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Preface

The goal of this book is to present the topic of discrete calculus to scientists and en-
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introduction to discrete calculus and demonstrate its effectiveness in many problem
domains.
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Chapter 1
Discrete Calculus: History and Future

Abstract The goal of this book is to bring together three active areas of current
research into a single framework and show how each area benefits from more ex-
posure to the other two. The areas are: discrete calculus, complex networks, and
algorithmic content extraction. Although there have been a few intersections in the
literature between these areas, they have largely developed independently of one an-
other. However, we believe that researchers working in any one of these three areas
can strongly benefit from the tools and techniques being developed in the others.
We begin this book by outlining each of these three areas, their history and their
relationship to one another. Subsequently, we outline the structure of this work and
help the reader navigate its contents.

1.1 Discrete Calculus

The term “discrete calculus” is one of many expressions, along with “discrete ex-
terior calculus” and “mimetic discretization”, that describes the body of literature
that has focused on finding a proper set of definitions and differential operators that
makes it possible to operate the machinery of multivariate calculus on a finite, dis-
crete space. In contrast to traditional goals of finding an accurate discretization of
conventional multivariate calculus, discrete calculus establishes a separate, equiv-
alent calculus that operates purely in the discrete space without any reference to
an underlying continuous process. Therefore, the purpose of this field has been to
establish a fully discrete calculus rather than a discretized calculus. The standard
setting for this discrete calculus is a cell complex, of which a graph or network is a
special case.

Although the tools of discrete calculus have risen to prominence more recently,
the concepts in discrete calculus were historically developed in parallel with the
conventional calculus. In fact, the origins of both conventional vector calculus and
discrete calculus have their origins in studies of spatial representations and relation-
ships as well as the description of physical systems associated with space. In order to
understand the relationship of conventional calculus to discrete calculus, we believe
that it is useful to briefly examine the history of development in both areas.

L.J. Grady, J.R. Polimeni, Discrete Calculus,
DOI 10.1007/978-1-84996-290-2_1, © Springer-Verlag London Limited 2010
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2 1 Discrete Calculus: History and Future

The term “discrete calculus” appears to be a recent invention which we have
reluctantly adopted. Our reluctance is due to possible confusion with discretized
methods, which have a different goal. The term combinatorial calculus might be
more appropriate, but “discrete calculus” seems established at this point and the
term “combinatorial calculus” has been used previously in a different context.

1.1.1 Origins of Vector Calculus

Modern, conventional calculus consists of several components. One component of
calculus employs the notion of the infinitesimal, using limits and infinite series to de-
velop the theory. Naturally, these concepts are associated with an underlying contin-
uous space. In contrast, other components of calculus do not depend on the concept
of the infinitesimal. For example, the Fundamental Theorem of Calculus describes
essentially a topological relationship, given by the operation of integration, between
the integrand and the domain of integration. In the context of describing a discrete
calculus, in which the domain is discrete and finite, the aspects of conventional cal-
culus that focus attention on the infinitesimal will play a smaller role in this exposi-
tion. Instead, our focus in reviewing conventional calculus will be in those aspects
that can be used to describe space and the behavior of functions defined in space.

Historically, univariate or one-dimensional calculus that was developed by New-
ton and Leibniz was extended to describe two-dimensional space by using the real
and imaginary parts of a complex number to represent the two dimensions of the
plane (known as the complex plane). This development has variously been at-
tributed to Caspar Wessel or Jean-Robert Argand, both of whom worked in the late
18th century (and as a result the complex plane is sometimes called the Argand
plane). Other sources attribute to Gauss the introduction of the complex plane to
represent two-dimensional space, although Gauss’ work was mainly in the early
19th century.

Unfortunately, physical space is three-dimensional and therefore the two-
dimensional representation by the complex plane was insufficient to describe all
physical processes. Furthermore, it was unclear how to extend the concept of com-
plex numbers to three dimensions. This problem was finally solved in 1844 by
William Hamilton who defined four-dimensional complex numbers called quater-
nions [185]. Quaternions formed the basis for modern vector calculus by defining a
scalar quantity as the real part of a quaternion and a vector quantity as the imaginary
part of a quaternion. Hamilton’s student Peter Tait continued to develop and pro-
mote quaternions after Hamilton’s death in 1865, but later researchers Josiah Gibbs
and Oliver Heaviside (independently) stripped out the quaternion focus of the work
and presented a simplified form of vector calculus. This simplified form, without
any explicit reference to complex numbers or quaternions, is today the conventional
vector calculus taught in school. However, it is important to note that, because of
its origin, conventional vector calculus was derived explicitly to describe space in
three dimensions. This point will be emphasized again in Chap. 2 as we proceed to
develop the tools of discrete calculus.
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During the mathematical development of quaternions (and later vector calculus),
James Maxwell was developing his theory of electromagnetism. Maxwell imme-
diately recognized the value of quaternions in his work and seized upon this new
mathematics to help him describe the physical behavior of electric and magnetic
fields. Therefore, the description of space provided by vector calculus was imme-
diately used by Maxwell to describe the behavior of functions associated with that
space. In fact, the use of vector calculus in physics became so successful that con-
nections were made between various physical theories, showing that quantities in
one area of physics behaved analogously to quantities in a different area of physics.
These analogies were later explained in 1976 by Enzo Tonti who suggested that the
reason for these analogies was that each analogous quantity was associated with the
same unit of space [378]. Consequently, we see again the close connection between
the mechanics of vector calculus and the mathematical description of space. Ulti-
mately, it is this connection that will allow for the development of a discrete calculus
on a discrete domain.

Vector calculus was further generalized to describe surfaces and also extended
beyond three dimensions. The development of calculus on surfaces belongs to the
classical discipline of differential geometry. The abstraction of calculus and exten-
sion to higher dimensions is sometimes called exterior calculus or the theory of
differential forms, which was first developed by Élie Cartan in the early 20th cen-
tury. This more abstract and generalized form of calculus is where we begin our
exposition in Chap. 2 to develop the discrete calculus.

From an early stage in the development of vector calculus, there was interest
in discretizing the equations of vector calculus so that they could be solved in
pieces. A major motivation for this approach is that many of the differential op-
erators are linear. In this case, linearity implies that the act of applying an operator
to a function may be subdivided into small, local operators and then reassembled
to produce the result. In 1928, Courant, Friedrichs and Lewy published the finite
differences approach to discretizing differential equations [92], which became the
standard method for discretization and was heavily developed during the middle of
the 20th century. Courant later planted the seed for what later became known as the
finite element method in 1943 [91] and it was later formalized [361].

The rise of ubiquitous computing has propelled a sustained interest in the dis-
cretization of differential equations to model everything from airplanes to medical
implants. More recently, development of discretization has moved toward formula-
tion of differential calculus on a more general cell complex rather than at a series of
point locations, which is sometimes known as mimetic discretization [40, 47, 178,
249, 275].

For more details on the history of the development of vector calculus, see [95].

1.1.2 Origins of Discrete Calculus

The origins of discrete calculus also began with a study of space in the context of
graph theory [37]. Specifically, the study by Euler of the Königsberg Bridge Prob-
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lem modeled the two banks and islands of Königsberg as nodes in a graph and the
bridges connecting them as edges [126]. Therefore, from its earliest beginnings,
graph theory was also modeling space and the neighborhood connections between
different areas.

The first application of graph theory to the modeling of physical systems came
from Kirchhoff, who both developed the basic laws of circuit theory and also made
fundamental contributions to graph theory [232]. Kirchhoff’s work on applying
graph theory to model circuits in 1841 predated the development of quaternions,
vector calculus and Maxwell’s Laws. At the end of the 19th century Poincaré pub-
lished his work on analysis situs [307] in which he analyzed simplicial complexes,
simplicial homology and laid the foundation for the subject of algebraic topology.
Poincaré also was concerned with representing space by discrete elements and, in
fact, the term analysis situs is Latin for “analysis of position” or “analysis of loca-
tion”. Algebraic topology was further developed in the early 20th century by many
contributors, including Whitney, de Rham, Cartan and Lefschetz (see [107, 217] for
more history on this development).

Circuit theory continued to develop using graph theory and the concepts of alge-
braic topology [118, 400]. In 1955, Roth directly connected algebraic topology to
electrical circuits and used the theory to establish conditions under which a circuit
will have a solution (i.e., be realizable) [323]. This achievement, coupled with the
unconventional work of Kron [250], caused electrical engineers to begin viewing
electrical circuits as a alternative to conventional vector calculus in which all of the
laws of vector calculus were discrete. This viewpoint came together in the review
article by Branin [59] who explicitly posited that electrical circuits (and “higher-
dimensional” circuits) had the same structure as conventional vector calculus.

As technology has allowed increased representation and computational power,
these tools from discrete calculus have received recent attention. In particular, the
area of computer graphics has seen a strong interest in the concepts of discrete cal-
culus [103, 105, 200, 258, 374, 421], although the interest has been by no means
limited to that field [81, 123, 161, 219, 420]. The rise of linear algebra packages,
such as MATLAB, make the use of discrete calculus operators and algorithms quite
convenient, since the primary operators take the form of large, sparse matrices. Ad-
ditionally, the demonstrated ability of parallel computational devices such as GPUs
to efficiently solve problems in linear algebra with sparse matrices holds strong
promise for discrete calculus operations in the future as these parallel computing
devices become increasingly common.

1.1.3 Discrete vs. Discretized

It is remarkable that both conventional vector calculus and discrete calculus devel-
oped around the representation of space and the manipulation of functions defined
on that space. As we see in Chap. 2, the definition of the underlying space actu-
ally defines the structure of the differential operators in both conventional vector
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calculus and discrete calculus. Additionally, it is remarkable that both continuous
vector calculus and discrete calculus were initially adopted by researchers seeking
to understand the behavior of electricity, with Maxwell initially adopting the early
conventional vector calculus to describe electromagnetism and Kirchhoff (and later
researchers) adopting the early discrete calculus to describe circuit theory.

The focus of historical study in vector calculus and partial differential equations
has been on producing analytical, closed-form solutions to problems. In contrast, the
finite nature of discrete calculus and rise of computational power has driven that area
to be less focused on analytical solutions and to place more emphasis on algorithms
for finding solutions. In Chap. 2, we give the discrete calculus expressions for such
classic topics as integration by parts and Green’s Theorems. The truth is that these
fundamental tools in conventional, analytical calculus are simply not as important in
discrete calculus because there is less need to find analytical solutions to equations
in the discrete calculus setting. However, these classical techniques can be useful in
the sense that the intuition behind these concepts in conventional vector calculus can
be re-used in the discrete calculus setting, and also these classical analytic tools can
sometimes be used in proving behavioral properties about certain algorithms (see,
e.g., [161]).

Before moving on, we want to stress again the importance of distinguishing dis-
cretization of conventional calculus from the discrete calculus treated in this work.
In the first case, the goal is to compute a solution to some problem on a continuous
space. However, an analytic solution is too difficult to find and so a discretization
strategy is employed that allows for a computer to produce an approximate solution.
Therefore, the main goal in discretization methods is the fidelity of the discretized,
computed approximation to the desired analytical solution. Consequently, an im-
portant technique for proving the correctness of a discretization strategy is to show
that as the discretization becomes finer and finer (i.e., closer to the continuum) that
the solution obtained by discretization in the limit approaches the known analytical
solution. This discretization approach is commonly used in mimetic discretizations
[103, 105, 200, 258, 374, 421] and in modern finite element methods [40, 47, 178,
249, 275].

In contrast, discrete calculus treats a discrete domain (e.g., a graph) as entirely
its own entity with no reference to an underlying continuum. For example, a social
network (such as a citation network) is not associated with any continuous space
in the sense that the network is not viewed as a discretization or sampling of an
underlying continuum. However, the tools of discrete calculus can still be used to
analyze the structure of the network and the behavior of functions associated with
the network. Consequently, traditional discretization concerns about approaching a
continuous solution in the limit are meaningless in the context of discrete calculus.

Neither conventional calculus nor discrete calculus are subordinate to each other.
Both frameworks can be used to describe physical systems, e.g., with conventional
vector calculus describing the behavior of electromagnetic fields and discrete calcu-
lus describing the behavior of electrical circuits. Chapter 3 goes into greater detail
about the connection between discrete calculus, circuit theory, and other discrete
systems. Additionally, the history of 20th century physics has shown that there are
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legitimate philosophical questions about the appropriateness of treating space, and
quantities associated with that space, as continuous or discrete entities. We go no
further in addressing these issues except to state that the focus of this work will
be on discrete calculus, its relationship to conventional calculus, and the occasional
intersections with discretization methods.

1.2 Complex Networks

The term “complex network” is used to describe any non-trivial network.1 Examples
of “trivial” networks are regular graphs (where every node has the same number
of incident edges), lattices, or random graphs. Traditionally, trivial networks were
the focus of study because they are easier to study analytically. However, networks
obtained from the real world are often nontrivial, and the availability of modern
computers has allowed us to represent and analyze huge networks.

The current level of interest in complex networks began in the late 1990s. During
this period the Internet (along with the World Wide Web) was on the rise and there
were many groups looking at network structure for purposes of designing a more
secure, efficient network as well as techniques for analyzing the structure of the
network for tasks like Internet search. During this same period, a series of influential
papers by Watts, Strogatz, Albert and Barabási [20, 362, 396] spurred interest in the
description of complex networks.

One major effect of the interest in complex networks has been the recognition
that complex networks may be used to model a huge array of phenomena across
all scientific and social disciplines. Examples include the World Wide Web, citation
networks, social networks (e.g., Facebook), recommendation networks (e.g., Net-
flix), gene regulatory networks, neural connectivity networks, oscillator networks,
sports playoff networks, road and traffic networks, chemical networks, economic
networks, epidemiological networks, game theory, geospatial networks, metabolic
networks, protein networks and food webs, to name a few. The ubiquity of complex
networks and the importance of understanding their structure has been the focus of
several books in popular science [21, 64, 77, 398].

This book is not about complex networks directly. However, there are ideas which
have been developed in the field of complex networks throughout the book (partic-
ularly in Chap. 8). Instead, the examples used in the applications chapters borrow
heavily from the problems which have been studied in this field. In effect, our goal is
to show how the tools of discrete calculus and the algorithms developed here can be
applied to the vast array of problems which have been uncovered in the literature on
complex networks, as well as show how some of the concepts developed in the com-
plex network literature relate to discrete calculus. Furthermore, in contrast to image
processing or computer graphics applications, we have been careful to develop all

1Throughout this work we use the terms network and graph interchangeably to mean exactly the
same thing—a 1-complex comprised of nodes and edges. A complex will be defined in Chap. 2.
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of our tools without assuming a network embedding so that the tools developed here
may by applied to an arbitrary complex network.

1.3 Content Extraction

The third area addressed in this book is content extraction. The term content ex-
traction has a broad meaning that can encompass many different problems and dis-
ciplines. In our case, we use the term content extraction to indicate any algorithm in
which the goal is to extract information from a dataset and/or network.2 Examples
of content extraction algorithms covered in the book include filtering (denoising),
clustering, manifold learning, ranking, and network characterization.

Content extraction can be used to analyze the structure of data associated with a
network (sometimes called attributed graphs) or the structure of the network itself.
An important methodology described in this book for analyzing data associated with
a network is to use the data to define weights on the network and then use an algo-
rithm that analyzes the structure of the network to draw conclusions about the data.
Chapter 4 describes how weights may be generated from the data. For example, to
perform clustering of data associated with nodes, in Chap. 6 we show how that data
may be used to establish edge weights, after which any algorithm that clusters a
weighted network may be applied to produce a clustering of the data. In particular,
image content may be clustered using this approach.

Many of the algorithms developed for content extraction were developed in the
context of image processing or computer graphics. In both of these cases, traditional
one-dimensional signal processing must be substantially modified to operate in mul-
tiple spatial dimensions (generally in two or three dimensions). Consequently, the
algorithms developed in these fields explicitly account for spatial interactions. In
many ways, the work in this book may be viewed as continuing the development of
the variational algorithms based on active contours [222] and level sets [339] which
dominated image processing (among other fields) for many years. These methods
cast content extraction problems as energy minimization problems in which the opti-
mum solution to the energy minimization problem provided a solution to the content
extraction problem. Level sets provided a mechanism for optimizing these energies,
using tools from the study of partial differential equations. The book by Sethian
[339] demonstrated the remarkable number of applications that could be treated by
the energy minimization methodology of level set techniques. Similar to this body

2In many disciplines the network structure is itself considered the dataset (since this information
must be collected). Our distinction here between data and network is simply due to the fact that
in several of the disciplines we consider there is data associated with each node or edge in the
network (as in the case of image processing), in which case the network defines the spatial domain
upon which the data is processed. However, we address algorithms that can be used to process
data associated with a network and algorithms that can be used to analyze the structure of the
network itself. Consequently, algorithms that process data associated with networks or algorithms
that analyze the network structure itself are both considered to be content extraction algorithms.
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of work, we also equate energy optimization with the solution to content extraction
problems. However, the use of discrete calculus to formulate the energy minimiza-
tion problems affords us the major advantage of generalizing the utility of these
content extraction methods to arbitrary discrete domains (e.g., graphs). This gen-
eralization allows us to apply the energy minimization methodology to tackle the
problems of the future being defined in the field of complex networks. Additionally,
this formulation in terms of discrete calculus may also be applied in the same ar-
eas that were conventionally treated by level sets by viewing a Cartesian domain as
a special case of the more general framework (i.e., a lattice). In fact, recent work
has demonstrated that energies which were conventionally formulated using vector
calculus and optimized with level sets could be dramatically outperformed by for-
mulating the same energies using discrete calculus and performing the optimization
using techniques in combinatorial optimization [163].

1.4 Organization of the Book

In the first part of the book, we present a brief review of discrete calculus with
a focus on those key concepts that are required for the successful application of
discrete calculus. This is by no means an exhaustive treatment of this topic, but is
included to establish the notation and terminology used throughout the subsequent
chapters, and to make our treatment reasonably self-contained. We provide reference
throughout to the literature for readers who would like to delve deeper into the vast
topics of differential forms and discrete calculus.

In the second part of the book, we redevelop many of the standard tools in image
processing on a generalized, unembedded network. In these chapters, the general-
ized Laplacian operator plays a central, consistent role. Specifically, we show how
the discrete calculus provides a natural definition of “low-frequency” on a discrete
space, which then yields filtering and denoising algorithms. These algorithms are
also developed from the standpoint of local interaction models between neighboring
nodes. We then show how filtering algorithms can give rise to clustering algorithms.
Clustering algorithms are then used to develop manifold learning and data discov-
ery methods. Finally, ranking algorithms and algorithms for analyzing the structure
of a network are also addressed. In addition to generalizing this set of tools to ar-
bitrary networks, we believe that the context of discrete calculus has allowed us to
unify very many standard image processing algorithms into a common framework.
Therefore, the reader who is interested purely in image processing will find a unified
framework for viewing a wide variety of standard algorithms in filtering, clustering,
and manifold learning.

1.5 Intended Audience

This book is intended for graduate students, researchers, and engineers who are
familiar with the basics of vector calculus, graph theory, and linear algebra. For
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researchers interested in discrete calculus, we intend for this book to tie algorithms
and applications to the theory. For researchers in the domain of complex networks,
we intend this book to provide an introduction to the foundations of discrete calculus
on a network and a set of theoretical and algorithmic tools for analyzing networks.
For researchers interested in image processing and computer graphics, we intend
to introduce the foundations of discrete calculus, argue why algorithms should be
developed on a more general graph, and demonstrate how to reformulate traditional
algorithms defined in the continuum onto a discrete structure.

In each of the applications chapters in the second part of the book, we present
several worked examples of how to use discrete calculus to analyze real data, in
which multiple algorithms are applied. Naturally, the best algorithm for any given
data set will depend on the application and on the nature of the data. Therefore, our
intention is not so much to determine which algorithm is the best for a particular
application, but rather to demonstrate the wide applicability of the framework and to
present multiple processing strategies to give the reader a sense for the performance
and behavior of the algorithms.

The primary content of this book is a review of work which has occurred in
several fields and an attempt to bring them all into the same framework with a stan-
dardized notation. However, there are also aspects of a research monograph in the
sense that some of the material has not previously appeared in the literature to the
knowledge of the authors. Significant new material includes our generalization of
algorithms and concepts used to analyze nodes and node data to novel analyses of
edges and edge data. Additionally, we view the running unification of several ideas
(and algorithms) into a single framework as a useful contribution. Finally, our goal is
to provide the reader with the ability to understand the concepts being described and
also an idea of how to implement them. Where algorithms are not fully described,
citations are provided such that the interested reader may find more details.

Chapter 2 forms the basis of our exposition for discrete calculus and therefore
every subsequent chapter depends to some degree on this chapter. Chapter 3 ex-
tends the exposition of discrete calculus to the description of physical systems, with
a focus on circuit theory. Although some concepts from circuit theory will reap-
pear in later chapters (e.g., effective resistance), this chapter primarily stands on its
own. Chapter 4 marks the beginning of the application sections, in the sense that it
details how a weighted edge set or cycle set may be derived for a particular applica-
tion. The usefulness of this chapter ultimately depends on the particular application
that a reader may be pursuing. Chapter 5 introduces the concept of filtering on an
arbitrary graph, which then forms the basis for Chap. 6 on clustering. Chapter 7 con-
tinues to build directly on the clustering and filtering concepts to introduce manifold
learning and ranking techniques. Chapter 8 breaks from the stream of the previous
three chapters to provide various methods for measuring connectivity, separability,
and topological and geometric properties of a network. Appendix A contains useful
notes for the implementation of the algorithms described in the text and Appendix B
provides an introduction to the set of optimization techniques used throughout the
book. Finally Appendix C ties most closely back to Chap. 2 by going into further
details on the Hodge Decomposition.
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Chapter 2
Introduction to Discrete Calculus

Abstract In this chapter we review conventional vector calculus from the stand-
point of a generalized exposition in terms of exterior calculus and the theory of
forms. This generalization allows us to distill the important elements necessary to
operate the basic machinery of conventional vector calculus. This basic machin-
ery is then redefined in a discrete setting to produce appropriate definitions of the
domain, boundary, functions, integrals, metric and derivative. These definitions are
then employed to demonstrate how the structure of the discrete calculus behaves
analogously to the conventional vector calculus in many different ways.

Calculus is often introduced along with the concept of the infinitesimal, and thus
calculus is typically associated with the continuum. Similarly, the role of the differ-
ential, dx, can be understood in terms of the Riemann Integral, which provides an
intuitive explanation for how an integral can, in the limit, express the area under the
curve. However, the expression of the Fundamental Theorem of Calculus does not
require any concept of limit or infinitesimal but essentially states a topological prop-
erty of the integral that can be phrased for either continuous or discrete spaces. The
goal of this chapter is to demonstrate that many aspects of differential and integral
calculus, including the Fundamental Theorem, can be phrased either in a continu-
ous or discrete setting. That is, these central concepts are not tethered to either the
continuous or discrete representation, but rather can be instantiated in either frame-
work. With this perspective, the discrete formulation is not subordinate to the more
familiar continuous calculus, but rather the two formulations are equally legitimate
and both capture the essential character of the calculus.

It is assumed that the reader is generally more familiar with vector calculus in
the continuous setting. Therefore, we begin by introducing the central concepts of
the discrete calculus that will be used throughout the remaining chapters. While this
chapter draws upon several fields of mathematics to provide an adequate overview
of the discrete calculus, unfortunately it is beyond the scope of this text to give a full
treatment of all relevant topics, including differential forms, exterior calculus, anal-
ysis on manifolds, and algebraic topology. However, for the interested reader, there

L.J. Grady, J.R. Polimeni, Discrete Calculus,
DOI 10.1007/978-1-84996-290-2_2, © Springer-Verlag London Limited 2010

13

http://dx.doi.org/10.1007/978-1-84996-290-2_2


14 2 Introduction to Discrete Calculus

are several insightful and thorough texts on these topics, including, for example,
Refs. [99, 139, 142, 290, 335].

We begin the treatment of discrete calculus by considering the formalism of
differential forms, which provides the structure for generalizing standard vector
calculus—which is defined only for up to three spatial dimensions—to arbitrary
dimensions. This formalism will be shown to be equally applicable to continuous or
discrete spaces, and therefore provides the basic framework for discrete calculus.

2.1 Topology and the Fundamental Theorem of Calculus

The underlying topological nature of calculus can be seen by considering integra-
tion as a pairing between two objects: the domain of integration and the function
or differential to be integrated on that domain. For example, the definite volume
integral ∫

V

ρ dv (2.1)

consists of a pairing of the domain V with the integrand ρ dv which is some func-
tion defined over this domain. The pairing evaluates to a scalar quantity and the
evaluation of the integral depends equally on both components: the domain and the
function.

The equal importance of the domain and the function is made clear by the Fun-
damental Theorem of Calculus, which, in effect, defines the relationship between
integration and differentiation. The Fundamental Theorem states that, if f (t) is a
continuous function defined on the closed interval of [a, b], and the indefinite inte-
gral

x∫

a

f (t)dt = F(x) (2.2)

for any x ∈ [a, b], then the function F is differentiable and is the antiderivative of
f , i.e., F ′(x)= f (x) in [a, b]. This is sometimes known as the First Fundamental
Theorem of Calculus [10]. Extending the theorem to the boundary of the closed
interval, we arrive at the Second Fundamental Theorem of Calculus [10],

b∫

a

f (t)dt = F

∣∣∣b
a
= F(b)− F(a), (2.3)

and therefore the definite integral of f (t) over this region is simply the antideriva-
tive F(t) evaluated at the boundary of the domain of integration, which in this
case consists of the two distinct points, a and b. In other words, if the integrand
is the derivative of some function, then the integral over a closed region only de-
pends on the behavior of the antiderivative on the boundary of the region. This
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implies that if we subdivide the domain [p0,pN ] into N subintervals with points
{p0,p1, . . . , pN−1,pN } such that p0 and pN bound the domain then, by the linear-
ity of integration,

pN∫

p0

f (t)dt =
N−1∑
i=0

pi+1∫

pi

f (t)dt

= [F(p1)− F(p0)] + [F(p2)− F(p1)] + · · · + [F(pN)− F(pN−1)]
= F(pN)− F(p0), (2.4)

demonstrating that all evaluations of antiderivative F on the interior points cancel
in the final sum, leaving only the boundary term F(pN)− F(p0).

Several well-known theorems1 from vector calculus are higher-dimensional in-
stantiations of the Fundamental Theorem, including the Gradient Theorem

∫

C

(∇φ) · d�r = φ(b)− φ(a) (2.5)

where curve C begins at point a and ends at point b, Green’s Theorem
∫∫

S

(
∂v

∂x
− ∂u

∂y

)
d�S =

∫

∂S

(udx + v dy), (2.6)

Stokes’ Theorem ∫∫

S

(∇ × �H) · d�S =
∫

∂S

�H · d�r, (2.7)

and the Divergence Theorem or Gauss’s Theorem,
∫∫∫

V

∇ · �H dV =
∫∫

∂V

�H · d�S. (2.8)

Each of these expressions of the Fundamental Theorem demonstrates that the pair-
ing between the domain of integration and the quantity to be integrated requires that
the dimension of the integrand and the domain must correspond.

These expressions phrased in the language of vector calculus all share a common
structure that relates the vector fields to the topology of the underlying space in

1The familiar integration by parts formula,

b∫

a

udv = uv

∣∣∣b
a
−

b∫

a

v du

is simply a corollary to the Fundamental Theorem that uses the product rule of differentiation.
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a way that is independent of the dimension of the space. Indeed, the Fundamental
Theorem holds as well for integration over curves, surfaces, or volumes. A common
framework exists for expressing all of these relations that highlights their essential
topological character.

The theory of differential forms is a natural generalization of standard vector
calculus to arbitrary dimensions. In this formalism, the dimensionality of the differ-
ential forms as well as the dimensionality of the domain of integration are explicit,
and integration always pairs a differential form and a domain of the same dimension.
In this framework, the Fundamental Theorem of Calculus can be stated concisely in
what is known as the Generalized Stokes’ Theorem in terms of differential forms as

∫

S

dω̃=
∫

∂S

ω̃ (2.9)

where ω̃ is a differential form and d represents the derivative operator for differen-
tial forms, to be defined later. In this expression the derivative d on the left side is
exchanged for the boundary operator ∂ on the right side, suggesting that these two
operators are strongly related. Furthermore, this exchange suggests a topological
character of the derivative. Indeed, the theory of differential forms is important in
both the mathematical fields of algebraic topology and analysis on manifolds!

Both the definitions of the differential form and the corresponding derivative op-
erator are invariant (in the sense of tensor analysis) to changes of coordinates and
do not require the specification of a metric. In the next section, we shall demonstrate
that the derivative of differential forms is a generalization of the common differen-
tial dx defined along one coordinate (e.g., x) to a differential measuring the change
of a function along all coordinates (e.g., x, y, and z) simultaneously. Once this for-
malism is established, the instantiation of the Fundamental Theorem in the discrete
setting is direct and transparent.

2.2 Differential Forms

The generalization of the derivative provided by the theory of differential forms in
arbitrary dimensions is motivated by the requirement that it must measure how a
function changes in all directions simultaneously, just as df/dx measures how a
function f changes in the x coordinate direction. This requirement leads directly to
the antisymmetry property of differential forms and the exterior algebra that is based
on the measurement of volume enclosed by a set of vectors, which we demonstrate
below.

In this section we review the basic properties of differential forms. We begin by
recalling the basic definitions of p-vectors and p-forms in n dimensions as antisym-
metric tensors of contravariant and covariant type, respectively, and the metric ten-
sor that provides a mapping between p-vectors and p-forms. The exterior algebra of
antisymmetric tensors motivates the exterior derivative for differential forms, which
leads to Generalized Stokes’ Theorem and the integrability conditions encapsulated
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by the Poincaré lemma. Finally, the Hodge star operator provides a mechanism for
computing the inner product of two p-forms.

2.2.1 Exterior Algebra and Antisymmetric Tensors

In this section we survey the theory of higher-order vectors, their associated
dual quantities, known as forms, and the corresponding algebra. These so-called
p-vectors and p-forms are special cases of antisymmetric tensors, so this theory
could be viewed simply as a subset of tensor analysis, yet their elegant geometric
interpretation and their suitability for faithfully representing the physical character
of many of the quantities studied in several branches of physics makes them a pow-
erful addition to the tools available for modeling physical systems (see, e.g., [197,
218, 395, 399]).

2.2.1.1 The Vector Spaces of p-Vectors and p-Forms

The inner product of a pair of vectors can be used to measure the angle between
the vectors, and similarly the exterior product provides a means to measure the area
of a parallelogram defined by a pair of vectors or the volume of a parallelepiped
produced by a group of vectors in higher dimensions. Let V be a vector space over
the real numbers R. For two elements2 x̄ and ȳ of V the exterior product (or wedge
product)

x̄ ∧ ȳ (2.10)

is an anticommutative product on the elements of V and linear in each of its argu-
ments. Therefore for x̄1, x̄2, x̄3 ∈ V and a, b ∈R,

(a x̄1 + b x̄2)∧ x̄3 = a(x̄1 ∧ x̄3)+ b(x̄2 ∧ x̄3), (2.11)

x̄1 ∧ x̄2 = −x̄2 ∧ x̄1 (2.12)

from which it follows that x̄ ∧ x̄ = 0. It is thus straightforward to demonstrate that
the exterior product is associative. If ē1, ē2, . . . , ēn constitute a basis for V , then
x̄ =∑xi ēi and ȳ =∑yi ēi and from the rules of the exterior product we can see
that

x̄ ∧ ȳ =
∑
i<j

(xi yj − xj yi) ēi ∧ ēj . (2.13)

2In this section we will denote elements of general vector spaces with the common “overbar”
notation, as in x̄. This is to distinguish them from vectors in R

3 encountered in standard vector
calculus, which will be denoted as �F . We will adopt similar convention for forms, using the “tilde”
notation, as in ω̃.
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Fig. 2.1 Graphical representations of low-order p-vectors. A 0-vector is a zero-dimensional point,
and a 1-vector is identical to the vectors encountered in standard vector calculus which represents
both a magnitude (depicted by the length of the vector) and a direction. A 2-vector, however, can
be viewed as the plane spanned by the pair of constituent 1-vectors and its magnitude is the area
of the parallelogram whose sides are the pair of 1-vectors

In two dimensions (i.e., n= 2) and assuming a standard Euclidean metric, (x1 y2−
x2 y1) is the area of the parallelogram with sides x̄ and ȳ.

The exterior product can be used to generate the product of larger numbers of
elements of V . For p = 0,1, . . . , n we define a new vector space denoted as

∧p
V

whose elements are the space of p-vectors over V , where p is called the degree.
The vector space

∧0
V =R,

∧1
V = V , and

∧n
V =R, and for arbitrary 2≤ p ≤

(n− 1) the vector space is spanned by elements represented as

x̄1 ∧ x̄2 ∧ · · · ∧ x̄p (2.14)

where each x̄i ∈ V . Thus vector spaces of higher-order vectors can be assembled
from lower-order vectors. Note that the dimension of the vector space

∧p
V is sim-

ply
(
n
p

)
, since this is the number of unique basis elements that can be defined through

the rules of the exterior algebra.
By extending the rules of the exterior product outlined above, the product x̄1 ∧

x̄1 ∧ · · · ∧ x̄p = 0 if, for any i �= j , x̄i = x̄j , and the product x̄1 ∧ x̄2 ∧ · · · ∧ x̄p

changes sign if any two x̄i are interchanged. The exterior product can be applied to
arbitrary orders of p-vectors. If v̄ ∈∧a

V is an a-vector and w̄ ∈∧b
V is a b-vector

then

v̄ ∧ w̄ = (−1)ab(w̄ ∧ v̄) (2.15)

and v̄ ∧ w̄ is a vector of order a + b. Graphical representations of low-order
p-vectors are provided in Fig. 2.1.

A remarkable property of the exterior product is its relationship to the determi-
nant of a matrix. Consider a linear transformation A : V → V , which induces a
unique mapping gA from the Cartesian product V n to

∧n
V ,

gA(x̄1, x̄2, . . . , x̄n) = Ax̄1 ∧Ax̄2 ∧ · · · ∧Ax̄n

= f (x̄1 ∧ x̄2 ∧ · · · ∧ x̄n). (2.16)

Since gA is multilinear, and
∧n

V is R and therefore one-dimensional, the mapping
f consists of multiplication by a scalar, denoted by |A|,

Ax̄1 ∧Ax̄2 ∧ · · · ∧Ax̄n = |A|(x̄1 ∧ x̄2 ∧ · · · ∧ x̄n). (2.17)

Based on the properties of the exterior product, it can be shown [99, 139] that |A|
is the determinant of the linear mapping A, and is a generalization of the relation
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given in (2.13). Thus the wedge product provides a convenient means for expressing
linear independence, since the p 1-vectors x̄1, x̄2, . . . , x̄p are linearly dependent if
and only if x̄1 ∧ x̄2 ∧ · · · ∧ x̄p = 0. In cases where a Euclidean metric is employed,
a p-vector x̄1∧ x̄2∧· · ·∧ x̄p represents the p-dimensional subspace of R

n spanned
by the vectors x̄i weighted by the volume of the parallelepiped whose edges are
the x̄i .

The exterior product produces an associative algebra known as the exterior alge-
bra or Grassmann algebra. This algebra can be similarly applied to the elements
of the space that are dual to the p-vectors. We first define a real-valued linear func-
tional ã on V to be a linear transformation of elements of V to the real numbers R,
i.e., α̃ : V →R. Thus for v̄, w̄ ∈ V and a, b ∈R,

α̃(av̄+ bw̄)= aα̃(v̄)+ bα̃(w̄). (2.18)

The collection of all such linear functionals on V constitutes a vector space termed
the dual space to V , denoted as V ∗. It is a vector space under the operations

(α̃ + β̃)(v̄)= α̃(v̄)+ β̃(v̄) (2.19a)

and

(cα̃)(v̄)= cα̃(v̄) (2.19b)

for α̃, β̃ ∈ V ∗, v̄ ∈ V , and c ∈ R. If ē1, ē2, . . . , ēn form a basis of V , then we may
define a dual basis σ̃ 1, σ̃ 2, . . . , σ̃ n of V ∗ by setting

σ̃ i (ēj )=
{

1 if i = j,

0 otherwise
(2.20)

and, thus, by linearity,

σ̃ i (v̄)= σ̃ i

(∑
j

ēj v
j

)
=
∑
j

σ̃ i (ēj )v
j = vi (2.21)

therefore σ̃ i extracts the ith component of the vector v̄. When viewed as elements
of the dual vector space V ∗, these linear functionals are often called forms.

The Grassmann algebra may be extended to forms through the dual basis defined
above, which allows the construction of higher-order forms. Thus the product

α̃ ∧ β̃ (2.22)

is well-defined and is also an anticommutative product but on the elements of V ∗.
As with vectors, for p = 0,1, . . . , n we may define a new vector space denoted as∧p

V ∗ whose elements are the space of p-forms over V ∗. Here
∧0

V ∗ is the space
of scalar-valued functions,

∧1
V ∗ is the space of linear functional on vectors, and
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∧n
V ∗ is the space of scalar-valued functions. For other values of p the vector space∧p
V ∗ is spanned by elements of the form

ω̃1 ∧ ω̃2 ∧ · · · ∧ ω̃p. (2.23)

A p-form thus maps a p-tuple of vectors into a scalar. The dimension of each space∧p
V ∗ is also

(
n
p

)
.

It is important to note that although forms are commonly thought of as supplying
a “measure” for vectors, they do not require a metric for their evaluation.

Example 2.1 (Evaluating the operation of a differential form on a vector) Consider
a 2-vector v̄ ∈∧2

V in R
3 defined in terms of the standard basis set v̄ = 2 ē1 ∧ ē2+

3 ē2 ∧ ē3 − ē3 ∧ ē1, and a 2-form ω̃ ∈∧2
V ∗ in R

3 defined in terms of the standard
dual basis set ω̃= 7 σ̃ 1 ∧ σ̃ 2 − 6 σ̃ 2 ∧ σ̃ 3 + 4 σ̃ 3 ∧ σ̃ 1. Then ω̃(v̄)=−8.

While any expression of a p-form or a p-vector used for calculation as in the
example above does require a choice of basis elements or a coordinate system, the
operations of a p-forms are independent of any particular coordinate system such
that, e.g., the evaluation of ω̃(v̄) will be the same regardless of the particular coor-
dinate system used for the calculation. That is, they exhibit coordinate invariance in
the sense of tensor analysis: the physical meaning of a form or vector must be invari-
ant under a change of coordinates. However, the behavior of p-forms and p-vectors
under changes of coordinate system are quite different—yet they manage to balance
each other out. We will revisit this topic of coordinate independence below.

The above definition of the exterior product and p-vectors holds for a given vec-
tor space V , but to extend these concepts to more general spaces we will require the
notion of a manifold and its associated tangent spaces.

2.2.1.2 Manifolds, Tangent Spaces, and Cotangent Spaces

A general manifold is a topological space that is “locally Euclidean”. For instance,
the plane and the sphere are both common examples of two-dimensional manifolds.
A manifold consists of a collection or “atlas” of homeomorphisms to Euclidean
space called charts. These charts must be compatible such that the composition of a
chart with the inverse of an overlapping chart must also be a homeomorphism, and
this homeomorphism is termed the transition map. In order for the manifold to be
suitable for calculus it must be a differentiable manifold which requires that the
transition maps be differentiable. Typically we will be considering submanifolds of
some Euclidean space. A subset M =Mn ⊂ R

n+r is an n-dimensional (differen-
tiable) submanifold of R

n+r if locally M can be described by r coordinates differ-
entiably in terms of the remaining n coordinates. Note that while these definitions
are phrased in terms of coordinates, they merely require that some such coordinates
exists, and thus a manifold need not be equipped with a global coordinate system
(for a both rigorous and intuitive definition of a manifold, see Ref. [142]).
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Because a manifold is locally Euclidean, we can define at each point q ∈Mn a
tangent space to the manifold Mn at q , denoted as T Mn

q , as the real vector space
consisting of all tangent vectors (i.e., 1-vectors) to Mn at q . The union of tangent
spaces at every point in the manifold is termed the tangent bundle T Mn.

The tangent space can be considered as a generalization of the familiar concept of
a tangent vector to a curve in the differential geometry of curves, which is often used
to define the instantaneous velocity of a point traveling along the curve at a given
point q . For this reason, the tangent space of a manifold at a point q can be viewed as
representing the set of differential operators that measure the instantaneous velocity
of curves contained within the manifold at the point q . A vector v̄ of the tangent
space T Mn

q can be used to differentiate a real-valued function f on Mn, f :Mn→
R, via the directional derivative

(Dv̄f )(q)≡ d

dt
[f (q + t v̄)]t=0 (2.24)

at point q . If x is any local Cartesian coordinate system specified by the n-tuple of
coordinates (x1, . . . , xn), then the directional derivative can be expressed as

(Dv̄f )(q)=
∑
j

∂f

∂xj
(q) vj . (2.25)

Note that the components vj of the vector v̄ appear in the above expression, and
there is a one-to-one correspondence between tangent vectors v̄ in T Mn

q and differ-
ential operators on differentiable functions near q . The tangent vector can therefore
be expressed as

v̄|q =
∑
j

vj ∂

∂xj

∣∣∣∣
q

and each of the n operators ∂/∂xj can be thought of as a vector, thus we will now
denote each vector as ∂/∂xj , at each point q . The tangent vector can then be ex-
pressed as

v̄ =
∑
j

vj ∂

∂xj
. (2.26)

The vectors ∂/∂xj can be used to define a basis for the tangent space T Mn
q (and

below will be used interchangeably with the standard basis set ēj ∈∧1
(T Mn

q)).
Given this generalization of vectors to higher-dimensional manifolds, we will

now consider the generalization of functions defined on these vectors. A scalar dif-
ferential form is a linear functional that maps an element of the tangent space to a
scalar.3

3The distinction between a “differential form” and a “form” (a.k.a. an “algebraic” form or a “lin-
ear” form) stems from whether the vector space V is viewed as the tangent space to a manifold, i.e.,
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Thus for each tangent space on a manifold we may define a dual vector space
of differential forms. The cotangent space T ∗Mn

q at a point q ∈Mn is the dual
space to the tangent space T Mn

q at q such that ω̃ ∈ T ∗Mn : T Mn→R . (The union
of cotangent spaces at every point in the manifold is termed the cotangent bundle
T ∗Mn.) This space is spanned by the standard dual basis σ̃ i defined relative to the
standard basis of tangent vectors ēi via

σ̃ i (ēj )=
{

1 if i = j,

0 otherwise.
(2.27)

Note that it is also possible to construct vector spaces of scalar differential forms
to define “vector-valued differential forms” (see, e.g., Ref. [260]), however we shall
restrict our discussion to differential forms that are scalar-valued and therefore will
use the term “differential form” to refer only to scalar differential forms.

We will now explore why forms defined in this way are termed differential forms.
Recall that on Mn a vector v̄ at point q defines a differential operator, the directional
derivative, on functions defined near q . Then if f is such a function, f :Mn→ R,
we define the differential of f at the point q ∈Mn as the linear function df :
T Mn

q→R defined as

df (v̄)|q ≡ v̄q(f )= (Dv̄f )(q). (2.28)

Here the differential df is defined independent of any basis but requires only the
vector v̄ also defined at q . Note that the differential df of f evaluated on the vector
v̄ is equivalent to the directional derivative Dv̄ of v̄ evaluated on the function f .

Above in (2.26) we noted that the differential operation defined by a tangent
vector was equivalent to the tangent vector itself. The differential can therefore be
expressed in terms of local coordinates x as

df

(∑
vi ∂

∂xj

)∣∣∣∣
q

=
∑

vi ∂f

∂xj
(q). (2.29)

If we consider the special case of the differential dxi of the coordinate function xi ,
then

dxi

(
∂

∂xj

)
= ∂xi

∂xj
=
{

1 if i = j,

0 otherwise
(2.30)

and thus

dxi(v̄)= dxi

(∑
j

vj ∂

∂xj

)
=
∑
j

vj dxi

(
∂

∂xj

)
= vi (2.31)

if V = T M, in which case the elements of T M are the differential operators for curves along M.
Indeed the exterior algebra of forms and many of their geometrical interpretations hold even if V

is not considered as a tangent space.
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which indicates that, for each i, the linear functional dxi operating on v̄ extracts the
ith component of v̄. Thus the differentials of the coordinate functions are dual to the
tangent vectors and are therefore exactly the elements of the cotangent space, i.e.,

dxi = σ̃ i , (2.32)

and any expression in terms of these basis elements, i.e., ω̃ =∑ωi dxi , is a differ-
ential form. Naturally the above definitions can be extended to higher order vectors
and forms using the exterior product, i.e., we may define the vector space of tan-
gent vectors of degree p,

∧p
(T Mn

q), in the tangent space T Mn
q , and the dual vector

space of differential forms of degree p,
∧p

(T ∗Mn
q), in the tangent space T ∗Mn

q .
We will consider these further in the next section.

2.2.1.3 The Metric Tensor: Mapping p-Forms to p-Vectors

One important property of differential forms and vectors defined in the general set-
ting of differentiable manifolds is that they are expressed in a manner that is not
dependent on a particular coordinate system. (To demonstrate this formally requires
observing how each behaves under the action of a transition map between overlap-
ping coordinate patches, which we do not reproduce here, but see Ref. [142] for
a full treatment.) As alluded to above in the discussion following Example 2.1, a
fundamental distinction between vectors and forms is how they react to a change
of coordinates to preserve their coordinate invariance. Specifically, elements of the
tangent space T Mn behave as contravariant tensors in that they vary in the “op-
posite” direction with a change of coordinates, and elements of the cotangent space
T ∗Mn behave as covariant tensors in that they vary in the “same” direction with a
change of coordinates.4

Because both contravariant and covariant tensors are implicated in differenti-
ation and can comprise differential operators, it is often confusing when trying
to distinguish whether a particular quantity is contravariant or covariant. Intu-
itively, contravariant quantities include coordinate vectors that represent the posi-
tion of an object or and derivative of position with respect to time (such as ve-
locity or acceleration); and covariant quantities include the derivatives of some
function over space, such as the gradient of a scalar field, in which the quantity
arises by “dividing by the coordinates” as in the gradient of a scalar function f ,
∇f = (∂f/∂x) ēx + (∂f/∂y) ēy . Furthermore, because of the skew-symmetry im-
parted on p-vectors and p-forms by the exterior product, p-vectors and p-forms are
antisymmetric tensors of a contravariant and covariant kind, respectively. (For a

4As a simple, illustrative example, consider a one-dimensional coordinate system defined in units
of centimeters with a position vector at the origin extending to the location at 500 centimeters. If
the unit of measurement were to change from centimeters to meters, the basis vectors will become
longer and our position vector, if it physically represents the same position, will now extend only
5 meters. Therefore, the coordinate increments are larger in the new system, but the value of the
coefficient describing the contravariant vector is smaller.
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deeper discussion of the relationship between the theories of differential forms and
tensor analysis, see, e.g., Refs. [142, 335].)

The linear mapping provided by a p-form of a p-vector into a scalar does not
require a metric. However, if a metric is available then it can be used to establish
an isomorphism between p-vectors and p-forms—that is, the metric can provide a
mapping of a p-vector into a corresponding p-form.

We begin with an n-dimensional vector space V equipped with an inner product
that is a mapping of a pair of (1-)vectors v̄, w̄ ∈ V , denoted 〈v̄, w̄〉, into the real
numbers, i.e., 〈v̄, w̄〉 : V × V → R. The inner product is symmetric (i.e., 〈v̄, w̄〉 =
〈w̄, v̄〉), bilinear, non-degenerate such that if 〈v̄, w̄〉 = 0 for all w̄ then v̄ = 0, and
positive definite such that ‖v̄‖2 = 〈v̄, v̄〉 is positive when v̄ �= 0. Under the standard
basis ēi , the bi-linearity of the inner product implies

〈v̄, w̄〉 =
〈∑

i

ēi v
i ,
∑
j

ēj wj

〉
(2.33)

=
∑

i

∑
j

viwj 〈ēi , ēj 〉 (2.34)

thus the inner product of two vectors can be evaluated by a weighted linear combi-
nation of the inner product of the basis elements. Typically the inner product of the
basis elements is expressed by an n×n matrix (which is symmetric by the definition
of the inner product) with entries

gij = 〈ēi , ēj 〉 (2.35)

so that

〈v̄, w̄〉 =
∑

i

∑
j

viwjgij . (2.36)

If the components are assembled into matrices, the inner product calculation can be
expressed in terms of standard linear algebra, i.e.,

〈v̄, w̄〉 = vTGw (2.37)

where v = [v1, . . . , vn]T, w = [w1, . . . ,wn]T, and [gij ] = G. Thus, under a Eu-
clidean or “flat” metric and Cartesian coordinates the inner product of two vectors
is equivalent to the dot product of their components.

Since the inner product 〈v̄, w̄〉 is a linear function of w̄ when v̄ is held fixed, the
function α̃ defined by

α̃(w̄)= 〈v̄, w̄〉 (2.38)

is a linear functional on V , i.e., α̃ ∈ V ∗. Through this construction, every vector
v̄ in the inner product space V can be associated with a form α̃ that is called the
covariant version of v̄. The inner product, by establishing a scalar product of two
1-vectors, enables a mapping between 1-forms and 1-vectors.
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This mapping can be exploited to define an inner product on forms. Consider the
1-form α̃ represented by the standard dual basis, α̃ =∑j αj σ̃

j . Then, by invoking
the mapping between forms and vectors, we see that

α̃ =
∑
j

α̃(ēj )σ̃
j =

∑
j

〈v̄, ēj 〉σ̃ j =
∑
j

〈∑
i

vi ēi , ēj

〉
σ̃ j

=
∑
j

(∑
i

vi gij

)
σ̃ j (2.39)

and therefore the components of α̃ are expressible as

αj =
∑

i

vi gij . (2.40)

In the special case of a Euclidean metric, αj = vj .
In the finite-dimensional inner product space V , each linear functional α̃ is the

covariant version of some vector v̄. Therefore we may compute the contravari-
ant version of α̃ by solving (2.40) for the components vi . Since the inner product
is defined to be non-degenerate, the inverse matrix G−1 exists and is symmetric.
Conventionally, the entries of the inverse matrix are denoted gij . The contravariant
version of α̃ is therefore

vi =
∑
j

αj gij (2.41)

and it is straightforward to show that G−1 provides a inner product on V ∗ that is
equivalent to the original inner product on V . Thus for a pair of 1-forms α̃, β̃ ∈ V ∗,

〈α̃, β̃〉 =
∑

i

∑
j

αiβj gij = aG−1bT (2.42)

where a= [α1, . . . , αn] and b= [β1, . . . , βn].
The matrix G defined above in (2.35) is known as the metric tensor. Although it

arises here from a general inner product space, a metric tensor can also be defined
for the tangent space T Mn

q at each point q of a manifold Mn. If we want the metric
tensors for the tangent space and cotangent space to be compatible, the metric tensor
for the cotangent space T ∗Mn

q is the matrix inverse of the metric tensor matrix on
the tangent space T Mn

q (to avoid confusion the metric tensor on the tangent space
is referred to as the primal metric tensor and the corresponding metric tensor on
the cotangent space is referred to as the dual metric tensor).5 Note that, in contrast
to p-forms and p-vectors, the metric tensor is a symmetric covariant tensor and is

5A Riemannian metric on a manifold Mn is a family of positive definite inner products defined at
each Mn

q that is differentiable over all q ∈Mn. A manifold equipped with a Riemannian metric is
called a Riemannian manifold.
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always rank 2, and the dual metric tensor is a rank 2 symmetric contravariant tensor
[335]. In the literature the process of converting a contravariant vector to a covariant
vector is referred to as index lowering while converting in the opposite direction
from covariant to contravariant is referred to as index raising, most often in the
context of tensor analysis.6

In some applications, a metric is provided without explicit identification as to
whether the metric applies to contravariant quantities or covariant quantities, and a
decision must be made to interpret the metric as primal or dual. We shall consider
this issue further below as it arises often in the discrete context of graph theory.

For completeness, we define a norm on vectors using the inner product defined
by the metric tensor. The norm of any 1-vector v̄ is given by ‖v̄‖ ≡ √〈v̄, v̄〉. This
norm can be shown to satisfy the triangle inequality and it, as well as the underlying
inner product, satisfies the Schwartz inequality. Finally a metric can be defined that
establishes the distance between two vectors at a point q: for a pair of vectors ū and
v̄ in T Mn

q , the metric is defined as ρ(ū, v̄)= ‖ū− v̄‖.
The metric tensor provides a unique mapping between 1-forms and 1-vectors, but

requires the specification of a metric on the underlying vector space in the form of
a bilinear pairing. This pairing is fundamental in that once it is established, lengths
of vectors can be computed, from which one can then compute lengths of curves,
angles, and perform parallel translation. In the next section we will consider inte-
gration, which is another such pairing that is purely topological and thus does not
require a metric.

2.2.2 Differentiation and Integration of Forms

So far we have considered the exterior algebra of both p-vectors and differential
p-forms and the mechanism by which the metric tensor can provide a one-to-one
mapping between forms and vectors. We now consider the operations of differentia-
tion and integration defined for forms in order to assemble the tools that are needed
to use differential forms for calculus in arbitrary dimensions.

2.2.2.1 The Exterior Derivative

The exterior derivative operator extends the notion of a derivative to differential
forms in a way that is invariant under coordinate transformations and does not re-
quire the specification of a metric. We define the exterior derivative as the operator
d that maps p-forms to (p + 1)-forms, d :∧p

(T ∗Mn)→∧p+1
(T ∗Mn). Just as

6In the differential forms literature this same process is sometimes described by the so-called

musical isomorphisms, � and 	, where α̃� is the contravariant version of the form α̃, and v̄	 is
the covariant version of the vector v̄.
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the exterior product builds higher-order forms out of lower-order forms, the exte-
rior derivative also acts to increase the degree of the form. The exterior derivative
is uniquely defined as the operator with the following properties, given an arbitrary
p-form α̃ and a q-form β̃ .

1. d(α̃ + β̃)= dα̃+ dβ̃

2. d(α̃ ∧ β̃)= (dα̃)∧ β̃ + (−1)pα̃ ∧ dβ̃ (Leibniz’s Law or the chain rule)
3. d(dα̃)= 0
4. The 1-form df ∈∧1 for any function f ∈∧0 is the usual differential of the

function f ,

df =
∑

i

∂f

∂xi
dxi. (2.43)

Note that a derivative with property 2 is called an antiderivation [335].
Property (2.43) defines the operation of the exterior derivative on a differentiable

scalar-valued function or a 0-form, which results in a 1-form whose components are
clearly identifiable as the components of the gradient of a scalar field as it is defined
in standard vector calculus. The exterior derivative on a general degree p differential
form is simply the operation defined in (2.43) applied to the scalar-valued compo-
nents of the form. For the p-form α̃ expressed in components as α̃ =∑i αi dxi , the
exterior derivative operation yields the (p+ 1)-form

dα̃ =
∑

i

(dαi)∧ dxi. (2.44)

The differential operators in vector calculus can be seen as a special case of the
exterior derivative acting on a form of a particular degree. Here we consider two
examples showing how the curl and divergence operators may arise as special cases
of the exterior derivative.

Example 2.2 (The curl of a scalar field) If we consider a 1-form ω̃= P dx+Qdy+
R dz, then

dω̃ = dP ∧ dx + dQ∧ dy + dR ∧ dz

=
(

∂P

∂x
dx + ∂P

∂y
dy + ∂P

∂z
dz

)
∧ dx

+
(

∂Q

∂x
dx + ∂Q

∂y
dy + ∂Q

∂z
dz

)
∧ dy

+
(

∂R

∂x
dx + ∂R

∂y
dy + ∂R

∂z
dz

)
∧ dz,

thus, by collecting terms and the antisymmetry property of the wedge product,

dω̃=
(

∂R

∂y
− ∂Q

∂z

)
dy ∧ dz+

(
∂P

∂z
− ∂R

∂x

)
dz∧ dx +

(
∂Q

∂x
− ∂P

∂y

)
dx ∧ dy.
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Example 2.3 (The divergence of a vector field) If we consider a 2-form α̃ =Ady ∧
dz+B dz∧ dx +C dx ∧ dy, then

dα̃ =
(

∂A

∂x
dx + ∂A

∂y
dy + ∂A

∂z
dz

)
∧ dy ∧ dz

+
(

∂B

∂x
dx + ∂B

∂y
dy + ∂B

∂z
dz

)
∧ dz∧ dx

+
(

∂C

∂x
dx + ∂C

∂y
dy + ∂C

∂z
dz

)
∧ dx ∧ dy

and so

dα̃ =
(

∂A

∂x
+ ∂B

∂y
+ ∂C

∂z

)
dx ∧ dy ∧ dz.

As a brief aside, the previous two examples highlight an important distinction
between standard vector calculus and the language of differential forms. In standard
vector calculus one deals only with vectors (which are typically conceptualized as
“1-vectors” in the terminology of this chapter), yet in many applications of vector
calculus in physics, some of the fields that require representation as vectors behave
quite differently—some “vector fields” are better represented by 1-forms while oth-
ers by 2-forms [395]. Often it is absolutely critical to find the appropriate represen-
tation of a field in order to solve a problem at hand, and this is especially the case in
numerical modeling (see Refs. [47, 178], for examples).

Based on these examples, the exterior derivative operator appears able to substi-
tute for the standard vector calculus operators—the exterior derivative applied to a
0-form performs an operation similar to a gradient, the exterior derivative applied
to a 1-form performs an operation similar to a curl, and the exterior derivative ap-
plied to a 2-form performs an operation similar to a divergence. However there are
some details required to precisely translate between the settings of vector calculus
and differential forms. For example, in conventional vector calculus, the gradient
of a function f is given by the gradient operator and produces a vector field, ∇f ,
with the same components as in (2.43). Therefore, we may examine the relationship
between the 1-form df and the vector field ∇f . This relationship may be char-
acterized by considering that df is a covariant quantity and ∇f is contravariant,
meaning that the metric tensor is likely to play a role in distinguishing these quanti-
ties. Specifically, given a vector v̄, df and ∇f are related via

df (v̄)= 〈∇f, v̄〉 (2.45)

i.e., df (v̄) is the directional derivative of f along v̄, as defined above in (2.28) and
(2.29). Therefore the components of ∇f can be calculated with the metric tensor
from the components of df in order to produce the vector indicating the direction
of steepest descent along the scalar field f . Similarly, the exterior derivative of
higher-order forms can be converted into the vector fields corresponding to the curl
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and divergence operators from vector calculus only when a metric is supplied. These
examples will be considered in a later section.

There are two classes of differential forms that are of particular interest which
are defined using the exterior derivative. A form ω̃ is called a closed form if its
exterior derivative is zero, i.e., if dω̃= 0. An exact form is a form that is the exterior
derivative of a form, so if α̃ = dβ̃ , α̃ is an exact form. It is therefore said that a closed
form is in the kernel or nullspace of the exterior derivative operator, and that an
exact form is in the image or range of the exterior derivative operator. Note that one
can form an interesting equivalence relation between forms that differ by a closed
form. With respect to the exterior derivative, two p-forms α̃ and β̃ are said to be
equivalent, α̃ ∼ β̃ , or cohomologous, if they differ by an exact form, i.e., if there
exists some exact form η̃ such that α̃ = β̃ + η̃, in which case dα̃ = dβ̃ but α̃ �= β̃ .

The geometric nature of the exterior derivative is a natural extension of the dif-
ferential operator in one dimension [99]. Similar to the exterior product which (in
Euclidean space) expresses the volume of the enclosed parallelepiped, the geomet-
ric interpretation of the exterior derivative is related to characterizing the expansion
of a form outwards in all directions.

The exterior derivative measures the variation of a p-form simultaneously in
each of the p directions of a p-dimensional parallelepiped, and is therefore
the natural generalization of the one-dimensional differential operator d/dt .

Although the exterior derivative operator is denoted plainly as d regardless of the
degree of the form it operates on, the character of the exterior derivative is somewhat
distinct in different dimensions. The distinction will be made apparent in Sect. 2.3
when the exterior derivative is defined in the discrete setting.

