Graph Separability

Similar to the distance-based measures of graph connectedness presented above,
measures of graph separability are built upon metric properties of the graph. We
first consider measures based on the volume of sets in a graph, then consider an
example of separability based on distances.

8.2.1 Clustering Measures

Clustering measures use partitions of a graph to determine the separability of the
graph. One of the most ancient measures of separability of a space arises from the
isoperimetric problem, which seeks the shape with largest area/volume from the
set of all shapes with the same perimeter/surface area. In the continuous, Euclidean
R

3 domain, the solution of this problem is known to be the sphere, and in R
2 the

circle. In a finite space (e.g., the surface of a closed object), one may define the
isoperimetric ratio of an N -dimensional closed Riemannian manifold, M, as [74]

h(M) = ∂S

min(Vol(S),Vol(S̄))
, (8.11)

where S represents an N -dimensional submanifold, S̄ represents its complement and
∂S represents the boundary length (surface area) of S. Instead of fixing a perimeter,
∂S, and seeking the submanifold S with greatest volume, we may generalize the
isoperimetric problem to seek the node set S ⊂ V that minimizes the isoperimetric
ratio. Such a solution and its complement are called the isoperimetric sets of the
domain. The value of the minimum isoperimetric ratio gives a notion of separability
of the space. For example, if the domain were disconnected into two pieces, then the
isoperimetric sets would consist of each piece individually and the isoperimetric ra-
tio would be zero. Similarly, the solution to the isoperimetric problem on the surface
of a “dumbbell” is also the two balls of the dumbbell with a small neck separating
them [74]. Since the boundary of S would be measured on the neck, and the surface
area on the two balls, the isoperimetric ratio of a dumbbell is small, meaning that
a dumbbell is nearly disconnected. As a measure of separability for a domain, we
may also consider the isoperimetric ratio of a graph. To do so, we must define the
analogous concepts used above for a graph. Specifically, we let the set S refer to a
set of nodes such that S ⊂ V, S �= ∅, |S| ≤ 1

2 |V| with boundary defined as the sum of
the weight of edges spanning the complementary subsets S and S̄. Two definitions
of the volume of a set of nodes in a graph are defined as [81, 285]

Vol1(S) = |S|, (8.12)

or

Vol2(S) =
∑

vi∈S

di, (8.13)
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where di represents the degree of node vi . These two definitions of volume have led
to two different definitions of the isoperimetric ratio of a graph.

We may write the isoperimetric ratio of the set S using an indicator vector, i.e.,
the vector x such that xi = 1 if vi ∈ S and xi = 0 otherwise. Using the indicator
vector allows us to write the isoperimetric ratio as either

h1(S) = ∂S

Vol1(S)
= xTLx

xTx
(8.14)

or

h2(S) = ∂S

Vol2(S)
= xTLx

xTDx
. (8.15)

As in the continuous case, the minimum isoperimetric ratio over all possible sets
S gives a measure of the separability of the graph. This minimum of h(S) over all
possible S is called the isoperimetric number, isoperimetric constant or Cheeger
constant. We note that there is some disagreement in the literature about these defi-
nitions, since all of these terms have been applied by various authors to either h1(G)

or h2(G). We will use the term isoperimetric constant, which we denote as h1(G)

or h2(G), depending on the definition of volume. The quantity h1(G) for a graph is
additionally known as the edge expansion and the quantity h2(G) is known as the
graph conductance.

The isoperimetric constant of a graph appears frequently in the literature. For
example, the isoperimetric constant has been used to characterize expander graphs
[6, 7]. Additionally, the graph partitioning problem is often formulated explic-
itly with the goal of finding the isoperimetric sets [169]. Unfortunately, calculation
of the minimum isoperimetric ratio of an arbitrary graph is NP-Hard [285, 286].
Therefore, one approach to estimating the isoperimetric number of a graph is to ap-
ply several different graph partitioning algorithms and use the smallest isoperimet-
ric ratio of these partitions as an estimate of the isoperimetric constant. Figure 8.2
shows examples of isoperimetric sets on two graphs, one of which exhibits a natural
clustering and the other which does not.

