
Chapter 5
Filtering on Graphs

Abstract Measured data often includes noise. A data point measured in isolation
offers little opportunity to tease signal apart from noise. However, this separation of
noise from the signal becomes more possible when multiple data points are acquired
which have a relationship with each other. A spatial relationship, such as the edge set
of a graph, permits the use of the collective data acquisition to make better decisions
about the true data underlying each measurement. This process whereby the spatial
relationships of the data are used to provide better estimates of the noiseless data
is called a filtering or a denoising process. In this chapter, we outline the assump-
tions used to justify spatial filtering, describe the equivalent of Fourier analysis on
a general graph and discuss how different parameter settings of a small number of
variational approaches to filtering lead to a large number of commonly used filters.
Although our focus in this chapter is on the filtering of node data (0-cochains), we
also discuss how these techniques may be applied to the filtering of edge data (i.e.,
flows, or 1-cochains) and to the filtering of data associated with higher-dimensional
cells.

Data filtering is a common procedure in any kind of data processing and analysis
application. In this chapter, we assume that our object of interest is a graph with
data s̃i assigned to each node vi and a meaningful neighborhood definition given
by the edge set. The standard assumption is that noise has been added to all of the
data. In the absence of a data model, there is very little that one can do to extract
the signal from the noisy observation. However, data associated with a discrete cell
complex has meaningful neighborhood relationships and we may generally assume
that the noise has a high spatial frequency. Therefore, the goal of most filtering
operations is to remove the high frequency noise, while being careful to preserve
the high frequency signal (often modeled as spatial discontinuities).

We begin this chapter by addressing the filtering topic in a traditional context in
which the general goal is to produce a filter that removes some frequency range in
the data (e.g., a lowpass filter). The focus here will be on Fourier-based techniques
in the context of data associated with an arbitrary graph. Following this exposition of

L.J. Grady, J.R. Polimeni, Discrete Calculus,
DOI 10.1007/978-1-84996-290-2_5, © Springer-Verlag London Limited 2010

155

http://dx.doi.org/10.1007/978-1-84996-290-2_5

156 5 Filtering on Graphs

Fourier techniques on a graph, we address the lowpass filtering of data as an energy
optimization problem. These optimization-based filtering operations will then be
modified to preserve rapid data changes (i.e., discontinuities). Specifically, we may
model the filtering process as smoothing noise within a region (node set), but not
between regions. We then proceed to show how to filter via gradient manipulation
and discuss nonlocal filtering. These filtering techniques are then generalized be-
yond the processing of node data to filtering procedures that remove noise in edge
data (e.g., flows, traffic) or data associated with higher-dimensional cells. Finally,
the chapter ends by showing applications of these filtering techniques.

5.1 Fourier and Spectral Filtering on a Graph

The traditional approach to filtering data sampled on an equally spaced grid in arbi-
trary dimensions is to apply a digital filter intended to suppress certain frequencies
without disrupting others. Digital filtering approaches of this nature comprise an
enormous literature which we do not intend to review (a standard text on this subject
is Oppenheim and Schafer [297]). Our first goal in this section will be to examine
when we can apply standard Fourier methods to data defined on a graph.

The Fourier transform was originally developed by Fourier to produce solutions
to the diffusion (heat) equation

∂u

∂t
= ∇2u, (5.1)

where u is a real-valued function defined on R
N and ∇2 = ∇ · ∇ is the diffusion

operator. Specifically, in R
N , the standard Fourier basis constitute the eigenfunc-

tions of the Laplacian operator. We would therefore expect that the columns of the
Discrete Fourier Transform (DFT) matrix would likewise represent the eigenvectors
of the Laplacian matrix from discrete calculus, appearing in the diffusion equation
(see Chap. 2)

∂x

∂t
= −Lx. (5.2)

In this section, we will employ s and k as index variables rather than the conven-
tional i and j to avoid confusion with i = j = √−1. The DFT matrix, Q, has rows s

and columns k defined as

Qsk = e− 2π i
N

(s−1)(k−1), (5.3)

where N is the number of nodes in the graph. The first issue we address is to deter-
mine when Q will comprise the eigenvectors of the Laplacian matrix, analogous to
the continuous case. We can proceed to show that Q will form the eigenvectors of
the Laplacian matrix, if and only if the Laplacian matrix is circulant. Recall that a
circulant matrix is defined as a matrix in which each row is a circular shift of the

5.1 Fourier and Spectral Filtering on a Graph 157

previous row, i.e., H(i, j) = H(i − 1, j − 1), for i > 1, j > 1, H(i,0) = H(i − 1,N).
The general form of a circulant matrix can be seen more easily to follow

H =

⎡
⎢⎢⎢⎣

h1 h2 h3 . . . hN

hN h1 h2 . . . hN−1
...

...
...

. . .
...

h2 h3 h4 . . . h1

⎤
⎥⎥⎥⎦ . (5.4)

Note that a single vector, h, is sufficient to generate a circulant matrix if we set the
first column of H to this vector, i.e., H(1, j) = hj . An important aspect of circulant
matrices is that a circulant matrix embodies a circular convolution operation repre-
sented in matrix form.1 Given this view of circulant matrices, we can now proceed
to connect the DFT to a circulant matrix via the convolution theorem.

Before we investigate when a graph structure gives rise to a circulant Laplacian,
we must first prove that the DFT vectors are eigenvectors of any circulant matrix.

Theorem 5.1 The columns of the DFT matrix, Q, are eigenvectors of any circulant
matrix, H.

This theorem can be proved by first considering a lemma. Define a shift matrix
as the circulant matrix, S, generated by the row vector v = [0,1,0,0, . . . ,0]T. In
other words, S is the identity matrix with each row undergoing a circular shift one
entry below the diagonal. While the transformation effected by S is a delay, its
transpose ST represents a shift forward and is a matrix with non-zero entries above
the diagonal.

Lemma 5.1 Vector qk , the kth column of the DFT matrix Q, is an eigenvector of S

with eigenvalue λ = e
2π i
N

(k−1).

Proof The effect of the shift matrix applied to the column vector qk will be to
produce a new vector, q̃k = Sqk such that q̃k[s] = qk[s − 1] for s < N and q̃k[N] =
qk[1]. However, since the columns of the DFT matrix represent equal partitions of
the unit circle [297], this shift can be accomplished by multiplying each entry by

λ = e
2π i
N

(k−1). Therefore,

q̃k[s] = qk[s − 1] = e− 2π i
N

(s−2)(k−1) = e− 2π i
N

(s−1)(k−1) e
2π i
N

(k−1) = qk[s] e
2π i
N

(k−1),

giving the lemma. �

Now we are prepared to give the proof for Theorem 5.1.

1Note that, while circulant matrices represent circular convolution, Toeplitz matrices, which com-
prise a distinct class of matrices, represent linear convolution. A thorough treatment of these ma-
trices is available in [172].

158 5 Filtering on Graphs

Proof Let us restrict our attention to proving that the kth column of the DFT ma-
trix Q, qk , is an eigenvector of any circulant matrix H. Note that row s of H is
generated by the first row of H, g (which is a flipped and rotated version of h),
multiplied s − 1 consecutive times by the shift matrix, which can be represented as
Ss−1, i.e., Hs = Ss−1g. Furthermore, assign the inner product of the generator g of
H with the kth column of the DFT matrix to the scalar α, i.e., gTqk ≡ α. Now,

HT
s qk = (Ss−1g)Tqk = α

λs−1
= α e− 2π i

N
(s−1)(k−1) = αqk[s].

Therefore, Hqk = αqk . �

Corollary 5.1 The eigenvalues of H are the Fourier transform of the generating
vector h, i.e., λ = Qh.

Corollary 5.2 (The Convolution Theorem) Since convolution is a finite, linear op-
eration, it may be represented by a matrix. Furthermore, since convolution applies
the same kernel to every location, the matrix representing convolution is circulant.
Therefore, the convolution of any two signals h and x may be computed by the
Fourier transform, i.e., x̃ = Hx = 1

N
Q�QTx, where the diagonal matrix of eigenval-

ues � is equal to diag(λ).

Note that the factor of 1
N

is included to satisfy Parseval’s (or Plancherel’s) Theo-
rem which effectively states that 1√

N
Q is a unitary operator, i.e., that 1

N
QQT = I.

Contrary to the usual interpretation of the Fourier transform as a decomposition
into signal frequencies, we view the Fourier transform here as being tightly coupled
to the concept of shift invariance of the graph.

Specifically, a graph is called shift invariant if there exists a permutation
of the node ordering such that the Laplacian matrix representing the graph
is circulant. Therefore, any shift-invariant graph has the DFT basis as the
eigenvectors of its Laplacian matrix.

We may now examine the graphs that are shift-invariant. One requirement for
shift-invariance of a graph is that the graph must be regular. Recall that a regular
graph is any graph such that every node has the same number of neighbors (degree).
Common examples of shift-invariant graphs are infinite lattices, cycles and fully-
connected graphs, as depicted in Fig. 5.1. On all of these shift-invariant graphs,
we can solve the diffusion equation (5.2) by decomposition of the initial state onto
the DFT basis and evolution of each component independently in time. Although
regularity is a necessary condition for a graph to be shift-invariant, not all regular
graphs are also shift-invariant graphs.

Treatments of the Fourier transform for specific lattices may now be viewed as
special cases of shift-invariant lattices. For example, DuBois [116] treats the Fourier

5.1 Fourier and Spectral Filtering on a Graph 159

Fig. 5.1 Examples of shift-invariant lattices. A shift-invariant lattice is represented by a circulant
Laplacian (and adjacency) matrix, which permits the decomposition of signals defined on the nodes
of these graphs onto the Fourier basis. (A) Infinite (or wrapping) lattice. An infinite lattice is the
standard assumption that justifies use of the Fourier transform, even on finite lattices. (B) A cycle
graph. (C) A fully connected graph

transform on a “quincunx” lattice. A second example of a special Fourier transform
treatment for a specific lattice is given by the literature on Fourier descriptors, which
gives applications of Fourier transforms on cycle graphs [88, 256, 417]. In the signal
processing literature, the signal is typically a one-dimensional signal that varies over
time. In this context, a shift-invariant system is considered time-invariant and the
corresponding theory of such signal analysis is called LTI system theory, where
LTI stands for Linear and Time-Invariant.

Standard signal processing techniques based on the Fourier transform may be
applied to functions defined on a shift-invariant graph. A somewhat surprising con-
sequence of this analysis is that Fourier-based filtering has nothing to do with the
graph topology as long as the graph is shift-invariant, i.e., the signal at every node
is treated equally. However, despite this remarkable fact, the evolution of processes
closely associated with the Fourier basis, such as the diffusion equation, will depend
on the topology of the graph, since the eigenvalues of shift-invariant graphs change
with graph topology.

