
Chapter 3
Circuit Theory and Other Discrete Physical
Models

Abstract In this chapter we present linear electric circuit theory as the central phys-
ical model for performing calculus on networks. We adopt circuit theory as the cen-
tral physical model for applying and understanding the concepts of discrete calculus
on graphs for three reasons: because much of the progress in graph theory over the
last century was created in the context of circuit theory; because of the early con-
nection made between circuit theory and algebraic topology (Branin Jr. in Proc. of
Conf. on Neural Networks, pp. 453–491, 1966; Roth in Proceedings of the National
Academy of Sciences of the United States of America 41(7):518–521, 1955); and
because circuits are physical, realizable systems which need not be seen as dis-
cretizations of an underlying continuous domain but rather as a domain unto them-
selves. Our focus in this chapter will be to cover the main concepts in linear circuit
theory from an algebraic standpoint with a focus on operators. This will prepare the
reader with notation and concepts that tie naturally to the previous chapter in which
the discrete analogues of differential operators were introduced. We begin with defi-
nitions of the physical quantities and corresponding quantities in circuit theory, then
proceed to define the laws that relate the quantities to each other, treat methods of
solving for the unknowns, and end by connecting circuit theory to other discrete
processes.

We recognize that our readers may have varying levels of familiarity with circuit
theory, therefore no previous experience with circuit theory is assumed. However,
regardless of the reader’s familiarity with circuit theory, we believe that this chap-
ter is useful for producing an intuitive understanding of the mathematical devices
and discrete analogues of continuous differential operators that were developed in
Chap. 2. In order to develop this intuition, our intention with this chapter is to estab-
lish notation, provide a physical model for the variables involved in the formalism
presented in this work, and to gently introduce concepts that we will encounter
again and again in this work. Therefore, we would strongly encourage the reader to
at least briefly read this chapter regardless of the reader’s knowledge level of circuit
theory.
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We consider a circuit as a graph consisting of a set of nodes and edges. An edge
in a circuit is interpreted physically as a wire that connects two nodes and which
has some resistance to the flow of current. In circuit theory, edges are also known
as branches or arcs. A node in a circuit is interpreted physically as any junction
between two or more wires (edges) or as a terminal location that receives or sinks
energy (more on this concept in a moment).

Viewing electrical circuits from a physics perspective, we are concerned with
electrons and their motion through the circuit governed by an energy minimization
principle. When there is an unequal distribution of electrons among different nodes
in a circuit, then there is an electric potential for each node to equilibrate with a
reference node, known as the ground node. The term ground is derived from the
safe, neutral potential maintained naturally by the metallic content of the earth. The
variable xi ∈ R will be used to represent the electric potential at a single node vi .
The grounded node v0 has a fixed potential x0 = 0. Electric potential at a node is
quantified in units of volts. If a potential xi is negative, then there are more electrons
present at node vi then at the reference ground and if a potential xi is positive,
then there are fewer electrons present at node vi then at the reference ground node.
We will manipulate the node potentials as a single vector-valued variable x ∈ R

|V|,
which may be interpreted as a 0-cochain (node function).

The current that passes through a wire is a measure of the number of electrons
that pass through the wire per unit time. Current is measured in units of amperes
(i.e., coulombs per second) and is represented here by the vector y ∈ R

|E|. The
elements of y, yi ∈ R, represent the current passing through the edges of the circuit
ei ∈ E. Since y is defined on the edges, then this current vector is a 1-cochain.
The value of any current variable yij through a wire may be positive or negative,
and the sign indicates the direction yi of positive current flow through edge ei . In
order to accommodate this interpretation of the sign of yi , it is necessary to endow
each edge with a sense of orientation (as seen in Chap. 2). The orientation for each
edge variable may be assigned arbitrarily, thus a negative value is interpreted as a
current flow in the opposite direction of the assigned orientation of the edge variable.
Therefore, given a set of n nodes V with elements vi ∈ V, we represent each edge,
eij , by the ordered pair eij = {vi, vj }. If current is flowing from node vi to vj the
current will be positive and if the current is flowing from node vj to vi then the
current will be negative. The designation of edge orientation is essential to solve
problems in circuit theory, but the particular choice of eij compared to eji has no
consequence for the solution to any circuit theory problem (except that the current
calculated over edge eij will be the negative of the current calculated over eji ).
Given an edge with orientation eij , then the voltage across eij is defined by the
difference of the potentials at the pair of nodes at the ends of the edge, pij = vi −vj .

The vectors of voltages p and currents y both take a value for every edge and
each component of these two vectors is related to each other via the resistance of the
edge, rij (in Sect. 3.3 the edges are generalized to represent capacitors and inductors
as well). Resistance is measured in units of Ohms and is physically interpreted as
the amount of work required to move electrons through a wire. For our purposes,
we will assume that all rij > 0. A wire with higher resistance requires more work to
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Fig. 3.1 Conventions for
electric circuit theory.
(Left) An edge in an oriented
graph between nodes vi and
vj with edge weight wij is
equivalent to (right) a resistor
in a circuit with node
potentials xi and xj where
the edge variable yij

represents a current flow from
node vi to node vj . The
(distance) weight is provided
by the resistance rij

move electrons through the wire and a wire with low resistance requires less work to
move electrons through the wire. The resistance of each edge is a material property
of each wire. The conductance at each edge, wij , is defined as the reciprocal of the
resistance wij = 1/rij . Wire conductance is measured in units of Siemens and will
emerge as the more convenient quantity to use in the theoretical development and
applications in this work. In the context of Chap. 2, resistance represents a distance
weight and conductance represents an affinity weight. As seen in the last chapter, the
distance weight (resistance) is the reciprocal of the affinity weight (conductance).
The collection of nodes, oriented edges, and resistors is the domain upon which all
of the circuit laws and dynamics play out. Figure 3.1 summarizes the relationship
between a resistive branch in an electric circuit and the equivalent graph edge.

3.1 Circuit Laws

Having defined the variables in the previous section, we now proceed to describe
how these variables relate to each other.

Voltage across an edge and current through an edge are related through the con-
ductance via Ohm’s Law which states that

p = Gy, (3.1)

where p represents the voltage each edge, y represents the current through each edge
and G is a diagonal matrix containing the edge resistances along the diagonal, i.e.,
with Gii = ri for some ei ∈ E. Ohm’s Law states that an edge with a linear resistor
induces a linear relationship between voltage across an edge and the current through
the edge.

Kirchhoff’s Current Law (KCL) states that all of the current flowing into a
node also flows out of the node. This law may be represented in matrix form via the
equation

ATy = 0, (3.2)

where A is the edge–node incidence matrix as defined in Chap. 2.
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The relationship between electric potentials at nodes and voltages across edges
may also be written in terms of the incidence matrix as

Ax = p, (3.3)

which is known as Kirchhoff’s Voltage Law (KVL). A consequence of KCL and
KVL together is Tellegen’s Theorem [305] which states that the vector of voltages
is orthogonal to the vector of currents, i.e.,

pTy = xTATy = 0. (3.4)

Tellegen’s theorem has been employed several times in the literature as a tool of
network analysis, e.g., [301, 302].

These three laws of circuit theory, Ohm’s Law, Kirchhoff’s Current Law and
Kirchhoff’s Voltage Law define all of the behavior of linear circuits. These three
laws may be composed into one single law which states

ATG−1Ax = Lx = 0 (3.5)

where L represents the Laplacian matrix from Chap. 2. It was shown in Chap. 2
that the nullspace of the L = ATG−1A matrix is dimension one and spanned by the
vector for which each element is equal to the same constant. Therefore, the three
laws compose to state that, in the absence of any other constraints, all of the node
potentials will be equal. In the next section, we discuss the solution of the circuit
equations in the presence of energy sources that force a nontrivial solution. In the
context of circuit theory, we will consider a solution as a complete knowledge of the
node potentials or, equivalently, edge voltages or edge currents for a specific circuit
topology and a prescribed set of resistance values. Given any one of these sets of
values, the others may be generated using the three circuit laws given above.