A different approach to estimating the minimum isoperimetric constant of a
graph is to use known bounds for the constant. The standard method for bound-
ing the isoperimetric constant is through use of the Fiedler value, which is defined
as the smallest nonzero eigenvalue of the Laplacian matrix. Fiedler observed that
this eigenvalue was a good predictor of graph separability. Based on this observa-
tion, Fiedler named the smallest nonzero eigenvalue of the Laplacian matrix the
algebraic connectivity [133] (although it is now known as the Fiedler value). The
algebraic connectivity is a meaningful measurement of the graph separability, but
it may also be used to bound the minimum isoperimetric constant h1(G) from both
above and below. Specifically, the following expression combines Cheeger’s in-
equality (upper bound) and Buser’s inequality (lower bound) [74, 81] to provide

√
2dmaxλ2 ≥ h1(G) ≥ 1

2λ2, (8.16)
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where dmax is the maximum degree in the graph and λ2 is the Fiedler value. Note
that the these inequalities also hold for graphs with any set of positive edge weights.
The right side of this equality may be seen easily since a real-valued relaxation of x
causes (8.14) to be an expression for the Rayleigh quotient of L, which is minimized
by λ2 for all solutions of x orthogonal to the constant vector. Similarly, for h2(G)

we have
√

2λ∗
2 > h2(G) ≥ 1

2λ∗
2, (8.17)

where λ∗
2 indicates the smallest nonzero eigenvalue of the normalized Laplacian

matrix. The appearance of the normalized Laplacian matrix is not surprising if we
view the two definitions of volume in (8.12) and (8.13) as different definitions of
node weights. Defining a node weight as unity (8.12) or defining a node weight as
the node degree (8.13) lead naturally to the standard unweighted Laplacian matrix
or the normalized Laplacian matrix, respectively (see Chap. 2 and [111, 112] for
more details).

In addition to the node Fiedler value, we may define a higher-order Fiedler value
defined on edges via the edge Laplacian. The higher-order Fiedler value is therefore
defined as the smallest eigenvalue of the edge Laplacian. If the complex is simply
connected (i.e., the number of faces included in the complex is greater than zero
and equals m − n + 1), then this higher-order Fiedler value is positive. However, if
there are fewer than m − n + 1 cycles in the complex, then the higher-order Fiedler
value would correspond to the first nonzero eigenvalue (in accordance with the node
case).

Another approach to measuring separability of a graph is the clustering coeffi-
cient, which looks locally for evidence of separability. The clustering coefficient is
computed for a node by counting the number of pairs of neighbors of a node that
are also neighbors of each other. This concept is motivated by social networks in
which it has been observed that if one individual (node) knows two other people
(has edges connecting them) then these people are likely to know each other (be
connected via an edge). Since this set of connections close a triangle in the graph,
this concept is sometimes known as triadic closure. Therefore, a pair of neighbors
is considered closed if these neighbors are connected. With these definitions, the
clustering coefficient at node vi is computed as

CC(vi) = Number of closed pairs of neighbors of vi

Total number of pairs of neighbors of vi

. (8.18)

Since CC(vi) is undefined if di < 2, we adopt the convention that CC(vi) = 0 for
these nodes. The clustering coefficient for the entire graph is given by

CC(G) = 1

n

∑

i

CC(vi). (8.19)

Therefore, this value takes a maximum at unity when G is fully connected and a
minimum of zero when G represents a tree. Unfortunately, this definition of the
clustering coefficient does not account for the graph weights. Several possibilities
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for extending this definition to include graph weights were proposed in [298] and
an extension of this measure beyond triangles was given in [230]. Examples of the
clustering coefficient and its comparison to the isoperimetric sets are provided in
Fig. 8.2.

8.2.2 Small-World Graphs

The intuitive concepts of distance-based connectedness and separability seem to
be opposite, i.e., that a separable network is not well-connected and vice versa.
However, it is known that social networks contain clear groups of tightly coupled
people but, despite this grouping, that the entire network is connected by short opti-
mal paths. Watts and Strogatz explained this phenomenon with a model known as a
small-world network [362, 396]. A small-world network was defined as any graph
that has both a small average path length as defined in (8.7) and a large clustering
coefficient as defined in (8.19). The name “small-world” network is derived from
the social experiments of Milgram [283] who found that it was possible to send
messages through a large, locally clustered, social network with approximately six
steps. This result brought the concept of six degrees of separation to popular cul-
ture. Since the introduction of small-world networks, these models have been widely
used to produce an understanding of many phenomena in physics, sociology and bi-
ology [397].