5.1.1 Graphs that Are Not Shift-Invariant

Although the Fourier transform can be used to analyze signals on a wide range of
graphs that arise in practice, not all useful graph structures are shift-invariant. Fur-
thermore, a graph that is seemingly regular can lose shift-invariance for two com-
mon reasons: (i) The graph has a dynamically changing or adaptive connectivity;
(ii) Although the topology is shift-invariant, the weighting is not. The first situation
occurs in surface processing (computer graphics) and space-variant vision in which
the graph represents a nonuniform domain. The second situation occurs commonly
in image processing, in which the lattice has an inhomogeneous weighting to reflect
changes in image properties (e.g., object boundaries).

160 5 Filtering on Graphs

In principle, filtering is also straightforward to implement on shift-variant graphs
that do not possess the regularity necessary for Fourier-based filtering. As before, we
can simply calculate the eigenvectors, Q, for the Laplacian matrix L of any graph.
The only drawback with a shift-variant graph is that these eigenvectors are not the
convenient columns of the DFT matrix (5.3), nor will the eigenvectors be an or-
thonormal set of complex exponentials. Therefore, it is necessary to calculate the
eigenvectors explicitly for each graph, and the familiar Fast Fourier Transform is
not available for efficiently projecting a signal into frequency space.

It is straightforward to use the eigenvectors of the Laplacian matrix of a shift-
variant graph for filtering in a manner analogous to standard Fourier-based filtering.
Specifically, spectral filtering could be implemented by:

1. Computing the eigenvectors of the Laplacian matrix, Q;
2. Projecting the data onto the eigenvector space, x̃ = Qx;
3. Modifying the frequency components, which are the values of x̃, to generate x̂

such that the desired filter is achieved; then
4. Backprojecting x̂ via Q−1x̂ to obtain the filtered signal with the modified fre-

quency components.

Although this procedure is straightforward for applying spectral filtering on an ar-
bitrary graph, it is computationally expensive (and memory intensive) to calculate
and apply the full set of eigenvectors of a shift-variant Laplacian matrix. Fortunately,
good alternatives exist to explicit calculation of the eigenvectors of a shift-variant
graph. The filtering approach adopted by Taubin [371, 372] begins by observing that
applying a diffusion equation with a forward Euler method will have the effect of
reducing high frequencies. By phrasing the filtering as a difference

x[k+1] = x[k] − λLx[k] = x[k] − λQT�Qx[k], (5.5)

where x[k] represents the outcome of the kth iteration, the high frequencies will
be subtracted out during the update step, but the low frequencies will largely re-
main at the same magnitude. The parameter λ controls the speed of the filtering
during the iterations, but care must be taken to avoid instability by setting λ small
enough to avoid violating the CFL conditions.2 The iteration represented by (5.5)
is commonly called Laplacian smoothing in finite element analysis and computer
graphics. However, Taubin observed that there was a “shrinking bias” in the con-
text of mesh filtering, as a result of the fact that the low frequencies will eventually
also dissipate, leaving only the constant eigenvector (i.e., after enough iterations,
all of the nodes would have the same values). A similar effect is observed in image
processing in which the diffusion process of (5.5) eventually yields a constant gray
value of the image intensities. To counteract this shrinking bias, Taubin preserved
the low frequencies while damping the high frequencies by alternating diffusion
steps of the form in (5.5) with iterations of the form

x[k+1] = x[k] + μLx[k], (5.6)

2Note that ‘λ’ is often used to represent an eigenvalue (e.g., Lemma 5.1). We follow Taubin’s
notation for his λ–μ algorithm by using ‘λ’ as a parameter when discussing Taubin’s algorithm.

5.1 Fourier and Spectral Filtering on a Graph 161

where the parameter μ > λ, which has the effect of replacing the relatively well-
preserved low frequencies that were lost during the smoothing step (5.5) without
replacing the high frequencies that were almost completely removed. When μ ≈ λ,
a sharp, “wall filter”, is obtained for the low frequencies, while setting μ � λ has
the effect of a slow filter roll-off.

An immediate concern with Taubin’s algorithm as described is that the appropri-
ate values of the λ and μ parameters vary with the graph size, since the magnitude
of the eigenvalues of the Laplacian will change. Taubin’s resolution of this problem

is to employ the symmetric, normalized Laplacian from Chap. 2, L̃ = D− 1
2 LD− 1

2

(where D is the diagonal matrix of node degrees). This normalized Laplacian is iden-
tical to a scaled or reweighted L for a shift-invariant graph, but has the additional
property that the eigenvalues lie in the range [0,2], which was shown in [81]. Con-
sequently, the values of the parameters λ and μ can remain relatively fixed in order
to achieve a particular filtering characteristic with respect to the symmetric normal-
ized Laplacian. Taubin’s “λ–μ” filter is very useful in practice due to its simplicity,
efficiency and intuitive behavior. However, this algorithm does behave differently
from the full spectral filtering approach (i.e., projecting directly onto the eigenvec-
tors of the Laplacian matrix), since Taubin’s approach only implicitly employs the
spectrum of eigenvalues of the graph. For example, in the case of a shift-invariant
graph, the full spectral filtering implementation of a lowpass “wall” filter would be
to (i) project the signal onto the eigenvectors (i.e., take a forward DFT), then (ii) set
the high frequency components to zero, and finally (iii) project the signal onto the
transpose of the eigenvectors (i.e., take an inverse DFT). This procedure would be
the same regardless of the distribution of the eigenvalues of the graph, e.g., for any
of the shift-invariant graphs such as those in Fig. 5.1. However, the diffusion-based
approach would proceed at a much faster rate for, e.g., the fully-connected graph
than the ring graph in Fig. 5.1, resulting in a need to adjust the values of λ and
μ to achieve with Taubin’s λ–μ method the same effect as the full spectral-based
method.

Taubin’s λ–μ algorithm is defined by the following steps.

1. Choose values for λ and μ parameters.

2. Construct the symmetric normalized Laplacian matrix, L̃ = D− 1
2 LD− 1

2 .
3. Given an initial x[0], solve K iterations, alternating between the diffusion step

and the unshrinking step, i.e.,

x[2k+1] = x[2k] − λL̃x[2k], (5.7)

x[2k+2] = x[2k+1] + μ L̃x[2k+1]. (5.8)

Taubin’s method computes only a lowpass filter directly. However, by subtracting
the lowpass filtered signal from the original signal, it is possible to generate a high-
pass filtered signal. By making further combinations of highpass and lowpass filters,
Taubin’s method may be used to generate bandpass filters of signals on a graph.

162 5 Filtering on Graphs

5.1.2 The Origins of High Frequency Noise

Now that we have given a precise meaning to “high-frequency” signals on an arbi-
trary graph, we would like to pause to examine the origins of the common assump-
tion that noise is predominantly contained in high frequencies. The high-frequency
character of noise can be justified from two different viewpoints: as an acquisition
model and as a model of independent, identically distributed (i.i.d.) noise.

To see the acquisition model viewpoint, consider a linear acquisition matrix, H,
a true signal x, an additive noise vector ν, an ideal observed signal f = Hx and a
noisy observed signal y, such that

y = H(x + ν) = f + Hν. (5.9)

Phrased in this way, our goal in filtering is to recover either the ideal observed signal
f or the true signal x. However, for either goal, it is helpful to remove high-frequency
noise that corrupts the observation.

We know from the last section that if our graph is shift-invariant and the acqui-
sition matrix H is shift-invariant, then we can analyze the effects of H via the DFT
and, in particular, the eigenvalues of the acquisition matrix are comprised of the
DFT of any single row of H. In general, if our graph is shift-invariant then we can
consider the acquisition matrix to be shift-invariant since this shift-invariance sim-
ply means that the signal acquisition device operates the same everywhere. A typical
acquisition model is that each node performs a weighted sum of the underlying data
in a small region about the point. However, since the DFT of a small summation
kernel such as a box kernel or a Gaussian kernel concentrates more power in the
low frequency range (where a greater extent of the spatial window increasingly con-
centrates power in the low frequencies), then the high-frequency content of the true
signal x will be suppressed and we may assume that residual high-frequency content
in the observation y is contributed by the noise vector ν. Similarly, if we try to re-
cover the true signal x via inversion of the acquisition matrix H (i.e., deconvolution),
then the high-frequencies of the observation f + Hν will be amplified and it would
be better to filter out the high frequencies in the observed data before inversion.

The other viewpoint for motivating the removal of high frequencies in the ob-
served data is that if the noise term ν is i.i.d. across the samples then the expected
value for the difference of the values of ν over an edge will be zero. Consequently,
a reasonable model is to assume that large gradients are noise and attempt to remove
them.

Despite the reasonable assumptions underpinning the motivation for removal of
high frequency noise, most real data do contain some high frequency content that
we do not want removed. A common procedure for keeping the high frequency
content in the signal is to assume that the high frequency content generally takes the
form of discontinuities in which the data jumps from one smoothly varying region to
another. In the context of image processing, this assumption leads to an image model
where individual objects have a smoothly varying intensity but that neighboring
objects may have an arbitrarily large jump in intensity. Of course, this assumption

5.2 Energy Minimization Methods for Filtering 163

is not true for all kinds of data (e.g., a textured object within an image), but it works
well for many kinds of real data and refocuses the filtering operation on the detection
of discontinuity locations, while applying lowpass filtering everywhere else.

Despite the usefulness of the above lowpass model for data filtering, it is impor-
tant to recognize that some noise contains significant power in the low frequencies,
which is equivalent to the presence of spatial correlations (called “pink noise”).
Additionally, filtering can also be applied to problems in which the purpose of the
filtering operation is to correct observation or acquisition error, which may have any
frequency content. Finally, not all data domains are shift-invariant. However, for a
shift-variant data domain, the above assumptions may also imply a high-frequency
noise model. Although the signal defined on the shift-variant graph may contain
high-frequency noise, the eigenvectors of the graph Laplacian corresponding to
high-frequency may behave differently from the standard high-frequency eigenvec-
tors employed in Fourier analysis. However, even in the case of a shift-variant data
domain, the techniques in this chapter will allow for the removal of high-frequency
components of the observed data, even if we allow discontinuities across some
edges.3

5.2 Energy Minimization Methods for Filtering

Many filtering methods may be viewed as procedures to minimize an energy. In this
section, we review several energy minimization models and show how these models
lead to commonly used filtering algorithms. We begin this section by describing
the basic energy minimization models before proceeding to describe methods for
filtering in the presence of implicit or explicit discontinuities.

5.2.1 The Basic Energy Minimization Model

In the previous section, a traditional view of denoising was taken in which the goal
was to remove the high frequencies (noise) while preserving the low frequencies
(signal). A different approach to accomplishing the same goal is to view the desired
denoised signal, x, as a minimum of the energy4

EBEM[x] =
∫

x�x dt =
∫

‖∇x‖2
2 dt, (5.10a)

3Note that in image processing the term edge is used to mean discontinuity (e.g., “edge detection”).
However, since the context of this entire book is the analysis/processing of graphs (complexes) and
data defined on graphs, we reserve the word edge to refer strictly to a 1-cell (i.e., we use edge in
the sense of graph theory).
4The term energy is used throughout the book to represent an objective function which is optimized
to produce a useful application-specific solution. In this case, the solution represents the filtered
(denoised) signal. Although the term energy is not generally intended to have a physical relation-
ship to energy, note that the energy described in (5.10b) is actually the power dissipation for an
electric circuit (when x represents the electrical potentials at every node), as given in Chap. 3.

