
Chapter 6
Clustering and Segmentation

Abstract Clustering algorithms are used to find communities of nodes that all be-
long to the same group. This grouping process is also known as image segmentation
in image processing. The clustering problem is also deeply connected to machine
learning because a solution to the clustering problem may be used to propagate
labels from observed data to unobserved data. In general network analysis, the iden-
tification of a grouping allows for the analysis of the nodes within each group as
separate entities. In this chapter, we use the tools of discrete calculus to examine
both the targeted clustering problem (i.e., finding a specific group) and the untar-
geted clustering problem (i.e., discovering all groups). We additionally show how to
apply these clustering models to the clustering of higher-order cells, e.g., to cluster
edges.

The clustering problem is to assign a set of labels to a set of cells such that all cells
assigned to the same label belong to the same group. The most common type of
cells to cluster are nodes, and so our discussion will be limited to node clustering,
except in Sect. 6.4 where we address the clustering of higher-order cells. Clustering
appears in several fields of study, including machine learning and image analysis. In
the context of image analysis, the clustering problem is often called image segmenta-
tion. We will generally use the term clustering in this chapter unless we specifically
discuss image clustering, in which we will use the term segmentation.

Formally, the clustering problem may be formulated by assigning elements b of
a label set L to the set of nodes, V. Specifically, the goal of a clustering algorithm
is to produce a segmentation function σ : V → L. Inspired by image analysis, the
term object will also be used interchangeably with cluster to refer to all nodes that
are mapped to the same label through σ .

Clustering algorithms may be broadly categorized along two axes. The first axis
ranges from targeted clustering to untargeted clustering. Targeted clustering algo-
rithms seek to identify a specific set of objects and therefore require some mecha-
nism for training or steering the algorithm to find the desired set of objects. Con-
sequently, targeted clustering algorithms have a specific label set which is drawn
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from to assign labels to each node. In contrast, an untargeted clustering algorithm
seeks to label nodes as belonging to the same group if the group shares some proper-
ties, such as features of the data, or locality or connectivity derived from the graph.
An untargeted clustering algorithm typically determines the number of labels to be
used in order to satisfy its internal assumptions about node homogeneity, although
in some cases the number of labels may be fixed. The traditional conception of the
clustering problem has been the untargeted clustering problem, but interest has been
increasing rapidly in targeted clustering algorithms.

All of the algorithms described here model the clustering problem with an objec-
tive function (often viewed as an energy function), and the purpose of the clustering
algorithm is to find the clustering which optimizes the objective. However, some
objective functions are difficult to optimize completely, or even fall into the class of
NP-Hard problems. Consequently, the clustering calculated as a solution to one of
these difficult objective functions may depend on the initialization to the algorithm.
In these cases, a clustering algorithm, which would be untargeted if the objective
could be completely optimized, can act as a targeted algorithm by initializing the
clustering close to an intended target. We term algorithms of this variety as semi-
targeted clustering, and treat these algorithms in a separate section.

The second axis for categorizing clustering algorithms ranges from primal algo-
rithms (in which the nodes within a cluster are directly labeled) to dual algorithms
(in which the cells comprising the boundaries of clusters are labeled). Primal algo-
rithms are generally more popular, better developed, and easier to generalize. Dual
algorithms work only under limited circumstances and depend on an embedding,
but they constitute an important class of algorithms in image analysis that are of a
fundamentally different character than the primal algorithms.

Several clustering algorithms in this chapter assume that each node is associated
with some data (i.e., an attributed graph) and it is this data which is to be clustered.
However, the predominant methodology is to transform this data into graph struc-
ture via the weights (using the functions in Chap. 4) and then apply the clustering
algorithms to the weighted graph. Consequently, the clustering algorithms utilize
both the network connectivity structure and the weights to determine a clustering
and may therefore be applied to produce a clustering of any general network (even
when the nodes are not associated with data).

This chapter is organized to consist of three main sections that describe the tar-
geted, untargeted, and semi-targeted classes of clustering algorithms, with subsec-
tions detailing the primal and dual versions of these algorithms. A smaller fourth
section addresses the extension of these algorithms to the clustering of higher-order
cells. We conclude with a section providing some example applications of the pre-
sented algorithms.

6.1 Targeted Clustering

Targeted segmentation algorithms require information to be input about the desired
output object or set of objects to cluster. This prior information can take different
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forms, such as a partial labeling of the nodes or a probability, assigned to a set
of nodes, of belonging to each label. In the field of image processing, a targeted
segmentation algorithm might have the goal of segmenting a particular tumor in a
medical image, or an incoming missile in a military application. Such an algorithm
could also be used interactively to extract an object from a photograph for editing.
In a World Wide Web application, the goal of a targeted clustering algorithm might
be to extract a list of websites in the same cluster as a target website. An example in
social networking would be to extract all members of the group in which a partic-
ular individual is a member. In the context of machine learning, targeted clustering
algorithms are related to both supervised learning and semi-supervised learning al-
gorithms, with the difference that these algorithms must generalize to all unseen
data (nodes). However, in the context of machine learning, the targeted clustering
algorithms described here may be viewed as examples of transductive learning al-
gorithms that simply focus on labeling a known set of data points. Section 6.5.3
contains more information about this view of clustering as a machine learning algo-
rithm.

We begin by addressing primal algorithms for targeted segmentation since primal
algorithms comprise the majority of existing techniques for both targeted and untar-
geted methods. Additionally, primal algorithms are generally much more straight-
forward to describe and implement than dual algorithms.

6.1.1 Primal Targeted Clustering

The basic components of a targeted segmentation algorithm are a known label set
comprised of a finite number of labels, an energy for which the extrema describe
“good” clusters, and additional information about how the labels relate to the node
set. Examples of additional information exploited in a primal algorithm include:

1. A method for assigning membership probabilities for each label to a subset of
nodes.

2. Known labels for a subset of the nodes.
3. A set of edges which the boundary is known to cross.

We will address each of these types of information sequentially.
In all of the subsequent discussion on targeted primal clustering algorithms, we

can formulate our goal as solving for a probability xi,b that node vi belongs to
label b. (Without loss of generality, we assume that each label is represented by
an integer from 0 ≤ b < |L|.) Unless otherwise noted, the segmentation function
σ(vi) = b is obtained via choosing the most likely label for each node, i.e.,

σ(vi) = argmax
b

{xi,b}. (6.1)

Consequently, our focus will be on finding the membership probabilities xi,b for
each node vi and label b, since this set of membership probabilities defines the
clustering via (6.1).
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6.1.1.1 Probabilities Assigned to a Subset

Consider a set of nodes VS ⊆ V, such that for each node vi ∈ VS , we have a prior
probability that vi is assigned to label b, given by s̄i,b . We may now apply any fil-
tering technique to produce a clustering (see Chap. 5 for a discussion on filtering
on cell complexes). The approach for applying a filtering technique to compute a
targeted clustering is to begin by extending the vector of priors s̄ beyond the subset
VS to priors s defined over all nodes in the complex, V, via setting entries corre-
sponding to the nodes not in the subset VS to zero, i.e.,

si,b =
{

s̄i,b if vi ∈ VS,

0 otherwise.
(6.2)

Any filtering technique may then be applied to produce segmentation probabilities
by treating the prior probabilities s as noisy data in a filtering technique. We saw
several approaches for filtering noisy data in Chap. 5 which we now apply to find
clustering probabilities x. The first method that we apply from Chap. 5 is Taubin’s
method, in which we set the initial conditions x

[0]
i,b = si,b and produce the final val-

ues of xi,b iteratively via Taubin’s filtering. Specifically, to apply Taubin’s filtering
method (see Chap. 5) to find the x for each label, we employ the iteration rule

x[2k+1]
b = x[2k]

b − λLx[2k]
b = x[2k]

b − λATAx[2k]
b , (6.3)

x[2k+2]
b = x[2k+1]

b + μLx[2k+1]
b . (6.4)

Similarly, we could minimize the Basic Energy Model from Chap. 5,

EBEM[xb] = 1T(G−1)p|Axb|p =
∑
eij

w
p
ij |xi,b − xj,b|p, (6.5)

by applying an iterative mode (p = 0), median (p = 1), mean (p = 2) or minimax
(p = ∞) filter to the initial probabilities. In other words, for each label b, the label
probabilities xi,b (for node vi ) are filtered to produce final label probabilities and
then each node is assigned the label for which is has the greatest probability (i.e.,
via (6.1)). For each label, the solution is initialized to x[0]

b = sb . Chapter 5 provides
justification for why the mode, median, mean and minimax filters minimize the
energy for the various values of p.

Figure 6.1 shows an example of how these filters may be applied to targeted im-
age segmentation when the probabilities are assigned based on an intensity model of
the target object. In this example, the image intensities inside the circle and outside
the circle were both drawn from a uniform distribution with the same variance, but
with a different mean inside and outside. In this case, the variance of the distribu-
tions was 2.5 times greater than the difference in mean between the distributions.
The foreground priors were generated by assuming a Gaussian distribution for the
intensities inside the circle with a mean equal to the minimum intensity in the image.
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With this Gaussian prior model, each pixel in the foreground prior image was as-
signed the probability that it was drawn from the Gaussian model. The background
priors were produced in the same manner, except that the mean of the Gaussian was
chosen to be equal to the highest intensity pixel in the image. By simply smoothing
these foreground and background priors (using the filtering methods described in
Chap. 5) we are able to obtain a smoothed “probability” that each pixel belongs to
the foreground or background, which may then be used to generate the final label
for each pixel by comparing the relative foreground and background “probabilities”.
In this manner, any filtering algorithm may be used as a clustering algorithm if it is
possible to assign a prior likelihood that each node belongs to a particular label.

In Chap. 5 we noted that the danger with variational problems of the form in
the Basic Energy Model is that there is a trivial optimum—the solution where xb

is constant. In practice we could simply take a few iterations of our mode, median,
mean or minimax filtering of xb (as was done to generate the results in Fig. 6.1). An
alternative to this iterative approach is to consider the Extended Basic Energy Model
in which the prior information is represented by a second term that the solution must
balance. In the context of clustering, the Extended Basic Energy Model is given by

EEBEM[xb] = 1T(G−1)p|Axb|p + λ
∑
a

sT
a |xb − δ(a, b)|p

=
∑
eij

w
p
ij |xi,b − xj,b|p + λ

∑
vi

∑
a

si,a|xi,b − δ(a, b)|p, (6.6)

where δ(a, b) is a Kronecker delta function. It was shown in Chap. 5 that the strength
of the regularization parameter λ is inversely related to the number of iterations used
for smoothing in the Basic Energy Model.

We may continue with the application of filtering methods to the clustering prob-
lem by considering the Total Variation model from Chap. 5. One benefit in image
processing of the Total Variation model over the Basic Energy Model is that Total
Variation has less tendency to exhibit gridding artifacts. In the context of clustering,
the Total Variation Model is described by the energy functional

ETV[xb] = 1T(|AT||Axb|2
) p

2 + λ
∑
a

sT
a |xb − δ(a, b)|p

=
∑
vi,b

(∑
eij

|xi,b − xj,b|2
) p

2 + λ
∑
vi

∑
a

si,a|xi,b − δ(a, b)|p. (6.7)

As before, this model is used to generate a clustering by finding a solution for each
label b and then comparing these solutions to produce a final labeling by assigning
each node, vi , to the label for which it has the maximum solution. More information
on the optimization of this model is given in Chap. 5.