A key observation of Watts and Strogatz was that the average path length of
a random graph is small when the graph is connected. Random graphs were ini-
tially (and comprehensively) studied by Erdős and Rényi [124, 125]. A random
graph is defined as a graph which starts as a set of disconnected nodes to which k

edges are progressively added. The added edges are chosen randomly from the set
of all possible edges (node pairs), excluding multiple and self connections. Watts
and Strogatz used the results on average path length to show that any locally con-
nected graph (i.e., a graph with a large clustering coefficient) could be converted
into a small world graph by randomly rewiring a small number edges. This random-
ization of a small number of edges has the effect of drastically lowering the average
path length. This technique for producing a graph with small average path length
has been exploited in the context of improving the speed of graph-based computer
vision algorithms [167].

Following the publication of the initial work on small-world networks, other
types of small-world networks have also been studied. A motivation for studying ad-
ditional classes of small-world networks was the fact that the initial Watts–Strogatz
model did not resemble many real networks in the sense that most nodes in the
Watts–Strogatz model have the same degree. In fact, the degree distribution (the
histogram of node degrees) of many real networks follows a power law [20] (e.g.,
the world wide web [3]). A network with a degree distribution following a power
law is called a scale-free network. Recent interest in scale-free networks was gen-
erated by the work of Barabási and Albert [20], who suggested a mechanism for



278 8 Measuring Networks

Fig. 8.2 Two examples of the clustering measures. The dumbbell graph on the left clusters well
while the 8-connected lattice on the right does not. Node membership in the isoperimetric sets
are indicated by coloring the nodes as white or black. Clustering coefficients are displayed for
each node via shading, where darker shading represents nodes with a higher clustering coefficient.
A node with a higher clustering coefficient may be interpreted as indicating that the node is more
“interior”. Dumbbell global clustering measures: Vol1 = 8, Vol2 = 26, h1 = 0.25, h2 = 0.0769,
Fiedler Value = 0.3542, Graph Clustering Coefficient = 0.8750, Higher-Order Fiedler Value =
0.3542. Lattice global clustering measures: Vol1 = 16, Vol2 = 84, h1 = 1.25, h2 = 0.2381, Fiedler
Value = 1.4364, Graph Clustering Coefficient = 0.6571, Higher-order Fiedler Value = 1.0. These
measures tell us that, compared to the dumbbell, the lattice graph is larger (greater volume), harder
to separate (larger isoperimetric constants and Fiedler value), and fewer of the neighbors of each
node are connected (smaller clustering coefficient)
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producing a scale-free network. This mechanism is known as preferential attach-
ment and roughly states that as edges are added to a graph, the nodes with larger
degree have an increased probability of being linked. This process therefore pro-
duces some nodes with very large degree (called “hubs”) and the remaining degree
distribution follows a power law [20]. An example of this type of process is in the
author citation network, in which a paper with many citations is more likely to con-
tinue to be cited in the future. Although scale-free networks are commonly used as
examples of small-world networks, the clustering coefficient is not always large (al-
though the diameter is small), meaning that scale-free networks are not necessarily
small-world graphs.

The measures of graph connectedness and graph separability considered thus
far are measures that naturally pertain to 1-complexes or graphs. We now consider
global topological measures for general p-complexes, and afterwards consider geo-
metric measures defined specifically for surfaces or 2-complexes.

8.3 Topological Measures

The distance-based measures that we have studied so far are often called “topolog-
ical indices” in the chemical graph theory literature. Although these methods do
measure aspects of the network topology, they do not measure the usual topological
invariants such as the Euler characteristic, genus, Betti numbers, torsion coefficients
and orientability. In this section, we will describe how to calculate these invariants
for a cell complex. Here we assume that we are measuring the topological prop-
erties of a p-complex. Recall from Chap. 2 that a p-complex is defined by sets of
p-dimensional cells, Sp . A standard graph is therefore a 1-complex, which contains
sets of nodes and edges only. The subject of computational topology on a complex
is treated extensively in the literature [119, 254, 425].