3.2 Steady-State Solutions

A voltage source or a current source provides a fixed source of energy to drive
the circuit. Without these energy sources, the circuit would yield the trivial solution
consisting of a constant potential at each node and no flow of current. Both of these
sources supply a fixed voltage or current which is constant with respect to time and
are traditionally known as direct current or DC sources. A voltage source forces
the voltage between two nodes to be fixed and a current source forces the current
through an edge to be fixed.

By convention, a voltage source can be added in series to any resistor in the graph
to insert an additional fixed voltage difference between the two nodes of the resistor
[360, p. 149]. The value of the voltage added to edge ek is denoted by bk , and all such
voltage sources can be assembled into a vector b ∈ R

|E|. Note that the elements bk

may be positive or negative, and are zero-valued at edges where no voltage source is
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present. Therefore, when voltage sources are present, the expression for the voltages
in the circuit becomes

Ax + b = p (3.6)

with the edge–node incidence matrix A defined as above. The expression of Ohm’s
law, y = G−1p, is unchanged. Similarly, a current source with one end attached to
ground can be attached to any other node in order to inject current into the node.
If we represent the current inserted into node vi as fi , and assemble all additional
current sources into a vector f ∈ R

|V|, then the expression of KCL in the circuit
becomes

ATy + f = 0. (3.7)

By combining these two laws and including the voltage and current source terms,
we return to the single law summarizing the circuit behavior, given by

ATG−1Ax = Lx = −ATG−1b − f. (3.8)

We let q represent the set of source terms on the right hand side of this equation,
i.e., q = −ATG−1b − f.

Due to the nature of the circuit behavior, the above equations can not be solved
uniquely for any given circuit configuration due to the inherent ambiguity in the
node potentials—a constant potential can be added to each node without changing
the voltages across the edges. In other words, the solution is not affected by adding
a constant potential to all nodes. Therefore, a family of admissible solutions exists
that are equivalent up to this constant potential. For this reason, it is often convenient
to assign a single node v0 as a reference or ground by eliminating one column of
the edge–node incidence matrix A. This reduced incidence matrix is often denoted
as A0. The potential x0 is set to zero and the corresponding node is eliminated from
x and from f. Once an arbitrary reference node is set to ground, then the solution
can be calculated relative to the chosen reference.

Example 1 (Solving node potentials in a static circuit) To demonstrate the process
of constructing the discrete operators for a circuit and using them to solve for a set
of unknown node potentials or edge currents, consider the circuit diagram presented
in Fig. 3.2. The edge–node incidence matrix A for this circuit can be constructed
from the diagram after assigning an orientation for each edge. For this graph the
incidence matrix is given by

A =

⎡
⎢⎢⎢⎢⎣

1 −1 0 0 0
1 0 0 −1 0
0 1 −1 0 0
0 0 1 −1 0
0 0 1 0 −1

⎤
⎥⎥⎥⎥⎦

based on an assumed orientation. The constitutive matrix consists of the affinity
edge weights (conductances). Therefore, G−1 = diag([2 1 1 4 1]T) and the Laplacian
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Fig. 3.2 Circuit diagram for
Example 1. The circuit
consists of five nodes and five
edges, with a fixed current
source injecting current into
node v2, a voltage source
setting a fixed potential at
node v4, and node v5 serving
as the reference node for
ground. Note that the
standard symbol for
resistance (Ohms) is given
by �

matrix L = ATG−1A evaluates to

L =

⎡
⎢⎢⎢⎢⎣

3 −2 0 −1 0
−2 3 −1 0 0
0 −1 6 −4 −1

−1 0 −4 5 0
0 0 −1 0 1

⎤
⎥⎥⎥⎥⎦

.

In this example, the voltage source forces a potential at node v4, indicating that this
node voltage is not free (or unknown), and the voltage source does not coincide with
an edge variable. For this reason the voltage source vector b is expressible in terms
of the edge–node incidence matrix operating on the fixed voltages, i.e.,

b = A

⎡
⎢⎢⎢⎢⎣

0
0
0
2
0

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

0
−2
0

−2
0

⎤
⎥⎥⎥⎥⎦

.

The current source vector f is straightforward: f = [0 3 0 0 0]T.
With the weighted Laplacian operator L defined for the circuit, and the vectors b

and f representing the energy sources, the unknown node potentials x can be solved
with any linear systems solver. However, the full Laplacian matrix is not full rank,
and must be reduced to solve the system. Since nodes v4 and v5 are fixed, we can
solve the reduced system L0 x0 = q0, whose entries correspond only to the free
nodes in the circuit, v1, v2, and v3 (i.e., the ‘0’ subscript indicates that the entries
corresponding to fixed nodes have been removed). Therefore, for this example the
node voltages evaluate to

x0 = [
4.07 5.11 2.19

]T
.
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3.2.1 Dependent Sources

In the last section we considered voltage (current) sources which supplied a fixed
voltage (current) across two branches. However, if the amount of voltage (current)
supplied by the source is controlled by the voltage or current of a different branch,
then the source is said to be a dependent source. In contrast, a fixed source consid-
ered above is said to be an independent source. Dependent sources can appear in
the linear circuit equations as off-diagonal elements of G−1.

Before discussing the implications of the matrix G−1 with off-diagonal elements,
we first illustrate the concept with an example. Consider the small circuit in Fig. 3.3
in which we employ the matrix

G−1 =

⎡
⎢⎢⎢⎢⎣

e1 e2 e3 e4 e5

e1 1 0 1 0 0
e2 0 1 0 0 0
e3 1 0 1 0 0
e4 0 0 0 1 0
e5 0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

(3.9)

as the edge weighting matrix. Clearly all of the branch resistances are unit-weighted,
but now there is a new relationship between edges 1 and 3. The nature of this rela-
tionship becomes apparent if we consider the set of branch voltages

p =

⎡
⎢⎢⎢⎢⎣

1
0
0
0
0

⎤
⎥⎥⎥⎥⎦

, (3.10)

giving the currents

y = G−1p =

⎡
⎢⎢⎢⎢⎣

1
0
1
0
0

⎤
⎥⎥⎥⎥⎦

. (3.11)

Fig. 3.3 A circuit with dependent current sources
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Therefore, even though the voltage occurred over branch 1, a current was induced
in branch 3, which allows us to interpret the off-diagonal entries as indicating the
presence of voltage-controlled current sources, which are often used in circuit the-
ory to model nonlinear elements such as transistors. This example is illustrated in
Fig. 3.3.

In Chap. 2, we discussed how the metric tensor definition for a discrete space led
to a diagonal matrix for G−1. Therefore, the appearance of off-diagonal elements
in G−1 should be regarded only as a convenience that allows us to represent the
dependent sources and/or nonlinear circuit elements.

By interpreting a G−1 having off-diagonal elements as representing dependent
sources, we can derive an unusual interpretation of the discrete biharmonic oper-
ator. Recall that the biharmonic operator is defined in conventional mathematics as
∇2∇2 and appears frequently in the description of the bending of thick-plate mate-
rial (as opposed to the membrane deformation described by the standard Laplacian
operator). Based on Chap. 2, we may rewrite the discrete biharmonic operator as

LL = ATG−1
1 AG0G0ATG−1

1 A. (3.12)

By letting

G̃
−1
1 = G−1

1 AG0G0ATG−1
1 , (3.13)

then we can interpret the biharmonic operator as a Laplacian operator with a non-

diagonal constitutive matrix G̃
−1
1 , i.e.,

LTL = L̃ = ATG̃
−1
1 A. (3.14)

Since G̃
−1
1 has off-diagonal elements, this interpretation allows us to further con-

sider the biharmonic operator as introducing a set of dependent sources into the
circuit.