The topological nature of the exterior derivative can be seen through its rela-
tionship to integration that is summarized by the Generalized Stokes’ Theorem,
otherwise known as the generalized Fundamental Theorem of Calculus, which is
expressed as ∫

S

dω̃=
∫

∂S

ω̃ (2.46)

where S is a p-dimensional submanifold of Mn with boundary ∂S and ω is a differ-
ential (p− 1)-form in the cotangent bundle T ∗Mn. In the context of integration, the
domain of integration of a p-form is often referred to as a p-domain. The proof of
this generalization requires invoking the Fundamental Theorem of Calculus [353]
and will not be reproduced here. It is assumed that the boundary ∂S of the domain
S consists of a finite number of closed curves each of which is positively oriented
with respect to the orientation of S. If we define a curve C that is oriented in the
opposite direction of ∂S, then by convention

∫

C

ω̃=−
∫

∂S

ω̃. (2.47)
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In cases where the domain S is a closed manifold and thus without boundary, e.g.,
if S is a sphere, ∂S= 0 and the therefore

∫

S

dω̃= 0 (if S is closed).

While the operation of integration can be seen as the inverse of the exterior
derivative operator, the domain of the integration also plays an important role. As
with the special cases of the Fundamental Theorem reviewed above—including the
Gradient Theorem, Green’s Theorem, Stokes’ Theorem, Gauss’s Theorem, and in-
tegration by parts—the general expression in terms of differential forms makes clear
the interrelationship between the derivative operator and the boundary operator. If
we express the bilinear pairing of forms and regions using a notation similar to the
inner product, e.g., if the Fundamental Theorem is denoted as

�dω̃,S�= �ω̃, ∂S� (2.48)

then we see that the relationship between the boundary operator ∂ and the exte-
rior derivative operator d satisfies an adjointness relation. Due to this relationship,
the exterior derivative operator is often referred to as the coboundary operator,
especially in the context of algebraic topology. We will now consider some of the
topological implications of the Fundamental Theorem.

2.2.2.2 The Poincaré Lemma

It is a basic topological fact that the boundary of any manifold that is itself a
boundary of a higher-dimensional manifold must always be empty. For example,
the boundary of the unit ball in three dimensions is the unit sphere, and the unit
sphere is a closed manifold without boundary. Algebraically, this means that the
image of the boundary operator is in the kernel of the operator, or ∂∂ = 0. One can
see that the Fundamental Theorem of Calculus provides an intuitive proof for why,
given that “the boundary of a boundary is zero”, then

∫

∂S

dω̃=
∫

S

d(dω̃)=
∫

∂(∂S)

ω̃= 0, (2.49)

and therefore d(dω̃)= 0. Thus both the boundary operator and the coboundary op-
erator exhibit the property that the image of the operator is a subset of its kernel,
i.e., ∂∂ = 0 and dd= 0. This is a fundamental property of both of these operators.
In the case of the exterior derivative, this identity is equivalent to the condition that
mixed partial second derivatives are equal.
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The boundary of a boundary is always zero, and thus the exterior derivative of
an exterior derivative is always zero, which can be seen with the Generalized
Stokes’ Theorem.

Returning to vector calculus, the property that dd = 0 is equivalent to familiar
expressions: ∇ × ∇ = 0 (the curl of the gradient vanishes) and ∇ · ∇× = 0 (the
divergence of the curl vanishes). The Fundamental Theorem of Calculus therefore
highlights how a topological property of the boundary operator relates to the topol-
ogy of vector fields. A natural question then arises: If the exterior derivative of a
differential form is zero, then is that form the exterior derivative of another form?
or, When is a closed form also exact? These identities of the differential operators
often lead to commonly accepted results in vector calculus that are not strictly cor-
rect, such as: (i) if ∇f = 0 then f is constant; (ii) if ∇ × �A = 0 then there is a
function f such that �A = ∇f ; and (iii) if ∇ · �B = 0 then there is a vector field �A
such that ∇ × �A= �B . Indeed, it is not always the case that a closed form is exact.

The canonical example of a differential form that is closed but not exact within a
defined region is the closed 1-form ω̃ defined in a set U⊂R

2 as

ω̃= −y dx + x dy

x2 + y2
(2.50)

in terms of the two-dimensional Cartesian coordinates x and y. Often ω̃ is expressed
as “dθ” since it arises from the derivative of the polar coordinate θ = atan(y/x) for
a region V in R

2 that does not include the origin, V = R
2\{0}. Unfortunately θ is

not a single-valued continuous function in V,7 and thus ω̃ is locally equivalent to θ̃
but not globally. Another example, set in R

3 but otherwise identical, is the closed
form τ̃ defined as

τ̃ = x dy ∧ dz+ y dz∧ dx + z dx ∧ dy

(x2 + y2 + z2)3/2
, (2.51)

which known as the “solid angle form” (see Ref. [178]). We see in these examples
that if a form is locally exact it does not follow that it is globally exact, and in
general it is far more difficult to determine when a closed form is exact globally.

Locally, on a domain that can be continuously shrunk down to a single point (i.e.,
a “star-shaped” domain), every closed form is exact. This fact is often referred to
as the Poincaré lemma, and expresses a sort of integrability conditions on forms.
While the Poincaré lemma holds for topologically “simple” regions, it does not hold
in general or globally over more topologically “interesting” manifolds. The study
of the topological properties that govern whether a closed form is exact is known
as cohomology theory. It is closely related to homology theory which seeks to

7Note that subsets of V exist on which ω̃ is exact. For example, within the unit disk with the point at
the origin removed and a “cut” along the positive x axis θ is single-valued. Changing the topology
of the region in this way is analogous to branch cuts that are defined in complex analysis and the
theory of Riemann surfaces.
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answer analogous questions regarding whether a closed region is the boundary of
something. For our purposes, it suffices to highlight that there is a close coupling
between the topology of a region and the character of the differential forms that
can be defined on that region. In the next section we take one small step closer to
the study of cohomology as we review Hodge theory and the Hodge decomposi-
tion, which requires the definition of the last essential concept for understanding
differential forms: The Hodge star operator.

2.2.3 The Hodge Star Operator

Although the exterior product and the exterior derivative are defined without the use
of a metric, some operations exist that require a metric. The Hodge star operator both
helps to clarify the relationship between the wedge product and the cross product of
standard vector calculus and establishes a new linear pairing for forms, but requires
the specification of a metric and an orientation to do so.

The Hodge star operator is a linear mapping from p-forms to (n− p)-forms,
denoted as � :∧p→∧n−p . Because the dimension of

∧p and
∧n−p are the same,

since
(
n
p

) = ( n
n−p

)
, the mapping is an isomorphism between the two spaces.8 First

we consider the action of the Hodge star on the r = (n
p

)
orthonormal basis elements

of
∧p . The Hodge star transforms each subspace spanned by σ̃ i1 ∧ · · · ∧ σ̃ ip to an

element of the orthogonal subspace, i.e.,

�(σ̃ i1 ∧ · · · ∧ σ̃ ip )= σ̃ i(p+1) ∧ · · · ∧ σ̃ in , (2.52)

where the ordering of indices from {i1, . . . , ik, ik+1, . . . , in} is an even permutation
of the integers 1, . . . , n. So for example, if we consider the basic 1-forms dxi in R

3,
with the standard right-handed orientation, then �(dx1 ∧ dx2) = dx3 and �(dx2 ∧
dx3)= dx1 but �(dx1 ∧ dx3)=−dx2.

The effect of the Hodge star on a general p-form can be understood in terms
its effect on each covariant component. If we consider a p-form ω̃ expressed as
ω̃=∑r

i=1 wi σ̃
i , then

�ω̃=√|g|
r∑

i=1

w�
i (�σ̃

i ) (2.53)

8When dealing with complicated, non-orientable spaces, it is often noted that the Hodge star opera-
tor maps p-forms to pseudo-(n−p)-forms. Pseudoforms are forms who change sign whenever the
orientation specified for the underlying manifold reverses [142]. We will not make the distinction
between forms and pseudoforms here, although the concept of pseudoforms may help conceptual-
ize the operation of the discrete Hodge star that maps between the primal and dual complexes (see
Sect. 2.3.4). Note that the distinction between forms and pseudoforms is closely related to that of
straight and twisted forms, polar and axial vectors, and across and through variables [48].
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where |g| represents the (primal) metric tensor determinant and the effect on each
covariant coefficient wi is to convert it to its contravariant version w�

i via the (dual)
metric tensor.9 The (n− p)-form �ω̃ is said to be the Hodge dual of the p-form ω̃.
To make the operation of the Hodge star clear, we consider a simple example.

Example 2.4 If β̃ is a 1-form in three dimensions, β̃ = b1dx1 + b2dx2 + b3dx3,
and the metric tensor g is simplified such that only the diagonal entries of the dual
metric tensor, gii = 1/gii , are non-zero, then the Hodge dual of β̃ is

�β̃ = 1√
g11g22g33

(b1g
11 dx2 ∧ dx3 + b2g

22 dx3 ∧ dx1 + b3g
33 dx1 ∧ dx2).

The Hodge star operator is linear and has the following properties (that are
straightforward to verify), given two p-forms α̃ and β̃ and a scalar function f .

1. �α̃ ∧ β̃ = �β̃ ∧ α̃
2. �(f α̃)= f � α̃
3. �(�α̃)= (−1)p(n−p)α̃
4. � � � � α̃ = α̃
5. α̃ ∧ �α̃ = 0 if and only if α̃ = 0 (non-degeneracy of the inner product).

The Hodge star is useful because it provides an inner product on p-forms. If we
consider two p-forms, α̃ and β̃ , if the Hodge star is applied to one of the forms,
say β̃ , it becomes an (n − p)-form �β̃ and the wedge product of α̃ and �β̃ is an
n-form—or a scalar. This construction yields a pointwise inner product (over the
manifold Mn) of the two differential p forms given by

α̃ ∧ �β̃ = 〈α̃, β̃〉voln (2.54)

where the inner product on forms is provided by the (dual) metric tensor,10 and the
canonical volume element (or the metric volume element) voln is an n-form scaled
by the metric tensor determinant, or

voln =√|g|dx1 ∧ · · · ∧ dxn. (2.55)

The scaling by
√|g| ensures that voln has unit norm, which is partly why this scale

factor appears in the Hodge star definition provided in (2.53). Thus the volume

9Here the Hodge star is defined as operating only on p-forms, however the Hodge star operator has
been recently extended to operate also on p-vectors [189], with several interesting implications.
10It is also possible to phrase the inner product between two arbitrary p-forms expressed as the
exterior product of p individual 1-forms in terms of the inner product defined on 1-forms [99] with
the expression

〈ũ1 ∧ · · · ∧ ũp, ṽ1 ∧ · · · ∧ ṽp〉p = det

⎛
⎜⎜⎝

⎡
⎢⎢⎣
〈ũ1, ṽ1〉 · · · 〈ũ1, ṽp〉

.

.

.
. . .

.

.

.

〈ũp, ṽ1〉 · · · 〈ũp, ṽp〉

⎤
⎥⎥⎦

⎞
⎟⎟⎠ .
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element can be employed to measure the volume V of an n-dimensional region R

through integration, i.e., V = ∫R voln. The canonical volume element arises from a
special case of the Hodge star operator, since the Hodge dual of the constant function
f = 1 is

�1= voln . (2.56)

The inner product provided by the Hodge star operator can be extended over a com-
pact manifold Mn to produce a global scalar product of two forms given by

(α̃, β̃)≡
∫

M

α̃ ∧ �β̃ =
∫

M

〈α̃, β̃〉voln . (2.57)

Note also that if the orientation changes, voln reverses sign, and hence the sign of
�β̃ also changes.

Example 2.5 Continuing from Example 2.4, if α̃ is a 1-form given by α̃ = a1dx1 +
a2dx2+ a3dx3, β̃ is a 1-form given by β̃ = b1dx1+ b2dx2+ b3dx3, and the metric
tensor g is simplified such that only the diagonal entries gii are non-zeros, then

α̃ ∧ �β̃ = 1√
g11g22g33

(
a1b1g

11 + a2b2g
22 + a3b3g

33)dx1 ∧ dx2 ∧ dx3

= 1√
g11g22g33

(aG−1bT)dx1 ∧ dx2 ∧ dx3,

where a= [a1, a2, a3] and b= [b1, b2, b3].

If we consider the special case of R
3, the Hodge star operator and the wedge

product combined provide several common vector identities from traditional vector
calculus. If we assume a Euclidean metric so that any contravariant vector v̄ can be
associated with a covector ṽ with identical components, then it is straightforward to
demonstrate that for contravariant vectors ū, v̄, and w̄,

ū · v̄ = �(ũ∧ �ṽ)= �(ṽ ∧ �ũ), (2.58a)

ū× v̄ = �(ũ∧ ṽ), (2.58b)

and

ū · (v̄× w̄)= �(ũ∧ ṽ ∧ w̃). (2.58c)

Similarly, with the exterior derivative and Hodge star operators, we may produce
operations identical to the divergence and curl operators. The key to translating the
exterior derivative into an operation identical to these familiar operators is to note
that, in standard vector calculus, there are only 1-vectors! In this setting, the curl op-
erator maps a 1-vector into a 1-vector, and the divergence operator maps a 1-vector
into a 0-vector. As we saw above in Examples 2.2 and 2.3, the curl arises from
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the exterior derivative of a 1-form and therefore produces a 2-form, whereas the
divergence arises from the exterior derivative of a 2-form and therefore produces a
3-form. Thus the Hodge star is required to generate the standard vector calculus ver-
sions of these operators.11 For a 1-form α̃ in R

3, the curl operator is then given by

�dα̃⇔∇ × ᾱ (2.59a)

and the divergence operator is given by

�d � α̃⇔∇ · ᾱ. (2.59b)

The first expression results in a 1-vector and the second expressions results in a
0-vector or a scalar. Note that the inclusion of the Hodge star operator in these ex-
pressions for curl and divergence does not imply that these two operators require
metric information, but rather the Hodge star provides the necessary conversion into
the precise definitions in standard vector calculus. As before, to compute either the
1-form that is the “gradient” of a 0-form, the 2-form that is the “curl” of a 1-form,
or the 3-form that is the “divergence” of a 2-form requires only an application of the
exterior derivative, therefore these operations are purely topological in nature and
require no metric information.

The Hodge star thus incorporates geometric information, via the metric tensor,
into the language of differential forms, extending the framework beyond the purely
algebraic and topological operations provided by the wedge product and exterior
derivative. In the context of physics, this metric information is typically embodied
by the constitutive laws appropriate to the physical domain. These laws, which are
interpreted as expressing the metric tensor in each domain, will be discussed further
in the next section.

The Hodge star operator � is a linear mapping from p-forms to (n−p)-forms
that requires a metric tensor and an orientation on the underlying manifold.
It provides a scalar product between forms, and is necessary to complete the
correspondence between standard vector calculus and the exterior calculus of
differential forms.

The composite operator of the Hodge star and the exterior derivative, �d�, used
in the above expression for divergence has interesting properties with respect to the
global scalar product on forms, and will now be explored in greater detail.

11Here the notation⇔ is meant to convey that these forms and vectors correspond. Oftentimes the
vectorfield corresponding to a form is termed a “proxy” field [48]. Of course it is possible to map
a form to its corresponding vector using the metric tensor, but for this discussion we do not require
this level of detail.
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2.2.3.1 The Codifferential Operator and the Laplace–de Rham Operator

The exterior derivative operator, discussed above, maps p-forms to (p + 1)-forms.
The Hodge star enables the definition of a new differential operator that maps in
the opposite direction. The codifferential operator d∗ :∧p→∧p−1 (sometimes
denoted as δ) is defined as

d∗ ≡ (−1)n(p+1)+1 � d � . (2.60)

It appeared in the expression for the vector divergence given above in (2.59b). It can
be shown that this operator is the adjoint of the exterior derivative with respect to the
global scalar product defined above (up to a boundary term), i.e., for a (p− 1)-form
α̃ and p-form β̃ ,

(dα̃, β̃)= (α̃,d∗β̃). (2.61)

As with the exterior derivative, a p-form β̃ is said to be coclosed if it is in the kernel
of the codifferential operator, i.e., if d∗β̃ = 0, and coexact if it is the codifferen-
tial of a (p + 1)-form α̃, i.e., if β̃ = d∗α̃. Also, the Poincaré lemma applies to the
codifferential operator thus d∗d∗ = 0.

Example 2.6 (Adjointness of grad and −div in two dimensions) Consider a 0-form
f and a 1-form ω̃ defined on a manifold M⊂R

2, and the 2-form given by

d(f ∧ �ω̃)= (df )∧ �ω̃+ f ∧ (d � ω̃)

at a point p ∈M. If this expression is integrated over all of M, we see that
∫

∂M

f ∧ �ω̃ =
∫

M

d(f ∧ �ω̃)

=
∫

M

(df )∧ �ω̃+
∫

M

f ∧ (d � ω̃)

= (df, ω̃)+ (f, � � �d � ω̃)

= (df, ω̃)− (f, �d � ω̃).

If M is closed such that it is boundaryless, i.e., ∂M= 0, then

(df, ω̃)= (f, �d � ω̃)= (f,d∗ω̃)

which expresses the adjointness of d and d∗ with respect to this scalar product.
It also demonstrates that the adjointness of the vector calculus operators grad and
−div is a special case of the adjointness of d and d∗.

Using the codifferential we may define an operator on forms that generalizes
the Laplacian operator from vector calculus. The Laplace–de Rham operator is a
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mapping from p-forms to p-forms, denoted as 
 :∧p→∧p , and formally defined
as


≡ dd∗ + d∗d= (d+ d∗)2 (2.62)

in terms of the exterior derivative and codifferential operators.12 The Laplace–
de Rham operator is thus self-adjoint with respect to the global scalar product, i.e.,

=
∗. In R

3, the Laplace–de Rham operator on 0-forms is identical up to a sign
to the Laplacian operator on scalars, i.e.,


f =−∇2f, (2.63)

and to the Laplacian operator on vectors, i.e., if we assume a Euclidean metric and
assign τ̃ ⇔ τ̄ ,


τ̃ ⇔−�∇2τ̄ =−(∇∇ · τ̄ −∇ ×∇ × τ̄ ). (2.64)

Through the Laplace–de Rham operator, several concepts of potential theory
carry over to the domain of differential forms. A harmonic form is a p-form ω̃

that is in the nullspace of the Laplace–de Rham operator such that 
ω̃ = 0. Note
that on a closed (i.e., boundaryless) manifold 
ω̃ = 0 if and only if dω̃ = 0 and
d∗ω̃= 0, thus harmonic forms on a closed manifold are both closed and coclosed.

The Laplace–de Rham operator plays a central role in Hodge theory, which is
described in detail in Appendix C. In summary, a result of Hodge’s Theorem is
that any p-form on a closed manifold can be written as the sum of an exact form,
a coexact form, and a harmonic form, and the decomposition of the p-form into
these three components is known as its Hodge decomposition. This decomposition
is a generalization of the Helmholtz decomposition of vector fields, which is also
discussed in detail in Appendix C.

2.2.4 Differential Forms and Linear Pairings

To summarize the brief review of differential forms, we have:

• established a duality between contravariant p-vectors and covariant p-forms;
• defined an exterior derivative operator using only the topological structure of the

manifold;
• shown that a coupling exists between differential forms and the p-domains over

which they are integrated with the Generalized Stokes’ Theorem; and
• have seen how the Hodge star, through exploiting a metric structure imposed on

a manifold, can provide a correspondence between standard tools in traditional
vector calculus with the framework of differential forms.

12The Laplace–Beltrami operator is a special case of the Laplace–de Rham operator restricted to
p = 0 and defined on Riemannian manifolds.
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One theme of this review has been to establish linear pairings between objects—
including the contraction of a p-vector with a p-form, the integration of a form over
a domain, and the global scalar product of p-forms—and the adjointness relations
of d and ∂ and of d and d∗ that arise from these pairings. These relations will play a
larger role in the discrete implementation of exterior calculus, which is the topic of
the next section.

2.3 Discrete Calculus

Now that we have reviewed the essential components of the generalization of stan-
dard vector calculus provided by the exterior calculus, we are positioned to develop
the analogous concepts in a purely discrete setting. The broad concept of a discrete
calculus has been approached by many different authors in a wide variety of con-
texts (e.g., [40, 47, 59, 103, 105, 111, 118, 178, 200, 232, 275, 307, 323, 360, 364,
379, 388, 400, 403]), and the formulation that we present in this section has been
assembled from several of these sources. Given the finite-dimensional vector spaces
forming the substrate of discrete manifolds, the discrete differential form can be de-
fined just as it is in the continuous setting. Here we emphasize that a distinction must
be drawn between formulating an inherently discrete version of differential forms
and an alternative approach in which discrete representations of continuous differ-
ential forms are defined—an approach that we term the discretized version. While
the discretized approach is extremely useful for solving many practical problems in
computational physics [47, 178], it views the discrete representations as being sam-
ples of underlying continuous fields, whereas the viewpoint here and in the rest of
this book is that the fields are intrinsically discrete—meaning there is no underlying
continuous field or continuous operations that we seek to approximate, but rather
the discrete fields themselves are the main objects of interest.

The discrete formulation of differential forms retains all of the features outlined
above, including the coordinate-free expression of differential forms and the exterior
derivative as well as the independence of the exterior calculus from a metric. One
strong advantage of the discrete formulation is that the purely topological nature
of the exterior derivative—and the tight relationship between the derivative and the
boundary operator—is made far more apparent and concrete.

We begin the translation of the exterior calculus on differential forms into the
discrete setting by reconsidering the components of the Generalized Stokes’ Theo-
rem, ∫

S

dω̃=
∫

∂S

ω̃,

which lays the foundation of calculus.
Recall that the Generalized Stokes’ Theorem is a generalization of the Funda-

mental Theorem of Calculus—which is typically phrased in terms of 0-forms or
functions—to higher-order forms and domains of integration. The discrete calculus
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must reproduce all aspects of this Theorem if we are to construct a formally anal-
ogous calculus. Notice that this expression contains several components, including:
the domain of integration S; the boundary operator ∂ ; an orientation on the do-
main S; the form ω̃; the derivative operator d; and the bilinear pairing given by the
integral itself. In addition to these basic ingredients (which, through their definition,
will provide the algebraic and topological structure of the discrete calculus), we
will also require a discrete version of the Hodge star operator and a metric tensor to
enable a complete discrete calculus on manifolds.

A description of discrete calculus can be provided in terms of chains, cochains
and the boundary and coboundary operators, all of which are defined below. How-
ever, the goal of the following discussion is to simultaneously introduce the rep-
resentations of the relevant ingredients in terms of linear algebra—namely, matrix
operators and vector representations. Although it is not surprising that operators in
such discrete systems may be considered as systems of linear equations, the matrix
formulation of discrete calculus enables powerful tools for evaluating operations and
for solving large problems. Because these representations arise so naturally in dis-
crete calculus, throughout this discussion we will refer to the more abstract discrete
operators and their concrete representations and data structures interchangeably.

2.3.1 Discrete Domains

We begin by considering the discrete analogue of the domain. A discrete domain
will be represented by a cell complex, which is comprised of a collection of finite-
dimensional vector spaces of p-cells. A p-cell, σp is defined as a set of points which
is homeomorphic to a closed, unit p-ball Bp , i.e.,

Bp = {x ∈R
p|‖x‖ ≤ 1}. (2.65)

The boundary, ∂σp , of the p-cell σp is the portion of the cell which is mapped by
the homeomorphism to the boundary of the unit ball, i.e.,

∂Bp = {x ∈R
p|‖x‖ = 1}. (2.66)

A p-cell may be represented by an ordered set of vertices comprising a convex
p-polytope. We denote the set of all p-cells as Sp . The simplest, low-order p-cells
are the 0-cells or nodes, 1-cells or edges, and 2-cells or faces. Because these three
types of cells will play the most prominent role in the applications discussed in
later chapters, we denote these sets with the special notation: V represents the set of
nodes or “vertices”, E the set of edges, and F the set of faces. The ith element of
these sets will be denoted by vi ∈ V, ei ∈ E, and fi ∈ F. The notation eij will also
be used to describe an (oriented) edge that connects nodes vi and vj .

A graph is a special case of a cell complex that is comprised of only nodes
(i.e., 0-cells) and edges (i.e., 1-cells), and is therefore a 1-complex. Thus, the frame-
work of discrete calculus developed here applies to graphs as well as more general
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Fig. 2.2 Examples of cells of
order 0 through 3. The top
row examples are all
simplices, while the bottom
row examples also include
more general p-cells

p-complexes. This provides the possibility of exploiting the many results and tools
from the rich fields of algebraic and computational graph theory to solve many so-
phisticated problems in the present context of calculus.

The boundary of a p-polytope consists of a set of (p − 1)-polytopes (defined
for p > 0), thus at least p + 1 vertices are required to define a p-polytope. When
a p-cell consists of exactly p + 1 vertices, it is called a p-simplex. Note how this
definition of a cell and its boundary excludes the possibility for the cell’s boundary
to self-intersect. Therefore, a 1-cell for which the endpoints are the same 0-cell
(i.e., a self-loop) is excluded from the definition and therefore not allowed as a
cell. Consequently, none of the discrete domains that we consider will possess self-
loops. In graph theory, a fully-connected set of nodes is called a clique,13 where
a p-clique indicates a clique comprised of p nodes. Similarly, a p-simplex is also
fully connected with p+ 1 nodes.

The terminology for various p-cells varies widely across disciplines. The basic
building blocks of all p-cells are 0-cells. From a geometric viewpoint, the 0-cells are
commonly called vertices or points, while in graph theory the 0-cells are typically
called nodes. More abstractly, the 0-cells can be thought of as any set consisting of
one single element. The 1-cells consist of pairs of 0-cells and are variously referred
to as edges (in the context of graph theory) or branches (in the context of circuit
theory). A 2-cell is composed of at least three vertices and is variously referred to
as a face or facet (in the context of geometry), cycle (in graph theory), and mesh or
loop (in the context of circuit theory). Since the terms “mesh” and “loop” appear
with different definitions in different fields, we will generally avoid these terms.
Higher order p-cells are generally referred to simply as p-cells. We will refer to
p as the order of the p-cell. Figure 2.2 provides various examples of cells, both
simplices and non-simplices.

A collection of cells defines a cell complex if the collection satisfies the follow-
ing two requirements.

1. The boundary of each p-cell (for p > 0) is comprised of the union of lower-order
p-cells.14

13Cliques play an important role in Markov Random Fields (due to the Hammersley–Clifford The-
orem [31]) and the identification of cliques with simplices allows us to consider p-cliques as geo-
metric objects with dimension p.
14These boundary cells are sometimes referred to as the faces of the p-cell, which can be confused
with the usage of the term face to describe a 2-cell. We shall reserve the term “face” for a 2-cell
only.
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Fig. 2.3 A cell complex is a
collection of cells which are
joined together to satisfy
certain rules. The left column
shows a 2-complex and a
3-complex, while the right
column show cells which
were improperly glued
together and therefore do not
comprise a cell complex

Fig. 2.4 A cell complex may
be considered as a tessellation
of a continuous domain,
where the tessellation may be
either regular or irregular

2. The intersection of any two cells is either empty or a boundary element of both
cells.

Figure 2.3 depicts examples of cells joined to create a valid cell complex, and cells
which were joined so as to violate the conditions for a valid cell complex. A complex
is referred to as a p-complex if p is the maximum order of all cells in the complex.

From a discretization viewpoint, a p-complex may be viewed as a tessellation
of a p-manifold, as depicted in Fig. 2.4. Throughout this and later chapters, we
assume that the complex under consideration is connected unless stated otherwise.
When the complex is not connected then, without loss of generality, each connected
complex may be treated separately.

Typically, the 0-cells of a complex are considered as vertices of a discrete man-
ifold and as such are thought of as being embedded in some extrinsic embedding
space, i.e., to each vertex is assigned a coordinate in n dimensions. This embedding
of the vertices allows one to define other features of the complex, like orientation
and duality (discussed below), in terms of the ambient space into which the com-
plex is embedded. However, major applications for graph theory and discrete cal-
culus have no natural geometric embedding (e.g., communication networks, social
networks, gene regulatory networks, and the World Wide Web). Since our goal is
to provide the tools of discrete calculus so that they may be applied to the broadest
class of real-world problems, our approach will be to avoid any dependence on an
embedding in our definitions and exposition.
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2.3.1.1 Orientation

We will require that each p-cell is oriented, and the orientation is specified by the
ordering of nodes used to represent the p-cell. Any p-cell (regardless of the order p)
may have one of two possible orientations. Intuitively, an orientation establishes a
default direction on a cell which is considered positive or negative. For example,
flow passing through an oriented edge in the same direction as its orientation is
considered positive while flow passing through the edge in the opposite direction
is considered negative. Note however that an oriented graph is different from a di-
rected graph. An orientation on an edge defines which direction of flow is consid-
ered positive or negative, while a directed edge only permits flow in one direction.
This distinction is very important since all of the edges in this book will be oriented,
but unless otherwise stated the edges will be considered undirected.

We begin by defining orientation for a p-simplex and then show how this defi-
nition may be extended to general p-cells. When a p-cell is a p-simplex, we may
provide a formal definition of orientation. A p-simplex consists of p+ 1 nodes and
the orientation may be defined by an ordering of those nodes as the list

τp =
{
σ 0

0 , σ 0
1 , . . . , σ 0

p+1

}
. (2.67)

If we exchange the position of any two nodes in the ordering an odd number of times
(an odd permutation), then we say that the orientation has changed with respect to
the initial orientation. However, an even number of exchanges (even permutation)
keeps the orientation the same as the initial orientation. We consider two orienta-
tions to be the same (called coherent) if one can be obtained from the other by an
even permutation. For completeness, a 0-cell is considered to have two orientations
(“sourceness” and “sinkness”) although it is defined by only a single node. Conven-
tionally, all nodes are given the same orientation, “sourceness”, meaning that the
negative (sink) end of an edge will not be coherent with the orientation of a node,
while the positive (source) end of an edge will be coherent with the orientation of a
node.

We can see how this purely combinatorial specification of orientation defines ori-
entation in an intuitive way by considering Fig. 2.5. An edge may be considered as
pointing from node A to node B or from node B to node A. If the edge points from
node A to node B , then flow from A to B is considered positive and flow from B to
A is considered negative. Similarly, a triangle (i.e., a face or a 2-simplex) may take
a clockwise or a counterclockwise orientation. If the triangle is oriented clockwise,
then a clockwise rotation around the triangle is considered positive and a counter-
clockwise rotation is considered negative. The clockwise orientation is represented
by listing the triangle’s points in the order (A, B , C) and the counterclockwise orien-
tation may be obtained by exchanging points A and C to give the ordering (C, B , A).
If a second exchange were made on this ordering, by exchanging C and B , then the
ordering (B , C, A) would again represent a clockwise orientation. The same con-
cepts apply to the orientation of a 3-simplex in which the orientation may be viewed
intuitively as the concept of “screw-sense” about the tetrahedron embodied in the
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Fig. 2.5 A simplex is given an orientation by ordering its vertices. Given a reference ordering,
all orderings obtained by an even permutation are considered to be the same as the reference
orientation, while all orderings obtained by an odd permutation are considered to be opposite
to the reference orientation. The orientation of a 1-simplex corresponds to a notion of direction,
while the orientation of a 2-simplex corresponds to a notion of clockwise/counterclockwise and
the orientation of a 3-simplex corresponds to the screw sense of the volume. For completeness,
0-simplices are considered to have two orientations, “sinkness” and “sourceness”

Fig. 2.6 A simplex can
induce an orientation on its
boundary simplices by
assigning the boundary
simplex the ordering given by
the subset of nodes from the
ordering of the p-simplex
comprising both the
p-simplex and a
(p− 1)-simplex on its
boundary. In this example, the
2-simplex induces an
orientation on its boundary
1-simplices

familiar “right-hand rule” from physics. Therefore, the opposite orientation on a
3-simplex would be defined by the “left-hand rule”.

An oriented simplex is said to induce an orientation on a boundary simplex by
assigning the boundary simplex the ordering given by the subset of nodes from the
ordering of the p-simplex comprising both the p-simplex and a (p − 1)-simplex
on its boundary. For example, Fig. 2.6 depicts the induced orientation of a triangle
(2-cell) on the edges (1-cells) comprising its boundary. Therefore, in Fig. 2.7 the
induced orientation of the cycle on the edges is coherent with the reference orienta-
tion for edges e1 and e2, while the induced orientation is not coherent for edges e3
and e4.
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Fig. 2.7 Every p-cell has a boundary comprised by p-cells. In this example, the boundary of this
2-cell is comprised of four 1-cells. The induced orientation of the cycle on the edges is coherent
with the reference orientation for edges e1 and e2, while the induced orientation is not coherent for
edges e3 and e4

Fig. 2.8 The ordering of a cell which is not a simplex may be produced by decomposing the cell
into simplices and orienting the simplices to agree on the internal boundaries. In this example, two
2-simplices are used to orient a 2-cell

Two p-cells may be merged to comprise a single oriented p-cell when the fol-
lowing conditions are satisfied:

1. The two p-cells share exactly one (p− 1)-cell boundary element.
2. The shared (p−1)-cell boundary element is not a boundary element of any other

p-cell in the complex.
3. The two p-cells induce opposite orientations on the shared (p−1)-cell boundary

element.

Consequently, a general p-cell may be oriented by subdividing the cell into internal
p-simplices (a simplicial decomposition). By orienting a single internal simplex,
the third condition above effectively forces all of the other internal simplices to as-
sume an orientation and therefore the orientation propagates to the entire cell [379].
Figure 2.8 illustrates how this simplicial decomposition is used to orient a cell.

2.3.1.2 The Incidence Matrix

Given these definitions of the orientation of p-cells, then we may represent the struc-
ture of the complex algebraically via an incidence matrix. The incidence matrix NT

p ,
which encodes which p-cells are incident to which (p− 1)-cells in the n-complex,
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is defined as

Np(i, j)=

⎧⎪⎨
⎪⎩

0 if σ
p−1
j is not on the boundary of σ

p
i ,

+1 if σ
p−1
j is coherent with the induced orientation of σ

p
i ,

−1 if σ
p−1
j is not coherent with the induced orientation of σ

p
i .

(2.68)
Therefore, the collection of n incidence matrices fully describe the boundary and
orientation structure of an n-complex. The p-incidence matrix NT

p , defined for
0 < p ≤ n, thus consists of np−1 × np elements, where np = |Sp| and Sp is the
set of p-cells in the complex. For a graph (a 1-complex), this definition agrees with
the standard definition of the incidence matrix when p = 1, which is an n×m matrix
(where n= |V| and m= |E|) whose rows index into the node set and whose columns
index into the edge set (i.e., each row corresponds to a node and each column corre-
sponds to an edge). Since we consider more general complexes, we will refer to the
p = 1 incidence matrix as the node–edge incidence matrix and the p = 2 incidence
matrix as the edge–face incidence matrix. Since these two matrices play a dominant
role in this book, we use special notation for these matrices. Following Strang [360],
we let NT

1 = AT represent the node–edge incidence matrix and NT
2 = BT represent the

edge–face incidence matrix.15

In all of the subsequent discussion, we assume that we are treating an oriented
n-complex defined with corresponding incidence matrices. In other words, the cells
are all assigned a unique, arbitrary orientation which acts as a reference orientation
for subsequent quantities.

2.3.1.3 Chains

The incidence matrix moves us from the subject of topology toward algebra since
the matrix represents the topological structure of the complex algebraically. In order
to define a domain of integration analogous to the concept used in conventional
calculus, we must take a second step toward algebra by defining a p-chain.

A p-chain is an np-tuple of scalars which assigns a coefficient to each p-cell,
where np is the number of distinct p-cells in the complex. Because the space of
p-cells is finite-dimensional (since there is only a finite number of p-cells in a com-
plex), a p-chain can alternately be viewed as a vector in this space, and each compo-
nent of a p-chain is the coefficient of a single p-cell. In this context, the collection
of p-cells comprises the basis set, and thus each p-cell is referred to as a basic
p-chain, and denote the vector space of p-chains as Cp . Typically a p-chain is rep-
resented as a one-dimensional array or a column vector, τp , that is always an np×1
vector with zeros in the entries corresponding to p-cells not included in the chain.

15We define the incidence matrix as the transpose of A and B since we will see in the next section
that A and B play a more prominent role than the incidence matrices AT and BT.
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Fig. 2.9 A chain defines an oriented domain of integration in an oriented complex. Given the
2-complex on the left, the first 2-chain indicates the rightmost two 2-cells for integration (shaded
in blue), while the second 2-chain indicates all of the cells for integration (with the middle cell
integrated in reverse orientation, shaded in red)

The p-chain is intended to represent some portion of the p-complex (analogous
to the relationship between a domain of integration and the entire domain). There-
fore each coefficient of the p-chain can be considered as representing the inclusion
of the p-cell in the domain of integration and its orientation within the p-chain (rel-
ative to its reference orientation). In other words, a p-chain may be viewed as an
(oriented) indicator vector representing a set of p-cells, in which values greater
than 1 represent greater multiplicity in the set. A given p-chain τp can therefore be
expressed as

τp =
np∑
i=1

ai σi, σi ∈ Cp, ai ∈R. (2.69)

Additionally, the sign of each coefficient ai indicates the orientation, i.e.,

τp(σi)=−τp(σ ′i ), if σi and σ ′i are opposite orientations of a p-cell. (2.70)

Two p-chains may be added together by adding the coefficients of each p-cell basis
element. The resulting group may be called the group of oriented p-chains [290].
Figure 2.9 gives examples of 2-chains on a small 2-complex. From the standpoint
of calculus, these chains may be considered as defining the (oriented) domain of
integration, and we may identify a p-chain with the p-vectors described above in
the theory of differential forms.

2.3.1.4 The Discrete Boundary Operator

Any p-chain may be represented as an np × 1 column vector, and the incidence
matrix is an np−1 × np matrix that stores the incidence relations between p-cells
and (p−1)-cells. The incidence matrix therefore naturally maps p-chains into their
corresponding boundary elements. In other words, when the incidence matrix NT

p is
applied to a p-chain, the result is a (p− 1)-chain, i.e.,

τp−1 = NT
pτp. (2.71)

Remarkably, this chain τp−1 represents the oriented set of (p − 1)-cells on the
boundary of the cells represented by the chain τp . Consequently, the incidence ma-
trix is the matrix representation of the discrete boundary operator, i.e., NT

p : Cp→
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Fig. 2.10 The incidence matrix may be used as an operator to find the boundary of a chain. There-
fore, the incidence matrix defines the boundary operator on a complex. In this example, the chain
τ 1 consists of one cycle in the complex, c1. The application of the boundary operator BT to τ 1
yields τ 0, which represents the oriented edges {e1, e3,−e2} comprising the boundary of the cy-
cle c1

Cp−1. The incidence matrix provides us with a purely algebraic representation of
the boundary—the boundary of a chain is defined algebraically as the result of ap-
plying the incidence relations captured by the incidence matrix to the chain. In other
words, the incidence matrix NT

p is a natural representation of the boundary opera-
tor ∂p on p-chains. Figure 2.10 demonstrates this effect of the incidence matrix as
boundary operator on a small 2-complex using the edge–face incidence matrix. As
before, the boundary of a boundary is algebraically zero, i.e., NT

p−1NT
p = 0. Also, a

p-chain βp in the nullspace of the boundary operator, such that NT
pβp = 0, is called

a cycle, and a (p− 1)-chain αp−1 that is in the range of the boundary operator, i.e,
such that αp−1 = NT

pβp for some p-chain βp , is called a boundary.

The incidence matrix NT
p provides both (i) a representation (or data structure)

of the topology of the discrete manifold and (ii) a representation of the bound-
ary operator ∂p .

This conception of the incidence matrix as the boundary operator allows us to
offer a intuitive understanding of the algebraic properties of the incidence matrix,
which are used throughout the book. These same results are achieved elsewhere
through more algebraic means [34, 36]. Consider the node–edge boundary opera-
tor AT. This matrix is of size m× n where m= |E| and n= |V| (using the conven-
tional notation in graph theory). The right nullspace of AT is of rank m− n+ 1. To
understand this fact, first consider that a 1-chain τ 1 which represents a cycle has no
boundary, i.e., ATτ 1 = 0. By definition, a graph which is a spanning tree has no cy-
cles and connects every node. The number of edges required to connect every node
without cycles is n− 1. Therefore, when a graph contains no cycles, m= n− 1 and
the rank of the right nullspace of AT is of rank 0. For every edge added to a spanning
tree, a new linearly independent cycle is defined, which adds to the dimension of the
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right nullspace of AT. Therefore, the difference between m and n−1 determines the
number of cycles forming a basis for the nullspace of the boundary operator.

An important aspect of the node–edge incidence matrix AT is the property of
total unimodularity. A matrix is totally unimodular if the determinant of every
submatrix is either zero or ±1. Total unimodularity is an extremely important prop-
erty in linear programming, since a totally unimodular constraint matrix (and integer
constraints) guarantees that the solution to the linear programming problem will be
integer [304]. Consequently, it is possible to solve integer programming problems
using efficient linear programming solvers when the constraint matrix is totally uni-
modular. Nemhauser and Woolsley [291] go further to state that every totally uni-
modular matrix is the edge–node incidence matrix of some graph with only two
exceptions.

We may similarly examine the face–edge incidence matrix BT. Since ATBT = 0,
then each of the column vectors for BT represent cycles. When BT contains m−n+1
independent columns, then we may view the complex as simply connected. If a com-
plex contains a handle, then its set F is missing an independent cycle and therefore
BT will contain less than m− n+ 1 independent columns. As the boundary oper-
ator, the right nullspace of BT is spanned by the space of boundary-less 2-chains.
A 2-chain has no boundary when it encloses a volume.

These definitions provide us with an algebraic foundation for representing dis-
crete domains: The oriented cell complex represents the entire domain, the chain
represents an oriented subdomain (e.g., as the domain of integration) and the inci-
dence matrix represents the boundary operator. In order to complete Stokes’ The-
orem on a discrete domain, we now need to define functions on the domain and a
derivative operator.

2.3.2 Discrete Forms and the Coboundary Operator

As in the continuous case, we may define a vector space of linear functionals that
locally map p-chains to scalars at each p-cell in a complex. In the discrete set-
ting, these linear functionals are analogous to differential forms and are thus called
p-cochains. Intuitively, a p-cochain may be viewed as a function defined on the do-
main of p-cells. In other words, just as a form is a linear functional that maps vectors
to scalars, a cochain is a linear functional that maps chains to scalars. Because of
the finite number of basic p-chains, the vector space of p-cochains Cp is also finite-
dimensional and each p-cochain can be expressed in terms of the p-cochain basis
σ i as

cp =
np∑
i=1

ai σ
i, σ i ∈ Cp, ai ∈R. (2.72)

We represent a p-cochain as an np × 1 column vector, cp . As with a p-chain, the
sign of each coefficient ai indicates the orientation, i.e.,

cp(σ i)=−cp(σ i′) (2.73)
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if σ i and σ i′ are opposite orientations of the same p-cell. Thus there is a single
basic p-chain and a single basic p-cochain defined at each p-cell of the complex,
and therefore the basis sets of p-cochains and p-chains are biorthogonal. For this
reason, the two vector spaces are isomorphic.16

Armed with these definitions of a discrete domain and a linear functional on that
domain, we can define integration as the pairing of a p-chain with a p-cochain,

�cp,τp �=
np∑
i=1

τp(σi)c
p(σ i)= cpτp, (2.74)

producing a scalar quantity. This pairing can be thought of as applying the p-cochain
(i.e., a linear functional) to the p-chain at each p-cell of the complex then adding up
the resulting scalars. Because both the chain and cochain are represented as vectors,
integration is therefore defined as the sum of the element-by-element product of the
vector components.17 We may then consider including the boundary operator NT

p

into this pairing and consider the adjoint of the boundary operator, (NT
p)∗, defined

through the expression

�(NT
p)∗cp−1,τp �= �cp−1,NT

pτp �. (2.75)

Note that this adjointness relation is simply an expression of the Generalized Stokes’
Theorem! We may then define the discrete version of the exterior derivative on p-
cochains, dp , as the coboundary operator, which is the adjoint of the boundary
operator, or dp = (∂p+1)

∗, and with a natural matrix representation: dp ≡ (NT
p+1)

∗.
Since the boundary operator is represented by a real matrix, and this pairing is sim-
ply the scalar product of a chain and cochain, its adjoint is simply the transpose,
thus the discrete coboundary operator is given by Np : Cp−1→ Cp .

As with the boundary operator, it is instructive to consider the algebraic proper-
ties of the coboundary operator applied to 0-cochains and 1-cochains. If we consider
the coboundary operator on 0-cochains A (which is the transpose of the node–edge
incidence matrix AT) the right nullspace of A is dimension r where r indicates the
number of connected components in the graph. To understand this fact, consider
which sets of nodes have no coboundary (i.e., edges connecting the nodes to other
nodes). If the 0-cochain c0(vi) = 1 for all vi ∈ V, then Ac0 = 0 since there is no
boundary for the entire domain (i.e., no edges connect the entire set of nodes to any
extraneous nodes). When V is composed of two connected components, V1 and V2
such that V1 ∩ V2 = ∅ and V1 ∪ V2 = V, then the 0-cochain c0(vi) = 1,∀vi ∈ V1
and c0(vi)= 0,∀vi ∈ V2 will also evaluate to Ac0 = 0 since there is no coboundary
(outgoing edges) from the set represented by the 0-cochain c0. Therefore, for each

16In the remainder of the book, we will adopt Strang’s [360] notation and adopt x to represent
0-cochains while using y to represent 1-cochains. However, in this chapter we will continue to use
cp to represent a p-cochain.
17Recall that integration is a pairing of chains and cochains that does not require any metric infor-
mation whatsoever.
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connected component there is a 0-cochain in the nullspace of A. If any cochain rep-
resents a node set that is not a disconnected component then, by definition, there is at
least one edge leaving the set. Consequently, Ac0 �= 0 unless c0 is an indicator vec-
tor representing a component which is disconnected from the remaining graph. We
may also consider the properties of the coboundary operator on 1-cochains B (which
is the transpose of the edge–face incidence matrix BT). Similarly, because BA= 0,
the right nullspace of B is spanned by the n= |V| independent columns of A, cor-
responding to the nodes. A common, alternative, interpretation of the nullspace of
B is that it is spanned by the set of all possible cuts in the graph (i.e., oriented sets
of edges which disconnect the graph). More treatment of these properties may be
found in [34, 36].

2.3.3 Primal and Dual Complexes

The dual of a cell complex is an old concept with different meanings and interpre-
tations in the literature. However, the basic idea is that, from a given cell complex
(the primal), we can construct a related cell complex called the dual. The dual of an
n-complex is generally viewed geometrically—in the sense that it is typically con-
structed by placing a node or 0-cell of the dual complex at the barycenter of each
n-cell of the primal complex, and then connecting two dual nodes with an edge if
the two primal n-cells share an (n− 1)-cell as a border. Once this identification has
been made between the n-cells of the primal complex and the 0-cells of the dual,
maintenance of the incidence structure forces every primal p-cell to map to a dual
(n− p)-cell.

We will define the notion of duality employed in this book by the following
condition: If the primal n-complex is constructed such that each (n − 1)-cell is
the boundary of exactly two n-cells (and such that each of these incident n-cells
induce an opposite orientation on the shared (n− 1)-cell), then we can define a dual
complex by identifying each p-cell in the primal complex with a unique (n− p)-
cell in the dual complex. Note that this requirement effectively indicates that the
p-complex defines a combinatorial manifold [284] that, analogous to a continuous
manifold, is everywhere locally homeomorphic to Euclidean space.

Under this definition of the dual, the incidence structure of the primal complex is
preserved in the dual. That is, if the duality condition above is true, then the primal
complex incidence matrix NT

n is the transpose of the node–edge incidence matrix of
the dual complex, i.e., NT

n =M1. This can be extended to link the incidence matrices
between the primal and dual complexes for all degrees of chains. Since

NT
nNT

n−1 = 0, (2.76)

then, if we take a transpose of this expression we have

Nn−1Nn = Nn−1MT
1 = 0. (2.77)
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This suggests that Nn−1 = MT
2 , and this construction can be extended for each cell

degree of the complex. Therefore, given a primal n-complex, the boundary operator
on primal p-cells is the transpose of the boundary operator on dual (n−p+1)-cells,
or

NT
p =M(n−p+1), (2.78)

and, equivalently, we may associate each p-cell in the primal with an (n− p)-cell
in the dual. Constructing the dual complex in this way, the algebraic structure of
the primal complex is preserved. Furthermore, this notion of duality is completely
independent of the embedding and therefore does not require any knowledge of
the complex beyond its connectivity. This purely topological statement embodies
the concept of Poincaré duality, which is generally made in terms of the homol-
ogy/cohomology groups of a complex (e.g., [276]) and defines a combinatorial man-
ifold [284].

Note that the incidence matrices of the dual complex Mp naturally provide a
coboundary operator, given that their structure is identical to that of the primal com-
plex. However, we have not yet defined cochains on the dual complex or how they
are related to cochains on the primal complex. This will be considered in the next
section.

In order to build a dual complex corresponding to a given primal n-complex, we
must identify (n− 1)-cells that form the boundary of exactly two adjacent n-cells
and that exhibit opposing induced orientation as a single (n− 1)-cell. Often, when
we draw a finite complex there are a series of border (n − 1)-cells which do not
appear to have a second n-cell on which they are incident. In these cases, we note
that we can include an “outside cell” in order to provide the second n-cell for these
border cells. For example, if we draw a finite planar graph on the plane, then the
outside cell may be considered to be the face attached to all of the border cells
that extends “to infinity”. The inclusion of this outside cell can be motivated by
considering the graph embedded on the surface of a topological sphere, which is
a manifold in the strict sense of the term (i.e., not a manifold with boundary) and
therefore a closed surface. The requirement of the outside cell can be viewed as
requiring the complex to be a strict combinatorial manifold in order to define a dual
complex. Figure 2.11 gives an example of a graph defining the surface of a cube.
When the graph is embedded on the plane, we seem to lose a face of the cube unless
the outside face is included in the set of 2-cells.

We note that the definition of the dual complex presented above is a general-
ization of the standard conception of duality in graph theory, which states that two
graphs are dual if there is an isomorphism between the cycles of the primal graph
and the cuts of the dual graph. Given this definition of a dual graph, it was shown
by Whitney [402] that a graph has a dual if and only if the graph is planar. However,
when the primal graph is planar, the standard graph theory notion of duality and the
definition given here agree, since for a planar graph there exists an oriented cycle set
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Fig. 2.11 (A) The graph
representing the six-sided
cube. (B) The same cube
drawn in the plane, where
there is one less face unless
we count the “outside face”,
i.e., the face ‘6’

Fig. 2.12 A planar graph and its dual. Each shaded contour represents a dual edge

Fig. 2.13 Examples of
primal and dual complexes in
two and three dimensions

which satisfies the condition that each edge is the boundary of exactly two cycles
with opposite orientation (see Fig. 2.12).18

One consequence of this definition of the duality of a n-complex is that the dual
changes with the value of n. Figure 2.13 illustrates this concept for two small com-
plexes and Fig. 2.14 illustrates this concept by considering the dual of a 4-connected
lattice in two dimensions and the dual of a 6-connected lattice in three dimensions.
In the two-dimensional case, nodes are dual to faces, edges are dual to edges and
faces are dual to nodes. However, in three dimensions, nodes are dual to volumes,
edges are dual to cycles, cycles are dual to edges and volumes are dual to nodes.

18The (oriented) cycle double cover conjecture [340] postulates that every bridgeless graph has a
cycle set which admits the type of duality discussed here. See Sect. 4.1.2.1 for more discussion.
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Fig. 2.14 The duality
relationships between primal
and dual complexes depend
on the order of the complex.
For example, primal edges
correspond to dual edges in
two dimensions, whereas
primal edges correspond to
dual faces in three dimensions

Fig. 2.15 Correspondence
between chains in primal and
dual complexes in three
dimensions. The boundary
operator for a primal p-cell is
the coboundary operator of a
dual (p− 1)-cell

Figure 2.15 shows how the boundary operators in the primal complex relate to the
coboundary operators in the dual complex.

We defined an orientation for each cell in purely algebraic terms by using the
ordering of the vertices of each cell. However, since each cell in the dual complex
is identified with a cell in the primal complex, then we may use the orientation on
a primal cell to define the orientation of a dual cell. The combinatorial orientation
of a primal cell has been termed intrinsic (since the orientation is defined by the
cell nodes) while the orientation of a dual cell has been termed extrinsic (since this
orientation is defined by the primal cell nodes) [275, 380]. Defining the extrinsic
orientation of a p-cell in terms of the dual (n−p)-cell has the consequence that the
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Fig. 2.16 Interior orientation prescribed on a primal complex induces exterior orientation on the
corresponding dual complexes. Graphical representations of this mapping between dual simplices
in a 3-complex are demonstrated

extrinsic orientation depends on n for a primal n-complex. Figure 2.16 illustrates
the relationship between interior and exterior orientation for a 3-complex.

2.3.4 The Role of a Metric: the Metric Tensor, the Discrete Hodge
Star Operator, and Weighted Complexes

2.3.4.1 The Metric Tensor and the Associated Inner Product

As in the general setting described above in Sect. 2.2.1.3, in order to convert chains
into cochains and vice versa we require the definition of an inner product specified
by a metric tensor. We begin by defining an inner product in each chain space Cp .
Then, given a set of basic chains σi ∈ Cp we can define a metric tensor

g
p
ij = 〈σi, σj 〉. (2.79)

Typically in the discrete setting, the basis set of p-cells is defined to be orthogonal
such that g

p
ij = 0 for i �= j . This is a direct result of the coarse, sparse topology

of a complex. For this reason the role of the metric is dramatically simplified. The
(primal) metric tensor is thus represented by the np×np diagonal matrix Gp where
Gp = diag(g

p
ii) for 1 ≤ i ≤ np . Thus converting a p-chain into its equivalent p-

cochain consists of a simple scaling of the chain coefficients for each basic cochain,
i.e., for a given p-chain τp and p-cochain cp ,

cp = Gpτp. (2.80)

The reverse mapping from p-cochains to p-chains can be computed from the dual
metric tensor using the inverse of the metric tensor matrix, G−1

p . The specification
of a metric tensor provides a means to compute the inner product between pairs of
p-chains or pairs of p-cochains. As expected, the inner product between p-chains
μ and ν is simply 〈μ,ν〉 = μTGν, and the inner product between p-cochains u and
v is 〈u,v〉 = uTG−1v. As in the continuous setting, the mapping provided by the
metric tensor preserves the inner product of a pair of cochains when each cochain
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is converted into their corresponding chain, and vice versa. It is straightforward to
show that if u=Gμ and v=Gν, then 〈u,v〉 = 〈μ,ν〉.

In the special case where g
p
ii = 1 for all np entries, the metric is analogous to a

Euclidean metric, in which case there is a natural correspondence between 0-chains
and 0-cochains—in this case there is no distinction between them. Note that because
the inner product is defined to be positive definite at each basic p-chain, it provides
a Riemannian metric over the complex.

2.3.4.2 The Discrete Hodge Star Operator

Given this definition of an inner product and corresponding metric tensor, we may
consider the Hodge star operator articulated in the discrete setting. Recall that the
Hodge star operator is a mapping from p-forms to (n− p)-forms in n-dimensions
that depends on both the metric tensor and the prescribed orientation of space. This
construction was made possible by the matching dimensions of the space of p-forms
and (n − p)-forms (each of which have dimension

(
n
p

)
in the continuous setting),

thus the Hodge star operator was an isomorphism between these two spaces. A sim-
ilar isomorphism exists in the discrete setting between each space of p-chains on
the primal complex and the space of (n − p)-chains on the dual complex, which
is a manifestation of Poincaré duality. The discrete Hodge star operator therefore
simply transfers p-cochains on the primal complex, represented with respect to the
basic p-cochains on the primal complex (or, equivalently in this setting, the basic
p-chains), into a representation in terms of the (n− p)-cochains on the dual com-
plex scaled by the inverse metric tensor. We can therefore view the discrete Hodge
star construction as a combination of Poincaré duality, which is a purely topological
notion, with the metric information provided by the metric tensor. Thus in the case
of an n-complex, any given p-cochain x on the primal complex is mapped to its
corresponding (n− p)-cochain x∗ on the dual complex such that

x∗ ≡ �x=G−1
p x. (2.81)

Due to the finite-dimensional cochain bases and the simple form of the metric ten-
sor, the Hodge star operator is straightforward to implement in the discrete set-
ting.19 Note, however, that in the construction of a dual complex requires a pre-
scribed orientation on the primal complex, therefore if the orientation of the primal
complex were to reverse direction the orientation of the dual complex and its basic
p-cochains would change, resulting in a sign change in the Hodge dual �x.

19In the context of finite elements, the search for a definitive discrete Hodge star operator has been
elusive [47, 178, 199, 248]. In other discrete calculus formulations—in which the goal is to provide
a discretized version of calculus (e.g., [102])—several formulations of the Hodge star operator have
been suggested, including the Galerkin–Hodge star operator that has many advantageous properties
[248]. However a fundamental difficulty arises in defining an operator that converges in the limit of
finer mesh sizes to the continuum operator. In the present framework (i.e., the discrete formulation
of calculus) the definition of the Hodge star is straightforward and is provided by the well-defined
inner product on any cochain basis, all of which are finite-dimensional.
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Oftentimes it is desirable to be able to compute the inner product between a pair
of (n− p)-cochains on the dual complex in such a way that it is equivalent to the
inner product between the corresponding pair of p-cochains on the primal complex.
That is, we wish to define the inner product on two (n−p)-cochains u∗ and v∗ such
that

〈〈u∗,v∗〉〉 = 〈u,v〉, (2.82)

where, to avoid confusion, we have denoted the inner product on the dual complex
as 〈〈·, ·〉〉. From the definition of the Hodge star operator, the inner product on the
dual complex is

〈〈u∗,v∗〉〉 = (�u)TG∗n−p(�v)= uT(G−1
p )TG∗n−pG−1

p v (2.83)

then to satisfy the requirement that the inner products are equivalent implies that

uT(G−1
p )TG∗n−pG−1

p v= 〈u,v〉 = uTG−1
p v, (2.84)

and therefore, since the metric tensor matrix is symmetric,

G∗n−p =Gp. (2.85)

Thus the inner product of a pair of (n − p)-cochains on the dual complex—that
is compatible with the inner product of the corresponding pair of p-cochains on
the primal complex—is given by the quadratic form using the primal metric tensor
on p-chains Gp . This implies that, in order to maintain a compatible inner product
between pairs of p-cochains on the primal complex and their corresponding pairs
of (n− p)-cochains on the dual complex, the mapping from an (n− p)-cochain on
the dual complex y∗ into the appropriate p-cochain on the primal complex y must
be

y= �y∗ =G∗n−py∗ =Gpy∗. (2.86)

Note that the standard notation for the Hodge star operator, �, does not distinguish
between these two distinct mappings: the � operator performs both the mapping
from a p-cochain on the primal complex to an (n−p)-cochain on the dual complex
and its inverse.20 Therefore one must always be mindful of what is the operand of
the Hodge star operator in order to properly interpret its action.

For a general n-complex, metric tensors can be defined for all p-cells for each
value 0 ≤ p ≤ n, forming a collection of matrices Gp . While higher-order metric
tensors can be constructed from lower-order ones, as discussed in the previous sec-
tion on the Hodge star operator, in several branches of physics an independent metric
tensor is more appropriate for each class of p-cochains. In the context of physics, the
discrete Hodge star incorporates metric information into the system and represents

20So as to not deviate completely from the literature, we forgo cumbersome but explicit notation,

e.g., �p and �−1
n−p , that could be employed to help limit the ambiguity of this overloaded operator.
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a class of laws known as constitutive laws. These laws embody the material prop-
erties of a system and its substances and can be identified in virtually all branches
of physics.

Fortunately, because of the isomorphism between p-cochains on the primal com-
plex and (n − p)-cochains on the dual complex, the transition between the two
complexes is practically unnoticeable. As in the continuous setting, tracking which
elements of the complex represent the fields that we are studying can help provide
insight into the geometry and topology of the fields and how they interact. As dis-
cussed above, it is also critical to represent various fields on the appropriate discrete
structures to faithfully capture their geometric character in the representation.

2.3.4.3 Weights

Since the metric tensor is fully described by a single scale factor at each basic
p-chain or each p-cell of the complex, conventionally the metric tensor is pre-
scribed by assigning a weight to each p-cell. For example, a weighted graph is
a 1-complex for which each edge possesses a weight, and this weight specifies the
metric tensor for each edge. In this book, we assume that wi > 0 with finite value,
unless otherwise noted. With the weights playing the role of the metric tensor, many
geometric quantities can be readily computed. See Chap. 8 for examples.