We begin our treatment of topological measures with a discussion of the Betti
numbers for a complex. The pth Betti number of an n-complex is defined as the
rank of the pth homology group [254]. Informally, the Betti number may be viewed
as the number of cuts that may be made without dividing a surface into two parts.
Therefore, when p = 0, the Betti number represents the number of connected com-
ponents, when p = 1, the Betti number represents twice the number of handles, and
for p = 2, the Betti number represents the number of voids. Computation of the pth
Betti number is possible from the incidence matrices via the formula [254]

Bettip = |Sp| − Rank(Np+1) − Rank(Np), (8.20)

where we may recall that Np represents the pth incidence matrix of the complex.
To make this definition hold for all p on a p-complex, we define Rank(Np) = 0
for p ≤ 0 or for p ≥ n. As an example, we may give the calculation of the Betti
numbers for p = 0 and p = 1 using our conventional notation as

Betti0 = |V| − Rank(A) − 0, (8.21)
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Betti1 = |E| − Rank(B) − Rank(A). (8.22)

Recall that Rank(A) equals |V|−c where c represents the number of connected com-
ponents (see Chap. 2). Therefore, Betti0 = c. Similarly, when a complex is closed
and simply connected, then we saw in Chap. 2 that Rank(B) = |E|− |V|+ 1. There-
fore, when c = 1 and the complex is closed and simply connected, Betti1 = 0.

A simpler method for calculating the Betti numbers was given by Friedman [143]
who noted that, by the definition of the pth-order Laplacian, it was possible to cal-
culate the Betti numbers as

Bettip = Dimension(Nullspace{Lp}). (8.23)

This approach to calculating the Betti numbers is often more straightforward since
it may be computed by counting the number of zero eigenvalues of Lp . This second
expression for the Betti numbers in (8.23) also recovers the fact that Betti0 = c,
since it is well-known [34] that Rank(Nullspace{L0}) = c.

Multiplying the general expression for the Betti numbers in terms of the ranks
of incidence matrices given in (8.20) on both sides by (−1)p , results in the Euler–
Poincaré theorem which states that

p∑

i=0

(−1)p|Si | =
p∑

i=0

(−1)p Bettii . (8.24)

The value of this sum is known as the Euler characteristic of a p-complex, χ(G),
i.e.,

χ(G) =
p∑

i=0

(−1)p|Si | =
p∑

i=0

(−1)pBettii . (8.25)

When p = 2, this equation gives the usual formula for a surface χ(G) = |F| − |E| +
|V|. The Euler characteristic is one of the central invariants in topology. For a con-
nected complex, the Euler characteristic may be considered as the number of lin-
early independent cells which are possible, but not necessarily present, in the com-
plex (plus one). For example, we have seen that the number of linearly independent
cycles in a graph are equal to |E| − |V| + 1. Therefore, if all of these cycles are
included in our set of faces, then |F| = |E| − |V| + 1 and the Euler characteristic
equals one. If the “exterior face” is additionally included in the set of faces (see
Chap. 2) then the Euler characteristic equals two, which is the classical result for
a simply-connected closed surface.2 Two examples are given in Fig. 8.3 showing a
cube with Euler characteristic two and an annulus with Euler characteristic zero.

2The exterior face is a device to enable a finite graph to be defined such that it has no boundary and
is therefore closed. This imparts a global topology on the graph—that of a sphere or a sphere with
handles—which may be interpreted as a finite graph including a face “at infinity”, in analogy to
projections of the sphere into the plane (e.g., by stereographic projection) in which the coordinate
at the pole of the sphere opposite the origin is mapped to the point at infinity on the flat plane.
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Fig. 8.3 A cube, the flattened cube (with exterior face), and an annulus. The Euler characteristic
is χ = 6 − 12 + 8 = 2 for the cube (flattened and not flattened), and χ = 4 − 12 + 8 = 0 for the
annulus. Faces included in the face set are shaded gray (including the exterior face for the flattened
cube)

Closely related to the Euler number of a closed, orientable 2-complex is its
genus, which may be defined in terms of the Euler characteristic via the relationship

χ(G) = 2 − 2 Genus(G) (8.26)

for a closed surface. The genus is often thought of as the number of handles on the
surface. Therefore, the sphere has genus equal to zero, whereas the torus (a sphere
with a handle) has a genus equal to one. The genus of a 1-complex (graph) has been
defined as the minimum genus of the surface on which the graph may be embedded
such that is has no edge crossings [188]. Therefore, a planar graph is considered to
have genus zero.