As an example, consider the graph in Fig. 3.4 with unity edge and node weights.
The biharmonic operator for the graph will consist of

LTL =

⎡
⎢⎢⎣

v1 v2 v3 v4

v1 6 −4 −4 2
v2 −4 12 −4 −4
v3 −4 −4 12 −4
v4 2 −4 −4 6

⎤
⎥⎥⎦. (3.15)
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Fig. 3.4 Voltage-controlled current sources used to interpret the discrete biharmonic operator.
Panels (B) and (C) display the current sources which respond to a voltage across e1 and e5, respec-
tively, in the direction given by the ‘+’ and ‘−’ signs

This biharmonic operator may be viewed as the Laplacian, L̃, for LTL = L̃ =
ATG̃

−1
1 A, in which

G̃
−1
1 =

⎡
⎢⎢⎢⎢⎣

e1 e2 e3 e4 e5

e1 2 1 −1 0 −1
e2 1 2 0 −1 1
e3 −1 0 2 1 1
e4 0 −1 1 2 −1
e5 −1 1 1 −1 2

⎤
⎥⎥⎥⎥⎦

. (3.16)

The current sources which depend on voltages across various branches for this cir-
cuit are depicted in Fig. 3.4.

3.2.2 Energy Minimization

The solution for the node potentials given by (3.5) may be considered as the min-
imum energy solution for a variational problem. Specifically, if we define the total
energy for a configuration of voltages x as

E [x] = xTLx, (3.17)

then, because L is both symmetric and positive semi-definite, the steady-state solu-
tion

dE
dx

= Lx = 0, (3.18)

represents a minimum of the energy in (3.17). Note that it is possible to introduce
current sources into the above energy by letting E [x] = xTLx + xTf. Likewise, it
is possible to introduce voltage sources by fixing the potentials x and taking the
gradient of the energy with respect to b. The energy in (3.17) represents electrical
power dissipation of the circuit and may be rewritten in several equivalent ways.
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For example, the power can be phrased as: (a) as the sum of voltages multiplied by
currents across all edges,

E [x] = xTLx = pTy =
∑
eij

pij yij , (3.19a)

(b) as the sum of squared voltages divided by resistances across all edges,

E [x] = xTLx = pTG−1p =
∑
eij

p2
ij

rij
, (3.19b)

or (c) as the sum of squared currents multiplied by resistances across all edges,

E [x] = xTLx = yTGy =
∑
eij

y2
ij rij . (3.19c)

These three expressions for power dissipated by each edge are classical. The energy
minimization principles expressed above in terms of circuit theory are equivalent to
the conventional Dirichlet’s principle on a graph that was discussed in Chap. 2.

Using the above expressions for power dissipation, we now show that the en-
ergy minimization formulation may also be written in terms of the current variable.
Specifically, the currents distribute themselves to optimize

min
y

E [y] = min
y

yTGy,

s.t. ATy = 0.

(3.20)

This constrained optimization may be converted to an unconstrained optimiza-
tion (see Appendix B) by noting that any solution that satisfies the constraints must
lie in the nullspace of AT. If we represent a basis to span the nullspace of AT by
the matrix B, then we may write y = Bz in terms of a new variable z. Adding this
change of variable into the optimization of the currents gives us the unconstrained
optimization problem

min
z

E [z] = min
z

zTBTGBz. (3.21)

Once again, current sources or voltage sources provide constraints that, when in-
cluded in the energy formulation in terms of z, produce a nontrivial solution. The
matrix B has the convenient form of the face–edge incidence matrix and the z vari-
ables are associated with the faces (known as “mesh variables” in the circuit litera-
ture). In the context of circuit theory, solution for the circuit variables via optimiza-
tion of the first energy minimization problem (3.17) in terms of the node variables
is known as node analysis. Similarly, optimization of the second energy minimiza-
tion problem of (3.21) in terms of the mesh variables is known as mesh analysis. In
some circumstances, mesh analysis is much easier or has many fewer variables (e.g.,
if the circuit consists of a single long cycle). However, in typical circuits, the extra
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computation required to find cycles and thus generate B is not justified by any com-
putational gain in performing mesh analysis instead of node analysis. Consequently,
the practical solution of circuit problems is predominated by node analysis.

3.2.2.1 Power Minimization with Nonlinear Resistors

So far we have considered graph edges to represent resistors which act to trans-
late differences in quantities defined at the nodes (electric potentials) into flows
through the edges (currents). Linear resistors create flows which are proportional
to the potential differences, but we may also consider edges which act as nonlin-
ear resistances as well. We may view the linear resistor circuit as minimizing the
square of the difference of node variables by writing the circuit power in (3.17) as a
summation over edges

E [x] = xTLx = xTATG−1Ax =
∑
eij

wij (xi − xj )
2. (3.22)

Viewing the circuit power dissipation in this form, we can see that other functions
of the difference between nodes may be optimized in the circuit by introducing
nonlinear resistors. For example, by using resistors with the value rij = 1

wij
(xi −

xj )
2−p , the power dissipated by the circuit becomes

E [x] =
∑
eij

wij |xi − xj |p. (3.23)

Therefore, by using a nonlinear resistor we may build a circuit for which the min-
imum power distribution minimizes the measurement of the potential differences
under any p-norm. It has been shown [350] that if p = 1 (i.e., using nonlinear resis-
tors with value rij = 1

wij
|xi − xj |) then the minimum power solution may be found

by solving a maximum-flow/minimum-cut problem for a particular configuration of
sources. Specifically, if all power sources either ground some nodes or fix node po-
tentials to unit voltage above ground, then any partitioning of the nodes obtained by
thresholding the electrical potentials at 0.5 represents a minimum cut between the
nodes of unit voltage and the grounded nodes. In the second part of this book, many
applications will require an optimization of an energy in the form (3.23), which will
be called the Basic Energy Model in the context of these applications. Therefore,
each of the applications using he Basic Energy Model may be interpreted as finding
the minimum power dissipation of a circuit with nonlinear resistors (3.23).

3.3 AC Circuits

Both linear and nonlinear resistors map potential differences directly to flows. We
now consider edge elements that instead translate between flows and differences via
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the change in these quantities over time. Such a circuit element may be physically
realized in the form of the standard circuit elements of a capacitor and inductor.
In this book, we will not consider any of the details of real capacitors and inductors,
but rather work with their idealized mathematical behavior.

A capacitor translates the temporal change in potential difference between nodes
into a current flow through the edge connecting the nodes. Specifically, the relation-
ship is given by

yij = cij

dpij

dt
, (3.24)

where the variable c is used to represent capacitance, and dt is the time differential.
We may write the capacitance equation (3.24) in integral form for the voltage as

pij = 1

cij

∫
yij dt. (3.25)

The inductor element has the opposite effect as the capacitor in the sense that
the inductor translates the change in current flow through an edge into a potential
differences across the edge. Specifically, the relationship is given by

pij = uij

dyij

dt
, (3.26)

where uij represents the inductance of the edge eij .
With these additional elements in a circuit, we may consider the response of the

current flow through an edge when the voltage across the edge varies periodically
with time (i.e., an alternating voltage source). Because the circuits we consider
represent linear and time invariant systems, these time varying quantities can be
conveniently represented with complex exponentials (or superpositions thereof). If
we represent the voltage as the real part of Re{pij eiωt }, then we may substitute the
current Re{yij eiωt } into (3.25) and (3.26) to produce the current flow through an
edge containing an inductor, resistor and capacitor in series

(
iωuij + rij + 1

iωcij

)
yij eiωt = pij eiωt . (3.27)

Note that ω represents the oscillation frequency of the sources. Since the factor eiωt

appears on both sides of the equation, it may be ignored to give us a relationship
which is independent of time

(
iωuij + rij + 1

iωcij

)
yij = pij . (3.28)

The factor applied to the current is a constant which depends on the material proper-
ties of the edge (the resistance, inductance and capacitance of the edge). Therefore,
we may replace this factor with

zij =
(

iωuij + rij + 1

iωcij

)
, (3.29)
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which is known as the impedance of the edge and may be considered as a gener-
alized conception of the edge resistance. Writing the time-independent equation for
an alternating voltage/current relationship in terms of the impedance gives

zij yij = pij , (3.30)

which may be viewed as a generalized form of Ohm’s Law (3.1) that reflects the
“complex resistor” represented by the impedance. Similar to the relationship be-
tween resistance and conductance, the reciprocal of the impedance is called the
admittance, ψij = 1/zij .