164 5 Filtering on Graphs

EBEM[x] = xTLx = (Ax)T(Ax). (5.10b)

This energy model returns a high energy for a signal x dominated by high-frequency
components and returns a low energy for a signal x dominated by low-frequency
components. Therefore, finding a signal that minimizes this energy will produce a
low-frequency signal. However, by connecting the frequency components of x with
the norm of the gradient, we may generalize this model to measure the gradients
with any p-norm.

EBEM[x] =
∫

‖∇x‖p
p dt, (5.11a)

EBEM[x] = 1T|Ax|p =
∑
eij ∈E

|xi − xj |p, (5.11b)

where the parameter p controls the norm of the energy functional and the summation
in (5.11b) is over every edge in the graph. Note that the conditions for a norm are
violated when p < 1 (specifically the triangle inequality), therefore we will employ
the term p-norm to refer to

‖x‖p =
(∑

i

|xi |p
) 1

p

, (5.12)

even though we allow 0 < p < 1. We refer to this energy as the Basic Energy
Model. The Basic Energy Model pervades this entire book. In future chapters, we
see that many common algorithms can be viewed as instances of the Basic Energy
Model with different values of p and different interpretations of the variable x. In
this chapter, the Basic Energy Model leads to mean, median, mode and minimax
filters as well as Laplacian smoothing and anisotropic diffusion. In Chap. 6, the
Basic Energy Model leads to several clustering methods in the literature, including
max-flow/min-cut, random walks, geodesic clustering, watersheds, spectral cluster-
ing, normalized cuts and the isoperimetric partitioning algorithm. Going further, in
Chap. 7 we see how the same Basic Energy Model leads to the Laplacian Eigenmaps
manifold learning technique. We believe that the unification of so many content ex-
traction (data processing) methods into one functional is a major contribution of this
work.

The trivial minimum of the Basic Energy Model given by a constant x is a useless
filtering of a noisy signal. However, a noisy signal may have its energy reduced it-
eratively without reducing the energy to the undesirable global minimum. There are
two standard methods for iteratively minimizing the Basic Energy Model—iterative
minimization of the model for each node individually and gradient descent.

5.2.1.1 Iterative Minimization

We begin by describing how to iteratively minimize the Basic Energy Model for
each node. If we were given a solution, x[k], at iteration k, we can fix the solution

5.2 Energy Minimization Methods for Filtering 165

everywhere except for one node vi and consider finding the update which would
minimize EBEM[xi] for that node. By definition of (5.11b), the minimum is given by

xi = argmin

{ ∑
eij ∈E

|xi − xj |p
}
. (5.13)

When p = 2, xi is assigned to have the mean value of its neighbors, while p = 1
causes xi to be assigned the median value of its neighbors. Likewise, p = 0 assigns
xi to be the mode value of its neighbors, and as p → ∞, xi approaches the minimax
value of its neighbors. Therefore, if the initial estimate x[0] = s, the mean, median,
mode and minimax filters can all be viewed as operations designed to incrementally
minimize (5.11b) under different p-norms. Note that many implementations of these
filters also include a self-connected edge at each node such that the node’s value is
included in the mode, mean, median or minimax calculation.

Minimization of the energy functional given in the Basic Energy Model of
(5.11b) for p-norms given by p = 0, p = 1, p = 2, and p → ∞, results in the
commonplace mode, median, mean, and minimax filters, respectively. Conse-
quently, these filters can all be generalized to arbitrary graphs with any neigh-
borhood structure.

Instead of minimizing the Basic Energy Model by optimizing the solution for
each node independently, we can also find the solution via gradient descent (see
Appendix B). Since gradient descent is typically used to optimize the Basic Energy
Model only for the cases of p = 2 or p = 0, our discussion will be limited to these
cases. When p = 2, the Basic Energy Model takes the form

EBEM[x] = 1T|Ax|2 = xTATAx = xTLx, (5.14)

with gradient

∂EBEM[x]
∂x

= Lx. (5.15)

Therefore, the iterative update to perform gradient descent of an initial noisy signal
according to the Basic Energy Model when p = 2 would be

x[k+1] = x[k] − λLx[k]. (5.16)

We saw this filtering algorithm before in (5.5) when it was called Laplacian smooth-
ing. In this context, the time derivative of x was set equal to the negative gradient
of the Basic Energy Model, i.e., ∂x/∂t = −∂E /∂x. By establishing this equality, a
forward Euler solution of the diffusion equation

∂x

∂t
= −Lx, (5.17)

166 5 Filtering on Graphs

performs gradient descent on the Basic Energy Model where the time step of the
forward Euler operation is represented by λ.

The classic nonlinear anisotropic diffusion model formulated for image process-
ing by Perona and Malik [306] may be viewed as a descent algorithm that minimizes
the Basic Energy Model (5.11b) when p = 0. In this section, we follow Black et
al. [38] to describe this relationship.

Consider the Basic Energy Model for p = 0, i.e.,

EBEM[x] = 1T|Ax|0 =
∑
eij

|xi − xj |0. (5.18)

Recall that the value of the �0-norm | · |0 is zero when the argument is zero and is
unity otherwise. Although Black et al. [38] showed that the nonlinear anisotropic
diffusion work of Perona and Malik unintentionally approached this energy indi-
rectly, similar filtering models were directly considered at about the same time (see
[50, 144, 146]). These models were motivated by the desire to represent implicit dis-
continuities in the reconstruction. Unfortunately, the p = 0 energy in (5.18) is both
non-convex and non-differentiable. The non-differentiable aspect of the energy may
be overcome by replacing | · |0 with an M-estimator, which is an error function used
in statistics for which the penalty of large errors increases very slowly for higher
error values. M-estimators were used to derive several different methods for gener-
ating weights in Chap. 4. For purposes of exposition here, we may approximate the
�0-norm | · |0 via the Welsch function from Chap. 4

ρα(z) ∝ 1 − exp

(
−z2

α

)
, (5.19)

where α is a parameter that controls the approximation to | · |0, such that the approx-
imation fidelity improves as α → ∞. Figure 4.3 in Chap. 4 gives an example of the
Welsch function.

Using the Welsch function as an approximation to | · |0 gives us an approximation
for the Basic Energy Model energy for the case p = 0 as

EBEM[x] = 1Tρ(Ax), (5.20)

where the error function ρ(·) is assumed to operate on the individual components of
any vector or matrix input. We may take an initial solution for x, x[0] = g and apply
gradient descent to reduce the energy (see Appendix B). The gradient of (5.20) is
given by

∂EBEM[x]
∂x

= 2αAT diag(ρ̄(Ax))Ax, (5.21)

where

ρ̄(z) = exp

(
−z2

α

)
. (5.22)

5.2 Energy Minimization Methods for Filtering 167

Applying the gradient descent operation to iteratively update x gives the iteration

x[k+1] = x[k] − λAT diag(ρ̄(Ax[k]))Ax[k] = x[k] − λL[k]x[k], (5.23)

where the Laplacian operator L[k] is updated at each iteration to reflect the chang-
ing edge weights given by G−1 = diag(ρ̄(Ax[k])). This update rule is exactly the
iteration given by Perona and Malik to describe anisotropic diffusion, in which the
weights were given by ρ̄(z). In this way, the nonlinear anisotropic diffusion of Per-
ona and Malik is naturally interpreted as an approximation to the unweighted Basic
Energy Model when p = 0, while gradient descent on the Basic Energy Model for
p = 2 corresponds to a linear diffusion smoothing process.

5.2.2 Extended Basic Energy Model

The Basic Energy Model defined in (5.11b) has the distinct problem that the en-
ergy is trivially minimized by a trivial solution in which xi = constant. Therefore,
we may extend the Basic Energy Model by viewing the Basic Energy Model as a
smoothness term to which we may add a data attachment term that causes the orig-
inal data to push back against the smoothness, phrasing the solution as a balance
between the model and the measured data. This allows for a non-trivial solution and
provides a mechanism for incorporating prior information into the solution in the
form of regularization. The generalized formulation may be given as

EEBEM[x] =
∫

‖∇x‖p
p dt + λ

∫
|x − s|p dt, (5.24a)

EEBEM[x] = 1T|Ax|p + λ1T|x − s|p

=
∑
eij

|xi − xj |p + λ
∑
vi

|xi − si |p, (5.24b)

where s represents the observed (noisy) data and the regularization parameter λ

acts to trade off between fidelity of the denoised signal to the original data and
smoothness of the denoised signal. Although this new energy model appears sub-
stantially different from the Basic Energy Model, we may view the new energy
given in (5.24b) as a variant of the Basic Energy Model in which every node vi ∈ V

with value xi has a “phantom” neighbor ui ∈ P with value si such that the phantom
node ui is connected only to vi by an edge weighted with value λ. These phan-
tom nodes are sometimes called dongle nodes or t-links (“terminal” links in [56]).
Therefore, this new energy model may be viewed as an example of the Basic En-
ergy Model with additional nodes which are fixed to Dirichlet boundary conditions
(see Chap. 2 for definition and Appendix B for optimization). Since the new energy
model may be viewed as equivalent to the Basic Energy Model with an extended
node set (where the new nodes are fixed as boundary conditions), we refer to the
energy described in (5.24b) as the extended Basic Energy Model.

168 5 Filtering on Graphs

The primary advantages of the Extended Basic Energy Model are that the en-
ergy is minimized by a nontrivial solution, and that the adjustable influence of the
regularization term allows explicit control over the contribution of the filtering. In
the case of p = 2, an intuitive interpretation exists for the Extended Basic Energy
Model. We previously saw that when p = 2, gradient descent on the Basic Energy
Model could be interpreted as a diffusion process on the noisy measured signal
which is solved with a forward Euler method. However, if we solve the diffusion
process with a backward Euler method, then the diffusion time is 1/λ [104]. To see
this connection, consider again the linear diffusion equation

∂x

∂t
= −Lx, (5.25)

solved using a backward Euler method [312]

x[k+1] − x[k]

�t
= −Lx[k+1], (5.26)

x[k+1] = x[k] − �t Lx[k+1], (5.27)

(�t L + I)x[k+1] = x[k], (5.28)
(

L + 1

�t
I

)
x[k+1] = 1

�t
x[k]. (5.29)

This backward Euler method is equivalent to a solution of the Extended Basic En-
ergy Model when p = 2, since the minimum of EEBEM[x] is given by

(L + λI)x = λs. (5.30)

Consequently, the solution for the backward Euler solution for the diffusion problem
in (5.29) is equivalent to (5.30) when s = x[0] and λ = 1/�t . Using this connection
allows us to intuitively view the λ parameter in the Extended Basic Energy Model as
the reciprocal number of iterations employed for solving the Basic Energy Model.