The property of surface orientability describes whether or not it is possible to
describe the surface as the boundary of some object. A classical example of a non-
orientable structure is the Möbius strip. One test for surface orientability on a finite
complex is to examine the orders of the torsion subgroups of the homology group of
the complex, which are known as the torsion coefficients of the complex [254, 272].
These coefficients may be determined computationally by calculating the invariant
factors of the incidence matrix (i.e., the diagonal of the incidence matrix after plac-
ing it in Smith Normal Form). Specifically, the kth torsion coefficients are defined
as the set of invariant factors of the kth incidence matrix greater than unity [254].
Therefore, if the complex is orientable, then the complex is torsion-free and there
are no invariant factors of the kth incidence matrix greater than unity [272]. For ex-
ample, Fig. 8.4 shows a triangulated Klein bottle with its corresponding face–edge
incidence matrix and the incidence matrix in Smith Normal Form.

8.4 Geometric Measures

In addition to the properties considered above, we may also compute classical ge-
ometric quantities to describe a complex. Here we follow the computer graphics
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Fig. 8.4 Torsion coefficients may be extracted from the face–edge incidence matrix by placing
the matrix in Smith Normal Form. In this example, we give the face–edge incidence matrix of a
cell decomposition of the (flattened) Klein bottle [196] and show that the Klein bottle has a torsion
coefficient equal to two since the only invariant factor greater than unity lies at face f2

literature which defines measures of curvature for a 2-complex which is embedded
in R

3.
Geometric measures defined on simplicial complexes (i.e., triangular meshes rep-

resenting surface for 2-complexes) depend on the metrics ascribed to the complexes.
In the case of discrete surfaces the metric is typically derived from the embedding of
the two-dimensional surface in a three-dimensional metric space, although the no-
tion of distance may be produced from any process. Therefore, the distances along
the surface are the natural Euclidean distances inherited from the ambient space of
the embedding.

Here we will consider two forms of curvature defined on surfaces: Gaussian and
mean curvature. Gaussian curvature is an example of an intrinsic geometric prop-
erty of the surface in that Gaussian curvature is invariant under isometric transfor-
mations of the surface. That is, if the surface is deformed in a way that does not affect
the distance between any pair of vertices on the surface, then the Gaussian curvature
is also unaffected. For this reason, the Gaussian curvature is called intrinsic and de-
pends only on the metric of the surface. Mean curvature, however, is an example
of an extrinsic geometric property that can change under isometric transformations.
For instance, a punctured sphere and a flat disk in the plane are topologically equiva-
lent, and therefore a smooth homeomorphism exists between them, but a sphere has
constant positive Gaussian curvature and a disk has zero Gaussian curvature—it is
clear that the deformation between the two configurations cannot take place without
geometric distortion. However, the cylindrical tube is an example of a surface with
zero Gaussian curvature and non-zero mean curvature, so if the tube is cut straight
down its side (imagine a piece of paper rolled so that the two short ends meet) it
can be unrolled and flattened into the plane without stretching or intrinsic geometric
distortion.

8.4.1 Discrete Gaussian Curvature

Gaussian curvature is typically defined in terms of the principle curvatures [110].
However, an alternate definition of Gaussian curvature is provided by a special case
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of the Gauss–Bonnet theorem that applies equally well to the continuous or discrete
cases. This alternate definition of Gaussian curvature is based on the idea that, in
the plane, at a given vertex the sum of angles between adjacent edges connecting
the vertex to its neighbors always sum to 2π . For curved surfaces, this same sum
can be either greater than or less than 2π , and this angle deficiency is the basis of
Gaussian curvature.