All of these models may be included to incorporate implicit boundaries via an
edge weighting. These models are written with edge weights in Chap. 5 and we do
not repeat this material here. The same weighting functions that were used to weight
edges for filtering applications may also be applied for clustering.
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Fig. 6.2 Mathematically, the
use of label priors is
equivalent to using k labeled,
“phantom” nodes that
correspond to each label and
are connected to each node.
Despite the abuse of notation,
note the labels b are
distinguished with superscript
index indicating the different
labels

6.1.1.2 Known Labels for a Subset of Nodes

Many targeted clustering applications permit some method of assigning to each node
a prior probability quantifying the likelihood that the node belongs to each label. In
these situations, the targeted segmentation problem may be solved via any of the fil-
tering methods reviewed in the previous section. However, another common form of
targeting information is to know the labeling for a small subset of nodes. The nodes
with a known label within this subset are often called seeds in the image process-
ing literature. Seeded nodes can also take advantage of the filtering approaches to
clustering discussed above by simply assigning the xi values for each seed node and
performing the optimization with respect to this assignment. One major advantage
of targeting with seeded nodes is that a global, nontrivial optimum may be found
for each of the variational models (i.e., the Extended Basic Energy Model or the
Total Variation Model) even if λ = 0. That is, the initial assignment of seed notes
comprises a constraint that the solution is explicitly forced to satisfy. Therefore, if
prior probabilities are not available or not reliable, they can be ignored by setting
λ = 0. In this way, each model can be used completely parameter-free when seeds
are available.

Formally, define the set of seeded or “marked” nodes VM ⊂ V for which σ(VM)

is known. These labels are assumed to have been obtained via a different process
such as user interaction or an automatic seeding. Using this information, we can fix
xi,b, ∀vi ∈ VM via

xi,b =
{

1 if σ(vi) = b,

0 if σ(vi) 	= b.
(6.8)

Fixing these values as Dirichlet boundary conditions on the set of seeded nodes al-
lows for optimization of the above models to produce a nontrivial solution for xb if,
for each label b, σ(vi) = b for some seed node vi ∈ VM (i.e., each label is associ-
ated with at least one seed). These seeds could also be used with Taubin’s method
applied to segmentation by initially fixing the values in VM and not updating the
corresponding values of xb during the iterations. See Appendix B for more informa-
tion on optimization in the presence of Dirichlet boundary conditions.

Although we distinguish between the prior probability method and seeded
method for producing a targeted clustering, it is possible to view the prior proba-
bility method as equivalent to the seeded method. Specifically, the prior likelihood
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term in the Extended Basic Energy Model or the Total Variation Model may also be
obtained via seeding. The “seed” in this case is a “phantom seed” representing each
label, b, which is attached to node vi with weight λsi,b . This interpretation of the
prior term is represented in Fig. 6.2 and has previously appeared in the literature [53,
159]. Since the method of specifying a targeted clustering via prior terms is equiva-
lent to seeding (with the phantom seeds construction), we may henceforth treat only
the case of the seeded model, since it is understood that all of the results apply also to
the incorporation of prior terms. Consequently, in the context of discussing seeded
targeted clustering algorithms, we will employ the term “Basic Energy Model” to
refer either to the “Basic Energy Model” or “Extended Basic Energy Model” since
the additional term may be viewed simply as another form of seeding.

Incarnations of the seeded Basic Energy Model with various values of p have
been heavily utilized in the literature. We review several targeted clustering algo-
rithms that can be interpreted as special cases of the Basic Energy Model, along
with one algorithm that can be interpreted as a seeded Total Variation Model.

Max-flow/Min-cut

It was shown by Sinop and Grady [350] that when p = 1 the solution xb given by
the Basic Energy Model (6.6) may be found by computing a max-flow/min-cut be-
tween the seeds (both real and “phantom”) labeled ‘1’ and the seeds labeled ‘0’.
Consequently, the use of max-flow/min-cut to perform targeted node clustering may
be viewed as an instance of employing the Basic Energy Model for targeted clus-
tering with norm p = 1. Since max-flow/min-cut may be used to optimize the Basic
Energy Model when p = 1, this energy model may be interpreted as minimizing the
boundary length between the labeled regions. In this case, the seeds are identified
with the source/sink terminals in the traditional max-flow/min-cut problem.

Max-flow/min-cut techniques have a long history in clustering problems [246,
407, 415]. Appendix B and Refs. [55, 56, 173] contain more details on this optimiza-
tion. In the context of image segmentation, this seeded max-flow/min-cut model has
been known as “graph cuts” [53].

Random Walker

Taking p = 2 in the Basic Energy Model (6.6) allows the solution at node vi , xi,b ,
to be interpreted as the probability that a random walker leaving node vi arrives at a
seed (real or “phantom”) labeled b before arriving at a seed not labeled b [161] (see
Chap. 3). Consequently, the clustering algorithm that employs p = 2 is known as
the “random walker” algorithm in the image segmentation literature. Alternately, the
clustering obtained by this model is equivalent to the clustering obtained by comput-
ing the effective resistance between each node and the seeds of each label (viewed
as a single node) and assigning the node to the label having the smallest effective
resistance [161] (for more information about effective resistance, see Chap. 3). The
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Table 6.1 Targeted clustering using the Basic Energy Model with seeds. Different values of the
norm parameter p give different interpretations to the model when applied to clustering

Choice of p 1 2 ∞

name Max-flow (Graph cut) Random walk Geodesic

objective function
∑

eij ∈E wij |xi − xj | ∑
eij ∈E w2

ij |xi − xj |2 maxeij ∈E wij |xi − xj |
objective function
interpretation

boundary cut effective conductance minimum Lipschitz
extension

optimization
method

maximum flow solution of a sparse
linear system

shortest path

uniqueness not unique unique not unique

earliest adoption of this model for clustering may have been Kodres [237] who used
it to determine how to design a circuit layout. This clustering algorithm has also
been applied to machine learning [424] and extended to directed graphs [349].

Geodesic Segmentation

When p = ∞, it was shown in [350] that the problem can be recognized as a discrete
formulation of the minimal Lipschitz extension [13]. Additionally, it was shown in
[348] that a minimum of the Basic Energy Model (6.6) may be given by

xi,b = di,b/(di,b + di,b), (6.9)

where di,b is used to indicate the weighted length of the shortest path from vi to any
seed labeled b and di,b is used to indicate the weighted length of the shortest path
from vi to any seed not labeled b. This clustering approach is often called geodesic
segmentation in the image segmentation literature. Using shortest paths in this way
for image segmentation have been popularized by several groups [8, 18, 94, 128]
(albeit without explicit reference to the energy minimization interpretation).

P-Brush

These three choices of the norm parameter p in the Basic Energy Model were com-
pared by Sinop and Grady [350] to find that a smaller value of p produces a cluster-
ing that has less dependence on the location of the seeds, but the clustering obtained
by using a larger value of p has less dependence on the number of seeds. Table 6.1
compares the clustering algorithms generated by various values of p. The use of
the Basic Energy Model (6.6) for clustering with fractional values of p was recently
examined in [106], which found that the clustering algorithms obtained by minimiz-
ing fractional values of p effectively interpolate between the clustering algorithms
corresponding to integer values of p. Additionally, the solutions given by the Basic
Energy Model are pointwise continuous with respect to changes in p. This cluster-
ing algorithm with fractional values of the norm parameter p was called P-Brush.
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Power Watershed

The classical watershed algorithm from mathematical morphology [320, 337] may
also be seen as an instance of the Basic Energy Model with only a slight modifica-
tion. Couprie et al. [90] modified the Basic Energy Model from (6.6) to produce

EPW[xb] = 1T(G−1)q |Axb|p =
∑
eij

w
q
ij |xi,b − xj,b|p. (6.10)

Once again, we assume that some nodes are seeded (alternately, a prior term is in-
cluded as in the Extended Basic Energy Model). The only difference between (6.10)
and the Basic Energy Model in (6.6) is the exponent, q , on the edge weights. It was
shown by Allène et al. [4] that the p = 1 model above (max-flow/min-cut) is also
optimized by a watershed computation for a value of q above some constant. There-
fore, as q → ∞, the model in (6.10) becomes the watershed clustering algorithm
when p = 1. Viewed differently, Allène et al. [4] showed that as the power of the
weights increases to infinity, then the max-flow/min-cut algorithm produces a clus-
tering corresponding to the maximum spanning forest (MSF) used in a watershed
computation [4]. Interpreted from the standpoint of the Welsch weighting function
in Chap. 4, it is clear that we may associate q = 1

α
to understand that the water-

shed equivalence arises when the weighting function is employed using a particular
range of parameter values. An important insight from this connection is that when
the value of α is sufficiently small, we can replace the expensive max-flow computa-
tion with an efficient maximum spanning forest computation.

Algorithm 6.1 Power Watershed algorithm, optimizing q → ∞, p ≥ 1

Data: A weighted graph G(V,E) and a subset of foreground seeds VFG and
background seeds VBG

Result: A solution x
Set xFG = 1, xBG = 0 and all other x values as unknown, mark all edges as

unprocessed.
Sort the edges of E by decreasing order of weight.
while any node has an unknown potential do

Find an edge (or a plateau) EMAX in E which is both of maximal weight and
safe; denote by S the set of nodes connected by EMAX.
if S contains any nodes with known potential then

Find xS minimizing (6.10) (using the input value of p) on the subset S with
the weights in EMAX set to wij = 1, all other weights set to wij = 0 and the
known values of x within S fixed to their known values. Consider all xS

values produced by this operation as known.

else
Merge all of the nodes in S into a single node, such that when the value of
x for this merged node becomes known, all merged nodes are assigned the
same value of x and considered known.
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Table 6.2 The targeted clustering algorithms obtained by minimizing the Power Watershed model
in (6.10) for various choices of p and q

p q

0 1 2 ∞

1 collapse to seeds Max-flow Max-flow Watershed

2 �2-norm Voronoï Random walker Random walker Power watershed, p = 2

∞ �1-norm Voronoï Geodesic Geodesic Power watershed, p = ∞

Couprie et al. [90] went on to explore the clustering model in (6.10) when
q → ∞ for any value of p. Since this family of watersheds was characterized by
the exponent p, they termed this clustering algorithm the power watershed. Algo-
rithm 6.1 gives an algorithm for finding the solution to xb that optimizes the Power
Watershed model in (6.10). In Algorithm 6.1, if EMSF is a set of edges forming a
subset of an MSF, then an edge ei is considered safe if EMSF ∪ ei is also a subset of
an MSF. Note that this algorithm applies only to two labels. In a multilabel targeted
clustering problem, the potential function xb for each target label b would be set
to the value ‘1’ for all nodes assigned to the “foreground” (‘1’) or to the value ‘0’
for all nodes set to the “background”, and the final labeling for node vi assigned by
choosing the label with the largest value (as expressed in (6.1)). Table 6.2 gives a
description of the segmentation algorithms obtained by minimizing the Power Wa-
tershed energy for various pairs of values for p and q .