The introduction of capacitors, inductors and alternating energy sources affects
only the relationship of the voltage across an edge to the current through the edge.
However, the voltages are still generated as the differences of the electrical poten-
tials, (3.3), and the sum of the currents into a node still equals the currents leaving a
node, (3.2). Consequently, if all of the sources have the same frequency of oscilla-
tion, ω, then we may write the three laws of circuit theory for an alternating current
(AC) circuit as

Ax = p, (3.31)

�p = y, (3.32)

ATy = 0, (3.33)

where � represents the diagonal matrix containing the admittance of each edge
along the diagonal. As before, these laws combine to give

AT�Ax = 0, (3.34)

which governs the steady-state distribution of currents and potentials in a circuit
where x and y are understood to be multiplied by Re{eiωt }.

We may now adopt the viewpoint that the steady state behavior of a circuit with
alternating sources is equivalent to the steady state behavior of a circuit with con-
stant sources that has “complex resistors”. Given this viewpoint, we may follow the
procedure above to produce the response of the circuit to voltage and current sources
of various magnitudes (but the same oscillation frequency) to give

Lx = −(AT�Ax + f). (3.35)

Similarly, we may consider this equation as the solution to a minimization of the
power dissipated by the circuit given by

E [x] = xTAT�Ax. (3.36)

Since � is complex valued, the power dissipation in the above equation is also a
complex-valued quantity, which is referred to in the circuit literature as the com-
plex power. The magnitude, |E [x]|, is called the apparent power, while the real
component Re{E [x]} is called the real power and the imaginary part Im{E [x]} is
called the reactive power. In a physical circuit, the real power is the only energy
dissipated by the system.
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3.4 Connections Between Circuit Theory and Other Discrete
Domains

Our main purpose for reviewing circuit theory is to provide a physical, realizable
model for discrete mechanics that provides a natural analogy for the continuous
calculus developed in the last chapter. The utility of seeing circuit theory from the
standpoint of linear algebra is that it focuses attention on the operators (defined by
incidence matrices) that define the circuit laws and the energy minimization prob-
lems behind these laws.

Although circuit theory is a natural setting to explore the physical interpretation
of the discrete calculus machinery developed in Chap. 2, circuit theory is by no
means the only discipline in which these mechanics appear. In fact, just like con-
ventional vector calculus is used to describe the structure of many physical theories,
so too is discrete calculus. Specifically, we will use the treatment of circuit theory
above to examine the topics of spring networks, random walks on a graph, Markov
Random Fields, the use of tree counting in graph theory and linear algebra.

3.4.1 Spring Networks

Spring–mass networks offer another example of a physically realizable system that
employs the same equations as we reviewed in circuit theory. A spring–mass net-
work consists of a series of masses connected to each other via springs, where the
quantity of each mass may be different and each spring may have a different spring
constant. The equations that govern spring networks are used not only to calculate
quantities of physical systems but also as computational models for wide ranging
applications (e.g., [208, 210, 270]).

The elements of spring–mass networks have been mapped to elements of cir-
cuit theory in several different ways. In fact, there are some parts of the literature
which map force to current and others which map force to voltage, with accompany-
ing arguments about the utility of one electrical analogy over the other [202, 357].
A standard reference for these analogies is Shearer et al. [341]. The typical focus of
attention in these electrical-mechanical analogies is study of the system dynamics.
Therefore, the analogy is drawn between the mechanical system and an RLC circuit
in order to study the system dynamics. These dynamical systems form the basis for
studies in the synchronization of oscillators [12, 26], with a strong emphasis on the
role of graph topology in the behavior of the system.

In contrast to these dynamical systems, the primary focus of the later chapters
of this book are on how energy minimization techniques may be used to find solu-
tions to problems from several different applications. Therefore, since our focus will
generally be on steady-state problems, we will present a simplified spring-circuit
analogy of a steady-state system, following Strang [359]. The equations that govern
the steady-state of a spring–mass model differ from the equations that govern a DC
electric circuit mainly in the interpretation of the variables. The setting that we con-
sider for a spring–mass model is depicted in Fig. 3.5. Each mass is associated with
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Fig. 3.5 A spring–mass
system in steady-state

a node and each spring between nodes with an edge. The displacement (location)
of each node, vi , along the line is represented by the variable xi . Some node, v0, is
fixed at a reference location such that x0 = 0. When two connected nodes are sepa-
rated, they stretch the spring between them with an elongation, pij . This elongation
for each edge may be represented in matrix form via

Ax = p. (3.37)

When a spring is elongated, Hooke’s Law states that it responds with a force propor-
tional to the elongation. The constant of proportionality is determined individually
for each spring and is known as the spring constant of the spring, wij . Written in
matrix form, the constitutive relationship represented by Hooke’s Law states that

G−1p = y, (3.38)

where yij represents the force exerted by the spring on edge eij in response the
elongation. Each spring incident on a node exerts a force, but the node may also
have an external force applied to it, such as gravity. In a steady-state system, these
internal and external forces must balance each other, which may be written as

ATy − f = 0, (3.39)

where f represents the external force (e.g., fi = miγ where mi is the mass of node
vi and γ is the gravitational constant). These three equations combine to allow us to
solve for the steady-state solution of the displacements via

AT
0G−1A0 = L0x = f. (3.40)
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Table 3.1 List of equivalent quantities between linear electric circuits and spring–mass networks

Symbolic Electrical circuit Mass–spring network

x electric potential mass displacement

p voltage (potential difference) elongation

y current responding spring force

w conductance (1/resistance) spring constant

v0 grounded node reference node

f currents injected into nodes from ground external forces on masses

G−1p = y Ohm’s Law Hooke’s Law

ATy = 0 Kirchhoff’s Current Law conservation of forces

The matrix L0 in this context is known as the stiffness matrix.
By using a consistent notation, it is straightforward to see in Table 3.1 the cor-

responding variables in a spring network and an electrical network. Consequently,
the (one dimensional) spring network behaves exactly like an electrical circuit when
both systems are in the steady state.

3.4.2 Random Walks

The connection between random walks on a graph and electrical circuits is unex-
pected. Although this connection has been recognized for a long time [221, 227,
228], the book by Doyle and Snell [115] provided a clear and introductory exposi-
tion that propelled subsequent interest in this connection.

We define a random walk on a graph as an iterative process that tracks a ran-
dom walker located at a node as it moves from node to node along edges. At each
iteration of the random walk, a random walker located at node vi will transition to
one of its neighbor nodes, vj with probability equal to qij = wij /di , where di is the
(weighted) degree of node vi . If we let xi represent the probability that the random
walker is present at node vi , then we may write the transition rule in matrix form as

x[k+1] = D−1Wx[k] (3.41)

where x[k] indicates the k-th iteration step and W is the adjacency matrix.
Given this definition of a random walk on a graph, we may consider the following

problem: What is the probability that a random walker starting at node vi reaches
node v1 before it reaches node v0? Let xi represent the probability that a random
walker leaving node vi reaches node v1 before it reaches node v0. By definition of
the problem, we know that x0 = 0 and x1 = 1. For the remaining nodes, we can
imagine that if we knew the probability that each of the neighbors of node vi sent
a random walker to v1 before v0 then we know that xi is just the sum of these
probabilities weighted by the likelihood that the random walker transitions to each



3.4 Connections Between Circuit Theory and Other Discrete Domains 107

Fig. 3.6 Equivalent circuit to
calculate the probability that
a random walker leaving each
node first arrives at the ‘1’
node before arriving at the ‘0’
nodes. The circuit is a passive
resistive network in which the
‘0’ nodes are connected to
ground and the ‘1’ node is
connected to a unit voltage
source with ground. The
electrical potential
established by this circuit at
each node (printed inside the
node) equals the probability
that a random walker leaving
each node arrives at the ‘1’
node before arriving at any
‘0’ node

neighbor. Formally, we can write that

xi =
∑
j

qij xj = 1

di

∑
j

wij xj , (3.42)

or in matrix form

x = D−1Wx, (3.43)

Dx = Wx, (3.44)

Lx = 0. (3.45)

Therefore, this random walk problem amounts to solving Lx = 0 subject to x0 = 0
and x1 = 1. This is exactly the same circuit theory problem that we encountered be-
fore when trying to solve for the electrical potentials x that were induced by ground-
ing v0 and establishing a unit voltage source between v1 and ground, i.e., in (3.8).
If we replace the unit voltage source by a voltage source of arbitrary magnitude k,
then the equivalent random walk problem adjusts by calculating the expected pay-
off of a game in which a player is paid k if the random walker arrives first at v1
and is paid zero if the random walker arrives first at v0. Figure 3.6 illustrates the
circuit construction that produces node potentials equal to the probability that a ran-
dom walker leaving each node is more likely to arrive at node v1 before arriving at
node v0.