2.3.4.4 The Volume Cochain

As in the continuous setting, the Hodge star operator allows us to define at each
basic n-chain in an n-complex a canonical volume element or volume cochain as
�1= voln, which in the discrete case is given by the n-cochain

voln =G1= g (2.87)

which is simply the (column) vector of n-chain weights and is therefore defined over
the entire complex. (Note that the discrete Hodge star in this definition is sensitive
to changes in orientation, thus the volume cochain also changes sign with a change
in orientation of the primal complex.) Under this definition for the volume cochain,
the volume of a specific n-chain τn =∑aiσi is simply the sum (i.e., the integral)
of the volume cochain over the chain, or

volume(τn)= gTτn. (2.88)

Therefore the volume of a chain is simply the sum of the weights of the basic
n-chains comprising the chain scaled by the chain coefficients ai .

Similarly, we can define the “volume of a cochain” c using a chain of all ones,
via

voln =G−11= g−1, (2.89)
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and

volume∗(cn)= (g−1)Tcn. (2.90)

One consequence of the above definitions is an explanation of the common usage
of edge weights in the computational literature to represent both distances and affini-
ties. For example, if a graph represents a road network between cities, the weights
are used to encode the length of a road connecting two cities. This distance weight
could then be used to calculate the shortest path between two cities (e.g., using
Dijkstra’s algorithm). If we view the shortest-path calculation as finding a 1-chain
τ 1 of road edges that connect the two cities of interest by a path of minimum dis-
tance, then the volume (length) of the chain is given by 1TG1τ 1 = gTτ 1 meaning
that the weights of the roads in the shortest path are summed to produce a distance.
A distance weight on an edge between two nodes is small if the two nodes are
close together and large if the two nodes are further apart. In contrast, other appli-
cations and algorithms treat weights as affinities, meaning that an edge connecting
two nodes has a large affinity weight if the two nodes are similar and a small affin-
ity weight if the two nodes are less similar. For example, the flow capacities in a
max-flow/min-cut problem are high if two nodes are well-connected and low if two
nodes are poorly connected. In this case, each edge capacity is used to control the
amount of flow through an edge. Since edge flow is a 1-cochain, c1, then the total
flow is measured by 1TG−1

1 c1. Therefore, we see that if we knew distances between
two nodes, then the corresponding affinity edge weight is the reciprocal of the dis-
tance edge weight. For example, in the context of circuit theory, a branch resistance
is the reciprocal of the branch conductance. Therefore, throughout the book, we will
refer to the edge weights used to measure distances between nodes (and chains) as
distance weights and the edge weights used to measure affinities (and cochains) as
affinity weights, with the understanding that when the two sets of weights are com-
patible on a particular complex the values of these weights are reciprocal to each
other. Although edge weights will play the most prominent role in this book, we
will also use the terms distance weights and affinity weights to describe volume and
inverse weights on p-cells. This reciprocal relationship between distance weights
and affinity weights has been noted previously in the literature (e.g., [54]).

Note that we will use the notation Gp to represent the diagonal matrix of dis-
tance weights for the p-cells. This constitutive matrix is represented by many other
authors using different notation (including Strang [360], with which our notation
mostly aligns). When G appears without a subscript, then it is assumed that p = 1,
since edge weights play the most prominent role in this work.

It was shown above that distances in primal space are measured the same as
affinities in dual space and vice versa. This connection between the weights of pri-
mal graphs and dual graphs has been occasionally exploited in the literature. For
example it has been noted that the higher-complexity max-flow/min-cut algorithm
can be replaced by the low-complexity Dijkstra’s shortest path algorithm run on the
dual space [191]. Figure 2.17 gives an example of a weighted primal graph, a dual
graph and the equivalence of the min-cut in the primal graph and the shortest path
in the dual graph when calculated with the same weights.
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Fig. 2.17 The
max-flow/min-cut problem on
a planar graph is equivalent to
a minimum path problem on
the dual graph using the same
weights. The
max-flow/min-cut problem
solves for a cochain and
therefore employs affinity
weights. The conversion to a
shortest path problem
changes the variable to a
chain, inducing distance
weights (reciprocal), but the
chain is on the dual graph
which brings back the
original affinity weights (by
taking a second reciprocal)

2.3.5 The Dual Coboundary Operator

Armed with a discrete Hodge star operator we may define the discrete version of a
codifferential operator. The dual coboundary operator, N∗p , maps p-cochains into
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(p− 1)-cochains—via a brief mapping into the dual complex—and is defined as

N∗p ≡ �Mn−p+1 � . (2.91)

For clarity, we will consider each step in this composite operator. The first dis-
crete Hodge star operator maps the given p-cochain on the primal complex into an
(n−p)-cochain on the dual complex. Then, the incidence matrix on the dual graph
is employed as the coboundary operator that maps the (n− p)-cochain on the dual
complex into an (n− p + 1)-cochain on the dual complex. Finally, the second dis-
crete Hodge star operator maps the (n− p+ 1)-cochain on the dual complex into a
(p−1)-cochain in the primal complex. In essence, this states that the dual cobound-
ary operator on p-cochains defined on the primal complex can be phrased in terms
of the (n−p+1)-coboundary operator on the dual complex with the discrete Hodge
star acting to shuffle cochains back and forth between the complexes.

Because of the relationship between the incidence matrices in the primal and dual
complexes (i.e., Poincaré duality) discussed in the previous section, summarized in
(2.78), this operator can be phrased entirely in terms of the incidence structure of
the primal complex as

N∗p = �NT
p � . (2.92)

In the discrete setting, the Hodge star operator is simply a diagonal matrix, so the
dual coboundary operator may be equivalently expressed as

N∗p =G∗n−p+1NT
pG−1

p =Gp−1NT
pG−1

p (2.93)

since G∗n−p+1 = Gp−1 by (2.85). Thus the dual coboundary operator is simply a
weighted version of the primal coboundary operator.

In the special case in which the metric is Euclidean at all locations of the complex
on both p- and (p − 1)-cochains (i.e., Gp = I and Gp−1 = I), the dual coboundary
operator matrix is the transpose of the coboundary operator matrix Np , i.e.,

N∗p =Mn−p+1 = NT
p when the metrics are Euclidean. (2.94)

In this case the discrete instantiation of the codifferential operator can be phrased
entirely in terms of the incidence matrix of the primal complex. Otherwise the dual
coboundary operator and the boundary operator differ by an element-by-element
scaling imposed by the p and p− 1 metric tensor matrices.

2.3.6 The Discrete Laplace–de Rham Operator

A remarkable aspect of the above discussion is that the boundary operator and the
exterior derivate are defined by the structure of the complex itself. In other words, the
structure of the derivative operator depends on the topological structure of space—
in a sense, the graph is the operator. That the incidence matrix is simultaneously
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used as a data structure representing the topology and the coboundary operator im-
plies that this is quite literally the case! After some consideration, we might not be
so surprised by this realization since the same dependence occurs in conventional
calculus. The gradient operator behaves differently when applied to functions on
the surface of different manifolds. In this section, we revisit the Laplace–de Rham
operator in the setting of discrete calculus.

Recall the definition of the Laplace–de Rham operator in terms of the exterior
derivative and the codifferential, 
 ≡ dd∗ + d∗d. We may apply this definition to
the p-complex in which the incidence matrix and its transpose play the role of the
codifferential and exterior derivative to give

Lp = NpN∗p +N∗p+1Np+1. (2.95)

Therefore, the special case of the Laplace–de Rham operator on 0-cochains,
which is identical to the Laplacian from standard vector calculus, may be written
as L0 = ATA. Within graph theory, this matrix is referred to as the Laplacian ma-
trix. The Laplacian matrix is size |V| × |V| and symmetric. Since the Laplacian
matrix is composed of the matrix A, its nullspace is also rank r (where r is the num-
ber of connected components). When the graph is connected, the nullspace of L is
spanned by a constant vector. Since the Laplacian matrix is composed of ATA, the
Laplacian matrix is positive semi-definite.

The Laplacian matrix also represents the connectivity of the graph structure, but
not the orientation of the edges. Given any graph then the Laplacian matrix may be
defined directly by

Lij =

⎧⎪⎨
⎪⎩

di if i = j,

−1 if eij ∈ E,

0 otherwise,

(2.96)

where Lij is indexed by vertices vi , vj and di represents the number of edges inci-
dent on node vi , called the node degree. Note that this definition of the term degree
is different from the conventional use of the word degree to describe a differential
form. This discrete calculus analogue of the Laplacian operator first appeared in
[118]. When the underlying graph is a 4-connected grid, this Laplacian matrix is
identical to the Laplacian matrix used in finite differences which is obtained from
discretization with a 5-point stencil.

The Laplacian matrix is also related to the adjacency matrix, W, typically em-
ployed in graph theory. Define the adjacency matrix as

Wij =
{

1 if eij ∈ E,

0 otherwise.
(2.97)

Like the Laplacian matrix, the adjacency matrix encodes the connectivity informa-
tion of the graph but not the edge orientations. All of these matrices which describe
the structure of the graph are related by the expression

L= D−W= ATA, (2.98)
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where D represents a diagonal matrix of the node degree, Dii = di . Note however,
that only the incidence matrix preserves the information about edge orientation in-
formation. Therefore, we may consider the incidence matrix more fundamental,
since the other matrices may be easily derived from it.

The Laplacian operator changes in the presence of a nontrivial metric. Let G0

represent the diagonal matrix of node (distance) weights and let G1 represent the
diagonal matrix of edge (distance) weights. Therefore, for a weighted graph, the
Laplacian operator is defined as

L0 = N∗0N0 +N∗1N1 = N∗1N1 =G0ATG−1
1 A, (2.99)

since N0 is defined as the null operator and matrix A represents the special case of
the node–edge incidence matrix, as usual. Therefore, the Laplacian operator for a
weighted graph takes the form

Lij =

⎧⎪⎨
⎪⎩

1
wi

di if i = j,

− 1
wi

wij if eij ∈ E,

0 otherwise,

(2.100)

where di =∑eij∈E wij is the (weighted) degree of each node. Note that in the above
expression we avoid the reciprocal notation needed for the inverse metric tensor by
identifying each edge weight wij (and node weight wi ) with the affinity weights,
which is conventional for definition of the Laplacian matrix.

The form of the unweighted Laplacian that we have been considering, L0 = ATA,
is therefore a special case of this more general weighted scalar Laplacian where
G−1

0 = I and G−1
1 = I. The choice of G0 = D−1 is also sometimes employed in the

literature, where D is the diagonal matrix with Dii = di . The Laplacian matrix de-
fined as L0 = D−1ATG−1

1 A is sometimes referred to as the normalized Laplacian or
the random walk Laplacian. The normalized Laplacian is often symmetrized to pro-

duce L̃0 = D− 1
2 ATG−1

1 AD− 1
2 . The normalized Laplacian fits naturally into the study

of random walks [115], has some attractive theoretical properties [81, 112] and has
been preferred in some applications [23, 345].

We may now consider the extension of the Laplacian operator to 1-cochains.
From the general definition of the Laplacian matrix in (2.95), we can express the
Laplacian matrix operator on 1-cochains in terms of the node–edge incidence matrix
A, the edge–face incidence matrix B, and the corresponding metric tensor matrices
as

L1 = N1N∗1 + N∗2N2 = AG0ATG−1
1 +G1BTG−1

2 B, (2.101)

which we may consider to be the discrete calculus analogue of the vector Lapla-
cian, which we will refer to as the edge Laplacian. Unlike the scalar Laplacian, the
edge Laplacian does preserve orientation information. The unweighted edge Lapla-
cian matrix (i.e., G0 = G1 = G2 = I) has appeared in the literature for purposes of
analyzing networks [1, 80, 288].



2.4 Structure of Discrete Physical Laws 63

Fig. 2.18 A Tonti diagram
expressing the structure of
primal and dual complexes,
their associated coboundary
operators, and the constitutive
laws that map primal
cochains into dual cochains
for a 3-complex. This general
structure is common to many
branches of physics

However, there are several cases in which non-trivial higher-order weights can be
quite useful. In particular, the cycle weights G−1

2 and node weights G0 in the edge
Laplacian reflect two aspects of the viscosity of a flow variable (represented by a
1-cochain). The proper assignment and interpretation of these weights for the edge
Laplacian is given in Sect. 4.3.

2.4 Structure of Discrete Physical Laws

We end this discussion on conventional and discrete calculus with a description of
the geometric structure of physics that is generated by this theoretical construct.
Since the discrete Hodge star operator provides a mapping from p-cochains on the
primal complex to (n − p)-cochains on the dual complex, the primal coboundary
operator maps p-cochains into (p+1)-cochains on the primal complex, and the dual
coboundary operator maps p-cochains into (p−1)-cochains on the dual complex, a
natural structure to the calculus begins to emerge. This structure can be summarized
schematically by means of a Tonti diagram. An example Tonti diagram is given for
3-complexes in Fig. 2.18.

A Roth diagram is similar to a Tonti diagram, except that it is generally used to
describe a discrete calculus setting and often explicitly accounts for the image and
nullspace of the boundary operator. For example, the Roth diagram for electrical
circuits is given in Fig. 2.19. Many authors have discussed these relationships and
the striking order that can be seen to exist across multiple disciplines. The inter-
ested reader is strongly encouraged to refer to Refs. [59, 178, 323, 359, 379] for
more details.

2.5 Examples of Discrete Calculus

We now have in place all of the machinery of conventional calculus phrased on a
discrete space. It is worthwhile at this point to consider the implications of these
definitions. One important practical difference between the standard vector calcu-
lus and this discrete calculus is in the distinction between scalar fields and vector
fields. In conventional calculus, scalar fields and vector fields may be evaluated at
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Fig. 2.19 A Roth diagram expressing the geometric structure of electrical circuits. The “1D” boxes
are separated into two compartments to denote the range of A, ŷ, and the nullspace of A, ỹ

a point. However, the same is not true in the discrete calculus setting. For example,
a scalar field may be viewed as a 0-cochain, c0, which assigns a value to each node.
However, if we apply a gradient operator, A, to this function, we produce

c1 = Ac0. (2.102)

In other words, by applying the gradient operator to a 0-cochain scalar function
we generate a 1-cochain edge function. Therefore, the “vector field” produced by
application of a gradient operator to a “scalar field” is identified with edges. The
theory of differential forms also supports this concept that the application of the ex-
terior derivative to a 0-form will produce a 1-form. However, in continuous space,
the concept of an infinitesimal allows us to shrink, in the limit, a one-dimensional
vector into a zero-dimensional location. Therefore, in the conventional calculus a
vector field is generally indistinguishable from an n-tuple of scalar fields (e.g., heat,
electrical charge and chemical concentration) since they are both evaluated at point
locations in space.21 In contrast, the discrete calculus makes these situations very
distinct in the sense that multiple scalar fields would be represented by multiple
0-cochains while a vector field would be represented by a 1-cochain. Similarly,
a 2-form in three dimensions is represented by three coefficients, which can make
it difficult to distinguish a 2-form from 1-form. For example, application of the curl
operator to a vector field is generally conceived of as returning a vector field, even
though in the language of differential forms the application of the exterior derivative
to a 1-form yields a 2-form. In contrast, the discrete calculus distinguishes between
these fields explicitly, since a 1-cochain is a function assigning values to edges while
a 2-cochain is a function assigning values to cycles.

21Throughout the applications sections of the book, multiple scalar (data) fields associated with a
node will be referred to as a tuple and denoted as x̃. In contrast, the word vector will be reserved
for either conventional (continuous) vectors denoted as �x or column vectors denoted as x.
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In the remainder of this chapter we demonstrate how these definitions for discrete
calculus allow us to preserve the structure of conventional calculus. In this section
we give several illustrations of how theory from standard calculus translates directly
to the discrete calculus developed above.

2.5.1 Fundamental Theorem of Calculus and the Generalized
Stokes’ Theorem

As reviewed above, the Fundamental Theorem of Calculus as it is typically ex-
pressed is a special case of the Generalized Stokes’ Theorem on 0-forms or func-
tions. In this section, we provide examples of how the Generalized Stokes’ Theorem
holds on a 1-complex, a 2-complex and a 3-complex. Additionally, we show that
the Generalized Stokes’ Theorem may not hold in the same way for other standard
discretizations of continuous operators, specifically the central differences approxi-
mation.

Recall that the Generalized Stokes’ Theorem is given by
∫

S

dω̃=
∫

∂S

ω̃, (2.103)

and the corresponding discrete calculus version is

�Npcp−1,τp �= �cp−1,NT
pτp �, (2.104)

where Np is the incidence matrix (representing the coboundary operator) applied
to the (p − 1)-cochain, cp−1 and NT

p represents the boundary operator applied to
p-chain τp for any value p, 0 < p ≤ n. Expressed in this discrete manner using
matrix representations of the boundary and coboundary operators and vector rep-
resentations of the chains and cochains, the Generalized Stokes’ Theorem simply
states that, with respect to the bilinear pairing of integration, Np is adjoint to its
transpose NT

p .

2.5.1.1 Generalized Stokes’ Theorem on a 1-Complex

The Fundamental Theorem of Calculus states that

b∫

a

f (t)dt = F

∣∣∣b
a
= F(b)− F(a), (2.105)

for some differentiable function F and interval of evaluation between a and b. The
discrete calculus instantiation of this theorem is

�Ac0,τ 1 �= �c0,ATτ 1 �, (2.106)
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Fig. 2.20 Example of the Generalized Stokes’ Theorem on a 1-complex. The top row depicts the
pairing of a 0-cochain c0 and 0-chain ATτ 1, with coefficients on the nodes represented in blue.
The bottom row depicts the pairing of a 1-cochain Ac0 with a 1-chain τ 1, with coefficients on the
edges represented in red. In this example, both pairings result in a value of ‘3’

for edge–node incidence matrix A, 0-cochain c0 (i.e., a function assigned to the
nodes) and 1-chain τ 1 (i.e., an indicator vector of edges for evaluation of the inte-
gral). This relationship consists of the pairing of a 1-cochain Ac0 with a 1-chain τ 1

on the left-hand side of (2.106) to yield a scalar, and a pairing of a 0-cochain c0

with a 0-chain ATτ 1 on the right-hand side to yield a scalar, and these two resulting
scalars are equivalent. The discrete calculus version of the Fundamental Theorem
of Calculus can be seen as an instance of the generalized Stokes’ Theorem when
p = 1, in which case N1 = A.

We first apply the discrete version of the Fundamental Theorem of Calculus to
an example involving a very simple graph, illustrated in Fig. 2.20. In this example,

c0 =

⎡
⎢⎢⎣

2
4
3
5

⎤
⎥⎥⎦ , (2.107)

A=
⎡
⎣ 0 0 −1 1

0 −1 1 0
−1 1 0 0

⎤
⎦ , (2.108)

and

τ 1 =
⎡
⎣1

1
1

⎤
⎦ . (2.109)

The reader may verify that the discrete Fundamental Theorem of Calculus given
holds for this case. However, it is instructive to examine each side of (2.106) sepa-
rately. On the left side, the gradient of c0, assigned to each edge, is summed over all
of the edges represented in τ 1. On the right side, ATτ 1 yields zeros on the interior
of the line and just a ‘1’ and ‘−1’ on the endpoints. Consequently, the product of
�c0,ATτ 1 � evaluates c0 only on the endpoints of the line, as in the right hand side
of the familiar form in (2.105). For both the left and right sides, the inner product
evaluates to the quantity ‘3’.
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Writing out the Fundamental Theorem of Calculus on this simple graph may
appear very familiar in the sense that it seems to represent nothing more than a for-
ward differences approximation to the continuous gradient operator evaluated on a
line discretized at four locations. While it is true that the our first example coincides
with this more familiar case, we now proceed to show that the Fundamental Theo-
rem of Calculus holds for more complicated graphs for which an interpretation as a
finite difference approximation becomes less clear. Consider the graph in Fig. 2.21
which is exactly the same as before, except that a single edge and node have each
been added. In this example,

c0 =

⎡
⎢⎢⎢⎢⎣

2
4
3
5
7

⎤
⎥⎥⎥⎥⎦ , (2.110)

A=

⎡
⎢⎢⎣

0 0 −1 1 0
0 −1 1 0 0
−1 1 0 0 0
0 0 −1 0 1

⎤
⎥⎥⎦ , (2.111)

and

τ 1 =

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦ . (2.112)

As before, the discrete version of the Fundamental Theorem of Calculus given in
(2.106) holds. The left side of (2.106) is straightforward in the sense that we are
again summing the differences of the 0-cochain given by c0. However, the right hand
side no longer represents a simple evaluation of the difference of c0 at two locations.
In this example of a tree, the right hand side of (2.106) represents the difference of c0

at the endpoints from the previous example and the difference of endpoint of the new
branch with the node joining the new branch. The traditional Fundamental Theorem
of Calculus summarizes the integral of the function derivative by the evaluation of
the function at two points, due to the internal cancellations along the interior of the
evaluation interval. In this example with a tree, the summation of the derivatives are
summarized by evaluation of the function at all terminals and joins, while any other
“internal” edges cancel. However it is important to point out that this 1-complex
does not represent a combinatorial manifold (either with or without boundary) as it
is defined in Sect. 2.3.3: The join node of this tree represents a non-manifold node
and in this case appears to be in the “boundary” of the 1-complex as defined by the
boundary operator A. However, the discrete version of the Fundamental Theorem
of Calculus still holds. While there are possible interpretations of this example that
could lead to a continuous analogue, it is clear that using a tree as a domain of
integration is fully possible within the discrete calculus framework yet the finite
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Fig. 2.21 A second example of the discrete calculus form of the Fundamental Theorem of Cal-
culus in the same format as Fig. 2.20. In this example, the additional edge in the tree means that
c0 is no longer evaluated at just the endpoints, but rather the endpoints and the join point. This
1-complex is not a combinatorial manifold yet the Fundamental Theorem of Calculus still holds.
In this case, both pairings result in a value of ‘7’

differences method cannot account for such a domain. This example highlights some
of the flexibility of the discrete calculus approach.

If we apply the Fundamental Theorem of Calculus to the evaluation of a line in-
tegral in two dimensions, then it is well known that integration of a single-valued
function around a closed loop evaluates to zero, since the beginning and end points
are the same (i.e., a = b) and thus the loop has no boundary. We can test the same
property of the discrete version of the Fundamental Theorem of Calculus by con-
sidering the example given by Fig. 2.22. This example shows a graph consisting of
four nodes joined in a cycle by four edges. In this example,

c0 =

⎡
⎢⎢⎣

2
4
7
3

⎤
⎥⎥⎦ , (2.113)

A=

⎡
⎢⎢⎣

0 0 −1 1
0 −1 1 0
−1 1 0 0
1 0 0 −1

⎤
⎥⎥⎦ , (2.114)

and

τ 1 =

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦ . (2.115)

Clearly, ATτ 1 = 0, so the pairing of the 0-chain and 0-cochain on right hand side of
(2.106) evaluates to zero—regardless of the values of c0. However, the reader may
verify that the pairing of the 1-chain and 1-cochain on left hand side of (2.106) also
evaluates to zero for this example. In fact, ATτ 1 = 0 whenever τ 1 represents a cycle,
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Fig. 2.22 Example of the Fundamental Theorem of Calculus evaluated on a cycle. Both the pairing
of the 0-chain and 0-cochain depicted in the top row and the pairing of the 1-chain and 1-cochain
depicted on the bottom row evaluate to zero in this example

since cycles are always in the nullspace of AT. Therefore, any line integral around a
cycle in a graph will always evaluate to zero, as anticipated from the familiar setting
of standard calculus in which a closed line integral in a gradient field would also
evaluate to zero.

2.5.1.2 Comparison with Finite Differences Operators

A reader with a numerical analysis background may view this example of inte-
grating around a cycle as a very coarse discretization of the two-dimensional plane
(consisting of only four points) using a 5-point stencil. In this case, we may examine
a slightly larger graph consisting of a 4× 4 lattice for which our previous example
comprises only the central four points. Figure 2.23 illustrates this new example in
which the values associated with each node are seen again in the central four nodes,
but now additional values are assigned to the new nodes. If we were to evaluate the
discrete version of the Fundamental Theorem of Calculus on this new graph, we
would find that each side still evaluates to zero when τ 1 represents any cycle.

The reader familiar with numerical analysis might casually regard A as simply a
forward difference approximation to the continuous gradient and question the im-
portance being given to the operator in this book. However, it is important to note
that A is a discrete analogue of the continuous gradient operator, while a finite dif-
ferences discretization of the gradient must adapt the numerical implementation of
the gradient to the computational task. In fact, if we try to use a finite differences
gradient as a discretization of the gradient operator then we are led into problems
not encountered by the discrete calculus analogue of the gradient. For example, one
property of the gradient operator is that it can be used to produce a gradient field
from a scalar field. A closed line integral within this gradient field should yield a
zero value of the integral, regardless of the path of the line integral. In our example
we will compare the properties of the gradient field produced by central differences
(treated as the discretized gradient operator) with the gradient field produced by the
discrete calculus gradient operator A.
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The method of finite differences provides a means to discretize the gradient
operator, and is useful in some applications, but does not preserve the topo-
logical properties of the exterior derivative and thus does not yield relations
that satisfy the Fundamental Theorem of Calculus. Specifically, the “gradient
field” produced by this finite differences procedure integrated around a closed
contour does not evaluate to zero. In contrast, the discrete calculus gradient
defined as a special case of the coboundary operator does exhibit the desirable
topological behavior.

We showed in Fig. 2.22 that the gradient field obtained by applying the discrete
calculus gradient operator to a scalar field, i.e., an exact form, always integrates to
zero around a closed loop. We now demonstrate that applying the same steps for
the central differences operator will not produce a zero integration around a closed
loop. This example is illustrated in Fig. 2.23 by displaying the central differences
approximation to the gradient at the nodes for each of the central points. Recall
that the central differences gradient approximation of the two-dimensional function
f (x, y) at location (x, y) is given by

∇f (x, y)=
[f (x−1,y)+f (x+1,y)

2

f (x,y−1)+f (x,y+1)
2

]
. (2.116)

Using c0 as f (x, y), we see from Fig. 2.23 that summing these vectors around the
nodes in a cycle (since central differences only produces vectors at the nodes) gives

[
2
3

]
+
[

2
2

]
+
[

3
1

]
+
[−2
−2

]
=
[

5
4

]
�=
[

0
0

]
. (2.117)

This example illustrates that it is important to distinguish the discrete calculus op-
erators from the discretization strategies common in numerical analysis. Because
the gradient operation is enacted by the coboundary operator, the gradient of a 0-
cochain defined on nodes is a 1-cochain on the edges. If the gradients at these edges
are summed in any cycle, then the sum will be zero, precisely because the incidence
matrix AT represents the boundary operator on a graph, because cycles have no
boundary. In contrast, traditional numerical analysis associates gradients (and vec-
tors in general) with nodes and the central differences operator does not represent
a boundary operator. In summary, the central differences operator may represent a
useful discretization of the continuous gradient, but the analogous discrete calculus
operator is designed to capture the theoretical properties of the gradient in a discrete
setting, such as the behavior of the gradient as a boundary operator.
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Fig. 2.23 Demonstration of the violation of the Fundamental Theorem of Calculus that is made
when employing the finite differences approximation to the gradient operator (as a substitute for
the coboundary operator). In this example a graph lattice is considered as an approximation to
the two-dimensional plane, and a scalar field is defined on the nodes (shown in blue). The central
differences method provides an approximation to the gradient the central region of the graph,
resulting in a tuple of components at each node (shown in green). If we integrate these resulting
values around a closed loop, the sum does not evaluate to zero

2.5.1.3 Generalized Stokes’ Theorem on a 2-Complex

Letting p = 2, the discrete version of the Generalized Stokes’ Theorem in (2.104)
becomes

�Bc1,τ 2 �= �c1,BTτ 2 �. (2.118)

In this case, the edge–face incidence matrix B represents the coboundary operator
and BT represents the boundary operator, c1 a 1-cochain (establishing values at each
edge), and τ 2 a 2-chain over which to perform the integration. This discrete version
of the Generalized Stokes’ Theorem corresponds to the traditional conception of
Stokes’ Theorem

∫∫

S

(∇ × �H) · d�S =
∫

∂S

�H · d�r, (2.119)

in which B plays the role of ∇×, the vector field �H corresponds to the flow field22

c1 and the domain of integration S is represented by τ 2.

22We employ the term flow field to represent a 1-cochain throughout the text. This term is used
because flows are common 1-cochains (e.g., the maximum flow problem optimizes a 1-cochain)
and the term instills a sense of direction for the flow through each edge.



72 2 Introduction to Discrete Calculus

Figure 2.24 gives an example of the Generalized Stokes’ Theorem on edges. In
this example,

c1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
6
3
6
4
5
4
3
7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.120)

B=

⎡
⎢⎢⎣

1 1 −1 0 0 0 0 0 0
0 0 0 1 −1 0 0 1 0
0 0 1 0 1 1 0 0 0
0 0 0 0 0 −1 1 0 1

⎤
⎥⎥⎦ , (2.121)

and

τ 2 =

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦ . (2.122)

We can see in Fig. 2.24 that the left hand side of the discrete version of the Gener-
alized Stokes’ Theorem calculates the circulation (i.e., the curl) around each cycle
which is then summed over all cycles, while the right hand side sums the edge flows
on the boundary of the chain since the interior circulations cancel each other (as
commonly seen in the traditional proofs of the standard Stokes’ Theorem). In this
example, both pairings evaluate to 28.

2.5.1.4 Generalized Stokes’ Theorem on a 3-Complex

The manifestation of the Generalized Stokes’ Theorem in three dimensions is given
by the classical Divergence Theorem (or Gauss’s Theorem)

∫∫∫

V

∇ · �H dV =
∫

∂V

�H · d�S, (2.123)

and its discrete analogue

�N3c2,τ 3 �= �c2,NT
3τ 3 �, (2.124)

where in this case the volume-face incidence matrix N3 represents the coboundary
operator and NT

3 represents the boundary operator, c2 is a 2-cochain (establishing
values on each face) and τ 3 is a 3-chain over which to perform the integration.
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Fig. 2.24 Example of Generalized Stokes’ Theorem on a 2-complex. The top row depicts the pair-
ing of a 1-cochain c1 with a 1-chain BTτ 2, with coefficients on the edges represented in blue. This
pairing sums the edge flows on the boundary of the chain since the interior circulations cancel each
other. The bottom row depicts the pairing of a 2-cochain Bc1 with a 2-chain τ 2, with coefficients
on the faces represented in red. This pairing computes the circulation or curl around each face and
sums over all faces in the 2-chain. In this example, both pairings evaluate to ‘28’

Although the Divergence Theorem is naturally expressed in three dimensions,
it is more difficult to adequately draw an example. In Sect. 2.3.4 we saw that, in
the discrete setting, each p-cochain is dual to an (n − p)-cochain, where n is the
ambient dimension. Therefore, we may express the dual form for the divergence
theorem

�ATc1,τ 0 �= �c1,Aτ 0 �. (2.125)

The interpretation of this dual version of the Divergence Theorem states that the
sum of the divergence of the flow field c1, given by ATc1, integrated over a region
of nodes τ 0 equals the flow out of the region subtracted from the flow into the
region. Therefore, this dual formulation of the Divergence Theorem corresponds
more closely to the intuition of the conventional Divergence Theorem.

Since the dual variant of the combinatorial Divergence Theorem is the most intu-
itive, it is important to note that this theorem also applies to a 2-complex, for which
the dual is also a 2-complex. Figure 2.25 illustrates this case, in which two units of
edge flow pass into the central three nodes and two units of flow exit these three
nodes. Consequently, the total divergence inside the three nodes is zero, since all of
the flow entering these nodes also leaves the nodes.

2.5.2 The Helmholtz Decomposition

The conventional Helmholtz Theorem states that each sufficiently smooth, rapidly
decaying vector field may be decomposed into the sum of two orthogonal com-
ponents: an irrotational (curl-free) and a solenoidal (divergence-free) vector fields.
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Fig. 2.25 Example of the (dual) Divergence Theorem on a 2-complex. The top row depicts the
pairing of a 1-cochain c1 with a 1-chain Aτ 0, with coefficients on the edges represented in blue.
Any edge not labeled is assumed to have zero flow. This pairing sums the edge flows into the
central nodes and subtracts the edge flow leaving the central nodes, to produce zero (i.e., all flow
entering also leaves). The bottom row depicts the pairing of a 0-cochain ATc1 with a 0-chain τ 0,
with coefficients on the nodes represented in red. This pairing shows that because each of the
central nodes have zero divergence, then all of the flow entering the nodes must also leave

Formally, a vector field �F may be decomposed into

�F = �Firrot + �Fsol, (2.126)

where

�Firrot = ∇φ, (2.127)

∇ · �Fsol = 0, (2.128)

for some scalar potential field φ, and these two components are orthogonal, i.e.,

∫∫∫

V

( �Firrot · �Fsol)dV = 0. (2.129)

We now prove that the discrete analogue of the Helmholtz Theorem is also true.
We begin by associating the conventional vector field �F with a 1-cochain (represent-
ing edge flows) c1. Therefore, we can define c1

irrot and c1
sol as any vectors satisfying

c1
irrot = Ac0, (2.130)

ATc1
sol = 0, (2.131)
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for some 0-cochain c0 or, alternately,

BTc1
irrot = 0, (2.132)

c1
sol = BTc2, (2.133)

for some 2-cochain c2. Therefore, the name “irrotational” to describe the c1
irrot com-

ponent can be seen from the fact that B is the discrete analogue of the curl operator
(i.e., the curl of c1

irrot is zero). Note that B must represent |F| = |E|− |V|+ 1 cycles,
such that its columns provide a basis for the nullspace of A (see Chap. 4).

Given these definitions, it is straightforward to show that the two components are
orthogonal.

Theorem 2.1

〈c1
sol,c1

irrot〉 = 0. (2.134)

Proof This statement is true by

〈c1
sol,c1

irrot〉 = 0, (2.135)

(c1
sol)

Tc1
irrot = 0, (2.136)

c0TATc1
irrot = 0, (2.137)

c0T0 = 0. (2.138)

�

With this preliminary result, we can state the discrete calculus analogue of the
Helmholtz Theorem.

Theorem 2.2 Every c1 may be decomposed into

c1 = c1
irrot + c1

sol. (2.139)

Proof By (2.131) and (2.132) we can rewrite the discrete calculus Helmholtz de-
composition in (2.139) as

c1 = Ac0 +BTc2, (2.140)

c1 = [A BT
][c0

c2

]
. (2.141)

Since A is of size m× n where m= |E| and n= |V|, BT is of size m× (m− n+ 1),
the combined matrix in (2.141) is of size m× (m+ 1). However, since the rank of
A is (n− 1), the rank of B is (m− n+ 1) and A is orthogonal to BT, the combined
matrix has rank equal to (m− n+ 1)+ (n− 1)=m. Consequently, the combined
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matrix in (2.141) provides a basis for the entire range space, meaning that any vector
c1 is represented. �

Intuitively, the discrete Helmholtz decomposition states that each flow field on
the edges can be decomposed into a component which represents the gradient of
some scalar (node) potential field and a cyclic component. In broader generality, the
Helmholtz decomposition represents a special case of the Hodge decomposition,
outlined above in Sect. 2.2. The precise relationship between these two decomposi-
tions is provided in detail in Appendix C.

We now consider how to compute a Helmholtz decomposition for some flow
field. Since the Helmholtz decomposition is not unique, the method we present pro-
duces only one of many possible Helmholtz decompositions. If the decomposition
is to be used for a particular purpose, some regularization might be employed to
find a unique decomposition which is well-suited to the problem. There has been
little treatment of this topic in the existing literature (although there is some recent
activity [24, 25, 219]). However, the method we present for computing a Helmholtz
decomposition is straightforward. We now consider a simple algorithm for comput-
ing the Helmholtz decomposition of a flow field on a graph.

2.5.2.1 Algorithm for Computing a Helmholtz Decomposition of a Flow Field

In order to produce a Helmholtz decomposition of c1, our goal is to find a c0 that
can be used to generate c1

irrot via (2.130). Once we have c1
irrot, then c1

sol = c1− c1
irrot.

In order for ATc1
sol = 0 to be satisfied, then the condition for c0 becomes

ATc1
sol = 0, (2.142)

AT(c1 −Ac0) = 0, (2.143)

ATAc0 = Lc0 = ATc1. (2.144)

Consequently, if we simply solve (2.144) for c0, then this condition is automati-
cally satisfied. However, we know that the Laplacian matrix L of a connected graph
is missing one rank because A1 = 0. Fortunately, ATc1 is orthogonal to 1, since
1TATc1 = 0. Consequently, we can arbitrarily fix the value of c0 at some node v0 to
be zero, v0 = 0 and solve

L0c0
0 = (ATc1)0, (2.145)

in which the zero subscript is used to indicate the removal of the row corresponding
to v0 (and the column as well for L0).

The algorithm for computing a Helmholtz decomposition of a flow field is then
given by the following steps.

1. Arbitrarily identify some node v0.
2. Solve (2.145) for c0

0.
3. Form c0(v0)= 0, c0(vi)= c0

0(vi), ∀vi �= v0.
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4. Set c1
irrot = Ac0.

5. Set c1
sol = c1 − c1

irrot.

The primary computational burden of this algorithm is the linear system solve re-
quired by solving (2.145). Although the linear system is generally sparse, the linear
system solution will have a super-linear time complexity for most linear solver algo-
rithms. Therefore, this algorithm represents the most simple approach to computing
a Helmholtz decomposition, but it may not have the lowest computational complex-
ity.

2.5.3 Matrix Representation of Discrete Calculus Identities

In this section, we examine the discrete analogues of identities from conventional
vector calculus. Many of these vector identities are memorable largely because they
are surprising. In contrast, we will see that the discrete calculus analogues of these
identities are often more straightforward, but we include them here because these
identities are familiar tools from continuous analysis that may also be applied in the
discrete setting.

2.5.3.1 Integration by Parts

Integration by parts is a key technique to produce a closed-form expression for
a complicated integral. In discrete calculus, we are generally less concerned with
finding closed-form expressions (since computers can be used to find solutions as
needed), but it is still interesting to examine the discrete analogue of the integration
by parts technique. Conventionally, the integration by parts formula is written as

b∫

a

u
dv

d t
= uv

∣∣∣b
a
−

a∫

b

du

dt
v. (2.146)

This expression may be generalized to two dimensions, giving the Gauss–Green
Theorem [360]

∫∫

R

[u(∇ · �F)]dx dy =
∫

C

u �F · d�S −
∫∫

R

[(∇u) · �F ]dx dy. (2.147)

The connection between the Gauss–Green Theorem and the Divergence Theorem
is often noted, e.g., if u is equal to unity, then the Gauss–Green Theorem (2.147)
is equivalent to the Divergence Theorem for �H (2.123). Therefore, it should be no
surprise that the Gauss–Green Theorem can be viewed as a generalization of the
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Table 2.1 Relationship between second-order vector identities in the conventional notation and
corresponding identities in the discrete setting. Here u represents a scalar field and �F a vector
field. Correspondingly, u represents a 0-cochain and f a 1-cochain

Conventional Discrete Calculus

∇ ×∇u= 0 BAu= 0

∇ · ∇ × �F = 0 ATBTf= 0

Divergence Theorem that additionally includes the scalar field u. Recall that the
discrete analogue of the Divergence Theorem is

τT
0

(
ATf
)= (Aτ 0)

Tf, (2.148)

for 0-chain τ 0, edge–node incidence matrix A and 1-cochain f. We may now intro-
duce the 0-cochain u to give a discrete analogue of the Gauss–Green formula

uT diag(τ 0)
(
ATf
)= (A diag(τ 0)u)Tf. (2.149)

In this expression the left hand side, uT diag(τ 0)(ATf), corresponds to the left hand
side in the conventional Gauss–Green formula

∫∫
R[u(∇ · �F)]dx dy since τ 0 defines

the domain of integration R and ATf corresponds to −∇ · �F . The right hand side of
the discrete calculus analogue in (2.149) corresponds to both terms of the right hand
side in the conventional Gauss–Green Theorem. The right hand side of the discrete
calculus analogue could also be broken into two terms like the conventional Gauss–
Green Theorem by setting

(A diag(τ 0)u)Tf = (A diag(τ 0)u)T diag(τ boundary)f

+ (A diag(τ 0)u)T diag(τ interior)f, (2.150)

in which the set of edges connecting two nodes in τ 0 are represented by the 1-chain
τ interior and the set of edges incident to exactly one node in τ 0 is represented by
τ boundary. As with the conventional Gauss–Green Theorem, the discrete calculus
analogue given by (2.149) equals the Divergence Theorem in (2.148) when u is
equal to unity.

2.5.3.2 Other Identities

We close this section by listing a few additional identities from conventional vector
calculus and their discrete calculus analogues, using the same notation as in the pre-
vious section. Table 2.1 displays identities describing the homology relationships
between the conventional vector calculus operators and their discrete calculus coun-
terparts. Table 2.2 lists the conventional forms of the Green’s Theorems and the
analogous identities in discrete calculus.

The last identity in Table 2.2 appears somewhat asymmetric between the conven-
tional and discrete calculus expressions: The conventional expression includes two
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Table 2.2 Green’s identities [127]. Here u and v represent scalar fields, u and v represent the
corresponding 0-cochains, and τ 0 represents the 0-chain as the domain of integration. Note that
here we use the substitution ϒ0 = diag(τ 0)

Conventional Discrete Calculus

∫
R(∇2u)dV = ∫

∂R∇u · d�S τT
0ATAu= (Aτ 0)

TAu∫
R(∇u · ∇v)dV =− ∫R(u∇2v)dV + ∫

∂R u∇v · d�S (uϒ0A)TAϒ0v= uTϒ0(ATAϒ0v)

volume integrals and a boundary integral, whereas only two terms appear explicitly
in the discrete calculus expression. However it is possible to split this discrete calcu-
lus expression up into separate components for the volume integral and the boundary
integral, just as in the integration by parts example presented above (see (2.150)).

Note that the two identities in Table 2.2 are sometimes referred to as Green’s
First Identity, in which case the top entry is a special case of the bottom entry. The
general form of this Green’s identity is usually expressed as

∫

R

(u∇2v− v∇2u)dV =
∫

∂R

[u(∇v)− v(∇u)] · d�S, (2.151)

which may be seen as two applications of the identity expressed in Table 2.2 in
which ∫

R

(∇u · ∇v)dV = −
∫

R

(u∇2v)dV +
∫

∂R

u(∇v) · d�S

= −
∫

R

(v∇2u)dV +
∫

∂R

v(∇u) · d�S. (2.152)

2.5.4 Elliptic Equations

We begin our treatment of elliptic equations by discussing the properties of har-
monic functions on a graph, following the treatments in [36, 74, 81, 111, 115, 161].
In continuous mathematics, a function φ is called harmonic if it satisfies

∇2φ = 0, (2.153)

at every location in the domain except at the boundary. The discrete calculus ana-
logue is naturally

Lx= 0. (2.154)

In the absence of boundary conditions, the only solution to (2.154) is when x equals
a constant value on all nodes. Therefore, we can assume a set of Dirichlet boundary
conditions on some set D⊂ V, meaning that xi is fixed to a boundary value qi for
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all vi ∈D. In this section, we can ignore the node weights, since they can be easily
removed from (2.154).

Following [161], we can state the mean-value theorem for harmonic functions.

Theorem 2.3 For a harmonic 0-cochain x, the value of the component xi for any
vi /∈D is equal to the weighted mean of the values xj at its neighbors.

Proof The proof is trivially seen by writing (2.154) in summation form. In order to
satisfy (2.154), each xi must satisfy

xi = 1

di

∑
eij∈E

wij xj , (2.155)

for node degree di . �

Note that the edge weights wij in the Laplacian represent affinity weights.
A corollary is the local maximum principle and local minimum principle

Corollary 2.1 For a harmonic 0-cochain x, the component xi for every vi /∈ D

satisfies

min
vj |eij∈E

(xj )≤ xi ≤ max
vj |eij∈E

(xj ). (2.156)

Proof The result is trivially true from (2.155), provided that wij > 0 (as assumed
throughout unless otherwise noted). �

The local maximum principle also implies the strong local maximum principle
(and the strong local minimum principle)

Corollary 2.2 If vi /∈D and ∃ eij ∈ E such that xi = xj , then xi = xj for all eij ∈ E.

Proof Equality is achieved in (2.155) only when xj is a constant for all neighbors of
vi , i.e., ∃ eij ∈ E. Consequently, if xi = xj for any neighbor of vi , then all neighbors
of vi must have the same value. �

A second corollary is the discrete calculus analogue of the conventional maxi-
mum principle and minimum principle which state that the value of a harmonic
function inside a domain is less than the maximum value of the function on the
boundary and greater than the minimum value on the boundary. Since the nodes in
D represent the boundary, the discrete calculus analogue is given by

Corollary 2.3 For a harmonic 0-cochain x, the component xi for every vi /∈ D

satisfies

min
vj∈D

(xj )≤ xi ≤ max
vj∈D

(xj ). (2.157)
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Proof This statement follows directly from the local maximum/minimum princi-
ple. �

The analogue of the strong maximum principle (and the strong minimum prin-
ciple) states

Theorem 2.4 If V−D is connected and xi = maxvj∈D(xj ) for any vi /∈D, then
xi =maxvj∈D(xj ) for all vi /∈D.

Proof This statement follows directly from the strong local maximum/minimum
principle and the condition that V−D is connected. �

Several discrete calculus analogues of variants on the Harnack Inequality have
appeared in the literature [81, 111, 112]. Here we treat an analogue of the conven-
tional form of the inequality given by Evans [127]

Theorem 2.5 For any connected vertex subset V′ ⊆ V−D, there exists a positive
constant C, depending only on V′, such that

sup
vi∈V′

xi ≤ C inf
vi∈V′

xi, (2.158)

for all nonnegative harmonic functions x in V.

Proof This statement follows directly from the strong local maximum/minimum
principle and the condition that V′ is connected. �

The Harnack Inequality therefore implies that within any connected set the val-
ues of a nonnegative harmonic function are all comparable in the sense that no xi

for a vi ∈ V′ can be too large (small) unless the other xj for all vj ∈ V′ are also large
(small). Other inequalities on the spectrum of the Laplacian for which the conven-
tional theory also has discrete calculus analogues, such as Cheeger’s inequality and
Buser’s inequality, are treated in Chap. 8.

By definition, a harmonic function x comprises the solution to the classic ellipti-
cal PDE, the Laplace equation

Lx= 0. (2.159)

Similarly, the discrete calculus version of the Poisson equation is given by

Lu= v, (2.160)

for some function v and a twice differentiable function u. Due to the rank deficiency
of L, these equations do not have a unique solution unless boundary conditions are
enforced (see Appendix B).
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2.5.4.1 Variational Principles

A common viewpoint on conventional PDEs is that the solutions of the equations
represent the minimum energy state of a functional. In particular, Dirichlet’s Princi-
ple states that the solution of the Poisson equation, i.e.,

∇2u = v in R, (2.161)

u = f on ∂R, (2.162)

minimizes the energy functional

Q[u] =
∫

R

1

2

(‖∇u‖2 + uv
)
dV, (2.163)

among all twice differentiable u that respect the boundary conditions.
Similarly, the solution of the discrete calculus Poisson equation

Lu = v in R, (2.164)

u = f on ∂R, (2.165)

minimizes the energy functional

Q[u] = 1

2
uTLu− uTv, (2.166)

among all u that satisfy the boundary conditions (note the sign change with the
conventional formulation because of the identification of AT with −∇·). The proof
of Dirichlet’s Principle in the discrete case is much simpler, since it depends only
on the fact that the reduced Laplacian matrix L is positive definite. Note that the
reduction occurs as a result of the imposed boundary conditions (see Appendix B
for more details).

Energy minimization comprises an important theme of this entire book. In the
applications chapters we often motivate an algorithm by the energy minimization
that drives the optimization, in which the energy is typically composed of data in-
formation and a regularization scheme based on a prior model that helps us extract
information from the data. Additionally, the formulation of objective energies in a
discrete calculus setting often leads to a more straightforward optimization which
can additionally make use of the strong body of combinatorial optimization tech-
niques. Appendix B contains more information specifically on optimization tech-
niques, but examples are spread throughout the book of establishing an objective
functional for which the optimum provides a solution to filtering, clustering, etc.

2.5.5 Diffusion

Diffusion is a ubiquitous process in physics which governs many situations such as
the spread of chemical concentration in still water through time or the distribution of
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heat in a solid body through time. Specifically, the diffusion equation (also known
as the heat equation) is given by [127]

∂u

∂t
= α∇2u, (2.167)

where u is a scalar field representing the distribution of heat (chemical concentra-
tion) and α is the diffusion constant describing the rate of heat transfer in the body.
When α has the same value at all locations in space, we say that the material is
homogeneous and when α varies with spatial location we say that the material is
inhomogeneous.

Before presenting a discrete calculus analogue of the diffusion equation, we show
how the equation may be derived from conservation of mass (energy) and Fick’s
Law. Conservation of mass requires that the amount of the substance u in any region
must either leave through the boundary or have an external source, i.e.,

∂

∂t

∫

S

udV =−
∫

∂S

�F · d�S +
∫

S

s dV, (2.168)

where s is a scalar field of heat sources (a positive value of s indicates a source and
a negative value a sink) and �F is the flux of heat through the boundary. Since S may
be arbitrary, then this expression may be rewritten as

∂u

∂t
=−∇ · �F + s. (2.169)

In the physical process of diffusion, the expression for the flux �F is modeled by
Fick’s Law

�F =−α∇u, (2.170)

which states that the amount of flux is proportional to the temperature gradient.
Putting Fick’s Law together with the conservation equation gives

∂u

∂t
= α∇2u+ s, (2.171)

which is equal to the diffusion equation (2.167) in which the source s term is set to
zero (i.e., when there are no sources or sinks present).

Following the same derivation for the discrete calculus analogue gives us the
expression for conservation of mass

∂

∂t
τT

0u= (Aτ 0)
Tf+ τT

0s, (2.172)

where S is represented by the 0-chain τ 0. Note that u and s are 0-cochains (i.e.,
node functions) while f is a 1-cochain (i.e., an edge function). By restricting S to a
single node, we can write the equivalent of (2.169) in the whole domain as

∂u

∂t
= ATf+ s. (2.173)
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Note that the sign has changed between this expression and (2.169) due to the sign
change induced by taking the adjoint of the boundary operation in conventional
vector calculus. Similarly, the discrete calculus analogue of Fick’s Law is given by

f=−αAu. (2.174)

Note that the diffusion constant α modifies the flux through an edge. Consequently,
we may identify α with the edge weight. Putting these expressions together gives us
the discrete calculus analogue of the diffusion equation as

∂u

∂t
=−AT diag(α)Au+ s. (2.175)

For simplicity, we also neglect sources, i.e., set s = 0. If our domain is inhomo-
geneous, then α may vary for different edges. Therefore, we may write the diffu-
sion equation for an inhomogeneous problem, using the diagonal constitutive matrix
G−1

1 = diag(α) to represent edge weights, as

∂u

∂t
=−ATG−1

1 Au. (2.176)

In the derivation of Fick’s Law, we assumed that the flux across an edge was given
by the difference in concentration at the edge endpoints. However, when combined
with conservation of mass, this expression for Fick’s Law may be interpreted by
considering the behavior at a single node—the dynamics distributes the substance
u to each neighbor and collects substance u from each neighbor. The difference
between this distribution and collection determines whether the value of u at the
node increases or decreases. A different model for determining flux is that each
node distributes a fraction of its value of u to each of its neighbors, such that the
total sum of distribution at each infinitesimal unit of time is equal to its value of u,
i.e., the flux is given by

f=−αAD−1u, (2.177)

where D is the diagonal matrix of node degrees. Then, if we change variables to

let q = D− 1
2 u to normalize the substance by node degree, then we can rewrite the

diffusion equation in terms of q as

∂q

∂t
=−D−

1
2 ATG−1

1 AD−
1
2 q, (2.178)

which represents a form of the diffusion equation using the normalized Laplacian,
which was studied in [81]. Therefore, the distinction between the diffusion equa-
tion with the normalized and unnormalized Laplacian operator lies in a different
model for flux (Fick’s Law) and a change of variables from the concentration u to
the variable q. This subtlety does not typically appear in the conventional equa-
tions because each (non-boundary) point in space is considered to have the same
neighborhood structure. Note that the distinction between the normalized and un-
normalized diffusion equations also disappears in the discrete case when the graph
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Fig. 2.26 The circuit
governed by the discrete
calculus analogue of the
diffusion equation in (2.179).
The electrical potential
(charge) at each node is given
by u, the capacitance by p

and diagonal matrix of branch
conductances by G−1

1 . The
switches are considered to be
turned on at time zero

is regular (i.e., the degree is equal for every node). For simplicity, we continue our
discussion of diffusion using the unnormalized form of the diffusion equation.

The discrete calculus analogue of the diffusion equation also governs physical
phenomena. For example, the diffusion equation with inhomogeneous constitutive
in (2.176) describes the spread of electrical charge in a DC circuit with capacitors
and resistors (an R–C circuit) in which each node is connected to ground via a ca-
pacitor and connected to other nodes via resistors. Identifying u with the electrical
potential at each node, f with the current through each branch and α with the con-
ductance of the branch in (2.174), then Kirchhoff’s Voltage Law and Ohm’s Law
combine to give Fick’s Law. Together with Kirchhoff’s Current Law (representing
conservation of charge), we arrive at

p
∂u

∂t
=−ATG−1

1 Au, (2.179)

where p represents the capacitance of each capacitor. Figure 2.26 gives an illus-
tration of the circuit construction governed by this equation. Chapter 3 gives more
information on the circuit interpretation of these equations.

One commonality between the analysis of the conventional diffusion equation
and the discrete calculus analogue is the utility of Fourier analysis to solve the
equation when the underlying domain is shift-invariant. Chapter 5 gives more in-
formation about the applicability of Fourier analysis to the diffusion equation.

We now consider how the diffusion changes when the underlying graph is di-
rected. For simplicity, we assume that the edge orientation matches the edge direc-
tion (i.e., the edge is oriented from positive to negative if flow is permitted from the
positive node to the negative node). On a directed graph, the conservation of mass
represented by (2.172) is unchanged, but Fick’s Law is altered. To see this alteration,
we can further deconstruct Fick’s Law in terms of the outgoing and incoming flux
across each edge:

f=−α(A+u−A−u), (2.180)

where the notation A+ indicates a matrix which contains a ‘1’ in an entry only if
A contains ‘1’ in the same entry (otherwise zero) and A− contains a ‘1’ only if A
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contains a ‘−1’. Seen this way, the (negative) flux across an edge is composed of the
outgoing flow from the positive side node subtracted by the flow coming from the
negative side node. However, when the edges are directed, flow is permitted in only
one direction. Consequently, the expression for flux on a directed graph contains
only the positive side part, i.e.,

f=−αA+u. (2.181)

Therefore, diffusion on a directed graph is governed by the equation

∂u

∂t
=−ATG−1A+u. (2.182)

Because of its role in the diffusion equation on a directed graph, it is tempting to
consider L = ATG−1A+ as the Laplacian operator (matrix) for a directed graph.
Indeed, variants of many of the properties of elliptic equations detailed above also
hold when this matrix is viewed as the Laplacian matrix for a directed graph. For
example, a harmonic function u, satisfying

ATG−1A+u= 0, (2.183)

given a set of boundary conditions, will satisfy a variant of the mean-value property.
In this case, the value ui for node vi will equal the (weighted) average of its outgoing
neighbors. The property can be seen by writing (2.183) in summation form for ui

ui = 1

di

∑
eij

wijuj , (2.184)

where di is the degree of vi computed using only outgoing edges. Although
ATG−1A+ behaves in some ways like the Laplacian operator for a directed graph,
note that Chung detailed a different (symmetric) conception of the Laplacian oper-
ator on a directed graph [79].

In this example of diffusion, we treated time as continuous. Although the con-
ception of the discrete calculus employs a discrete space, the functions defined on
that space (cochains) and time may be real valued. There is no physical reason why
we could not have a discrete space and a continuous time (the electrical circuit in
Fig. 2.26 is a physical system with exactly these properties). However, time may
also be treated discretely in a manner similar to our treatment of space (see [275]).
Unless otherwise noted, we use a continuous treatment of time throughout this book.

2.5.6 Advection

When a distribution is actively transported by a flow field, the process is known as
advection. Advection occurs in many different physical circumstances. For exam-
ple, consider a chemical dropped into a flowing river. Since the river is flowing (and
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we neglect diffusion) the change in chemical concentration will occur as a result of
the water flow. In a real physical situation, the chemical concentration would change
as a result of both advection and diffusion. In this section, we consider the equation
describing the advection of a scalar quantity (e.g., chemical concentration) and its
discrete calculus analogue.

Given a scalar field u and flow field �v, the advection equation (also known as the
transport equation) that describes the change in u under �v is conventionally given
by [127]

∂u

∂t
=−∇ · (�vu). (2.185)

At first, the conventional advection equation seems as though it does not fit well
with the discrete calculus framework, since it requires taking the divergence of the
multiplication of a scalar field and a vector field. In order to consider how to pro-
duce a discrete calculus analogue, we consider the method for deriving the conven-
tional advection equation. As with diffusion, deriving this relation requires combin-
ing mass conservation and a definition of flux. The conservation equation is written
in the same form as (2.169),

∂u

∂t
=−∇ · �F + s. (2.186)

The distinction between advection and diffusion lies in the manner in which flux is
determined. Fick’s Law states that, in a diffusion process, the flux is given by the
gradient of the concentration u. However, in an advection process, the flux is given
directly by a vector field, i.e., �F = �vu.

In a discrete calculus analogue of the advection equation, v will represent a 1-
cochain of flows that will transport node concentrations of the 0-cochain u. We
can immediately re-use the expression for conservation of mass from the diffusion
equation, i.e.,

∂u

∂t
= ATf+ s. (2.187)

If we adopt a view of the flux through an edge as consisting of the prescribed flow
through the edge, v, modified by the concentration u, then we may define the flux
as

f=−diag(v)Avu, (2.188)

where Av denotes the matrix (diag(sign{v})A)+, and the sign operator sign{·} on
vectors operates on each element and is defined for each element vi as

sign{vi} =

⎧⎪⎨
⎪⎩
+1 if vi > 0,

−1 if vi < 0,

0 if vi = 0.

(2.189)
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Fig. 2.27 An example of the advection process on a graph. The arrows represent a unit flow field
cycling around the ring. A node is filled if its u value is large (in this case, unity) and empty if its u
value is small (zero). Under the process defined by solving the advection equation (2.190) using a
forward Euler method (�t = 1), the unit flow field transports the initial u field around the ring

With this interpretation of the flux, the discrete calculus analogue of the advection
equation (in the absence of sources or sinks) is given by

∂u

∂t
=−AT diag(v)Avu. (2.190)

When v is a unit flow field which is positive everywhere (i.e., flow is in the same
direction as the edge orientation), then (2.190) becomes

∂u

∂t
=−ATG−1A+u, (2.191)

which is the same expression as we found for the diffusion equation on a directed
graph. This connection will be used later in Chap. 7 to give an interpretation of the
PageRank algorithm in terms of an advection equation.

Figure 2.27 gives an illustration of this advection equation on a small cycle graph.
In this case, we solved (2.190) using a forward Euler method with time step set to
�t = 1, i.e., via the iteration

u[k+1] = u[k] −�t AT diag(v)Avu[k]. (2.192)

In this case we used unit flow vectors for v. If we assume that the orientation is in
the same direction as the flow, then for this graph diag(v)Av becomes the identity
matrix, leading to a particularly simple update. Our initial u was zero everywhere
except at the first (top) node, which had a unity value. Note how the flow field
transports the initial u around the cycle without changing it.

2.6 Concluding Remarks

In this chapter we have reviewed the exterior calculus of differential forms as a gen-
eralization of standard vector calculus to arbitrary dimensions and, in the process,
highlighted the topological character of calculus as well as instances in which a
metric is required. We then demonstrated how this more general framework could
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be naturally extended into a discrete domain. The differential operators in this dis-
crete setting were seen to simultaneously represent the topology of the discrete
spaces, further demonstrating the inherent interdependence of calculus and topol-
ogy. Phrasing these operators as matrices opens possibilities for easily representing
discrete systems in simple data structures and for solving practical problems in dis-
crete physics with powerful numerical computing software. Indeed, casting discrete
physics in a linear algebraic and graph theoretic framework enables results from ap-
plied mathematics and graph theory to solve problems with high levels of accuracy.

