
Chapter 1
Discrete Calculus: History and Future

Abstract The goal of this book is to bring together three active areas of current
research into a single framework and show how each area benefits from more ex-
posure to the other two. The areas are: discrete calculus, complex networks, and
algorithmic content extraction. Although there have been a few intersections in the
literature between these areas, they have largely developed independently of one an-
other. However, we believe that researchers working in any one of these three areas
can strongly benefit from the tools and techniques being developed in the others.
We begin this book by outlining each of these three areas, their history and their
relationship to one another. Subsequently, we outline the structure of this work and
help the reader navigate its contents.

1.1 Discrete Calculus

The term “discrete calculus” is one of many expressions, along with “discrete ex-
terior calculus” and “mimetic discretization”, that describes the body of literature
that has focused on finding a proper set of definitions and differential operators that
makes it possible to operate the machinery of multivariate calculus on a finite, dis-
crete space. In contrast to traditional goals of finding an accurate discretization of
conventional multivariate calculus, discrete calculus establishes a separate, equiv-
alent calculus that operates purely in the discrete space without any reference to
an underlying continuous process. Therefore, the purpose of this field has been to
establish a fully discrete calculus rather than a discretized calculus. The standard
setting for this discrete calculus is a cell complex, of which a graph or network is a
special case.

Although the tools of discrete calculus have risen to prominence more recently,
the concepts in discrete calculus were historically developed in parallel with the
conventional calculus. In fact, the origins of both conventional vector calculus and
discrete calculus have their origins in studies of spatial representations and relation-
ships as well as the description of physical systems associated with space. In order to
understand the relationship of conventional calculus to discrete calculus, we believe
that it is useful to briefly examine the history of development in both areas.
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2 1 Discrete Calculus: History and Future

The term “discrete calculus” appears to be a recent invention which we have
reluctantly adopted. Our reluctance is due to possible confusion with discretized
methods, which have a different goal. The term combinatorial calculus might be
more appropriate, but “discrete calculus” seems established at this point and the
term “combinatorial calculus” has been used previously in a different context.

1.1.1 Origins of Vector Calculus

Modern, conventional calculus consists of several components. One component of
calculus employs the notion of the infinitesimal, using limits and infinite series to de-
velop the theory. Naturally, these concepts are associated with an underlying contin-
uous space. In contrast, other components of calculus do not depend on the concept
of the infinitesimal. For example, the Fundamental Theorem of Calculus describes
essentially a topological relationship, given by the operation of integration, between
the integrand and the domain of integration. In the context of describing a discrete
calculus, in which the domain is discrete and finite, the aspects of conventional cal-
culus that focus attention on the infinitesimal will play a smaller role in this exposi-
tion. Instead, our focus in reviewing conventional calculus will be in those aspects
that can be used to describe space and the behavior of functions defined in space.

Historically, univariate or one-dimensional calculus that was developed by New-
ton and Leibniz was extended to describe two-dimensional space by using the real
and imaginary parts of a complex number to represent the two dimensions of the
plane (known as the complex plane). This development has variously been at-
tributed to Caspar Wessel or Jean-Robert Argand, both of whom worked in the late
18th century (and as a result the complex plane is sometimes called the Argand
plane). Other sources attribute to Gauss the introduction of the complex plane to
represent two-dimensional space, although Gauss’ work was mainly in the early
19th century.

Unfortunately, physical space is three-dimensional and therefore the two-
dimensional representation by the complex plane was insufficient to describe all
physical processes. Furthermore, it was unclear how to extend the concept of com-
plex numbers to three dimensions. This problem was finally solved in 1844 by
William Hamilton who defined four-dimensional complex numbers called quater-
nions [185]. Quaternions formed the basis for modern vector calculus by defining a
scalar quantity as the real part of a quaternion and a vector quantity as the imaginary
part of a quaternion. Hamilton’s student Peter Tait continued to develop and pro-
mote quaternions after Hamilton’s death in 1865, but later researchers Josiah Gibbs
and Oliver Heaviside (independently) stripped out the quaternion focus of the work
and presented a simplified form of vector calculus. This simplified form, without
any explicit reference to complex numbers or quaternions, is today the conventional
vector calculus taught in school. However, it is important to note that, because of
its origin, conventional vector calculus was derived explicitly to describe space in
three dimensions. This point will be emphasized again in Chap. 2 as we proceed to
develop the tools of discrete calculus.
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During the mathematical development of quaternions (and later vector calculus),
James Maxwell was developing his theory of electromagnetism. Maxwell imme-
diately recognized the value of quaternions in his work and seized upon this new
mathematics to help him describe the physical behavior of electric and magnetic
fields. Therefore, the description of space provided by vector calculus was imme-
diately used by Maxwell to describe the behavior of functions associated with that
space. In fact, the use of vector calculus in physics became so successful that con-
nections were made between various physical theories, showing that quantities in
one area of physics behaved analogously to quantities in a different area of physics.
These analogies were later explained in 1976 by Enzo Tonti who suggested that the
reason for these analogies was that each analogous quantity was associated with the
same unit of space [378]. Consequently, we see again the close connection between
the mechanics of vector calculus and the mathematical description of space. Ulti-
mately, it is this connection that will allow for the development of a discrete calculus
on a discrete domain.