Other random walker problems also have equivalent circuit problems. For exam-
ple, the hitting time of a random walk from node va to node v0, h(va, v0), is defined
as the expected number of steps taken by a random walker to travel from va to v0.
As before, we can solve for the hitting time by considering the relationship of the
hitting time of every node to reach v0 in relationship to its neighbors. Specifically,
if we let xi represent the hitting time from node vi to some reference node v0, then
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Fig. 3.7 Equivalent circuit to compute the hitting times of a graph. The electrical potential induced
at a node in the circuit in (A) equals the hitting time for a random walker leaving that node to reach
the grounded node. (B) The same graph in which the reference (grounded) node is indicated as the
filled node. Note that the magnitude of each current source equals the degree of the node

the hitting time at vi will be equal to the hitting time of its neighbors multiplied by
the probability of transitioning to each neighbor, plus one (to account for the extra
step taken to a neighbor), i.e.,

x = D−1Wx + 1, (3.46)

Dx = Wx + d, (3.47)

Lx = d, (3.48)

where x0 = 0 is fixed. From the standpoint of circuits, the above equation (3.48)
may be interpreted as a circuit problem in which node v0 is grounded, an amount
of current equal to each node degree di is injected into every node vi �= v0 and the
resulting potentials xi equal the hitting time from node vi to v0. Figure 3.7 illustrates
the circuit construction that produces node potentials equal to the hitting time to pass
to node v0 from every other node [115].

The hitting time h(vi, vj ) does not necessarily equal h(vj , vi), since some nodes
in a graph are simply faster to reach via a random walk process than other nodes
(e.g., nodes with high degree are easier to reach). Therefore the commute time
between two nodes is defined as the expected number of steps a random walker
will traverse between nodes vi and vj and then back again from vj to vi , i.e.,
c(vi, vj ) = h(vi, vj ) + h(vj , vi) = c(vj , vi). It is possible to show that the com-
mute time between two nodes is proportional to the effective resistance between
the nodes when the graph is viewed as an electrical circuit [72]. The effective resis-
tance between two nodes vi and v0, Reff(vi, v0), is defined as the electrical potential
induced by injecting one unit of current into node vi and grounding node v0. For-
mally, let the vector rk = 1 if k = i and rk = 0 otherwise. The electrical potentials
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established by injecting one unit of current into vi and grounding node v0 satisfies

L0x̄ = r. (3.49)

The quantity x̄i = Reff(vi, v0). We may then calculate the hitting time for all nodes
to reach vi from (3.48) as

Lx̃ =
[

d∑
k dk − di

]
(3.50)

(where the right hand side is set such that it sums to zero) and the hitting time for
all nodes to reach v0 as

Lx̂ =
[∑

k dk − d0
d

]
. (3.51)

Then, we may note that

L(x̃ − x̂) =
⎡
⎣

+∑
k dk

0
−∑

k dk

⎤
⎦ , (3.52)

For convenience we may assume that the graph is unweighted (all edges are unity
weighted), meaning that

⎡
⎣

+∑
k dk

0
−∑

k dk

⎤
⎦ =

⎡
⎣

+2m

0
−2m

⎤
⎦ , (3.53)

where m = |E|. The entry (x̃ − x̂)i represents h(vj , vi) and the entry (x̃ − x̂)j
represents −h(vi, v0). Consequently, by adding the value h(vi, v0) to each entry
of (x̃ − x̂), the entry belonging to v0 becomes zero and the ith entry represents
h(v0, vi) + h(vi, v0) = c(vi, v0). We may therefore consider the v0 node grounded
and restrict our attention of L and the vector (x̃ − x̂) to the portion excluding v0.
With this restriction, the difference satisfies

L0(x̃ − x̂) =
[

2m

0

]
= 2mr = 2mx̄. (3.54)

Therefore, for any pair of nodes in any graph, c(vi, v0) = 2mReff(vi, v0).
In their book, Doyle and Snell also give an interpretation of the current through

each edge when one unit of current is injected into node vi and out of vj [115],
i.e., in the circuit with potentials and currents satisfying (3.49). The current through
edge epq represents the expected number of times that a random walker will pass
through edge epq when the walker is inserted at vi and exits at vj . Note that in this
interpretation of the current, the current represents the expected number of times
that the random walker pass through the edge in the vp to vq direction subtracted
from the expected number of times that the random walker passes through the edge
in the vq to vp direction. The proof of this statement is somewhat involved, so the
interested reader is referred to [115].
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We have seen that several problems concerning random walks on a graph have
interpretations as problems in circuit theory and that the quantities of voltage and
current in a circuit may be interpreted as expectations of certain random walks. This
connection has been very helpful for analyzing random walk problems on graphs.
One problem in particular for which this connection has been useful is to provide a
much simpler proof of Polya’s theorem [308], which states that a random walk on an
infinite lattice will always return to its starting point when the lattice is either one-
dimensional or two-dimensional, but has a finite probability of never returning to its
starting point for lattices in dimensions three or greater [115]. In the next section,
we leave random walks and consider the Gaussian Markov Random Field (GMRF),
a different probabilistic model that leads back to the circuit equations.

3.4.3 Gaussian Markov Random Fields

A Markov Random Field (MRF) describes any collection of random variables de-
fined on nodes vi ∈ V for which the value of each individual variable xi is condi-
tionally dependent only on the values of its neighbors. This conditional probability
can be represented by a simple graph structure recorded by the set E ⊆ V × V.
In this structure, each node represents a random variable and each edge represents
conditional dependence between the variables. Node (variables) which are inde-
pendent are not connected by an edge, i.e., if vi and vj are independent, then
p(xi |xj ) = p(xi). In this short section, we will show that the MAP estimate of a
certain class of Gaussian MRFs may be interpreted as the electrical potentials of a
specific circuit construction.

The classic MRF is the Ising Model for ferromagnetic material in which each
variable can assume one of two states, xi ∈ {−1,+1}. In contrast to the two-state
model, a Gaussian Markov Random Field model assumes that each variable xi ∈ R

represents a random variable with a Gaussian distribution, xi ∼ N(μi, σi), and all
individual xi are correlated with covariance �. The probability distribution for any
particular state of the entire MRF (i.e., a particular set of values for each of the
random variables) is typically given by the Gibbs distribution

P(X = x) = 1

Z
exp

(
−1

2
(x − μ)T�−1(x − μ)

)
, (3.55)

where � is the covariance matrix, and Z is the partition function that serves as a
normalization constant, which is set such that the integral of P over x is unity. The
covariance matrix captures the coupling between each pair of nodes, yet represents
both direct covariance between neighboring nodes and indirect coupling that results
from a propagation of covariance to remote pairs of nodes. The inverse of the covari-
ance matrix, �−1, has several interpretations and is sometimes called the potential
matrix, the precision matrix or the information matrix in the literature. The infor-
mation matrix can provide a more compact representation of the coupling between
the random variables xi and more succinctly captures the neighborhood relations in
the GMRF [224].
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In many applications [9, 224], the information matrix is assigned to a sum of a
weighted graph Laplacian matrix with a non-negative diagonal matrix T, i.e., �−1 =
λL + T, where λ is the weighting parameter.

Using this choice for the information matrix, the maximum likelihood or ML
estimate of the state x of the Gaussian MRF under the Gibbs distribution (3.55) is
given by

x̂ML = argmax
x

{P } = argmax
x

{
(x − μ)T(λL + T)(x − μ)

}
.