The form of the Extended Basic Energy Model, which consists of a smoothness
term and a data term, is also adopted by several other energy minimization filtering
models. In the next section we consider another of these models which makes a
modification to the smoothness term.

5.2.3 The Total Variation Model

In the domain of image processing, the underlying graph is a lattice embedded into
the Euclidean plane. When p = 2, the solution to the Basic Energy Model behaves
as if the lattice were a representation of the continuous plane. However, this be-
havior is not observed when p �= 2. Therefore, when p �= 2, the filtering of images
produces undesirable gridding artifacts (sometimes called “metrication artifacts”).

5.2 Energy Minimization Methods for Filtering 169

Fig. 5.2 Gridding artifacts observed in the solution to the Basic Energy Model when p = 1 but
not p = 2. Note that the introduction of more edges (an 8-connected lattice) substantially reduces
these gridding artifacts. The bottom row shows closeup views of the circle boundary to illustrate
the variation in gridding artifacts

These gridding artifacts may be reduced by extending the number of edges in the
lattice [54]. However, by modifying the smoothness term of the Basic Energy Model
such that the smoothness is measured by quantities at nodes rather than quantities
on edges, it was shown that these gridding artifacts may be reduced [386]. This
is the approach of the Total Variation Model. Figure 5.2 shows the gridding ar-
tifacts produced by filtering with the Basic Energy Model when p = 1 (a median
filter) for a 4-connected and 8-connected lattice. The 8-connected lattice provides
substantially reduced gridding artifacts at the cost of additional edges. Although the
solution to the p = 2 model does not exhibit gridding artifacts, the boundary local-
ization is blurred more for the p = 2 solution than the p = 1 solution. Preserving

170 5 Filtering on Graphs

both boundary localization and a reduction of gridding artifacts is obtained by the
Total Variation Model.

The Total Variation Model based on nodal smoothness is described by the energy
functional

ETV[x] =
∫

‖∇x‖p

2 dt + λ

∫
|x − s|p dt, (5.31a)

ETV[x] = 1T(|AT||Ax|2) p
2 + λ1T|x − s|p

=
∑
vi

(∑
j∀eij

|xi − xj |2
) p

2 + λ
∑
vi

|xi − si |p. (5.31b)

Within the image processing literature, this model is usually credited to [326] and is
sometimes referred to as the “Rudin, Osher, Fatemi” model. In contrast to the for-
mulation of the Extended Basic Energy Model given in (5.24b), the minimization
of the Total Variation Model searches for the minimum vector p-norm measured at
each node. Generally, the Total Variation Model given in (5.31b) is more difficult to
solve than the Extended Basic Energy Model since the 1-cochains produced by the
gradient operator are then transfered back to 0-cochains. Despite this enhanced dif-
ficulty, the total variation model (5.31b) is convex when p ≥ 1 and is thus solvable
by any descent algorithm [123]. When p = 2, the Extended Basic Energy Model
and the Total Variation Model are equivalent, and when p = 1 this model is a to-
tal variation minimization from which this model takes its name. Filtering via total
variation minimization has been well studied (see [69, 326]) and fast algorithms are
known for this case [68, 98]. The total variation model was formulated initially in the
continuum and on a graph much later [300] and then further extended to weighted
graphs and arbitrary p-norms [49, 123].

A problem with all of these energy minimization algorithms is the assumption
that all high frequencies represent noise. Solutions of these models with lower val-
ues of p typically preserve high-frequency content. We may therefore alter our fil-
tering approach to preserve high-frequency signal content by modeling signals as
consisting of smooth regions which are separated by a small number of sharp dis-
continuities. These discontinuities are often thought of as region boundaries. The
discontinuities may be incorporated into the energy minimization models by weight-
ing changes in the filtered signal differently. Spatial gradients in the filtered signal
which occur over discontinuities are penalized less than spatial gradients inside re-
gions. Since these weights are used only as approximations to the discontinuity
locations, we call this approach filtering with implicit discontinuities.

5.3 Filtering with Implicit Discontinuities

The assumption that low frequency content represents signal while high frequency
content represents noise is often not valid in real data, particularly in image data.

5.3 Filtering with Implicit Discontinuities 171

Specifically, it is often more accurate to assume that we want to smooth more over
similar data at neighboring nodes while smoothing less over dissimilar data at neigh-
boring nodes. The model considered in this section stops short of looking for explicit
object boundaries to avoid smoothing over (covered next in Sect. 5.4), but rather
performs smoothing on a weighted graph (using affinity weights). Generally, the
edge weights are derived from some signal feature that can be used to roughly de-
tect object boundaries (e.g., image intensity, image color, node coordinates, texture
coefficients). See Chap. 4 for different options to set weights. For the rest of this
section, assume that we have a set of nonnegative, normalized, real-valued weights,
wij , that give some indication of discontinuity locations (i.e., wij → 0 for edges
bridging discontinuities and wij → 1 for edges bridging nodes likely to take the
same filtered value).

There are three general approaches to the weighted filtering case: (i) Spectral
filtering methods compute the eigenvectors of the weighted Laplacian, project the
signal, dampen the high frequencies, and reconstruct. Practically, it is preferable to
use Taubin’s λ–μ algorithm on the weighted Laplacian (as described in Sect. 5.1).
(ii) Edge-based filtering methods find the solution that tries to fit the data while
penalizing smoothness measured across edges. (iii) Node-based filtering finds the
solution that tries to fit the data while penalizing smoothness measured at nodes.

The Basic Energy Model and the Extended Basic Energy Model are modified
easily to incorporate weights, i.e.,

EBEM[x] =
∑
eij

w
p
ij |xi − xj |p, (5.32)

EEBEM[x] =
∑
eij

w
p
ij |xi − xj |p + λ

∑
vi

|xi − si |p. (5.33)

The Basic Energy Model (5.33) now corresponds to minimization via a weighted
mode, median, mean or minimax filter. The Extended Basic Energy Model (5.33)
may be minimized for p ≥ 1 using any of the convex optimization techniques dis-
cussed in the previous section.

Two options are available for introducing weights into the total variation model
described in (5.31b). As before, we can use edge weights to modify the scalar-valued
components that comprise the gradient vector field across edges, or we may use
node weights to modify the norms of the gradient vector field defined at the nodes.
Component weighting was described in [49, 123, 423] and may be formulated as

ETV[x] =
∑
vi

(∑
j ∀eij

wij |xi − xj |2
) p

2 + λ
∑
vi

|xi − si |p. (5.34a)

As discussed in [123], the introduction of nonnegative weights still preserves the
convexity of the Total Variation Model for p ≥ 1, and therefore any descent algo-
rithm may be used to perform the optimization.

The scalar-valued vector norms may be weighted similarly to the edge weights
based on the estimation of whether or not a node is a boundary node. Chapter 4

172 5 Filtering on Graphs

provides examples of node weighting and we will proceed by assuming that we have
a set of nonnegative, normalized, real-valued weights, wi , that give some indication
of discontinuity locations (i.e., wi → 0 for nodes on the border of discontinuities
and wi → 1 for “internal” nodes). Given these node weights, we may consider a
node-weighted formulation of (5.31b) as

ETV[x] =
∑
vi

wi

(∑
j ∀eij

|xi − xj |2
) p

2 + λ
∑
vi

|xi − si |p. (5.34b)

Once again, the introduction of node weights preserves the convexity of (5.34b)
when p ≥ 1 and therefore the optimization may be performed using any descent al-
gorithm. Due to the historical derivation of this filtering model from continuum me-
chanics, the previous node-weighted formulation of the Total Variation Model de-
scribed in (5.34b) has been more common in the literature (e.g., [11, 386]). However,
since discontinuities in 0-cochains are defined between nodes, we generally recom-
mend the edge-weighting formulation described by (5.34a). The node-based weight-
ing loses both directional discontinuity information and precision of the boundary
location, since boundaries lie between groups of nodes.

We have considered the application of the various filtering approaches on a
weighted graph in which the weights were used to encode knowledge of discon-
tinuities. However, these discontinuities were viewed as real-valued weights and
were not constrained to form any sort of closed boundary surrounding different data
clusters. In the next section, we will remove the weights and introduce an explicit
boundary variable that explicitly encodes the discontinuities over which smoothing
is not permitted.

5.4 Filtering with Explicit, but Unknown, Discontinuities

Instead of treating the discontinuities implicitly with weights, we can formulate the
discontinuities explicitly as a boundary that separates some nodes from others over
which we permit no smoothing. In a sense, these explicit discontinuities could be
viewed as a special case of the models in the previous section in which the weights
are restricted to be binary-valued. However, most treatments of explicit discontinu-
ity models impose the additional constraint that the discontinuities form a closed
boundary. It is rare in practice to know where this boundary is, so the boundary
must also be estimated in the filtering process. Unfortunately, this additional un-
known variable usually destroys the convexity of the implicit discontinuity models
that were previously considered, forcing the estimation of local minima.

When the discontinuities form a closed boundary, the standard approach is to
view the filtered values inside the region as a window into a foreground function,
x, and the values outside the region as a window into a background function, y.
Therefore, in an explicit discontinuity model with a closed boundary, one seeks
to find the optimum value of both the reconstructed foreground variable and the
reconstructed background variable.

5.4 Filtering with Explicit, but Unknown, Discontinuities 173

The prototypical energy for filtering with explicit discontinuities is the “piece-
wise smooth” Mumford–Shah model [289] (strongly related to the Geman and Ge-
man model of [145] and the “weak membrane model” of Blake and Zisserman [39]).
In this work, we follow the level set literature to consider the piecewise smooth
model [289, 384], formulated as

EMS[xR, xR̄;R] =
∫

R

‖∇xR‖2
2 dt +

∫

R̄

‖∇xR̄‖2
2 dt

+ λ

∫

R

|xR − s|2 dt + λ

∫

R̄

|xR̄ − s|2 dt + ν
(R), (5.35)

where we introduce the new variable R which is a subset of the domain and the
function
(R) measures the boundary length of the set. In a more generalized con-
text, we may consider R ⊆ V, represented by a binary-valued 0-chain, r, indicating
membership in R, i.e., ri = 1 if vi ∈ R and ri = 0 otherwise. In this more general-
ized setting, we may define
(R) as

(R) =
∑
eij

wij |ri − rj |. (5.36)

When wij = 1 everywhere, this definition equates
(R) with the number of edges
spanning R and R̄ (although any affinity weighting function could also be applied).
This model implicitly assumes that the data may be divided into two groups (e.g.,
“foreground” and “background”), although more complex models have been con-
sidered as well [389] which could be easily adapted to a discrete framework. In
the context of a 4-connected image lattice embedded into the two-dimensional Eu-
clidean plane in the usual fashion, the definition of
(R) given in (5.36) measures
the boundary of the region defined by R with an �1 metric. If a Euclidean (or other)
measure were desirable, the weights could be modified to reflect the desired metric,
as described in Chap. 4.