Vector calculus was further generalized to describe surfaces and also extended
beyond three dimensions. The development of calculus on surfaces belongs to the
classical discipline of differential geometry. The abstraction of calculus and exten-
sion to higher dimensions is sometimes called exterior calculus or the theory of
differential forms, which was first developed by Élie Cartan in the early 20th cen-
tury. This more abstract and generalized form of calculus is where we begin our
exposition in Chap. 2 to develop the discrete calculus.

From an early stage in the development of vector calculus, there was interest
in discretizing the equations of vector calculus so that they could be solved in
pieces. A major motivation for this approach is that many of the differential op-
erators are linear. In this case, linearity implies that the act of applying an operator
to a function may be subdivided into small, local operators and then reassembled
to produce the result. In 1928, Courant, Friedrichs and Lewy published the finite
differences approach to discretizing differential equations [92], which became the
standard method for discretization and was heavily developed during the middle of
the 20th century. Courant later planted the seed for what later became known as the
finite element method in 1943 [91] and it was later formalized [361].

The rise of ubiquitous computing has propelled a sustained interest in the dis-
cretization of differential equations to model everything from airplanes to medical
implants. More recently, development of discretization has moved toward formula-
tion of differential calculus on a more general cell complex rather than at a series of
point locations, which is sometimes known as mimetic discretization [40, 47, 178,
249, 275].

For more details on the history of the development of vector calculus, see [95].

1.1.2 Origins of Discrete Calculus

The origins of discrete calculus also began with a study of space in the context of
graph theory [37]. Specifically, the study by Euler of the Königsberg Bridge Prob-
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lem modeled the two banks and islands of Königsberg as nodes in a graph and the
bridges connecting them as edges [126]. Therefore, from its earliest beginnings,
graph theory was also modeling space and the neighborhood connections between
different areas.

The first application of graph theory to the modeling of physical systems came
from Kirchhoff, who both developed the basic laws of circuit theory and also made
fundamental contributions to graph theory [232]. Kirchhoff’s work on applying
graph theory to model circuits in 1841 predated the development of quaternions,
vector calculus and Maxwell’s Laws. At the end of the 19th century Poincaré pub-
lished his work on analysis situs [307] in which he analyzed simplicial complexes,
simplicial homology and laid the foundation for the subject of algebraic topology.
Poincaré also was concerned with representing space by discrete elements and, in
fact, the term analysis situs is Latin for “analysis of position” or “analysis of loca-
tion”. Algebraic topology was further developed in the early 20th century by many
contributors, including Whitney, de Rham, Cartan and Lefschetz (see [107, 217] for
more history on this development).

Circuit theory continued to develop using graph theory and the concepts of alge-
braic topology [118, 400]. In 1955, Roth directly connected algebraic topology to
electrical circuits and used the theory to establish conditions under which a circuit
will have a solution (i.e., be realizable) [323]. This achievement, coupled with the
unconventional work of Kron [250], caused electrical engineers to begin viewing
electrical circuits as a alternative to conventional vector calculus in which all of the
laws of vector calculus were discrete. This viewpoint came together in the review
article by Branin [59] who explicitly posited that electrical circuits (and “higher-
dimensional” circuits) had the same structure as conventional vector calculus.

As technology has allowed increased representation and computational power,
these tools from discrete calculus have received recent attention. In particular, the
area of computer graphics has seen a strong interest in the concepts of discrete cal-
culus [103, 105, 200, 258, 374, 421], although the interest has been by no means
limited to that field [81, 123, 161, 219, 420]. The rise of linear algebra packages,
such as MATLAB, make the use of discrete calculus operators and algorithms quite
convenient, since the primary operators take the form of large, sparse matrices. Ad-
ditionally, the demonstrated ability of parallel computational devices such as GPUs
to efficiently solve problems in linear algebra with sparse matrices holds strong
promise for discrete calculus operations in the future as these parallel computing
devices become increasingly common.