Continuous Max-flow

The seeded Total Variation Model has also been applied in the context of image
processing. When p = 1, this model is equivalent to the continuous max-flow for-
mulation of [358] that was subsequently applied to image segmentation [11]. Ad-
ditionally, due to the interpretation of (6.7) as a minimization of total variation, the
minimization of (6.7) has also been applied to image segmentation under the name
“total variation segmentation” or “TVSeg” [386]. Fast algorithms for this minimiza-
tion are given in [11] and [68, 98, 385]. When p = 2, the Basic Energy Model and
the Total Variation Model are equivalent (i.e., the “random walker” algorithm). To
the knowledge of the authors, the cases of p = ∞ or the separation of the expo-
nent onto the weights (yielding a power watershed-like algorithm) have not been
explored in conjunction with the Total Variation Model for targeted clustering.

6.1.1.3 Negative Weights

A less direct method for specifying a clustering target is to assign negative weights
to some of the edges which are known to lie between clusters. Negative weights
are generally sufficient without seeds or prior probabilities to produce a nontriv-
ial solution of any of the above models, since the value of the objective function



210 6 Clustering and Segmentation

can dip below zero. Negative weights can be used to encode repulsion between two
nodes, causing the difference between the values of their membership probabilities
xb values to grow [413, 414]. However, negative weights can cause difficulties in op-
timization since the objective function may become unbounded, yielding no useful
solution. To avoid these unbounded scenarios, restrictions on xb must be imposed,
such as requiring that 0 ≤ xb ≤ 1 [257]. Optimization of the Basic Energy Model,
the Power Watershed Model or the Total Variation Model are substantially more dif-
ficult problems to solve with negative weights, with limited benefit demonstrated so
far. Consequently, there has been less attention devoted to employing repulsion (via
negative weights) for specifying a clustering target.

We have now covered the most prominent variational models applied to primal
image segmentation. All of these targeted clustering algorithms were derived from
filtering algorithms applied to prior knowledge (likelihood priors and/or seeds) of
the segmentation labels. In the next section, we discuss targeted segmentation via
the dual complex. Adopting a dual viewpoint departs from the previous discussion
on filtering.

6.1.2 Dual Targeted Clustering

Instead of clustering by labeling nodes on the primal graph, clustering on the dual
graph seeks to find the set of edges defining the boundary of the labeled regions.
Finding this set of edges has two disadvantages over the primal algorithms we have
studied.

1. Cycles in the dual complex map to cutsets in the primal complex for only a
limited set of complexes (e.g., planar graphs in two dimensions).

2. The dual complex depends on the dimensionality of the embedding, and there-
fore these algorithms may require modification if the embedding changes. For
example, embedding in R

2 can be substantially different than embedding in R
3,

since edges are dual to edges in two dimensions and edges are dual to faces in
three dimensions.

Nonetheless, there are advantages of using a dual algorithm. Some dual algorithms
are faster, and sometimes the inputs to the targeted segmentation algorithm are eas-
ier to specify in a dual lattice (i.e., boundary locations). Additionally, some objective
functions are easier to express as functions of the dual elements (e.g., edges, faces)
rather than the primal elements (e.g., nodes). A computational advantage of dual
algorithms is that the number of boundary edges is typically quite small compared
to the number of internal labeled nodes. Consequently, the boundary may be rep-
resented more efficiently, and perturbations of the boundary from an initialization
may be accomplished efficiently. Due to the natural embedding of images (as two-
dimensional or three-dimensional lattices), most of the work on dual clustering al-
gorithms has appeared in this literature (in which boundary-focused algorithms are
sometimes called a “boundary parameterization” or a “Lagrangian representation”
[339]).
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Fig. 6.3 A comparison of primal clustering with dual clustering. (A–C) A small planar graph in
which the primal clustering is represented as a binary labeling of each node (indicating the cluster
membership of each node) and the dual representation of the clustering is as a closed boundary of
edges which separate the inside of the cluster from the outside. (D–F) A set of pixels from a small
4 × 4 image. A primal clustering of these pixels is represented by assigning a binary labeling to
each pixel to indicate cluster membership. In contrast, the dual representation of the clustering is
obtained by identifying the edges between the pixels inside the cluster and those pixels outside the
cluster

Figure 6.3 contrasts primal clustering with dual clustering on a small planar
graph. A primal clustering algorithm assigns a label to each node in the primal
graph, while a dual clustering algorithm identifies boundary edges in the dual graph.
The first row of the figure gives an example of a small planar graph in which the
primal clustering is represented as a binary labeling of each node (indicating the
cluster membership of each node) while the dual representation of the clustering
is as a closed boundary of edges which separate the inside of the cluster from the
outside. The second row of the example shows a set of pixels from a small 4 × 4
image. A primal clustering of these pixels is represented by assigning a binary label-
ing to each pixel to indicate cluster membership. In contrast, the dual representation
of the clustering is obtained by identifying the edges between the pixels inside the
cluster and those pixels outside the cluster. In the image processing literature, these
dual edges between the pixels have sometimes been called “cracks” or “bels” (for
“boundary elements”) [129].
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A common algorithm for targeted clustering on the dual graph in two dimensions
is known as intelligent scissors or live wire [129, 287]. This algorithm interactively
builds an open contour on the dual graph up to the last step, at which time the
contour is closed to enclose a region of nodes. In the intelligent scissors algorithm,
a series of nodes in the dual graph are sequentially input into the algorithm in pairs
(e.g., interactively) and a shortest path is computed between the pairs of nodes.
Formally, assume that we have computed appropriate edge weights between nodes
on the primal graph (in the same manner as in the primal algorithms, see Chap. 4).
Define an indicator vector ys of edges representing a line segment (chain of dual
edges) s of the cluster boundary consisting of the set of dual edges such that

ys
i =

{
1 if dual edge ei is a member of the boundary,

0 otherwise.
(6.11)

Therefore, the edges indicated by y serve to “surround” the target cluster of nodes in
the primal graph. Given two dual nodes vi and vj that are known to lie on the desired
boundary (produced either interactively by a user or automatically), the intelligent
scissors/live wire algorithm finds a solution to

min
ys

wTys ,

s.t. ATys = p,

(6.12)

where w is the vector of dual distance edge weights (equal to the primal affinity
edge weights in the two-dimensional case, since in two dimensions edges are dual
to edges—see Chap. 2 for more details) and the boundary vector p is defined as

pk =

⎧⎪⎨
⎪⎩

+1 if k = i,

−1 if k = j,

0 otherwise.

(6.13)

The optimization in (6.12) may be performed quite efficiently using Dijkstra’s short-
est path algorithm. The constraints in (6.12) demonstrate the use of the incidence
matrix AT as the boundary operator, since we may interpret the constraint that
ATys = p as the requirement that the set of edges represented by ys has endpoints
given by vi and vj . After ys has been computed, a new dual node is input to the
intelligent scissors/live wire algorithm to define a new p vector. A series of ys line
segments are computed using a sequential set of points which are then combined
to form the final output y = ∑

s ys . An important implementation detail in the in-
telligent scissors/live wire algorithm is that because y is strictly binary valued, the
orientation of edge traversal must be encoded in the incidence matrix. Consequently,
the incidence matrix must be modified to represent each edge twice with opposite
orientation (see Chap. 4 for more details on this over-representation). In practice,
the use of Dijkstra’s algorithm obviates these details—Dijkstra’s algorithm implic-
itly solves (6.12). Therefore, all that is necessary for a practical implementation is to
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use Dijkstra’s algorithm to compute the shortest path between each successive series
of node pairs on the boundary until the boundary is closed. A second implementa-
tion detail is that the edges connecting the dual nodes to the “outside face” (e.g., the
border of the image) must be assigned some weight to allow for the contour to close
around a set of nodes on the border. One approach to weighting the edges on the
outside face is to assign these edges a weight equal to the average weight inside the
complex.

A very recent clustering algorithm that employs a dual formulation is the al-
gorithm of Schoenemann et al. [334] which uses a dual formulation as a way of
encoding the curvature of the cluster boundary. The dual formulation is employed
because the discretization of curvature employed by Schoenemann et al. was based
on the work of Bruckstein et al. [61], who showed how angles between successive
line segments of a polygon could be used to approximate curvature of the poly-
gon. By associating the dual edges with polygonal line segments, Schoenemann et
al. [334] produced an optimization method that optimized the cluster boundary to
have small curvature.

6.1.2.1 Dual Algorithms in Three Dimensions

Since the dual complex changes with embedding and dimensionality, any dual algo-
rithm must be altered to accommodate these changes. In order to apply the shortest-
path targeted clustering algorithm to a 3-complex, we now transition from mini-
mal paths to minimal surfaces. Unless otherwise stated, we will assume for sim-
plicity that our 3-complex is a three-dimensional, 6-connected lattice. Fortunately,
the dimensionality of the minimal path problem may be increased simply by us-
ing the dimension-appropriate incidence matrix (acting as the boundary operator)
and boundary vector p. This dimension-increased shortest path problem is therefore
stated as: Given the boundary of a two-dimensional surface (i.e., a closed contour
or series of closed contours), find the minimal two-dimensional surface with the
prescribed boundary. We note that this problem may be considered as a discrete
instance of Plateau’s problem [363].

In this three-dimensional problem, the boundary operator is the edge–face in-
cidence matrix defined in Chap. 2. Instead of the lower-dimension boundary vec-
tor, p, we can now employ the vector r as a signed indicator vector of a closed
contour with an associated ordering of vertices obtained via a traversal along the
edges comprising the contour. Given a contour represented by an ordering of ver-
tices (va, vb, vc, . . . , va) such that each neighboring pair of vertices is contained in
the edge set, the contour may be represented with the vector

ri =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

+1 if the vertices comprising edge ei are contained in the contour

with coherent orientation,

−1 if the vertices comprising edge ei are contained in the contour

without coherent orientation,

0 otherwise.

(6.14)
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Fig. 6.4 The discrete minimal surface given a boundary may not be unique. For example, if the
surface boundary is given as a closed contour at the equator of a sphere, then either the upper (A)
or lower (B) hemisphere is a valid minimum solution. This same lack of uniqueness may also
appear in the shortest path problem. Analogously, if two endpoints were placed at antipodal points
of a circle, the shortest path may be returned as either the left (C) or right (D) path around the
circumference of the circle. However, in applications with real data, both the shortest path and
minimal surface are typically unique for a given input

Therefore, the discrete minimal surface problem is

min
z

Q[z] =
∑

i

wizi,

subject to Bz = r,

(6.15)

where z is an indicator vector indicating whether or not a face (in the dual complex)
is in the minimal surface and wi is used to indicate the weights of a face. The
surface represented by the solution to (6.15), z, is a (discrete) minimal surface. Since
the faces in the dual lattice correspond to edges in the primal lattice (where the
image data is represented), any of the weighting functions in Chap. 4 may be used
to produce the set of face weights.

The discrete minimal surface problem was extensively treated by Sullivan [364],
who showed that a fast algorithm exists for its optimization. However, the equal-
ity constraints in (6.15) are pre-unimodular matrix (see Appendix B and [162]).
Therefore, a generic linear programming solver could be used to produce an opti-
mal integer solution of (6.15) even though linear programming uses a real-valued
relaxation of the variable z. For more details on this optimization, see Refs. [162,
364].