The universality of this framework across many branches of physics, and our
ability to reuse the concepts of differential forms cleanly in a discrete setting, shows
that the template outlined in this chapter will be useful across several disciplines
and can be applied to solving a wide variety of problems. Given that the founda-
tions of topology are so fundamentally intuitive it is not surprising that the language
that mathematicians and physics have developed for describing physical behavior
are imbued with easily comprehensible topological relations such as “inside” and
“outside”. Whether the effectiveness of calculus for modeling many distinct types
of physical structures and behavior is due to an underlying commonality between
the many compartments of physics or to our human intuition and the natural ways
in which we communicate about the world, the discrete calculus appears to carry
over to a wide range of disciplines. Just as in other applied sciences and engineer-
ing, we can strive to find inspiration from a diverse set of disciplines to help solve
challenging problems in any one domain.

In the next chapter we consider a physical domain that readily takes advantage of
the tools described here: circuit theory. Not only is this domain a natural fit for this
framework but, because of the physical intuition that many practitioners have for
voltages and currents, circuit theory often provides a useful set of basic analogies
that, once learned, can assist users in bridging into new domains and in translating
the tools of discrete calculus to other discrete physical systems.



Chapter 3
Circuit Theory and Other Discrete Physical
Models

Abstract In this chapter we present linear electric circuit theory as the central phys-
ical model for performing calculus on networks. We adopt circuit theory as the cen-
tral physical model for applying and understanding the concepts of discrete calculus
on graphs for three reasons: because much of the progress in graph theory over the
last century was created in the context of circuit theory; because of the early con-
nection made between circuit theory and algebraic topology (Branin Jr. in Proc. of
Conf. on Neural Networks, pp. 453–491, 1966; Roth in Proceedings of the National
Academy of Sciences of the United States of America 41(7):518–521, 1955); and
because circuits are physical, realizable systems which need not be seen as dis-
cretizations of an underlying continuous domain but rather as a domain unto them-
selves. Our focus in this chapter will be to cover the main concepts in linear circuit
theory from an algebraic standpoint with a focus on operators. This will prepare the
reader with notation and concepts that tie naturally to the previous chapter in which
the discrete analogues of differential operators were introduced. We begin with defi-
nitions of the physical quantities and corresponding quantities in circuit theory, then
proceed to define the laws that relate the quantities to each other, treat methods of
solving for the unknowns, and end by connecting circuit theory to other discrete
processes.

We recognize that our readers may have varying levels of familiarity with circuit
theory, therefore no previous experience with circuit theory is assumed. However,
regardless of the reader’s familiarity with circuit theory, we believe that this chap-
ter is useful for producing an intuitive understanding of the mathematical devices
and discrete analogues of continuous differential operators that were developed in
Chap. 2. In order to develop this intuition, our intention with this chapter is to estab-
lish notation, provide a physical model for the variables involved in the formalism
presented in this work, and to gently introduce concepts that we will encounter
again and again in this work. Therefore, we would strongly encourage the reader to
at least briefly read this chapter regardless of the reader’s knowledge level of circuit
theory.
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We consider a circuit as a graph consisting of a set of nodes and edges. An edge
in a circuit is interpreted physically as a wire that connects two nodes and which
has some resistance to the flow of current. In circuit theory, edges are also known
as branches or arcs. A node in a circuit is interpreted physically as any junction
between two or more wires (edges) or as a terminal location that receives or sinks
energy (more on this concept in a moment).

Viewing electrical circuits from a physics perspective, we are concerned with
electrons and their motion through the circuit governed by an energy minimization
principle. When there is an unequal distribution of electrons among different nodes
in a circuit, then there is an electric potential for each node to equilibrate with a
reference node, known as the ground node. The term ground is derived from the
safe, neutral potential maintained naturally by the metallic content of the earth. The
variable xi ∈ R will be used to represent the electric potential at a single node vi .
The grounded node v0 has a fixed potential x0 = 0. Electric potential at a node is
quantified in units of volts. If a potential xi is negative, then there are more electrons
present at node vi then at the reference ground and if a potential xi is positive,
then there are fewer electrons present at node vi then at the reference ground node.
We will manipulate the node potentials as a single vector-valued variable x ∈ R

|V|,
which may be interpreted as a 0-cochain (node function).

The current that passes through a wire is a measure of the number of electrons
that pass through the wire per unit time. Current is measured in units of amperes
(i.e., coulombs per second) and is represented here by the vector y ∈ R

|E|. The
elements of y, yi ∈R, represent the current passing through the edges of the circuit
ei ∈ E. Since y is defined on the edges, then this current vector is a 1-cochain.
The value of any current variable yij through a wire may be positive or negative,
and the sign indicates the direction yi of positive current flow through edge ei . In
order to accommodate this interpretation of the sign of yi , it is necessary to endow
each edge with a sense of orientation (as seen in Chap. 2). The orientation for each
edge variable may be assigned arbitrarily, thus a negative value is interpreted as a
current flow in the opposite direction of the assigned orientation of the edge variable.
Therefore, given a set of n nodes V with elements vi ∈ V, we represent each edge,
eij , by the ordered pair eij = {vi, vj }. If current is flowing from node vi to vj the
current will be positive and if the current is flowing from node vj to vi then the
current will be negative. The designation of edge orientation is essential to solve
problems in circuit theory, but the particular choice of eij compared to eji has no
consequence for the solution to any circuit theory problem (except that the current
calculated over edge eij will be the negative of the current calculated over eji ).
Given an edge with orientation eij , then the voltage across eij is defined by the
difference of the potentials at the pair of nodes at the ends of the edge, pij = vi−vj .

The vectors of voltages p and currents y both take a value for every edge and
each component of these two vectors is related to each other via the resistance of the
edge, rij (in Sect. 3.3 the edges are generalized to represent capacitors and inductors
as well). Resistance is measured in units of Ohms and is physically interpreted as
the amount of work required to move electrons through a wire. For our purposes,
we will assume that all rij > 0. A wire with higher resistance requires more work to
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Fig. 3.1 Conventions for
electric circuit theory.
(Left) An edge in an oriented
graph between nodes vi and
vj with edge weight wij is
equivalent to (right) a resistor
in a circuit with node
potentials xi and xj where
the edge variable yij

represents a current flow from
node vi to node vj . The
(distance) weight is provided
by the resistance rij

move electrons through the wire and a wire with low resistance requires less work to
move electrons through the wire. The resistance of each edge is a material property
of each wire. The conductance at each edge, wij , is defined as the reciprocal of the
resistance wij = 1/rij . Wire conductance is measured in units of Siemens and will
emerge as the more convenient quantity to use in the theoretical development and
applications in this work. In the context of Chap. 2, resistance represents a distance
weight and conductance represents an affinity weight. As seen in the last chapter, the
distance weight (resistance) is the reciprocal of the affinity weight (conductance).
The collection of nodes, oriented edges, and resistors is the domain upon which all
of the circuit laws and dynamics play out. Figure 3.1 summarizes the relationship
between a resistive branch in an electric circuit and the equivalent graph edge.

3.1 Circuit Laws

Having defined the variables in the previous section, we now proceed to describe
how these variables relate to each other.

Voltage across an edge and current through an edge are related through the con-
ductance via Ohm’s Law which states that

p=Gy, (3.1)

where p represents the voltage each edge, y represents the current through each edge
and G is a diagonal matrix containing the edge resistances along the diagonal, i.e.,
with Gii = ri for some ei ∈ E. Ohm’s Law states that an edge with a linear resistor
induces a linear relationship between voltage across an edge and the current through
the edge.

Kirchhoff’s Current Law (KCL) states that all of the current flowing into a
node also flows out of the node. This law may be represented in matrix form via the
equation

ATy= 0, (3.2)

where A is the edge–node incidence matrix as defined in Chap. 2.
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The relationship between electric potentials at nodes and voltages across edges
may also be written in terms of the incidence matrix as

Ax= p, (3.3)

which is known as Kirchhoff’s Voltage Law (KVL). A consequence of KCL and
KVL together is Tellegen’s Theorem [305] which states that the vector of voltages
is orthogonal to the vector of currents, i.e.,

pTy= xTATy= 0. (3.4)

Tellegen’s theorem has been employed several times in the literature as a tool of
network analysis, e.g., [301, 302].

These three laws of circuit theory, Ohm’s Law, Kirchhoff’s Current Law and
Kirchhoff’s Voltage Law define all of the behavior of linear circuits. These three
laws may be composed into one single law which states

ATG−1Ax= Lx= 0 (3.5)

where L represents the Laplacian matrix from Chap. 2. It was shown in Chap. 2
that the nullspace of the L= ATG−1A matrix is dimension one and spanned by the
vector for which each element is equal to the same constant. Therefore, the three
laws compose to state that, in the absence of any other constraints, all of the node
potentials will be equal. In the next section, we discuss the solution of the circuit
equations in the presence of energy sources that force a nontrivial solution. In the
context of circuit theory, we will consider a solution as a complete knowledge of the
node potentials or, equivalently, edge voltages or edge currents for a specific circuit
topology and a prescribed set of resistance values. Given any one of these sets of
values, the others may be generated using the three circuit laws given above.

3.2 Steady-State Solutions

A voltage source or a current source provides a fixed source of energy to drive
the circuit. Without these energy sources, the circuit would yield the trivial solution
consisting of a constant potential at each node and no flow of current. Both of these
sources supply a fixed voltage or current which is constant with respect to time and
are traditionally known as direct current or DC sources. A voltage source forces
the voltage between two nodes to be fixed and a current source forces the current
through an edge to be fixed.

By convention, a voltage source can be added in series to any resistor in the graph
to insert an additional fixed voltage difference between the two nodes of the resistor
[360, p. 149]. The value of the voltage added to edge ek is denoted by bk , and all such
voltage sources can be assembled into a vector b ∈ R

|E|. Note that the elements bk

may be positive or negative, and are zero-valued at edges where no voltage source is
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present. Therefore, when voltage sources are present, the expression for the voltages
in the circuit becomes

Ax+ b= p (3.6)

with the edge–node incidence matrix A defined as above. The expression of Ohm’s
law, y = G−1p, is unchanged. Similarly, a current source with one end attached to
ground can be attached to any other node in order to inject current into the node.
If we represent the current inserted into node vi as fi , and assemble all additional
current sources into a vector f ∈ R

|V|, then the expression of KCL in the circuit
becomes

ATy+ f= 0. (3.7)

By combining these two laws and including the voltage and current source terms,
we return to the single law summarizing the circuit behavior, given by

ATG−1Ax= Lx=−ATG−1b− f. (3.8)

We let q represent the set of source terms on the right hand side of this equation,
i.e., q=−ATG−1b− f.

Due to the nature of the circuit behavior, the above equations can not be solved
uniquely for any given circuit configuration due to the inherent ambiguity in the
node potentials—a constant potential can be added to each node without changing
the voltages across the edges. In other words, the solution is not affected by adding
a constant potential to all nodes. Therefore, a family of admissible solutions exists
that are equivalent up to this constant potential. For this reason, it is often convenient
to assign a single node v0 as a reference or ground by eliminating one column of
the edge–node incidence matrix A. This reduced incidence matrix is often denoted
as A0. The potential x0 is set to zero and the corresponding node is eliminated from
x and from f. Once an arbitrary reference node is set to ground, then the solution
can be calculated relative to the chosen reference.

Example 1 (Solving node potentials in a static circuit) To demonstrate the process
of constructing the discrete operators for a circuit and using them to solve for a set
of unknown node potentials or edge currents, consider the circuit diagram presented
in Fig. 3.2. The edge–node incidence matrix A for this circuit can be constructed
from the diagram after assigning an orientation for each edge. For this graph the
incidence matrix is given by

A=

⎡
⎢⎢⎢⎢⎣

1 −1 0 0 0
1 0 0 −1 0
0 1 −1 0 0
0 0 1 −1 0
0 0 1 0 −1

⎤
⎥⎥⎥⎥⎦

based on an assumed orientation. The constitutive matrix consists of the affinity
edge weights (conductances). Therefore, G−1 = diag([2 1 1 4 1]T) and the Laplacian
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Fig. 3.2 Circuit diagram for
Example 1. The circuit
consists of five nodes and five
edges, with a fixed current
source injecting current into
node v2, a voltage source
setting a fixed potential at
node v4, and node v5 serving
as the reference node for
ground. Note that the
standard symbol for
resistance (Ohms) is given
by �

matrix L= ATG−1A evaluates to

L=

⎡
⎢⎢⎢⎢⎣

3 −2 0 −1 0
−2 3 −1 0 0
0 −1 6 −4 −1
−1 0 −4 5 0
0 0 −1 0 1

⎤
⎥⎥⎥⎥⎦ .

In this example, the voltage source forces a potential at node v4, indicating that this
node voltage is not free (or unknown), and the voltage source does not coincide with
an edge variable. For this reason the voltage source vector b is expressible in terms
of the edge–node incidence matrix operating on the fixed voltages, i.e.,

b= A

⎡
⎢⎢⎢⎢⎣

0
0
0
2
0

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

0
−2
0
−2
0

⎤
⎥⎥⎥⎥⎦ .

The current source vector f is straightforward: f= [0 3 0 0 0]T.
With the weighted Laplacian operator L defined for the circuit, and the vectors b

and f representing the energy sources, the unknown node potentials x can be solved
with any linear systems solver. However, the full Laplacian matrix is not full rank,
and must be reduced to solve the system. Since nodes v4 and v5 are fixed, we can
solve the reduced system L0 x0 = q0, whose entries correspond only to the free
nodes in the circuit, v1, v2, and v3 (i.e., the ‘0’ subscript indicates that the entries
corresponding to fixed nodes have been removed). Therefore, for this example the
node voltages evaluate to

x0 =
[
4.07 5.11 2.19

]T
.
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3.2.1 Dependent Sources

In the last section we considered voltage (current) sources which supplied a fixed
voltage (current) across two branches. However, if the amount of voltage (current)
supplied by the source is controlled by the voltage or current of a different branch,
then the source is said to be a dependent source. In contrast, a fixed source consid-
ered above is said to be an independent source. Dependent sources can appear in
the linear circuit equations as off-diagonal elements of G−1.

Before discussing the implications of the matrix G−1 with off-diagonal elements,
we first illustrate the concept with an example. Consider the small circuit in Fig. 3.3
in which we employ the matrix

G−1 =

⎡
⎢⎢⎢⎢⎣

e1 e2 e3 e4 e5

e1 1 0 1 0 0
e2 0 1 0 0 0
e3 1 0 1 0 0
e4 0 0 0 1 0
e5 0 0 0 0 1

⎤
⎥⎥⎥⎥⎦ (3.9)

as the edge weighting matrix. Clearly all of the branch resistances are unit-weighted,
but now there is a new relationship between edges 1 and 3. The nature of this rela-
tionship becomes apparent if we consider the set of branch voltages

p=

⎡
⎢⎢⎢⎢⎣

1
0
0
0
0

⎤
⎥⎥⎥⎥⎦ , (3.10)

giving the currents

y=G−1p=

⎡
⎢⎢⎢⎢⎣

1
0
1
0
0

⎤
⎥⎥⎥⎥⎦ . (3.11)

Fig. 3.3 A circuit with dependent current sources
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Therefore, even though the voltage occurred over branch 1, a current was induced
in branch 3, which allows us to interpret the off-diagonal entries as indicating the
presence of voltage-controlled current sources, which are often used in circuit the-
ory to model nonlinear elements such as transistors. This example is illustrated in
Fig. 3.3.

In Chap. 2, we discussed how the metric tensor definition for a discrete space led
to a diagonal matrix for G−1. Therefore, the appearance of off-diagonal elements
in G−1 should be regarded only as a convenience that allows us to represent the
dependent sources and/or nonlinear circuit elements.

By interpreting a G−1 having off-diagonal elements as representing dependent
sources, we can derive an unusual interpretation of the discrete biharmonic oper-
ator. Recall that the biharmonic operator is defined in conventional mathematics as
∇2∇2 and appears frequently in the description of the bending of thick-plate mate-
rial (as opposed to the membrane deformation described by the standard Laplacian
operator). Based on Chap. 2, we may rewrite the discrete biharmonic operator as

LL= ATG−1
1 AG0G0ATG−1

1 A. (3.12)

By letting

G̃
−1
1 =G−1

1 AG0G0ATG−1
1 , (3.13)

then we can interpret the biharmonic operator as a Laplacian operator with a non-

diagonal constitutive matrix G̃
−1
1 , i.e.,

LTL= L̃= ATG̃
−1
1 A. (3.14)

Since G̃
−1
1 has off-diagonal elements, this interpretation allows us to further con-

sider the biharmonic operator as introducing a set of dependent sources into the
circuit.

As an example, consider the graph in Fig. 3.4 with unity edge and node weights.
The biharmonic operator for the graph will consist of

LTL=

⎡
⎢⎢⎣

v1 v2 v3 v4

v1 6 −4 −4 2
v2 −4 12 −4 −4
v3 −4 −4 12 −4
v4 2 −4 −4 6

⎤
⎥⎥⎦. (3.15)
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Fig. 3.4 Voltage-controlled current sources used to interpret the discrete biharmonic operator.
Panels (B) and (C) display the current sources which respond to a voltage across e1 and e5, respec-
tively, in the direction given by the ‘+’ and ‘−’ signs

This biharmonic operator may be viewed as the Laplacian, L̃, for LTL = L̃ =
ATG̃

−1
1 A, in which

G̃
−1
1 =

⎡
⎢⎢⎢⎢⎣

e1 e2 e3 e4 e5

e1 2 1 −1 0 −1
e2 1 2 0 −1 1
e3 −1 0 2 1 1
e4 0 −1 1 2 −1
e5 −1 1 1 −1 2

⎤
⎥⎥⎥⎥⎦. (3.16)

The current sources which depend on voltages across various branches for this cir-
cuit are depicted in Fig. 3.4.

3.2.2 Energy Minimization

The solution for the node potentials given by (3.5) may be considered as the min-
imum energy solution for a variational problem. Specifically, if we define the total
energy for a configuration of voltages x as

E[x] = xTLx, (3.17)

then, because L is both symmetric and positive semi-definite, the steady-state solu-
tion

dE
dx
= Lx= 0, (3.18)

represents a minimum of the energy in (3.17). Note that it is possible to introduce
current sources into the above energy by letting E[x] = xTLx + xTf. Likewise, it
is possible to introduce voltage sources by fixing the potentials x and taking the
gradient of the energy with respect to b. The energy in (3.17) represents electrical
power dissipation of the circuit and may be rewritten in several equivalent ways.
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For example, the power can be phrased as: (a) as the sum of voltages multiplied by
currents across all edges,

E[x] = xTLx= pTy=
∑
eij

pij yij , (3.19a)

(b) as the sum of squared voltages divided by resistances across all edges,

E[x] = xTLx= pTG−1p=
∑
eij

p2
ij

rij
, (3.19b)

or (c) as the sum of squared currents multiplied by resistances across all edges,

E[x] = xTLx= yTGy=
∑
eij

y2
ij rij . (3.19c)

These three expressions for power dissipated by each edge are classical. The energy
minimization principles expressed above in terms of circuit theory are equivalent to
the conventional Dirichlet’s principle on a graph that was discussed in Chap. 2.

Using the above expressions for power dissipation, we now show that the en-
ergy minimization formulation may also be written in terms of the current variable.
Specifically, the currents distribute themselves to optimize

min
y

E[y] =min
y

yTGy,

s.t. ATy= 0.

(3.20)

This constrained optimization may be converted to an unconstrained optimiza-
tion (see Appendix B) by noting that any solution that satisfies the constraints must
lie in the nullspace of AT. If we represent a basis to span the nullspace of AT by
the matrix B, then we may write y= Bz in terms of a new variable z. Adding this
change of variable into the optimization of the currents gives us the unconstrained
optimization problem

min
z

E[z] =min
z

zTBTGBz. (3.21)

Once again, current sources or voltage sources provide constraints that, when in-
cluded in the energy formulation in terms of z, produce a nontrivial solution. The
matrix B has the convenient form of the face–edge incidence matrix and the z vari-
ables are associated with the faces (known as “mesh variables” in the circuit litera-
ture). In the context of circuit theory, solution for the circuit variables via optimiza-
tion of the first energy minimization problem (3.17) in terms of the node variables
is known as node analysis. Similarly, optimization of the second energy minimiza-
tion problem of (3.21) in terms of the mesh variables is known as mesh analysis. In
some circumstances, mesh analysis is much easier or has many fewer variables (e.g.,
if the circuit consists of a single long cycle). However, in typical circuits, the extra
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computation required to find cycles and thus generate B is not justified by any com-
putational gain in performing mesh analysis instead of node analysis. Consequently,
the practical solution of circuit problems is predominated by node analysis.

3.2.2.1 Power Minimization with Nonlinear Resistors

So far we have considered graph edges to represent resistors which act to trans-
late differences in quantities defined at the nodes (electric potentials) into flows
through the edges (currents). Linear resistors create flows which are proportional
to the potential differences, but we may also consider edges which act as nonlin-
ear resistances as well. We may view the linear resistor circuit as minimizing the
square of the difference of node variables by writing the circuit power in (3.17) as a
summation over edges

E[x] = xTLx= xTATG−1Ax=
∑
eij

wij (xi − xj )
2. (3.22)

Viewing the circuit power dissipation in this form, we can see that other functions
of the difference between nodes may be optimized in the circuit by introducing
nonlinear resistors. For example, by using resistors with the value rij = 1

wij
(xi −

xj )
2−p , the power dissipated by the circuit becomes

E[x] =
∑
eij

wij |xi − xj |p. (3.23)

Therefore, by using a nonlinear resistor we may build a circuit for which the min-
imum power distribution minimizes the measurement of the potential differences
under any p-norm. It has been shown [350] that if p = 1 (i.e., using nonlinear resis-
tors with value rij = 1

wij
|xi − xj |) then the minimum power solution may be found

by solving a maximum-flow/minimum-cut problem for a particular configuration of
sources. Specifically, if all power sources either ground some nodes or fix node po-
tentials to unit voltage above ground, then any partitioning of the nodes obtained by
thresholding the electrical potentials at 0.5 represents a minimum cut between the
nodes of unit voltage and the grounded nodes. In the second part of this book, many
applications will require an optimization of an energy in the form (3.23), which will
be called the Basic Energy Model in the context of these applications. Therefore,
each of the applications using he Basic Energy Model may be interpreted as finding
the minimum power dissipation of a circuit with nonlinear resistors (3.23).

3.3 AC Circuits

Both linear and nonlinear resistors map potential differences directly to flows. We
now consider edge elements that instead translate between flows and differences via
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the change in these quantities over time. Such a circuit element may be physically
realized in the form of the standard circuit elements of a capacitor and inductor.
In this book, we will not consider any of the details of real capacitors and inductors,
but rather work with their idealized mathematical behavior.

A capacitor translates the temporal change in potential difference between nodes
into a current flow through the edge connecting the nodes. Specifically, the relation-
ship is given by

yij = cij

dpij

dt
, (3.24)

where the variable c is used to represent capacitance, and dt is the time differential.
We may write the capacitance equation (3.24) in integral form for the voltage as

pij = 1

cij

∫
yij dt. (3.25)

The inductor element has the opposite effect as the capacitor in the sense that
the inductor translates the change in current flow through an edge into a potential
differences across the edge. Specifically, the relationship is given by

pij = uij

dyij

dt
, (3.26)

where uij represents the inductance of the edge eij .
With these additional elements in a circuit, we may consider the response of the

current flow through an edge when the voltage across the edge varies periodically
with time (i.e., an alternating voltage source). Because the circuits we consider
represent linear and time invariant systems, these time varying quantities can be
conveniently represented with complex exponentials (or superpositions thereof). If
we represent the voltage as the real part of Re{pij eiωt }, then we may substitute the
current Re{yij eiωt } into (3.25) and (3.26) to produce the current flow through an
edge containing an inductor, resistor and capacitor in series

(
iωuij + rij + 1

iωcij

)
yij eiωt = pij eiωt . (3.27)

Note that ω represents the oscillation frequency of the sources. Since the factor eiωt

appears on both sides of the equation, it may be ignored to give us a relationship
which is independent of time

(
iωuij + rij + 1

iωcij

)
yij = pij . (3.28)

The factor applied to the current is a constant which depends on the material proper-
ties of the edge (the resistance, inductance and capacitance of the edge). Therefore,
we may replace this factor with

zij =
(

iωuij + rij + 1

iωcij

)
, (3.29)
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which is known as the impedance of the edge and may be considered as a gener-
alized conception of the edge resistance. Writing the time-independent equation for
an alternating voltage/current relationship in terms of the impedance gives

zij yij = pij , (3.30)

which may be viewed as a generalized form of Ohm’s Law (3.1) that reflects the
“complex resistor” represented by the impedance. Similar to the relationship be-
tween resistance and conductance, the reciprocal of the impedance is called the
admittance, ψij = 1/zij .

The introduction of capacitors, inductors and alternating energy sources affects
only the relationship of the voltage across an edge to the current through the edge.
However, the voltages are still generated as the differences of the electrical poten-
tials, (3.3), and the sum of the currents into a node still equals the currents leaving a
node, (3.2). Consequently, if all of the sources have the same frequency of oscilla-
tion, ω, then we may write the three laws of circuit theory for an alternating current
(AC) circuit as

Ax = p, (3.31)


p = y, (3.32)

ATy = 0, (3.33)

where 
 represents the diagonal matrix containing the admittance of each edge
along the diagonal. As before, these laws combine to give

AT
Ax= 0, (3.34)

which governs the steady-state distribution of currents and potentials in a circuit
where x and y are understood to be multiplied by Re{eiωt }.

We may now adopt the viewpoint that the steady state behavior of a circuit with
alternating sources is equivalent to the steady state behavior of a circuit with con-
stant sources that has “complex resistors”. Given this viewpoint, we may follow the
procedure above to produce the response of the circuit to voltage and current sources
of various magnitudes (but the same oscillation frequency) to give

Lx=−(AT
Ax+ f). (3.35)

Similarly, we may consider this equation as the solution to a minimization of the
power dissipated by the circuit given by

E[x] = xTAT
Ax. (3.36)

Since 
 is complex valued, the power dissipation in the above equation is also a
complex-valued quantity, which is referred to in the circuit literature as the com-
plex power. The magnitude, |E[x]|, is called the apparent power, while the real
component Re{E[x]} is called the real power and the imaginary part Im{E[x]} is
called the reactive power. In a physical circuit, the real power is the only energy
dissipated by the system.



104 3 Circuit Theory and Other Discrete Physical Models

3.4 Connections Between Circuit Theory and Other Discrete
Domains

Our main purpose for reviewing circuit theory is to provide a physical, realizable
model for discrete mechanics that provides a natural analogy for the continuous
calculus developed in the last chapter. The utility of seeing circuit theory from the
standpoint of linear algebra is that it focuses attention on the operators (defined by
incidence matrices) that define the circuit laws and the energy minimization prob-
lems behind these laws.

Although circuit theory is a natural setting to explore the physical interpretation
of the discrete calculus machinery developed in Chap. 2, circuit theory is by no
means the only discipline in which these mechanics appear. In fact, just like con-
ventional vector calculus is used to describe the structure of many physical theories,
so too is discrete calculus. Specifically, we will use the treatment of circuit theory
above to examine the topics of spring networks, random walks on a graph, Markov
Random Fields, the use of tree counting in graph theory and linear algebra.

3.4.1 Spring Networks

Spring–mass networks offer another example of a physically realizable system that
employs the same equations as we reviewed in circuit theory. A spring–mass net-
work consists of a series of masses connected to each other via springs, where the
quantity of each mass may be different and each spring may have a different spring
constant. The equations that govern spring networks are used not only to calculate
quantities of physical systems but also as computational models for wide ranging
applications (e.g., [208, 210, 270]).

The elements of spring–mass networks have been mapped to elements of cir-
cuit theory in several different ways. In fact, there are some parts of the literature
which map force to current and others which map force to voltage, with accompany-
ing arguments about the utility of one electrical analogy over the other [202, 357].
A standard reference for these analogies is Shearer et al. [341]. The typical focus of
attention in these electrical-mechanical analogies is study of the system dynamics.
Therefore, the analogy is drawn between the mechanical system and an RLC circuit
in order to study the system dynamics. These dynamical systems form the basis for
studies in the synchronization of oscillators [12, 26], with a strong emphasis on the
role of graph topology in the behavior of the system.

In contrast to these dynamical systems, the primary focus of the later chapters
of this book are on how energy minimization techniques may be used to find solu-
tions to problems from several different applications. Therefore, since our focus will
generally be on steady-state problems, we will present a simplified spring-circuit
analogy of a steady-state system, following Strang [359]. The equations that govern
the steady-state of a spring–mass model differ from the equations that govern a DC
electric circuit mainly in the interpretation of the variables. The setting that we con-
sider for a spring–mass model is depicted in Fig. 3.5. Each mass is associated with
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Fig. 3.5 A spring–mass
system in steady-state

a node and each spring between nodes with an edge. The displacement (location)
of each node, vi , along the line is represented by the variable xi . Some node, v0, is
fixed at a reference location such that x0 = 0. When two connected nodes are sepa-
rated, they stretch the spring between them with an elongation, pij . This elongation
for each edge may be represented in matrix form via

Ax= p. (3.37)

When a spring is elongated, Hooke’s Law states that it responds with a force propor-
tional to the elongation. The constant of proportionality is determined individually
for each spring and is known as the spring constant of the spring, wij . Written in
matrix form, the constitutive relationship represented by Hooke’s Law states that

G−1p= y, (3.38)

where yij represents the force exerted by the spring on edge eij in response the
elongation. Each spring incident on a node exerts a force, but the node may also
have an external force applied to it, such as gravity. In a steady-state system, these
internal and external forces must balance each other, which may be written as

ATy− f= 0, (3.39)

where f represents the external force (e.g., fi =miγ where mi is the mass of node
vi and γ is the gravitational constant). These three equations combine to allow us to
solve for the steady-state solution of the displacements via

AT
0G−1A0 = L0x= f. (3.40)
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Table 3.1 List of equivalent quantities between linear electric circuits and spring–mass networks

Symbolic Electrical circuit Mass–spring network

x electric potential mass displacement

p voltage (potential difference) elongation

y current responding spring force

w conductance (1/resistance) spring constant

v0 grounded node reference node

f currents injected into nodes from ground external forces on masses

G−1p= y Ohm’s Law Hooke’s Law

ATy= 0 Kirchhoff’s Current Law conservation of forces

The matrix L0 in this context is known as the stiffness matrix.
By using a consistent notation, it is straightforward to see in Table 3.1 the cor-

responding variables in a spring network and an electrical network. Consequently,
the (one dimensional) spring network behaves exactly like an electrical circuit when
both systems are in the steady state.

3.4.2 Random Walks

The connection between random walks on a graph and electrical circuits is unex-
pected. Although this connection has been recognized for a long time [221, 227,
228], the book by Doyle and Snell [115] provided a clear and introductory exposi-
tion that propelled subsequent interest in this connection.

We define a random walk on a graph as an iterative process that tracks a ran-
dom walker located at a node as it moves from node to node along edges. At each
iteration of the random walk, a random walker located at node vi will transition to
one of its neighbor nodes, vj with probability equal to qij =wij /di , where di is the
(weighted) degree of node vi . If we let xi represent the probability that the random
walker is present at node vi , then we may write the transition rule in matrix form as

x[k+1] = D−1Wx[k] (3.41)

where x[k] indicates the k-th iteration step and W is the adjacency matrix.
Given this definition of a random walk on a graph, we may consider the following

problem: What is the probability that a random walker starting at node vi reaches
node v1 before it reaches node v0? Let xi represent the probability that a random
walker leaving node vi reaches node v1 before it reaches node v0. By definition of
the problem, we know that x0 = 0 and x1 = 1. For the remaining nodes, we can
imagine that if we knew the probability that each of the neighbors of node vi sent
a random walker to v1 before v0 then we know that xi is just the sum of these
probabilities weighted by the likelihood that the random walker transitions to each
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Fig. 3.6 Equivalent circuit to
calculate the probability that
a random walker leaving each
node first arrives at the ‘1’
node before arriving at the ‘0’
nodes. The circuit is a passive
resistive network in which the
‘0’ nodes are connected to
ground and the ‘1’ node is
connected to a unit voltage
source with ground. The
electrical potential
established by this circuit at
each node (printed inside the
node) equals the probability
that a random walker leaving
each node arrives at the ‘1’
node before arriving at any
‘0’ node

neighbor. Formally, we can write that

xi =
∑
j

qij xj = 1

di

∑
j

wij xj , (3.42)

or in matrix form

x = D−1Wx, (3.43)

Dx =Wx, (3.44)

Lx = 0. (3.45)

Therefore, this random walk problem amounts to solving Lx= 0 subject to x0 = 0
and x1 = 1. This is exactly the same circuit theory problem that we encountered be-
fore when trying to solve for the electrical potentials x that were induced by ground-
ing v0 and establishing a unit voltage source between v1 and ground, i.e., in (3.8).
If we replace the unit voltage source by a voltage source of arbitrary magnitude k,
then the equivalent random walk problem adjusts by calculating the expected pay-
off of a game in which a player is paid k if the random walker arrives first at v1
and is paid zero if the random walker arrives first at v0. Figure 3.6 illustrates the
circuit construction that produces node potentials equal to the probability that a ran-
dom walker leaving each node is more likely to arrive at node v1 before arriving at
node v0.

Other random walker problems also have equivalent circuit problems. For exam-
ple, the hitting time of a random walk from node va to node v0, h(va, v0), is defined
as the expected number of steps taken by a random walker to travel from va to v0.
As before, we can solve for the hitting time by considering the relationship of the
hitting time of every node to reach v0 in relationship to its neighbors. Specifically,
if we let xi represent the hitting time from node vi to some reference node v0, then
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Fig. 3.7 Equivalent circuit to compute the hitting times of a graph. The electrical potential induced
at a node in the circuit in (A) equals the hitting time for a random walker leaving that node to reach
the grounded node. (B) The same graph in which the reference (grounded) node is indicated as the
filled node. Note that the magnitude of each current source equals the degree of the node

the hitting time at vi will be equal to the hitting time of its neighbors multiplied by
the probability of transitioning to each neighbor, plus one (to account for the extra
step taken to a neighbor), i.e.,

x = D−1Wx+ 1, (3.46)

Dx =Wx+ d, (3.47)

Lx = d, (3.48)

where x0 = 0 is fixed. From the standpoint of circuits, the above equation (3.48)
may be interpreted as a circuit problem in which node v0 is grounded, an amount
of current equal to each node degree di is injected into every node vi �= v0 and the
resulting potentials xi equal the hitting time from node vi to v0. Figure 3.7 illustrates
the circuit construction that produces node potentials equal to the hitting time to pass
to node v0 from every other node [115].

The hitting time h(vi, vj ) does not necessarily equal h(vj , vi), since some nodes
in a graph are simply faster to reach via a random walk process than other nodes
(e.g., nodes with high degree are easier to reach). Therefore the commute time
between two nodes is defined as the expected number of steps a random walker
will traverse between nodes vi and vj and then back again from vj to vi , i.e.,
c(vi, vj ) = h(vi, vj ) + h(vj , vi) = c(vj , vi). It is possible to show that the com-
mute time between two nodes is proportional to the effective resistance between
the nodes when the graph is viewed as an electrical circuit [72]. The effective resis-
tance between two nodes vi and v0, Reff(vi, v0), is defined as the electrical potential
induced by injecting one unit of current into node vi and grounding node v0. For-
mally, let the vector rk = 1 if k = i and rk = 0 otherwise. The electrical potentials
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established by injecting one unit of current into vi and grounding node v0 satisfies

L0x̄= r. (3.49)

The quantity x̄i = Reff(vi, v0). We may then calculate the hitting time for all nodes
to reach vi from (3.48) as

Lx̃=
[

d∑
k dk − di

]
(3.50)

(where the right hand side is set such that it sums to zero) and the hitting time for
all nodes to reach v0 as

Lx̂=
[∑

k dk − d0
d

]
. (3.51)

Then, we may note that

L(x̃− x̂)=
⎡
⎣+

∑
k dk

0
−∑k dk

⎤
⎦ , (3.52)

For convenience we may assume that the graph is unweighted (all edges are unity
weighted), meaning that

⎡
⎣+

∑
k dk

0
−∑k dk

⎤
⎦=

⎡
⎣+2m

0
−2m

⎤
⎦ , (3.53)

where m = |E|. The entry (x̃ − x̂)i represents h(vj , vi) and the entry (x̃ − x̂)j
represents −h(vi, v0). Consequently, by adding the value h(vi, v0) to each entry
of (x̃ − x̂), the entry belonging to v0 becomes zero and the ith entry represents
h(v0, vi)+ h(vi, v0)= c(vi, v0). We may therefore consider the v0 node grounded
and restrict our attention of L and the vector (x̃ − x̂) to the portion excluding v0.
With this restriction, the difference satisfies

L0(x̃− x̂)=
[

2m

0

]
= 2mr= 2mx̄. (3.54)

Therefore, for any pair of nodes in any graph, c(vi, v0)= 2mReff(vi, v0).
In their book, Doyle and Snell also give an interpretation of the current through

each edge when one unit of current is injected into node vi and out of vj [115],
i.e., in the circuit with potentials and currents satisfying (3.49). The current through
edge epq represents the expected number of times that a random walker will pass
through edge epq when the walker is inserted at vi and exits at vj . Note that in this
interpretation of the current, the current represents the expected number of times
that the random walker pass through the edge in the vp to vq direction subtracted
from the expected number of times that the random walker passes through the edge
in the vq to vp direction. The proof of this statement is somewhat involved, so the
interested reader is referred to [115].
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We have seen that several problems concerning random walks on a graph have
interpretations as problems in circuit theory and that the quantities of voltage and
current in a circuit may be interpreted as expectations of certain random walks. This
connection has been very helpful for analyzing random walk problems on graphs.
One problem in particular for which this connection has been useful is to provide a
much simpler proof of Polya’s theorem [308], which states that a random walk on an
infinite lattice will always return to its starting point when the lattice is either one-
dimensional or two-dimensional, but has a finite probability of never returning to its
starting point for lattices in dimensions three or greater [115]. In the next section,
we leave random walks and consider the Gaussian Markov Random Field (GMRF),
a different probabilistic model that leads back to the circuit equations.

3.4.3 Gaussian Markov Random Fields

A Markov Random Field (MRF) describes any collection of random variables de-
fined on nodes vi ∈ V for which the value of each individual variable xi is condi-
tionally dependent only on the values of its neighbors. This conditional probability
can be represented by a simple graph structure recorded by the set E ⊆ V × V.
In this structure, each node represents a random variable and each edge represents
conditional dependence between the variables. Node (variables) which are inde-
pendent are not connected by an edge, i.e., if vi and vj are independent, then
p(xi |xj ) = p(xi). In this short section, we will show that the MAP estimate of a
certain class of Gaussian MRFs may be interpreted as the electrical potentials of a
specific circuit construction.

The classic MRF is the Ising Model for ferromagnetic material in which each
variable can assume one of two states, xi ∈ {−1,+1}. In contrast to the two-state
model, a Gaussian Markov Random Field model assumes that each variable xi ∈R

represents a random variable with a Gaussian distribution, xi ∼ N(μi, σi), and all
individual xi are correlated with covariance �. The probability distribution for any
particular state of the entire MRF (i.e., a particular set of values for each of the
random variables) is typically given by the Gibbs distribution

P(X = x)= 1

Z
exp

(
−1

2
(x−μ)T�−1(x−μ)

)
, (3.55)

where � is the covariance matrix, and Z is the partition function that serves as a
normalization constant, which is set such that the integral of P over x is unity. The
covariance matrix captures the coupling between each pair of nodes, yet represents
both direct covariance between neighboring nodes and indirect coupling that results
from a propagation of covariance to remote pairs of nodes. The inverse of the covari-
ance matrix, �−1, has several interpretations and is sometimes called the potential
matrix, the precision matrix or the information matrix in the literature. The infor-
mation matrix can provide a more compact representation of the coupling between
the random variables xi and more succinctly captures the neighborhood relations in
the GMRF [224].
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In many applications [9, 224], the information matrix is assigned to a sum of a
weighted graph Laplacian matrix with a non-negative diagonal matrix T, i.e., �−1 =
λL+ T, where λ is the weighting parameter.

Using this choice for the information matrix, the maximum likelihood or ML
estimate of the state x of the Gaussian MRF under the Gibbs distribution (3.55) is
given by

x̂ML = argmax
x
{P } = argmax

x

{
(x−μ)T(λL+ T)(x−μ)

}
.

Consequently, the ML estimate may be generated by solving the linear system

(λL+ T)̂xML = (λL+ T)μ. (3.56)

Similarly, if we adopt an observation model of the Gaussian MRF where the state x
is observed in the presence of noise, the observed state y is expressed as

y= x+ n, (3.57)

where the noise is zero-mean and Gaussian distributed, n∼N(0,R−1) with covari-
ance matrix R−1. For simplicity here we assume that n is independent for each
variable vi (i.e., R is diagonal), and x is zero mean, x∼N(0,�). If again the infor-
mation matrix �−1 is captured by the weighted graph Laplacian of the MRF graph,
�−1 = λL+ T, then

P(y|x)= 1

Z
exp

(
−1

2
(y− x)TR(y− x)

)
. (3.58)

Therefore, the maximum a posteriori or MAP estimate of

P(x|y)∝ P(x)P (y|x), (3.59)

is given by

(λL+ T− R)̂xMAP =−Ry. (3.60)

Viewed as a circuit, the MAP estimate in (3.60) may be interpreted as the electrical
potentials established by a circuit where (a) every pair of neighboring nodes is con-
nected by a resistor with value 1/λ; (b) a resistor connects each node vi to ground
via a resistor with value 1/(Tii−Rii); and (c) a current source injects−Riiyi current
into each node vi . A similar circuit interpretation may be given to the ML estimate
in (3.56) in which the current sources are given instead by (λL+ T)μ.

We can now examine how this circuit model reflect various conditions in the
Markov Random Field through considering three examples. First, if the weighting
parameter λ= 0, then each variable is independent and the MAP estimate is simply
x̂i = −Riiyi/(Tii − Rii). From a circuit standpoint, this result is explained by the
fact that each node is connected to ground by an edge with resistance Rii/(Tii−Rii)

and that −Riiyi current is injected into each node. Thus, the resulting voltages are
apparent from Ohm’s law. As a second example, consider the case of an observed
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variable at some node vi such that xi = xobs. From a circuit perspective, this re-
quirement that xi = xobs is equivalent to imposing a voltage source between vi and
ground which establishes the potential xobs at vi . Consequently, the remaining po-
tentials may be calculated using the steady-state solution for a voltage source (as
in (3.8)) where the observed variables form the set of constrained voltages D. As a
final example, we can give the circuit interpretation of the probability for any state
in the as given by the Gibbs energy in (3.4.3). If μ= 0 then, given any state of the
MRF, x, the power dissipated by the circuit equivalent model is given in (3.17) by
E[x] = xT(λL+ T)x and therefore the probability of state x may be interpreted as

P(X = x)= 1

Z
exp

(
−1

2
G[x]

)
. (3.61)

In other words, the probability of any state in the Gaussian MRF is proportional to
the exponential of half the power dissipated by the equivalent circuit. Thus config-
urations of electrical potentials in the circuit that yield larger power dissipation are
less likely to occur under the MRF model. Therefore, the minimum power distribu-
tion for the circuit which is produced by nature is the maximum likelihood solution
for the equivalent MRF.

In this section we considered a second probabilistic model that could also be in-
terpreted as an electrical circuit. Although circuit interpretations of Gaussian MRFs
are not common in the literature, this connection provides another example of an
area in which the same variables, operators and equations all participate.

3.4.4 Tree Counting

Almost any quantity in circuit theory may be calculated by counting subtrees of the
graph. Counting subtrees is very impractical for computation in most circumstances
(although some treatments of computational circuit theory have pursued exactly this
approach [75]), but it is sometimes useful to examine a circuit theory problem (or
a partial differential equation) in terms of counting subtrees. One utility of the tree
viewpoint can be that certain properties of the behavior of a variable under pertur-
bation or noise are simpler to prove by using trees [161]. We believe that the tree
interpretations of the circuit equations are particularly valuable because it is difficult
to see an analogue for this viewpoint in the continuum equations. In other words,
random walks are straightforward to define in the continuum, and electromagnetism
provides an intuitive analogy for electrical circuits, yet we are not aware of any
equivalent to tree counting in the continuum. Therefore, since this method is avail-
able in the discrete domain, we devote some space here to computing solutions to
the circuit equations by counting subtrees of the graph. In this section we largely
follow the results and notation of Biggs [34], which provides support for all of the
results reviewed here.

Define a tree T as a graph on n nodes and m edges for which there is a single
connected component such that m= n− 1. Note that some authors refer to this type
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of tree as a spanning tree. One important property of any tree is that a tree consists of
no cycles (by contradiction, if a tree did contain a cycle then it would be possible to
remove one edge without losing connectivity). A second property of a spanning tree
that we will use in this section is that within a spanning tree, there exists a unique
path that connects any two nodes. The number of subtrees in a graph is the number
of unique subgraphs of the graph that are trees. In this section, any use of the term
tree should be interpreted as referring to a spanning tree.

By definition of the edge–node incidence matrix, any vector in the right nullspace
must take the same value for each pair of nodes connected by an edge. Therefore,
if the graph is connected, the right nullspace of the edge–node incidence matrix
is spanned by the set of constant-valued functions, i.e., A1 = 0. Consequently, the
reduced incidence matrix, A0, formed by removing the column corresponding to
any node, has a right nullspace of dimension zero. Since the left nullspace of the
edge–node incidence matrix has already been discussed as being comprised of the
graph cycles, it is clear that if A represents the incidence matrix of a tree, there can
be no such cycles, and thus the left nullspace of the incidence matrix of a tree is
also dimension zero. Furthermore, for any tree, the reduced incidence matrix A0
is both a square matrix and nonsingular. Put differently, any n× n submatrix of an
incidence matrix A0 is nonsingular if and only if this submatrix represents a tree. The
invertibility of this matrix indicates that we may solve for a set of node potentials
xi such that the differences across the edges of a tree fit prescribed values, i.e., a
solution x will always exist for the equation

Ax= p. (3.62)

In summary, if our graph is a tree, then any flow in the graph may be represented via
potential differences for some set of node potentials due to the guaranteed existence
of a solution. Additionally, if we set xi = 0 for some node vi , then the solution is
unique.1

The connection between circuit theory and tree counting goes back to the ear-
liest days of circuit theory. Kirchhoff himself proved that the number of trees in
a graph, κ , can be calculated as the determinant of the reduced Laplacian matrix,
L0 = AT

0A0 for a reduced incidence matrix A0 created by removing any node [232],
i.e., κ = |AT

0A0|. This result is known as the Matrix-Tree Theorem. When the
Laplacian matrix represents a weighted graph, L0 = AT

0G−1A0, then the determi-
nant ω = |AT

0G−1A0| represents the weighted sum of distinct subgraphs within the
graph that are trees, i.e.,

ω= |L0| =
∑
T ∈T

w[T ], (3.63)

1In fact, Branin [58] showed that the inverse of the reduced incidence matrix S = A−1
0 has a se-

mantic interpretation:

S(vi , ejk)=

⎧⎪⎨
⎪⎩
+1 if edge ejk is traversed in the path from vi to v0 in the positive direction,

−1 if edge ejk is traversed in the path from vi to v0 in the negative direction,

0 otherwise.
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where the sum is understood to be taken over all such trees T [36], and we define
the weight of each individual tree as the product of the edge weights comprising that
tree

w[T ] ≡
∏

eij∈T
w(eij ). (3.64)

We now consider how we may use tree counting to solve problems in circuit
theory. The first problem we consider is the solution of the electrical potentials when
a voltage source is applied between nodes v0 and v1, where v0 is tied to ground.
Consequently, x0 = 0 and x1 = 1. In this case, we may calculate the voltage xi for
any other node via

xi = 1

χ

∑
F∈F(0|1,i)

w[F ], (3.65)

where the sum is over all 2-trees, F(0|1,i), for which v1 and vi are in one component
and v0 is in another component. Recall that a 2-tree is defined as any graph that
is the result of removing one edge from a spanning subtree of G, and that a 2-tree
therefore need not be a tree. As before, we let

w[F ] =
∏
e∈F

w(eij ), (3.66)

and define the scale factor

χ ≡
∑

F∈F(0|1)

w[F ], (3.67)

where this sum is taken over all 2-trees in the graph in which v0 is in one compo-
nent and v1 is in the other. When the graph is unweighted, w[F(0|1)] = w[T] = 1,
meaning that χ is simply the number of 2-trees separating v0 and v1. In this case,
(3.65) simply says that the potential at node vi is given by the percentage of 2-trees
separating v0 and v1 that groups vi with v1. This result may therefore be interpreted
as the expected value of a random variable that selects 2-trees with uniform proba-
bility and gives xi = 1 if vi is grouped with v1 and xi = 0 otherwise [267].2 If the
graph is weighted, then process is modified such that the probability of selecting a
2-tree F is proportional to w[F].

If we replace our voltage source between v0 and v1 with a unit current source
such that v0 is still tied to ground, then the induced potential at node vi is given

2It is possible to interpret the formulae concerning 2-trees by considering a second graph G+
formed from G by adding an edge between v0 and v1. In this case, the 2-trees of G are the same as
the trees of G that contain the edge spanning v0 and v1. Therefore, all of the formulae concerning
2-trees could be written in terms of the trees of G+ that contain the new edge. This development
in terms of the trees of G+ was the view adopted by Kirchhoff in his original work on this topic
[232].
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instead by

xi = 1

ω

∑
F∈F(0|1,i)

w[F ], (3.68)

where, as before, the sum is over all 2-trees, F(0|1,i), for which v1 and vi are in one
component and v0 is in another component. Therefore, the only difference between
the potentials induced by a voltage source and a current source are the denominator
χ or ω. Consequently, it immediately follows that we may calculate the effective
resistance between nodes v0 and v1 by

Reff(v0, v1)= ω

χ
. (3.69)

The current through any edge which is induced by a unit current source between
v1 and v0 also admits an interpretation in terms of trees. Specifically if the unit
current is supplied at v1 and drawn from v0, then the current yij through edge eij is
given by

yij = 1

ω

( ∑
T +∈T+{0,1|i,j }

w[T +] −
∑

T −∈T−{0,1|i,j }

w[T −]
)

, (3.70)

where T+ is a tree in which the path from v1 to v0 passes through eij in the positive
direction and T− is a tree in which the path from v1 to v0 passes through eij in the
negative direction. In the first term the sum is taken over all T+ trees in the graph in
the sum in the second term is taken over all T− trees in the graph.

The reader may be concerned that our treatment has addressed only the interpre-
tation of potentials and currents induced by unit voltage sources or current sources.
Real circuit problems often involve multiple sources or source magnitudes which
are not equal to unity. However, it is important to remember that we are considering
linear circuits. Therefore, we may decompose any set of sources into a sum of unit
sources weighted appropriately by a set of coefficients. Given this decomposition,
we could count the trees for each source independently (multiplied by the factor) and
sum the results to obtain the solution for the original set of sources. This approach
to decomposing sources is common in circuit theory and is known as the method
of superposition. Consequently, it is sufficient to consider only the solutions for
unit voltage and current sources, which form the building blocks for solving more
complicated problems.

Example 2 (The Wheatstone bridge) To demonstrate the utility of tree counting for
solving for unknowns in an electrical circuit, we will consider the classic Wheat-
stone bridge circuit. The Wheatstone bridge is a circuit that enables the determi-
nation of an unknown resistor value rx . The circuit consists of two known fixed
resistors r1 and r2 plus a variable resistor or potentiometer r3, together with a fixed
voltage source V and a simple current meter or galvanometer. The configuration is
shown in Fig. 3.8. To measure rx , the resistance r3 of the potentiometer is adjusted
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Fig. 3.8 The Wheatstone bridge. The unknown resistance rx is derived from fixed resistors r1 and
r2 after the variable resistor r3 is set so that the current between nodes a and b is measured to be
zero by the ammeter. The corresponding weighted, oriented graph is presented on the right, with
edge weights w1, w2, w3, and wx on edges y1,a , y1,b , ya,0, and yb,0, respectively. Recall that, by
convention, the edge weights are conductances and therefore wi = 1/ri

Fig. 3.9 The four subgraphs
of the Wheatstone bridge
graph that are trees

until the current measured between nodes a and b is zero. Nodal analysis shows that
the resulting resistance is given by

rx = r2

r1
r3. (3.71)

To re-derive this result from tree counting, we begin by identifying the graph
corresponding to the circuit, which is shown in Fig. 3.8, and the four trees of the
graph, provided in Fig. 3.9. The determinant of the weighted reduced Laplacian ω

can then be computed, and in this example evaluates to ω=w2w3wx +w1w3wx +
w1w2wx +w1w2w3.

The next step is to identify the 2-trees F(0|1) within the graph that separate nodes
v0 and v1, shown in Fig. 3.10. From these 2-trees the scale factor χ as defined in
(3.67) can be calculated and evaluates to χ = 2w1w2+ 2w2w3+ 2w3wx + 2wxw1.
The effective resistance can then be calculated from these two scale factors, however
the value of wx is still unknown.

The voltage xa is given in terms of the 2-trees F(0|1,a) (in which one component
contains v0 and the other component contains both va and v1) identified from the
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Fig. 3.10 The eight 2-trees separating v1 and v0

three trees containing a connection between nodes va and v1, and similarly for xb .
From (3.65), we see that

xa = 1

χ
(2w1wx + 2w1w2)

and

xb = 1

χ
(2w2w3 + 2w1w2).

Therefore when the bridge is balanced by the potentiometer, xa = xb and thus

wx = w2

w1
w3.

Converting the edge weights into resistances we arrive at the final expression for the
unknown rx given by

rx = r2

r1
r3.

3.4.5 Linear Algebra Applied to Circuit Analysis

In our exposition of linear circuit theory, all of the operators were represented by
matrices and the solutions for circuit variables were obtained via linear algebra.
Therefore, it should be no surprise that some of the common techniques in linear
algebra also have interpretations in terms of circuit theory. Specifically, we will
address here the formation of an equivalent circuit via a series of circuit transforms.

3.4.5.1 The Delta–Wye and Star–Mesh Transforms

The circuit transform we will consider first is the delta–wye transform or, more
generally, the star–mesh transform. In the context of linear algebra, we will show
that one can view an application of these transforms as one step of Gauss–Jordan
elimination on the Laplacian matrix.

The delta–wye transform can be viewed as a method for producing a second
graph that is missing one node, but for which the electrical connections between all
remaining nodes are the same. Formally, we use the delta–wye transform to produce
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Fig. 3.11 The original ‘Y’
graph and the ‘�’ graph
obtained by eliminating the
central node, v1, from the ‘Y’
graph. The delta–wye
transform consists of a
mapping of resistor values
that ensures that the voltages
and currents at the terminal
nodes v2, v3, and v4 are
identical in the two
configurations

a new graph G1 from an original graph G0 with the node va removed, thus V1 =
V0 − va , and such that the effective resistance Reff(vi, vj ) between all remaining
nodes is unchanged after the transformation. Consider the graphs in Fig. 3.11. The
delta–wye transform gives us a method for calculating the resistances ra , rb and rc
from the original resistors r1, r2 and r3 such that the effective resistances (and thus
the voltages and currents at the terminals of the circuit) are preserved. The transform
is called “delta–wye” due to the shape of the two graphs (a ‘�’ and ‘Y’). It is known
from basic circuit theory [294] that the resistances of the ‘�’ circuit can be phrased
in terms of resistances of an equivalent ‘Y’ circuit as

ra = r1r2 + r2r3 + r3r1

r2
, (3.72)

rb = r1r2 + r2r3 + r3r1

r3
, (3.73)

rc = r1r2 + r2r3 + r3r1

r1
. (3.74)

Let us consider the Laplacian matrix for the original ‘Y’ graph

L=

⎡
⎢⎢⎣

w1 +w2 +w3 −w1 −w2 −w3
−w1 w1 0 0
−w2 0 w2 0
−w3 0 0 w3

⎤
⎥⎥⎦ , (3.75)

where the central node, v1, in the ‘Y’ graph is given by the first row/column. Re-
call that the edge weights in the Laplacian matrix, wi , are affinity weights which
represent the conductances wi = 1/ri (see Chap. 2). If we perform Gauss–Jordan
elimination of the central ‘Y’ node, v1, in L, then we are left with the matrix

L = 1

w1 +w2 +w3

×

⎡
⎢⎢⎣

w1 +w2 +w3 0 0 0
0 w1w2 +w1w3 −w1w2 −w1w3
0 −w1w2 w1w2 +w2w3 −w2w3
0 −w1w3 −w2w3 w1w3 +w2w3

⎤
⎥⎥⎦ .



3.4 Connections Between Circuit Theory and Other Discrete Domains 119

The lower-right submatrix of this matrix now corresponds to a graph whose topol-
ogy matches that of the ‘�’ graph. The resulting conductances in the graph corre-
sponding to this submatrix are given by

wa = w1w3

w1 +w2 +w3
, (3.76a)

wb = w1w2

w1 +w2 +w3
, (3.76b)

wc = w2w3

w1 +w2 +w3
, (3.76c)

which yield the same resistance values given for the delta–wye transform. Con-
sequently, the delta–wye transform is equivalent to removing the node, v1, in the
center of the ‘Y’ via Gauss–Jordan elimination on the Laplacian matrix.

More generally, a Gauss–Jordan elimination on the Laplacian matrix may be
used to eliminate any node and produce a second circuit with the node removed but
otherwise equivalent electrical properties. This more general elimination procedure
is called a “star–mesh” transform, since the center node of a “star” is replaced by a
mesh of resistors that connect all nodes incident on the star. Since each elimination
of a node in this manner causes all nodes that were previously connected to the
removed node to now be connected to each other, the Gauss–Jordan elimination of a
node often adds more edges to the graph than there were originally. These additional
edges may cause computational problems since the new graph may require more
memory to store and process than the old one. This problem can be addressed by
eliminating nodes in a particular order.

3.4.5.2 Minimum-Degree Orderings

Specifically, when using Gaussian elimination to produce “LU” factors (or Cholesky
factors) of a sparse Laplacian matrix, the amount of “fill-in” of zeros in the Lapla-
cian matrix caused by the creation of new edges after each elimination may be dis-
astrous for the memory required to store the matrix factors. However, elimination of
the nodes in a different order may result in a different level of fill-in. This viewpoint
on the elimination of nodes was the primary motivation behind the development of
minimum-degree orderings that are used to factor sparse matrices [271, 322, 376].

One graph for which the ordering is particularly convenient is any tree. When the
graph is a tree, there exists an ordering of the elimination that produces the creation
of zero new edges and therefore does not create any fill-in for the factored matrix.
The principle behind such an ordering is to order the elimination of nodes from the
leaf nodes inward, which causes the creation of no new edges in the process. Fig-
ure 3.12 gives an example of this elimination procedure on small tree. Algorithm 3.1
accomplishes the ordering in linear time, where the array tree contains, for each
node, the index of one neighbor (with no edges overrepresented) and the array de-
gree contains the degree of each node in the tree. This representation is possible
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Fig. 3.12 Gaussian elimination of the Laplacian matrix of a tree with ordering given by the num-
bers inside the nodes. Note that the resulting Gaussian elimination has the same sparsity structure
as the original matrix when a no-fill ordering is used (e.g., as computed by Algorithm 3.1). Note
that the Laplacian matrix is singular—the last elimination produces a row of all zeros. Once the
graph has been reduced (grounded), as in (3.77), this is no longer a concern e.g., if node 5 were
grounded, the elimination would stop after the third elimination and x5 = 0 would be used to re-
cover the remaining values of the solution. Top row: Elimination of the tree—the figures depict
the graph represented by the lower triangle of the matrix. Bottom row: Laplacian matrix of the tree
after each elimination step

Algorithm 3.1 Produce a no-fill ordering of a tree
1: void compute_ordering(degree, tree, ground, ordering)
2: k⇐ 0
3: degree[root]⇐ 0 {Fixed so that ground is not eliminated}
4: ordering[N − 1]⇐ ground
5: for each node in the graph do
6: while degree[current_node] equals 1 do
7: ordering[k]⇐ current_node
8: degree[current_node]⇐ degree[current_node]−1
9: current_node⇐ tree[current_node]

10: degree[current_node]⇐ degree[current_node]−1
11: k⇐ k + 1
12: end while
13: k⇐ k+ 1
14: end for

since a tree has n− 1 edges (where the root would contain a ‘0’). Therefore, one
could solve the linear system of equations

L0x= f, (3.77)

in linear time when L represents a tree. Algorithm 3.2 finds a solution to (3.77) in
linear time, given a tree and an elimination ordering. For ease of exposition, we
assume that all wij = 1, but the algorithm could be easily modified to handle an
arbitrary set of nonnegative weights. Because the full Gaussian elimination has the
same sparsity structure as the original matrix when a no-fill ordering is used we need
only compute the no-fill ordering, and not the full Gaussian elimination, in order to
solve the linear system.
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Algorithm 3.2 Given a tree, solve (3.77)
1: solve_system(ordering, f, tree, r, output)
2: {Forward pass}
3: k⇐ 0
4: for each non-ground node do
5: r[tree[ordering[k]]]⇐ r[tree[ordering[k]]] + r[ordering[k]]/f[ordering[k]]
6: f[tree[ordering[k]]]⇐ f[tree[ordering[k]]] − 1/f[ordering[k]]
7: k⇐ k+ 1
8: end for
9:

10: output[ordering[N − 1]]⇐ r[ordering[N − 1]]/f[ordering[N − 1]]
11:

12: {Backward pass}
13: k⇐N − 2 {Last non-ground node}
14: for each non-ground node do
15: output[ordering[k]]⇐ output[tree[ordering[k]]] +

r[ordering[k]]/f[ordering[k]]
16: k⇐ k− 1
17: end for

In this section, we showed that another aspect of circuit theory also appears in
other areas of finite mathematics. Specifically, we showed that the methods for cir-
cuit transformations and equivalent circuits arise from Gauss–Jordan elimination
on the Laplacian matrix. This insight is helpful for understanding the motivation
behind matrix ordering algorithms (specifically minimum-degree orderings). When
the graph is a tree, we showed that the graph has a straightforward ordering that al-
lows linear systems that represent trees to be solved in linear time. This linear time
solution has been exploited before in applications to computer vision (see [160]).