1.1.3 Discrete vs. Discretized

It is remarkable that both conventional vector calculus and discrete calculus devel-
oped around the representation of space and the manipulation of functions defined
on that space. As we see in Chap. 2, the definition of the underlying space actu-
ally defines the structure of the differential operators in both conventional vector
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calculus and discrete calculus. Additionally, it is remarkable that both continuous
vector calculus and discrete calculus were initially adopted by researchers seeking
to understand the behavior of electricity, with Maxwell initially adopting the early
conventional vector calculus to describe electromagnetism and Kirchhoff (and later
researchers) adopting the early discrete calculus to describe circuit theory.

The focus of historical study in vector calculus and partial differential equations
has been on producing analytical, closed-form solutions to problems. In contrast, the
finite nature of discrete calculus and rise of computational power has driven that area
to be less focused on analytical solutions and to place more emphasis on algorithms
for finding solutions. In Chap. 2, we give the discrete calculus expressions for such
classic topics as integration by parts and Green’s Theorems. The truth is that these
fundamental tools in conventional, analytical calculus are simply not as important in
discrete calculus because there is less need to find analytical solutions to equations
in the discrete calculus setting. However, these classical techniques can be useful in
the sense that the intuition behind these concepts in conventional vector calculus can
be re-used in the discrete calculus setting, and also these classical analytic tools can
sometimes be used in proving behavioral properties about certain algorithms (see,
e.g., [161]).

Before moving on, we want to stress again the importance of distinguishing dis-
cretization of conventional calculus from the discrete calculus treated in this work.
In the first case, the goal is to compute a solution to some problem on a continuous
space. However, an analytic solution is too difficult to find and so a discretization
strategy is employed that allows for a computer to produce an approximate solution.
Therefore, the main goal in discretization methods is the fidelity of the discretized,
computed approximation to the desired analytical solution. Consequently, an im-
portant technique for proving the correctness of a discretization strategy is to show
that as the discretization becomes finer and finer (i.e., closer to the continuum) that
the solution obtained by discretization in the limit approaches the known analytical
solution. This discretization approach is commonly used in mimetic discretizations
[103, 105, 200, 258, 374, 421] and in modern finite element methods [40, 47, 178,
249, 275].

In contrast, discrete calculus treats a discrete domain (e.g., a graph) as entirely
its own entity with no reference to an underlying continuum. For example, a social
network (such as a citation network) is not associated with any continuous space
in the sense that the network is not viewed as a discretization or sampling of an
underlying continuum. However, the tools of discrete calculus can still be used to
analyze the structure of the network and the behavior of functions associated with
the network. Consequently, traditional discretization concerns about approaching a
continuous solution in the limit are meaningless in the context of discrete calculus.

Neither conventional calculus nor discrete calculus are subordinate to each other.
Both frameworks can be used to describe physical systems, e.g., with conventional
vector calculus describing the behavior of electromagnetic fields and discrete calcu-
lus describing the behavior of electrical circuits. Chapter 3 goes into greater detail
about the connection between discrete calculus, circuit theory, and other discrete
systems. Additionally, the history of 20th century physics has shown that there are



6 1 Discrete Calculus: History and Future

legitimate philosophical questions about the appropriateness of treating space, and
quantities associated with that space, as continuous or discrete entities. We go no
further in addressing these issues except to state that the focus of this work will
be on discrete calculus, its relationship to conventional calculus, and the occasional
intersections with discretization methods.

1.2 Complex Networks

The term “complex network” is used to describe any non-trivial network.1 Examples
of “trivial” networks are regular graphs (where every node has the same number
of incident edges), lattices, or random graphs. Traditionally, trivial networks were
the focus of study because they are easier to study analytically. However, networks
obtained from the real world are often nontrivial, and the availability of modern
computers has allowed us to represent and analyze huge networks.

The current level of interest in complex networks began in the late 1990s. During
this period the Internet (along with the World Wide Web) was on the rise and there
were many groups looking at network structure for purposes of designing a more
secure, efficient network as well as techniques for analyzing the structure of the
network for tasks like Internet search. During this same period, a series of influential
papers by Watts, Strogatz, Albert and Barabási [20, 362, 396] spurred interest in the
description of complex networks.