The Gauss–Bonnet theorem establishes a deep result in differential geometry that
links the intrinsic geometry of a manifold M to its topology. For a given metric, the
integral of the Gaussian curvature K over the manifold (also known as the total
curvature), plus a boundary term consisting of the integral of the geodesic curva-
ture, kg, along the manifold boundary, is related to the Euler characteristic of the
manifold as

∫∫

M

K dV +
∫

∂M

kg ds = 2π χ(M). (8.27)

Therefore, for any topological sphere, the total curvature is always 4π , whereas the
total curvature for a 1-torus is always 0.

This general theorem can be applied locally to provide an integral definition for
Gaussian curvature on two-dimensional surfaces that holds for discrete spaces. If we
consider the total curvature of the dual cell surrounding each node of a graph, then
for a particular node vi at its corresponding dual cell C the Gauss–Bonnet theorem
reduces to

∫∫

C

K dV −
∫

∂C

kg ds = 2π (8.28)

since, by definition, χ(C) = 1 for the cell. For the case in which the dual cell is
conveniently given by the Voronoï cell at each vertex, the integral of the geodesic
curvature is zero at the piecewise linear edges of the cell boundary plus the angles at
the corners of its boundary. Furthermore, these angles are equivalent to the interior
angles θ at node vi formed between each pair of edges incident to vi in this special
case of a Voronoï cell [280, 366]. As a result, the Gaussian curvature K(vi) at node
vi may be neatly defined as

K(vi) =
2π − ∑

j ∀eij
θj

Avi

(8.29)

where θj is given by θj ≡ ∠{vj , vi, v(j+1)mod B} if B represents the number of
neighboring nodes, and Avi

represents the area of the Voronoï cell.

8.4.2 Discrete Mean Curvature

The definition of Gaussian curvature at a vertex in (8.29), which phrases the in-
tegral of the curvature over a small patch as the deviation from 2π of the internal
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Fig. 8.5 Example of discrete curvature measures applied to horse triangular mesh. (A) Gaussian
curvature calculated from the Gauss–Bonnet theorem. (B) Discrete mean curvature computed from
the method of Meyer et al. [280]. Both measures calculate curvature as a node quantity measured
for each vertex in the polygonal mesh based on the embedding of the neighboring vertices and the
incident faces. Both curvatures are visualized with a common color scale provided on the lower
right

angle sum, holds for finer and finer mesh spacing and is equivalent to the continuous
definition in the limit. In contrast, mean curvature does not possess an analogous
integral definition and therefore it is less natural to express mean curvature in the
discrete setting. One approach to defining mean curvature, adopted by Meyer et
al. [280], is to establish a similar integral relationship in the discrete setting that
approaches the continuous definition in the limit of finer mesh sampling in order to
provide a robust and compatible curvature measure. The definition begins by noting
that if one establishes a specific coordinate system for the surface that provides a
isothermal parameterization, the mean curvature H is related to the Laplacian oper-
ator ∇2 applied to this specific choice of coordinate functions [110], and therefore
the integral of the mean curvature around a vertex vi can be expressed as the integral
of the Laplacian operator evaluated at the midpoints of all edges incident to vi . The
resulting expression for mean curvature vector is then given by

H̃ (vi) = 1

2Avi

∑

j ∀eij

(cotαij + cotβij )(c̃i − c̃j ) (8.30)

where αij and βij represent the opposing angles in the two triangles containing
edge eij at the two vertices that are neither vi nor vj . The requirement of the two
coordinate vectors c̃i and c̃j demonstrates why the mean curvature formulation is
dependent on the embedding of the graph and is therefore an extrinsic quantity.

Although the mean curvature vector is a vectorial quantity in the ambient em-
bedding space, it is typically expressed as a scalar-valued curvature measure given
by the length of the vector, H = ‖H̃‖. Intuitively, this definition phrases the mean
curvature vector at a vertex as the average edge vector of all edges incident to the
vertex weighted by the angle sum around the vertex. Examples of these measures
for Gaussian and mean curvature are provided in Fig. 8.5 (contained in the color
plate section at the end of the book).
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Although these two curvature measures are not phrased in terms of the discrete
calculus operators that comprise the central theme of this book, they do provide ex-
amples of quantities that are typically considered only in the continuous setting. The
definition of Gaussian curvature holds equally well in the discrete setting, whereas
the translation of mean curvature to the discrete setting is not as straightforward.
From a practical standpoint, these measures are also generally useful for practition-
ers of discrete methods.