Consequently, the ML estimate may be generated by solving the linear system

(λL + T)̂xML = (λL + T)μ. (3.56)

Similarly, if we adopt an observation model of the Gaussian MRF where the state x
is observed in the presence of noise, the observed state y is expressed as

y = x + n, (3.57)

where the noise is zero-mean and Gaussian distributed, n ∼ N(0,R−1) with covari-
ance matrix R−1. For simplicity here we assume that n is independent for each
variable vi (i.e., R is diagonal), and x is zero mean, x ∼ N(0,�). If again the infor-
mation matrix �−1 is captured by the weighted graph Laplacian of the MRF graph,
�−1 = λL + T, then

P(y|x) = 1

Z
exp

(
−1

2
(y − x)TR(y − x)

)
. (3.58)

Therefore, the maximum a posteriori or MAP estimate of

P(x|y) ∝ P(x)P (y|x), (3.59)

is given by

(λL + T − R)̂xMAP = −Ry. (3.60)

Viewed as a circuit, the MAP estimate in (3.60) may be interpreted as the electrical
potentials established by a circuit where (a) every pair of neighboring nodes is con-
nected by a resistor with value 1/λ; (b) a resistor connects each node vi to ground
via a resistor with value 1/(Tii −Rii); and (c) a current source injects −Riiyi current
into each node vi . A similar circuit interpretation may be given to the ML estimate
in (3.56) in which the current sources are given instead by (λL + T)μ.

We can now examine how this circuit model reflect various conditions in the
Markov Random Field through considering three examples. First, if the weighting
parameter λ = 0, then each variable is independent and the MAP estimate is simply
x̂i = −Riiyi/(Tii − Rii). From a circuit standpoint, this result is explained by the
fact that each node is connected to ground by an edge with resistance Rii/(Tii −Rii)

and that −Riiyi current is injected into each node. Thus, the resulting voltages are
apparent from Ohm’s law. As a second example, consider the case of an observed
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variable at some node vi such that xi = xobs. From a circuit perspective, this re-
quirement that xi = xobs is equivalent to imposing a voltage source between vi and
ground which establishes the potential xobs at vi . Consequently, the remaining po-
tentials may be calculated using the steady-state solution for a voltage source (as
in (3.8)) where the observed variables form the set of constrained voltages D. As a
final example, we can give the circuit interpretation of the probability for any state
in the as given by the Gibbs energy in (3.4.3). If μ = 0 then, given any state of the
MRF, x, the power dissipated by the circuit equivalent model is given in (3.17) by
E [x] = xT(λL + T)x and therefore the probability of state x may be interpreted as

P(X = x) = 1

Z
exp

(
−1

2
G[x]

)
. (3.61)

In other words, the probability of any state in the Gaussian MRF is proportional to
the exponential of half the power dissipated by the equivalent circuit. Thus config-
urations of electrical potentials in the circuit that yield larger power dissipation are
less likely to occur under the MRF model. Therefore, the minimum power distribu-
tion for the circuit which is produced by nature is the maximum likelihood solution
for the equivalent MRF.

In this section we considered a second probabilistic model that could also be in-
terpreted as an electrical circuit. Although circuit interpretations of Gaussian MRFs
are not common in the literature, this connection provides another example of an
area in which the same variables, operators and equations all participate.

3.4.4 Tree Counting

Almost any quantity in circuit theory may be calculated by counting subtrees of the
graph. Counting subtrees is very impractical for computation in most circumstances
(although some treatments of computational circuit theory have pursued exactly this
approach [75]), but it is sometimes useful to examine a circuit theory problem (or
a partial differential equation) in terms of counting subtrees. One utility of the tree
viewpoint can be that certain properties of the behavior of a variable under pertur-
bation or noise are simpler to prove by using trees [161]. We believe that the tree
interpretations of the circuit equations are particularly valuable because it is difficult
to see an analogue for this viewpoint in the continuum equations. In other words,
random walks are straightforward to define in the continuum, and electromagnetism
provides an intuitive analogy for electrical circuits, yet we are not aware of any
equivalent to tree counting in the continuum. Therefore, since this method is avail-
able in the discrete domain, we devote some space here to computing solutions to
the circuit equations by counting subtrees of the graph. In this section we largely
follow the results and notation of Biggs [34], which provides support for all of the
results reviewed here.

Define a tree T as a graph on n nodes and m edges for which there is a single
connected component such that m = n− 1. Note that some authors refer to this type
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of tree as a spanning tree. One important property of any tree is that a tree consists of
no cycles (by contradiction, if a tree did contain a cycle then it would be possible to
remove one edge without losing connectivity). A second property of a spanning tree
that we will use in this section is that within a spanning tree, there exists a unique
path that connects any two nodes. The number of subtrees in a graph is the number
of unique subgraphs of the graph that are trees. In this section, any use of the term
tree should be interpreted as referring to a spanning tree.

By definition of the edge–node incidence matrix, any vector in the right nullspace
must take the same value for each pair of nodes connected by an edge. Therefore,
if the graph is connected, the right nullspace of the edge–node incidence matrix
is spanned by the set of constant-valued functions, i.e., A1 = 0. Consequently, the
reduced incidence matrix, A0, formed by removing the column corresponding to
any node, has a right nullspace of dimension zero. Since the left nullspace of the
edge–node incidence matrix has already been discussed as being comprised of the
graph cycles, it is clear that if A represents the incidence matrix of a tree, there can
be no such cycles, and thus the left nullspace of the incidence matrix of a tree is
also dimension zero. Furthermore, for any tree, the reduced incidence matrix A0
is both a square matrix and nonsingular. Put differently, any n × n submatrix of an
incidence matrix A0 is nonsingular if and only if this submatrix represents a tree. The
invertibility of this matrix indicates that we may solve for a set of node potentials
xi such that the differences across the edges of a tree fit prescribed values, i.e., a
solution x will always exist for the equation

Ax = p. (3.62)

In summary, if our graph is a tree, then any flow in the graph may be represented via
potential differences for some set of node potentials due to the guaranteed existence
of a solution. Additionally, if we set xi = 0 for some node vi , then the solution is
unique.1

The connection between circuit theory and tree counting goes back to the ear-
liest days of circuit theory. Kirchhoff himself proved that the number of trees in
a graph, κ , can be calculated as the determinant of the reduced Laplacian matrix,
L0 = AT

0A0 for a reduced incidence matrix A0 created by removing any node [232],
i.e., κ = |AT

0A0|. This result is known as the Matrix-Tree Theorem. When the
Laplacian matrix represents a weighted graph, L0 = AT

0G−1A0, then the determi-
nant ω = |AT

0G−1A0| represents the weighted sum of distinct subgraphs within the
graph that are trees, i.e.,

ω = |L0| =
∑
T ∈T

w[T ], (3.63)

1In fact, Branin [58] showed that the inverse of the reduced incidence matrix S = A−1
0 has a se-

mantic interpretation:

S(vi , ejk) =

⎧⎪⎨
⎪⎩

+1 if edge ejk is traversed in the path from vi to v0 in the positive direction,

−1 if edge ejk is traversed in the path from vi to v0 in the negative direction,

0 otherwise.
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where the sum is understood to be taken over all such trees T [36], and we define
the weight of each individual tree as the product of the edge weights comprising that
tree

w[T ] ≡
∏

eij ∈T

w(eij ). (3.64)

We now consider how we may use tree counting to solve problems in circuit
theory. The first problem we consider is the solution of the electrical potentials when
a voltage source is applied between nodes v0 and v1, where v0 is tied to ground.
Consequently, x0 = 0 and x1 = 1. In this case, we may calculate the voltage xi for
any other node via

xi = 1

χ

∑
F∈F(0|1,i)

w[F ], (3.65)

where the sum is over all 2-trees, F(0|1,i), for which v1 and vi are in one component
and v0 is in another component. Recall that a 2-tree is defined as any graph that
is the result of removing one edge from a spanning subtree of G, and that a 2-tree
therefore need not be a tree. As before, we let

w[F ] =
∏
e∈F

w(eij ), (3.66)

and define the scale factor

χ ≡
∑

F∈F(0|1)

w[F ], (3.67)

where this sum is taken over all 2-trees in the graph in which v0 is in one compo-
nent and v1 is in the other. When the graph is unweighted, w[F(0|1)] = w[T] = 1,
meaning that χ is simply the number of 2-trees separating v0 and v1. In this case,
(3.65) simply says that the potential at node vi is given by the percentage of 2-trees
separating v0 and v1 that groups vi with v1. This result may therefore be interpreted
as the expected value of a random variable that selects 2-trees with uniform proba-
bility and gives xi = 1 if vi is grouped with v1 and xi = 0 otherwise [267].2 If the
graph is weighted, then process is modified such that the probability of selecting a
2-tree F is proportional to w[F].