The solution to the discrete minimal surface problem may not be unique. How-
ever, the shortest path problem may also have a solution which is not unique. Fig-
ure 6.4 illustrates this issue. For example, a closed contour located precisely at the
equator of the sphere in Fig. 6.5(A) could result in a solution indicating either the
upper or the lower hemisphere. This is analogous to the one-dimensional case where
multiple solutions exist that give shortest paths between two antipodal points on a
circle.

Figure 6.5 gives three examples drawn from three-dimensional image segmen-
tation to illustrate the properties of this discrete minimal surface algorithm. Firstly,
we use the algorithm to find the surface of a black sphere in a white background,
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Fig. 6.5 Minimal surface segmentation of synthetic three-dimensional images. Renderings of the
original object (with the input contours) are shown, along with the solutions. The input volumes
consisted of black voxels indicating voxels belonging to the object and white voxels indicating
background. Black voxels are represented in the figure by small black spheres. The white stripe in
each of the rendered views shows the input contour(s). In the solution visualizations, black dots
are plotted at the center of the black (object) voxels and faces are shown to indicate the computed
surface. (A, B) A sphere with an input contour along a parallel. Note that, unlike shortest paths
(which require two endpoints), a single boundary contour input is sufficient to define a solution.
(C, D) A sphere with two input contours at parallels of different heights. (E, F) A lunchbox shape
with a handle on the top and a contour input around the middle of the object. The algorithm will
correctly find minimal surfaces with topological changes

given an initial contour around one parallel. Secondly, we find the surface of the
same sphere using a boundary consisting of contours around two parallels (i.e.,
a contour given on two slices). Finally, we segment a “lunch box” shape given a
contour around the middle of the object. This experiment shows that the algorithm
correctly handles changes in object genus without any special handling. In contrast
to the shortest path problem in which two points are necessary to define a path,
Fig. 6.5(A) shows that a single closed contour is sufficient to define the boundary
of a surface. The applications in Sect. 6.5.1 illustrate the use of this segmentation
algorithm on real three-dimensional image data.

6.2 Untargeted Clustering

Untargeted clustering is the traditional clustering problem in which the goal is to
divide a graph into a hierarchy of clusters where the number of clusters is unknown.
This problem is not well defined since there is no agreed-upon criteria for determin-
ing what constitutes a “good” cluster. Even for those algorithms with a well-defined,
seemingly simple criteria for a good clustering, the problem is generally NP-Hard
(e.g., k-means is NP-Hard [5, 269]). Consequently, nearly every untargeted cluster-
ing algorithm defines its own meaning of what constitutes a good clustering, and
then supplies a heuristic that produces a suboptimal solution to the stated objective.

Untargeted clustering has a huge range of uses, including data discovery, com-
pression [225, 332], parallelization [392], image processing [216, 303, 382], the
efficient solution of PDEs (via domain decomposition) [351, 381], sparse matrix or-
dering (nested dissection) [229, 281] and identification of neural substructures [41,
190]. The collection of techniques for untargeted clustering is far too vast to provide
a comprehensive review here (for a recent review on graph clustering algorithms see
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Ref. [330]). Instead, we present only a few techniques that fit well into the theme of
this book. In this section, we mainly address primal untargeted segmentation algo-
rithms (which comprise almost all untargeted clustering algorithms), although dual
untargeted algorithms are treated briefly at the end of this section.

We begin by noting that any of the targeted clustering algorithms can be used
to produce an untargeted clustering algorithm. Specifically, a targeted clustering
algorithm may be converted to an untargeted clustering algorithm by the following
steps.

1. Select the number of clusters K .
2. Randomly select K nodes and assign these nodes each a different label.
3. Apply the targeted segmentation algorithm with these seeds.
4. Move the seed location to the “center” of each labeled cluster.
5. Continue applying the targeted segmentation and moving the seed locations until

all of the seed locations no longer move.

Essentially, this procedure is an adaptation of Lloyd’s algorithm for k-means clus-
tering [263, 264] to any of the targeted clustering methods. Note that convergence of
this procedure may not be guaranteed, and therefore in practice it may be beneficial
to limit the number of iterations.

One common approach for designing untargeted clustering algorithms is to de-
fine an algorithm that partitions the graph into two clusters and then recursively
applies the partitioning on each cluster until some measure of partition quality is
met and the recursion exits. Although there exist good reasons for theoretical and
practical concerns with such a recursive approach (see Ref. [347]), the recursion
approaches have the advantage of not requiring prior knowledge of the total num-
ber of clusters and they do work reasonably well in practice. We will now review a
standard approach for dividing a graph into two clusters with the understanding that
this partitioning may be applied recursively to obtain multiple clusters.

6.2.1 Primal Untargeted Clustering

In all of the subsequent discussion on primal bipartitioning algorithms, we can for-
mulate our goal as solving for a 0-cochain x, with coefficients xi ∈ R, that determine
whether node vi belongs to label ‘0’ or ‘1’. The segmentation function is defined
here as σ(vi) �→ {0,1} obtained by thresholding the cochain x, i.e.,

σ(vi) =
{

1, if xi ≥ θ,

0, otherwise,
(6.16)

where the threshold θ is set manually, automatically or in some application-
dependent manner (see Ref. [352] for some standard possibilities for choosing a
threshold θ ). Our initial focus will be on the production of the inclusion cochain x
for each node before continuing to a discussion of how to set the threshold θ .
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If we reconsider the Basic Energy Model (6.6) in the context of untargeted bipar-
titioning, we see that the absence of the targeting information causes the energy to
have a trivial minimum at x = k for some constant k. One approach for addressing
this trivial minimum is to add an extra term that attempts to expand the cluster. This
additional force is sometimes known in the image processing literature as a balloon
force [83, 84]. Specifically, consider the Untargeted Basic Energy Model

EUBEM[x] = G−1
1 |Ax|p − λG−1

0 |x|q

=
∑
eij

wij |xi − xj |p − λ
∑
vi

wi |xi |q, (6.17)

for some λ > 0. This energy can be made arbitrarily low by setting x = k for some
constant value k. A variety of strategies for avoiding this problem may be adopted.
For each combination of p and q , we discuss how this problem has been overcome
in the past. The gradient of EUBEM[x] equals zero when x satisfies

pATG−1
1 |Ax|p−1 = λqG−1

0 |x|q−1. (6.18)

Although several combinations of p and q values have not been investigated in the
literature, there are some cases which lead to algorithms that have had an impor-
tant impact on the automatic clustering community. Optimization of the Untargeted
Basic Energy Model produces a solution which may be thresholded to provide a
bipartition into two clusters. The standard approach of using the Untargeted Basic
Energy Model to produce more than two clusters is to recursively bipartition these
clusters until some measure of the partition quality (usually the value of EUBEM[x])
fails to be satisfied.

We begin by examining the Untargeted Basic Energy Model for p = 2 and q = 2.
In this case, then the minimum taken in (6.18) is given by

ATG−1
1 Ax = Lx = λG−1

0 x. (6.19)

When G−1
0 = I then the solution x is an eigenvector of L. As an eigenvector problem,

we can view (6.19) as a minimization of the Rayleigh quotient

λ = xTLx

xTG−1
0 x

. (6.20)

The first eigenvector of L is x = k for some constant k. However, since L is sym-
metric, the eigenvectors will be orthogonal. Therefore, by taking x to be the eigen-
vector corresponding to the second smallest eigenvalue we have an optimum to the
Untargeted Basic Energy Model (6.17) when optimized in the space orthogonal to
x = k. Consequently the problem of an unbounded solution for the Untargeted Basic
Energy Model in (6.17) is resolved by adopting this eigenvector because the opti-
mization has been effectively performed in the space orthogonal to the problematic
(constant) solution. The second smallest eigenvalue is often called the Fiedler value
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(although Fiedler originally called it the “algebraic connectivity” [133]) and the cor-
responding eigenvector is known as the Fiedler vector. There are several reasons to
support the Fiedler vector as a method for graph clustering: (i) A smaller value of λ

represents less perturbation from the targeted model, allowing the smoothness term
to have the greatest effect; (ii) It was shown by Fiedler [134, 135] that labeling nodes
above a threshold as foreground and below the threshold as background guarantees
that both foreground and background components are connected [134, 135]; and
(iii) The Fiedler value can be used to bound the isoperimetric constant of a graph
[81]. Automatic clustering by thresholding the Fiedler vector is called spectral clus-
tering, which has been rediscovered several times in the clustering literature [114,
184, 310]. We can view spectral clustering from the continuous calculus perspective
as an instance of the Helmholtz equation, e.g.,

∇2x = λx. (6.21)

Recall that the Helmholtz equation describes the harmonic frequencies of an ideal
membrane. Consequently, we can interpret the solution to (6.19) as the lowest fre-
quency nontrivial harmonic which is then thresholded to produce a partitioning.
Figure 6.6 shows two examples of graphs which are mapped to heights that corre-
spond to the values of the lowest frequency eigenvector (i.e., the Fiedler vector).
The first example shows an elongated lattice for which the harmonic reflects over
the principle axis of symmetry. The second example shows a more separated graph
for which each cluster isolates well as one component of the harmonic. An addi-
tional geometric interpretation of the spectral clustering approach is as a mapping
of the nodes to the real line in order to both locate each node (on the real line) at the
average location of its neighbors as well as maintain a unit average distance between
all pairs of nodes [14].

We may again consider the spectral clustering algorithm (6.19) in the case that
G−1

0 = D = diag(d) where d is the vector of node degrees. In this case, the solution
is the generalized eigenvector of L and D. This variant of the spectral clustering al-
gorithm (6.19) first appeared in the image processing literature as Normalized Cuts
[345] in which the authors claimed that using G−1

0 = D significantly improved the
quality of spectral clustering applied to image segmentation, presumably because of
the large range of weight values in a weighted graph derived from an image. The
use of G−1

0 = D for clustering has been additionally supported both theoretically
and empirically by Coifman et al. [85].