8.5 Applications

Measures of network structure may be useful in several ways. One way to use this
information would be to learn more about the network and focus attention on the
most relevant nodes. This type of application would employ individual node mea-
sures more than the global measures of the network. In this section, we will explore
an application in social networks as an illustration of this usage of the network mea-
sures.

A different way of using the network measures is to predict other properties of
the structure being represented by the network. This type of application effectively
summarizes the network structure via a collection of numbers which may then be
correlated to other quantities of interest. As a representative of this usage of the
network measures, we take an example from chemical graph theory.

8.5.1 Social Networks

Identification of important persons from the network structure is a typical applica-
tion in a social networks (e.g., [45]). For example, important individuals in a terrorist
network could be identified as the most effective leaders to capture. In Chap. 6 we
studied Zachary’s Karate Club network [415] in which two individuals in the net-
work split the club into two groups. Given just the network structure, we show that
the network measures allow us to predict the leaders of the two factions.

Figure 8.6 shows Zachary’s Karate Club network with the two actual leaders of
the factions identified. Without knowing who the actual leaders of the two factions
were, we could examine various node measures. For example, we would expect
that important nodes would have a large number of direct social connections to
other individuals (nodes) in the network, measured as node degree. Beyond direct
connections, we could reasonably expect that the leaders would be well-connected
indirectly to all of the individuals (nodes) in the network, measured as a low total
distance (closeness). Additionally, we would expect that the leaders would act as
a conduit for connecting other individuals in their faction, measured as node be-
tweenness. From Fig. 8.6 we see that the actual leaders of the two factions score
much better than the other nodes in terms of the node degree, total distance and
betweenness, and are therefore distinct and identifiable from the rest of the nodes.



286 8 Measuring Networks

Fig. 8.6 Prediction of the leaders of the two factions in Zachary’s Karate Club network [415]
using node measures. Nodes are shaded darker to indicate greater values of each measure. Note
that the measures in each figure are normalized to use the full white–black range. (A) The two
actual leaders of the factions marked in black. (B) Number of neighbors for each node (degree).
(C) Node betweenness. (D) Node total distance (closeness). These measures tell us that the two
leaders knew the most other people (highest degrees), were hubs for other people to know each
other (highest betweenness) and had the fewest average number of links between them and the rest
of the network

Therefore, these three measures of node degree would provide an accurate predic-
tion of the two leaders in Zachary’s Karate Club network.

8.5.2 Chemical Graph Theory

Graph theory has a long history in chemistry, dating back to Sylvester’s work
in 1878 [367]. In fact, the term “graph theory” was coined by Sylvester in the con-
text of the “graphical notation” used to describe the chemical structure of a molecule
[37].

In chemistry, a graph represents a molecule by associating each atom with a
node and each bond between atoms with an edge. Hydrogen atoms (with just a
single bond) are conventionally removed from the graph structure. Network mea-
sures are widely used in chemical graph theory to predict quantitative structure–
property relationships (QSPR) and quantitative structure–activity relationships
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Fig. 8.7 Predicting the boiling point of 3-Ethylhexane from its structure. (A) 3-Ethylhexane.
(B) The hydrogen-depleted molecule commonly used for calculation (i.e., the hydrogen nodes are
removed). (C) The graph corresponding to the hydrogen-depleted molecule. W(G) = 72, P = 7,
α = 1.53, β = 5.5, γ = −30.35. Using Wiener’s formula in (8.31) we can predict the boiling point
for 3-Ethylhexane as 118.4°C. The actual boiling point for 3-Ethylhexane is 118.6°C

(QSAR). Examples of such molecular properties include the boiling point, melting
point, molar volume, refractive index, critical pressure, surface tension, viscosity,
rate of electro-reduction and heats of isomerization, vaporization, formation and at-
omization [109]. Several review articles [187, 282] and books [42, 44, 170] detail
the use of these measures in chemical graph theory to predict molecular properties.
In addition to molecular properties, network measures have been widely used to
predict pharmacological properties for purposes of drug discovery [265, 266, 325].