3.5 Conclusion

In his Lecture Notes on Physics, Richard Feynman paused to consider why the same
operators and equations recur throughout seemingly different areas of physics [132].
Specifically, Feynman focused on the pervasiveness of the Laplacian operator and
questioned whether it was possible that the commonality of the governing equations
indicated that all of these physical phenomena were actually the same underlying
process on some fundamental level. After examining these different phenomena in-
dividually, Feynman concludes that it is highly unlikely that each of these processes
are actually the same on a fundamental level and instead offers an alternative expla-
nation for the commonality of the governing equations throughout physics. Feyn-
man’s explanation is that the common thread tying together these physical phe-
nomena is that the processes all occur in the same space and that this fact alone
practically forces a certain relationship between variables.
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Similar to Feynman’s inquiry, we can seek an explanation of why circuit the-
ory, graph theory, mass-spring networks, random walks and Markov Random Fields
(among others) all involve the same equations. In our discrete setting, Feynman’s
explanation would suggest that the reason for the recurrence of these equations is
that all of the phenomena are defined on a set of locations which are connected via
some neighborhood structure (i.e., a graph). Therefore, if we are going to describe
a relationship between variables defined at the nodes, our basic tool set will have
to reflect the space upon which these variables are defined. The operators of graph
theory—the Laplacian matrix, adjacency matrix and incidence matrix—explicitly
represent the space and therefore it should come as no surprise that these opera-
tors recur throughout any equations that govern the relationship between variables
defined on a graph.
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Chapter 4
Building a Weighted Complex from Data

Abstract In some applications, both the neighborhood structure of the data and the
weights of the cells are naturally and directly defined by the problem at hand (e.g.,
road networks, social networks, communication networks, chemical graph theory or
surface simplification). However, in many other applications the appropriate repre-
sentation of the data to be analyzed is not provided (e.g., machine learning). There-
fore, to use the tools of discrete calculus, a practitioner must determine the topology
and weights of the graph or complex from the data that is most appropriate for solv-
ing the problem. In this chapter, we will discuss different techniques for generating
a meaningful weighted complex from an embedding or from the data itself. Our
focus will be primarily on generating weighted edges and faces from node and/or
edge data, but we additionally demonstrate how these techniques may be applied to
weighting higher-order structures.

This chapter marks the beginning of our transition from the theory of discrete cal-
culus (both the mathematical exposition of Chap. 2 and the physical exposition of
Chap. 3) to the practice of using these tools in various applications. However, be-
fore we can develop content extraction algorithms for processing and analyzing net-
works (complexes) and the data associated with them, we must first discuss how the
network (complex) is constructed. In some applications, the network (complex) con-
struction is given by the problem definition, but in other applications this structure
must be imposed on the data.

A recurring characteristic of combinatorial algorithms in image processing,
machine learning and computer graphics is that the algorithms are defined on a
weighted complex in which the weight is used to encode something meaningful
about the data or domain. In many circumstances, the domain can be manipulated
through the weights to affect the behavior of an algorithm or its outcome, and sev-
eral examples of this will be discussed in later chapters. However, before we can
define a cell weight, we must first discuss how to generate an edge and face set from
nodes. Note that in this chapter we will employ the term “cycle” to describe a 2-cell,
since a cycle of 1-cells specifies a unique 2-cell.
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4.1 Determining Edges and Cycles

In this section, we consider how to produce an edge set from nodes (data points) or a
cycle set from edges. This question of how to define an edge set may also be viewed
as a question of weighting because setting an edge weight to zero is equivalent to
removing the cell, e.g., any graph may be viewed as a fully connected graph with
a positive weight to indicate the presence of an edge or a zero-valued weight to
indicate the absence of an edge. However, as in Chap. 2, we avoid this issue by
assuming that the desired connections in the graph are explicitly specified, e.g., by
the incidence matrix, and all cell weights are greater than zero.

Throughout our treatment of discrete calculus we define several algorithms for
analyzing and processing both node and edge data. However, the operators of dis-
crete calculus themselves explicitly depend on the choice of edge set (for the gra-
dient and divergence operators) or cycle set (for the curl operator) used to describe
the data. Therefore, in order to employ the tools of discrete calculus to analyze and
process data, it is essential to define an edge set (to process node data) and cycle set
(to process flow data). For many applications the edge set and cycle set are given di-
rectly by the problem. For example, a road network already defines an edge set and
a two-dimensional surface mesh embedded in three dimensions naturally defines a
cycle set. However, in some applications the definition of an edge or cycle set is less
clear. For example, in a manifold learning application (see Chap. 7) we often start
by having data associated with each node and looking for an appropriate edge set.
Even for those applications that define an edge set, the definition of a cycle set may
not given by the application. For example, the cycle set may not be defined in an ap-
plication where the goal is to filter flow data on an abstract graph, or in applications
in which we want to use the cycle structure as a feature to measure network charac-
teristics (see Chap. 8). This section is intended to address these situations where we
wish to define a meaningful edge set or cycle set.

4.1.1 Defining an Edge Set

An edge set may be viewed as defining a neighborhood for each data point. A node
(representing a single data point) is considered to be neighbors with every other
node for which it shares an edge. For example, the foundational graph theory prob-
lem of the Köningsberg bridges assigned two islands to be neighbors if they shared a
bridge. Likewise, in chemistry two atoms in a molecule are considered to be neigh-
bors if they share a bond, and in a road network problem two locations are consid-
ered to be neighbors if they are directly connected by a road. In these applications,
the edge set is a part of the problem formulation and therefore there is no need to
ask which objects or data points are neighbors. However, not every application is
so clear. For example, if we were studying a problem in land use and collecting
data about farms, we would be faced with the problem of deciding which farms are
“neighbors” in the sense that two neighboring farms directly affect each other. If we
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declare that two farms are neighbors only if they are geographically bordering each
other, then we ignore the fact that local wind patterns might cause mutual influence
on two farms which are geographically distant from each other, or that the structure
of the underlying water table might connect two geographically distant farms. Such
domain-specific features require information external to the data collected and are
generally specific to individual applications. In this section, we address the problem
of defining a meaningful edge set for a collection of nodes. The nodes may or may
not be embedded geometrically and they may or may not have data associated with
them.

In the absence of other information, a natural possibility for defining an edge set
is to employ a fully connected graph. A fully connected graph contains an edge for
every pair of nodes, i.e., the edge set of a fully connected graph is isomorphic to the
Cartesian product of the node sets, E= V×V. Although a fully connected graph is
in some sense the most agnostic choice for the edge structure, the number of edges,
|E| = 1

2 (|V|2 − |V|), is prohibitive for a graph of any size. Even a relatively small
graph which is fully connected will outstrip the computational power of today’s
computers,1 causing us to look at defining a sparse edge set with a size proportional
to the size of the node set.

If a fully connected graph is impractical then we must examine other methods of
defining a meaningful neighborhood for each node. Fortunately, the neighborhood
of a node may be thought to be small relative to the entire set of nodes, leading to a
computationally tractable sparse graph. The most natural approach to assigning the
neighborhood of a node is from a geometric embedding of the node set. A geomet-
ric embedding is an association of n spatial coordinates with each point, denoted
by the tuple s̃i for node vi , defined as the mapping s̃ : V→ R

n. In some applica-
tions, the coordinates of a node are defined by treating an n-tuple of node data as
spatial coordinates. Other applications, such as image processing or geospatial anal-
ysis, associate a spatial coordinate with each node which is distinct from the data
associated with each node.

Given a geometric embedding, there are several approaches to exploit this metric
information to build connections from embedded data. Here we consider three such
methods followed by a procedure for adding extra edges to an existing edge set.

4.1.1.1 Edges from an Ambient Metric

Given an embedding and a metric D(vi, vj ) measuring the distance between two
nodes (e.g., a Euclidean distance based on embedding coordinates), it is common
to use the metric to induce the edge set E= {eij |D(vi, vj )≤ k}, where k is a free
parameter. The Euclidean metric D(vi, vj ) = ‖s̃i − s̃j‖2 is the usual choice. This

1A parallel machine, with one processor devoted to one node or to a small number of nodes, can
potentially be used to address fully connected graphs, since each processor must do work only on
the order of |V|. Although such machines are becoming increasingly common, the computers of
today are still predominantly unable to process fully connected graphs of any size.
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method of using a metric to induce an edge set may cause the resulting graph to
contain isolated nodes (e.g., if one of the nodes is distant from all others).

4.1.1.2 Edges by k-Nearest Neighbors

An alternative method for generating the edge set, which overcomes the isolated
nodes problem, is k-nearest neighbors. This approach for establishing an edge set
is defined algorithmically by examining each node and adding an edge between the
node and each of the k nodes with a smaller distance than the rest of the node set.
The k-nearest neighbor algorithm can be used to generate a directed graph (i.e.,
vi may be one of the nearest neighbors of vj , but vj is not one of the nearest neigh-
bors of vi ), however we generally assume that all graphs are undirected unless oth-
erwise noted (see Chap. 2). Additionally, any edges which are added twice from
this procedure (as a result of two nodes each being “nearest neighbors” with each
other) are conventionally reduced to a single edge. The k-nearest neighbor method
for establishing an edge set gives a guarantee on the degree structure of the resulting
graph, that di ≥ k. Consequently, if k > 0, the resulting graph will have no isolated
nodes.

4.1.1.3 Edges from a Delaunay Triangulation

The methods for generating an edge set described above, i.e., the induced metric
method and the k-nearest neighbors method, do not guarantee that the resulting
graph is connected. Additionally, these methods do not guarantee that the resulting
graph is planar, even when the nodes are embedded in two dimensions. If connect-
edness or planarity are important for the application (or the optimization procedure),
then a third option for establishing an edge set from nodes embedded in two dimen-
sions is the Delaunay triangulation of the data [343, 344]. Recall that the Delaunay
triangulation is the unique triangulation of a point set in the plane that is the dual
graph to the Voronoï tessellation of the point set. A Delaunay “triangulation” may
also be applied to data embedded in higher dimensions to ensure that the resulting
structure is a cell complex [22].

4.1.1.4 Adding Edges via the Watts–Strogatz Model

Even when the data is geometrically embedded, it is sometimes profitable to include
nonlocal (long-range) edges into the analysis. One example of such long range con-
nections comes from the analysis of “small-world” networks [396, 397]. A small-
world network may be defined as a locally connected network with a small diam-
eter. The diameter of a graph is the length of the longest optimal path connecting
any two nodes in the graph. Watts and Strogatz [396] showed that a small-world
network may be generated from any locally connected graph via the introduction
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of a very small number of random edges. In other words, a locally connected graph
with a large diameter may be converted into a graph with a small diameter simply by
adding a small number of edges that connect two randomly chosen nodes. A graph
with a small diameter can be helpful in applications because the diameter of a graph
may be thought of as a measure of how quickly information spreads throughout the
graph. In fact, the convergence rate of conjugate gradients when solving a linear sys-
tem of equations with the graph Laplacian matrix is known to depend on the graph
diameter [174, 175]. Therefore, it has been suggested [167] that a small number of
random edges may be added to any locally connected graph (e.g., a lattice repre-
senting an image) in order to increase the convergence rate of iterative optimization
algorithms.

4.1.2 Defining a Cycle Set

A graph (i.e., a 1-complex) may be fully described by its edge–node incidence ma-
trix A, which also provides a gradient operator (as a special case of the exterior
derivative) that can be used for computing gradients of node data. This gradient
operator is widely used to define a range of data analysis/processing algorithms.
However in applications where we seek to process or analyze edge data, such as
flow data, the corresponding exterior derivative operator is represented by the face–
edge incidence matrix, B, which implements the curl operator. In order to define
the incidence matrix B to provide this operation, it is necessary to generate a cy-
cle set, which is a set of faces identified within a given graph. For a general graph,
there are several possible cycle sets, each with distinct properties and advantages for
particular problems.

In this section we discuss the problem of defining a set of cycles which can then
be used to define incidence relations between edges and cycles. The specification of
a cycle set may also be viewed as defining neighborhoods of edges, i.e., two edges
are neighbors if they share a cycle—just as two edges may be considered neighbors
if they share the same node. Defining these neighborhood relationships will allow us
to perform operations such as filtering and clustering on edge data in later chapters.

Methods for defining a cycle set have been less studied than the methods for
generating an edge set. The reason for this lesser amount of study is that the pro-
cessing of flow data is generally less common than the processing of node data.
However, a theme of this work is that all of the machinery which has been de-
veloped for analyzing node data can also be applied to the analysis of flow data
by using the dimensionally-appropriate discrete differential operators. Additionally,
when discussing the measurement of network properties in Chap. 8, we suggest that
the measurement of the cycle structure of a network may reveal new characteristics
of network structure. Consequently, we predict an increasing future interest in the
definition of cycle sets. In this section we consider the definition of a cycle set from
the edges geometrically (i.e., from an embedding) and algebraically. We begin with
geometric methods for defining a cycle set (i.e., from an embedding), before moving
to algebraic methods for defining the cycles.
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Fig. 4.1 An example rotation
system. The faces in the
embedding shown in (A) are
represented combinatorially
by the rotation table given
in (B)

4.1.2.1 Defining Cycles Geometrically: Cycles from an Embedding

When a bridgeless graph2 is embedded onto a surface such that no edge crossings
are generated, then a cycle set (representing the faces) in this embedding may be
identified algorithmically by using a device known as a rotation system. Given an
embedding, we will employ the term geometric cycles to describe the cycles which
are obtained from the rotation system derived from the embedding. A rotation of a
node ρ(vi) is defined as a cyclic permutation of the (oriented) edges incident on the
node vi . A list of rotations defined for each node is called a rotation system, which
may be stored in table format as a rotation table. A rotation for each node may be
induced from an embedding onto an orientable surface by ordering the edges consis-
tently in a clockwise or counterclockwise fashion. The algorithm employs a rotate
operation π(vi, ejk) which outputs the next edge after ejk in ρ(vi) (circulating to
the beginning of the list if ejk is the last), and a trace operation τ(vi, ejk) which
outputs node vk if i = j and τ(vi, ejk) outputs vj if i = k, i.e., the node at the op-
posite end of the edge. Note that the algorithm requires that the edge orientation is
specified by the edge index, i.e., ejk represents the edge that begins at node vj and
terminates at node vk , as usual.

Figure 4.1 shows a rotation system for an example graph. In this example,
the rotation of node v2 is ρ(v2) = {e24, e23, e12}. Therefore, the rotate operation
π(v2, e23) = e12 and the rotate operation π(v2, e12) = e24. Also for this node, the
trace operation τ(v2, e24)= v4 and the trace operation τ(v2, e12)= v1.

Given a rotation system corresponding to an embedding on an orientable two-
dimensional surface, the following algorithm may be used to produce the geometric
cycles of the embedded graph [177], which is equivalent to identifying the 2-cells
of the graph. Each cycle consists of a set of edges oriented in the direction of the
edge traversal in the cycle.

1. Initialize every entry of the rotation table to unused (note that each edge has two
entries).

2. While any unused entry remains:
a. Start a new (empty) cycle.
b. Choose unused entry, eij , in the rotation table, mark as used and add the ori-

ented eij to the cycle.

2In graph theory, a bridge is an edge whose deletion would result in increasing the number of
connected components in the graph. Thus an edge is a bridge if (and only if) it is not contained in
a cycle.
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c. Repeat:
i. Set the current entry to the oriented edge π(τ(vi, ejk), ejk).

ii. Add the current entry (oriented edge) to the cycle and mark as used.
d. Until the current entry equals the first entry in the cycle.
e. Remove the last edge from the cycle and close the cycle.

The cycle set may be used to produce the face–edge incidence matrix B in which
every row, Bi , corresponds to a cycle and Bi (ejk)=±1 if cycle i contains edge ejk ,
with the sign determined by agreement between the native edge orientation and the
orientation induced on the edge from the cycle, as described in Chap. 2.

A rotation system provides a purely combinatorial representation of an embed-
ding. More strongly, it is known that every rotation system on a graph defines (up
to equivalence of embeddings) a unique oriented graph embedding, and that ev-
ery locally oriented graph embedding defines a rotation system [176, 355]. This
statement is sometimes referred to as the Heffter–Edmonds Principle [420]. The
Heffter–Edmonds Principle may be used to define an algorithm for computing the
closed surface of minimum genus onto which a graph may be embedded without
edge crossings, known as the graph genus. This Heffter–Edmonds algorithm com-
putes the graph genus by simply enumerating all possible rotation systems for a
graph and then using the algorithm above to compute the faces for each rotation
system [176]. If the maximum number of cycles found for a graph using this method
is |F|, then the formula relating the Euler characteristic χ = |F| − |E| + |V| to the
genus (see Chap. 8) allows us to compute the genus g of the corresponding closed
embedding surface with minimal genus for the graph as

g = 1

2
(2− |F| + |E| − |V|), (4.1)

which defines the unique graph genus for the graph. Consequently, the number of
geometric cycles of the graph will depend on the genus of the surface upon which
the graph was embedded (see Chap. 8 for more discussion of genus). Note that
this Heffter–Edmonds algorithm for finding the graph genus is not computationally
feasible due to the enormous number of rotation systems (e.g., a (d + 1)-regular
graph has (d!)|V| rotation systems).

4.1.2.2 Defining Cycles Algebraically

When we use a geometric embedding to define a cycle set, the Heffter–Edmonds
principle above states that the number of cycles obtained in the resulting cycle set is
determined by the genus of the particular surface onto which the graph is embedded.
However, the maximum number of cycles obtainable by the geometric method is
limited by the graph genus.

In contrast, we know from Chap. 2 that the dimension of the right nullspace of
A is equal to |E| − |V| + 1. Since AB = 0, then the maximum number of linearly
independent columns of B, and therefore the number of linearly independent cycles,
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is equal to |F|indep = |E| − |V| + 1. Consequently, by the relation between the Euler
Characteristic and graph genus recalled in (4.1), the geometric cycles for a graph
with graph genus greater than zero3 (i.e., a nonplanar graph) for which |F|< |F|indep
do not span the nullspace of A. This statement is known as MacLane’s Planarity
Criterion [268].

Algebraic methods for defining a cycle set take the approach of finding a cycle
set which forms a basis for the nullspace of A and therefore always generates a
cycle set for which |F| = |E| − |V| + 1. Therefore, algebraic methods for defining a
cycle set differ from the geometric methods due to the fact that the number of cycles
in the set generated by an algebraic method depend only on the number of edges
and nodes, rather than on the connectivity structure which determines the number
of cycles obtainable by a geometric method.

There are several methods for producing a cycle basis from an arbitrary graph.
The classical method for producing a cycle basis is based on a tree/cotree decom-
position4 of the graph [147]. This method begins by identifying an arbitrary span-
ning tree subgraph, i.e., Vtree = V and Etree ⊆ E such that Gtree = (Vtree,Etree) is
connected and |Etree| = |Vtree| − 1. Given any edge in the cotree, eij ∈ Ecotree =
E − Etree, there is a unique path within the tree Gtree from vj to vi . Denote this
oriented path as

Pji = {ek� | if the path includes edge ek� in the direction from vk to v�}. (4.2)

Therefore, the oriented cycle corresponding to eij consists of eij and the edges
in Pji . Each cycle may be represented algebraically by a row of the face–edge
incidence matrix B in which each edge included in the cycle assumes a value of
±1 (depending on agreement of the cycle orientation with the native orientation, as
in Chap. 2) and each edge not included in the cycle assumes a zero. This method
may be used to construct a cycle basis by letting every edge in Ecotree correspond
to one row of B. Each row of matrix B formed in this way is independent be-
cause each row contains a nonzero which is unique to that row (corresponding to
the cotree edge). Additionally, the cycle set formed in this way is a basis because
|Ecotree| = |E|− |Etree| = |E|− |V|+1, which is equal to the rank of the nullspace of
the edge–node incidence matrix A. Figure 4.2 shows an example of a tree/cotree ba-
sis for a small graph. Although the original graph in this example is planar, note that
the cycle set obtained from this spanning tree does not correspond to the geometric
cycle set (cell faces).

3Note that when the graph genus equals zero then, by the relationship between the Euler Char-
acteristic and genus, |F| = |E| − |V| + 2. In contrast, the number of linearly independent cycles
(spanning the nullspace of A) is given by |F| = |E| − |V| + 1. Therefore, a planar graph implicitly
has an extra face that is not linearly independent. This is the “outside face” described in Chap. 2.
4Recall that, for a connected graph with V and E, a tree subgraph is identified by the connected
subgraph comprised of V and Etree ⊆ E, where |Etree| = |V| − 1. The cotree subgraph correspond-
ing to a tree subgraph is the (possibly disconnected) subgraph consisting of V and the set of the
remaining edges Ecotree = E− Etree. Thus the union of the edge set from any given tree with the
edge set from its cotree is equivalent to the original graph.
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Fig. 4.2 Example of a tree/cotree basis on a small graph. (A) The original graph G. (B) An ar-
bitrary spanning tree of the graph G. (C) The first cycle, corresponding to edge e3 in the cotree.
(D) The second cycle, corresponding to edge e5 in the cotree

The tree/cotree basis is straightforward to generate and efficient to produce. How-
ever, this choice of basis may not be ideal for many applications because of sev-
eral limitations: (i) the tree/cotree basis for a given graph depends on the choice of
tree/cotree decomposition and is therefore not unique; (ii) the tree/cotree cycle basis
often contains many non-zeros (i.e., in B), which results in inefficient storage and of-
ten requires longer computation times for any practical usage of the basis; (iii) edge
weights are ignored in producing the tree/cotree cycle basis; and (iv) the tree/cotree
cycle basis is rarely equivalent to the geometric cycle set of an embedding, even
when the graph is planar.

An alternative to the tree/cotree method for defining a cycle basis is the mini-
mum cycle basis. The minimum cycle basis finds a cycle basis that optimizes the
sum of the weights of the edges comprising each cycle. Specifically, given a cycle
basis represented by the face–edge incidence matrix B and diagonal edge weighting
matrix G, define the cycle basis weight as

cycle basis weight(B,G)= 1T|B|G1, (4.3)

where |B| indicates the absolute value of each entry in B. A minimum cycle basis
for a graph is any cycle basis (represented by B̂) which minimizes the cycle basis
weight (4.3) over the set of all possible cycle bases for the graph, i.e.,

B̂= argmin
B
{cycle basis weight(B,G)}. (4.4)

The minimum cycle basis has appeared in applications in electrical engineering [78],
structural engineering [66] and surface reconstruction [157, 374].

The minimum cycle basis explicitly finds a basis which minimizes the number
of non-zeros in B (when all edge weights are equal). Although the minimum cycle
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basis is not guaranteed to be unique, the minimum cycle basis often is unique in
practical situations. Additionally, the geometric cycle basis generated by an embed-
ded planar graph—with the largest cycle, the “outside face”, omitted—comprises a
minimum cycle basis for the graph (assuming equal edge weights). A minimum cy-
cle basis may be found by an algorithm with a polynomial-time dependence on the
number of edges in the graph. The first polynomial time algorithm was developed
by Horton [206] who adopted the simple approach:

1. Find a set of cycles which contains a minimum cycle basis as a subset.
2. Sort the cycles by weight.
3. Add cycles to the cycle set starting from the cycles of minimum weight, while

rejecting cycles which are not independent (using Gaussian elimination to deter-
mine independence).

4. Terminate when the cycle set contains |F| = |E| − |V| + 1 cycles.

Horton [206] showed that a cycle set obtained by taking each node vi and edge ejk

can be used to generate a set of cycles containing a minimum cycle basis. This set
is generated by computing, for each node/edge pair, the cycle composed of the two
shortest paths from the ends of edge ejk (i.e., vj and vk) to the node vi , in which the
cycle is rejected if these two paths contain any common nodes (except vi ). Although
Horton’s algorithm for producing a minimum cycle basis is solvable in polynomial
time, it is still computationally expensive. Recently, there has been substantial inter-
est in the problem of finding a more efficient algorithm for computing a minimum
cycle basis [30, 100, 155, 226, 278]. Although these new algorithms have a lower
computational complexity than Horton’s algorithm, they still require a substantial
amount of computation.

We have discussed how to generate a cycle set from a geometric embedding or a
cycle set which is an algebraic basis for the nullspace of A. However, the problem
of generating all cycles for a graph has also been studied and there exist algorithms
for producing this set [261, 273, 316, 375] (see Ref. [33] for a review). These al-
gorithms are often computationally infeasible for graphs of any size, due to the
overwhelmingly large number of possible cycles.

4.1.2.3 Cycle Sets and Duality

In Chap. 2 we defined the dual of a 2-complex (i.e., graph with an identified cycle
set) by replacing each cycle in the primal graph with a node in the dual graph, which
was possible when every edge was incident on exactly two cycles that induced op-
posite orientations on the edge. A cycle set which traverses each edge exactly twice
in opposite directions is called an oriented cycle double cover. The oriented cycle
double cover conjecture [340] states that every bridgeless graph has an oriented cy-
cle double cover [215]. Since this conjecture is presently open, there is no known
method for generating an oriented cycle double cover for any nonplanar graph. How-
ever, some heuristics for finding a cycle double cover of an arbitrary graph have been
proposed [262]. The geometric cycles for a planar graph embedded on the surface
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of a sphere define a double cycle cover, and as a result there is a straightforward
method for finding the dual of a planar graph.

4.2 Deriving Edge Weights

Given an edge set, obtained either natively by the application or via one of the meth-
ods above, we may consider assigning weights to the edges in a meaningful way to
assist in the analysis of the network or the data associated with the network. Once
again, some applications will define edge weights as part of the problem definition,
in which case the methods presented in this section are not relevant. As before,
we are primarily concerned with methods for defining edge weights, but will also
discuss methods for defining cycle weights and weights of higher-order p-cells.

Edge weights can have several interpretations depending on the application. In
physical systems, the edge weights reflect material properties such as branch resis-
tance or a spring constant (see Chap. 3). In geometric applications, edge weights
are used to represent the distance between nodes, while in many data processing
applications the edge weights represent an affinity measure between data points.
Consequently, in the terminology introduced in Chap. 2, the weights derived from
geometry will be considered as distance weights and the weights derived from data
will be considered as affinity weights. Problems in physical system modeling gener-
ally include the value of the edge weights as part of the problem definition. In this
section, we discuss some of the methods used to define edge weights in geometric
and data processing applications.

4.2.1 Edge Weights to Reflect Geometry

Many graphs are embedded geometrically, meaning that each node vi embedded in
n dimensions is associated with an n-tuple of coordinates, s̃i . Examples of these
graphs include road networks, distributed sensors, three-dimensional meshes in
computer graphics and pixel data in an image. Weighting these edges to reflect the
embedding is very simple: the edge weights are given by the distances between
connected nodes measured using the node coordinates,

wij = ‖s̃i − s̃j‖, (4.5)

where s̃i indicates the node coordinates and ‖ · ‖ indicates the Euclidean norm. This
metric weighting is the natural choice for computing such quantities as the length
of a road connecting two cities in a road network. Weights obtained in this manner
are clearly examples of distance weights (described in Chap. 2), since they directly
represent the distance between nodes.

Weights have also been used to represent geometric quantities on an embedded
lattice. Specifically, Boykov and Kolmogorov [54] proposed a method for weighting
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edges such that the sum of the edge weights spanning two sets of nodes would
approximate the length of the boundary of the nodes embedded in space as measured
via some metric (typically the Euclidean metric). The purpose of this edge weighting
was to be able to use combinatorial optimization techniques for minimizing cuts
between nodes in order to find a minimal Euclidean boundary between two sets of
points in space. Similarly, Schoenemann et al. [61, 334] have defined a set of weights
between pairs of edges such that the weighted length of an edge cycle approximates
the mean curvature of the polygon represented by the cycle.

4.2.2 Edge Weights to Penalize Data Outliers

In content extraction applications, such as filtering or clustering, we often define
edge weights for the purpose of including extra information to improve the results
of a content extraction algorithm. In general, these edge weights are used to reflect
the similarity or affinity between the data at two nodes. The strategy is effectively
to set the edge weights such that they represent similarity when the edge spans two
nodes belonging to the same class/cluster and to set the edge weights to represent
dissimilarity when the edge spans two nodes belonging to different classes/clusters
(i.e., outliers). We consider several methods for establishing edge weights to serve
this purpose by looking at (i) similarities derived from metric distances and (ii) sim-
ilarities derived from robust functions. The weights described in this section are all
interpreted as affinity weights, as discussed in Chap. 2. The geometric coordinates
of the nodes, discussed above, may be substituted for node data in this section to
obtain edge weightings for an embedded graph that are robust to outliers (e.g., for
mesh filtering applications).

4.2.2.1 Univariate Data

In many applications, edge weights are used to define distances between nodes (in-
versely, the strength of connection between two nodes) which are incorporated into
the data analysis (e.g., filtering, clustering). In the absence of an external source for
distance information, the edge weights must be defined from the given data in some
way that is suitable to the application. The end result is an operator that is adapted
to the data—a classic example, anisotropic diffusion, is described below. We now
review several common approaches in the literature for setting edge weights from
univariate data and then proceed to consider the case of multivariate data below.

In order to develop the weighting functions used in graph-based algorithms, we
begin by considering weighted data processing in a general context beyond that of
discrete complexes and graphs. For example, in the calculation of a weighted least-
squares regression or of a weighted mean, the purpose of the weights is generally
to de-emphasize certain data points or to prevent the undue influence of outliers.
Specifically, consider that the mean of the values [0,1,2,3,4,1000] is 145, which is
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dominated by the outlier 1000. However, by weighting the calculation of the mean,
i.e.,

weighted mean= 0w0 + 1w1 + 2w2 + 3w3 + 4w4 + 1000w5

w0 +w1 +w2 +w3 +w4 +w5
, (4.6)

with weights w0 = w1 = w2 = w3 = w4 = 1 and w5 = 0, the weighted mean is
equal to 2. By using the above weights, we effectively removed the ‘1000’ sample
from the calculation of the mean. The same effect of removing an outlier can be
achieved by replacing the calculation of the mean by a calculation of the median.
To continue the above example, the median of these numbers would conventionally
be given as equal to 2.5. Although the mean and median calculations appear to be
very different, we can view the median as a weighted mean.5 Specifically, consider
the mean of a set of real numbers S with N elements si ∈ S as the solution to the
problem

x = argmin
x

{∑
i

(x − si)
2
}
, (4.7)

with the solution given by the classic formula for the sample mean

x =
∑

i si

N
. (4.8)

A weighted mean is the solution to

x = argmin
x

{∑
i

wi(x − si)
2
}
, (4.9)

where the minimum is given by

x =
∑

i wisi∑
i wi

. (4.10)

Similarly, the median value is the solution to the problem

x = argmin
x

{∑
i

|x − si |
}
, (4.11)

which may be rewritten as

x = argmin
x

{∑
i

1

|x − si | (x − si)
2
}
, (4.12)

5This concept appears again in Chap. 5 and Appendix B.
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which can be viewed as the weighted mean in (4.9) with weights equal to wi =
1/|x − si | (assuming that |x − si | �= 0). Consequently, if we had a method for ap-
proximating these weights, then the computation of the weighted mean would pro-
vide for an outlier-resistant approximation to the median.

A major utility of graph algorithms for data processing is that the neighborhood
structure is exploited to provide additional information about data—in the sense
that each node is generally assumed to be similar to its neighbors. For example, in
a filtering operation, we typically assume that the data at each node is similar to
the data at neighboring nodes, and in a clustering operation, we generally assume
that each node is more likely to belong to the same cluster as its neighbors. This
prior assumption reflects a presumed smoothness in our data model, as discussed in
Chap. 5. Therefore, we may consider that a node value (e.g., data, cluster member-
ship) is likely to be at the “average” of its neighbors, but we want to design weights
such that this average is robust to outliers. Therefore, we can view the purpose of the
edge weights as the reduction (or removal) of the influence of neighboring nodes for
which the values represent outliers. Consequently, the design of a weighting func-
tion for data processing applications should be to set small weight values on edges
between nodes that are dissimilar or when one node is likely to be an outlier, i.e.,
between nodes that are likely to belong to different classes or clusters.

Although the median value is an “average” value for a set of values which is more
robust to outliers than the mean value, other so-called “robust” error functions were
designed to provide an estimate for an “average” which is even more robust than the
median. Robust error functions appeared early in the Markov Random Field-based
image filtering literature [144, 146, 259], as will be presented in Chap. 5. A robust
function is a function that is insensitive to outliers, i.e., that does not allow outliers
to have undue influence. Intuitively, these robust functions give linear or quadratic
penalties near zero but “level off” after a certain value to produce a nearly constant
penalty. A robust error function therefore seems like a good candidate for setting
edge weights for data analysis, since the robust error function is designed to ignore
outliers.

Historically, in the field of image filtering, robust error functions were initially
used to measure and penalize gradients of the processed image rather than to weight
edge variables based on the initial data. The motivation for using a robust error
function is that smoothness penalties are not unbounded, which would result in
over-smoothness of the filtered data (see Chap. 5 for more details on filtering with
discontinuities). Figure 4.3 gives an example of a robust error function in which it
is possible to observe that the penalty is roughly quadratic near a zero gradient but
levels off to a nearly constant penalty for large gradients.

After the introduction of anisotropic diffusion as an image processing technique
by Perona and Malik [306], it became common to use a class of edge weighting
functions iteratively to update an intermediate solution. In subsequent work, these
edge weighting functions were measured from the gradients of the input data and
used as edge weights for image segmentation [345], clustering [169] and filtering
[158, 419]. In the elegant work of Black et al. [38], it was shown that the weighting
functions in common usage could be interpreted as the derivatives of common ro-
bust estimators from statistics and further suggested new weighting functions which
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Fig. 4.3 An example of a
robust error function ρα(z),
the Welsch function, for
different values of α. The
function z2 is plotted as a
reference

occasionally appear in the literature. In summary, the property of robust error func-
tions to ignore outliers may be exploited.

Following Black et al. [38], we may consider data filtering as the partial mini-
mization of

E[x] = ρα(∇x) in the continuous setting, or (4.13)

E[x] = ρα(Ax) in the discrete setting, (4.14)

in which x is our objective, filtered data and ρα(·) is a robust error function with
parameter α. By a “partial minimization” we mean that we take x initially to equal
the input data and solve a few iterations of gradient descent on (4.14). When ρα(Ax)

is a quadratic (as in many of the robust estimators that we will consider shortly), then
this iteration is given by

x[k+1] = x[k] −�t ATgα(Ax)Ax[k], (4.15)

and we see that the role of the edge weights are assumed by

gα(z)= ρ′α(z)

z
, (4.16)

where ρ′α(z) = dρα(z)/dz. The derivative ρ′α(z) is sometimes known as the influ-
ence function. Instead of a gradient descent on (4.14), we can also interpret (4.15)
as a forward Euler scheme for solving

dx

dt
=−Lx=−ATG−1Ax=−ATgα(Ax)Ax, (4.17)

with initial condition x[0] = s, where s is the data. This interpretation as a for-
ward Euler scheme is how Black et al. [38] derive the anisotropic diffusion filtering
method from robust estimator functions of the gradient ρα(Ax). Using this deriva-
tion we see that setting edge weights based on the gα expression in (4.16) of a ro-
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Table 4.1 Common M-estimators. Edge weights in many data processing applications employ the
gα(z) function to set edge weights with z= As, where s represents the node data. For example, if
si represents image intensity at node vi , then wij = gα(si − sj )

Estimator ρα(z) ρ′α(z) gα(z)= ρ′α(z)

z

Welsch α2

2

[
1− exp

(− z2

α

)]
αz exp

(− z2

α

)
α exp

(− z2

α

)

Cauchy α2

2 log
[
1+ ( z

α

)2]
α z

1+( z
α

)2 α 1
1+( z

α
)2

Tukey

{
z2

α2 − z4

α4 + z6

3α6 if |z| ≤ α
1
3 if |z|> α

{
z[1− ( z

α2 )2] if |z| ≤ α

0 if |z|> α

{
[1− ( z

α2 )2] if |z| ≤ α

0 if |z|> α

Huber

{
z2

2 if |z| ≤ α

α(|z| − α
2 ) if |z|> α

{
z if |z| ≤ α

α sign{z} if |z|> α

{
1 if |z| ≤ α

α
sign{z}

z
if |z|> α

Fair α2
[ |z|

α
− log

(
1+ |z|

α

)]
z

1+ |z|
α

1
1+ |z|

α

p-norm,
p < 1

|z|p
αp

sign{z} |z|p−1

α
|z|p−2

α

bust error function will cause filtering and other operations to reduce the influence
of spatial outliers when processing data.

We may now examine several of the robust error functions for which the deriva-
tives are commonly used as weighting functions. Table 4.1 lists common robust
functions, known as M-estimators in the statistical literature (e.g., [422]). Other ro-
bust functions exist and even more could be invented. The most commonly used
functions for setting edge weights from data are the Welsch or the Cauchy functions,
although the Tukey biweight function also appears occasionally. Some evidence ex-
ists to suggest that the Cauchy function performs best for the applications of image
segmentation [164] and that the Tukey function performs best for image filtering
[38], but very few systematic studies have been undertaken to determine when or
how to choose one of these functions.6

The Gaussian weighting function g(z) = exp(−z2/α), corresponding to the ro-
bust Welsch function, is also common because it may be derived from other princi-
ples. For example, the Gaussian weighting function is derived by Belkin and Niyogi
[23] because the Gaussian function is the Green’s function for the (continuous)
Laplacian. The Gaussian weighting function may also be motivated as tracking “per-
ceptual differences” based on Weber’s Law and the exponential response curve of
the human eye to stimulus changes [113]. This function may also be derived from
an assumption that the node data is sampled from a manifold, in which case the
Gaussian kernel is a common interpolation function.

6Based on the available evidence at the time of writing, the authors would suggest using a Cauchy
function for most applications, although the Welsch function and Tukey functions also seem to
perform well. The remaining robust functions have yet to prove as generically useful.
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4.2.2.2 Computing Weights from Multivariate Data

The previous discussion on setting weights to penalize outliers required the com-
putation of a comparison between data values. This comparison was computed by
calculating a difference between the data variables. This discussion implicitly as-
sumed that the underlying data was univariate (i.e., each node was associated with
a single data variable). If our data is instead multivariate (i.e., each node is associ-
ated with a tuple containing multiple data values), then the comparison involved in
outlier detection is no longer a simple difference computation.

Weighting Based on Norms of Differences

The standard approach to comparing multivariate data is to use the norm of the
difference between two multivariate data points. This norm can be used in place
of the difference for any of the robust error weighting functions described in the
previous section. For example, if s̃i and s̃j represent the multivariate data at two
nodes, then an extension of the Welsch weighting function would be

wij = exp

(
−‖s̃i − s̃j‖2

α

)
. (4.18)

Note that we continue to distinguish between vector data and multivariate data,
since 1-cochains or edge variables are typically used to represent vector fields
whereas “multivariate data” refers to multiple, independent 0-cochains (e.g., multi-
channel, multi-modal or multi-spectral data) at each node. This distinction between
“vector data” and “multivariate date” is often ignored in the image processing lit-
erature where, for example, RGB color data is often referred to as “vector data”,
while we would consider it here to be “multivariate data”. Weighting vector data
(flow variables) will be discussed in Sect. 4.3.

Although any of the weighting functions described for univariate data may be
used with multivariate data by replacing the data difference with the norm of the
difference (in the same manner as in (4.18)), we have additional latitude with mul-
tivariate data in the sense that we may choose an additional norm for measuring the
difference s̃i − s̃j . Along with the usual p-metrics (i.e., Manhattan distance, Eu-
clidean distance, Chebyshev distance), there are other choices that are specific to
multivariate data. As before, the norm used for measuring z = ‖s̃i − s̃j‖ may also
be specified via a K ×K inner product matrix H such that

z= ‖s̃i − s̃j‖ =
√

(s̃i − s̃j )TH(s̃i − s̃j ). (4.19)

When H= I, then this norm is just the Euclidean norm. Therefore, in the remainder
of this section we will discuss different choices of H with the assumption that the
edge weighting function for multivariate data is in one of the forms in Sect. 4.2.2.1,
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e.g.,

wij = exp

(
−‖z‖

2

α

)
= exp

(
−‖s̃i − s̃j‖2

α

)

= exp

(
− (s̃i − s̃j )

TH(s̃i − s̃j )

α

)
. (4.20)

Therefore there are |V|K data values for the entire graph, where K is the number of
scalar data fields associated with each node.

For applications such as clustering or image segmentation in which the goal is
to separate the foreground cluster/object from the background cluster/scene, an ef-
fective approach for measuring distances between multichannel data is the Maha-
lanobis distance. The Mahalanobis distance is useful when examples are avail-
able of the multichannel data sampled from the foreground. In this situation, the
Mahalanobis distance allows us to measure distances relative to the within-cluster
scatter measured from the training examples. Specifically, if we have a set of
nodes S containing foreground samples, then we may set the inner product ma-
trix H = cov(PS)−1, where cov(PS) indicates the covariance matrix of the data in
set S. The calculation of the covariance matrix and its inverse are computationally
efficient; the construction of the covariance matrix is computable in linear time with
respect to |S| and the inverse is computed only on the (generally small) K × K

covariance matrix.
A different method for measuring distances between multichannel data assumes

that the data is embedded on a lower-dimensional manifold and, by determining the
manifold, computes the difference of the data relative to the lower-dimensional man-
ifold (see Chap. 7 for details on manifold learning). One example of using manifold
learning to choose a metric is the Locality Preserving Projections (LPP) method of
He and Niyogi [193]. This method uses the Laplacian Eigenmaps projection [23]
to effectively project the higher-dimensional data onto a lower dimensional mani-
fold using the eigenvectors of the Laplacian matrix (see Chap. 7 for more details).
Specifically, if L is the (weighted or unweighted) Laplacian matrix of the graph,
then we can set H to be the generalized eigenvectors for the problem

PLPTx= λPDPTx, (4.21)

where D is the diagonal matrix of node degrees. If we let R represent the set of
generalized eigenvectors satisfying (4.21), then the weighting matrix is given by
H = RkRT

k where k is the set of eigenvectors corresponding to the k smallest gen-
eralized eigenvalues. An attractive property of this method is that this generalized
eigenvector problem is only of size K ×K , where K is the number of data chan-
nels. The LPP method was applied in [165] to the problem of clustering (and alpha-
matting) color images.
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Weighting Based on Neighborhood

Another method for setting edge weights has recently become popular in the image
processing community. This approach establishes the edge weight as a function of
the difference in data neighborhood between two nodes [15, 63, 123]. Since the
neighborhoods of two nodes are directly compared, this type of weighting is most
suitable for a shift-invariant graph (see Chap. 5), since each node will have the same
neighborhood structure. Generally, these neighborhood comparisons are made be-
tween every pair of nodes, resulting in a fully connected graph (or at least a graph
with long range edges). The principle of this approach is that data patterns often
re-occur over large spatial areas and that the use of non-local neighborhoods be-
tween instances of the pattern can lead to increased performance of filtering tasks.
The “non-local means” method of [63] uses a shift-invariant graph with an ordered
neighborhood and assigns a weight between two nodes via

wij = g(‖xnbhd(i) − xnbhd(j)‖), (4.22)

where g(·) is any robust weighting function discussed above and xnbhd(i) represents
the collection of data values, arranged into a vector, from the nodes in the local
neighborhood of vi . For example, if we employ g(·) as the Welsch function, then

wij = exp

(
−‖xnbhd(i) − xnbhd(j)‖2

α

)
. (4.23)

Since a weight is established between every pair of nodes, the final graph is effec-
tively fully connected. Although this approach results in a fully connected graph,
which is unusable in many practical situations (due to memory requirements, etc.),
one can use a drop tolerance for removing any edges with a weight less than some
predefined threshold θ . A small value of θ retains a nearly fully connected graph
and a large value of θ removes all but the strongest connections.

4.2.3 Edge Weights to Cause Repulsion

So far we have considered weights that are employed to act as soft barriers between
sets of nodes. These soft barriers were motivated from the perspective of reducing or
removing the undue influence of outliers. This type of weighting is useful in filtering
applications in which our intention is not to filter over a discontinuity, or segmenta-
tion/clustering applications in which our goal is to use these partial indications of a
discontinuity to help produce a final labeling of the nodes. In these cases, the edge
weights are typically nonnegative.

However, some studies have additionally considered the use of edge weights
with negative values in filtering and clustering applications [194, 257, 413, 414].
In these cases, the negative edge weights represent the strength of repulsions. In
the context of a filtering application, these negative edge weights act to force nodes
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on either side of the edge to assume different values. For example, in a cluster-
ing/segmentation application, the negative weight tries to force nodes on either side
of the edge to assume different labels. The optimization of models including nega-
tive edge weights can be more difficult that the usual case of nonnegative weights,
since the energies to be optimized may be non-submodular [244] or non-positive
definite. However, local optima and incomplete solutions (e.g., quadratic pseudo-
boolean optimization) are possible. In some specific circumstances (e.g., planar
graphs), an optimal solution may be guaranteed. See Appendix B for more details
on optimization in the presence of negative weights.

4.2.4 Edge Weights to Represent Joint Statistics

Instead of using weights to ignore outliers or represent repulsion, a different utility
for edge weights has been to represent the expected correlation of the data between
nodes, in which the correlation may be either positive or negative. An application
which benefits from the use of weights to represent correlation is pattern restora-
tion. The pattern restoration problem is to input a set of training patterns in which
spatial correlations are learned between the data and then to use this learning to
restore corrupted data drawn from the same distribution. These approaches to gen-
erating weights have not appeared very often in the literature and the methods used
for generating weights in these circumstances have been narrowly defined for the
application and the optimization method. Therefore, we refer the reader to [93, 243]
for some examples of this approach.

4.2.5 Deducing Edge Weights from Observations

On certain occasions, one wishes to know the inhomogeneities of the material prop-
erties within a physical system, but has access only to the action of the material
on various pairs of inputs and outputs. For example, in circuit theory the material
inhomogeneities are the resistances of the circuit that, given a set of currents, act
to generate a set of voltages and consequently result in power dissipation through-
out the circuit. These inhomogeneities are represented by a constitutive relation and
thus we will refer to the problem of determining the constitutive under these circum-
stances as the Constitutive Determination Problem (CDP). In general, the CDP is
not solvable with access to a single test/response measurement, since different con-
stitutive laws may produce the same input/output. Examples of the CDP problem
are the determination of the resistor values for an electrical circuit or impedance
tomography (e.g., [240]).

The CDP problem that we are concerned with is formulated by a search for edge
weights, w, for a graph with a known edge set. In this circumstance we know the
topology of the graph but not its edge weights, thus the metric component of the
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graph Laplacian matrix L is the unknown, and we have access to K observations of
the system test–response. Denote the collection of tests as T = {t1, t2, . . . , tK } and
the corresponding responses as R= {r1, r2, . . . , rK}. We may consider that the tests
are “designed” and the responses are “measured”, via Lri = ti . An example problem
is this: Given a circuit with unknown conductances (corresponding to weights in our
case), we may give test functions (i.e., injecting/draining a distribution of current in
the nodes, in which the amount of current injected and drained is balanced) and
measure the circuit response (i.e., the electrical potentials). Our goal is to determine
the conductance values. The conductance values will not, in general, be unique for a
single test–response pair. Therefore, our first question is to determine when we will
have a unique solution.

We begin by recalling that the Laplacian matrix may be decomposed into the
factors

L= ATG−1A. (4.24)

Given this decomposition of the Laplacian matrix, we may write

Lri = ATG−1Ari = ATPw (4.25)

where w is the vector of edge weights. If p= Ar represents the response gradients,
then we may form a diagonal matrix P= diag(p) such that the diagonal entries of P
are the elements of the vector p, i.e., Pjj = pj . Given K test–response observations,
the solution of (4.25) may then be written

[P1A,P2A, . . . ,PKA]Tw= [t1, t2, . . . , tK ]T, (4.26)

for the vector w and the tests–responses given by ti and Pi . There is a problem,
however, with this problem formulation: the number of equations is Kn, for n= |V|,
and the number of unknowns is m = |E|. For a connected graph with n nodes, the
minimum number of edges is m= n− 1 but, in general, m > Kn. In other words,
for a small K , we may not be able to solve (4.26) exactly.

We now consider the question of determining the value of K which is necessary
to solve the system exactly. In order to solve the CDP exactly we require that K

is chosen so that Kn ≥ m and that the K test-response pairs are independent in
the algebraic sense relative to (4.26). For a general r-regular graph with n nodes,
m = 1

2 rn. Therefore, the number of independent test–response pairs necessary to
find an exact solution of the CDP is K ≥ 1

2 r .

4.2.5.1 The Underdetermined Case

If there are an insufficient number of equations for the number of unknowns, our sys-
tem (4.26) is underdetermined. In this case, we need to add additional constraints,
or regularize the problem, in order to produce a unique solution. A necessary con-
straint for physical systems is that wi ≥ 0 for all edges. However, this constraint is
still insufficient to yield a unique solution.
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Although several additional constraints could be incorporated in order to con-
strain the problem to find a unique answer (depending on domain knowledge of the
solution) a constraint that yields a particularly straightforward method of calculation
is to look for the solution with the smallest sum of weights. With these constraints,
we have the following problem

min
w

1Tw,

[P1A,P2A, . . . ,PKA]Tw= [t1, t2, . . . , tK ]T,

w≥ 0.

(4.27)

The notation “1T” above is used to indicate the vector of all ones to provide an
unweighted combination of the components in w. This problem is a linear pro-
gramming problem (see Appendix B) that may be solved with standard, efficient
techniques.

4.2.5.2 The Overdetermined/Inconsistent Case

A CDP may be overdetermined if K is sufficiently large that Kn > m. If the test-
response pairs are precise, (4.26) may be solved simply by taking any M indepen-
dent columns and solving the resulting linear system. However, in some cases, the
test-response measurements may be noisy, or may suffer from numerical precision
limitations. In these cases, there will not be a solution satisfying each equation of
(4.26).

The inconsistent case is the most difficult because the test-response pairs may not
be treated as constraints due to their inconsistency. This problem is compounded by
the fact that a standard least-squares approach is inappropriate since the weights
are required to be nonnegative. Therefore, we are led to a quadratic programming
problem (see Appendix B).

A least squares formulation of (4.26) is

STSw= STt, (4.28)

where S= [P1A,P2A, . . . ,PKA]T and t= [t1, t2, . . . , tK ]T. Introducing the positiv-
ity constraint yields the quadratic programming problem

min
w

(STSw− STt)T(STSw− STt)=wTSTSSTSw− tTSSTSw,

w≥ 0.

(4.29)

Before concluding this section, we note that in many practical cases of interest it
is not possible to probe and/or observe all of the measured responses. For example,
in the impedance tomography application, it is only possible to probe and measure
responses on the surface of a subject’s head. A treatment of these more difficult
cases is beyond the scope of the present work, although the framework above can
serve as a starting point for these investigations.
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4.3 Obtaining Higher-Order Weights to Penalize Outliers

In the previous section, we discussed how to generate edge (i.e., 1-cell) weights
from a node or scalar field (i.e., 0-cochain) data. Specifically, we examined how
edge weighting functions to penalize the influence of outliers could be used in fil-
tering or clustering applications. Additionally, we have seen in Chaps. 2 and 3 that
these edge weights could be interpreted physically as material properties, represent-
ing, e.g., diffusion constants, electrical resistances or spring constants. However,
in Chap. 5 we will see that our techniques for filtering scalar fields or node data
(i.e., 0-cochains) naturally extend to the filtering of flow fields or vector data (i.e.,
1-cochains). Therefore, it is natural to examine how we can meaningfully weight
flow data for filtering or clustering applications. The purpose of this section is to
address this issue and show that these weights also have natural physical interpre-
tations. We will begin by addressing the weighting of higher-order structures for
purposes of filtering/clustering flow fields (1-cochains), but these techniques will be
generalized at the end of this section to the weighting of data associated with any di-
mensional structure (p-cochains). As before, we distinguish the higher-dimensional
cells from the higher-order cliques which are employed occasionally in some appli-
cations [212, 239, 245]. See Chap. 2 for more on the relationship between higher-
order cliques and higher-order cells.

When using edge weights to penalize the influence of outliers, our weighting
functions were of the form g(∇x) or g(Ax) in which g was a function that was
maximal at zero, g(−Ax) = g(Ax), and g(Ax) decayed with increasing values of
the magnitude of Ax. From the standpoint of penalizing outlier data at neighboring
nodes, the gradient operator (or the coboundary operator on node data, represented
by the incidence matrix A) serves to both encode the neighbors of a node and to
compute a comparison of the data at a node with its neighbors. Consequently, gener-
alizing our interpretation of weighting as outlier-identification to higher-order cells
requires us to identify the operators which both encode the neighborhood of each
cell and the comparison of data across neighbors. In the context of filtering, the as-
sumption of this weighting strategy is that large magnitude gradients are likely to be
signal and low magnitude gradients are likely to be noise, consistent with a model of
high-frequency noise with discontinuities (see Chap. 5 for more details). The high-
frequencies of a flow field are the components of the flow field having a projection
onto the high frequency eigenvectors of the edge Laplacian L1 = BTB+AAT. Con-
sequently, the high-frequency components of the flow field may be decomposed into
those components of the flow field with a large curl and those components having a
large divergence. Recall from Chap. 2 the definition of the weighted edge Laplacian
matrix

L1 = AG0ATG−1
1 +G1BTG−1

2 B. (4.30)

While the interpretation of edge weights as a measure of either the similarity or
difference between two nodes is natural and arises in many applications, the inter-
pretation of higher-order weights can often be less straightforward as there are fewer
examples from physics to provide intuition through examples. To better understand
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the role of these higher-order weights for the purposes of suppressing the effects
of outlier data on filtering and clustering operations, we will consider in depth the
special case of deriving weight values from data to avoid outliers when filtering
“flow data” (1-cochains) with the weighted edge Laplacian, which can be under-
stood in terms of fluid dynamics. In Chap. 2 we noted the physical interpretation of
the cycle weights G2 and node weights G0 as viscosity, which impedes fluid flow
around cycles or through nodes. More specifically, we may view the cycle weights
as corresponding to shear viscosity (the “first coefficient of viscosity”) that acts as
a diffusion coefficient on the vorticity. We may also view the node weights as cor-
responding to bulk viscosity (the “compression viscosity” or “second coefficient of
viscosity”), which is neglected for incompressible fluids (i.e., for divergence-free
fluids).7

In the context of processing node data considered in the previous section, edge
weighting is used to reduce the influence of outlier data connected to a node via
its incident edges. In a filtering or clustering operation (see Chaps. 5 and 6), two
flows may influence each other directly if the two flows are on edges (i) that are
part of the same cycle or (ii) that connect to the same node. In either case, the two
flows are said to be co-incident (to the cycle or to the node, respectively). If the two
co-incident flows are very different, e.g., if one flow is very strong and the other is
very weak, then this difference will induce a strong circulation on the cycle with
which they are co-incident, or a strong divergence on the node with which they are
co-incident. Consequently, any cycle with an outlier circulation (e.g., a curl at a
cycle that is much larger than other curls in the vicinity) or a node with an outlier
divergence (e.g., a divergence at a node that is much larger than other divergences
in the vicinity) may be weighted such as to reduce the influence of the cycle or node
where the outlier data is found.

This weighting to reduce the influence of flows in a particular cycle or node for
flow processing is analogous to the case considered above where edge weighting
was used to reduce the influence of an outlier node data value connected via an
edge. For a physical example, consider two liquids flowing in parallel at a different
speed, as depicted in Fig. 4.4. This difference in speed between the liquids induces a
curl on the interface. Consequently, if we wanted to filter noisy measurements of the
direction/magnitude of these flows, then the filtering operation should not smooth
across the liquid interface. The magnitude of the curl on this interface serves as
an indicator that cycles which span the interface should be weighted to reduce the
influence of flows from different liquids across the interface.

We may follow the approach taken for weighting node data to derive weights
from flow data by simply applying the same weighting functions as before to the
By and ATy components, which represent the curl and divergence operators, respec-
tively. For example, given a flow field y, and cycle ci , we may employ the Welsch

7When G−1
2 and G0 are matrices, these viscosities are linear and therefore the flow field may

be viewed as a Newtonian fluid. The more complicated analysis of non-Newtonian fluids would
describe the behavior of the flows when G−1

2 and G0 are replaced by nonlinear functions.
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Fig. 4.4 The use of curl to detect flow boundaries. The curl may be used to establish cycle weights
(shear viscosity) for processing the flow data in the same way that gradients in node data are used
to establish edge weights for processing node data. (A) Two flows with a different velocity. The
dashed line indicates the separation between the flows. (B) The different velocities of the two
flows induce a strong circulation on the interface. (C) The same flows with noise. The interface
circulations allow us to detect the flow boundaries, permitting a separate filtering for each flow

function to derive the cycle weight

wi = gα(Biy)= exp

(
− (Biy)2

α

)
. (4.31)

Note that the expression Bi represents the row of B corresponding to cycle ci . As
with the scalar case, G−1

2 is then the diagonal matrix comprised of these cycle
weights wi along the diagonal. Note that since (4.31) represents an expression of
an affinity weight, it is associated with the dual metric tensor, G−1

2 . Similarly, the
weight penalizing divergence at node vj may be given as

fj = gα(AT
j y)= exp

(
− (AT

j y)2

α

)
, (4.32)

where AT
j represents the row of AT corresponding to node vj .

4.3.1 Weights Beyond Flows

The procedure for generating outlier-suppressant weights from flow and scalar
data may be extended to produce higher-order weights from data associated with
any p-cell by considering the weighted higher-order Laplacian operating on p-
cochains. Once again, the p-Laplacian is the primary focus of interest because
“low-frequency” signals on the p-cells are measured relative to the corresponding
higher-order Laplacian (see Chap. 5). The higher-order p-cochain Laplacian oper-
ator consists of two terms, acting on the (p + 1)- and (p − 1)-cells. Specifically,
recall the general definition of the Laplace–de Rham operator from Chap. 2,

Lp = NpN∗p +N∗p+1Np+1 (4.33)
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where Np is the p-coboundary operator and N∗p is its adjoint. By substituting in the
definition of the adjoint coboundary operators in terms of the discrete Hodge star
operator, for an arbitrary value of p we arrive at the general, weighted Laplacian for
p-cochains as

Lp = NpGp−1NT
pG−1

p +GpNT
p+1G−1

p+1Np+1, (4.34)

where Np is the incidence matrix mapping (p− 1)-cochains to p-cochains and Gp

represents the weight matrix on p-cells.
Continuing with higher-order weights, we may follow the approach used in deriv-

ing weights from flow data to produce higher order weights for filtering or clustering
applications. For example, these weights may be derived from p-cochain data via a
Welsch function. Specifically, the weight for (p+1)-cell ci derived from p-cochain
data z, is given by

wi = gα(Np,iz)= exp

(
− (Np,i z)2

α

)
, (4.35)

and the weight for the (p− 1)-cell cj is given by

wj = gα(NT
p−1,j z)= exp

(
− (NT

p−1,j z)2

α

)
. (4.36)

As before, G−1
p+1 is the diagonal matrix comprised of the (p+ 1)-cell weights along

its diagonal and G−1
p−1 is the diagonal matrix comprised of the (p− 1)-cell weights

along its diagonal.