We now examine the Untargeted Basic Energy Model (6.17) when p = 2 and
q = 1. In this case, the minimum of the Untargeted Basic Energy Model (given by
(6.18)) is taken when x satisfies

ATG−1
1 Ax = Lx = λg−1

0 , (6.22)

where g−1
0 represents the vector consisting of the diagonal elements of G−1

0 , i.e.,
G−1

0 = diag(g−1
0 ). Unfortunately, because L is singular the solution of this problem

is undefined. This singularity corresponds to the unbounded solution x = k dis-
cussed above for the Untargeted Basic Energy Model. The typical solution to this
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Fig. 6.6 The first nontrivial harmonic of two example graphs. From a physics standpoint, we
may consider the graphs as a network of springs for which the Fiedler vector provides the lowest
frequency harmonic. Additionally, the lattice graph may be viewed as a finite differences approx-
imation to a membrane. (A, C) Example graphs, (B, D) Corresponding embeddings in which the
first nontrivial harmonic is mapped to the height of each node

singularity employed by spectral partitioning is to perform the optimization of x in
the space orthogonal to x = k. However, an alternative approach to this problem
was suggested in [168, 169] that a single reference node, vr , be chosen such that
xr = 0 is fixed. By fixing a reference node to one partition, the problem in (6.22)
takes a unique solution which may then be thresholded to produce the clustering
into two partitions. Note that the clustering obtained in this manner does not depend
on the value of λ and we therefore ignore this value. As with spectral clustering
above, both G−1

0 = I and G−1
0 = D have been employed with the choice of G−1

0 = D
generally producing better clusters [169]. Additionally, it was proved by Grady and
Schwartz [169] that the partitioning performed in this way guaranteed that the parti-
tion connected to the reference node is connected. Since the solution to (6.22) may
be interpreted as the steady-state DC potentials for a resistive network with c0 rep-
resenting currents injected into each node, the reference node was called the ground
node [169]. Figure 6.7 shows the equivalent circuit for which the solution to (6.22)
gives the steady-state electrical potentials. We can view (6.22) from the continuous
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Fig. 6.7 An example of a simple graph (A), and its equivalent circuit (B). Solving (6.22) (using
the node in the lower left as ground) for the graph depicted in (A) is equivalent to connecting this
node to ground in the circuit depicted in (B) and then measuring the potential values at each node

calculus perspective as an instance of the Poisson equation,

∇2x = λc0, (6.23)

subject to the internal Dirichlet boundary condition that xr = 0. This algorithm was
called the isoperimetric algorithm by Grady and Schwartz [169] due to the connec-
tion with a relaxed version of the isoperimetric ratio. See Chap. 8 for more informa-
tion about the isoperimetric ratio of a graph and Appendix B for more information
about the optimization of a ratio. The primary advantages of this isoperimetric al-
gorithm over spectral clustering are that solving a symmetric positive definite linear
system of equations is more efficient than solving a (generalized) eigenvector prob-
lem, the solution to the eigenvector problem may not be unique, and the spectral
algorithm overly tries to produce balanced clusters [179]. See Ref. [169] for more
details on this comparison.

The Untargeted Basic Energy Model has also been studied for the case of p = 1
and q = 1 with the further restriction that the solution x is binary. This approach
has the advantage that no threshold of x needs to be chosen and that it is possible
to choose an optimal eigenvalue λ automatically rather than manually. See Kol-
mogorov et al. [242] for examples of this model in the context of image segmenta-
tion and more information about its optimization.

6.2.2 Dual Untargeted Clustering

Dual untargeted clustering algorithms have received little, if any, treatment in the
literature. A primal algorithm has the advantage that it is independent of the em-
bedding. This independence was forfeited in the targeted clustering problem in re-
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turn for a unique method of targeting a cluster (i.e., by providing a partial bound-
ary). Therefore, in the untargeted clustering problem, it is worth briefly examining
whether anything is gained by a dual formulation. One possible advantage of a dual
formulation is that it is easy to use the boundary operator to impose the constraint
that a solution is a closed boundary. For example, if our dual graph were planar,
then we could express the space of closed two-dimensional contours as any contour
satisfying the constraint that

ATy = 0, (6.24)

where y is a 1-cochain describing the set of edges in the boundary. An attractive
aspect of the condition in (6.24) is that the AT matrix is totally unimodular, which
means that an integer solution may be obtained under this condition even if the opti-
mization were over a linear functional of real-valued y variables. A second attractive
aspect of the condition (6.24) is that the nullspace of AT is known, allowing for an
easy change of variables to create an unconstrained optimization problem. However,
despite the ease of the dual constraint to describe a closed contour, this form seems
to have been explored only very recently in the literature [293].

6.3 Semi-targeted Clustering

In the introduction to this chapter we commented that some clustering algorithms es-
tablish an objective function for the clustering which cannot be feasibly optimized.
In these circumstances the clustering optimization may be initialized, leading to a
solution similar to the initialization. Consequently, even though the objective func-
tion may describe an untargeted clustering problem, the dependence of the opti-
mization on the initialization may lead to a clustering that is somewhat targeted. In
this section, we consider a primal semi-targeted clustering algorithm, the k-means
algorithm and its generalization to the Mumford–Shah model.

Traditionally, the Mumford–Shah model has appeared only in the field of image
processing. Therefore, the connections between k-means and the Mumford–Shah
have received little attention in the literature. However, the recent work on formulat-
ing (and optimizing) the Mumford–Shah model on an arbitrary graph [97, 121, 163,
418] has made it more clear how to interpret the Mumford–Shah model as a general-
ization of the k-means model. In the next section, we adopt this approach explicitly
by building from the k-means model to the full, piecewise smooth, Mumford–Shah
model.

6.3.1 The k-Means Model

The k-means model is probably the most common method for the untargeted clus-
tering of data. Given a predetermined number of labels k, the k-means algorithm
seeks to find a clustering that is a partitioning of the node set into k disjoint subsets
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of nodes, defined by the sets R1,R2, . . . ,Rk , such that the intersection of any two
sets is empty and the union of all sets is V. We can denote this partitioning with
the partitioning function Z, which maps the nodes into the collection of partitions
P = {R1,R2, . . . ,Rk}, i.e., Z : V → P. The optimum clustering in the k-means al-
gorithm is defined as the optimization of

EKM[Z] =
∑

i

∑
vj ∈Ri

‖c̃Ri
− s̃j‖2, (6.25)

where s̃j is the data tuple at node vj and c̃Ri
is the mean data tuple inside Ri

representing the centroid of the data within region Ri .1 Therefore, the k-means al-
gorithm attempts to find the k-way partitioning of the data such that the data tuples
in each partition have minimal within-cluster sum-of-squares difference from the
mean tuple. Note that here we use tuple-valued data to handle cases in which multi-
variate data is available (e.g., RGB or colorscale image data), however in the simple
univariate case these tuples can be replaced with scalars.

The classical method for optimizing the k-means model is Lloyd’s algorithm
[263, 264], which consists of the following steps.

1. Randomly partition the data nodes into k regions.
2. Repeat until convergence:

a. Update each centroid tuple, c̃Rj
, to the mean of the data tuples of all nodes in

Rj .
b. Assign each point, vi , to the label for which its data tuple s̃i is closest to the

label centroid, i.e., σ(vi) = argminj {‖c̃Rj
− s̃i‖2}.

Since the output of Lloyd’s algorithm depends on the initialization, the algorithm is
typically run to convergence multiple times with different initializations in order to
find a good partitioning.

The k-means algorithm is fast and simple to implement, which accounts for its
tremendous popularity. However, some data clustering problems have a spatial com-
ponent as well as a data component. For example, the k-means algorithm above
would cluster data tuples of an image (e.g., RGB image data) without accounting
for the spatial arrangement of the pixels. However, based on the low-frequency mod-
els established for data in Chap. 5 and cluster labels developed above, neighboring
nodes should be more likely to take the same label. Under this model, an outlier
gray pixel inside a uniform region of black pixels is likely to be an artifact and can
reasonably be assigned to the same label as the surrounding black pixels, while an
outlier gray pixel inside a uniform region of white pixels is likely to be a artifact
and can reasonably be assigned to the same label as the surrounding white pix-
els. However, the definition of the k-means algorithm above has no mechanism to

1In the rest of this chapter we treated the data as univariate in order to simplify the exposition, with
the understanding that all of the machinery could also be applied to multivariate data. However,
since k-means is almost exclusively applied to multivariate data we have adopted a multivariate
view of data in this section. Therefore, it is assumed that each node (data point) is associated with
a tuple of data, rather than a scalar.
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account for the neighborhood structure of the data values.2 Consequently, we can
modify the k-means algorithm by adding a spatial regularization term which penal-
izes cases where neighboring nodes (defined by an edge set) are assigned different
labels. This penalty may be viewed as encoding the boundary length of each re-
gion Rj . Additionally, the penalty could be weighted using any of the weighting
methods where the weights are derived from the data as described in Chap. 4, but
this direction has not been pursued in the literature and we therefore limit our expo-
sition to the unweighted (i.e., the unity-weighted) case with the understanding that
boundary length could be trivially modified to incorporate data weights. The energy
functional describing this modified k-means algorithm is given by

EMPCV[Z] =
∑

i

∑
vj ∈Ri

‖c̃Ri
− s̃j‖2 + ν

∑
eij ∈E

δ(σ (vi) − σ(vj )), (6.26)

where δ(·) represents the Kronecker delta function. The value of the trade-off pa-
rameter ν is a free parameter that can be used to weight the relative importance of
spatial coherency in the k-means algorithm. Unfortunately, the spatial regulariza-
tion term in (6.26) makes this energy quite a bit more difficult to optimize than the
standard k-means energy of (6.25) when k > 2. Recent work has addressed approx-
imation methods for optimizing the boundary for multiple labels [17, 122]. There-
fore, we simplify the energy functional of the modified k-means algorithm (6.26) by
restricting the number of classes to two (i.e., k = 2) and optimizing instead

ECV[R] = rT‖c̃R − s̃‖2
2 + (1 − r)T‖c̃R̄ − s̃‖2

2 + ν(1T|Ar|), (6.27)

where s̃ represents the |V| × 1 vector of tuples s̃j , or a tuple-valued vector over
the nodes. Since there are only two labels, we can represent them by the set R

and R̄, in which case r is a node vector (0-chain) acting as an indicator function
for the set R. Similarly, we use c̃R to represent the data centroid tuple in set R

and c̃R̄ to represent the data centroid tuple in the complement set, R̄. Thus the
expression ‖c̃R − s̃‖2

2 is used to represent a |V| × 1 vector where each entry j

equals ‖c̃R − s̃j‖2
2. In the image processing literature this special case energy model

is known by different names as the piecewise constant Mumford–Shah functional
[289] or the Chan–Vese model [70], although it is important to note that both of
these models were formulated in a continuous setting, and the first definitions of
the models on a general graph appeared much more recently [97, 121, 418]. The
expression of this model for multiple classes (i.e., k > 2), described in (6.26), has
been known as the multi-phase Chan–Vese model and is given by the energy EMPCV
defined above.

The two-class model in (6.27) may be optimized in a manner similar to Lloyd’s
algorithm for optimizing k-means. The only difference with Lloyd’s algorithm is

2Some authors have tried to incorporate spatial location into k-means by using the pixel coor-
dinates as part of the feature vector in the application of k-means. This device can mitigate the
problem described here in certain circumstances, but does not generalize to applications in which
the network has no embedding or when the embedding is complicated, as in the gene expression
example in Sect. 6.5.4 or the geospatial example in Sect. 5.9.4.
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that the labeling step is more complicated, because the boundary term must now
be accounted for. Specifically, by viewing r as a labeling vector, then (6.27) can be
considered as a min-cut problem since

Boundary(r) = ν1T|Ar| =
∑
eij ∈E

ν|ri − rj |, (6.28)

and

rT‖c̃R − s̃‖2
2 =

∑
vi∈V

ri‖c̃R − s̃i‖2
2, (6.29)

which may also be viewed as a min-cut (a unary term) via the construction

Cut(c̃R) =
∑
vi∈V

‖c̃R − s̃i‖2
2|ri − 0|, (6.30)

where E0 is a set of auxiliary edges connecting each node to a phantom terminal (as
in Fig. 6.2). Similarly,

Cut(c̃R̄) =
∑

eij ∈E1

‖c̃R̄ − s̃i‖2
2|1 − ri |. (6.31)

Therefore, the optimization of the two-class model in (6.27) is enacted by the fol-
lowing steps.

1. Randomly initialize the set R and compute the centroid c̃R of R, and the centroid
c̃R̄ of set R̄.

2. Repeat until convergence:
a. Find the labeling vector r that minimizes

E [R] = Boundary(r) + Cut(c̃R) + Cut(c̃R̄)

from the expressions above using a max-flow/min-cut algorithm.
b. Assign each centroid, c̃R and c̃R̄, to the mean of the data vectors of all nodes

in R and R̄, respectively.