In this section, we do not intend to provide a comprehensive review of this vast
literature, but rather to focus on the first and most important measure to appear in
chemical graph theory: the Wiener index (8.6). Note that Wiener’s initial definition
was not phrased in graph theory language, but later formulated in this setting by
Hosoya [207]. In his early papers [404, 405], Wiener used his index to predict the
boiling point (b.p.) of alkanes from the formula

b.p. = αW(G) + βP + γ, (8.31)

where α, β , γ are empirical constants and P , the “polarity number”, was defined as
the number of node pairs with distance equal to three. By fitting parameters to thirty-
seven alkanes, Wiener determined the parameters to be α = 98/n2, β = 5.5 and
γ = −30.35, where n represents the number of carbon atoms (number of nodes).
It is interesting to observe that the only difference between the definitions of the
Wiener index (8.6) and the Average Path Length (8.7) was the normalization of the
Average Path Length measure by the number of node pairs, n2 − n. However, in
Wiener’s original work, he used the parameter setting to normalize his measure by
n2, which brings these two measures very close together.

Figure 8.7 shows one of Wiener’s original examples in which he predicts the boil-
ing point of 3-Ethylhexane from the molecular structure alone (i.e., by measuring
network properties). Specifically, for 3-Ethylhexane we may calculate W(G) = 72,
P = 7. Using Wiener’s formula (8.31) and the parameter values listed above allows
us to calculate the boiling point for 3-Ethylhexane as 118.4°C. The actual boiling
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point for 3-Ethylhexane is 118.6°C. In Wiener’s original paper, he applied his for-
mula to ninety-four compounds to predict the actual boiling points with an average
deviation of 0.97°C. It remains a remarkable fact that a measure of the structure of
the network representing a molecule can provide such accurate predictions of the
molecule’s chemical properties.

Many additional models have been developed that predict molecular properties
from the Wiener index. Another example is the chromatographic retention time
(CRT) of monoalkyl- and o-dialkylbenzenes which are well modeled in [51] by

CRT = αW(G)β + γ, (8.32)

where α, β , γ are empirical constants (which are different from those appearing
above in (8.31)). The variety of models in which the Wiener index appears has been
explained by arguing that the Wiener index measures the van der Waals surface area
of a molecule [181].

By representing a molecule as a list of numerical descriptors, these descriptors
may be used in conjunction with machine learning techniques to predict many dif-
ferent QSPR and QSAR properties. In the present day, vast libraries of graph rep-
resentations of chemical compounds have been compiled which make it possible to
search for a compound with a particular set of properties or to numerically screen
compounds without having to manufacture and test them [171, 213, 370]. Many
structural descriptors have been devised in the chemical graph theory literature that
were not reviewed in this chapter. In this section, we have simply intended to pro-
vide the reader with a glimpse into this rich literature and to point the interested
reader to more comprehensive sources in this area.

8.6 Conclusion

In this chapter we considered methods of measuring different kinds of quantities
that describe the structure of the graph. The distance and clustering measures ap-
proached the related intuitive concepts of connectedness and separability. In con-
trast, the topological and geometric measures probe other aspects of the complex.

The measures may be applied in several ways. One method for applying these
measures has been to reduce a network to a series of numbers that may be used to
predict the behavior of certain processes on the graph or of the object represented
by the network. A central example of this usage is the success of the chemical graph
theory literature in relating the distance-based measures to the chemical properties
of the molecules represented by the graph. A smaller example of this usefulness is
the observation [175] that graph diameter is a good predictor of the convergence
of conjugate gradient applied to solving a linear system with the Laplacian matrix.
As network models are increasingly explored to describe computer networks, neu-
ral connections, traffic flow, gene regulation and sociology, we believe that these
measurements will provide useful predictions about the behavior of these networks.
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Finally we note that the distance and separability descriptors that have been em-
ployed in the literature to describe networks are exclusively dependent on node con-
nectivity and separability. We suggested some possibilities for extending these mea-
sures to higher-order connectivity, but we believe that measures defined on edge
and cycle connectivity and separability present an untapped source of additional
descriptors for a network or complex.
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