4.4 Metrics Defined on a Complex

We end this chapter by considering different distance functions which may be de-
rived from a weighted complex. In Chap. 2 we considered the p-cell weights, Gp , as
playing the analogous role of the metric tensor in conventional calculus. The metric
tensor represented by Gp provides an inner product between p-cells. This definition
allowed us in Sect. 2.3.4.4 to define a volume (e.g., length, area) for any p-chain τp

as

volume(τp)= 1TGpτp =wT
pτp, (4.37)

which is interpreted as the integral of the volume cochain over a chain. This notion
of the volume of a p-chain is closely related to the total distance along a chain,
which we shall now explore.

Recall that a metric is formally defined by a distance operator D(a, b) on a pair
of points a and b on some manifold Mn that satisfies the following properties:

1. D(a, b)= 0 if and only if a = b, (discernibility)
2. D(a, b) > 0 if a �= b, (non-negativity)
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3. D(a, b)=D(b, a), (symmetry)
4. D(a, c)≤D(a, b)+D(b, c). (triangle inequality)

As discussed in Sect. 2.2, the inner product on p-chains a and b, in terms of the
primal metric tensor Gp , given by

〈a,b〉Gp = aTGp b, (4.38)

can be used to define a norm

‖a‖ = aTGp a (4.39)

and, subsequently, a suitable distance operator on chains

distGp (a,b)= 〈a− b,a− b〉Gp = (a− b)TGp(a− b). (4.40)

Thus the inner product given by the metric tensor can be extended to define a natural
distance operator, which imposes the structure of a pre-Hilbert space on the vector
space of p-chains. Similarly, we may also define an equivalent metric between p-
cochains x and y using the dual metric tensor G−1

p as

distG−1
p

(x,y)= 〈x− y,x− y〉G−1
p
= (x− y)TG−1

p (x− y). (4.41)

Note that, when u and v are p-chains whose coefficients consist only of binary-
valued elements (i.e., each coefficient belongs to the set B = {0,1}), then the dis-
tance between them is equivalent to the volume of the intersection of the two chains
subtracted from the union of the two chains, i.e.,

distGp (u,v)= volume[(u∪ v)− (u∩ v)], if u,v ∈ B
np . (4.42)

Given this definition of a distance measure in terms of an inner product, we may
interpret other common distance measures, which provide a valid metric, as stem-
ming from a distance operator with another positive definite matrix substituted in
for the metric tensor Gp . For example, a distance measure can be defined by em-
ploying the weighted Laplacian matrix as the inner product matrix. Recall that the
weighted Laplacian matrix, which operates on 0-cochains, is defined as the positive
semi-definite matrix L = G0ATG−1

1 A. If we assume that the weights on nodes are
uniform such that G0 is the identity matrix, then L becomes simply the symmet-
ric matrix ATG−1

1 A. In this case, we can identify 0-cochains with 0-chains since
the metric tensor on 0-chains is the Euclidean metric (see Sect. 2.2.1.3), therefore
the weighted Laplacian matrix can equivalently operate directly on 0-cochains or
0-chains.

The matrix L is only positive semi-definite, and therefore is not a suitable inner
product matrix because it would violate the discernibility criterion for a metric given
above. However, in the special case in which the distance is measured between a pair
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of nodes8 rather than the general case of an arbitrary pair of 0-chains, the matrix L
provides a valid metric. If we represent two individual nodes in the complex, vi

and vj , by (non-negative) binary-valued indicator vectors i and j in B
|V|, where

the only non-zero entry in i corresponds to node vi and the only non-zero entry
in j corresponds to node vj , then new metrics can be constructed in terms of the
weighted Laplacian matrix, including

distL(i, j)= 〈i− j, i− j〉L = (i− j)TL(i− j) (4.43)

and also

distL†(i, j)= 〈i− j, i− j〉L† = (i− j)TL†(i− j), (4.44)

where L† represents the pseudoinverse of L. Note that this defines a distance between
an arbitrary pair of nodes, which is given only by the weights prescribed to edges
via G−1

1 since the node weights are uniform—due to the fact that the metric tensor
G0 is Euclidean in this case. The matrices L and L† therefore provide definitions
of new metrics for the cell complex to measure distances between pairs of nodes,
which are derived from the same edge weights that provided the natural distance
operator defined in (4.40).

This definition of distance between a pair of nodes in terms of the weighted
Laplacian matrix has an important interpretation. Again, if i represents node vi and
j represents node vj , then the distance between nodes vi and vj with respect to the
pseudoinverse of the weighted Laplacian matrix L is given by

DL†(vi, vj )= distL†(i, j)=Reff(vi, vj ), (4.45)

where Reff denotes the effective resistance between nodes vi and vj (see Chap. 3 for
more about effective resistance). The effective resistance was previously discussed
as a metric by Klein et al. [234, 235] in which it was named the resistance distance
to reflect the metric quality of the effective resistance.

This construction allows us to immediately extend this definition of resistance
distance to higher-order resistance distances between any two p-cells. If we rep-
resent two individual p-cells, ci and cj , by (non-negative) binary-valued indicator
vectors i and j in B

np ,

DL†
p
(ci, cj )= distL†

p
(i, j)= 〈i− j, i− j〉L†

p
= (i− j)TL†

p(i− j). (4.46)

Note that the higher-order Laplacian Lp may have full rank, in which case

L†
p = L−1

p .
While the resistance distance arises in many applications, it does not conform

to the intuitive notion of the geometric distance between two points. The common
definition of distance can, however, be expressed in this same framework, but with

8Desbrun et al. [102] distinguish between a local metric which is defined only for pairs of nodes
which share an edge and a global metric which is defined for any pair of nodes in a connected
graph. In this terminology, our treatment will focus exclusively on global metrics.



4.5 Conclusion 153

an important caveat. If we continue to adopt the view of i and j as 0-chains which
indicate a single node, then we may define a new distance between nodes as

DSP ′(vi, vj )=min
τ

1TG1τ =min
τ

wTτ

s.t. ATτ = i− j,
(4.47)

where τ represents a 1-chain. The minimization finds the 1-chain with the small-
est distance subject to the constraint that it connect nodes vi and vj . We use τ to
represent this 1-chain because the solution to this problem is an oriented path from
vi to vj . In other words, DSP ′(vi, vj ) represents the weighted length of the shortest
path from vi to vj . However, written in this way, the “distance” does not provide
a metric because the coefficients comprising τ may take either positive or negative
values to represent the orientation of the path relative to the reference orientation of
the edges. However, there exists a modification of the problem to avoid this issue by
considering a modified version of (4.47),

DSP(vi, vj )=min
π

1T

[
G 0
0 G

]
π =min

π

[
w
w

]T

π

s.t.

[
A
−A

]T

π = i− j,

π ≥ 0.

(4.48)

where now π represents the 1-chain. Intuitively, this modification can be viewed as
replacing each edge in the cell complex with two edges having opposite orientation.
Therefore, π can be constrained to be strictly positive (i.e., by choosing the edge
with positive orientation at each position along the chain from vi to vj ) and is capa-
ble of representing any possible path connecting the two nodes. Note that, due to the
“over-representation” of edges, each edge along the path is represented twice in π .
Since, as it is defined, the distance DSP is strictly positive, the distance now repre-
sents a metric (the triangle inequality is satisfied due to the distance being defined
by a minimum). The value of DSP(vi, vj ) may be computed easily by finding the
shortest path from vi to vj (e.g., with Dijkstra’s algorithm [87]). This shortest-path
metric is used often in graph theory and will be revisited again in Chap. 8.

4.5 Conclusion

The structure and weights of the cell complex (graph) are given by the problem def-
inition in some applications, such as the analysis of road networks. However, when
we apply discrete calculus techniques to a wider class of applications that have no
natural structure and weights, we can often employ an embedding to define both
the structure and the weights. When an embedding is not available, the data itself
may be used to define structure and weights. Depending on the intended analysis



154 4 Building a Weighted Complex from Data

operation, we showed how the weights may be used to encode the geometry of the
embedding, to avoid the influence of outliers, to represent repulsion, to represent
statistical relationships, or to be consistent with a series of observations. We saw
that these techniques for defining weights from data also extend directly to the gen-
eration of weights on higher-order cells. Finally, the structure and weights were used
to further define several metrics between two chains/cochains and between two cells
(e.g., nodes).

More attention was spent in this chapter on producing a weighting for filter-
ing/clustering/segmentation applications in which the weights are used as affinities
that affect the spread of filtered data or clustering labels. These filtering and cluster-
ing applications comprise the content of the next two chapters.



Chapter 5
Filtering on Graphs

Abstract Measured data often includes noise. A data point measured in isolation
offers little opportunity to tease signal apart from noise. However, this separation of
noise from the signal becomes more possible when multiple data points are acquired
which have a relationship with each other. A spatial relationship, such as the edge set
of a graph, permits the use of the collective data acquisition to make better decisions
about the true data underlying each measurement. This process whereby the spatial
relationships of the data are used to provide better estimates of the noiseless data
is called a filtering or a denoising process. In this chapter, we outline the assump-
tions used to justify spatial filtering, describe the equivalent of Fourier analysis on
a general graph and discuss how different parameter settings of a small number of
variational approaches to filtering lead to a large number of commonly used filters.
Although our focus in this chapter is on the filtering of node data (0-cochains), we
also discuss how these techniques may be applied to the filtering of edge data (i.e.,
flows, or 1-cochains) and to the filtering of data associated with higher-dimensional
cells.

Data filtering is a common procedure in any kind of data processing and analysis
application. In this chapter, we assume that our object of interest is a graph with
data s̃i assigned to each node vi and a meaningful neighborhood definition given
by the edge set. The standard assumption is that noise has been added to all of the
data. In the absence of a data model, there is very little that one can do to extract
the signal from the noisy observation. However, data associated with a discrete cell
complex has meaningful neighborhood relationships and we may generally assume
that the noise has a high spatial frequency. Therefore, the goal of most filtering
operations is to remove the high frequency noise, while being careful to preserve
the high frequency signal (often modeled as spatial discontinuities).

We begin this chapter by addressing the filtering topic in a traditional context in
which the general goal is to produce a filter that removes some frequency range in
the data (e.g., a lowpass filter). The focus here will be on Fourier-based techniques
in the context of data associated with an arbitrary graph. Following this exposition of
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Fourier techniques on a graph, we address the lowpass filtering of data as an energy
optimization problem. These optimization-based filtering operations will then be
modified to preserve rapid data changes (i.e., discontinuities). Specifically, we may
model the filtering process as smoothing noise within a region (node set), but not
between regions. We then proceed to show how to filter via gradient manipulation
and discuss nonlocal filtering. These filtering techniques are then generalized be-
yond the processing of node data to filtering procedures that remove noise in edge
data (e.g., flows, traffic) or data associated with higher-dimensional cells. Finally,
the chapter ends by showing applications of these filtering techniques.

5.1 Fourier and Spectral Filtering on a Graph

The traditional approach to filtering data sampled on an equally spaced grid in arbi-
trary dimensions is to apply a digital filter intended to suppress certain frequencies
without disrupting others. Digital filtering approaches of this nature comprise an
enormous literature which we do not intend to review (a standard text on this subject
is Oppenheim and Schafer [297]). Our first goal in this section will be to examine
when we can apply standard Fourier methods to data defined on a graph.

The Fourier transform was originally developed by Fourier to produce solutions
to the diffusion (heat) equation

∂u

∂t
=∇2u, (5.1)

where u is a real-valued function defined on R
N and ∇2 = ∇ · ∇ is the diffusion

operator. Specifically, in R
N , the standard Fourier basis constitute the eigenfunc-

tions of the Laplacian operator. We would therefore expect that the columns of the
Discrete Fourier Transform (DFT) matrix would likewise represent the eigenvectors
of the Laplacian matrix from discrete calculus, appearing in the diffusion equation
(see Chap. 2)

∂x

∂t
=−Lx. (5.2)

In this section, we will employ s and k as index variables rather than the conven-
tional i and j to avoid confusion with i= j=√−1. The DFT matrix, Q, has rows s

and columns k defined as

Qsk = e−
2π i
N

(s−1)(k−1), (5.3)

where N is the number of nodes in the graph. The first issue we address is to deter-
mine when Q will comprise the eigenvectors of the Laplacian matrix, analogous to
the continuous case. We can proceed to show that Q will form the eigenvectors of
the Laplacian matrix, if and only if the Laplacian matrix is circulant. Recall that a
circulant matrix is defined as a matrix in which each row is a circular shift of the
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previous row, i.e., H(i, j)= H(i− 1, j − 1), for i > 1, j > 1, H(i,0)= H(i− 1,N).
The general form of a circulant matrix can be seen more easily to follow

H=

⎡
⎢⎢⎢⎣

h1 h2 h3 . . . hN

hN h1 h2 . . . hN−1
...

...
...

. . .
...

h2 h3 h4 . . . h1

⎤
⎥⎥⎥⎦ . (5.4)

Note that a single vector, h, is sufficient to generate a circulant matrix if we set the
first column of H to this vector, i.e., H(1, j)= hj . An important aspect of circulant
matrices is that a circulant matrix embodies a circular convolution operation repre-
sented in matrix form.1 Given this view of circulant matrices, we can now proceed
to connect the DFT to a circulant matrix via the convolution theorem.

Before we investigate when a graph structure gives rise to a circulant Laplacian,
we must first prove that the DFT vectors are eigenvectors of any circulant matrix.

Theorem 5.1 The columns of the DFT matrix, Q, are eigenvectors of any circulant
matrix, H.

This theorem can be proved by first considering a lemma. Define a shift matrix
as the circulant matrix, S, generated by the row vector v = [0,1,0,0, . . . ,0]T. In
other words, S is the identity matrix with each row undergoing a circular shift one
entry below the diagonal. While the transformation effected by S is a delay, its
transpose ST represents a shift forward and is a matrix with non-zero entries above
the diagonal.

Lemma 5.1 Vector qk , the kth column of the DFT matrix Q, is an eigenvector of S

with eigenvalue λ= e
2π i
N

(k−1).

Proof The effect of the shift matrix applied to the column vector qk will be to
produce a new vector, q̃k = Sqk such that q̃k[s] = qk[s− 1] for s < N and q̃k[N ] =
qk[1]. However, since the columns of the DFT matrix represent equal partitions of
the unit circle [297], this shift can be accomplished by multiplying each entry by

λ= e
2π i
N

(k−1). Therefore,

q̃k[s] = qk[s − 1] = e−
2π i
N

(s−2)(k−1) = e−
2π i
N

(s−1)(k−1) e
2π i
N

(k−1) = qk[s] e
2π i
N

(k−1),

giving the lemma. �

Now we are prepared to give the proof for Theorem 5.1.

1Note that, while circulant matrices represent circular convolution, Toeplitz matrices, which com-
prise a distinct class of matrices, represent linear convolution. A thorough treatment of these ma-
trices is available in [172].



158 5 Filtering on Graphs

Proof Let us restrict our attention to proving that the kth column of the DFT ma-
trix Q, qk , is an eigenvector of any circulant matrix H. Note that row s of H is
generated by the first row of H, g (which is a flipped and rotated version of h),
multiplied s − 1 consecutive times by the shift matrix, which can be represented as
Ss−1, i.e., Hs = Ss−1g. Furthermore, assign the inner product of the generator g of
H with the kth column of the DFT matrix to the scalar α, i.e., gTqk ≡ α. Now,

HT
s qk = (Ss−1g)Tqk = α

λs−1
= α e−

2π i
N

(s−1)(k−1) = αqk[s].

Therefore, Hqk = αqk . �

Corollary 5.1 The eigenvalues of H are the Fourier transform of the generating
vector h, i.e., λ=Qh.

Corollary 5.2 (The Convolution Theorem) Since convolution is a finite, linear op-
eration, it may be represented by a matrix. Furthermore, since convolution applies
the same kernel to every location, the matrix representing convolution is circulant.
Therefore, the convolution of any two signals h and x may be computed by the
Fourier transform, i.e., x̃= Hx= 1

N
Q�QTx, where the diagonal matrix of eigenval-

ues � is equal to diag(λ).

Note that the factor of 1
N

is included to satisfy Parseval’s (or Plancherel’s) Theo-
rem which effectively states that 1√

N
Q is a unitary operator, i.e., that 1

N
QQT = I.

Contrary to the usual interpretation of the Fourier transform as a decomposition
into signal frequencies, we view the Fourier transform here as being tightly coupled
to the concept of shift invariance of the graph.

Specifically, a graph is called shift invariant if there exists a permutation
of the node ordering such that the Laplacian matrix representing the graph
is circulant. Therefore, any shift-invariant graph has the DFT basis as the
eigenvectors of its Laplacian matrix.

We may now examine the graphs that are shift-invariant. One requirement for
shift-invariance of a graph is that the graph must be regular. Recall that a regular
graph is any graph such that every node has the same number of neighbors (degree).
Common examples of shift-invariant graphs are infinite lattices, cycles and fully-
connected graphs, as depicted in Fig. 5.1. On all of these shift-invariant graphs,
we can solve the diffusion equation (5.2) by decomposition of the initial state onto
the DFT basis and evolution of each component independently in time. Although
regularity is a necessary condition for a graph to be shift-invariant, not all regular
graphs are also shift-invariant graphs.

Treatments of the Fourier transform for specific lattices may now be viewed as
special cases of shift-invariant lattices. For example, DuBois [116] treats the Fourier
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Fig. 5.1 Examples of shift-invariant lattices. A shift-invariant lattice is represented by a circulant
Laplacian (and adjacency) matrix, which permits the decomposition of signals defined on the nodes
of these graphs onto the Fourier basis. (A) Infinite (or wrapping) lattice. An infinite lattice is the
standard assumption that justifies use of the Fourier transform, even on finite lattices. (B) A cycle
graph. (C) A fully connected graph

transform on a “quincunx” lattice. A second example of a special Fourier transform
treatment for a specific lattice is given by the literature on Fourier descriptors, which
gives applications of Fourier transforms on cycle graphs [88, 256, 417]. In the signal
processing literature, the signal is typically a one-dimensional signal that varies over
time. In this context, a shift-invariant system is considered time-invariant and the
corresponding theory of such signal analysis is called LTI system theory, where
LTI stands for Linear and Time-Invariant.

Standard signal processing techniques based on the Fourier transform may be
applied to functions defined on a shift-invariant graph. A somewhat surprising con-
sequence of this analysis is that Fourier-based filtering has nothing to do with the
graph topology as long as the graph is shift-invariant, i.e., the signal at every node
is treated equally. However, despite this remarkable fact, the evolution of processes
closely associated with the Fourier basis, such as the diffusion equation, will depend
on the topology of the graph, since the eigenvalues of shift-invariant graphs change
with graph topology.

5.1.1 Graphs that Are Not Shift-Invariant

Although the Fourier transform can be used to analyze signals on a wide range of
graphs that arise in practice, not all useful graph structures are shift-invariant. Fur-
thermore, a graph that is seemingly regular can lose shift-invariance for two com-
mon reasons: (i) The graph has a dynamically changing or adaptive connectivity;
(ii) Although the topology is shift-invariant, the weighting is not. The first situation
occurs in surface processing (computer graphics) and space-variant vision in which
the graph represents a nonuniform domain. The second situation occurs commonly
in image processing, in which the lattice has an inhomogeneous weighting to reflect
changes in image properties (e.g., object boundaries).
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In principle, filtering is also straightforward to implement on shift-variant graphs
that do not possess the regularity necessary for Fourier-based filtering. As before, we
can simply calculate the eigenvectors, Q, for the Laplacian matrix L of any graph.
The only drawback with a shift-variant graph is that these eigenvectors are not the
convenient columns of the DFT matrix (5.3), nor will the eigenvectors be an or-
thonormal set of complex exponentials. Therefore, it is necessary to calculate the
eigenvectors explicitly for each graph, and the familiar Fast Fourier Transform is
not available for efficiently projecting a signal into frequency space.

It is straightforward to use the eigenvectors of the Laplacian matrix of a shift-
variant graph for filtering in a manner analogous to standard Fourier-based filtering.
Specifically, spectral filtering could be implemented by:

1. Computing the eigenvectors of the Laplacian matrix, Q;
2. Projecting the data onto the eigenvector space, x̃=Qx;
3. Modifying the frequency components, which are the values of x̃, to generate x̂

such that the desired filter is achieved; then
4. Backprojecting x̂ via Q−1x̂ to obtain the filtered signal with the modified fre-

quency components.

Although this procedure is straightforward for applying spectral filtering on an ar-
bitrary graph, it is computationally expensive (and memory intensive) to calculate
and apply the full set of eigenvectors of a shift-variant Laplacian matrix. Fortunately,
good alternatives exist to explicit calculation of the eigenvectors of a shift-variant
graph. The filtering approach adopted by Taubin [371, 372] begins by observing that
applying a diffusion equation with a forward Euler method will have the effect of
reducing high frequencies. By phrasing the filtering as a difference

x[k+1] = x[k] − λLx[k] = x[k] − λQT�Qx[k], (5.5)

where x[k] represents the outcome of the kth iteration, the high frequencies will
be subtracted out during the update step, but the low frequencies will largely re-
main at the same magnitude. The parameter λ controls the speed of the filtering
during the iterations, but care must be taken to avoid instability by setting λ small
enough to avoid violating the CFL conditions.2 The iteration represented by (5.5)
is commonly called Laplacian smoothing in finite element analysis and computer
graphics. However, Taubin observed that there was a “shrinking bias” in the con-
text of mesh filtering, as a result of the fact that the low frequencies will eventually
also dissipate, leaving only the constant eigenvector (i.e., after enough iterations,
all of the nodes would have the same values). A similar effect is observed in image
processing in which the diffusion process of (5.5) eventually yields a constant gray
value of the image intensities. To counteract this shrinking bias, Taubin preserved
the low frequencies while damping the high frequencies by alternating diffusion
steps of the form in (5.5) with iterations of the form

x[k+1] = x[k] +μLx[k], (5.6)

2Note that ‘λ’ is often used to represent an eigenvalue (e.g., Lemma 5.1). We follow Taubin’s
notation for his λ–μ algorithm by using ‘λ’ as a parameter when discussing Taubin’s algorithm.
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where the parameter μ > λ, which has the effect of replacing the relatively well-
preserved low frequencies that were lost during the smoothing step (5.5) without
replacing the high frequencies that were almost completely removed. When μ≈ λ,
a sharp, “wall filter”, is obtained for the low frequencies, while setting μ� λ has
the effect of a slow filter roll-off.

An immediate concern with Taubin’s algorithm as described is that the appropri-
ate values of the λ and μ parameters vary with the graph size, since the magnitude
of the eigenvalues of the Laplacian will change. Taubin’s resolution of this problem

is to employ the symmetric, normalized Laplacian from Chap. 2, L̃ = D− 1
2 LD− 1

2

(where D is the diagonal matrix of node degrees). This normalized Laplacian is iden-
tical to a scaled or reweighted L for a shift-invariant graph, but has the additional
property that the eigenvalues lie in the range [0,2], which was shown in [81]. Con-
sequently, the values of the parameters λ and μ can remain relatively fixed in order
to achieve a particular filtering characteristic with respect to the symmetric normal-
ized Laplacian. Taubin’s “λ–μ” filter is very useful in practice due to its simplicity,
efficiency and intuitive behavior. However, this algorithm does behave differently
from the full spectral filtering approach (i.e., projecting directly onto the eigenvec-
tors of the Laplacian matrix), since Taubin’s approach only implicitly employs the
spectrum of eigenvalues of the graph. For example, in the case of a shift-invariant
graph, the full spectral filtering implementation of a lowpass “wall” filter would be
to (i) project the signal onto the eigenvectors (i.e., take a forward DFT), then (ii) set
the high frequency components to zero, and finally (iii) project the signal onto the
transpose of the eigenvectors (i.e., take an inverse DFT). This procedure would be
the same regardless of the distribution of the eigenvalues of the graph, e.g., for any
of the shift-invariant graphs such as those in Fig. 5.1. However, the diffusion-based
approach would proceed at a much faster rate for, e.g., the fully-connected graph
than the ring graph in Fig. 5.1, resulting in a need to adjust the values of λ and
μ to achieve with Taubin’s λ–μ method the same effect as the full spectral-based
method.

Taubin’s λ–μ algorithm is defined by the following steps.

1. Choose values for λ and μ parameters.

2. Construct the symmetric normalized Laplacian matrix, L̃= D− 1
2 LD− 1

2 .
3. Given an initial x[0], solve K iterations, alternating between the diffusion step

and the unshrinking step, i.e.,

x[2k+1] = x[2k] − λL̃x[2k], (5.7)

x[2k+2] = x[2k+1] +μ L̃x[2k+1]. (5.8)

Taubin’s method computes only a lowpass filter directly. However, by subtracting
the lowpass filtered signal from the original signal, it is possible to generate a high-
pass filtered signal. By making further combinations of highpass and lowpass filters,
Taubin’s method may be used to generate bandpass filters of signals on a graph.
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5.1.2 The Origins of High Frequency Noise

Now that we have given a precise meaning to “high-frequency” signals on an arbi-
trary graph, we would like to pause to examine the origins of the common assump-
tion that noise is predominantly contained in high frequencies. The high-frequency
character of noise can be justified from two different viewpoints: as an acquisition
model and as a model of independent, identically distributed (i.i.d.) noise.

To see the acquisition model viewpoint, consider a linear acquisition matrix, H,
a true signal x, an additive noise vector ν, an ideal observed signal f = Hx and a
noisy observed signal y, such that

y= H(x+ ν)= f+Hν. (5.9)

Phrased in this way, our goal in filtering is to recover either the ideal observed signal
f or the true signal x. However, for either goal, it is helpful to remove high-frequency
noise that corrupts the observation.

We know from the last section that if our graph is shift-invariant and the acqui-
sition matrix H is shift-invariant, then we can analyze the effects of H via the DFT
and, in particular, the eigenvalues of the acquisition matrix are comprised of the
DFT of any single row of H. In general, if our graph is shift-invariant then we can
consider the acquisition matrix to be shift-invariant since this shift-invariance sim-
ply means that the signal acquisition device operates the same everywhere. A typical
acquisition model is that each node performs a weighted sum of the underlying data
in a small region about the point. However, since the DFT of a small summation
kernel such as a box kernel or a Gaussian kernel concentrates more power in the
low frequency range (where a greater extent of the spatial window increasingly con-
centrates power in the low frequencies), then the high-frequency content of the true
signal x will be suppressed and we may assume that residual high-frequency content
in the observation y is contributed by the noise vector ν. Similarly, if we try to re-
cover the true signal x via inversion of the acquisition matrix H (i.e., deconvolution),
then the high-frequencies of the observation f+ Hν will be amplified and it would
be better to filter out the high frequencies in the observed data before inversion.

The other viewpoint for motivating the removal of high frequencies in the ob-
served data is that if the noise term ν is i.i.d. across the samples then the expected
value for the difference of the values of ν over an edge will be zero. Consequently,
a reasonable model is to assume that large gradients are noise and attempt to remove
them.

Despite the reasonable assumptions underpinning the motivation for removal of
high frequency noise, most real data do contain some high frequency content that
we do not want removed. A common procedure for keeping the high frequency
content in the signal is to assume that the high frequency content generally takes the
form of discontinuities in which the data jumps from one smoothly varying region to
another. In the context of image processing, this assumption leads to an image model
where individual objects have a smoothly varying intensity but that neighboring
objects may have an arbitrarily large jump in intensity. Of course, this assumption
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is not true for all kinds of data (e.g., a textured object within an image), but it works
well for many kinds of real data and refocuses the filtering operation on the detection
of discontinuity locations, while applying lowpass filtering everywhere else.

Despite the usefulness of the above lowpass model for data filtering, it is impor-
tant to recognize that some noise contains significant power in the low frequencies,
which is equivalent to the presence of spatial correlations (called “pink noise”).
Additionally, filtering can also be applied to problems in which the purpose of the
filtering operation is to correct observation or acquisition error, which may have any
frequency content. Finally, not all data domains are shift-invariant. However, for a
shift-variant data domain, the above assumptions may also imply a high-frequency
noise model. Although the signal defined on the shift-variant graph may contain
high-frequency noise, the eigenvectors of the graph Laplacian corresponding to
high-frequency may behave differently from the standard high-frequency eigenvec-
tors employed in Fourier analysis. However, even in the case of a shift-variant data
domain, the techniques in this chapter will allow for the removal of high-frequency
components of the observed data, even if we allow discontinuities across some
edges.3

5.2 Energy Minimization Methods for Filtering

Many filtering methods may be viewed as procedures to minimize an energy. In this
section, we review several energy minimization models and show how these models
lead to commonly used filtering algorithms. We begin this section by describing
the basic energy minimization models before proceeding to describe methods for
filtering in the presence of implicit or explicit discontinuities.

5.2.1 The Basic Energy Minimization Model

In the previous section, a traditional view of denoising was taken in which the goal
was to remove the high frequencies (noise) while preserving the low frequencies
(signal). A different approach to accomplishing the same goal is to view the desired
denoised signal, x, as a minimum of the energy4

EBEM[x] =
∫

x�x dt =
∫
‖∇x‖2

2 dt, (5.10a)

3Note that in image processing the term edge is used to mean discontinuity (e.g., “edge detection”).
However, since the context of this entire book is the analysis/processing of graphs (complexes) and
data defined on graphs, we reserve the word edge to refer strictly to a 1-cell (i.e., we use edge in
the sense of graph theory).
4The term energy is used throughout the book to represent an objective function which is optimized
to produce a useful application-specific solution. In this case, the solution represents the filtered
(denoised) signal. Although the term energy is not generally intended to have a physical relation-
ship to energy, note that the energy described in (5.10b) is actually the power dissipation for an
electric circuit (when x represents the electrical potentials at every node), as given in Chap. 3.
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EBEM[x] = xTLx= (Ax)T(Ax). (5.10b)

This energy model returns a high energy for a signal x dominated by high-frequency
components and returns a low energy for a signal x dominated by low-frequency
components. Therefore, finding a signal that minimizes this energy will produce a
low-frequency signal. However, by connecting the frequency components of x with
the norm of the gradient, we may generalize this model to measure the gradients
with any p-norm.

EBEM[x] =
∫
‖∇x‖pp dt, (5.11a)

EBEM[x] = 1T|Ax|p =
∑
eij∈E

|xi − xj |p, (5.11b)

where the parameter p controls the norm of the energy functional and the summation
in (5.11b) is over every edge in the graph. Note that the conditions for a norm are
violated when p < 1 (specifically the triangle inequality), therefore we will employ
the term p-norm to refer to

‖x‖p =
(∑

i

|xi |p
) 1

p

, (5.12)

even though we allow 0 < p < 1. We refer to this energy as the Basic Energy
Model. The Basic Energy Model pervades this entire book. In future chapters, we
see that many common algorithms can be viewed as instances of the Basic Energy
Model with different values of p and different interpretations of the variable x. In
this chapter, the Basic Energy Model leads to mean, median, mode and minimax
filters as well as Laplacian smoothing and anisotropic diffusion. In Chap. 6, the
Basic Energy Model leads to several clustering methods in the literature, including
max-flow/min-cut, random walks, geodesic clustering, watersheds, spectral cluster-
ing, normalized cuts and the isoperimetric partitioning algorithm. Going further, in
Chap. 7 we see how the same Basic Energy Model leads to the Laplacian Eigenmaps
manifold learning technique. We believe that the unification of so many content ex-
traction (data processing) methods into one functional is a major contribution of this
work.

The trivial minimum of the Basic Energy Model given by a constant x is a useless
filtering of a noisy signal. However, a noisy signal may have its energy reduced it-
eratively without reducing the energy to the undesirable global minimum. There are
two standard methods for iteratively minimizing the Basic Energy Model—iterative
minimization of the model for each node individually and gradient descent.

5.2.1.1 Iterative Minimization

We begin by describing how to iteratively minimize the Basic Energy Model for
each node. If we were given a solution, x[k], at iteration k, we can fix the solution
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everywhere except for one node vi and consider finding the update which would
minimize EBEM[xi] for that node. By definition of (5.11b), the minimum is given by

xi = argmin

{∑
eij∈E

|xi − xj |p
}
. (5.13)

When p = 2, xi is assigned to have the mean value of its neighbors, while p = 1
causes xi to be assigned the median value of its neighbors. Likewise, p = 0 assigns
xi to be the mode value of its neighbors, and as p→∞, xi approaches the minimax
value of its neighbors. Therefore, if the initial estimate x[0] = s, the mean, median,
mode and minimax filters can all be viewed as operations designed to incrementally
minimize (5.11b) under different p-norms. Note that many implementations of these
filters also include a self-connected edge at each node such that the node’s value is
included in the mode, mean, median or minimax calculation.

Minimization of the energy functional given in the Basic Energy Model of
(5.11b) for p-norms given by p = 0, p = 1, p = 2, and p→∞, results in the
commonplace mode, median, mean, and minimax filters, respectively. Conse-
quently, these filters can all be generalized to arbitrary graphs with any neigh-
borhood structure.

Instead of minimizing the Basic Energy Model by optimizing the solution for
each node independently, we can also find the solution via gradient descent (see
Appendix B). Since gradient descent is typically used to optimize the Basic Energy
Model only for the cases of p = 2 or p = 0, our discussion will be limited to these
cases. When p = 2, the Basic Energy Model takes the form

EBEM[x] = 1T|Ax|2 = xTATAx= xTLx, (5.14)

with gradient

∂EBEM[x]
∂x

= Lx. (5.15)

Therefore, the iterative update to perform gradient descent of an initial noisy signal
according to the Basic Energy Model when p = 2 would be

x[k+1] = x[k] − λLx[k]. (5.16)

We saw this filtering algorithm before in (5.5) when it was called Laplacian smooth-
ing. In this context, the time derivative of x was set equal to the negative gradient
of the Basic Energy Model, i.e., ∂x/∂t =−∂E /∂x. By establishing this equality, a
forward Euler solution of the diffusion equation

∂x

∂t
=−Lx, (5.17)
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performs gradient descent on the Basic Energy Model where the time step of the
forward Euler operation is represented by λ.

The classic nonlinear anisotropic diffusion model formulated for image process-
ing by Perona and Malik [306] may be viewed as a descent algorithm that minimizes
the Basic Energy Model (5.11b) when p = 0. In this section, we follow Black et
al. [38] to describe this relationship.

Consider the Basic Energy Model for p = 0, i.e.,

EBEM[x] = 1T|Ax|0 =
∑
eij

|xi − xj |0. (5.18)

Recall that the value of the �0-norm | · |0 is zero when the argument is zero and is
unity otherwise. Although Black et al. [38] showed that the nonlinear anisotropic
diffusion work of Perona and Malik unintentionally approached this energy indi-
rectly, similar filtering models were directly considered at about the same time (see
[50, 144, 146]). These models were motivated by the desire to represent implicit dis-
continuities in the reconstruction. Unfortunately, the p = 0 energy in (5.18) is both
non-convex and non-differentiable. The non-differentiable aspect of the energy may
be overcome by replacing | · |0 with an M-estimator, which is an error function used
in statistics for which the penalty of large errors increases very slowly for higher
error values. M-estimators were used to derive several different methods for gener-
ating weights in Chap. 4. For purposes of exposition here, we may approximate the
�0-norm | · |0 via the Welsch function from Chap. 4

ρα(z)∝ 1− exp

(
−z2

α

)
, (5.19)

where α is a parameter that controls the approximation to | · |0, such that the approx-
imation fidelity improves as α→∞. Figure 4.3 in Chap. 4 gives an example of the
Welsch function.

Using the Welsch function as an approximation to | · |0 gives us an approximation
for the Basic Energy Model energy for the case p = 0 as

EBEM[x] = 1Tρ(Ax), (5.20)

where the error function ρ(·) is assumed to operate on the individual components of
any vector or matrix input. We may take an initial solution for x, x[0] = g and apply
gradient descent to reduce the energy (see Appendix B). The gradient of (5.20) is
given by

∂EBEM[x]
∂x

= 2αAT diag(ρ̄(Ax))Ax, (5.21)

where

ρ̄(z)= exp

(
−z2

α

)
. (5.22)
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Applying the gradient descent operation to iteratively update x gives the iteration

x[k+1] = x[k] − λAT diag(ρ̄(Ax[k]))Ax[k] = x[k] − λL[k]x[k], (5.23)

where the Laplacian operator L[k] is updated at each iteration to reflect the chang-
ing edge weights given by G−1 = diag(ρ̄(Ax[k])). This update rule is exactly the
iteration given by Perona and Malik to describe anisotropic diffusion, in which the
weights were given by ρ̄(z). In this way, the nonlinear anisotropic diffusion of Per-
ona and Malik is naturally interpreted as an approximation to the unweighted Basic
Energy Model when p = 0, while gradient descent on the Basic Energy Model for
p = 2 corresponds to a linear diffusion smoothing process.

5.2.2 Extended Basic Energy Model

The Basic Energy Model defined in (5.11b) has the distinct problem that the en-
ergy is trivially minimized by a trivial solution in which xi = constant. Therefore,
we may extend the Basic Energy Model by viewing the Basic Energy Model as a
smoothness term to which we may add a data attachment term that causes the orig-
inal data to push back against the smoothness, phrasing the solution as a balance
between the model and the measured data. This allows for a non-trivial solution and
provides a mechanism for incorporating prior information into the solution in the
form of regularization. The generalized formulation may be given as

EEBEM[x] =
∫
‖∇x‖pp dt + λ

∫
|x − s|p dt, (5.24a)

EEBEM[x] = 1T|Ax|p + λ1T|x− s|p

=
∑
eij

|xi − xj |p + λ
∑
vi

|xi − si |p, (5.24b)

where s represents the observed (noisy) data and the regularization parameter λ

acts to trade off between fidelity of the denoised signal to the original data and
smoothness of the denoised signal. Although this new energy model appears sub-
stantially different from the Basic Energy Model, we may view the new energy
given in (5.24b) as a variant of the Basic Energy Model in which every node vi ∈ V

with value xi has a “phantom” neighbor ui ∈ P with value si such that the phantom
node ui is connected only to vi by an edge weighted with value λ. These phan-
tom nodes are sometimes called dongle nodes or t-links (“terminal” links in [56]).
Therefore, this new energy model may be viewed as an example of the Basic En-
ergy Model with additional nodes which are fixed to Dirichlet boundary conditions
(see Chap. 2 for definition and Appendix B for optimization). Since the new energy
model may be viewed as equivalent to the Basic Energy Model with an extended
node set (where the new nodes are fixed as boundary conditions), we refer to the
energy described in (5.24b) as the extended Basic Energy Model.
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The primary advantages of the Extended Basic Energy Model are that the en-
ergy is minimized by a nontrivial solution, and that the adjustable influence of the
regularization term allows explicit control over the contribution of the filtering. In
the case of p = 2, an intuitive interpretation exists for the Extended Basic Energy
Model. We previously saw that when p = 2, gradient descent on the Basic Energy
Model could be interpreted as a diffusion process on the noisy measured signal
which is solved with a forward Euler method. However, if we solve the diffusion
process with a backward Euler method, then the diffusion time is 1/λ [104]. To see
this connection, consider again the linear diffusion equation

∂x

∂t
=−Lx, (5.25)

solved using a backward Euler method [312]

x[k+1] − x[k]

�t
= −Lx[k+1], (5.26)

x[k+1] = x[k] −�t Lx[k+1], (5.27)

(�t L+ I)x[k+1] = x[k], (5.28)(
L+ 1

�t
I

)
x[k+1] = 1

�t
x[k]. (5.29)

This backward Euler method is equivalent to a solution of the Extended Basic En-
ergy Model when p = 2, since the minimum of EEBEM[x] is given by

(L+ λI)x= λs. (5.30)

Consequently, the solution for the backward Euler solution for the diffusion problem
in (5.29) is equivalent to (5.30) when s= x[0] and λ= 1/�t . Using this connection
allows us to intuitively view the λ parameter in the Extended Basic Energy Model as
the reciprocal number of iterations employed for solving the Basic Energy Model.

The form of the Extended Basic Energy Model, which consists of a smoothness
term and a data term, is also adopted by several other energy minimization filtering
models. In the next section we consider another of these models which makes a
modification to the smoothness term.

5.2.3 The Total Variation Model

In the domain of image processing, the underlying graph is a lattice embedded into
the Euclidean plane. When p = 2, the solution to the Basic Energy Model behaves
as if the lattice were a representation of the continuous plane. However, this be-
havior is not observed when p �= 2. Therefore, when p �= 2, the filtering of images
produces undesirable gridding artifacts (sometimes called “metrication artifacts”).
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Fig. 5.2 Gridding artifacts observed in the solution to the Basic Energy Model when p = 1 but
not p = 2. Note that the introduction of more edges (an 8-connected lattice) substantially reduces
these gridding artifacts. The bottom row shows closeup views of the circle boundary to illustrate
the variation in gridding artifacts

These gridding artifacts may be reduced by extending the number of edges in the
lattice [54]. However, by modifying the smoothness term of the Basic Energy Model
such that the smoothness is measured by quantities at nodes rather than quantities
on edges, it was shown that these gridding artifacts may be reduced [386]. This
is the approach of the Total Variation Model. Figure 5.2 shows the gridding ar-
tifacts produced by filtering with the Basic Energy Model when p = 1 (a median
filter) for a 4-connected and 8-connected lattice. The 8-connected lattice provides
substantially reduced gridding artifacts at the cost of additional edges. Although the
solution to the p = 2 model does not exhibit gridding artifacts, the boundary local-
ization is blurred more for the p = 2 solution than the p = 1 solution. Preserving
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both boundary localization and a reduction of gridding artifacts is obtained by the
Total Variation Model.

The Total Variation Model based on nodal smoothness is described by the energy
functional

ETV[x] =
∫
‖∇x‖p2 dt + λ

∫
|x − s|p dt, (5.31a)

ETV[x] = 1T(|AT||Ax|2) p
2 + λ1T|x− s|p

=
∑
vi

(∑
j∀eij

|xi − xj |2
) p

2 + λ
∑
vi

|xi − si |p. (5.31b)

Within the image processing literature, this model is usually credited to [326] and is
sometimes referred to as the “Rudin, Osher, Fatemi” model. In contrast to the for-
mulation of the Extended Basic Energy Model given in (5.24b), the minimization
of the Total Variation Model searches for the minimum vector p-norm measured at
each node. Generally, the Total Variation Model given in (5.31b) is more difficult to
solve than the Extended Basic Energy Model since the 1-cochains produced by the
gradient operator are then transfered back to 0-cochains. Despite this enhanced dif-
ficulty, the total variation model (5.31b) is convex when p ≥ 1 and is thus solvable
by any descent algorithm [123]. When p = 2, the Extended Basic Energy Model
and the Total Variation Model are equivalent, and when p = 1 this model is a to-
tal variation minimization from which this model takes its name. Filtering via total
variation minimization has been well studied (see [69, 326]) and fast algorithms are
known for this case [68, 98]. The total variation model was formulated initially in the
continuum and on a graph much later [300] and then further extended to weighted
graphs and arbitrary p-norms [49, 123].

A problem with all of these energy minimization algorithms is the assumption
that all high frequencies represent noise. Solutions of these models with lower val-
ues of p typically preserve high-frequency content. We may therefore alter our fil-
tering approach to preserve high-frequency signal content by modeling signals as
consisting of smooth regions which are separated by a small number of sharp dis-
continuities. These discontinuities are often thought of as region boundaries. The
discontinuities may be incorporated into the energy minimization models by weight-
ing changes in the filtered signal differently. Spatial gradients in the filtered signal
which occur over discontinuities are penalized less than spatial gradients inside re-
gions. Since these weights are used only as approximations to the discontinuity
locations, we call this approach filtering with implicit discontinuities.

5.3 Filtering with Implicit Discontinuities

The assumption that low frequency content represents signal while high frequency
content represents noise is often not valid in real data, particularly in image data.
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Specifically, it is often more accurate to assume that we want to smooth more over
similar data at neighboring nodes while smoothing less over dissimilar data at neigh-
boring nodes. The model considered in this section stops short of looking for explicit
object boundaries to avoid smoothing over (covered next in Sect. 5.4), but rather
performs smoothing on a weighted graph (using affinity weights). Generally, the
edge weights are derived from some signal feature that can be used to roughly de-
tect object boundaries (e.g., image intensity, image color, node coordinates, texture
coefficients). See Chap. 4 for different options to set weights. For the rest of this
section, assume that we have a set of nonnegative, normalized, real-valued weights,
wij , that give some indication of discontinuity locations (i.e., wij → 0 for edges
bridging discontinuities and wij → 1 for edges bridging nodes likely to take the
same filtered value).

There are three general approaches to the weighted filtering case: (i) Spectral
filtering methods compute the eigenvectors of the weighted Laplacian, project the
signal, dampen the high frequencies, and reconstruct. Practically, it is preferable to
use Taubin’s λ–μ algorithm on the weighted Laplacian (as described in Sect. 5.1).
(ii) Edge-based filtering methods find the solution that tries to fit the data while
penalizing smoothness measured across edges. (iii) Node-based filtering finds the
solution that tries to fit the data while penalizing smoothness measured at nodes.

The Basic Energy Model and the Extended Basic Energy Model are modified
easily to incorporate weights, i.e.,

EBEM[x] =
∑
eij

w
p
ij |xi − xj |p, (5.32)

EEBEM[x] =
∑
eij

w
p
ij |xi − xj |p + λ

∑
vi

|xi − si |p. (5.33)

The Basic Energy Model (5.33) now corresponds to minimization via a weighted
mode, median, mean or minimax filter. The Extended Basic Energy Model (5.33)
may be minimized for p ≥ 1 using any of the convex optimization techniques dis-
cussed in the previous section.

Two options are available for introducing weights into the total variation model
described in (5.31b). As before, we can use edge weights to modify the scalar-valued
components that comprise the gradient vector field across edges, or we may use
node weights to modify the norms of the gradient vector field defined at the nodes.
Component weighting was described in [49, 123, 423] and may be formulated as

ETV[x] =
∑
vi

(∑
j ∀eij

wij |xi − xj |2
) p

2 + λ
∑
vi

|xi − si |p. (5.34a)

As discussed in [123], the introduction of nonnegative weights still preserves the
convexity of the Total Variation Model for p ≥ 1, and therefore any descent algo-
rithm may be used to perform the optimization.

The scalar-valued vector norms may be weighted similarly to the edge weights
based on the estimation of whether or not a node is a boundary node. Chapter 4
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provides examples of node weighting and we will proceed by assuming that we have
a set of nonnegative, normalized, real-valued weights, wi , that give some indication
of discontinuity locations (i.e., wi → 0 for nodes on the border of discontinuities
and wi → 1 for “internal” nodes). Given these node weights, we may consider a
node-weighted formulation of (5.31b) as

ETV[x] =
∑
vi

wi

(∑
j ∀eij

|xi − xj |2
) p

2 + λ
∑
vi

|xi − si |p. (5.34b)

Once again, the introduction of node weights preserves the convexity of (5.34b)
when p ≥ 1 and therefore the optimization may be performed using any descent al-
gorithm. Due to the historical derivation of this filtering model from continuum me-
chanics, the previous node-weighted formulation of the Total Variation Model de-
scribed in (5.34b) has been more common in the literature (e.g., [11, 386]). However,
since discontinuities in 0-cochains are defined between nodes, we generally recom-
mend the edge-weighting formulation described by (5.34a). The node-based weight-
ing loses both directional discontinuity information and precision of the boundary
location, since boundaries lie between groups of nodes.

We have considered the application of the various filtering approaches on a
weighted graph in which the weights were used to encode knowledge of discon-
tinuities. However, these discontinuities were viewed as real-valued weights and
were not constrained to form any sort of closed boundary surrounding different data
clusters. In the next section, we will remove the weights and introduce an explicit
boundary variable that explicitly encodes the discontinuities over which smoothing
is not permitted.

5.4 Filtering with Explicit, but Unknown, Discontinuities

Instead of treating the discontinuities implicitly with weights, we can formulate the
discontinuities explicitly as a boundary that separates some nodes from others over
which we permit no smoothing. In a sense, these explicit discontinuities could be
viewed as a special case of the models in the previous section in which the weights
are restricted to be binary-valued. However, most treatments of explicit discontinu-
ity models impose the additional constraint that the discontinuities form a closed
boundary. It is rare in practice to know where this boundary is, so the boundary
must also be estimated in the filtering process. Unfortunately, this additional un-
known variable usually destroys the convexity of the implicit discontinuity models
that were previously considered, forcing the estimation of local minima.

When the discontinuities form a closed boundary, the standard approach is to
view the filtered values inside the region as a window into a foreground function,
x, and the values outside the region as a window into a background function, y.
Therefore, in an explicit discontinuity model with a closed boundary, one seeks
to find the optimum value of both the reconstructed foreground variable and the
reconstructed background variable.
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The prototypical energy for filtering with explicit discontinuities is the “piece-
wise smooth” Mumford–Shah model [289] (strongly related to the Geman and Ge-
man model of [145] and the “weak membrane model” of Blake and Zisserman [39]).
In this work, we follow the level set literature to consider the piecewise smooth
model [289, 384], formulated as

EMS[xR, xR̄;R] =
∫

R

‖∇xR‖2
2 dt +

∫

R̄

‖∇xR̄‖2
2 dt

+ λ

∫

R

|xR − s|2 dt + λ

∫

R̄

|xR̄ − s|2 dt + ν�(R), (5.35)

where we introduce the new variable R which is a subset of the domain and the
function �(R) measures the boundary length of the set. In a more generalized con-
text, we may consider R⊆ V, represented by a binary-valued 0-chain, r, indicating
membership in R, i.e., ri = 1 if vi ∈ R and ri = 0 otherwise. In this more general-
ized setting, we may define �(R) as

�(R)=
∑
eij

wij |ri − rj |. (5.36)

When wij = 1 everywhere, this definition equates �(R) with the number of edges
spanning R and R̄ (although any affinity weighting function could also be applied).
This model implicitly assumes that the data may be divided into two groups (e.g.,
“foreground” and “background”), although more complex models have been con-
sidered as well [389] which could be easily adapted to a discrete framework. In
the context of a 4-connected image lattice embedded into the two-dimensional Eu-
clidean plane in the usual fashion, the definition of �(R) given in (5.36) measures
the boundary of the region defined by R with an �1 metric. If a Euclidean (or other)
measure were desirable, the weights could be modified to reflect the desired metric,
as described in Chap. 4.

Following the treatment in [163], the discrete formulation of (5.35) may be given
as

EMS[xR,xR̄; r] = rT|AT||AxR|2 + (1− r)T|AT||AxR̄|2

+ λrT|xR − s|2 + λ(1− r)T|xR̄ − s|2 + �(R). (5.37)

Although this formulation is no longer convex, additional information is gained by
finding a solution for the explicit boundary, R, which allows interpretation of a
minimum for (5.37) as a segmentation or clustering algorithm. Consequently, this
model will be discussed in greater detail in Chap. 6. Note that the Mumford–Shah
model defined on a graph was previously used to establish a set of filter coefficients
that could be applied iteratively to perform filtering, see [342].
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5.5 Filtering by Gradient Manipulation

A different approach to filtering may be achieved by manipulating the gradients
of the data and reconstructing a least-squares fit of the node data, x. Specifically,
if we consider the gradient vectors v = ∇u, then we may apply any manipulating
function to these vectors, η(v) and then look for the new scalar-valued function
for which these vectors are the gradients, ∇ũ = η(v). Of course, not every set of
vectors is the gradient of some scalar function (i.e., the vector field may contain a
curl component). Therefore, the standard approach would be to find a scalar function
with a gradient field that is as close as possible to η(v) in the least-squares sense
(see, e.g, [131, 393, 410]). Specifically, the goal is to find the scalar field ũ that
minimizes

E[ũ] =
∫
‖∇ũ− η(v)‖2

2 dt, (5.38)

which takes a minimum at the solution to the Poisson equation

∇2ũ=∇ · η(v). (5.39)

Beyond least-squares minimization, other options are available for reconstructing a
scalar field u from a vector field with a nonzero curl component (see [2]).

In a discrete setting, the manipulation of the gradient field occurs over the
1-cochain y. Specifically, y = Ax, which is manipulated with η(y) and a least-
squares solution is produced via the energy functional

E[x̃] = (Ax̃− η(y))T(Ax̃− η(y)), (5.40)

which takes a minimum when

Lx̃= ATy. (5.41)

Although traditional applications of this model have not considered weighted
edges, these edge weights could easily be introduced into this context. For example,
the least-squares solution of the problem in (5.41) would simply be modified to
solve the Poisson equation

Lx̃= ATG−1Ax̃= ATG−1y. (5.42)

5.6 Nonlocal Filtering

Recent studies have suggested using nonlocal neighborhood relationships to per-
form filtering [15, 63]. Instead of an edge set based upon a local neighborhood
and gradient-based weighting, these methods have advocated for employing a fully-
connected graph in which each edge weight is dependent upon the statistical rela-
tionship or similarity of the data within a local neighborhood of each node. In other
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words, each node is considered to have a local neighborhood and a distant neigh-
borhood (which is a superset of the local neighborhood), where the edges of the
distant neighborhood derive their edge weights by comparing local neighborhoods.
In this way, weights form connections at two different scales. The principle with
these nonlocal techniques is that many patterns are repeated throughout a dataset
and therefore the restoration of the pattern at one location can benefit from looking
at patterns from other locations. Of course, the introduction of a fully-connected
graph makes the computation intense and slow. Despite this computational hurdle,
the quality of the results is sufficiently impressive that the technique remains an
active area of research.

Since this idea was introduced in the field of image processing, a regular data grid
is assumed in which it is possible to measure neighbors in a small window around
two pixels. Specifically, the weights can be derived as

wij = σ(‖xnbhd(i) − xnbhd(j)‖), (5.43)

where σ(·) is any affinity weighting function discussed in Chap. 4 and xnbhd(i) rep-
resents the collection of data values, arranged into a vector, from the nodes in the
local neighborhood of vi . The weights generated in this fashion may be used directly
in any of the methods described in previous sections. This distinction between lo-
cal and distant neighborhoods also carries over easily to arbitrary regular graphs,
but not to irregular graphs. One possible avenue for generalization of these methods
to irregular graphs is to modify σ(·) to input two distributions as arguments and
output a distance between those distributions. For example, σ(·) could measure the
difference in entropy of the data values in the two local neighborhoods, even if the
neighborhoods were of different size. Another approach for generalization of this
method to irregular graphs is to consider two nodes to be distant neighbors only if
they have the same degree.

5.7 Filtering Vectors and Flows

The focus of the previous sections has been the filtering of 0-cochains or functions
defined on nodes. In this section we discuss how to apply these same techniques
to filtering 1-cochains or functions defined on edges, such as vectors or flows. For
the remainder of this section, we will refer to all 1-cochains as flows. We begin
our application into flow filtering by making the same assumption as we did with
the filtering of scalar fields—that the target of our filtering operation is to suppress
high frequencies. This assumption can be motivated by the same arguments as in
Sect. 5.1.2 if the 1-cochains are acquired directly (i.e., if our acquisition device
measures flows, differences, gradients or other vectors). The filtering of high fre-
quency components in a flow field is identical to the case of filtering a scalar field:
low-pass filtering entails suppressing the components corresponding to high fre-
quency eigenvectors of the Laplacian. Instead of suppressing the high frequencies
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of the scalar Laplacian, flow filtering suppresses the high frequencies of the vector
Laplacian discussed in Chap. 2.

Recall that the continuous formulation of the vector Laplacian is

∇2 = (∇∇·)− (∇ ×∇×), (5.44)

and the (unweighted) edge Laplacian

L1 = BTB+ AAT, (5.45)

where B is the face–edge incidence matrix. Although many aspects of our smoothing
models for scalar fields translate directly, there are also important differences. We
can note several aspects of the edge Laplacian in the context of filtering:

1. The node Laplacian for a connected graph has a rank one nullspace correspond-
ing to the constant vector, which means that a diffusion process governed by the
scalar Laplacian will always approach a constant. The edge Laplacian has a rank
zero nullspace when |F| = |E| − |V| + 1 (see Chap. 4), meaning that “diffusion”
with the edge Laplacian will always drive the solution to zero.

2. The edge structure may also be shift-invariant for several common types of com-
plex. For example, a wrapping (or infinite) lattice will have a circulant edge
Laplacian (assuming that the cycle set consists of all the local cycles). If the
edge Laplacian is circulant, then the DFT may be used to efficiently filter flows,
as described above for the case of nodal filtering.

3. From the definition of the edge Laplacian, it is clear that a “smooth” flow field
is one for which there is a small curl and a small divergence. In other words,
the ideal smooth flow is one in which all of the flow vectors are pointing in
the same direction. Figure 5.3 illustrates the principle of vector smoothing and
Fig. 5.4 gives an example on an arbitrary graph. These examples illustrate vector
“diffusion” in which the initial high-frequency flow field is smoothed.

Thus filtering higher-order data is a straightforward generalization of the intuitive
filtering of nodal data presented above.

The filtering of a flow field or any edge data is possible using the same for-
malism for filtering scalar fields or node data by using the eigenvectors of the
edge Laplacian.

This direct extension of filtering to higher-order data provides a clear example of
the generality of the discrete framework.

5.7.1 Translating Scalar Filtering to Flow Filtering

If the edge Laplacian is circulant, then standard DFT filtering techniques may be
applied since the vectors in the DFT matrix will also be the eigenvectors of the edge
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Fig. 5.3 An example of vector smoothing in the plane. (A) The initial, noisy vector field with
nonzero curl and divergence throughout the field. (B) The vector field smoothed via diffusion (the
Basic Energy Model applied to flows (5.49b) with p = 2). In the Euclidean plane, this smoothing is
equivalent to smoothing the two coordinate components of each vector independently (i.e., treating
both as scalar fields). In general, vector smoothing reduces both the curl and divergence of the
vector field, and adds spatial coherence or correlation to the vector-valued data

Laplacian. However, if the edge Laplacian is not circulant, then we may still apply
Taubin’s smoothing method to the flow field. Specifically, if we have flow field y,
then we may alternate “diffusion” and “unshrinking” steps via

y[2k+1] = y[2k] − λL1y[2k], (5.46)

y[2k+2] = y[2k+1] +μL1y[2k+1]. (5.47)

In order to utilize the gradient-based filtering techniques that we defined for
scalar functions, we need to ask how to define a “gradient” on a vector/flow field.
A natural choice of the “gradient” of a flow field might be to view the gradient as the
0-coboundary operator (see Chap. 2) and simply replace it with the 1-coboundary
operator, i.e., the curl operator B. However, such an approach would view a mini-
mization of the gradient operator as the goal rather than viewing the gradient oper-
ator as a proxy for dampening the high-frequency eigenvectors of the Laplacian, as
originally derived in (5.10b). For scalar functions, the Laplacian consists of L= ATA
and therefore an iterative reduction of 1T|Ax|p will have the effect of filtering high
frequencies in the initial data. However, when we consider the edge Laplacian, then
L1 = BTB + AAT and we can see that simply replacing gradient with curl, or re-
placing a minimization of 1T|Ax|p with 1T|By|p , addresses only the first term of L1.
Therefore, if we intend to extend the gradient-based techniques to flow filtering, we
must minimize both 1T|By|p and 1T|ATy|p , i.e., in order to dampen high frequen-
cies we must simultaneously minimize both the curl and the divergence of the flow
field.

We may now reformulate the gradient-based techniques employed in Sect. 5.2
for scalar functions in the context of flow field filtering by again considering the
energy minimization models in this context. The formulation of the Basic Energy
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Fig. 5.4 An example of flow
filtering in an arbitrary graph.
A lowpass flow filtering
process attempts to reduce
both flow divergence and flow
curl. Node v1 and cycle c1
have been designated as
locations where the initial
flow field has high divergence
and curl, respectively.
(A) The initial flow field.
Note the strongly nonzero
divergence at v1, equaling
10+ 5− 2− 3= 10 and the
nonzero curl around cycle c1
equaling 5+ 5+ 5= 15.
(B) The vector field smoothed
via diffusion after one
iteration (forward Euler on
the Basic Energy Model
(5.49b) with p = 2 and
timestep �t = 0.1= 1/λ).
Even after one iteration, the
divergence at v1 has been
reduced to
7.4+ 2.9− 4.4− 1.1= 4.8
and the curl around cycle c1
has been reduced to
2+ 1.7+ 2.7= 6.4. (C) The
vector field smoothed via
diffusion after five iterations
(forward Euler on the Basic
Energy Model for flows
(5.49b) with p = 2 and
timestep �t = 0.5= 1/λ).
The divergence at v1 has been
reduced to
3.94+0.99+0.19−4.74= 0.38
and the curl around cycle c1
has been reduced to
1.42+ 0.53+ 0.19= 2.14

Model for flow filtering therefore gives

EBEM[y] =
∫
‖∇ · �y‖pp dt −

∫
‖∇ × �y‖pp dt, (5.48a)

EBEM[y] = 1T|By|p + 1T|ATy|p. (5.48b)

Recall that the sign discrepancy between the continuous and discrete formulations
was addressed in Chap. 2. In the scalar case, the minimum of EBEM[·] was trivial
(constant) and this case is no different (zero). However, just as in the scalar case,
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a few steps of an iterative minimization algorithm for (5.48b) will serve to quickly
dampen the highest frequencies.