The k-means model was generalized to incorporate spatial information by intro-
ducing a spatial regularization term. However, in cases where the spatial arrange-
ment of the nodes is relevant, this generalized k-means approach seems limited by
the fact that the data is modeled as a single centroid for every node in the cluster (i.e.,
the centroid value is uniform everywhere in space within a cluster). Consequently,
this generalized k-means model may be further generalized by allowing each node
to have its own idealized “centroid” (i.e., to allow the term corresponding to the cen-
troid to vary spatially). To avoid confusion, we term this spatially varying version of
the region centroid as a pseudocentroid, in which every node in the graph has a both
pseudocentroid for R and a pseudocentroid for R̄. However, to be meaningful, the
pseudocentroid cannot be allowed to vary arbitrarily and therefore we can impose
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a smoothness penalty on the pseudocentroids for each region. Specifically, for the
two-class problem, let

Esmooth[R] =
∑
eij ∈E

ri‖c̃iR − c̃j R‖2
2 +

∑
eij ∈E

(1 − ri)‖c̃iR̄ − c̃j R̄‖2
2, (6.32)

where now c̃iR represents the pseudocentroid of node vi in set R. Therefore, the
pseudocentroid at each node should change smoothly between nodes within a re-
gion. This model may be called the piecewise-smooth Mumford–Shah model, even
though the formulation of Mumford and Shah [289] was in a continuous space. This
form of the model on a graph appeared in Ref. [163]. By allowing the pseudocen-
troids to vary with each node, the output of our minimization is both a clustering
and and idealized form of our data. This idealized form of the data was used in
Chap. 5 for filtering noisy data, while the focus of this chapter is on the cluster-
ing. This smoothness term could be penalized differently for smoothness changes
across different edges by employing any of the affinity edge weighting functions
derived from data which were detailed in Chap. 4. However, since this smoothness
penalty has not been adjusted for edge weighting in the literature, we will continue
the exposition assuming an unweighted (i.e., a unity weighted) edge set.

When we consider each region to be represented by a single centroid, then it
is easy to compare the data at every node to a cluster centroid to see how well
the node might fit in the cluster. However, when we allow each cluster to be rep-
resented by several pseudocentroids (in fact, each node is represented by its own
pseudocentroid), then it is less clear how we might compare the data at nodes which
are not inside a particular cluster with the pseudocentroids of that cluster, since
each cluster is no longer represented by a single centroid. Therefore, the piecewise
smooth Mumford–Shah model requires an estimate of the pseudocentroid for each
cluster at each node. This estimation was performed by Grady and Alvino [163]
by smoothly extending the pseudocentroids outside of each cluster to all nodes by
solving a Laplace equation. Figure 6.8 shows an example of these pseudocentroids
in the context of image segmentation.

Once a cluster pseudocentroid is generated for each cluster and node, then the op-
timization of the piecewise smooth Mumford–Shah model is the same as the piece-
wise constant model above. At each iteration of the model, it is necessary to estimate
the cluster pseudocentroid for each pixel and then solve a max-flow/min-cut prob-
lem to find the optimal clustering (for the two-class case). See Ref. [163] for more
details. This clustering model could also be extended to multiple classes by recur-
sive bisection or by the approximation approaches taken by El-Zehiry et al. [122]
and by Bae and Tai [17]. Figure 6.9 shows the clustering and idealized data values
obtained for a synthetic image.

Among the class of semi-targeted algorithms, we have so far considered only
the k-means algorithm and the more generalized Mumford–Shah algorithm, which
both operate on the primal graph. Dual semi-targeted algorithms are not considered
here because the authors are unaware of any algorithms of this type. However, in the
image processing literature there is a vast amount of work on active contour methods
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Fig. 6.8 Optimization of the piecewise smooth Mumford–Shah using max-flow requires specifi-
cation of values for the cluster pseudocentroid estimation function c̃iR in the region outside the
cluster region R. Using a Laplace equation regularizer allows us to estimate the values for the fore-
ground c̃iR tuples and the background c̃i R̄ tuples for the entire domain (i.e., the graph representing
the image), as shown above. See Ref. [163] for more details

Fig. 6.9 Several steps of the algorithm to optimize the piecewise smooth Mumford–Shah Model.
(A–E) Partitioning evolution from initialization to stabilization. Blue contours indicate boundary
location. (F–J) Corresponding pseudocentroid reconstruction of the piecewise smooth estimate of
the image data, given a contour. For each image, the iteration step t is provided below

(e.g., [222, 409]) which are very similar in spirit. These methods parameterize a
cluster boundary as a polygon with a series of control points which are evolved to
(locally) optimize an objective function. However, these methods do not fit into the
scope of the present work since they require an embedding, the control points are
allowed to vary anywhere in the embedded space and the methods are not explicitly
formulated on a dual complex.
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6.4 Clustering Higher-Order Cells

In the previous sections we described variational models for targeted and untargeted
clustering of the nodes in a graph. We end this chapter by briefly recasting these
models to apply to the clustering of higher-order cells. We will focus on recasting
these models in terms of edge clustering with the understanding that the same meth-
ods could be further applied to the clustering of p-cells for any p (as in Chap. 5).

6.4.1 Clustering Edges

We will consider targeted, untargeted and initialized primal clustering formulations.
Formally, the clustering problem on edges may be formulated by assigning labels b

of a label set L, with b ∈ L, to the set of edges, E. As in the case of nodes, the goal
of a clustering algorithm is to produce a segmentation function σ : E → L. In the
following discussion, we assume that a cycle set has been identified and this cycle
set constitutes a basis for the cycle space, i.e., that the edge Laplacian is full rank.
Additionally, we assume that G1 = I.

6.4.1.1 Targeted Edge Clustering

The basic components of a targeted edge clustering algorithm are the same as those
components of a targeted node clustering algorithm. Specifically, additional infor-
mation is required that associates some or all edges to particular labels. Examples
of additional information in a targeted edge clustering algorithm could include:

1. A method for assigning probabilities to a subset of the edges that these edges
belong to each label.

2. Known labels for a subset of the edges.

In all of the subsequent discussion on targeted edge clustering algorithms, we
can formulate our goal as solving for a membership probability yi,b that edge ei

belongs to label b. Unless otherwise noted, the segmentation function σ(ei) = b

is obtained via σ(ei) = argmaxb{yi,b}, similar to the case with segmenting nodes.
Consequently, our focus will be on the calculation of yi,b for each edge and label.

We begin by rewriting the weighted version of the Basic Energy Model in (6.5) to
apply to clustering edges. As in the filtering case treated in Chap. 5, we replace the
gradient of the node data by both the curl and the divergence of the flow data along
each edge, since this replacement preserves the character of the operator as penaliz-
ing high-frequency functions (with respect to the edge Laplacian). Specifically, we
may rewrite (6.5) for edges as

EBEM[yb] = 1T
∣∣G−1

2 Byb

∣∣p + 1T
∣∣G0ATyb

∣∣p. (6.33)
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Once again, we can avoid a trivial minimum of this energy by incorporating a pre-
specified set of labels for some edges (similar to the use of seeds in the node cluster-
ing case). Formally, define the set of seeded or “marked” edges EM ⊂ E for which
σ(EM) is known. These labels are assumed to have been obtained via a different
process such as user interaction. Using this information, we can fix yi,b for all edges
ei ∈ EM via the assignment

yi,b =
{

1 if σ(ei) = b,

0 if σ(ei) 	= b.
(6.34)

These fixed values allow us to solve for a nontrivial minimum of the edge-focused
Basic Energy Model in (6.33), which can be computed via the optimization methods
in Appendix B.

As observed for node clustering, the trivial minimum of the Basic Energy Model
could also be avoided by adding a term encoding the prior of each edge to belong to
each label. We may continue to apply the targeted clustering models of Sect. 6.1 to
flow data. When considering the Basic Energy Model expressed in (6.33) we treated
the prior probabilities as initialized with an initial condition then iteratively updated
to minimize the target energy. However, unless pre-labeled seeds are known, an op-
timal solution of (6.33) is trivially zero. Therefore, we may take a different approach
to incorporating the prior probabilities by separating the smoothness constraints and
priors into two different terms whose influence on the solution is controlled with a
parameter. This edge-focused Extended Basic Energy Model is expressed by

EEBEM[yb] = 1T
∣∣G−1

2 Byb

∣∣p + 1T
∣∣G0ATyb

∣∣p + λ
∑
a

sT
a

∣∣yb − δ(a − b)
∣∣p, (6.35)

where sa represents the prior likelihoods that each edge belongs to label a,
δ(a − b) = 1 if a = b and δ(a − b) = 0 otherwise. At the cost of introducing a
free parameter λ we now have a model that produces a nontrivial minimum. Addi-
tionally, we may also introduce a set of seeds in the same manner as before, which
allows us to find a nontrivial solution even when λ = 0 (i.e., prior probabilities are
unknown).

6.4.1.2 Untargeted Edge Clustering

Building on the untargeted Basic Energy Model of (6.17), we now consider the
edge-focused untargeted Basic Energy Model in the context of untargeted biparti-
tioning of an edge set. Specifically, consider the energy

EUBEM[y] = 1TG−1
2 |By|p + 1TG0|ATy|p − λ1T|y|q, (6.36)

for some λ > 0. As in the node case, the solution y may be thresholded to produce
a bipartitioning of the edge set. This energy takes a minimum for p > 1 when y
satisfies

BTG−1
2 |By|p−1 + AG0|ATy|p−1 = λ|y|q−1. (6.37)
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We briefly consider some combinations of the norm parameters p and q values with
a focus on a contrast with the node clustering case.

The p = 2 and q = 2 case also yields an eigenvector problem(
BTG−1

2 B + AG0AT)
y = L1y = λy, (6.38)

in the edge Laplacian matrix. The eigenvectors of the edge Laplacian matrix have
been lightly treated in the literature to date. These early investigations [1, 80, 288]
reveal that the eigenvectors corresponding to low eigenvalues of the edge Lapla-
cian roughly correspond to circulations around the complex. When the complex has
a higher genus (i.e., there is one or more “handles” in the domain), a number of
eigenvalues equal to the genus reach zero exactly and the corresponding eigenvec-
tors represent flows that encircle these handles. From the standpoint of clustering,
such circulations may indeed be meaningful clusters, since each circulation is a set
of flows with minimal curl and divergence. Figure 6.10 shows the result of this
model for clustering the flows in a graph.

Similarly, the p = 2 and q = 1 case yields a minimum to (6.37) when(
BTG−1

2 B + AG0AT)
y = L1y = 1. (6.39)

This expression represents the flow version of the isoperimetric algorithm of
Ref. [169]. The isoperimetric algorithm on nodes required an additional step of
“grounding” a node (in accordance with the electrical circuit analogy) at xg = 0
to break the singularity of the node Laplacian. Although we assumed that we have
a complete cycle basis (i.e., L1 is full rank), (6.39) still has a trivial solution un-
less some edge is chosen as a fixed “ground” where yg = 0. Figure 6.10 gives an
example of this model for clustering the flows on a graph.