If we replace our voltage source between v0 and v1 with a unit current source
such that v0 is still tied to ground, then the induced potential at node vi is given

2It is possible to interpret the formulae concerning 2-trees by considering a second graph G+
formed from G by adding an edge between v0 and v1. In this case, the 2-trees of G are the same as
the trees of G that contain the edge spanning v0 and v1. Therefore, all of the formulae concerning
2-trees could be written in terms of the trees of G+ that contain the new edge. This development
in terms of the trees of G+ was the view adopted by Kirchhoff in his original work on this topic
[232].
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instead by

xi = 1

ω

∑
F∈F(0|1,i)

w[F ], (3.68)

where, as before, the sum is over all 2-trees, F(0|1,i), for which v1 and vi are in one
component and v0 is in another component. Therefore, the only difference between
the potentials induced by a voltage source and a current source are the denominator
χ or ω. Consequently, it immediately follows that we may calculate the effective
resistance between nodes v0 and v1 by

Reff(v0, v1) = ω

χ
. (3.69)

The current through any edge which is induced by a unit current source between
v1 and v0 also admits an interpretation in terms of trees. Specifically if the unit
current is supplied at v1 and drawn from v0, then the current yij through edge eij is
given by

yij = 1

ω

( ∑

T +∈T+
{0,1|i,j }

w[T +] −
∑

T −∈T−
{0,1|i,j }

w[T −]
)

, (3.70)

where T+ is a tree in which the path from v1 to v0 passes through eij in the positive
direction and T− is a tree in which the path from v1 to v0 passes through eij in the
negative direction. In the first term the sum is taken over all T+ trees in the graph in
the sum in the second term is taken over all T− trees in the graph.

The reader may be concerned that our treatment has addressed only the interpre-
tation of potentials and currents induced by unit voltage sources or current sources.
Real circuit problems often involve multiple sources or source magnitudes which
are not equal to unity. However, it is important to remember that we are considering
linear circuits. Therefore, we may decompose any set of sources into a sum of unit
sources weighted appropriately by a set of coefficients. Given this decomposition,
we could count the trees for each source independently (multiplied by the factor) and
sum the results to obtain the solution for the original set of sources. This approach
to decomposing sources is common in circuit theory and is known as the method
of superposition. Consequently, it is sufficient to consider only the solutions for
unit voltage and current sources, which form the building blocks for solving more
complicated problems.

Example 2 (The Wheatstone bridge) To demonstrate the utility of tree counting for
solving for unknowns in an electrical circuit, we will consider the classic Wheat-
stone bridge circuit. The Wheatstone bridge is a circuit that enables the determi-
nation of an unknown resistor value rx . The circuit consists of two known fixed
resistors r1 and r2 plus a variable resistor or potentiometer r3, together with a fixed
voltage source V and a simple current meter or galvanometer. The configuration is
shown in Fig. 3.8. To measure rx , the resistance r3 of the potentiometer is adjusted
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Fig. 3.8 The Wheatstone bridge. The unknown resistance rx is derived from fixed resistors r1 and
r2 after the variable resistor r3 is set so that the current between nodes a and b is measured to be
zero by the ammeter. The corresponding weighted, oriented graph is presented on the right, with
edge weights w1, w2, w3, and wx on edges y1,a , y1,b , ya,0, and yb,0, respectively. Recall that, by
convention, the edge weights are conductances and therefore wi = 1/ri

Fig. 3.9 The four subgraphs
of the Wheatstone bridge
graph that are trees

until the current measured between nodes a and b is zero. Nodal analysis shows that
the resulting resistance is given by

rx = r2

r1
r3. (3.71)

To re-derive this result from tree counting, we begin by identifying the graph
corresponding to the circuit, which is shown in Fig. 3.8, and the four trees of the
graph, provided in Fig. 3.9. The determinant of the weighted reduced Laplacian ω

can then be computed, and in this example evaluates to ω = w2w3wx + w1w3wx +
w1w2wx + w1w2w3.

The next step is to identify the 2-trees F(0|1) within the graph that separate nodes
v0 and v1, shown in Fig. 3.10. From these 2-trees the scale factor χ as defined in
(3.67) can be calculated and evaluates to χ = 2w1w2 + 2w2w3 + 2w3wx + 2wxw1.
The effective resistance can then be calculated from these two scale factors, however
the value of wx is still unknown.

The voltage xa is given in terms of the 2-trees F(0|1,a) (in which one component
contains v0 and the other component contains both va and v1) identified from the
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Fig. 3.10 The eight 2-trees separating v1 and v0

three trees containing a connection between nodes va and v1, and similarly for xb .
From (3.65), we see that

xa = 1

χ
(2w1wx + 2w1w2)

and

xb = 1

χ
(2w2w3 + 2w1w2).

Therefore when the bridge is balanced by the potentiometer, xa = xb and thus

wx = w2

w1
w3.

Converting the edge weights into resistances we arrive at the final expression for the
unknown rx given by

rx = r2

r1
r3.

3.4.5 Linear Algebra Applied to Circuit Analysis

In our exposition of linear circuit theory, all of the operators were represented by
matrices and the solutions for circuit variables were obtained via linear algebra.
Therefore, it should be no surprise that some of the common techniques in linear
algebra also have interpretations in terms of circuit theory. Specifically, we will
address here the formation of an equivalent circuit via a series of circuit transforms.

3.4.5.1 The Delta–Wye and Star–Mesh Transforms

The circuit transform we will consider first is the delta–wye transform or, more
generally, the star–mesh transform. In the context of linear algebra, we will show
that one can view an application of these transforms as one step of Gauss–Jordan
elimination on the Laplacian matrix.

The delta–wye transform can be viewed as a method for producing a second
graph that is missing one node, but for which the electrical connections between all
remaining nodes are the same. Formally, we use the delta–wye transform to produce
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Fig. 3.11 The original ‘Y’
graph and the ‘
’ graph
obtained by eliminating the
central node, v1, from the ‘Y’
graph. The delta–wye
transform consists of a
mapping of resistor values
that ensures that the voltages
and currents at the terminal
nodes v2, v3, and v4 are
identical in the two
configurations

a new graph G1 from an original graph G0 with the node va removed, thus V1 =
V0 − va , and such that the effective resistance Reff(vi, vj ) between all remaining
nodes is unchanged after the transformation. Consider the graphs in Fig. 3.11. The
delta–wye transform gives us a method for calculating the resistances ra , rb and rc
from the original resistors r1, r2 and r3 such that the effective resistances (and thus
the voltages and currents at the terminals of the circuit) are preserved. The transform
is called “delta–wye” due to the shape of the two graphs (a ‘
’ and ‘Y’). It is known
from basic circuit theory [294] that the resistances of the ‘
’ circuit can be phrased
in terms of resistances of an equivalent ‘Y’ circuit as

ra = r1r2 + r2r3 + r3r1

r2
, (3.72)

rb = r1r2 + r2r3 + r3r1

r3
, (3.73)

rc = r1r2 + r2r3 + r3r1

r1
. (3.74)