In the scalar case we employed a data term to avoid a trivial minimum of our
gradient term and the same technique may be used again for flow fields. If we have
a noisy observation of our flow field (represented by function s), then we may trade
off between smoothness and the noisy data via a minimization of

EEBEM[y] =
∫
|∇ · �y|p dt −

∫
‖∇ × �y‖pp dt + λ

∫
|�y − �s|p dt, (5.49a)

EEBEM[y] = 1T|ATy|p + 1T|By|p + λ1T|y− s|p. (5.49b)

All of the above filtering techniques may be modified to include implicit dis-
continuities (weights) by using the appropriately weighted operators. Recall from
Chap. 2 that the weighted edge Laplacian is given by L1 = AG0ATG−1

1 +G1BTG−1
2 B

for node weighting G0, edge weighting G1 and face weighting G2. Letting G1 = I
gives

EBEM[y] = 1TG0|ATy|p + 1TG−1
2 |By|p, (5.50)

EEBEM[y] = 1TG0|ATy|p + 1TG−1
2 |By|p + λ1T|y− s|p. (5.51)

In the next section we use the generalizations of the filtering models to flow
filtering to further extend these filtering techniques to functions defined on cells of
any dimension (i.e., to filtering a general p-cochain).

5.8 Filtering Higher-Order Cochains

Now that we have examined the Fourier and variational approaches for filtering
scalar (node) and vector (edge) functions, we complete the exposition by briefly con-
sidering the filtering of functions defined on higher-dimensional cells (e.g., faces).
As before, the filtering of high frequencies depends on a definition of a higher-
order Laplacian. As we saw in Chap. 2, the general definition of the higher-order
p-Laplacian matrix for arbitrary p-cells is given as

Lp = NpN∗p +N∗p+1Np+1. (5.52)

If we consider a specific value of p, then we may still employ DFT-based techniques
if the Lp matrix is circulant. Even if Lp is not circulant, then we may still apply
Taubin’s algorithm with the steps

z[2k+1] = z[2k] − λLpz[2k], (5.53a)

z[2k+2] = z[2k+1] +μLpz[2k+1], (5.53b)

where z is the p-cochain variable.
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Similarly, when Gp = I, the variational approaches may be defined by producing
a minimum of

EBEM[z] = 1TG(p−1)|NT
pz|q + 1TG−1

(p+1)|N(p+1)z|q, (5.54)

EEBEM[z] = 1TG(p−1)|NT
pz|q + 1TG−1

(p+1)|N(p+1)z|q + λ1T|z− s|q . (5.55)

Note that we used q as the exponent parameter to avoid confusion with p used to
designate the p-cell. The above equations detail the more general case of variational
filtering methods with implicit boundaries (weights). If we desired to use the vari-
ational filtering methods without implicit boundaries (unweighted) we may simply
set G(r+1) =Gr =G(r−1) = I in the equations above.

5.9 Applications

The filtering procedures described in this chapter may be applied to any situation
in which data measured at discrete locations contains noise to be removed. In this
section, we consider several applications of the filtering procedures applied to very
different types of data. At the end of these experiments, we summarize our obser-
vations to give the reader a guide for when to employ the various filtering tech-
niques. In all of the experiments presented here using the total variation model, we
set p = 1, since setting p = 2 in the total variation model is equivalent to setting
p = 2 in the Extended Basic Energy Model. Unless otherwise noted, the total varia-
tion filtering used an unweighted edge model. The λ parameter was set individually
for each algorithm.

5.9.1 Image Processing

5.9.1.1 Regular Graphs and Space-Invariant Processing

A classical application of filtering is image processing. In this problem domain,
the pixels are identified with nodes, edges are derived from a local neighborhood
(e.g., a 4-connected or 8-connected lattice), and the pixel intensities are the data
associated with each node. Therefore, the x variable in the filtering routines above
is the unknown filtered image intensities that are solved for, while the initial data s
is identified with the noisy image intensities.

In the first experiment, a synthetic image of a black circle in a white background
was corrupted with noise by adding an independent random variable to each pixel
with a uniform distribution. Figure 5.5 displays the results of the various filtering
procedures discussed above. We may make several observations from these results.

First, the localization of circle boundaries (i.e., the image discontinuities) im-
proves in the Basic Energy Model as the parameter p decreases. Therefore, the
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Fig. 5.5 Image filtering of a synthetic image of a black circle on a white background which has
been corrupted by additive i.i.d. random noise with a uniform distribution. Note that unweighted
filtering with the Basic Energy Model consistently produces worse boundary localization as p

increases. However, for any filtering model, weighted filtering is generally better at preserving
boundary location. Since the source image exactly matches the Mumford–Shah model, this filtering
result is nearly perfect
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mean filter localizes boundaries better than the minimax filter, the median filter lo-
calizes boundaries better than the mean filter and the (approximated) mode filter
localizes boundaries better than the median filter. A different method of providing
better localization boundaries is to use a weighted filter, as seen by the improve-
ment in the Taubin technique and the improvement in the mean filter attained by
using edge weights obtained from the Welsch function in Chap. 4. In the gradient
manipulation example, the gradients were manipulated by setting all gradients to
zero for which the magnitude was smaller than a fixed threshold. Since this image
content allowed such a simple approach, the reconstruction was nearly perfect from
this algorithm. Finally, we note that this example perfectly fits the model of the
Mumford–Shah functional in the sense that the underlying image consists of two
objects (foreground and background) with different intensities. If the boundary be-
tween these two objects may be localized well, then this filtering procedure smooths
only within these boundaries to achieve a near-perfect filtered result.

The second experiment uses a photograph which is much more complicated than
the circle in the previous experiment (see Fig. 5.6). Unlike the previous image, the
noiseless image contains significant high spatial frequency content (in the child’s
hair). In this experiment, zero-mean Gaussian noise was added independently to
each pixel to corrupt the original image. As before, we see that as p increases in the
Basic Energy Model, the boundaries are progressively blurred in the filtered image.
Additionally, the use of a weighted graph increases the boundary localization for the
Taubin and mean filtering methods. Although the total variation model continues
to produce a good filtering, the Mumford–Shah model does not perform well on
this image. The Mumford–Shah model explicitly assumes that there are two regions
(possibly consisting of multiple connected components) which are smoothly varying
in intensity except at the boundary transitions. Since the example image contains
many regions of sharp intensity changes (textures), the Mumford–Shah model is
forced to choose (through parameter settings) between many small regions or large
overly smoothed regions. The parameters were set in this experiment to produce
many small regions. Results of this experiment are displayed in Fig. 5.6.

5.9.1.2 Space-Variant Imaging

Although standard image processing applies to images which are uniformly sam-
pled, there are several situations in which the image data is acquired with nonuni-
form samples. Some image acquisition devices explicitly acquire data which does
not have a Cartesian sampling (e.g., ultrasound medical images). Additionally, al-
most all known biological vision systems acquire light data nonuniformly in space
[209]. Although most biological vision systems employ sampling schemes which
are difficult to describe mathematically as a function of space, there has been more
success in mathematically describing the sampling of visual space employed by hu-
mans and by non-human primates such as the macaque monkey. The macaque is of
particular interest because it is considered to have a similar retinal organization to
humans and similar visual capabilities [336], and there is vast amounts of data on the
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Fig. 5.6 Image filtering of a photograph containing high-frequency texture. This image has been
corrupted by i.i.d. random noise with a zero-mean Gaussian distribution. As before, weighted filter-
ing is generally better at preserving boundary location. However, since this image does not match
well with the Mumford–Shah model, the filtered image is not nearly as close to the noiseless image
as it was in the previous example
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Fig. 5.7 Filtering image data on a biologically sampled image. (A) A sampling mesh modeled
after the macaque retina. (B) Cartesian image. (C) Image resampled with the macaque mesh,
(D)–(I) filtering of the data. Note the visual disturbance caused by blurring edges in the poorly
sampled peripheral regions in (D)

macaque visual system. Several researchers have taken inspiration from this nonuni-
form biological sampling of visual space to pursue computer vision approaches or
hardware with a similar sampling [158, 277, 321, 328].

We may filter these nonuniform biological samplings of image data in the same
framework as before. As with Cartesian sampling, the image sample locations are
viewed as nodes, the edge structure is defined by a Delaunay triangulation in the
Euclidean plane and the filtered image data x is associated with each node (see
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[158, 391] for more information). Aside from this new graph, there is no difference
in filtering operation with the standard Cartesian data. In fact, exactly the same
software implementation may be used to perform filtering by simply applying it to
the new (non-lattice) graph. For this experiment, the nonuniform sampling structure
for the macaque was loaded from the Graph Analysis Toolbox software package
[166] that contains an implementation of the filtering techniques discussed in the
chapter. Using this same toolbox, a standard Cartesian image of blood cells was
imported to the space-variant structure and filtered. Results of the experiment are
displayed in Fig. 5.7. Since the same properties of the filtering procedures observed
for the Cartesian images apply to the space-variant images as well, only a subset of
the filtering methods were employed for this experiment. However, we may make
a few observations which are specific to this experiment. The first observation is
that the blurring over object boundaries is more visually disturbing in regions of the
image which are represented by only a few samples (the periphery in these images).
Our second observation is that although the edge weights continue to help avoid
blurring over object boundaries, the edge weights may be set in this scenario based
on both image data and graph geometry. Therefore, edges connecting nodes which
are further apart spatially may be given a lower weight, in addition to a weighting
based on intensity difference (see Chap. 4 for more details). In this experiment, edge
weights were generated purely from intensity changes in the image.

5.9.2 Three-Dimensional Mesh Filtering

Filtering of geometric data is an important process in computer graphics and the pro-
cessing of data obtained from various three-dimensional scanners. Is this context,
the node data (0-cochain) is a tuple of coordinates assigned to each node. There-
fore, the nodal variable x in the above algorithms corresponds to an n×K set of
K-dimensional filtered coordinates assigned to each node, with s corresponding to
the n×K noisy coordinate values acquired for each node. The output of a filtering
procedure is therefore a new set of coordinates for each node. The edge structure of
the graph is generally given via a surface extraction preprocessing step. Since the
most common method for rendering three-dimensional data requires a list of faces
for the surface, the faces are usually extracted via a triangulation process.

We begin this section with a synthetic example of filtering coordinates obtained
by generating a circle and adding noise to the coordinates of each point on the circle.
Figure 5.8 gives an example of a lowpass filter obtained via the Basic Energy Model
with p = 2 (i.e., a mean filter) and a lowpass filter given by Taubin’s method. By
subtracting the lowpass coordinates from the original coordinates, a highpass filter
of this ring is obtained.

5.9.2.1 Mesh Fairing

The problem of mesh fairing is to produce a smooth three-dimensional mesh from
a mesh with noisy coordinate values. In the current framework, the mesh points are
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Fig. 5.8 Filtering coordinate data on a ring graph. (A) A noisy ring graph produced by adding
Gaussian random noise to the radius of nodes arranged in a perfect circle. (B) The effect of ap-
plying the Basic Energy Model with p = 2 (i.e., a mean filter) to the coordinates of the graph
in (A). (C) The low-pass filter of Taubin [371] applied to the coordinates of the graph in (A).
(D) A high-pass filter of the coordinates in (C), produced by differencing the low-pass signal of
(C) with the original

associated with nodes, the edges are given explicitly by the mesh, and the data tuple
s̃i associated with each node vi represents the three-dimensional coordinates of that
node. The goal in mesh fairing is to produce filtered data (coordinates) x.

Figure 5.9 shows a three-dimensional mesh of a horse. The noise observed in
meshes is typically in the direction of the surface normal. For this example, Gaussian
noise was added to each of the three coordinates and to each node independently
to generate the noisy mesh. Several of the filtering procedures described in this
chapter were applied to produce a fairer mesh. In this application, it is possible
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Fig. 5.9 An example of mesh fairing. Gaussian noise was added to each of the coordinates of a
three-dimensional mesh and these coordinates were filtered to produce a faired (smoothed) mesh.
The nodes and edges are given explicitly by the mesh and the data are the three-dimensional node
coordinates. Note how the Basic Energy Models shrink portions of the figure while Taubin’s spec-
tral filtering smooths without shrinking by preserving the low frequencies

to see that one of the major benefits of Taubin’s spectral approach to filtering is
to avoid shrinking of the mesh. Since the Basic Energy Model drives the filtered
solution toward a constant value (regardless of the choice of p), the effect observed
in mesh fairing is to drive all of the nodes closer together (to the same, constant,
location in space). However, by preserving the low frequencies, Taubin’s filtering
approach avoids the shrinking observed from the other algorithms. The shrinking is
particularly noticeable in these figures around the horse’s legs, ears and snout. The
total variation filtering results in less shrinking than the Basic Energy Model, but
smooths the fine details somewhat more than Taubin’s filtering algorithm.

5.9.3 Filtering Data on a Surface

In many applications, data is measured at spatial locations along a surface, and to in-
terpret this data properly the analysis must be carried out in a way that respects how
the data is distributed along the surface. Examples of such measurements would be
data collected from a network of touch sensors on an article of clothing, or samples
of the distribution of current along a conductive sheet. Here we consider the applica-
tion of filtering functional Magnetic Resonance Imaging (fMRI) data measurements
of neural activity from positions along the surface of the cerebral cortex of the brain.

We will consider an example taken from an fMRI study that sought to locate
brain areas implicated in the processing of vision and, in particular, those areas that
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are known to be responsible for the processing of motion in the visual field. In this
example, the neural responses were measured during a visual stimulation consisting
of presenting subjects with patterns of moving shapes, or motion stimuli, to activate
those areas of the visual cortex responsible for processing motion so that these ar-
eas could be identified and located within the cortex. Neural “activity” is quantified
through statistical analysis of the measured responses, and those measured locations
whose statistical significance exceeds a fixed threshold are considered to be the sites
of true activations. These activations can be visualized with activation maps that
depict where on the cortical surface significant activation has been identified. How-
ever, random noise in the measurement leads to spurious significant activations by
chance, which generates false positives in the activation maps that must be detected
and removed for proper interpretation of the data. Because for most experiments it
is expected that groups of active locations are nearby in space, spatial filtering of
the data helps coalesce locations of true activity while suppressing the significance
levels of spurious activity at isolated nodes, forcing them below the significance
threshold and thus eliminating them from the final activity map. This spatial prior is
often used in fMRI analysis (e.g., [406]).

MRI data is acquired in the form of a stack of images of the brain, thus the mea-
surement consists of a volume of image data. Most techniques for spatial smoothing
of fMRI data smooth the data in the original space of the acquired images, i.e.,
the volumes of image data represented as voxels, and therefore the conventional
smoothing can be conveniently enacted by three-dimensional smoothing kernels ap-
plied to the volume of image data. Unfortunately much of the spatial structure of the
relevant neuronal activity patterns is contained within the surfaces of the brain, such
as the cortical gray matter of the cerebral hemispheres where most of the sensory,
motor, and higher cognitive functions take place. Smoothing the voxel data in three
dimensions is harmful since voxels that are nearby in three dimensions are often
sampled from positions on the cortical surface that are far apart when distance is
measured along the two-dimensional cortical surface—as in the case of two adja-
cent voxels that sample from opposite, abutting banks of a sulcus. Thus, volumetri-
cally smoothing the voxel data and ignoring the boundary of the cortical surface can
mix activity patterns across distant locations of the cortical surface, corrupting the
spatial structure of local activity patterns existing along the surface. For this reason,
it is advantageous to smooth the data in a way that respects the natural geometry of
the cortical surface.

An example of surface smoothing applied to brain activation maps measured
with fMRI is presented in Fig. 5.10 (contained in the color plate section at the end
of the book). In surface-based fMRI analysis, a mesh representation of the cortical
gray matter of the cerebral hemispheres is generated from anatomical MRI data
(e.g., [96, 136]), including the two-dimensional exterior and interior boundaries of
the gray matter ribbon. For this example data set, the exterior surface is shown in
Fig. 5.10(A) and the corresponding interior surface is shown in Fig. 5.10(B). All
analysis is restricted to the interior surface of the cortical gray matter, and for ease
of visualization the activation maps are typically presented on an “inflated” surface
representation (as shown in Fig. 5.10(C)) to reveal the activity buried within the
deep sulci of the cortical folds.
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Fig. 5.10 Filtering fMRI data along a cortical surface model. Surface models of the (A) exterior
surface, (B) interior surface, and (C) the “inflated” interior surface of the cortical gray matter of
the left cerebral hemisphere, with approximate location of area MT indicated by a circle. (Sur-
faces generated with FREESURFER [96, 136].) The legend indicates Front–Rear axis of brain.
Locations of negative mean curvature (within sulci) are rendered in the dark gray and locations of
positive mean curvature (within gyri) are rendered in light gray. Measured activity map plotted as
z-statistics, with color scale provided at upper right. The threshold is set to exclude nodes where
the activity is not statistically significant, which leads to many isolated points or small clusters
of activation appearing in the map—likely false positives due to noise. The results of filtering the
data using (E) spectral filtering, (F) the Basic Energy Model with p = 0 and (G) p = 2, (H) Total
Variation, and (I) the Mumford–Shah algorithm are provided with the same color scale represent-
ing the statistical significance. Note that many of the false positives are removed with the filtering.
Arrows indicate the site of MT activation

The functional activation data from this example is represented on the ver-
tices of the triangular mesh surface representation of the interior surface shown in
Fig. 5.10(B), then smoothed with the filtering methods discussed in this chapter, and
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Fig. 5.10 (Continued)

the results are visualized on the inflated surface. In the original, unsmoothed data
seen in Fig. 5.10(D), we see a cluster of activated nodes in the rear of the brain—
which is within the part of the brain that is responsible for vision—accompanied
by noisy activations extending up and further into the front of the brain. In order to
remove these noisy activations while (ideally) retaining the true activations, surface-
based smoothing can effectively highlight the true activity while removing noise.

Each of the filtering methods succeeds in suppressing false activations at-
tributable to noise. The results of spectral filtering of Taubin, the two energy mod-
els, and Total Variation shown in Figs. 5.10(E)–(H) highlight two loci of activity
in locations near areas where visual motion processing is known to occur known
as the “middle temporal” area, or cortical area MT. Beyond removing spurious or
noisy activations outside of the visual motion area, the spectral filtering shown in
Fig. 5.10(E) also smooths the “true” activity pattern within MT, suggesting that
some of the relevant features of the data may be lost along with the false positives.
However, this filtering may also aid in eliminating aliasing artifacts in the measure-
ment due to the coarse spatial sampling, and thereby the smoothing process may
potentially recover a more faithful representation of the true activation pattern. The
results of the basic energy model shown in Fig. 5.10(F) contain a distinct disconti-
nuity that is not salient in the original measurement, which is a sharp feature that
violates the expected spatial resolution of the fMRI technique and therefore is likely
to be an artifact of the smoothing.

The results of the weighted Basic Energy Model and Total Variation shown in
Figs. 5.10(G) and (H) demonstrate both suppression of false positives outside of
the presumed true site of activation and retention of most of the structure of the
original measured activity map. Therefore, if another form of filtering were desired
for the remaining activity cluster, such as additional anti-aliasing filtering, it could
be subsequently applied.

The results of the Mumford–Shah algorithm shown in Fig. 5.10(I) drive most
of the measured activity below the statistical threshold, and thereby suppresses all
but a small island of activity. To gain insight into the relative performance of these
filtering methods, the results of Fig. 5.10 are re-plotted in Fig. 5.11 (contained in
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Fig. 5.11 Effect of smoothing methods on sub-threshold fMRI activity. The data of Fig. 5.10 is
re-plotted with a color scale that highlights the relative performance and behavior of the filter-
ing methods on activity below the significance threshold. Reference arrows are positioned as in
Fig. 5.10

the color plate section at the end of the book) but with a lower statistical threshold
to examine the sub-threshold patterns of the filtered data. With this color scale, the
degree of noise suppression outside of the area of activity is more clear, with the
results of the weighted Basic Energy Model shown in Fig. 5.11(D), Total Variation
Fig. 5.11(E), and the Mumford–Shah algorithm shown in Fig. 5.11(F) performing
best. Additionally, a salient and undesirable feature of the Mumford–Shah algorithm
is that it spreads the activity pattern diffusely, losing most of the structure of the
original data in this case.
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Fig. 5.12 Surface smoothing for cortical inflation. (A) Original folded surface. (B) Surface after
1,500 iterations of spatial filtering using the Basic Energy Model with p = 2. (C) Surface after
5,000 iterations of filtering. The high-frequency folds are removed with smoothing, leaving an
“inflated” surface in which the regions within the cortical sulci are clearly visible, similar to the
explicitly inflated surface presented in Fig. 5.10(C)

In this example, surface data are visualized on the inflated surface representation,
which is very common in fMRI studies. Although several tools exist for rapidly
computing inflated brain surface, it is instructive to note that the same smoothing
operations used to filter the data along the surface can be applied to filtering the
surface mesh vertex coordinates themselves—as in the previous example on mesh
fairing—to smooth out the folding pattern and produce an “inflated” version of the
cortical surface representation. Figure 5.12 demonstrates an example of how itera-
tive smoothing using the Basic Energy Model with p = 2 can produce an inflated
surface representation.

5.9.4 Geospatial Data

A different type of application involving data analysis at discrete locations comes
from a parcellation of continuous space into subregions in which measurements are
made. Many types of geospatial data fit this description in which a geographical
area is parcellated into regions that fit a political, topographic or property descrip-
tion. Examples of this type of data would be soil samples, transportation data, pol-
lution measurements, incidence of infectious disease, or population of a species.
Geospatial data is typically managed, analyzed and visualized by software known
as a geographical information system and this data is typically analyzed with a set
of tools known as spatial statistics [82, 317].

In this section, we adopt an example of state polling data from the 2008 US Pres-
idential election for the 48 continental states. Each US state is assigned a number
equal to the percentage of poll respondents who favored (then candidate) Barack
Obama just prior to the 2008 election. Each state is colored brighter if more respon-
dents favored Mr. Obama and darker if fewer respondents favored Mr. Obama. Due
to small samples and different polling methodologies, we can assume that there is
noise present in this data. A simple model for filtering this polling data would be
to assume that a state is more likely to favor a candidate if its neighboring states
favor a candidate and less likely to favor a candidate if its neighboring states do not
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favor the candidate. This model is justified by the concept of Tobler’s Law or the
First Law of Geography which asserts that data situated at nearby geographical
locations are likely to be correlated [377]. Given this correlation, we may apply a
spatial filtering algorithm to the polling data to remove noise. In this example, each
state is represented by a node, two states are connected by an (unweighted) edge if
they share a border, the measured data s is the polling data and the goal is to produce
filtered polling measurements x. We stress that although the underlying domain (the
continental United States) is continuous, the parcellation of this space into political
states for which polling measurements are made transforms this problem into the
current framework of analyzing data associated with a graph.

Figure 5.13 displays the original polling data and the filtered data. Taubin’s filter-
ing method and the weighted Basic Energy Model with p = 2 yield similar results.
The output of both of these filtering methods is largely unchanged from the orig-
inal polling data, except that spatial outliers are softened. For example, the weak
poll numbers for Mr. Obama in South Carolina and Indiana were improved af-
ter filtering because the poll numbers for Mr. Obama in neighboring states were
generally stronger. Similarly, the polling numbers in New Hampshire and Maine
were balanced after filtering, with the filtered polling numbers showing stronger
support for Mr. Obama in New Hampshire and weaker support for him in Maine.
The Mumford–Shah filtering produces substantially different results in this appli-
cation. Specifically, this approach attempts to identify regions within which the
polling numbers are expected to be relatively homogeneous. Therefore, the mid-
Atlantic states are grouped with most of New England by this algorithm to produce
one large voting bloc, the southeastern states are grouped with areas of the mid-
west to create a second voting bloc, a third voting bloc is produced by the great
lakes states and upper midwest and a final voting bloc is produced by the west coast
and the southwest. Florida and Maine-New Hampshire are also considered by the
Mumford–Shah filtering approach as independent voting blocs. Within these voting
blocs, the polling numbers are made more homogeneous (similar to the noisy circle
image processing example). Although these voting blocs roughly correspond with
meaningful political battle lines in the US in 2008, other parameter settings for this
algorithm might produce larger or smaller voting blocs within which the data would
be smoothed.

5.9.5 Filtering Flow Data—Brain Connectivity

In this section, we give an example of filtering real flow data along edges. Exam-
ples of flow data encountered in practical applications would be traffic networks,
communication networks, or migration networks. In fact, if connection strengths
between nodes are provided for any directed graph, these strengths could be con-
sidered as flow data. When considering flow data, a directed graph may be viewed
simply as an undirected graph for which the edge directions represent the directions
in which flow is considered to be positive.
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Fig. 5.13 Filtering of polling
data for the 2008 US
Presidential election. Brighter
coloring indicates stronger
support for (then candidate)
Mr. Obama and darker
coloring indicates weaker
support for Mr. Obama. Each
state is represented by a node
in the graph where two nodes
share an (unweighted) edge if
they share a border
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We address the filtering of the measured strength of brain connectivities between
parcellated regions of the cat brain measured by Scannell et al. [329] (and subse-
quently studied by others [354]). This connectivity network consists of 52 brain
regions (nodes) and 818 directed edges. Scannell et al. assigned each edge a con-
nection strength of ‘1’ (weak), ‘2’ (medium) or ‘3’ (strong), which was determined
from a compilation of measurements from the cortico-thalamic system of the cat.
We may assume that noise was present in these measurements as a result of impre-
cise measuring devices and as a result of the severe quantization of the data into
three categories. The justification for removing noise with the filtering techniques
described above also applies to the filtering of flow data. Specifically, in the scalar
case, data points within a low-frequency scalar (node) distribution are similar be-
tween neighboring nodes. Similarly, data within a low-frequency flow (edge) distri-
bution are similar between neighboring edges in which neighboring edges are either
incident on the same node (where similarity means small divergence) or neighbor-
ing edges are incident on the same cycle (where similarity means small circulation).
Above in Fig. 5.3 we saw that a flow field through a continuous domain straightens
out after filtering. Additionally, the noise model justifications for these filtering pro-
cedures also applies to the flow case—a zero-mean noise flow distribution will be
expected to have zero divergence at all nodes and zero circulation around all cycles.

Several liberties were taken with this data in order to make the filtering operations
clearer. First, a random subset of the graph nodes were sampled for presentation pur-
poses to better visualize the results of the filtering. Second, we arbitrarily removed
one edge from every pair of nodes connected by two directed edges in the oppo-
site directions. This removal was also made to improve visualization of the results.
Figure 5.14 displays the results of our filtering operation on the flow data. The first
two figures show the full network and the connections in the subnetwork. The next
figures illustrate the measured flow strength (represented by line thickness) and the
lowest-frequency eigenvector of the edge Laplacian. The lowest frequency compo-
nent of the network distributes the flows equally across edges in order to minimize
flow divergence at nodes and to minimize flow circulation (curl) around cycles. Note
that the eigenvector is signed, which is indicated by a change in direction (arrow)
for negative flows. Taubin’s spectral filtering and the Basic Energy Model (p = 2,
corresponding to diffusion or generalized mean filtering) were applied to filter the
initial flow data. The results of these filtering operations reduce the divergence and
circulation of the original measured flow while driving the filtered flow toward the
low-frequency eigenvector. The filtering especially dampened the edges contribut-
ing to the high-divergence of the leftmost node in the diagram, as well as dampening
the edges causing divergence on the central node. In addition to reducing noise, the
filtering operation also produced real-valued flows from the initial quantized flows
which may allow for a better comparison between edge connectivities.

Since the underlying network is directed, care must be taken when applying these
filtering operations that none of the flow signs change, causing direction changes.
In this example, this constraint was enforced simply by using a small number of
filtering iterations so as to not oversmooth the data.



196 5 Filtering on Graphs

Fig. 5.14 Example of flow filtering on a network of brain connectivity data collected in the cor-
tico-thalamic system of the cat [329]. A subnetwork of the original data was instead processed
for visualization purposes. Line thickness represents the measured strength of the connections (the
original “flow” data and filtered data). This example illustrates that the lowest frequency compo-
nent of the network distributes the flows equally across edges in order to minimize flow diver-
gence at nodes and to minimize flow circulation (curl) around cycles. Lowpass Taubin or diffusion
(“mean”) filtering drive the flows closer toward the flow given by low frequency eigenvector
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5.10 Conclusion

In this chapter we reviewed several broad approaches for filtering data defined on
arbitrary graphs—even irregular graphs. Although several examples were given, a
reader with a particular filtering problem may still be wondering which method to
use. The most classic filtering approach is Fourier-based filtering, but such an ap-
proach does not permit the preservation of discontinuities, nor does it apply to data
defined on irregular (or weighted) graphs. In a more general setting, by far the most
common methods are mean filtering or nonlinear anisotropic diffusion since these
methods are straightforward to implement, predictable, and run in low-constant lin-
ear time. However, mean filtering has a tendency to oversmooth (even with discon-
tinuities permitted), and to drive the data to a single value (the “shrinking” problem
in mesh filtering). The filter described by Taubin is, in our opinion, an underuti-
lized method (outside of computer graphics) which solves the second problem with
little additional overhead or coding complexity (although it does require the spec-
ification of an additional parameter). If more computation is tolerable to provide a
better result, then the variational approaches described in this chapter (e.g., median
filtering with discontinuities, total variation filtering) are not difficult to implement
and produce results that are not oversmoothed, but they do require more computa-
tion. Data which fits the assumptions of the Mumford–Shah model—that the data
belongs to multiple regions which have smooth internal data—may be filtered well
by minimizing the Mumford–Shah energy. If even better results are required, the
underlying graph is shift-invariant and computation time is less important, then the
variational filters with nonlocal neighborhoods are likely to produce the best results
known so far. Finally, the gradient manipulation methods are moderately compu-
tationally intense (e.g., requiring a sparse linear system solve), but they provide
substantial flexibility for combating data corruption if a model of the expected gra-
dients is known, such as the image processing example of the circle in which it was
asserted that the gradients were either large or zero. In the next chapter, we show
how these same filtering models may be applied to derive a variety of clustering
algorithms.



Chapter 6
Clustering and Segmentation

Abstract Clustering algorithms are used to find communities of nodes that all be-
long to the same group. This grouping process is also known as image segmentation
in image processing. The clustering problem is also deeply connected to machine
learning because a solution to the clustering problem may be used to propagate
labels from observed data to unobserved data. In general network analysis, the iden-
tification of a grouping allows for the analysis of the nodes within each group as
separate entities. In this chapter, we use the tools of discrete calculus to examine
both the targeted clustering problem (i.e., finding a specific group) and the untar-
geted clustering problem (i.e., discovering all groups). We additionally show how to
apply these clustering models to the clustering of higher-order cells, e.g., to cluster
edges.

The clustering problem is to assign a set of labels to a set of cells such that all cells
assigned to the same label belong to the same group. The most common type of
cells to cluster are nodes, and so our discussion will be limited to node clustering,
except in Sect. 6.4 where we address the clustering of higher-order cells. Clustering
appears in several fields of study, including machine learning and image analysis. In
the context of image analysis, the clustering problem is often called image segmenta-
tion. We will generally use the term clustering in this chapter unless we specifically
discuss image clustering, in which we will use the term segmentation.

Formally, the clustering problem may be formulated by assigning elements b of
a label set L to the set of nodes, V. Specifically, the goal of a clustering algorithm
is to produce a segmentation function σ : V→ L. Inspired by image analysis, the
term object will also be used interchangeably with cluster to refer to all nodes that
are mapped to the same label through σ .

Clustering algorithms may be broadly categorized along two axes. The first axis
ranges from targeted clustering to untargeted clustering. Targeted clustering algo-
rithms seek to identify a specific set of objects and therefore require some mecha-
nism for training or steering the algorithm to find the desired set of objects. Con-
sequently, targeted clustering algorithms have a specific label set which is drawn
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from to assign labels to each node. In contrast, an untargeted clustering algorithm
seeks to label nodes as belonging to the same group if the group shares some proper-
ties, such as features of the data, or locality or connectivity derived from the graph.
An untargeted clustering algorithm typically determines the number of labels to be
used in order to satisfy its internal assumptions about node homogeneity, although
in some cases the number of labels may be fixed. The traditional conception of the
clustering problem has been the untargeted clustering problem, but interest has been
increasing rapidly in targeted clustering algorithms.

All of the algorithms described here model the clustering problem with an objec-
tive function (often viewed as an energy function), and the purpose of the clustering
algorithm is to find the clustering which optimizes the objective. However, some
objective functions are difficult to optimize completely, or even fall into the class of
NP-Hard problems. Consequently, the clustering calculated as a solution to one of
these difficult objective functions may depend on the initialization to the algorithm.
In these cases, a clustering algorithm, which would be untargeted if the objective
could be completely optimized, can act as a targeted algorithm by initializing the
clustering close to an intended target. We term algorithms of this variety as semi-
targeted clustering, and treat these algorithms in a separate section.

The second axis for categorizing clustering algorithms ranges from primal algo-
rithms (in which the nodes within a cluster are directly labeled) to dual algorithms
(in which the cells comprising the boundaries of clusters are labeled). Primal algo-
rithms are generally more popular, better developed, and easier to generalize. Dual
algorithms work only under limited circumstances and depend on an embedding,
but they constitute an important class of algorithms in image analysis that are of a
fundamentally different character than the primal algorithms.

Several clustering algorithms in this chapter assume that each node is associated
with some data (i.e., an attributed graph) and it is this data which is to be clustered.
However, the predominant methodology is to transform this data into graph struc-
ture via the weights (using the functions in Chap. 4) and then apply the clustering
algorithms to the weighted graph. Consequently, the clustering algorithms utilize
both the network connectivity structure and the weights to determine a clustering
and may therefore be applied to produce a clustering of any general network (even
when the nodes are not associated with data).

This chapter is organized to consist of three main sections that describe the tar-
geted, untargeted, and semi-targeted classes of clustering algorithms, with subsec-
tions detailing the primal and dual versions of these algorithms. A smaller fourth
section addresses the extension of these algorithms to the clustering of higher-order
cells. We conclude with a section providing some example applications of the pre-
sented algorithms.

6.1 Targeted Clustering

Targeted segmentation algorithms require information to be input about the desired
output object or set of objects to cluster. This prior information can take different
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forms, such as a partial labeling of the nodes or a probability, assigned to a set
of nodes, of belonging to each label. In the field of image processing, a targeted
segmentation algorithm might have the goal of segmenting a particular tumor in a
medical image, or an incoming missile in a military application. Such an algorithm
could also be used interactively to extract an object from a photograph for editing.
In a World Wide Web application, the goal of a targeted clustering algorithm might
be to extract a list of websites in the same cluster as a target website. An example in
social networking would be to extract all members of the group in which a partic-
ular individual is a member. In the context of machine learning, targeted clustering
algorithms are related to both supervised learning and semi-supervised learning al-
gorithms, with the difference that these algorithms must generalize to all unseen
data (nodes). However, in the context of machine learning, the targeted clustering
algorithms described here may be viewed as examples of transductive learning al-
gorithms that simply focus on labeling a known set of data points. Section 6.5.3
contains more information about this view of clustering as a machine learning algo-
rithm.

We begin by addressing primal algorithms for targeted segmentation since primal
algorithms comprise the majority of existing techniques for both targeted and untar-
geted methods. Additionally, primal algorithms are generally much more straight-
forward to describe and implement than dual algorithms.

6.1.1 Primal Targeted Clustering

The basic components of a targeted segmentation algorithm are a known label set
comprised of a finite number of labels, an energy for which the extrema describe
“good” clusters, and additional information about how the labels relate to the node
set. Examples of additional information exploited in a primal algorithm include:

1. A method for assigning membership probabilities for each label to a subset of
nodes.

2. Known labels for a subset of the nodes.
3. A set of edges which the boundary is known to cross.

We will address each of these types of information sequentially.
In all of the subsequent discussion on targeted primal clustering algorithms, we

can formulate our goal as solving for a probability xi,b that node vi belongs to
label b. (Without loss of generality, we assume that each label is represented by
an integer from 0 ≤ b < |L|.) Unless otherwise noted, the segmentation function
σ(vi)= b is obtained via choosing the most likely label for each node, i.e.,

σ(vi)= argmax
b

{xi,b}. (6.1)

Consequently, our focus will be on finding the membership probabilities xi,b for
each node vi and label b, since this set of membership probabilities defines the
clustering via (6.1).
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6.1.1.1 Probabilities Assigned to a Subset

Consider a set of nodes VS ⊆ V, such that for each node vi ∈ VS , we have a prior
probability that vi is assigned to label b, given by s̄i,b . We may now apply any fil-
tering technique to produce a clustering (see Chap. 5 for a discussion on filtering
on cell complexes). The approach for applying a filtering technique to compute a
targeted clustering is to begin by extending the vector of priors s̄ beyond the subset
VS to priors s defined over all nodes in the complex, V, via setting entries corre-
sponding to the nodes not in the subset VS to zero, i.e.,

si,b =
{

s̄i,b if vi ∈ VS,

0 otherwise.
(6.2)

Any filtering technique may then be applied to produce segmentation probabilities
by treating the prior probabilities s as noisy data in a filtering technique. We saw
several approaches for filtering noisy data in Chap. 5 which we now apply to find
clustering probabilities x. The first method that we apply from Chap. 5 is Taubin’s
method, in which we set the initial conditions x

[0]
i,b = si,b and produce the final val-

ues of xi,b iteratively via Taubin’s filtering. Specifically, to apply Taubin’s filtering
method (see Chap. 5) to find the x for each label, we employ the iteration rule

x[2k+1]
b = x[2k]

b − λLx[2k]
b = x[2k]

b − λATAx[2k]
b , (6.3)

x[2k+2]
b = x[2k+1]

b +μLx[2k+1]
b . (6.4)

Similarly, we could minimize the Basic Energy Model from Chap. 5,

EBEM[xb] = 1T(G−1)p|Axb|p =
∑
eij

w
p
ij |xi,b − xj,b|p, (6.5)

by applying an iterative mode (p = 0), median (p = 1), mean (p = 2) or minimax
(p =∞) filter to the initial probabilities. In other words, for each label b, the label
probabilities xi,b (for node vi ) are filtered to produce final label probabilities and
then each node is assigned the label for which is has the greatest probability (i.e.,
via (6.1)). For each label, the solution is initialized to x[0]b = sb . Chapter 5 provides
justification for why the mode, median, mean and minimax filters minimize the
energy for the various values of p.

Figure 6.1 shows an example of how these filters may be applied to targeted im-
age segmentation when the probabilities are assigned based on an intensity model of
the target object. In this example, the image intensities inside the circle and outside
the circle were both drawn from a uniform distribution with the same variance, but
with a different mean inside and outside. In this case, the variance of the distribu-
tions was 2.5 times greater than the difference in mean between the distributions.
The foreground priors were generated by assuming a Gaussian distribution for the
intensities inside the circle with a mean equal to the minimum intensity in the image.
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With this Gaussian prior model, each pixel in the foreground prior image was as-
signed the probability that it was drawn from the Gaussian model. The background
priors were produced in the same manner, except that the mean of the Gaussian was
chosen to be equal to the highest intensity pixel in the image. By simply smoothing
these foreground and background priors (using the filtering methods described in
Chap. 5) we are able to obtain a smoothed “probability” that each pixel belongs to
the foreground or background, which may then be used to generate the final label
for each pixel by comparing the relative foreground and background “probabilities”.
In this manner, any filtering algorithm may be used as a clustering algorithm if it is
possible to assign a prior likelihood that each node belongs to a particular label.

In Chap. 5 we noted that the danger with variational problems of the form in
the Basic Energy Model is that there is a trivial optimum—the solution where xb

is constant. In practice we could simply take a few iterations of our mode, median,
mean or minimax filtering of xb (as was done to generate the results in Fig. 6.1). An
alternative to this iterative approach is to consider the Extended Basic Energy Model
in which the prior information is represented by a second term that the solution must
balance. In the context of clustering, the Extended Basic Energy Model is given by

EEBEM[xb] = 1T(G−1)p|Axb|p + λ
∑
a

sT
a |xb − δ(a, b)|p

=
∑
eij

w
p
ij |xi,b − xj,b|p + λ

∑
vi

∑
a

si,a|xi,b − δ(a, b)|p, (6.6)

where δ(a, b) is a Kronecker delta function. It was shown in Chap. 5 that the strength
of the regularization parameter λ is inversely related to the number of iterations used
for smoothing in the Basic Energy Model.

We may continue with the application of filtering methods to the clustering prob-
lem by considering the Total Variation model from Chap. 5. One benefit in image
processing of the Total Variation model over the Basic Energy Model is that Total
Variation has less tendency to exhibit gridding artifacts. In the context of clustering,
the Total Variation Model is described by the energy functional

ETV[xb] = 1T(|AT||Axb|2
) p

2 + λ
∑
a

sT
a |xb − δ(a, b)|p

=
∑
vi,b

(∑
eij

|xi,b − xj,b|2
) p

2 + λ
∑
vi

∑
a

si,a|xi,b − δ(a, b)|p. (6.7)

As before, this model is used to generate a clustering by finding a solution for each
label b and then comparing these solutions to produce a final labeling by assigning
each node, vi , to the label for which it has the maximum solution. More information
on the optimization of this model is given in Chap. 5.

All of these models may be included to incorporate implicit boundaries via an
edge weighting. These models are written with edge weights in Chap. 5 and we do
not repeat this material here. The same weighting functions that were used to weight
edges for filtering applications may also be applied for clustering.
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Fig. 6.2 Mathematically, the
use of label priors is
equivalent to using k labeled,
“phantom” nodes that
correspond to each label and
are connected to each node.
Despite the abuse of notation,
note the labels b are
distinguished with superscript
index indicating the different
labels

6.1.1.2 Known Labels for a Subset of Nodes

Many targeted clustering applications permit some method of assigning to each node
a prior probability quantifying the likelihood that the node belongs to each label. In
these situations, the targeted segmentation problem may be solved via any of the fil-
tering methods reviewed in the previous section. However, another common form of
targeting information is to know the labeling for a small subset of nodes. The nodes
with a known label within this subset are often called seeds in the image process-
ing literature. Seeded nodes can also take advantage of the filtering approaches to
clustering discussed above by simply assigning the xi values for each seed node and
performing the optimization with respect to this assignment. One major advantage
of targeting with seeded nodes is that a global, nontrivial optimum may be found
for each of the variational models (i.e., the Extended Basic Energy Model or the
Total Variation Model) even if λ = 0. That is, the initial assignment of seed notes
comprises a constraint that the solution is explicitly forced to satisfy. Therefore, if
prior probabilities are not available or not reliable, they can be ignored by setting
λ= 0. In this way, each model can be used completely parameter-free when seeds
are available.

Formally, define the set of seeded or “marked” nodes VM ⊂ V for which σ(VM)

is known. These labels are assumed to have been obtained via a different process
such as user interaction or an automatic seeding. Using this information, we can fix
xi,b, ∀vi ∈ VM via

xi,b =
{

1 if σ(vi)= b,

0 if σ(vi) �= b.
(6.8)

Fixing these values as Dirichlet boundary conditions on the set of seeded nodes al-
lows for optimization of the above models to produce a nontrivial solution for xb if,
for each label b, σ(vi) = b for some seed node vi ∈ VM (i.e., each label is associ-
ated with at least one seed). These seeds could also be used with Taubin’s method
applied to segmentation by initially fixing the values in VM and not updating the
corresponding values of xb during the iterations. See Appendix B for more informa-
tion on optimization in the presence of Dirichlet boundary conditions.

Although we distinguish between the prior probability method and seeded
method for producing a targeted clustering, it is possible to view the prior proba-
bility method as equivalent to the seeded method. Specifically, the prior likelihood
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term in the Extended Basic Energy Model or the Total Variation Model may also be
obtained via seeding. The “seed” in this case is a “phantom seed” representing each
label, b, which is attached to node vi with weight λsi,b . This interpretation of the
prior term is represented in Fig. 6.2 and has previously appeared in the literature [53,
159]. Since the method of specifying a targeted clustering via prior terms is equiva-
lent to seeding (with the phantom seeds construction), we may henceforth treat only
the case of the seeded model, since it is understood that all of the results apply also to
the incorporation of prior terms. Consequently, in the context of discussing seeded
targeted clustering algorithms, we will employ the term “Basic Energy Model” to
refer either to the “Basic Energy Model” or “Extended Basic Energy Model” since
the additional term may be viewed simply as another form of seeding.

Incarnations of the seeded Basic Energy Model with various values of p have
been heavily utilized in the literature. We review several targeted clustering algo-
rithms that can be interpreted as special cases of the Basic Energy Model, along
with one algorithm that can be interpreted as a seeded Total Variation Model.

Max-flow/Min-cut

It was shown by Sinop and Grady [350] that when p = 1 the solution xb given by
the Basic Energy Model (6.6) may be found by computing a max-flow/min-cut be-
tween the seeds (both real and “phantom”) labeled ‘1’ and the seeds labeled ‘0’.
Consequently, the use of max-flow/min-cut to perform targeted node clustering may
be viewed as an instance of employing the Basic Energy Model for targeted clus-
tering with norm p = 1. Since max-flow/min-cut may be used to optimize the Basic
Energy Model when p = 1, this energy model may be interpreted as minimizing the
boundary length between the labeled regions. In this case, the seeds are identified
with the source/sink terminals in the traditional max-flow/min-cut problem.

Max-flow/min-cut techniques have a long history in clustering problems [246,
407, 415]. Appendix B and Refs. [55, 56, 173] contain more details on this optimiza-
tion. In the context of image segmentation, this seeded max-flow/min-cut model has
been known as “graph cuts” [53].

Random Walker

Taking p = 2 in the Basic Energy Model (6.6) allows the solution at node vi , xi,b ,
to be interpreted as the probability that a random walker leaving node vi arrives at a
seed (real or “phantom”) labeled b before arriving at a seed not labeled b [161] (see
Chap. 3). Consequently, the clustering algorithm that employs p = 2 is known as
the “random walker” algorithm in the image segmentation literature. Alternately, the
clustering obtained by this model is equivalent to the clustering obtained by comput-
ing the effective resistance between each node and the seeds of each label (viewed
as a single node) and assigning the node to the label having the smallest effective
resistance [161] (for more information about effective resistance, see Chap. 3). The
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Table 6.1 Targeted clustering using the Basic Energy Model with seeds. Different values of the
norm parameter p give different interpretations to the model when applied to clustering

Choice of p 1 2 ∞

name Max-flow (Graph cut) Random walk Geodesic

objective function
∑

eij∈E wij |xi − xj | ∑
eij∈E w2

ij |xi − xj |2 maxeij∈E wij |xi − xj |
objective function
interpretation

boundary cut effective conductance minimum Lipschitz
extension

optimization
method

maximum flow solution of a sparse
linear system

shortest path

uniqueness not unique unique not unique

earliest adoption of this model for clustering may have been Kodres [237] who used
it to determine how to design a circuit layout. This clustering algorithm has also
been applied to machine learning [424] and extended to directed graphs [349].

Geodesic Segmentation

When p =∞, it was shown in [350] that the problem can be recognized as a discrete
formulation of the minimal Lipschitz extension [13]. Additionally, it was shown in
[348] that a minimum of the Basic Energy Model (6.6) may be given by

xi,b = di,b/(di,b + di,b), (6.9)

where di,b is used to indicate the weighted length of the shortest path from vi to any
seed labeled b and di,b is used to indicate the weighted length of the shortest path
from vi to any seed not labeled b. This clustering approach is often called geodesic
segmentation in the image segmentation literature. Using shortest paths in this way
for image segmentation have been popularized by several groups [8, 18, 94, 128]
(albeit without explicit reference to the energy minimization interpretation).

P-Brush

These three choices of the norm parameter p in the Basic Energy Model were com-
pared by Sinop and Grady [350] to find that a smaller value of p produces a cluster-
ing that has less dependence on the location of the seeds, but the clustering obtained
by using a larger value of p has less dependence on the number of seeds. Table 6.1
compares the clustering algorithms generated by various values of p. The use of
the Basic Energy Model (6.6) for clustering with fractional values of p was recently
examined in [106], which found that the clustering algorithms obtained by minimiz-
ing fractional values of p effectively interpolate between the clustering algorithms
corresponding to integer values of p. Additionally, the solutions given by the Basic
Energy Model are pointwise continuous with respect to changes in p. This cluster-
ing algorithm with fractional values of the norm parameter p was called P-Brush.
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Power Watershed

The classical watershed algorithm from mathematical morphology [320, 337] may
also be seen as an instance of the Basic Energy Model with only a slight modifica-
tion. Couprie et al. [90] modified the Basic Energy Model from (6.6) to produce

EPW[xb] = 1T(G−1)q |Axb|p =
∑
eij

w
q
ij |xi,b − xj,b|p. (6.10)

Once again, we assume that some nodes are seeded (alternately, a prior term is in-
cluded as in the Extended Basic Energy Model). The only difference between (6.10)
and the Basic Energy Model in (6.6) is the exponent, q , on the edge weights. It was
shown by Allène et al. [4] that the p = 1 model above (max-flow/min-cut) is also
optimized by a watershed computation for a value of q above some constant. There-
fore, as q→∞, the model in (6.10) becomes the watershed clustering algorithm
when p = 1. Viewed differently, Allène et al. [4] showed that as the power of the
weights increases to infinity, then the max-flow/min-cut algorithm produces a clus-
tering corresponding to the maximum spanning forest (MSF) used in a watershed
computation [4]. Interpreted from the standpoint of the Welsch weighting function
in Chap. 4, it is clear that we may associate q = 1

α
to understand that the water-

shed equivalence arises when the weighting function is employed using a particular
range of parameter values. An important insight from this connection is that when
the value of α is sufficiently small, we can replace the expensive max-flow computa-
tion with an efficient maximum spanning forest computation.

Algorithm 6.1 Power Watershed algorithm, optimizing q→∞, p ≥ 1

Data: A weighted graph G(V,E) and a subset of foreground seeds VFG and
background seeds VBG

Result: A solution x
Set xFG = 1, xBG = 0 and all other x values as unknown, mark all edges as

unprocessed.
Sort the edges of E by decreasing order of weight.
while any node has an unknown potential do

Find an edge (or a plateau) EMAX in E which is both of maximal weight and
safe; denote by S the set of nodes connected by EMAX.
if S contains any nodes with known potential then

Find xS minimizing (6.10) (using the input value of p) on the subset S with
the weights in EMAX set to wij = 1, all other weights set to wij = 0 and the
known values of x within S fixed to their known values. Consider all xS

values produced by this operation as known.

else
Merge all of the nodes in S into a single node, such that when the value of
x for this merged node becomes known, all merged nodes are assigned the
same value of x and considered known.
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Table 6.2 The targeted clustering algorithms obtained by minimizing the Power Watershed model
in (6.10) for various choices of p and q

p q

0 1 2 ∞

1 collapse to seeds Max-flow Max-flow Watershed

2 �2-norm Voronoï Random walker Random walker Power watershed, p = 2

∞ �1-norm Voronoï Geodesic Geodesic Power watershed, p =∞

Couprie et al. [90] went on to explore the clustering model in (6.10) when
q→∞ for any value of p. Since this family of watersheds was characterized by
the exponent p, they termed this clustering algorithm the power watershed. Algo-
rithm 6.1 gives an algorithm for finding the solution to xb that optimizes the Power
Watershed model in (6.10). In Algorithm 6.1, if EMSF is a set of edges forming a
subset of an MSF, then an edge ei is considered safe if EMSF ∪ ei is also a subset of
an MSF. Note that this algorithm applies only to two labels. In a multilabel targeted
clustering problem, the potential function xb for each target label b would be set
to the value ‘1’ for all nodes assigned to the “foreground” (‘1’) or to the value ‘0’
for all nodes set to the “background”, and the final labeling for node vi assigned by
choosing the label with the largest value (as expressed in (6.1)). Table 6.2 gives a
description of the segmentation algorithms obtained by minimizing the Power Wa-
tershed energy for various pairs of values for p and q .

Continuous Max-flow

The seeded Total Variation Model has also been applied in the context of image
processing. When p = 1, this model is equivalent to the continuous max-flow for-
mulation of [358] that was subsequently applied to image segmentation [11]. Ad-
ditionally, due to the interpretation of (6.7) as a minimization of total variation, the
minimization of (6.7) has also been applied to image segmentation under the name
“total variation segmentation” or “TVSeg” [386]. Fast algorithms for this minimiza-
tion are given in [11] and [68, 98, 385]. When p = 2, the Basic Energy Model and
the Total Variation Model are equivalent (i.e., the “random walker” algorithm). To
the knowledge of the authors, the cases of p =∞ or the separation of the expo-
nent onto the weights (yielding a power watershed-like algorithm) have not been
explored in conjunction with the Total Variation Model for targeted clustering.

6.1.1.3 Negative Weights

A less direct method for specifying a clustering target is to assign negative weights
to some of the edges which are known to lie between clusters. Negative weights
are generally sufficient without seeds or prior probabilities to produce a nontriv-
ial solution of any of the above models, since the value of the objective function



210 6 Clustering and Segmentation

can dip below zero. Negative weights can be used to encode repulsion between two
nodes, causing the difference between the values of their membership probabilities
xb values to grow [413, 414]. However, negative weights can cause difficulties in op-
timization since the objective function may become unbounded, yielding no useful
solution. To avoid these unbounded scenarios, restrictions on xb must be imposed,
such as requiring that 0 ≤ xb ≤ 1 [257]. Optimization of the Basic Energy Model,
the Power Watershed Model or the Total Variation Model are substantially more dif-
ficult problems to solve with negative weights, with limited benefit demonstrated so
far. Consequently, there has been less attention devoted to employing repulsion (via
negative weights) for specifying a clustering target.

We have now covered the most prominent variational models applied to primal
image segmentation. All of these targeted clustering algorithms were derived from
filtering algorithms applied to prior knowledge (likelihood priors and/or seeds) of
the segmentation labels. In the next section, we discuss targeted segmentation via
the dual complex. Adopting a dual viewpoint departs from the previous discussion
on filtering.

6.1.2 Dual Targeted Clustering

Instead of clustering by labeling nodes on the primal graph, clustering on the dual
graph seeks to find the set of edges defining the boundary of the labeled regions.
Finding this set of edges has two disadvantages over the primal algorithms we have
studied.

1. Cycles in the dual complex map to cutsets in the primal complex for only a
limited set of complexes (e.g., planar graphs in two dimensions).

2. The dual complex depends on the dimensionality of the embedding, and there-
fore these algorithms may require modification if the embedding changes. For
example, embedding in R

2 can be substantially different than embedding in R
3,

since edges are dual to edges in two dimensions and edges are dual to faces in
three dimensions.

Nonetheless, there are advantages of using a dual algorithm. Some dual algorithms
are faster, and sometimes the inputs to the targeted segmentation algorithm are eas-
ier to specify in a dual lattice (i.e., boundary locations). Additionally, some objective
functions are easier to express as functions of the dual elements (e.g., edges, faces)
rather than the primal elements (e.g., nodes). A computational advantage of dual
algorithms is that the number of boundary edges is typically quite small compared
to the number of internal labeled nodes. Consequently, the boundary may be rep-
resented more efficiently, and perturbations of the boundary from an initialization
may be accomplished efficiently. Due to the natural embedding of images (as two-
dimensional or three-dimensional lattices), most of the work on dual clustering al-
gorithms has appeared in this literature (in which boundary-focused algorithms are
sometimes called a “boundary parameterization” or a “Lagrangian representation”
[339]).
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Fig. 6.3 A comparison of primal clustering with dual clustering. (A–C) A small planar graph in
which the primal clustering is represented as a binary labeling of each node (indicating the cluster
membership of each node) and the dual representation of the clustering is as a closed boundary of
edges which separate the inside of the cluster from the outside. (D–F) A set of pixels from a small
4× 4 image. A primal clustering of these pixels is represented by assigning a binary labeling to
each pixel to indicate cluster membership. In contrast, the dual representation of the clustering is
obtained by identifying the edges between the pixels inside the cluster and those pixels outside the
cluster

Figure 6.3 contrasts primal clustering with dual clustering on a small planar
graph. A primal clustering algorithm assigns a label to each node in the primal
graph, while a dual clustering algorithm identifies boundary edges in the dual graph.
The first row of the figure gives an example of a small planar graph in which the
primal clustering is represented as a binary labeling of each node (indicating the
cluster membership of each node) while the dual representation of the clustering
is as a closed boundary of edges which separate the inside of the cluster from the
outside. The second row of the example shows a set of pixels from a small 4× 4
image. A primal clustering of these pixels is represented by assigning a binary label-
ing to each pixel to indicate cluster membership. In contrast, the dual representation
of the clustering is obtained by identifying the edges between the pixels inside the
cluster and those pixels outside the cluster. In the image processing literature, these
dual edges between the pixels have sometimes been called “cracks” or “bels” (for
“boundary elements”) [129].
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A common algorithm for targeted clustering on the dual graph in two dimensions
is known as intelligent scissors or live wire [129, 287]. This algorithm interactively
builds an open contour on the dual graph up to the last step, at which time the
contour is closed to enclose a region of nodes. In the intelligent scissors algorithm,
a series of nodes in the dual graph are sequentially input into the algorithm in pairs
(e.g., interactively) and a shortest path is computed between the pairs of nodes.
Formally, assume that we have computed appropriate edge weights between nodes
on the primal graph (in the same manner as in the primal algorithms, see Chap. 4).
Define an indicator vector ys of edges representing a line segment (chain of dual
edges) s of the cluster boundary consisting of the set of dual edges such that

ys
i =

{
1 if dual edge ei is a member of the boundary,

0 otherwise.
(6.11)

Therefore, the edges indicated by y serve to “surround” the target cluster of nodes in
the primal graph. Given two dual nodes vi and vj that are known to lie on the desired
boundary (produced either interactively by a user or automatically), the intelligent
scissors/live wire algorithm finds a solution to

min
ys

wTys ,

s.t. ATys = p,

(6.12)

where w is the vector of dual distance edge weights (equal to the primal affinity
edge weights in the two-dimensional case, since in two dimensions edges are dual
to edges—see Chap. 2 for more details) and the boundary vector p is defined as

pk =

⎧⎪⎨
⎪⎩
+1 if k = i,

−1 if k = j,

0 otherwise.

(6.13)

The optimization in (6.12) may be performed quite efficiently using Dijkstra’s short-
est path algorithm. The constraints in (6.12) demonstrate the use of the incidence
matrix AT as the boundary operator, since we may interpret the constraint that
ATys = p as the requirement that the set of edges represented by ys has endpoints
given by vi and vj . After ys has been computed, a new dual node is input to the
intelligent scissors/live wire algorithm to define a new p vector. A series of ys line
segments are computed using a sequential set of points which are then combined
to form the final output y =∑s ys . An important implementation detail in the in-
telligent scissors/live wire algorithm is that because y is strictly binary valued, the
orientation of edge traversal must be encoded in the incidence matrix. Consequently,
the incidence matrix must be modified to represent each edge twice with opposite
orientation (see Chap. 4 for more details on this over-representation). In practice,
the use of Dijkstra’s algorithm obviates these details—Dijkstra’s algorithm implic-
itly solves (6.12). Therefore, all that is necessary for a practical implementation is to
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use Dijkstra’s algorithm to compute the shortest path between each successive series
of node pairs on the boundary until the boundary is closed. A second implementa-
tion detail is that the edges connecting the dual nodes to the “outside face” (e.g., the
border of the image) must be assigned some weight to allow for the contour to close
around a set of nodes on the border. One approach to weighting the edges on the
outside face is to assign these edges a weight equal to the average weight inside the
complex.

A very recent clustering algorithm that employs a dual formulation is the al-
gorithm of Schoenemann et al. [334] which uses a dual formulation as a way of
encoding the curvature of the cluster boundary. The dual formulation is employed
because the discretization of curvature employed by Schoenemann et al. was based
on the work of Bruckstein et al. [61], who showed how angles between successive
line segments of a polygon could be used to approximate curvature of the poly-
gon. By associating the dual edges with polygonal line segments, Schoenemann et
al. [334] produced an optimization method that optimized the cluster boundary to
have small curvature.