6.5 Applications

Clustering has an enormous number of applications across many fields. In this sec-
tion, we give several applications of these clustering techniques with the goal of
demonstrating the variety of applications of these methods.

6.5.1 Image Segmentation

Clustering image data is a core problem in image processing in which the cluster-
ing procedure is known as image segmentation. Image segmentation is an essential
part of many practical applications and graph-theoretic algorithms have historically
played an important, and increasing, role in image segmentation [345, 407, 416].
Example applications include the quantification of objects in medical/scientific im-
ages, photo editing, and enhanced visualization of image contents. Additionally,
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Fig. 6.10 Clustering flows. In all cases, the thickness of the line represents the strength of the
y vector used to determine the partitioning (by thresholding). Top row: Example 1, showing two
circulations around the cycles cluster easily by both the spectral edge clustering method and the
“isoperimetric” edge clustering method. The clusters are obtained by thresholding the resulting
flows. Middle row: Example 2, in which the orientation of four edges are flipped (marked in blue).
A leftward flow is partitioned into two streams by both partitioning methods. Bottom row: The
“random walker” model applied to targeted clustering. The labeled edges were the upper left edge
(green) and the second labeled edge was in the lower right or upper right (red). In the first case, the
two diagonal flows are clustered together while in the second case, the upper and lower flows are
clustered together

image segmentation can be used as a preprocessing step before many other image
analysis tasks, such as object recognition, image registration or image compression.
Traditional two-dimensional image data consists of “picture elements” (pixels) typi-
cally arranged in a square grid and traditional three-dimensional image data consists
of “volume elements” (voxels) arranged in a rectilinear grid. In our applications, we
associate each pixel or voxel with a node and use a 4-connected lattice as the edge set
(6-connected in three dimensions). In all of our examples, the edges were weighted
using the Welsch function of the difference of image intensities (see Chap. 4).

Our goal in this example is to demonstrate the varieties of clustering algorithm
that were discussed previously. Specifically, image processing applications permit
both primal and dual segmentation algorithms, since the image content has a geo-
metric arrangement that naturally admits description as a cell complex with a dual.
Consequently, the segmentation problem may be cast as having the goal of labeling
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Fig. 6.11 Untargeted image segmentation of blood cells using spectral partitioning, Normalized
Cuts (NCuts), isoperimetric clustering (Iso), k-means and the piecewise constant Mumford–Shah.
The k-means algorithm employs image intensity and the Mumford–Shah algorithm employs both
image intensity and spatial regularity causing them both to associate the bright center of each cell
with the bright background. In contrast, the purely spatial isoperimetric, spectral and normalized
cuts algorithms all associated this inner part with the cells themselves. For each algorithm, the
outline of the computed cluster boundaries is presented on the left, and the same cluster boundaries
are superimposed on the image on the right, indicating the final segmentation

each pixel (in the primal case) or of labeling the boundary of the pixels (in the dual
case).

We begin by demonstrating the primal untargeted algorithms on the applica-
tion of cell counting in an image of blood cells. Figure 6.11 displays the results
of each algorithm on the task of separating the cells from the background. Note
that no attempt was made to further subdivide the cell clusters. Due to the clar-
ity of this image, all of the algorithms produced a reasonable clustering. Since the
Mumford–Shah energy balances image intensity clustering with spatial clustering,
and k-means removes the spatial aspect, these two algorithms associated the inner,
brighter, part of the cells with the background. In contrast, the purely spatial isoperi-
metric, spectral and Normalized Cuts algorithms all associated this inner part with
the cells themselves.
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Fig. 6.12 Untargeted segmentation algorithms applied to a grayscale photograph of a girl. The
algorithms used only image intensity to define edge weights and unary terms rather than more
complicated models such as using texture boundaries to set weights. Consequently, the algorithms
used in this way try to isolate each strand of hair as a separate object rather than as a unit

The blood cells image contained pixels belonging to two types, cell and back-
ground, which were generally separated by different intensity profiles. Images that
contain more classes of objects are more difficult for an untargeted image segmenta-
tion method to parse, especially if the object classes have a differing intensity/texture
profile. To illustrate this issue, the same set of untargeted algorithms were applied
to find a segmentation of the photograph of a girl given in Fig. 6.12. As before, edge
weights were derived from a Welsch weighting function of the image intensities of
the neighboring pixels. The models could have been made more appropriate to the
segmentation of this image by deriving weights from texture boundaries and using
such information as features for the Mumford–Shah model. By basing the models on
image intensity, the algorithms attempt to segment each strand of hair as a separate
object, rather than segmenting all of the hair as a single unit. Since these algorithms
all explicitly optimize a separation of two objects, the algorithms were used to gen-
erate multiple labels by applying the algorithms recursively and determining when
to stop the recursion based on the energy obtained by the minimum produced by the
segmentation.

An untargeted image segmentation algorithm tells us what the best clusters are.
If we instead wanted to find a particular object, then we need to target that object
through a targeted image segmentation approach. We may isolate the girl’s head
in this photograph by supplying some labeled pixels which identify the object to
be isolated. In this example, these labeled pixels were supplied interactively by the
authors and each of the targeted segmentation algorithms were run to produce a
segmentation separating the image into foreground and background. Results of this
experiment are displayed in Fig. 6.13. Although each of these algorithms also used
edge weights derived from intensity differences, the targeting of a particular object
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Fig. 6.13 Example of targeted image segmentation algorithms. These algorithms were used to
isolate the girl’s head by interactively supplying some labeled pixels. Although these algorithms
also used the same intensity-based edge weighting as before, the act of targeting a particular object
allows the algorithms to know which objects should be grouped together (e.g., each strand of hair
belongs to the foreground label)

was sufficient for these algorithms to group together the parts of the objects (e.g.,
every strand of hair is grouped together in the foreground).

The previous example applied targeted segmentation algorithms to isolate the
image foreground. However, all of these algorithms operated on the primal graph
in the sense that the final output was a labeling of each pixel and the boundary
was implied by the change in label. We discussed in the text how a dual algorithm
could also be applied to image segmentation by finding a set of edges in the dual
graph which separated the nodes into two pieces. Dual clustering algorithms are
available for two-dimensional image processing because the planar graph defined
by the 4-connected lattice has a well-defined 2-dual. The most popular dual seg-
mentation algorithm in the computer vision literature is the intelligent scissors/live
wire algorithm [129, 287], which inputs boundary points from a user which are then
connected via the shortest path in the dual graph. Figure 6.14 gives an example of
using this algorithm to target the same object in the photograph.

One advantage of a primal algorithm is that it easily extends to alternate embed-
dings (or no embedding). However, since the dual graph (or lack thereof) depends on
the availability of an embedding, these algorithms are less portable between prob-
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Fig. 6.14 Targeted segmentation using a dual algorithm. The dual algorithm operates on the dual
graph to find a set of edges in the dual graph comprising the boundary of the nodes in the primal.
We applied the intelligent scissors/live wire algorithm [129, 287] to segment the girl’s head in this
image. At each step of the algorithm the user determines a point on the boundary (shown by the
bright circle) and a shortest path is calculated between the new point and the previous point (shown
by the thick line). The process is continued until the boundary is completed. In this example, six
points total were manually chosen

lems. An example of this change in embedding is the application of a segmenta-
tion algorithm in a two-dimensional image compared to a three-dimensional image.
A primal segmentation algorithm can just as easily be applied in two or three dimen-
sions, since the output is a labeling of the pixels in two dimensions or the voxels in
three dimensions. However, a dual algorithm that finds a one-dimensional bound-
ary in two dimensions that isolates two-dimensional regions of an image will not
subdivide the three-dimensional image. Consequently, such an algorithm must be
reworked to apply to find the boundary of regions in three dimensions, i.e., to find
two-dimensional boundary surfaces. This topic was addressed earlier in Sect. 6.1.2.1
in which we showed how the intelligent scissors/live wire algorithm could be ex-
tended to three-dimensional segmentation by computing a minimal surface in the
dual complex. Instead of inputing points and computing a shortest path between
them, the three-dimensional algorithm inputs closed contours and computes a mini-
mal surface between them. Figure 6.15 gives three examples from medical imaging
of this dual algorithm in three dimensions. Note the bottom image of the aorta which
splits into two pieces at the iliac branch. Although one contour was input above the
split and two contours were input below the split, the resulting segmentation natu-
rally merges these contours into a single surface.
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Fig. 6.15 Dual segmentation in three dimensions applied to the segmentation of three-dimensional
medical data. Several slices of three-dimensional volumetric data are shown. In each example, the
green contours were placed on the bounding slices and the intermediate yellow contours represent
the minimum-weight surface between these contours. (A) SPECT cardiac data. (B) CT cardiac
data. (C) CT aorta near iliac branch. Multiple closed contours may be placed and a single surface
may be found that splits accordingly to accommodate the prescribed boundaries. Note that not all
slices between the closed contours are displayed

6.5.2 Social Networks

Clustering is a common task in the study of social networks, where it is often known
as community finding. In a social network, each node typically represents a person
(or group) and the edges represent a social connection (e.g., friendship). If the net-
work is weighted, the edge weight indicates the strength of the social connection.
Since a larger weight typically represents a stronger social bond, we will treat these
edge weights as affinity weights (similar to conductances in the circuit theory anal-
ogy).

In this application, we consider the social network studied by Zachary [415],
which has appeared many times in the study of social networks (e.g., [148, 292]).
Zachary observed a university karate club for two years which consisted of 34 mem-
bers. The club split when the karate instructor “Mr. Hi” wanted more money and the
club president “John A” fired him. Zachary’s goal in studying this social network
was to determine if it was possible to predict the faction joined by each member
based purely on the social structure of the club. The social structure of the club was
modeled as a network in which each member was associated with a node and an
edge was assigned between two nodes if the two members met in some venue out-
side the club (e.g., the campus pub, common classes, outside karate tournaments,
etc.). Each edge was assigned a weight equal to the number of outside venues that
the two members had in common.
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Zachary’s method of predicting the split was to designate “Mr. Hi” (node 1)
as a source node and “John A” (node 34) as a sink node and then determine the
minimum cut (maximum flow) between these nodes in the network. This approach
may be seen as an example of the targeted clustering problem in which the goal was
to isolate a particular cluster (Mr. Hi’s cluster) from the club (John A’s cluster). In
fact, the max-flow/min-cut algorithm employed by Zachary corresponds precisely
to the targeted clustering approach defined by solving the Basic Energy Model (6.6)
with norm p = 1.

The max-flow/min-cut approach taken by Zachary correctly predicted the faction
split for every member except for node 9. Zachary’s algorithm assigns person 9 to
John A’s faction when, in fact, this person joined Mr. Hi’s club. Zachary explains
this discrepancy by noting that person 9 was indeed aligned with John A’s faction
but he would have had to give up his high belt ranking if he had joined with John A
(because the new club planned to teach a different style of karate). In addition to
Zachary’s method, we employed the random walker (p = 2) and geodesic (p = ∞)
algorithms to this targeted clustering problem. Both of these algorithms also fail
to correctly predict the faction joined by person 9 after the split. Additionally, the
geodesic algorithm incorrectly predicts the faction joined by person 14. Although
person 14 is clearly more strongly connected to Mr Hi’s faction, person 14 is con-
nected directly to Mr. Hi and John A with the same weight. In this case, the shortest
path from person 14 to Mr. Hi takes the same weight as the shortest path from
person 14 to John A and the tie was broken in the wrong direction. This situation
illustrates the common problem with the geodesic algorithm that it is sensitive to
the characteristics of the shortest path without considering the global structure of
the network. However, the geodesic algorithm is still mostly correct (with only two
incorrect assignments) and very fast compared to the other algorithms (especially on
large networks). Figure 6.16 displays Zachary’s karate club network with the true
split and the targeted clustering obtained by the three algorithms.