One major effect of the interest in complex networks has been the recognition
that complex networks may be used to model a huge array of phenomena across
all scientific and social disciplines. Examples include the World Wide Web, citation
networks, social networks (e.g., Facebook), recommendation networks (e.g., Net-
flix), gene regulatory networks, neural connectivity networks, oscillator networks,
sports playoff networks, road and traffic networks, chemical networks, economic
networks, epidemiological networks, game theory, geospatial networks, metabolic
networks, protein networks and food webs, to name a few. The ubiquity of complex
networks and the importance of understanding their structure has been the focus of
several books in popular science [21, 64, 77, 398].

This book is not about complex networks directly. However, there are ideas which
have been developed in the field of complex networks throughout the book (partic-
ularly in Chap. 8). Instead, the examples used in the applications chapters borrow
heavily from the problems which have been studied in this field. In effect, our goal is
to show how the tools of discrete calculus and the algorithms developed here can be
applied to the vast array of problems which have been uncovered in the literature on
complex networks, as well as show how some of the concepts developed in the com-
plex network literature relate to discrete calculus. Furthermore, in contrast to image
processing or computer graphics applications, we have been careful to develop all

1Throughout this work we use the terms network and graph interchangeably to mean exactly the
same thing—a 1-complex comprised of nodes and edges. A complex will be defined in Chap. 2.
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of our tools without assuming a network embedding so that the tools developed here
may by applied to an arbitrary complex network.

1.3 Content Extraction

The third area addressed in this book is content extraction. The term content ex-
traction has a broad meaning that can encompass many different problems and dis-
ciplines. In our case, we use the term content extraction to indicate any algorithm in
which the goal is to extract information from a dataset and/or network.2 Examples
of content extraction algorithms covered in the book include filtering (denoising),
clustering, manifold learning, ranking, and network characterization.

Content extraction can be used to analyze the structure of data associated with a
network (sometimes called attributed graphs) or the structure of the network itself.
An important methodology described in this book for analyzing data associated with
a network is to use the data to define weights on the network and then use an algo-
rithm that analyzes the structure of the network to draw conclusions about the data.
Chapter 4 describes how weights may be generated from the data. For example, to
perform clustering of data associated with nodes, in Chap. 6 we show how that data
may be used to establish edge weights, after which any algorithm that clusters a
weighted network may be applied to produce a clustering of the data. In particular,
image content may be clustered using this approach.

Many of the algorithms developed for content extraction were developed in the
context of image processing or computer graphics. In both of these cases, traditional
one-dimensional signal processing must be substantially modified to operate in mul-
tiple spatial dimensions (generally in two or three dimensions). Consequently, the
algorithms developed in these fields explicitly account for spatial interactions. In
many ways, the work in this book may be viewed as continuing the development of
the variational algorithms based on active contours [222] and level sets [339] which
dominated image processing (among other fields) for many years. These methods
cast content extraction problems as energy minimization problems in which the opti-
mum solution to the energy minimization problem provided a solution to the content
extraction problem. Level sets provided a mechanism for optimizing these energies,
using tools from the study of partial differential equations. The book by Sethian
[339] demonstrated the remarkable number of applications that could be treated by
the energy minimization methodology of level set techniques. Similar to this body

2In many disciplines the network structure is itself considered the dataset (since this information
must be collected). Our distinction here between data and network is simply due to the fact that
in several of the disciplines we consider there is data associated with each node or edge in the
network (as in the case of image processing), in which case the network defines the spatial domain
upon which the data is processed. However, we address algorithms that can be used to process
data associated with a network and algorithms that can be used to analyze the structure of the
network itself. Consequently, algorithms that process data associated with networks or algorithms
that analyze the network structure itself are both considered to be content extraction algorithms.
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of work, we also equate energy optimization with the solution to content extraction
problems. However, the use of discrete calculus to formulate the energy minimiza-
tion problems affords us the major advantage of generalizing the utility of these
content extraction methods to arbitrary discrete domains (e.g., graphs). This gen-
eralization allows us to apply the energy minimization methodology to tackle the
problems of the future being defined in the field of complex networks. Additionally,
this formulation in terms of discrete calculus may also be applied in the same ar-
eas that were conventionally treated by level sets by viewing a Cartesian domain as
a special case of the more general framework (i.e., a lattice). In fact, recent work
has demonstrated that energies which were conventionally formulated using vector
calculus and optimized with level sets could be dramatically outperformed by for-
mulating the same energies using discrete calculus and performing the optimization
using techniques in combinatorial optimization [163].