Following the treatment in [163], the discrete formulation of (5.35) may be given
as

EMS[xR,xR̄; r] = rT|AT||AxR|2 + (1 − r)T|AT||AxR̄|2

+ λrT|xR − s|2 + λ(1 − r)T|xR̄ − s|2 +
(R). (5.37)

Although this formulation is no longer convex, additional information is gained by
finding a solution for the explicit boundary, R, which allows interpretation of a
minimum for (5.37) as a segmentation or clustering algorithm. Consequently, this
model will be discussed in greater detail in Chap. 6. Note that the Mumford–Shah
model defined on a graph was previously used to establish a set of filter coefficients
that could be applied iteratively to perform filtering, see [342].

174 5 Filtering on Graphs

5.5 Filtering by Gradient Manipulation

A different approach to filtering may be achieved by manipulating the gradients
of the data and reconstructing a least-squares fit of the node data, x. Specifically,
if we consider the gradient vectors v = ∇u, then we may apply any manipulating
function to these vectors, η(v) and then look for the new scalar-valued function
for which these vectors are the gradients, ∇ũ = η(v). Of course, not every set of
vectors is the gradient of some scalar function (i.e., the vector field may contain a
curl component). Therefore, the standard approach would be to find a scalar function
with a gradient field that is as close as possible to η(v) in the least-squares sense
(see, e.g, [131, 393, 410]). Specifically, the goal is to find the scalar field ũ that
minimizes

E [ũ] =
∫

‖∇ũ − η(v)‖2
2 dt, (5.38)

which takes a minimum at the solution to the Poisson equation

∇2ũ = ∇ · η(v). (5.39)

Beyond least-squares minimization, other options are available for reconstructing a
scalar field u from a vector field with a nonzero curl component (see [2]).

In a discrete setting, the manipulation of the gradient field occurs over the
1-cochain y. Specifically, y = Ax, which is manipulated with η(y) and a least-
squares solution is produced via the energy functional

E [x̃] = (Ax̃ − η(y))T(Ax̃ − η(y)), (5.40)

which takes a minimum when

Lx̃ = ATy. (5.41)

Although traditional applications of this model have not considered weighted
edges, these edge weights could easily be introduced into this context. For example,
the least-squares solution of the problem in (5.41) would simply be modified to
solve the Poisson equation

Lx̃ = ATG−1Ax̃ = ATG−1y. (5.42)

5.6 Nonlocal Filtering

Recent studies have suggested using nonlocal neighborhood relationships to per-
form filtering [15, 63]. Instead of an edge set based upon a local neighborhood
and gradient-based weighting, these methods have advocated for employing a fully-
connected graph in which each edge weight is dependent upon the statistical rela-
tionship or similarity of the data within a local neighborhood of each node. In other

5.7 Filtering Vectors and Flows 175

words, each node is considered to have a local neighborhood and a distant neigh-
borhood (which is a superset of the local neighborhood), where the edges of the
distant neighborhood derive their edge weights by comparing local neighborhoods.
In this way, weights form connections at two different scales. The principle with
these nonlocal techniques is that many patterns are repeated throughout a dataset
and therefore the restoration of the pattern at one location can benefit from looking
at patterns from other locations. Of course, the introduction of a fully-connected
graph makes the computation intense and slow. Despite this computational hurdle,
the quality of the results is sufficiently impressive that the technique remains an
active area of research.

Since this idea was introduced in the field of image processing, a regular data grid
is assumed in which it is possible to measure neighbors in a small window around
two pixels. Specifically, the weights can be derived as

wij = σ(‖xnbhd(i) − xnbhd(j)‖), (5.43)

where σ(·) is any affinity weighting function discussed in Chap. 4 and xnbhd(i) rep-
resents the collection of data values, arranged into a vector, from the nodes in the
local neighborhood of vi . The weights generated in this fashion may be used directly
in any of the methods described in previous sections. This distinction between lo-
cal and distant neighborhoods also carries over easily to arbitrary regular graphs,
but not to irregular graphs. One possible avenue for generalization of these methods
to irregular graphs is to modify σ(·) to input two distributions as arguments and
output a distance between those distributions. For example, σ(·) could measure the
difference in entropy of the data values in the two local neighborhoods, even if the
neighborhoods were of different size. Another approach for generalization of this
method to irregular graphs is to consider two nodes to be distant neighbors only if
they have the same degree.

5.7 Filtering Vectors and Flows

The focus of the previous sections has been the filtering of 0-cochains or functions
defined on nodes. In this section we discuss how to apply these same techniques
to filtering 1-cochains or functions defined on edges, such as vectors or flows. For
the remainder of this section, we will refer to all 1-cochains as flows. We begin
our application into flow filtering by making the same assumption as we did with
the filtering of scalar fields—that the target of our filtering operation is to suppress
high frequencies. This assumption can be motivated by the same arguments as in
Sect. 5.1.2 if the 1-cochains are acquired directly (i.e., if our acquisition device
measures flows, differences, gradients or other vectors). The filtering of high fre-
quency components in a flow field is identical to the case of filtering a scalar field:
low-pass filtering entails suppressing the components corresponding to high fre-
quency eigenvectors of the Laplacian. Instead of suppressing the high frequencies

176 5 Filtering on Graphs

of the scalar Laplacian, flow filtering suppresses the high frequencies of the vector
Laplacian discussed in Chap. 2.

Recall that the continuous formulation of the vector Laplacian is

∇2 = (∇∇·) − (∇ × ∇×), (5.44)

and the (unweighted) edge Laplacian

L1 = BTB + AAT, (5.45)

where B is the face–edge incidence matrix. Although many aspects of our smoothing
models for scalar fields translate directly, there are also important differences. We
can note several aspects of the edge Laplacian in the context of filtering:

1. The node Laplacian for a connected graph has a rank one nullspace correspond-
ing to the constant vector, which means that a diffusion process governed by the
scalar Laplacian will always approach a constant. The edge Laplacian has a rank
zero nullspace when |F| = |E| − |V| + 1 (see Chap. 4), meaning that “diffusion”
with the edge Laplacian will always drive the solution to zero.

2. The edge structure may also be shift-invariant for several common types of com-
plex. For example, a wrapping (or infinite) lattice will have a circulant edge
Laplacian (assuming that the cycle set consists of all the local cycles). If the
edge Laplacian is circulant, then the DFT may be used to efficiently filter flows,
as described above for the case of nodal filtering.

3. From the definition of the edge Laplacian, it is clear that a “smooth” flow field
is one for which there is a small curl and a small divergence. In other words,
the ideal smooth flow is one in which all of the flow vectors are pointing in
the same direction. Figure 5.3 illustrates the principle of vector smoothing and
Fig. 5.4 gives an example on an arbitrary graph. These examples illustrate vector
“diffusion” in which the initial high-frequency flow field is smoothed.

Thus filtering higher-order data is a straightforward generalization of the intuitive
filtering of nodal data presented above.

The filtering of a flow field or any edge data is possible using the same for-
malism for filtering scalar fields or node data by using the eigenvectors of the
edge Laplacian.

This direct extension of filtering to higher-order data provides a clear example of
the generality of the discrete framework.

5.7.1 Translating Scalar Filtering to Flow Filtering

If the edge Laplacian is circulant, then standard DFT filtering techniques may be
applied since the vectors in the DFT matrix will also be the eigenvectors of the edge

5.7 Filtering Vectors and Flows 177

Fig. 5.3 An example of vector smoothing in the plane. (A) The initial, noisy vector field with
nonzero curl and divergence throughout the field. (B) The vector field smoothed via diffusion (the
Basic Energy Model applied to flows (5.49b) with p = 2). In the Euclidean plane, this smoothing is
equivalent to smoothing the two coordinate components of each vector independently (i.e., treating
both as scalar fields). In general, vector smoothing reduces both the curl and divergence of the
vector field, and adds spatial coherence or correlation to the vector-valued data

Laplacian. However, if the edge Laplacian is not circulant, then we may still apply
Taubin’s smoothing method to the flow field. Specifically, if we have flow field y,
then we may alternate “diffusion” and “unshrinking” steps via

y[2k+1] = y[2k] − λL1y[2k], (5.46)

y[2k+2] = y[2k+1] + μL1y[2k+1]. (5.47)

In order to utilize the gradient-based filtering techniques that we defined for
scalar functions, we need to ask how to define a “gradient” on a vector/flow field.
A natural choice of the “gradient” of a flow field might be to view the gradient as the
0-coboundary operator (see Chap. 2) and simply replace it with the 1-coboundary
operator, i.e., the curl operator B. However, such an approach would view a mini-
mization of the gradient operator as the goal rather than viewing the gradient oper-
ator as a proxy for dampening the high-frequency eigenvectors of the Laplacian, as
originally derived in (5.10b). For scalar functions, the Laplacian consists of L = ATA
and therefore an iterative reduction of 1T|Ax|p will have the effect of filtering high
frequencies in the initial data. However, when we consider the edge Laplacian, then
L1 = BTB + AAT and we can see that simply replacing gradient with curl, or re-
placing a minimization of 1T|Ax|p with 1T|By|p , addresses only the first term of L1.
Therefore, if we intend to extend the gradient-based techniques to flow filtering, we
must minimize both 1T|By|p and 1T|ATy|p , i.e., in order to dampen high frequen-
cies we must simultaneously minimize both the curl and the divergence of the flow
field.

We may now reformulate the gradient-based techniques employed in Sect. 5.2
for scalar functions in the context of flow field filtering by again considering the
energy minimization models in this context. The formulation of the Basic Energy

178 5 Filtering on Graphs

Fig. 5.4 An example of flow
filtering in an arbitrary graph.
A lowpass flow filtering
process attempts to reduce
both flow divergence and flow
curl. Node v1 and cycle c1
have been designated as
locations where the initial
flow field has high divergence
and curl, respectively.
(A) The initial flow field.
Note the strongly nonzero
divergence at v1, equaling
10 + 5 − 2 − 3 = 10 and the
nonzero curl around cycle c1
equaling 5 + 5 + 5 = 15.
(B) The vector field smoothed
via diffusion after one
iteration (forward Euler on
the Basic Energy Model
(5.49b) with p = 2 and
timestep �t = 0.1 = 1/λ).
Even after one iteration, the
divergence at v1 has been
reduced to
7.4 + 2.9 − 4.4 − 1.1 = 4.8
and the curl around cycle c1
has been reduced to
2 + 1.7 + 2.7 = 6.4. (C) The
vector field smoothed via
diffusion after five iterations
(forward Euler on the Basic
Energy Model for flows
(5.49b) with p = 2 and
timestep �t = 0.5 = 1/λ).
The divergence at v1 has been
reduced to
3.94+0.99+0.19−4.74 = 0.38
and the curl around cycle c1
has been reduced to
1.42 + 0.53 + 0.19 = 2.14

Model for flow filtering therefore gives

EBEM[y] =
∫

‖∇ · �y‖p
p dt −

∫
‖∇ × �y‖p

p dt, (5.48a)

EBEM[y] = 1T|By|p + 1T|ATy|p. (5.48b)

Recall that the sign discrepancy between the continuous and discrete formulations
was addressed in Chap. 2. In the scalar case, the minimum of EBEM[·] was trivial
(constant) and this case is no different (zero). However, just as in the scalar case,

5.8 Filtering Higher-Order Cochains 179

a few steps of an iterative minimization algorithm for (5.48b) will serve to quickly
dampen the highest frequencies.