6.5.3 Machine Learning and Classification

Machine learning is a vast topic. The goal of a machine learning algorithm is to re-
duce a phenomenon of interest to a series of quantities that may be used to identify
the phenomenon and to generalize determinations made about the phenomenon to
other objects with a similar set of quantities. Machine learning techniques are gen-
erally divided into supervised learning and unsupervised learning techniques. A su-
pervised learning technique inputs a small set of labeled training data that is used to
build a model that may be applied to label unseen data. In contrast, an unsupervised
learning technique inputs unlabeled data with the goal of producing a division of
this data into meaningful labels which may be applied to future unseen data. Be-
tween supervised and unsupervised techniques lies the body of semi-supervised and
transductive learning techniques which input a small amount of labeled data and
a larger amount of unlabeled data which is used together to build a model for the
labeling of unseen data.
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Fig. 6.16 Zachary’s Karate Club network [415]. Zachary tried to predict the actual split of the
karate club into two groups based on the social interactions of each member. This problem may be
viewed as an instance of the targeted clustering problem in which the leaders of the two factions,
“Mr. Hi” (person 1) and “John A” (person 34), are treated as known and Zachary’s goal was to
predict the membership of each other member

Learning and clustering are intimately related topics. The goal of both learning
and clustering algorithms is to assign a labeling to data. Further, untargeted clus-
tering algorithms are similar to unsupervised learning algorithms in the sense that
both types of algorithm must find a good method for separating data into differ-
ent labels. In contrast, the targeted clustering algorithms are similar to supervised
learning algorithms (and particularly semi-supervised and transductive learning al-
gorithms) in the sense that these algorithms must take a small amount of labeled
training data and determine how to assign labels to a large number of unlabeled data
points. The primary difference between learning and clustering is that a clustering
algorithm is generally focused on labeling a particular set of data which is available,
while a learning algorithm must be able to generalize the clustering to label new
(unseen) data. However, transductive learning algorithms are generally defined to
label only a certain set of unlabeled data points (provided during training) [73], and
therefore the targeted clustering algorithms described in this chapter are more prop-
erly viewed as transductive learning algorithms in the context of machine learning.
Additional work has been done to further blur the lines between machine learning
and clustering by examining how to extend some clustering algorithms to unseen
data (see, e.g., Refs. [28, 29]).



238 6 Clustering and Segmentation

Fig. 6.17 A scatter plot of the Fisher iris data [138]. Each flower is described by four measure-
ments: petal width, petal length, sepal width and sepal length. The setosa are indicated with the
marker ‘+’, Iris versicolor with the marker ‘x’, and Iris virginica with ‘O’. Each row/column
represents a variable and the off-diagonal image shows the row variable on the x-axis and the col-
umn variable on the y-axis. The measurements from the setosa are well-separated, while the Iris
versicolor and Iris virginica measurements overlap substantially

In this application example, we do not address the issue of extending a cluster-
ing algorithm to unseen data, but rather to address the use of clustering to group
data used to describe an object that we wish to model. To illustrate these clustering
approaches, we use the classical Fisher iris data [138]. Fisher’s paper was an early
example of the standard approach used now in machine learning. Fisher wanted to
determine whether or not it was possible to distinguish three types of irises from a
set of measurements of each iris. Fisher’s data consisted of 50 samples of each of
three different species of iris, setosa, Iris virginica and Iris versicolor. Four mea-
surements were taken from each flower: the petal width, petal length, sepal width
and sepal length. Based on these measurements, the data for the Iris virginica and
Iris versicolor are substantially overlapping while the data describing the setosa is
well-separated from the other two. Figure 6.17 provides a scatter plot illustrating
the distribution of the data for each type across measurement dimensions.

We first applied the untargeted clustering algorithms to determine if they could
produce the three clusters. The initial step was to generate a graph from the data in
which each data point is treated as a node and the nodes are connected with edges
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Table 6.3 The Rand index, as defined in (6.40), for the clusters produced by the various untargeted
clustering algorithms when applied to untargeted clustering of the Fisher iris dataset

k-Means Mumford–Shah Isoperimetric Spectral Normalized cuts

Rand index 0.8623 0.8797 0.8797 0.8797 0.8797

via a K-nearest-neighbor approach (see Chap. 4) in which we set K = 25 and all
edge weights to unity. Since the algorithms described above partition the graph into
only two parts, the algorithms were run recursively to produce three partitions. In
each case, the energy value of the partition was used to determine when to stop
the recursion with the stop criterion set such that three partitions were produced.
The k-means algorithm was also included (as a variant of the minimization of the
Mumford–Shah energy), although this algorithm did not need to be run recursively
in order to produce the prescribed three partitions.

The quality of the clustering produced by minimizing each objective function
was evaluated against the true labeling by using the Rand index [315]. The Rand
index between two labelings, x1 and x2, is defined as the ratio

Rand(x1, x2) = a + b(
n
2

) , (6.40)

where a represents the number of pairs of nodes which share the same label in x1
while also sharing the same label in x2, and b represents the number of pairs of
nodes which have different labels in x1 while also having different labels in x2. If
x1 and x2 represent the same clustering then Rand(x1, x2) = 1, while if the two
clusterings do not agree on any pair of points then Rand(x1, x2) = 0. Table 6.3
gives the Rand index for the clustering obtained by the various primal untargeted
clustering algorithms described in the chapter. In this case, all of the algorithms
produced a reasonable clustering in which the quality was equal for all algorithms
except the k-means algorithm which performed slightly worse.

We next tested the primal targeted clustering algorithms on the iris data in a trans-
ductive learning context. Samples were chosen randomly from each of the three
classes. The number of samples was increased from one to fifty in order to track
the performance of each algorithm with respect to the number of training samples.
At fifty samples, all of the data is used to train/test, so the labeling will be per-
fect (thus the Rand index will be equal to unity). For each number of samples, 100
trials were run with randomly generated samples for each algorithm and the Rand
index of the resulting labelings were computed with respect to the ground truth.
Figure 6.18 displays the results for the targeted clustering algorithms applied to this
data using a K-nearest neighbor graph in which K = 5 and again with K = 30. In
both cases, the edges were weighted using the Welsch function as a function of the
Euclidean distance between data points (in normalized feature space). Figure 6.18
displays plots of the mean Rand index across 100 trials for each number of sam-
ples and the standard deviation of the Rand index across trials. These plots allow
us to make several observations about the behavior of these algorithms in this sce-
nario. First, all three algorithms behave roughly the same. However, the geodesic
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Fig. 6.18 Targeted clustering using randomly sampled seeds on the Fisher iris dataset. Each trial
was run 100 times with an increasing number of samples. The x-axis represents the number of
training samples and the y-axis represents the Rand index. The left column shows the mean Rand
Index and the right column shows the variance of the Rand index. Top row: Run on a K-Nearest
Neighbor graph with K = 5. Bottom row: Run on a K-Nearest Neighbor graph with K = 30. We
see that the geodesic algorithm consistently has the worst performance for a mid-range number of
labeled nodes, but generally the lowest variance in performance of the three algorithms

algorithm performs better than the other two with a very small number of samples
but lags behind the others as the number of samples increases. This effect is more
pronounced for the graph with lower connectivity. Secondly, all of the algorithms
gave a better average performance with higher connectivity, but the variance of the
quality was greater for a low number of samples.

6.5.4 Gene Expression

Grouping genes by their expression pattern can be useful to deduce the gene regu-
latory network, classify groups into particular phenotypes (e.g., cancerous or non-
cancerous) or to match gene expression with other macroscopic anatomical features
such as a physiological atlas [41, 76, 198, 368, 408]. In this example, we follow
Bohland et al. [41] to determine whether the grouping of gene expression profiles
match the standard anatomical grouping.

Bohland et al. [41] studied the C57BL/6J mouse brain in the Allen Brain Atlas
[255] and compared the clustering of locations based on their gene expression pat-
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Fig. 6.19 Do the gene expression patterns match the accepted anatomy? In this example, we fol-
low the Bohland et al. experiment [41] to demonstrate how well a clustering of gene expression
patterns match the accepted anatomy. In each experiment, we chose parameters for each algo-
rithm to generate a partitioning with the highest Rand index as compared to the anatomical atlas.
The Rand index for each partitioning were, NCuts: 0.881, Spectral: 0.8783, Isoperimetric: 0.8767,
Mumford–Shah: 0.8845, k-means: 0.8678. Consequently, it could be argued that there is a strong
correspondence between anatomy and gene expression profile, but that the relationship is not per-
fect. Note how the k-means clustering is spatially fragmented due to the lack of any geometric
regularization, as opposed to the Mumford–Shah result which is effectively k-means with geomet-
ric regularization

terns with a classically-defined anatomical reference atlas. The goal was to assess
the level of correspondence between molecular level and higher-level information
about brain organization. Each voxel in the sample was described by 3041 genes
which were deemed to be consistent across experimental observations. Bohland et
al. reduced these 3041 genes to produce a feature space in which each anatomical
location is represented by a tuple consisting of 271-dimensions. They then applied
a k-means clustering to this data. We replicated the methodology of Bohland et
al. [41] using the untargeted clustering algorithms described in this chapter. Fig-
ure 6.19 displays views of the clusterings obtained by the various untargeted primal
clustering methods. In each case, we weighted the edge weights using an �∞ norm
to measure the distance between the (reduced) gene expression data tuples, which
was then input into a Welsch function (see Chap. 4).

We can also use the tools of targeted clustering to determine how well a particu-
lar anatomical structure matches a gene expression pattern. In order to examine this
question, we generated labeled seeds from the anatomical atlas by setting the cen-
tral portion of the medial axis of each region as seeds. We then targeted the striatum
by setting all of its seeds to foreground (‘1’) and seeds from all the other regions
as background (‘0’). Figure 6.20 displays the results obtained from applying the
targeted clustering algorithms to this data. Each of the algorithms produce a seg-
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Fig. 6.20 Targeted clustering of the striatum. By using seeds derived from the anatomy of the
striatum, we applied the various targeted clustering algorithms to determine the gene expression
pattern associated with this anatomical structure

mentation that matches the anatomy well. Therefore, this analysis suggests that the
gene expression profile of striatum is fairly well separated from the gene expression
profile of surrounding structures.

6.6 Conclusion

In this chapter, we showed how the variational models of Chap. 5 could be applied to
the targeted, untargeted and semi-targeted clustering problem on both a primal and
dual complex. Essentially, the filtering algorithms modeled the denoised data as hav-
ing low spatial frequency (possibly with discontinuities). These models could easily
be applied to clustering by modeling the cluster labels as having a low spatial fre-
quency (possibly with discontinuities). Clustering appears in many applications in
image processing, machine learning and complex network analysis. We also showed
how to apply these clustering models to the clustering of higher-order cells, such as
edges to permit flow clustering.
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