Let us consider the Laplacian matrix for the original ‘Y’ graph

L =

⎡
⎢⎢⎣

w1 + w2 + w3 −w1 −w2 −w3
−w1 w1 0 0
−w2 0 w2 0
−w3 0 0 w3

⎤
⎥⎥⎦ , (3.75)

where the central node, v1, in the ‘Y’ graph is given by the first row/column. Re-
call that the edge weights in the Laplacian matrix, wi , are affinity weights which
represent the conductances wi = 1/ri (see Chap. 2). If we perform Gauss–Jordan
elimination of the central ‘Y’ node, v1, in L, then we are left with the matrix

L = 1

w1 + w2 + w3

×

⎡
⎢⎢⎣

w1 + w2 + w3 0 0 0
0 w1w2 + w1w3 −w1w2 −w1w3
0 −w1w2 w1w2 + w2w3 −w2w3
0 −w1w3 −w2w3 w1w3 + w2w3

⎤
⎥⎥⎦ .
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The lower-right submatrix of this matrix now corresponds to a graph whose topol-
ogy matches that of the ‘
’ graph. The resulting conductances in the graph corre-
sponding to this submatrix are given by

wa = w1w3

w1 + w2 + w3
, (3.76a)

wb = w1w2

w1 + w2 + w3
, (3.76b)

wc = w2w3

w1 + w2 + w3
, (3.76c)

which yield the same resistance values given for the delta–wye transform. Con-
sequently, the delta–wye transform is equivalent to removing the node, v1, in the
center of the ‘Y’ via Gauss–Jordan elimination on the Laplacian matrix.

More generally, a Gauss–Jordan elimination on the Laplacian matrix may be
used to eliminate any node and produce a second circuit with the node removed but
otherwise equivalent electrical properties. This more general elimination procedure
is called a “star–mesh” transform, since the center node of a “star” is replaced by a
mesh of resistors that connect all nodes incident on the star. Since each elimination
of a node in this manner causes all nodes that were previously connected to the
removed node to now be connected to each other, the Gauss–Jordan elimination of a
node often adds more edges to the graph than there were originally. These additional
edges may cause computational problems since the new graph may require more
memory to store and process than the old one. This problem can be addressed by
eliminating nodes in a particular order.

3.4.5.2 Minimum-Degree Orderings

Specifically, when using Gaussian elimination to produce “LU” factors (or Cholesky
factors) of a sparse Laplacian matrix, the amount of “fill-in” of zeros in the Lapla-
cian matrix caused by the creation of new edges after each elimination may be dis-
astrous for the memory required to store the matrix factors. However, elimination of
the nodes in a different order may result in a different level of fill-in. This viewpoint
on the elimination of nodes was the primary motivation behind the development of
minimum-degree orderings that are used to factor sparse matrices [271, 322, 376].

One graph for which the ordering is particularly convenient is any tree. When the
graph is a tree, there exists an ordering of the elimination that produces the creation
of zero new edges and therefore does not create any fill-in for the factored matrix.
The principle behind such an ordering is to order the elimination of nodes from the
leaf nodes inward, which causes the creation of no new edges in the process. Fig-
ure 3.12 gives an example of this elimination procedure on small tree. Algorithm 3.1
accomplishes the ordering in linear time, where the array tree contains, for each
node, the index of one neighbor (with no edges overrepresented) and the array de-
gree contains the degree of each node in the tree. This representation is possible
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Fig. 3.12 Gaussian elimination of the Laplacian matrix of a tree with ordering given by the num-
bers inside the nodes. Note that the resulting Gaussian elimination has the same sparsity structure
as the original matrix when a no-fill ordering is used (e.g., as computed by Algorithm 3.1). Note
that the Laplacian matrix is singular—the last elimination produces a row of all zeros. Once the
graph has been reduced (grounded), as in (3.77), this is no longer a concern e.g., if node 5 were
grounded, the elimination would stop after the third elimination and x5 = 0 would be used to re-
cover the remaining values of the solution. Top row: Elimination of the tree—the figures depict
the graph represented by the lower triangle of the matrix. Bottom row: Laplacian matrix of the tree
after each elimination step

Algorithm 3.1 Produce a no-fill ordering of a tree
1: void compute_ordering(degree, tree, ground, ordering)
2: k ⇐ 0
3: degree[root] ⇐ 0 {Fixed so that ground is not eliminated}
4: ordering[N − 1] ⇐ ground
5: for each node in the graph do
6: while degree[current_node] equals 1 do
7: ordering[k] ⇐ current_node
8: degree[current_node] ⇐ degree[current_node]−1
9: current_node ⇐ tree[current_node]

10: degree[current_node] ⇐ degree[current_node]−1
11: k ⇐ k + 1
12: end while
13: k ⇐ k + 1
14: end for

since a tree has n − 1 edges (where the root would contain a ‘0’). Therefore, one
could solve the linear system of equations

L0x = f, (3.77)

in linear time when L represents a tree. Algorithm 3.2 finds a solution to (3.77) in
linear time, given a tree and an elimination ordering. For ease of exposition, we
assume that all wij = 1, but the algorithm could be easily modified to handle an
arbitrary set of nonnegative weights. Because the full Gaussian elimination has the
same sparsity structure as the original matrix when a no-fill ordering is used we need
only compute the no-fill ordering, and not the full Gaussian elimination, in order to
solve the linear system.
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Algorithm 3.2 Given a tree, solve (3.77)
1: solve_system(ordering, f, tree, r, output)
2: {Forward pass}
3: k ⇐ 0
4: for each non-ground node do
5: r[tree[ordering[k]]] ⇐ r[tree[ordering[k]]] + r[ordering[k]]/f[ordering[k]]
6: f[tree[ordering[k]]] ⇐ f[tree[ordering[k]]] − 1/f[ordering[k]]
7: k ⇐ k + 1
8: end for
9:

10: output[ordering[N − 1]] ⇐ r[ordering[N − 1]]/f[ordering[N − 1]]
11:

12: {Backward pass}
13: k ⇐ N − 2 {Last non-ground node}
14: for each non-ground node do
15: output[ordering[k]] ⇐ output[tree[ordering[k]]] +

r[ordering[k]]/f[ordering[k]]
16: k ⇐ k − 1
17: end for

In this section, we showed that another aspect of circuit theory also appears in
other areas of finite mathematics. Specifically, we showed that the methods for cir-
cuit transformations and equivalent circuits arise from Gauss–Jordan elimination
on the Laplacian matrix. This insight is helpful for understanding the motivation
behind matrix ordering algorithms (specifically minimum-degree orderings). When
the graph is a tree, we showed that the graph has a straightforward ordering that al-
lows linear systems that represent trees to be solved in linear time. This linear time
solution has been exploited before in applications to computer vision (see [160]).

3.5 Conclusion

In his Lecture Notes on Physics, Richard Feynman paused to consider why the same
operators and equations recur throughout seemingly different areas of physics [132].
Specifically, Feynman focused on the pervasiveness of the Laplacian operator and
questioned whether it was possible that the commonality of the governing equations
indicated that all of these physical phenomena were actually the same underlying
process on some fundamental level. After examining these different phenomena in-
dividually, Feynman concludes that it is highly unlikely that each of these processes
are actually the same on a fundamental level and instead offers an alternative expla-
nation for the commonality of the governing equations throughout physics. Feyn-
man’s explanation is that the common thread tying together these physical phe-
nomena is that the processes all occur in the same space and that this fact alone
practically forces a certain relationship between variables.
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Similar to Feynman’s inquiry, we can seek an explanation of why circuit the-
ory, graph theory, mass-spring networks, random walks and Markov Random Fields
(among others) all involve the same equations. In our discrete setting, Feynman’s
explanation would suggest that the reason for the recurrence of these equations is
that all of the phenomena are defined on a set of locations which are connected via
some neighborhood structure (i.e., a graph). Therefore, if we are going to describe
a relationship between variables defined at the nodes, our basic tool set will have
to reflect the space upon which these variables are defined. The operators of graph
theory—the Laplacian matrix, adjacency matrix and incidence matrix—explicitly
represent the space and therefore it should come as no surprise that these opera-
tors recur throughout any equations that govern the relationship between variables
defined on a graph.
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