In the scalar case we employed a data term to avoid a trivial minimum of our
gradient term and the same technique may be used again for flow fields. If we have
a noisy observation of our flow field (represented by function s), then we may trade
off between smoothness and the noisy data via a minimization of

EEBEM[y] =
∫

|∇ · �y|p dt −
∫

‖∇ × �y‖p
p dt + λ

∫
|�y − �s|p dt, (5.49a)

EEBEM[y] = 1T|ATy|p + 1T|By|p + λ1T|y − s|p. (5.49b)

All of the above filtering techniques may be modified to include implicit dis-
continuities (weights) by using the appropriately weighted operators. Recall from
Chap. 2 that the weighted edge Laplacian is given by L1 = AG0ATG−1

1 +G1BTG−1
2 B

for node weighting G0, edge weighting G1 and face weighting G2. Letting G1 = I
gives

EBEM[y] = 1TG0|ATy|p + 1TG−1
2 |By|p, (5.50)

EEBEM[y] = 1TG0|ATy|p + 1TG−1
2 |By|p + λ1T|y − s|p. (5.51)

In the next section we use the generalizations of the filtering models to flow
filtering to further extend these filtering techniques to functions defined on cells of
any dimension (i.e., to filtering a general p-cochain).

5.8 Filtering Higher-Order Cochains

Now that we have examined the Fourier and variational approaches for filtering
scalar (node) and vector (edge) functions, we complete the exposition by briefly con-
sidering the filtering of functions defined on higher-dimensional cells (e.g., faces).
As before, the filtering of high frequencies depends on a definition of a higher-
order Laplacian. As we saw in Chap. 2, the general definition of the higher-order
p-Laplacian matrix for arbitrary p-cells is given as

Lp = NpN∗
p + N∗

p+1Np+1. (5.52)

If we consider a specific value of p, then we may still employ DFT-based techniques
if the Lp matrix is circulant. Even if Lp is not circulant, then we may still apply
Taubin’s algorithm with the steps

z[2k+1] = z[2k] − λLpz[2k], (5.53a)

z[2k+2] = z[2k+1] + μLpz[2k+1], (5.53b)

where z is the p-cochain variable.

180 5 Filtering on Graphs

Similarly, when Gp = I, the variational approaches may be defined by producing
a minimum of

EBEM[z] = 1TG(p−1)|NT
pz|q + 1TG−1

(p+1)|N(p+1)z|q, (5.54)

EEBEM[z] = 1TG(p−1)|NT
pz|q + 1TG−1

(p+1)|N(p+1)z|q + λ1T|z − s|q . (5.55)

Note that we used q as the exponent parameter to avoid confusion with p used to
designate the p-cell. The above equations detail the more general case of variational
filtering methods with implicit boundaries (weights). If we desired to use the vari-
ational filtering methods without implicit boundaries (unweighted) we may simply
set G(r+1) = Gr = G(r−1) = I in the equations above.

5.9 Applications

The filtering procedures described in this chapter may be applied to any situation
in which data measured at discrete locations contains noise to be removed. In this
section, we consider several applications of the filtering procedures applied to very
different types of data. At the end of these experiments, we summarize our obser-
vations to give the reader a guide for when to employ the various filtering tech-
niques. In all of the experiments presented here using the total variation model, we
set p = 1, since setting p = 2 in the total variation model is equivalent to setting
p = 2 in the Extended Basic Energy Model. Unless otherwise noted, the total varia-
tion filtering used an unweighted edge model. The λ parameter was set individually
for each algorithm.

5.9.1 Image Processing

5.9.1.1 Regular Graphs and Space-Invariant Processing

A classical application of filtering is image processing. In this problem domain,
the pixels are identified with nodes, edges are derived from a local neighborhood
(e.g., a 4-connected or 8-connected lattice), and the pixel intensities are the data
associated with each node. Therefore, the x variable in the filtering routines above
is the unknown filtered image intensities that are solved for, while the initial data s
is identified with the noisy image intensities.

In the first experiment, a synthetic image of a black circle in a white background
was corrupted with noise by adding an independent random variable to each pixel
with a uniform distribution. Figure 5.5 displays the results of the various filtering
procedures discussed above. We may make several observations from these results.

First, the localization of circle boundaries (i.e., the image discontinuities) im-
proves in the Basic Energy Model as the parameter p decreases. Therefore, the

5.9 Applications 181

Fig. 5.5 Image filtering of a synthetic image of a black circle on a white background which has
been corrupted by additive i.i.d. random noise with a uniform distribution. Note that unweighted
filtering with the Basic Energy Model consistently produces worse boundary localization as p

increases. However, for any filtering model, weighted filtering is generally better at preserving
boundary location. Since the source image exactly matches the Mumford–Shah model, this filtering
result is nearly perfect

182 5 Filtering on Graphs

mean filter localizes boundaries better than the minimax filter, the median filter lo-
calizes boundaries better than the mean filter and the (approximated) mode filter
localizes boundaries better than the median filter. A different method of providing
better localization boundaries is to use a weighted filter, as seen by the improve-
ment in the Taubin technique and the improvement in the mean filter attained by
using edge weights obtained from the Welsch function in Chap. 4. In the gradient
manipulation example, the gradients were manipulated by setting all gradients to
zero for which the magnitude was smaller than a fixed threshold. Since this image
content allowed such a simple approach, the reconstruction was nearly perfect from
this algorithm. Finally, we note that this example perfectly fits the model of the
Mumford–Shah functional in the sense that the underlying image consists of two
objects (foreground and background) with different intensities. If the boundary be-
tween these two objects may be localized well, then this filtering procedure smooths
only within these boundaries to achieve a near-perfect filtered result.

The second experiment uses a photograph which is much more complicated than
the circle in the previous experiment (see Fig. 5.6). Unlike the previous image, the
noiseless image contains significant high spatial frequency content (in the child’s
hair). In this experiment, zero-mean Gaussian noise was added independently to
each pixel to corrupt the original image. As before, we see that as p increases in the
Basic Energy Model, the boundaries are progressively blurred in the filtered image.
Additionally, the use of a weighted graph increases the boundary localization for the
Taubin and mean filtering methods. Although the total variation model continues
to produce a good filtering, the Mumford–Shah model does not perform well on
this image. The Mumford–Shah model explicitly assumes that there are two regions
(possibly consisting of multiple connected components) which are smoothly varying
in intensity except at the boundary transitions. Since the example image contains
many regions of sharp intensity changes (textures), the Mumford–Shah model is
forced to choose (through parameter settings) between many small regions or large
overly smoothed regions. The parameters were set in this experiment to produce
many small regions. Results of this experiment are displayed in Fig. 5.6.

5.9.1.2 Space-Variant Imaging

Although standard image processing applies to images which are uniformly sam-
pled, there are several situations in which the image data is acquired with nonuni-
form samples. Some image acquisition devices explicitly acquire data which does
not have a Cartesian sampling (e.g., ultrasound medical images). Additionally, al-
most all known biological vision systems acquire light data nonuniformly in space
[209]. Although most biological vision systems employ sampling schemes which
are difficult to describe mathematically as a function of space, there has been more
success in mathematically describing the sampling of visual space employed by hu-
mans and by non-human primates such as the macaque monkey. The macaque is of
particular interest because it is considered to have a similar retinal organization to
humans and similar visual capabilities [336], and there is vast amounts of data on the

5.9 Applications 183

Fig. 5.6 Image filtering of a photograph containing high-frequency texture. This image has been
corrupted by i.i.d. random noise with a zero-mean Gaussian distribution. As before, weighted filter-
ing is generally better at preserving boundary location. However, since this image does not match
well with the Mumford–Shah model, the filtered image is not nearly as close to the noiseless image
as it was in the previous example

184 5 Filtering on Graphs

Fig. 5.7 Filtering image data on a biologically sampled image. (A) A sampling mesh modeled
after the macaque retina. (B) Cartesian image. (C) Image resampled with the macaque mesh,
(D)–(I) filtering of the data. Note the visual disturbance caused by blurring edges in the poorly
sampled peripheral regions in (D)

macaque visual system. Several researchers have taken inspiration from this nonuni-
form biological sampling of visual space to pursue computer vision approaches or
hardware with a similar sampling [158, 277, 321, 328].

We may filter these nonuniform biological samplings of image data in the same
framework as before. As with Cartesian sampling, the image sample locations are
viewed as nodes, the edge structure is defined by a Delaunay triangulation in the
Euclidean plane and the filtered image data x is associated with each node (see

5.9 Applications 185

[158, 391] for more information). Aside from this new graph, there is no difference
in filtering operation with the standard Cartesian data. In fact, exactly the same
software implementation may be used to perform filtering by simply applying it to
the new (non-lattice) graph. For this experiment, the nonuniform sampling structure
for the macaque was loaded from the Graph Analysis Toolbox software package
[166] that contains an implementation of the filtering techniques discussed in the
chapter. Using this same toolbox, a standard Cartesian image of blood cells was
imported to the space-variant structure and filtered. Results of the experiment are
displayed in Fig. 5.7. Since the same properties of the filtering procedures observed
for the Cartesian images apply to the space-variant images as well, only a subset of
the filtering methods were employed for this experiment. However, we may make
a few observations which are specific to this experiment. The first observation is
that the blurring over object boundaries is more visually disturbing in regions of the
image which are represented by only a few samples (the periphery in these images).
Our second observation is that although the edge weights continue to help avoid
blurring over object boundaries, the edge weights may be set in this scenario based
on both image data and graph geometry. Therefore, edges connecting nodes which
are further apart spatially may be given a lower weight, in addition to a weighting
based on intensity difference (see Chap. 4 for more details). In this experiment, edge
weights were generated purely from intensity changes in the image.

5.9.2 Three-Dimensional Mesh Filtering

Filtering of geometric data is an important process in computer graphics and the pro-
cessing of data obtained from various three-dimensional scanners. Is this context,
the node data (0-cochain) is a tuple of coordinates assigned to each node. There-
fore, the nodal variable x in the above algorithms corresponds to an n × K set of
K-dimensional filtered coordinates assigned to each node, with s corresponding to
the n × K noisy coordinate values acquired for each node. The output of a filtering
procedure is therefore a new set of coordinates for each node. The edge structure of
the graph is generally given via a surface extraction preprocessing step. Since the
most common method for rendering three-dimensional data requires a list of faces
for the surface, the faces are usually extracted via a triangulation process.