1.4 Organization of the Book

In the first part of the book, we present a brief review of discrete calculus with
a focus on those key concepts that are required for the successful application of
discrete calculus. This is by no means an exhaustive treatment of this topic, but is
included to establish the notation and terminology used throughout the subsequent
chapters, and to make our treatment reasonably self-contained. We provide reference
throughout to the literature for readers who would like to delve deeper into the vast
topics of differential forms and discrete calculus.

In the second part of the book, we redevelop many of the standard tools in image
processing on a generalized, unembedded network. In these chapters, the general-
ized Laplacian operator plays a central, consistent role. Specifically, we show how
the discrete calculus provides a natural definition of “low-frequency” on a discrete
space, which then yields filtering and denoising algorithms. These algorithms are
also developed from the standpoint of local interaction models between neighboring
nodes. We then show how filtering algorithms can give rise to clustering algorithms.
Clustering algorithms are then used to develop manifold learning and data discov-
ery methods. Finally, ranking algorithms and algorithms for analyzing the structure
of a network are also addressed. In addition to generalizing this set of tools to ar-
bitrary networks, we believe that the context of discrete calculus has allowed us to
unify very many standard image processing algorithms into a common framework.
Therefore, the reader who is interested purely in image processing will find a unified
framework for viewing a wide variety of standard algorithms in filtering, clustering,
and manifold learning.

1.5 Intended Audience

This book is intended for graduate students, researchers, and engineers who are
familiar with the basics of vector calculus, graph theory, and linear algebra. For
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researchers interested in discrete calculus, we intend for this book to tie algorithms
and applications to the theory. For researchers in the domain of complex networks,
we intend this book to provide an introduction to the foundations of discrete calculus
on a network and a set of theoretical and algorithmic tools for analyzing networks.
For researchers interested in image processing and computer graphics, we intend
to introduce the foundations of discrete calculus, argue why algorithms should be
developed on a more general graph, and demonstrate how to reformulate traditional
algorithms defined in the continuum onto a discrete structure.

In each of the applications chapters in the second part of the book, we present
several worked examples of how to use discrete calculus to analyze real data, in
which multiple algorithms are applied. Naturally, the best algorithm for any given
data set will depend on the application and on the nature of the data. Therefore, our
intention is not so much to determine which algorithm is the best for a particular
application, but rather to demonstrate the wide applicability of the framework and to
present multiple processing strategies to give the reader a sense for the performance
and behavior of the algorithms.

The primary content of this book is a review of work which has occurred in
several fields and an attempt to bring them all into the same framework with a stan-
dardized notation. However, there are also aspects of a research monograph in the
sense that some of the material has not previously appeared in the literature to the
knowledge of the authors. Significant new material includes our generalization of
algorithms and concepts used to analyze nodes and node data to novel analyses of
edges and edge data. Additionally, we view the running unification of several ideas
(and algorithms) into a single framework as a useful contribution. Finally, our goal is
to provide the reader with the ability to understand the concepts being described and
also an idea of how to implement them. Where algorithms are not fully described,
citations are provided such that the interested reader may find more details.

Chapter 2 forms the basis of our exposition for discrete calculus and therefore
every subsequent chapter depends to some degree on this chapter. Chapter 3 ex-
tends the exposition of discrete calculus to the description of physical systems, with
a focus on circuit theory. Although some concepts from circuit theory will reap-
pear in later chapters (e.g., effective resistance), this chapter primarily stands on its
own. Chapter 4 marks the beginning of the application sections, in the sense that it
details how a weighted edge set or cycle set may be derived for a particular applica-
tion. The usefulness of this chapter ultimately depends on the particular application
that a reader may be pursuing. Chapter 5 introduces the concept of filtering on an
arbitrary graph, which then forms the basis for Chap. 6 on clustering. Chapter 7 con-
tinues to build directly on the clustering and filtering concepts to introduce manifold
learning and ranking techniques. Chapter 8 breaks from the stream of the previous
three chapters to provide various methods for measuring connectivity, separability,
and topological and geometric properties of a network. Appendix A contains useful
notes for the implementation of the algorithms described in the text and Appendix B
provides an introduction to the set of optimization techniques used throughout the
book. Finally Appendix C ties most closely back to Chap. 2 by going into further
details on the Hodge Decomposition.
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