We begin this section with a synthetic example of filtering coordinates obtained
by generating a circle and adding noise to the coordinates of each point on the circle.
Figure 5.8 gives an example of a lowpass filter obtained via the Basic Energy Model
with p = 2 (i.e., a mean filter) and a lowpass filter given by Taubin’s method. By
subtracting the lowpass coordinates from the original coordinates, a highpass filter
of this ring is obtained.

5.9.2.1 Mesh Fairing

The problem of mesh fairing is to produce a smooth three-dimensional mesh from
a mesh with noisy coordinate values. In the current framework, the mesh points are

186 5 Filtering on Graphs

Fig. 5.8 Filtering coordinate data on a ring graph. (A) A noisy ring graph produced by adding
Gaussian random noise to the radius of nodes arranged in a perfect circle. (B) The effect of ap-
plying the Basic Energy Model with p = 2 (i.e., a mean filter) to the coordinates of the graph
in (A). (C) The low-pass filter of Taubin [371] applied to the coordinates of the graph in (A).
(D) A high-pass filter of the coordinates in (C), produced by differencing the low-pass signal of
(C) with the original

associated with nodes, the edges are given explicitly by the mesh, and the data tuple
s̃i associated with each node vi represents the three-dimensional coordinates of that
node. The goal in mesh fairing is to produce filtered data (coordinates) x.

Figure 5.9 shows a three-dimensional mesh of a horse. The noise observed in
meshes is typically in the direction of the surface normal. For this example, Gaussian
noise was added to each of the three coordinates and to each node independently
to generate the noisy mesh. Several of the filtering procedures described in this
chapter were applied to produce a fairer mesh. In this application, it is possible

5.9 Applications 187

Fig. 5.9 An example of mesh fairing. Gaussian noise was added to each of the coordinates of a
three-dimensional mesh and these coordinates were filtered to produce a faired (smoothed) mesh.
The nodes and edges are given explicitly by the mesh and the data are the three-dimensional node
coordinates. Note how the Basic Energy Models shrink portions of the figure while Taubin’s spec-
tral filtering smooths without shrinking by preserving the low frequencies

to see that one of the major benefits of Taubin’s spectral approach to filtering is
to avoid shrinking of the mesh. Since the Basic Energy Model drives the filtered
solution toward a constant value (regardless of the choice of p), the effect observed
in mesh fairing is to drive all of the nodes closer together (to the same, constant,
location in space). However, by preserving the low frequencies, Taubin’s filtering
approach avoids the shrinking observed from the other algorithms. The shrinking is
particularly noticeable in these figures around the horse’s legs, ears and snout. The
total variation filtering results in less shrinking than the Basic Energy Model, but
smooths the fine details somewhat more than Taubin’s filtering algorithm.

5.9.3 Filtering Data on a Surface

In many applications, data is measured at spatial locations along a surface, and to in-
terpret this data properly the analysis must be carried out in a way that respects how
the data is distributed along the surface. Examples of such measurements would be
data collected from a network of touch sensors on an article of clothing, or samples
of the distribution of current along a conductive sheet. Here we consider the applica-
tion of filtering functional Magnetic Resonance Imaging (fMRI) data measurements
of neural activity from positions along the surface of the cerebral cortex of the brain.

We will consider an example taken from an fMRI study that sought to locate
brain areas implicated in the processing of vision and, in particular, those areas that

188 5 Filtering on Graphs

are known to be responsible for the processing of motion in the visual field. In this
example, the neural responses were measured during a visual stimulation consisting
of presenting subjects with patterns of moving shapes, or motion stimuli, to activate
those areas of the visual cortex responsible for processing motion so that these ar-
eas could be identified and located within the cortex. Neural “activity” is quantified
through statistical analysis of the measured responses, and those measured locations
whose statistical significance exceeds a fixed threshold are considered to be the sites
of true activations. These activations can be visualized with activation maps that
depict where on the cortical surface significant activation has been identified. How-
ever, random noise in the measurement leads to spurious significant activations by
chance, which generates false positives in the activation maps that must be detected
and removed for proper interpretation of the data. Because for most experiments it
is expected that groups of active locations are nearby in space, spatial filtering of
the data helps coalesce locations of true activity while suppressing the significance
levels of spurious activity at isolated nodes, forcing them below the significance
threshold and thus eliminating them from the final activity map. This spatial prior is
often used in fMRI analysis (e.g., [406]).

MRI data is acquired in the form of a stack of images of the brain, thus the mea-
surement consists of a volume of image data. Most techniques for spatial smoothing
of fMRI data smooth the data in the original space of the acquired images, i.e.,
the volumes of image data represented as voxels, and therefore the conventional
smoothing can be conveniently enacted by three-dimensional smoothing kernels ap-
plied to the volume of image data. Unfortunately much of the spatial structure of the
relevant neuronal activity patterns is contained within the surfaces of the brain, such
as the cortical gray matter of the cerebral hemispheres where most of the sensory,
motor, and higher cognitive functions take place. Smoothing the voxel data in three
dimensions is harmful since voxels that are nearby in three dimensions are often
sampled from positions on the cortical surface that are far apart when distance is
measured along the two-dimensional cortical surface—as in the case of two adja-
cent voxels that sample from opposite, abutting banks of a sulcus. Thus, volumetri-
cally smoothing the voxel data and ignoring the boundary of the cortical surface can
mix activity patterns across distant locations of the cortical surface, corrupting the
spatial structure of local activity patterns existing along the surface. For this reason,
it is advantageous to smooth the data in a way that respects the natural geometry of
the cortical surface.

An example of surface smoothing applied to brain activation maps measured
with fMRI is presented in Fig. 5.10 (contained in the color plate section at the end
of the book). In surface-based fMRI analysis, a mesh representation of the cortical
gray matter of the cerebral hemispheres is generated from anatomical MRI data
(e.g., [96, 136]), including the two-dimensional exterior and interior boundaries of
the gray matter ribbon. For this example data set, the exterior surface is shown in
Fig. 5.10(A) and the corresponding interior surface is shown in Fig. 5.10(B). All
analysis is restricted to the interior surface of the cortical gray matter, and for ease
of visualization the activation maps are typically presented on an “inflated” surface
representation (as shown in Fig. 5.10(C)) to reveal the activity buried within the
deep sulci of the cortical folds.

5.9 Applications 189

Fig. 5.10 Filtering fMRI data along a cortical surface model. Surface models of the (A) exterior
surface, (B) interior surface, and (C) the “inflated” interior surface of the cortical gray matter of
the left cerebral hemisphere, with approximate location of area MT indicated by a circle. (Sur-
faces generated with FREESURFER [96, 136].) The legend indicates Front–Rear axis of brain.
Locations of negative mean curvature (within sulci) are rendered in the dark gray and locations of
positive mean curvature (within gyri) are rendered in light gray. Measured activity map plotted as
z-statistics, with color scale provided at upper right. The threshold is set to exclude nodes where
the activity is not statistically significant, which leads to many isolated points or small clusters
of activation appearing in the map—likely false positives due to noise. The results of filtering the
data using (E) spectral filtering, (F) the Basic Energy Model with p = 0 and (G) p = 2, (H) Total
Variation, and (I) the Mumford–Shah algorithm are provided with the same color scale represent-
ing the statistical significance. Note that many of the false positives are removed with the filtering.
Arrows indicate the site of MT activation

The functional activation data from this example is represented on the ver-
tices of the triangular mesh surface representation of the interior surface shown in
Fig. 5.10(B), then smoothed with the filtering methods discussed in this chapter, and

190 5 Filtering on Graphs

Fig. 5.10 (Continued)

the results are visualized on the inflated surface. In the original, unsmoothed data
seen in Fig. 5.10(D), we see a cluster of activated nodes in the rear of the brain—
which is within the part of the brain that is responsible for vision—accompanied
by noisy activations extending up and further into the front of the brain. In order to
remove these noisy activations while (ideally) retaining the true activations, surface-
based smoothing can effectively highlight the true activity while removing noise.

Each of the filtering methods succeeds in suppressing false activations at-
tributable to noise. The results of spectral filtering of Taubin, the two energy mod-
els, and Total Variation shown in Figs. 5.10(E)–(H) highlight two loci of activity
in locations near areas where visual motion processing is known to occur known
as the “middle temporal” area, or cortical area MT. Beyond removing spurious or
noisy activations outside of the visual motion area, the spectral filtering shown in
Fig. 5.10(E) also smooths the “true” activity pattern within MT, suggesting that
some of the relevant features of the data may be lost along with the false positives.
However, this filtering may also aid in eliminating aliasing artifacts in the measure-
ment due to the coarse spatial sampling, and thereby the smoothing process may
potentially recover a more faithful representation of the true activation pattern. The
results of the basic energy model shown in Fig. 5.10(F) contain a distinct disconti-
nuity that is not salient in the original measurement, which is a sharp feature that
violates the expected spatial resolution of the fMRI technique and therefore is likely
to be an artifact of the smoothing.

The results of the weighted Basic Energy Model and Total Variation shown in
Figs. 5.10(G) and (H) demonstrate both suppression of false positives outside of
the presumed true site of activation and retention of most of the structure of the
original measured activity map. Therefore, if another form of filtering were desired
for the remaining activity cluster, such as additional anti-aliasing filtering, it could
be subsequently applied.

The results of the Mumford–Shah algorithm shown in Fig. 5.10(I) drive most
of the measured activity below the statistical threshold, and thereby suppresses all
but a small island of activity. To gain insight into the relative performance of these
filtering methods, the results of Fig. 5.10 are re-plotted in Fig. 5.11 (contained in

5.9 Applications 191

Fig. 5.11 Effect of smoothing methods on sub-threshold fMRI activity. The data of Fig. 5.10 is
re-plotted with a color scale that highlights the relative performance and behavior of the filter-
ing methods on activity below the significance threshold. Reference arrows are positioned as in
Fig. 5.10

the color plate section at the end of the book) but with a lower statistical threshold
to examine the sub-threshold patterns of the filtered data. With this color scale, the
degree of noise suppression outside of the area of activity is more clear, with the
results of the weighted Basic Energy Model shown in Fig. 5.11(D), Total Variation
Fig. 5.11(E), and the Mumford–Shah algorithm shown in Fig. 5.11(F) performing
best. Additionally, a salient and undesirable feature of the Mumford–Shah algorithm
is that it spreads the activity pattern diffusely, losing most of the structure of the
original data in this case.

192 5 Filtering on Graphs

Fig. 5.12 Surface smoothing for cortical inflation. (A) Original folded surface. (B) Surface after
1,500 iterations of spatial filtering using the Basic Energy Model with p = 2. (C) Surface after
5,000 iterations of filtering. The high-frequency folds are removed with smoothing, leaving an
“inflated” surface in which the regions within the cortical sulci are clearly visible, similar to the
explicitly inflated surface presented in Fig. 5.10(C)

In this example, surface data are visualized on the inflated surface representation,
which is very common in fMRI studies. Although several tools exist for rapidly
computing inflated brain surface, it is instructive to note that the same smoothing
operations used to filter the data along the surface can be applied to filtering the
surface mesh vertex coordinates themselves—as in the previous example on mesh
fairing—to smooth out the folding pattern and produce an “inflated” version of the
cortical surface representation. Figure 5.12 demonstrates an example of how itera-
tive smoothing using the Basic Energy Model with p = 2 can produce an inflated
surface representation.

5.9.4 Geospatial Data

A different type of application involving data analysis at discrete locations comes
from a parcellation of continuous space into subregions in which measurements are
made. Many types of geospatial data fit this description in which a geographical
area is parcellated into regions that fit a political, topographic or property descrip-
tion. Examples of this type of data would be soil samples, transportation data, pol-
lution measurements, incidence of infectious disease, or population of a species.
Geospatial data is typically managed, analyzed and visualized by software known
as a geographical information system and this data is typically analyzed with a set
of tools known as spatial statistics [82, 317].

In this section, we adopt an example of state polling data from the 2008 US Pres-
idential election for the 48 continental states. Each US state is assigned a number
equal to the percentage of poll respondents who favored (then candidate) Barack
Obama just prior to the 2008 election. Each state is colored brighter if more respon-
dents favored Mr. Obama and darker if fewer respondents favored Mr. Obama. Due
to small samples and different polling methodologies, we can assume that there is
noise present in this data. A simple model for filtering this polling data would be
to assume that a state is more likely to favor a candidate if its neighboring states
favor a candidate and less likely to favor a candidate if its neighboring states do not

5.9 Applications 193

favor the candidate. This model is justified by the concept of Tobler’s Law or the
First Law of Geography which asserts that data situated at nearby geographical
locations are likely to be correlated [377]. Given this correlation, we may apply a
spatial filtering algorithm to the polling data to remove noise. In this example, each
state is represented by a node, two states are connected by an (unweighted) edge if
they share a border, the measured data s is the polling data and the goal is to produce
filtered polling measurements x. We stress that although the underlying domain (the
continental United States) is continuous, the parcellation of this space into political
states for which polling measurements are made transforms this problem into the
current framework of analyzing data associated with a graph.

Figure 5.13 displays the original polling data and the filtered data. Taubin’s filter-
ing method and the weighted Basic Energy Model with p = 2 yield similar results.
The output of both of these filtering methods is largely unchanged from the orig-
inal polling data, except that spatial outliers are softened. For example, the weak
poll numbers for Mr. Obama in South Carolina and Indiana were improved af-
ter filtering because the poll numbers for Mr. Obama in neighboring states were
generally stronger. Similarly, the polling numbers in New Hampshire and Maine
were balanced after filtering, with the filtered polling numbers showing stronger
support for Mr. Obama in New Hampshire and weaker support for him in Maine.
The Mumford–Shah filtering produces substantially different results in this appli-
cation. Specifically, this approach attempts to identify regions within which the
polling numbers are expected to be relatively homogeneous. Therefore, the mid-
Atlantic states are grouped with most of New England by this algorithm to produce
one large voting bloc, the southeastern states are grouped with areas of the mid-
west to create a second voting bloc, a third voting bloc is produced by the great
lakes states and upper midwest and a final voting bloc is produced by the west coast
and the southwest. Florida and Maine-New Hampshire are also considered by the
Mumford–Shah filtering approach as independent voting blocs. Within these voting
blocs, the polling numbers are made more homogeneous (similar to the noisy circle
image processing example). Although these voting blocs roughly correspond with
meaningful political battle lines in the US in 2008, other parameter settings for this
algorithm might produce larger or smaller voting blocs within which the data would
be smoothed.

5.9.5 Filtering Flow Data—Brain Connectivity

In this section, we give an example of filtering real flow data along edges. Exam-
ples of flow data encountered in practical applications would be traffic networks,
communication networks, or migration networks. In fact, if connection strengths
between nodes are provided for any directed graph, these strengths could be con-
sidered as flow data. When considering flow data, a directed graph may be viewed
simply as an undirected graph for which the edge directions represent the directions
in which flow is considered to be positive.

194 5 Filtering on Graphs

Fig. 5.13 Filtering of polling
data for the 2008 US
Presidential election. Brighter
coloring indicates stronger
support for (then candidate)
Mr. Obama and darker
coloring indicates weaker
support for Mr. Obama. Each
state is represented by a node
in the graph where two nodes
share an (unweighted) edge if
they share a border

5.9 Applications 195

We address the filtering of the measured strength of brain connectivities between
parcellated regions of the cat brain measured by Scannell et al. [329] (and subse-
quently studied by others [354]). This connectivity network consists of 52 brain
regions (nodes) and 818 directed edges. Scannell et al. assigned each edge a con-
nection strength of ‘1’ (weak), ‘2’ (medium) or ‘3’ (strong), which was determined
from a compilation of measurements from the cortico-thalamic system of the cat.
We may assume that noise was present in these measurements as a result of impre-
cise measuring devices and as a result of the severe quantization of the data into
three categories. The justification for removing noise with the filtering techniques
described above also applies to the filtering of flow data. Specifically, in the scalar
case, data points within a low-frequency scalar (node) distribution are similar be-
tween neighboring nodes. Similarly, data within a low-frequency flow (edge) distri-
bution are similar between neighboring edges in which neighboring edges are either
incident on the same node (where similarity means small divergence) or neighbor-
ing edges are incident on the same cycle (where similarity means small circulation).
Above in Fig. 5.3 we saw that a flow field through a continuous domain straightens
out after filtering. Additionally, the noise model justifications for these filtering pro-
cedures also applies to the flow case—a zero-mean noise flow distribution will be
expected to have zero divergence at all nodes and zero circulation around all cycles.

Several liberties were taken with this data in order to make the filtering operations
clearer. First, a random subset of the graph nodes were sampled for presentation pur-
poses to better visualize the results of the filtering. Second, we arbitrarily removed
one edge from every pair of nodes connected by two directed edges in the oppo-
site directions. This removal was also made to improve visualization of the results.
Figure 5.14 displays the results of our filtering operation on the flow data. The first
two figures show the full network and the connections in the subnetwork. The next
figures illustrate the measured flow strength (represented by line thickness) and the
lowest-frequency eigenvector of the edge Laplacian. The lowest frequency compo-
nent of the network distributes the flows equally across edges in order to minimize
flow divergence at nodes and to minimize flow circulation (curl) around cycles. Note
that the eigenvector is signed, which is indicated by a change in direction (arrow)
for negative flows. Taubin’s spectral filtering and the Basic Energy Model (p = 2,
corresponding to diffusion or generalized mean filtering) were applied to filter the
initial flow data. The results of these filtering operations reduce the divergence and
circulation of the original measured flow while driving the filtered flow toward the
low-frequency eigenvector. The filtering especially dampened the edges contribut-
ing to the high-divergence of the leftmost node in the diagram, as well as dampening
the edges causing divergence on the central node. In addition to reducing noise, the
filtering operation also produced real-valued flows from the initial quantized flows
which may allow for a better comparison between edge connectivities.

Since the underlying network is directed, care must be taken when applying these
filtering operations that none of the flow signs change, causing direction changes.
In this example, this constraint was enforced simply by using a small number of
filtering iterations so as to not oversmooth the data.

196 5 Filtering on Graphs

Fig. 5.14 Example of flow filtering on a network of brain connectivity data collected in the cor-
tico-thalamic system of the cat [329]. A subnetwork of the original data was instead processed
for visualization purposes. Line thickness represents the measured strength of the connections (the
original “flow” data and filtered data). This example illustrates that the lowest frequency compo-
nent of the network distributes the flows equally across edges in order to minimize flow diver-
gence at nodes and to minimize flow circulation (curl) around cycles. Lowpass Taubin or diffusion
(“mean”) filtering drive the flows closer toward the flow given by low frequency eigenvector

5.10 Conclusion 197

5.10 Conclusion

In this chapter we reviewed several broad approaches for filtering data defined on
arbitrary graphs—even irregular graphs. Although several examples were given, a
reader with a particular filtering problem may still be wondering which method to
use. The most classic filtering approach is Fourier-based filtering, but such an ap-
proach does not permit the preservation of discontinuities, nor does it apply to data
defined on irregular (or weighted) graphs. In a more general setting, by far the most
common methods are mean filtering or nonlinear anisotropic diffusion since these
methods are straightforward to implement, predictable, and run in low-constant lin-
ear time. However, mean filtering has a tendency to oversmooth (even with discon-
tinuities permitted), and to drive the data to a single value (the “shrinking” problem
in mesh filtering). The filter described by Taubin is, in our opinion, an underuti-
lized method (outside of computer graphics) which solves the second problem with
little additional overhead or coding complexity (although it does require the spec-
ification of an additional parameter). If more computation is tolerable to provide a
better result, then the variational approaches described in this chapter (e.g., median
filtering with discontinuities, total variation filtering) are not difficult to implement
and produce results that are not oversmoothed, but they do require more computa-
tion. Data which fits the assumptions of the Mumford–Shah model—that the data
belongs to multiple regions which have smooth internal data—may be filtered well
by minimizing the Mumford–Shah energy. If even better results are required, the
underlying graph is shift-invariant and computation time is less important, then the
variational filters with nonlocal neighborhoods are likely to produce the best results
known so far. Finally, the gradient manipulation methods are moderately compu-
tationally intense (e.g., requiring a sparse linear system solve), but they provide
substantial flexibility for combating data corruption if a model of the expected gra-
dients is known, such as the image processing example of the circle in which it was
asserted that the gradients were either large or zero. In the next chapter, we show
how these same filtering models may be applied to derive a variety of clustering
algorithms.

	Filtering on Graphs
	Fourier and Spectral Filtering on a Graph
	Graphs that Are Not Shift-Invariant
	The Origins of High Frequency Noise

	Energy Minimization Methods for Filtering
	The Basic Energy Minimization Model
	Iterative Minimization

	Extended Basic Energy Model
	The Total Variation Model

	Filtering with Implicit Discontinuities
	Filtering with Explicit, but Unknown, Discontinuities
	Filtering by Gradient Manipulation
	Nonlocal Filtering
	Filtering Vectors and Flows
	Translating Scalar Filtering to Flow Filtering

	Filtering Higher-Order Cochains
	Applications
	Image Processing
	Regular Graphs and Space-Invariant Processing
	Space-Variant Imaging

	Three-Dimensional Mesh Filtering
	Mesh Fairing

	Filtering Data on a Surface
	Geospatial Data
	Filtering Flow Data-Brain Connectivity

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