6.1.2.1 Dual Algorithms in Three Dimensions

Since the dual complex changes with embedding and dimensionality, any dual algo-
rithm must be altered to accommodate these changes. In order to apply the shortest-
path targeted clustering algorithm to a 3-complex, we now transition from mini-
mal paths to minimal surfaces. Unless otherwise stated, we will assume for sim-
plicity that our 3-complex is a three-dimensional, 6-connected lattice. Fortunately,
the dimensionality of the minimal path problem may be increased simply by us-
ing the dimension-appropriate incidence matrix (acting as the boundary operator)
and boundary vector p. This dimension-increased shortest path problem is therefore
stated as: Given the boundary of a two-dimensional surface (i.e., a closed contour
or series of closed contours), find the minimal two-dimensional surface with the
prescribed boundary. We note that this problem may be considered as a discrete
instance of Plateau’s problem [363].

In this three-dimensional problem, the boundary operator is the edge–face in-
cidence matrix defined in Chap. 2. Instead of the lower-dimension boundary vec-
tor, p, we can now employ the vector r as a signed indicator vector of a closed
contour with an associated ordering of vertices obtained via a traversal along the
edges comprising the contour. Given a contour represented by an ordering of ver-
tices (va, vb, vc, . . . , va) such that each neighboring pair of vertices is contained in
the edge set, the contour may be represented with the vector

ri =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

+1 if the vertices comprising edge ei are contained in the contour

with coherent orientation,

−1 if the vertices comprising edge ei are contained in the contour

without coherent orientation,

0 otherwise.

(6.14)
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Fig. 6.4 The discrete minimal surface given a boundary may not be unique. For example, if the
surface boundary is given as a closed contour at the equator of a sphere, then either the upper (A)
or lower (B) hemisphere is a valid minimum solution. This same lack of uniqueness may also
appear in the shortest path problem. Analogously, if two endpoints were placed at antipodal points
of a circle, the shortest path may be returned as either the left (C) or right (D) path around the
circumference of the circle. However, in applications with real data, both the shortest path and
minimal surface are typically unique for a given input

Therefore, the discrete minimal surface problem is

min
z

Q[z] =
∑

i

wizi,

subject to Bz= r,

(6.15)

where z is an indicator vector indicating whether or not a face (in the dual complex)
is in the minimal surface and wi is used to indicate the weights of a face. The
surface represented by the solution to (6.15), z, is a (discrete) minimal surface. Since
the faces in the dual lattice correspond to edges in the primal lattice (where the
image data is represented), any of the weighting functions in Chap. 4 may be used
to produce the set of face weights.

The discrete minimal surface problem was extensively treated by Sullivan [364],
who showed that a fast algorithm exists for its optimization. However, the equal-
ity constraints in (6.15) are pre-unimodular matrix (see Appendix B and [162]).
Therefore, a generic linear programming solver could be used to produce an opti-
mal integer solution of (6.15) even though linear programming uses a real-valued
relaxation of the variable z. For more details on this optimization, see Refs. [162,
364].

The solution to the discrete minimal surface problem may not be unique. How-
ever, the shortest path problem may also have a solution which is not unique. Fig-
ure 6.4 illustrates this issue. For example, a closed contour located precisely at the
equator of the sphere in Fig. 6.5(A) could result in a solution indicating either the
upper or the lower hemisphere. This is analogous to the one-dimensional case where
multiple solutions exist that give shortest paths between two antipodal points on a
circle.

Figure 6.5 gives three examples drawn from three-dimensional image segmen-
tation to illustrate the properties of this discrete minimal surface algorithm. Firstly,
we use the algorithm to find the surface of a black sphere in a white background,
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Fig. 6.5 Minimal surface segmentation of synthetic three-dimensional images. Renderings of the
original object (with the input contours) are shown, along with the solutions. The input volumes
consisted of black voxels indicating voxels belonging to the object and white voxels indicating
background. Black voxels are represented in the figure by small black spheres. The white stripe in
each of the rendered views shows the input contour(s). In the solution visualizations, black dots
are plotted at the center of the black (object) voxels and faces are shown to indicate the computed
surface. (A, B) A sphere with an input contour along a parallel. Note that, unlike shortest paths
(which require two endpoints), a single boundary contour input is sufficient to define a solution.
(C, D) A sphere with two input contours at parallels of different heights. (E, F) A lunchbox shape
with a handle on the top and a contour input around the middle of the object. The algorithm will
correctly find minimal surfaces with topological changes

given an initial contour around one parallel. Secondly, we find the surface of the
same sphere using a boundary consisting of contours around two parallels (i.e.,
a contour given on two slices). Finally, we segment a “lunch box” shape given a
contour around the middle of the object. This experiment shows that the algorithm
correctly handles changes in object genus without any special handling. In contrast
to the shortest path problem in which two points are necessary to define a path,
Fig. 6.5(A) shows that a single closed contour is sufficient to define the boundary
of a surface. The applications in Sect. 6.5.1 illustrate the use of this segmentation
algorithm on real three-dimensional image data.

6.2 Untargeted Clustering

Untargeted clustering is the traditional clustering problem in which the goal is to
divide a graph into a hierarchy of clusters where the number of clusters is unknown.
This problem is not well defined since there is no agreed-upon criteria for determin-
ing what constitutes a “good” cluster. Even for those algorithms with a well-defined,
seemingly simple criteria for a good clustering, the problem is generally NP-Hard
(e.g., k-means is NP-Hard [5, 269]). Consequently, nearly every untargeted cluster-
ing algorithm defines its own meaning of what constitutes a good clustering, and
then supplies a heuristic that produces a suboptimal solution to the stated objective.

Untargeted clustering has a huge range of uses, including data discovery, com-
pression [225, 332], parallelization [392], image processing [216, 303, 382], the
efficient solution of PDEs (via domain decomposition) [351, 381], sparse matrix or-
dering (nested dissection) [229, 281] and identification of neural substructures [41,
190]. The collection of techniques for untargeted clustering is far too vast to provide
a comprehensive review here (for a recent review on graph clustering algorithms see
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Ref. [330]). Instead, we present only a few techniques that fit well into the theme of
this book. In this section, we mainly address primal untargeted segmentation algo-
rithms (which comprise almost all untargeted clustering algorithms), although dual
untargeted algorithms are treated briefly at the end of this section.

We begin by noting that any of the targeted clustering algorithms can be used
to produce an untargeted clustering algorithm. Specifically, a targeted clustering
algorithm may be converted to an untargeted clustering algorithm by the following
steps.

1. Select the number of clusters K .
2. Randomly select K nodes and assign these nodes each a different label.
3. Apply the targeted segmentation algorithm with these seeds.
4. Move the seed location to the “center” of each labeled cluster.
5. Continue applying the targeted segmentation and moving the seed locations until

all of the seed locations no longer move.

Essentially, this procedure is an adaptation of Lloyd’s algorithm for k-means clus-
tering [263, 264] to any of the targeted clustering methods. Note that convergence of
this procedure may not be guaranteed, and therefore in practice it may be beneficial
to limit the number of iterations.

One common approach for designing untargeted clustering algorithms is to de-
fine an algorithm that partitions the graph into two clusters and then recursively
applies the partitioning on each cluster until some measure of partition quality is
met and the recursion exits. Although there exist good reasons for theoretical and
practical concerns with such a recursive approach (see Ref. [347]), the recursion
approaches have the advantage of not requiring prior knowledge of the total num-
ber of clusters and they do work reasonably well in practice. We will now review a
standard approach for dividing a graph into two clusters with the understanding that
this partitioning may be applied recursively to obtain multiple clusters.

6.2.1 Primal Untargeted Clustering

In all of the subsequent discussion on primal bipartitioning algorithms, we can for-
mulate our goal as solving for a 0-cochain x, with coefficients xi ∈R, that determine
whether node vi belongs to label ‘0’ or ‘1’. The segmentation function is defined
here as σ(vi) "→ {0,1} obtained by thresholding the cochain x, i.e.,

σ(vi)=
{

1, if xi ≥ θ,

0, otherwise,
(6.16)

where the threshold θ is set manually, automatically or in some application-
dependent manner (see Ref. [352] for some standard possibilities for choosing a
threshold θ ). Our initial focus will be on the production of the inclusion cochain x
for each node before continuing to a discussion of how to set the threshold θ .
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If we reconsider the Basic Energy Model (6.6) in the context of untargeted bipar-
titioning, we see that the absence of the targeting information causes the energy to
have a trivial minimum at x= k for some constant k. One approach for addressing
this trivial minimum is to add an extra term that attempts to expand the cluster. This
additional force is sometimes known in the image processing literature as a balloon
force [83, 84]. Specifically, consider the Untargeted Basic Energy Model

EUBEM[x] = G−1
1 |Ax|p − λG−1

0 |x|q

=
∑
eij

wij |xi − xj |p − λ
∑
vi

wi |xi |q, (6.17)

for some λ > 0. This energy can be made arbitrarily low by setting x= k for some
constant value k. A variety of strategies for avoiding this problem may be adopted.
For each combination of p and q , we discuss how this problem has been overcome
in the past. The gradient of EUBEM[x] equals zero when x satisfies

pATG−1
1 |Ax|p−1 = λqG−1

0 |x|q−1. (6.18)

Although several combinations of p and q values have not been investigated in the
literature, there are some cases which lead to algorithms that have had an impor-
tant impact on the automatic clustering community. Optimization of the Untargeted
Basic Energy Model produces a solution which may be thresholded to provide a
bipartition into two clusters. The standard approach of using the Untargeted Basic
Energy Model to produce more than two clusters is to recursively bipartition these
clusters until some measure of the partition quality (usually the value of EUBEM[x])
fails to be satisfied.

We begin by examining the Untargeted Basic Energy Model for p = 2 and q = 2.
In this case, then the minimum taken in (6.18) is given by

ATG−1
1 Ax= Lx= λG−1

0 x. (6.19)

When G−1
0 = I then the solution x is an eigenvector of L. As an eigenvector problem,

we can view (6.19) as a minimization of the Rayleigh quotient

λ= xTLx

xTG−1
0 x

. (6.20)

The first eigenvector of L is x = k for some constant k. However, since L is sym-
metric, the eigenvectors will be orthogonal. Therefore, by taking x to be the eigen-
vector corresponding to the second smallest eigenvalue we have an optimum to the
Untargeted Basic Energy Model (6.17) when optimized in the space orthogonal to
x= k. Consequently the problem of an unbounded solution for the Untargeted Basic
Energy Model in (6.17) is resolved by adopting this eigenvector because the opti-
mization has been effectively performed in the space orthogonal to the problematic
(constant) solution. The second smallest eigenvalue is often called the Fiedler value
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(although Fiedler originally called it the “algebraic connectivity” [133]) and the cor-
responding eigenvector is known as the Fiedler vector. There are several reasons to
support the Fiedler vector as a method for graph clustering: (i) A smaller value of λ

represents less perturbation from the targeted model, allowing the smoothness term
to have the greatest effect; (ii) It was shown by Fiedler [134, 135] that labeling nodes
above a threshold as foreground and below the threshold as background guarantees
that both foreground and background components are connected [134, 135]; and
(iii) The Fiedler value can be used to bound the isoperimetric constant of a graph
[81]. Automatic clustering by thresholding the Fiedler vector is called spectral clus-
tering, which has been rediscovered several times in the clustering literature [114,
184, 310]. We can view spectral clustering from the continuous calculus perspective
as an instance of the Helmholtz equation, e.g.,

∇2x = λx. (6.21)

Recall that the Helmholtz equation describes the harmonic frequencies of an ideal
membrane. Consequently, we can interpret the solution to (6.19) as the lowest fre-
quency nontrivial harmonic which is then thresholded to produce a partitioning.
Figure 6.6 shows two examples of graphs which are mapped to heights that corre-
spond to the values of the lowest frequency eigenvector (i.e., the Fiedler vector).
The first example shows an elongated lattice for which the harmonic reflects over
the principle axis of symmetry. The second example shows a more separated graph
for which each cluster isolates well as one component of the harmonic. An addi-
tional geometric interpretation of the spectral clustering approach is as a mapping
of the nodes to the real line in order to both locate each node (on the real line) at the
average location of its neighbors as well as maintain a unit average distance between
all pairs of nodes [14].

We may again consider the spectral clustering algorithm (6.19) in the case that
G−1

0 = D= diag(d) where d is the vector of node degrees. In this case, the solution
is the generalized eigenvector of L and D. This variant of the spectral clustering al-
gorithm (6.19) first appeared in the image processing literature as Normalized Cuts
[345] in which the authors claimed that using G−1

0 = D significantly improved the
quality of spectral clustering applied to image segmentation, presumably because of
the large range of weight values in a weighted graph derived from an image. The
use of G−1

0 = D for clustering has been additionally supported both theoretically
and empirically by Coifman et al. [85].

We now examine the Untargeted Basic Energy Model (6.17) when p = 2 and
q = 1. In this case, the minimum of the Untargeted Basic Energy Model (given by
(6.18)) is taken when x satisfies

ATG−1
1 Ax= Lx= λg−1

0 , (6.22)

where g−1
0 represents the vector consisting of the diagonal elements of G−1

0 , i.e.,
G−1

0 = diag(g−1
0 ). Unfortunately, because L is singular the solution of this problem

is undefined. This singularity corresponds to the unbounded solution x = k dis-
cussed above for the Untargeted Basic Energy Model. The typical solution to this
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Fig. 6.6 The first nontrivial harmonic of two example graphs. From a physics standpoint, we
may consider the graphs as a network of springs for which the Fiedler vector provides the lowest
frequency harmonic. Additionally, the lattice graph may be viewed as a finite differences approx-
imation to a membrane. (A, C) Example graphs, (B, D) Corresponding embeddings in which the
first nontrivial harmonic is mapped to the height of each node

singularity employed by spectral partitioning is to perform the optimization of x in
the space orthogonal to x = k. However, an alternative approach to this problem
was suggested in [168, 169] that a single reference node, vr , be chosen such that
xr = 0 is fixed. By fixing a reference node to one partition, the problem in (6.22)
takes a unique solution which may then be thresholded to produce the clustering
into two partitions. Note that the clustering obtained in this manner does not depend
on the value of λ and we therefore ignore this value. As with spectral clustering
above, both G−1

0 = I and G−1
0 = D have been employed with the choice of G−1

0 = D
generally producing better clusters [169]. Additionally, it was proved by Grady and
Schwartz [169] that the partitioning performed in this way guaranteed that the parti-
tion connected to the reference node is connected. Since the solution to (6.22) may
be interpreted as the steady-state DC potentials for a resistive network with c0 rep-
resenting currents injected into each node, the reference node was called the ground
node [169]. Figure 6.7 shows the equivalent circuit for which the solution to (6.22)
gives the steady-state electrical potentials. We can view (6.22) from the continuous
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Fig. 6.7 An example of a simple graph (A), and its equivalent circuit (B). Solving (6.22) (using
the node in the lower left as ground) for the graph depicted in (A) is equivalent to connecting this
node to ground in the circuit depicted in (B) and then measuring the potential values at each node

calculus perspective as an instance of the Poisson equation,

∇2x = λc0, (6.23)

subject to the internal Dirichlet boundary condition that xr = 0. This algorithm was
called the isoperimetric algorithm by Grady and Schwartz [169] due to the connec-
tion with a relaxed version of the isoperimetric ratio. See Chap. 8 for more informa-
tion about the isoperimetric ratio of a graph and Appendix B for more information
about the optimization of a ratio. The primary advantages of this isoperimetric al-
gorithm over spectral clustering are that solving a symmetric positive definite linear
system of equations is more efficient than solving a (generalized) eigenvector prob-
lem, the solution to the eigenvector problem may not be unique, and the spectral
algorithm overly tries to produce balanced clusters [179]. See Ref. [169] for more
details on this comparison.

The Untargeted Basic Energy Model has also been studied for the case of p = 1
and q = 1 with the further restriction that the solution x is binary. This approach
has the advantage that no threshold of x needs to be chosen and that it is possible
to choose an optimal eigenvalue λ automatically rather than manually. See Kol-
mogorov et al. [242] for examples of this model in the context of image segmenta-
tion and more information about its optimization.

6.2.2 Dual Untargeted Clustering

Dual untargeted clustering algorithms have received little, if any, treatment in the
literature. A primal algorithm has the advantage that it is independent of the em-
bedding. This independence was forfeited in the targeted clustering problem in re-
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turn for a unique method of targeting a cluster (i.e., by providing a partial bound-
ary). Therefore, in the untargeted clustering problem, it is worth briefly examining
whether anything is gained by a dual formulation. One possible advantage of a dual
formulation is that it is easy to use the boundary operator to impose the constraint
that a solution is a closed boundary. For example, if our dual graph were planar,
then we could express the space of closed two-dimensional contours as any contour
satisfying the constraint that

ATy= 0, (6.24)

where y is a 1-cochain describing the set of edges in the boundary. An attractive
aspect of the condition in (6.24) is that the AT matrix is totally unimodular, which
means that an integer solution may be obtained under this condition even if the opti-
mization were over a linear functional of real-valued y variables. A second attractive
aspect of the condition (6.24) is that the nullspace of AT is known, allowing for an
easy change of variables to create an unconstrained optimization problem. However,
despite the ease of the dual constraint to describe a closed contour, this form seems
to have been explored only very recently in the literature [293].

6.3 Semi-targeted Clustering

In the introduction to this chapter we commented that some clustering algorithms es-
tablish an objective function for the clustering which cannot be feasibly optimized.
In these circumstances the clustering optimization may be initialized, leading to a
solution similar to the initialization. Consequently, even though the objective func-
tion may describe an untargeted clustering problem, the dependence of the opti-
mization on the initialization may lead to a clustering that is somewhat targeted. In
this section, we consider a primal semi-targeted clustering algorithm, the k-means
algorithm and its generalization to the Mumford–Shah model.

Traditionally, the Mumford–Shah model has appeared only in the field of image
processing. Therefore, the connections between k-means and the Mumford–Shah
have received little attention in the literature. However, the recent work on formulat-
ing (and optimizing) the Mumford–Shah model on an arbitrary graph [97, 121, 163,
418] has made it more clear how to interpret the Mumford–Shah model as a general-
ization of the k-means model. In the next section, we adopt this approach explicitly
by building from the k-means model to the full, piecewise smooth, Mumford–Shah
model.

6.3.1 The k-Means Model

The k-means model is probably the most common method for the untargeted clus-
tering of data. Given a predetermined number of labels k, the k-means algorithm
seeks to find a clustering that is a partitioning of the node set into k disjoint subsets
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of nodes, defined by the sets R1,R2, . . . ,Rk , such that the intersection of any two
sets is empty and the union of all sets is V. We can denote this partitioning with
the partitioning function Z, which maps the nodes into the collection of partitions
P= {R1,R2, . . . ,Rk}, i.e., Z : V→ P. The optimum clustering in the k-means al-
gorithm is defined as the optimization of

EKM[Z] =
∑

i

∑
vj∈Ri

‖c̃Ri
− s̃j‖2, (6.25)

where s̃j is the data tuple at node vj and c̃Ri
is the mean data tuple inside Ri

representing the centroid of the data within region Ri .1 Therefore, the k-means al-
gorithm attempts to find the k-way partitioning of the data such that the data tuples
in each partition have minimal within-cluster sum-of-squares difference from the
mean tuple. Note that here we use tuple-valued data to handle cases in which multi-
variate data is available (e.g., RGB or colorscale image data), however in the simple
univariate case these tuples can be replaced with scalars.

The classical method for optimizing the k-means model is Lloyd’s algorithm
[263, 264], which consists of the following steps.

1. Randomly partition the data nodes into k regions.
2. Repeat until convergence:

a. Update each centroid tuple, c̃Rj
, to the mean of the data tuples of all nodes in

Rj .
b. Assign each point, vi , to the label for which its data tuple s̃i is closest to the

label centroid, i.e., σ(vi)= argminj {‖c̃Rj
− s̃i‖2}.

Since the output of Lloyd’s algorithm depends on the initialization, the algorithm is
typically run to convergence multiple times with different initializations in order to
find a good partitioning.

The k-means algorithm is fast and simple to implement, which accounts for its
tremendous popularity. However, some data clustering problems have a spatial com-
ponent as well as a data component. For example, the k-means algorithm above
would cluster data tuples of an image (e.g., RGB image data) without accounting
for the spatial arrangement of the pixels. However, based on the low-frequency mod-
els established for data in Chap. 5 and cluster labels developed above, neighboring
nodes should be more likely to take the same label. Under this model, an outlier
gray pixel inside a uniform region of black pixels is likely to be an artifact and can
reasonably be assigned to the same label as the surrounding black pixels, while an
outlier gray pixel inside a uniform region of white pixels is likely to be a artifact
and can reasonably be assigned to the same label as the surrounding white pix-
els. However, the definition of the k-means algorithm above has no mechanism to

1In the rest of this chapter we treated the data as univariate in order to simplify the exposition, with
the understanding that all of the machinery could also be applied to multivariate data. However,
since k-means is almost exclusively applied to multivariate data we have adopted a multivariate
view of data in this section. Therefore, it is assumed that each node (data point) is associated with
a tuple of data, rather than a scalar.
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account for the neighborhood structure of the data values.2 Consequently, we can
modify the k-means algorithm by adding a spatial regularization term which penal-
izes cases where neighboring nodes (defined by an edge set) are assigned different
labels. This penalty may be viewed as encoding the boundary length of each re-
gion Rj . Additionally, the penalty could be weighted using any of the weighting
methods where the weights are derived from the data as described in Chap. 4, but
this direction has not been pursued in the literature and we therefore limit our expo-
sition to the unweighted (i.e., the unity-weighted) case with the understanding that
boundary length could be trivially modified to incorporate data weights. The energy
functional describing this modified k-means algorithm is given by

EMPCV[Z] =
∑

i

∑
vj∈Ri

‖c̃Ri
− s̃j‖2 + ν

∑
eij∈E

δ(σ (vi)− σ(vj )), (6.26)

where δ(·) represents the Kronecker delta function. The value of the trade-off pa-
rameter ν is a free parameter that can be used to weight the relative importance of
spatial coherency in the k-means algorithm. Unfortunately, the spatial regulariza-
tion term in (6.26) makes this energy quite a bit more difficult to optimize than the
standard k-means energy of (6.25) when k > 2. Recent work has addressed approx-
imation methods for optimizing the boundary for multiple labels [17, 122]. There-
fore, we simplify the energy functional of the modified k-means algorithm (6.26) by
restricting the number of classes to two (i.e., k = 2) and optimizing instead

ECV[R] = rT‖c̃R − s̃‖2
2 + (1− r)T‖c̃R̄ − s̃‖2

2 + ν(1T|Ar|), (6.27)

where s̃ represents the |V| × 1 vector of tuples s̃j , or a tuple-valued vector over
the nodes. Since there are only two labels, we can represent them by the set R

and R̄, in which case r is a node vector (0-chain) acting as an indicator function
for the set R. Similarly, we use c̃R to represent the data centroid tuple in set R

and c̃R̄ to represent the data centroid tuple in the complement set, R̄. Thus the
expression ‖c̃R − s̃‖2

2 is used to represent a |V| × 1 vector where each entry j

equals ‖c̃R − s̃j‖2
2. In the image processing literature this special case energy model

is known by different names as the piecewise constant Mumford–Shah functional
[289] or the Chan–Vese model [70], although it is important to note that both of
these models were formulated in a continuous setting, and the first definitions of
the models on a general graph appeared much more recently [97, 121, 418]. The
expression of this model for multiple classes (i.e., k > 2), described in (6.26), has
been known as the multi-phase Chan–Vese model and is given by the energy EMPCV
defined above.

The two-class model in (6.27) may be optimized in a manner similar to Lloyd’s
algorithm for optimizing k-means. The only difference with Lloyd’s algorithm is

2Some authors have tried to incorporate spatial location into k-means by using the pixel coor-
dinates as part of the feature vector in the application of k-means. This device can mitigate the
problem described here in certain circumstances, but does not generalize to applications in which
the network has no embedding or when the embedding is complicated, as in the gene expression
example in Sect. 6.5.4 or the geospatial example in Sect. 5.9.4.
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that the labeling step is more complicated, because the boundary term must now
be accounted for. Specifically, by viewing r as a labeling vector, then (6.27) can be
considered as a min-cut problem since

Boundary(r)= ν1T|Ar| =
∑
eij∈E

ν|ri − rj |, (6.28)

and

rT‖c̃R − s̃‖2
2 =

∑
vi∈V

ri‖c̃R − s̃i‖2
2, (6.29)

which may also be viewed as a min-cut (a unary term) via the construction

Cut(c̃R)=
∑
vi∈V
‖c̃R − s̃i‖2

2|ri − 0|, (6.30)

where E0 is a set of auxiliary edges connecting each node to a phantom terminal (as
in Fig. 6.2). Similarly,

Cut(c̃R̄)=
∑

eij∈E1

‖c̃R̄ − s̃i‖2
2|1− ri |. (6.31)

Therefore, the optimization of the two-class model in (6.27) is enacted by the fol-
lowing steps.

1. Randomly initialize the set R and compute the centroid c̃R of R, and the centroid
c̃R̄ of set R̄.

2. Repeat until convergence:
a. Find the labeling vector r that minimizes

E[R] = Boundary(r)+Cut(c̃R)+Cut(c̃R̄)

from the expressions above using a max-flow/min-cut algorithm.
b. Assign each centroid, c̃R and c̃R̄, to the mean of the data vectors of all nodes

in R and R̄, respectively.

The k-means model was generalized to incorporate spatial information by intro-
ducing a spatial regularization term. However, in cases where the spatial arrange-
ment of the nodes is relevant, this generalized k-means approach seems limited by
the fact that the data is modeled as a single centroid for every node in the cluster (i.e.,
the centroid value is uniform everywhere in space within a cluster). Consequently,
this generalized k-means model may be further generalized by allowing each node
to have its own idealized “centroid” (i.e., to allow the term corresponding to the cen-
troid to vary spatially). To avoid confusion, we term this spatially varying version of
the region centroid as a pseudocentroid, in which every node in the graph has a both
pseudocentroid for R and a pseudocentroid for R̄. However, to be meaningful, the
pseudocentroid cannot be allowed to vary arbitrarily and therefore we can impose
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a smoothness penalty on the pseudocentroids for each region. Specifically, for the
two-class problem, let

Esmooth[R] =
∑
eij∈E

ri‖c̃iR − c̃j R‖2
2 +

∑
eij∈E

(1− ri)‖c̃iR̄ − c̃j R̄‖2
2, (6.32)

where now c̃iR represents the pseudocentroid of node vi in set R. Therefore, the
pseudocentroid at each node should change smoothly between nodes within a re-
gion. This model may be called the piecewise-smooth Mumford–Shah model, even
though the formulation of Mumford and Shah [289] was in a continuous space. This
form of the model on a graph appeared in Ref. [163]. By allowing the pseudocen-
troids to vary with each node, the output of our minimization is both a clustering
and and idealized form of our data. This idealized form of the data was used in
Chap. 5 for filtering noisy data, while the focus of this chapter is on the cluster-
ing. This smoothness term could be penalized differently for smoothness changes
across different edges by employing any of the affinity edge weighting functions
derived from data which were detailed in Chap. 4. However, since this smoothness
penalty has not been adjusted for edge weighting in the literature, we will continue
the exposition assuming an unweighted (i.e., a unity weighted) edge set.

When we consider each region to be represented by a single centroid, then it
is easy to compare the data at every node to a cluster centroid to see how well
the node might fit in the cluster. However, when we allow each cluster to be rep-
resented by several pseudocentroids (in fact, each node is represented by its own
pseudocentroid), then it is less clear how we might compare the data at nodes which
are not inside a particular cluster with the pseudocentroids of that cluster, since
each cluster is no longer represented by a single centroid. Therefore, the piecewise
smooth Mumford–Shah model requires an estimate of the pseudocentroid for each
cluster at each node. This estimation was performed by Grady and Alvino [163]
by smoothly extending the pseudocentroids outside of each cluster to all nodes by
solving a Laplace equation. Figure 6.8 shows an example of these pseudocentroids
in the context of image segmentation.

Once a cluster pseudocentroid is generated for each cluster and node, then the op-
timization of the piecewise smooth Mumford–Shah model is the same as the piece-
wise constant model above. At each iteration of the model, it is necessary to estimate
the cluster pseudocentroid for each pixel and then solve a max-flow/min-cut prob-
lem to find the optimal clustering (for the two-class case). See Ref. [163] for more
details. This clustering model could also be extended to multiple classes by recur-
sive bisection or by the approximation approaches taken by El-Zehiry et al. [122]
and by Bae and Tai [17]. Figure 6.9 shows the clustering and idealized data values
obtained for a synthetic image.

Among the class of semi-targeted algorithms, we have so far considered only
the k-means algorithm and the more generalized Mumford–Shah algorithm, which
both operate on the primal graph. Dual semi-targeted algorithms are not considered
here because the authors are unaware of any algorithms of this type. However, in the
image processing literature there is a vast amount of work on active contour methods
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Fig. 6.8 Optimization of the piecewise smooth Mumford–Shah using max-flow requires specifi-
cation of values for the cluster pseudocentroid estimation function c̃iR in the region outside the
cluster region R. Using a Laplace equation regularizer allows us to estimate the values for the fore-
ground c̃iR tuples and the background c̃i R̄ tuples for the entire domain (i.e., the graph representing
the image), as shown above. See Ref. [163] for more details

Fig. 6.9 Several steps of the algorithm to optimize the piecewise smooth Mumford–Shah Model.
(A–E) Partitioning evolution from initialization to stabilization. Blue contours indicate boundary
location. (F–J) Corresponding pseudocentroid reconstruction of the piecewise smooth estimate of
the image data, given a contour. For each image, the iteration step t is provided below

(e.g., [222, 409]) which are very similar in spirit. These methods parameterize a
cluster boundary as a polygon with a series of control points which are evolved to
(locally) optimize an objective function. However, these methods do not fit into the
scope of the present work since they require an embedding, the control points are
allowed to vary anywhere in the embedded space and the methods are not explicitly
formulated on a dual complex.
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6.4 Clustering Higher-Order Cells

In the previous sections we described variational models for targeted and untargeted
clustering of the nodes in a graph. We end this chapter by briefly recasting these
models to apply to the clustering of higher-order cells. We will focus on recasting
these models in terms of edge clustering with the understanding that the same meth-
ods could be further applied to the clustering of p-cells for any p (as in Chap. 5).

6.4.1 Clustering Edges

We will consider targeted, untargeted and initialized primal clustering formulations.
Formally, the clustering problem on edges may be formulated by assigning labels b

of a label set L, with b ∈L, to the set of edges, E. As in the case of nodes, the goal
of a clustering algorithm is to produce a segmentation function σ : E→ L. In the
following discussion, we assume that a cycle set has been identified and this cycle
set constitutes a basis for the cycle space, i.e., that the edge Laplacian is full rank.
Additionally, we assume that G1 = I.

6.4.1.1 Targeted Edge Clustering

The basic components of a targeted edge clustering algorithm are the same as those
components of a targeted node clustering algorithm. Specifically, additional infor-
mation is required that associates some or all edges to particular labels. Examples
of additional information in a targeted edge clustering algorithm could include:

1. A method for assigning probabilities to a subset of the edges that these edges
belong to each label.

2. Known labels for a subset of the edges.

In all of the subsequent discussion on targeted edge clustering algorithms, we
can formulate our goal as solving for a membership probability yi,b that edge ei

belongs to label b. Unless otherwise noted, the segmentation function σ(ei) = b

is obtained via σ(ei) = argmaxb{yi,b}, similar to the case with segmenting nodes.
Consequently, our focus will be on the calculation of yi,b for each edge and label.

We begin by rewriting the weighted version of the Basic Energy Model in (6.5) to
apply to clustering edges. As in the filtering case treated in Chap. 5, we replace the
gradient of the node data by both the curl and the divergence of the flow data along
each edge, since this replacement preserves the character of the operator as penaliz-
ing high-frequency functions (with respect to the edge Laplacian). Specifically, we
may rewrite (6.5) for edges as

EBEM[yb] = 1T
∣∣G−1

2 Byb

∣∣p + 1T
∣∣G0ATyb

∣∣p. (6.33)
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Once again, we can avoid a trivial minimum of this energy by incorporating a pre-
specified set of labels for some edges (similar to the use of seeds in the node cluster-
ing case). Formally, define the set of seeded or “marked” edges EM ⊂ E for which
σ(EM) is known. These labels are assumed to have been obtained via a different
process such as user interaction. Using this information, we can fix yi,b for all edges
ei ∈ EM via the assignment

yi,b =
{

1 if σ(ei)= b,

0 if σ(ei) �= b.
(6.34)

These fixed values allow us to solve for a nontrivial minimum of the edge-focused
Basic Energy Model in (6.33), which can be computed via the optimization methods
in Appendix B.

As observed for node clustering, the trivial minimum of the Basic Energy Model
could also be avoided by adding a term encoding the prior of each edge to belong to
each label. We may continue to apply the targeted clustering models of Sect. 6.1 to
flow data. When considering the Basic Energy Model expressed in (6.33) we treated
the prior probabilities as initialized with an initial condition then iteratively updated
to minimize the target energy. However, unless pre-labeled seeds are known, an op-
timal solution of (6.33) is trivially zero. Therefore, we may take a different approach
to incorporating the prior probabilities by separating the smoothness constraints and
priors into two different terms whose influence on the solution is controlled with a
parameter. This edge-focused Extended Basic Energy Model is expressed by

EEBEM[yb] = 1T
∣∣G−1

2 Byb

∣∣p + 1T
∣∣G0ATyb

∣∣p + λ
∑
a

sT
a

∣∣yb − δ(a − b)
∣∣p, (6.35)

where sa represents the prior likelihoods that each edge belongs to label a,
δ(a − b) = 1 if a = b and δ(a − b) = 0 otherwise. At the cost of introducing a
free parameter λ we now have a model that produces a nontrivial minimum. Addi-
tionally, we may also introduce a set of seeds in the same manner as before, which
allows us to find a nontrivial solution even when λ= 0 (i.e., prior probabilities are
unknown).

6.4.1.2 Untargeted Edge Clustering

Building on the untargeted Basic Energy Model of (6.17), we now consider the
edge-focused untargeted Basic Energy Model in the context of untargeted biparti-
tioning of an edge set. Specifically, consider the energy

EUBEM[y] = 1TG−1
2 |By|p + 1TG0|ATy|p − λ1T|y|q, (6.36)

for some λ > 0. As in the node case, the solution y may be thresholded to produce
a bipartitioning of the edge set. This energy takes a minimum for p > 1 when y
satisfies

BTG−1
2 |By|p−1 + AG0|ATy|p−1 = λ|y|q−1. (6.37)
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We briefly consider some combinations of the norm parameters p and q values with
a focus on a contrast with the node clustering case.

The p = 2 and q = 2 case also yields an eigenvector problem

(
BTG−1

2 B+AG0AT)y= L1y= λy, (6.38)

in the edge Laplacian matrix. The eigenvectors of the edge Laplacian matrix have
been lightly treated in the literature to date. These early investigations [1, 80, 288]
reveal that the eigenvectors corresponding to low eigenvalues of the edge Lapla-
cian roughly correspond to circulations around the complex. When the complex has
a higher genus (i.e., there is one or more “handles” in the domain), a number of
eigenvalues equal to the genus reach zero exactly and the corresponding eigenvec-
tors represent flows that encircle these handles. From the standpoint of clustering,
such circulations may indeed be meaningful clusters, since each circulation is a set
of flows with minimal curl and divergence. Figure 6.10 shows the result of this
model for clustering the flows in a graph.

Similarly, the p = 2 and q = 1 case yields a minimum to (6.37) when

(
BTG−1

2 B+AG0AT)y= L1y= 1. (6.39)

This expression represents the flow version of the isoperimetric algorithm of
Ref. [169]. The isoperimetric algorithm on nodes required an additional step of
“grounding” a node (in accordance with the electrical circuit analogy) at xg = 0
to break the singularity of the node Laplacian. Although we assumed that we have
a complete cycle basis (i.e., L1 is full rank), (6.39) still has a trivial solution un-
less some edge is chosen as a fixed “ground” where yg = 0. Figure 6.10 gives an
example of this model for clustering the flows on a graph.

6.5 Applications

Clustering has an enormous number of applications across many fields. In this sec-
tion, we give several applications of these clustering techniques with the goal of
demonstrating the variety of applications of these methods.

6.5.1 Image Segmentation

Clustering image data is a core problem in image processing in which the cluster-
ing procedure is known as image segmentation. Image segmentation is an essential
part of many practical applications and graph-theoretic algorithms have historically
played an important, and increasing, role in image segmentation [345, 407, 416].
Example applications include the quantification of objects in medical/scientific im-
ages, photo editing, and enhanced visualization of image contents. Additionally,
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Fig. 6.10 Clustering flows. In all cases, the thickness of the line represents the strength of the
y vector used to determine the partitioning (by thresholding). Top row: Example 1, showing two
circulations around the cycles cluster easily by both the spectral edge clustering method and the
“isoperimetric” edge clustering method. The clusters are obtained by thresholding the resulting
flows. Middle row: Example 2, in which the orientation of four edges are flipped (marked in blue).
A leftward flow is partitioned into two streams by both partitioning methods. Bottom row: The
“random walker” model applied to targeted clustering. The labeled edges were the upper left edge
(green) and the second labeled edge was in the lower right or upper right (red). In the first case, the
two diagonal flows are clustered together while in the second case, the upper and lower flows are
clustered together

image segmentation can be used as a preprocessing step before many other image
analysis tasks, such as object recognition, image registration or image compression.
Traditional two-dimensional image data consists of “picture elements” (pixels) typi-
cally arranged in a square grid and traditional three-dimensional image data consists
of “volume elements” (voxels) arranged in a rectilinear grid. In our applications, we
associate each pixel or voxel with a node and use a 4-connected lattice as the edge set
(6-connected in three dimensions). In all of our examples, the edges were weighted
using the Welsch function of the difference of image intensities (see Chap. 4).

Our goal in this example is to demonstrate the varieties of clustering algorithm
that were discussed previously. Specifically, image processing applications permit
both primal and dual segmentation algorithms, since the image content has a geo-
metric arrangement that naturally admits description as a cell complex with a dual.
Consequently, the segmentation problem may be cast as having the goal of labeling
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Fig. 6.11 Untargeted image segmentation of blood cells using spectral partitioning, Normalized
Cuts (NCuts), isoperimetric clustering (Iso), k-means and the piecewise constant Mumford–Shah.
The k-means algorithm employs image intensity and the Mumford–Shah algorithm employs both
image intensity and spatial regularity causing them both to associate the bright center of each cell
with the bright background. In contrast, the purely spatial isoperimetric, spectral and normalized
cuts algorithms all associated this inner part with the cells themselves. For each algorithm, the
outline of the computed cluster boundaries is presented on the left, and the same cluster boundaries
are superimposed on the image on the right, indicating the final segmentation

each pixel (in the primal case) or of labeling the boundary of the pixels (in the dual
case).

We begin by demonstrating the primal untargeted algorithms on the applica-
tion of cell counting in an image of blood cells. Figure 6.11 displays the results
of each algorithm on the task of separating the cells from the background. Note
that no attempt was made to further subdivide the cell clusters. Due to the clar-
ity of this image, all of the algorithms produced a reasonable clustering. Since the
Mumford–Shah energy balances image intensity clustering with spatial clustering,
and k-means removes the spatial aspect, these two algorithms associated the inner,
brighter, part of the cells with the background. In contrast, the purely spatial isoperi-
metric, spectral and Normalized Cuts algorithms all associated this inner part with
the cells themselves.
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Fig. 6.12 Untargeted segmentation algorithms applied to a grayscale photograph of a girl. The
algorithms used only image intensity to define edge weights and unary terms rather than more
complicated models such as using texture boundaries to set weights. Consequently, the algorithms
used in this way try to isolate each strand of hair as a separate object rather than as a unit

The blood cells image contained pixels belonging to two types, cell and back-
ground, which were generally separated by different intensity profiles. Images that
contain more classes of objects are more difficult for an untargeted image segmenta-
tion method to parse, especially if the object classes have a differing intensity/texture
profile. To illustrate this issue, the same set of untargeted algorithms were applied
to find a segmentation of the photograph of a girl given in Fig. 6.12. As before, edge
weights were derived from a Welsch weighting function of the image intensities of
the neighboring pixels. The models could have been made more appropriate to the
segmentation of this image by deriving weights from texture boundaries and using
such information as features for the Mumford–Shah model. By basing the models on
image intensity, the algorithms attempt to segment each strand of hair as a separate
object, rather than segmenting all of the hair as a single unit. Since these algorithms
all explicitly optimize a separation of two objects, the algorithms were used to gen-
erate multiple labels by applying the algorithms recursively and determining when
to stop the recursion based on the energy obtained by the minimum produced by the
segmentation.

An untargeted image segmentation algorithm tells us what the best clusters are.
If we instead wanted to find a particular object, then we need to target that object
through a targeted image segmentation approach. We may isolate the girl’s head
in this photograph by supplying some labeled pixels which identify the object to
be isolated. In this example, these labeled pixels were supplied interactively by the
authors and each of the targeted segmentation algorithms were run to produce a
segmentation separating the image into foreground and background. Results of this
experiment are displayed in Fig. 6.13. Although each of these algorithms also used
edge weights derived from intensity differences, the targeting of a particular object
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Fig. 6.13 Example of targeted image segmentation algorithms. These algorithms were used to
isolate the girl’s head by interactively supplying some labeled pixels. Although these algorithms
also used the same intensity-based edge weighting as before, the act of targeting a particular object
allows the algorithms to know which objects should be grouped together (e.g., each strand of hair
belongs to the foreground label)

was sufficient for these algorithms to group together the parts of the objects (e.g.,
every strand of hair is grouped together in the foreground).

The previous example applied targeted segmentation algorithms to isolate the
image foreground. However, all of these algorithms operated on the primal graph
in the sense that the final output was a labeling of each pixel and the boundary
was implied by the change in label. We discussed in the text how a dual algorithm
could also be applied to image segmentation by finding a set of edges in the dual
graph which separated the nodes into two pieces. Dual clustering algorithms are
available for two-dimensional image processing because the planar graph defined
by the 4-connected lattice has a well-defined 2-dual. The most popular dual seg-
mentation algorithm in the computer vision literature is the intelligent scissors/live
wire algorithm [129, 287], which inputs boundary points from a user which are then
connected via the shortest path in the dual graph. Figure 6.14 gives an example of
using this algorithm to target the same object in the photograph.

One advantage of a primal algorithm is that it easily extends to alternate embed-
dings (or no embedding). However, since the dual graph (or lack thereof) depends on
the availability of an embedding, these algorithms are less portable between prob-
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Fig. 6.14 Targeted segmentation using a dual algorithm. The dual algorithm operates on the dual
graph to find a set of edges in the dual graph comprising the boundary of the nodes in the primal.
We applied the intelligent scissors/live wire algorithm [129, 287] to segment the girl’s head in this
image. At each step of the algorithm the user determines a point on the boundary (shown by the
bright circle) and a shortest path is calculated between the new point and the previous point (shown
by the thick line). The process is continued until the boundary is completed. In this example, six
points total were manually chosen

lems. An example of this change in embedding is the application of a segmenta-
tion algorithm in a two-dimensional image compared to a three-dimensional image.
A primal segmentation algorithm can just as easily be applied in two or three dimen-
sions, since the output is a labeling of the pixels in two dimensions or the voxels in
three dimensions. However, a dual algorithm that finds a one-dimensional bound-
ary in two dimensions that isolates two-dimensional regions of an image will not
subdivide the three-dimensional image. Consequently, such an algorithm must be
reworked to apply to find the boundary of regions in three dimensions, i.e., to find
two-dimensional boundary surfaces. This topic was addressed earlier in Sect. 6.1.2.1
in which we showed how the intelligent scissors/live wire algorithm could be ex-
tended to three-dimensional segmentation by computing a minimal surface in the
dual complex. Instead of inputing points and computing a shortest path between
them, the three-dimensional algorithm inputs closed contours and computes a mini-
mal surface between them. Figure 6.15 gives three examples from medical imaging
of this dual algorithm in three dimensions. Note the bottom image of the aorta which
splits into two pieces at the iliac branch. Although one contour was input above the
split and two contours were input below the split, the resulting segmentation natu-
rally merges these contours into a single surface.
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Fig. 6.15 Dual segmentation in three dimensions applied to the segmentation of three-dimensional
medical data. Several slices of three-dimensional volumetric data are shown. In each example, the
green contours were placed on the bounding slices and the intermediate yellow contours represent
the minimum-weight surface between these contours. (A) SPECT cardiac data. (B) CT cardiac
data. (C) CT aorta near iliac branch. Multiple closed contours may be placed and a single surface
may be found that splits accordingly to accommodate the prescribed boundaries. Note that not all
slices between the closed contours are displayed

6.5.2 Social Networks

Clustering is a common task in the study of social networks, where it is often known
as community finding. In a social network, each node typically represents a person
(or group) and the edges represent a social connection (e.g., friendship). If the net-
work is weighted, the edge weight indicates the strength of the social connection.
Since a larger weight typically represents a stronger social bond, we will treat these
edge weights as affinity weights (similar to conductances in the circuit theory anal-
ogy).

In this application, we consider the social network studied by Zachary [415],
which has appeared many times in the study of social networks (e.g., [148, 292]).
Zachary observed a university karate club for two years which consisted of 34 mem-
bers. The club split when the karate instructor “Mr. Hi” wanted more money and the
club president “John A” fired him. Zachary’s goal in studying this social network
was to determine if it was possible to predict the faction joined by each member
based purely on the social structure of the club. The social structure of the club was
modeled as a network in which each member was associated with a node and an
edge was assigned between two nodes if the two members met in some venue out-
side the club (e.g., the campus pub, common classes, outside karate tournaments,
etc.). Each edge was assigned a weight equal to the number of outside venues that
the two members had in common.
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Zachary’s method of predicting the split was to designate “Mr. Hi” (node 1)
as a source node and “John A” (node 34) as a sink node and then determine the
minimum cut (maximum flow) between these nodes in the network. This approach
may be seen as an example of the targeted clustering problem in which the goal was
to isolate a particular cluster (Mr. Hi’s cluster) from the club (John A’s cluster). In
fact, the max-flow/min-cut algorithm employed by Zachary corresponds precisely
to the targeted clustering approach defined by solving the Basic Energy Model (6.6)
with norm p = 1.

The max-flow/min-cut approach taken by Zachary correctly predicted the faction
split for every member except for node 9. Zachary’s algorithm assigns person 9 to
John A’s faction when, in fact, this person joined Mr. Hi’s club. Zachary explains
this discrepancy by noting that person 9 was indeed aligned with John A’s faction
but he would have had to give up his high belt ranking if he had joined with John A
(because the new club planned to teach a different style of karate). In addition to
Zachary’s method, we employed the random walker (p = 2) and geodesic (p =∞)
algorithms to this targeted clustering problem. Both of these algorithms also fail
to correctly predict the faction joined by person 9 after the split. Additionally, the
geodesic algorithm incorrectly predicts the faction joined by person 14. Although
person 14 is clearly more strongly connected to Mr Hi’s faction, person 14 is con-
nected directly to Mr. Hi and John A with the same weight. In this case, the shortest
path from person 14 to Mr. Hi takes the same weight as the shortest path from
person 14 to John A and the tie was broken in the wrong direction. This situation
illustrates the common problem with the geodesic algorithm that it is sensitive to
the characteristics of the shortest path without considering the global structure of
the network. However, the geodesic algorithm is still mostly correct (with only two
incorrect assignments) and very fast compared to the other algorithms (especially on
large networks). Figure 6.16 displays Zachary’s karate club network with the true
split and the targeted clustering obtained by the three algorithms.

6.5.3 Machine Learning and Classification

Machine learning is a vast topic. The goal of a machine learning algorithm is to re-
duce a phenomenon of interest to a series of quantities that may be used to identify
the phenomenon and to generalize determinations made about the phenomenon to
other objects with a similar set of quantities. Machine learning techniques are gen-
erally divided into supervised learning and unsupervised learning techniques. A su-
pervised learning technique inputs a small set of labeled training data that is used to
build a model that may be applied to label unseen data. In contrast, an unsupervised
learning technique inputs unlabeled data with the goal of producing a division of
this data into meaningful labels which may be applied to future unseen data. Be-
tween supervised and unsupervised techniques lies the body of semi-supervised and
transductive learning techniques which input a small amount of labeled data and
a larger amount of unlabeled data which is used together to build a model for the
labeling of unseen data.
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Fig. 6.16 Zachary’s Karate Club network [415]. Zachary tried to predict the actual split of the
karate club into two groups based on the social interactions of each member. This problem may be
viewed as an instance of the targeted clustering problem in which the leaders of the two factions,
“Mr. Hi” (person 1) and “John A” (person 34), are treated as known and Zachary’s goal was to
predict the membership of each other member

Learning and clustering are intimately related topics. The goal of both learning
and clustering algorithms is to assign a labeling to data. Further, untargeted clus-
tering algorithms are similar to unsupervised learning algorithms in the sense that
both types of algorithm must find a good method for separating data into differ-
ent labels. In contrast, the targeted clustering algorithms are similar to supervised
learning algorithms (and particularly semi-supervised and transductive learning al-
gorithms) in the sense that these algorithms must take a small amount of labeled
training data and determine how to assign labels to a large number of unlabeled data
points. The primary difference between learning and clustering is that a clustering
algorithm is generally focused on labeling a particular set of data which is available,
while a learning algorithm must be able to generalize the clustering to label new
(unseen) data. However, transductive learning algorithms are generally defined to
label only a certain set of unlabeled data points (provided during training) [73], and
therefore the targeted clustering algorithms described in this chapter are more prop-
erly viewed as transductive learning algorithms in the context of machine learning.
Additional work has been done to further blur the lines between machine learning
and clustering by examining how to extend some clustering algorithms to unseen
data (see, e.g., Refs. [28, 29]).



238 6 Clustering and Segmentation

Fig. 6.17 A scatter plot of the Fisher iris data [138]. Each flower is described by four measure-
ments: petal width, petal length, sepal width and sepal length. The setosa are indicated with the
marker ‘+’, Iris versicolor with the marker ‘x’, and Iris virginica with ‘O’. Each row/column
represents a variable and the off-diagonal image shows the row variable on the x-axis and the col-
umn variable on the y-axis. The measurements from the setosa are well-separated, while the Iris
versicolor and Iris virginica measurements overlap substantially

In this application example, we do not address the issue of extending a cluster-
ing algorithm to unseen data, but rather to address the use of clustering to group
data used to describe an object that we wish to model. To illustrate these clustering
approaches, we use the classical Fisher iris data [138]. Fisher’s paper was an early
example of the standard approach used now in machine learning. Fisher wanted to
determine whether or not it was possible to distinguish three types of irises from a
set of measurements of each iris. Fisher’s data consisted of 50 samples of each of
three different species of iris, setosa, Iris virginica and Iris versicolor. Four mea-
surements were taken from each flower: the petal width, petal length, sepal width
and sepal length. Based on these measurements, the data for the Iris virginica and
Iris versicolor are substantially overlapping while the data describing the setosa is
well-separated from the other two. Figure 6.17 provides a scatter plot illustrating
the distribution of the data for each type across measurement dimensions.

We first applied the untargeted clustering algorithms to determine if they could
produce the three clusters. The initial step was to generate a graph from the data in
which each data point is treated as a node and the nodes are connected with edges
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Table 6.3 The Rand index, as defined in (6.40), for the clusters produced by the various untargeted
clustering algorithms when applied to untargeted clustering of the Fisher iris dataset

k-Means Mumford–Shah Isoperimetric Spectral Normalized cuts

Rand index 0.8623 0.8797 0.8797 0.8797 0.8797

via a K-nearest-neighbor approach (see Chap. 4) in which we set K = 25 and all
edge weights to unity. Since the algorithms described above partition the graph into
only two parts, the algorithms were run recursively to produce three partitions. In
each case, the energy value of the partition was used to determine when to stop
the recursion with the stop criterion set such that three partitions were produced.
The k-means algorithm was also included (as a variant of the minimization of the
Mumford–Shah energy), although this algorithm did not need to be run recursively
in order to produce the prescribed three partitions.

The quality of the clustering produced by minimizing each objective function
was evaluated against the true labeling by using the Rand index [315]. The Rand
index between two labelings, x1 and x2, is defined as the ratio

Rand(x1, x2)= a + b(
n
2

) , (6.40)

where a represents the number of pairs of nodes which share the same label in x1
while also sharing the same label in x2, and b represents the number of pairs of
nodes which have different labels in x1 while also having different labels in x2. If
x1 and x2 represent the same clustering then Rand(x1, x2) = 1, while if the two
clusterings do not agree on any pair of points then Rand(x1, x2) = 0. Table 6.3
gives the Rand index for the clustering obtained by the various primal untargeted
clustering algorithms described in the chapter. In this case, all of the algorithms
produced a reasonable clustering in which the quality was equal for all algorithms
except the k-means algorithm which performed slightly worse.

We next tested the primal targeted clustering algorithms on the iris data in a trans-
ductive learning context. Samples were chosen randomly from each of the three
classes. The number of samples was increased from one to fifty in order to track
the performance of each algorithm with respect to the number of training samples.
At fifty samples, all of the data is used to train/test, so the labeling will be per-
fect (thus the Rand index will be equal to unity). For each number of samples, 100
trials were run with randomly generated samples for each algorithm and the Rand
index of the resulting labelings were computed with respect to the ground truth.
Figure 6.18 displays the results for the targeted clustering algorithms applied to this
data using a K-nearest neighbor graph in which K = 5 and again with K = 30. In
both cases, the edges were weighted using the Welsch function as a function of the
Euclidean distance between data points (in normalized feature space). Figure 6.18
displays plots of the mean Rand index across 100 trials for each number of sam-
ples and the standard deviation of the Rand index across trials. These plots allow
us to make several observations about the behavior of these algorithms in this sce-
nario. First, all three algorithms behave roughly the same. However, the geodesic
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Fig. 6.18 Targeted clustering using randomly sampled seeds on the Fisher iris dataset. Each trial
was run 100 times with an increasing number of samples. The x-axis represents the number of
training samples and the y-axis represents the Rand index. The left column shows the mean Rand
Index and the right column shows the variance of the Rand index. Top row: Run on a K-Nearest
Neighbor graph with K = 5. Bottom row: Run on a K-Nearest Neighbor graph with K = 30. We
see that the geodesic algorithm consistently has the worst performance for a mid-range number of
labeled nodes, but generally the lowest variance in performance of the three algorithms

algorithm performs better than the other two with a very small number of samples
but lags behind the others as the number of samples increases. This effect is more
pronounced for the graph with lower connectivity. Secondly, all of the algorithms
gave a better average performance with higher connectivity, but the variance of the
quality was greater for a low number of samples.

6.5.4 Gene Expression

Grouping genes by their expression pattern can be useful to deduce the gene regu-
latory network, classify groups into particular phenotypes (e.g., cancerous or non-
cancerous) or to match gene expression with other macroscopic anatomical features
such as a physiological atlas [41, 76, 198, 368, 408]. In this example, we follow
Bohland et al. [41] to determine whether the grouping of gene expression profiles
match the standard anatomical grouping.

Bohland et al. [41] studied the C57BL/6J mouse brain in the Allen Brain Atlas
[255] and compared the clustering of locations based on their gene expression pat-



6.5 Applications 241

Fig. 6.19 Do the gene expression patterns match the accepted anatomy? In this example, we fol-
low the Bohland et al. experiment [41] to demonstrate how well a clustering of gene expression
patterns match the accepted anatomy. In each experiment, we chose parameters for each algo-
rithm to generate a partitioning with the highest Rand index as compared to the anatomical atlas.
The Rand index for each partitioning were, NCuts: 0.881, Spectral: 0.8783, Isoperimetric: 0.8767,
Mumford–Shah: 0.8845, k-means: 0.8678. Consequently, it could be argued that there is a strong
correspondence between anatomy and gene expression profile, but that the relationship is not per-
fect. Note how the k-means clustering is spatially fragmented due to the lack of any geometric
regularization, as opposed to the Mumford–Shah result which is effectively k-means with geomet-
ric regularization

terns with a classically-defined anatomical reference atlas. The goal was to assess
the level of correspondence between molecular level and higher-level information
about brain organization. Each voxel in the sample was described by 3041 genes
which were deemed to be consistent across experimental observations. Bohland et
al. reduced these 3041 genes to produce a feature space in which each anatomical
location is represented by a tuple consisting of 271-dimensions. They then applied
a k-means clustering to this data. We replicated the methodology of Bohland et
al. [41] using the untargeted clustering algorithms described in this chapter. Fig-
ure 6.19 displays views of the clusterings obtained by the various untargeted primal
clustering methods. In each case, we weighted the edge weights using an �∞ norm
to measure the distance between the (reduced) gene expression data tuples, which
was then input into a Welsch function (see Chap. 4).

We can also use the tools of targeted clustering to determine how well a particu-
lar anatomical structure matches a gene expression pattern. In order to examine this
question, we generated labeled seeds from the anatomical atlas by setting the cen-
tral portion of the medial axis of each region as seeds. We then targeted the striatum
by setting all of its seeds to foreground (‘1’) and seeds from all the other regions
as background (‘0’). Figure 6.20 displays the results obtained from applying the
targeted clustering algorithms to this data. Each of the algorithms produce a seg-
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Fig. 6.20 Targeted clustering of the striatum. By using seeds derived from the anatomy of the
striatum, we applied the various targeted clustering algorithms to determine the gene expression
pattern associated with this anatomical structure

mentation that matches the anatomy well. Therefore, this analysis suggests that the
gene expression profile of striatum is fairly well separated from the gene expression
profile of surrounding structures.

6.6 Conclusion

In this chapter, we showed how the variational models of Chap. 5 could be applied to
the targeted, untargeted and semi-targeted clustering problem on both a primal and
dual complex. Essentially, the filtering algorithms modeled the denoised data as hav-
ing low spatial frequency (possibly with discontinuities). These models could easily
be applied to clustering by modeling the cluster labels as having a low spatial fre-
quency (possibly with discontinuities). Clustering appears in many applications in
image processing, machine learning and complex network analysis. We also showed
how to apply these clustering models to the clustering of higher-order cells, such as
edges to permit flow clustering.



Chapter 7
Manifold Learning and Ranking

Abstract A prominent theme of this book is the spatial analysis of networks and
data independent of an embedding in an ambient space. The topology and metric
of the network/complex have been sufficient to define the domain upon which we
may perform data analysis. However, an intrinsic metric defined on a network may
be interpreted as the metric that would have been obtained if the network had been
embedded into an ambient space equipped with its own metric. Consequently, it is
possible to calculate an embedding map for which the induced metric approximates
the intrinsic metric defined on the network. The calculation of such embeddings
by manifold learning techniques is one way in which the structure of the network
may be examined and visualized. A different method of examining the structure
of a network is to calculate an importance ranking for each node. In contrast to
the majority of this book, the ranking algorithms are generally used to examine the
structure of directed graphs.

In the context of network theory, data discovery refers to any procedure that con-
denses the vast amount of information contained in a network into a simpler form
that can be used to summarize the network and thus simplify the representation. This
simplification can be used either as an output to aid human understanding and infor-
mation extraction or as an preprocessing step to be followed by subsequent analysis
of the network.

We will address two data discovery problems using techniques that fit the overall
theme of this work. The first problem we will address is dimensionality reduction.
The problem of dimensionality reduction is to input a large number of data values
that are assigned to each node and then reduce the number of values required to rep-
resent the data at each node. Due to the geometric viewpoint behind dimensionality
reduction techniques, in this chapter we will interpret the data associated with each
node as the node coordinates. This reduction is motivated by an assumption that the
vertices in high-dimensional space lie on a lower dimensional manifold embedded
in the high-dimensional space. Since the data is “really” low-dimensional, we may
replace the high-dimensional coordinates with low-dimensional coordinates with-
out losing information. An algorithm for producing low-dimensional coordinates for
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each vertex on the manifold is known as manifold learning. Manifold learning may
be used for several purposes, such as: (i) visualization of the data for human under-
standing; (ii) providing an isotropic space where Euclidean distances are meaningful
(e.g., allowing meaningful application of algorithms such as k-means); (iii) using the
low-dimensional coordinates as inputs to machine learning algorithms; and (iv) gen-
erating an intrinsic set of coordinates to parameterize a dataset. The starting point
for almost all manifold learning techniques is to apply some method for connecting
data points at nodes via edges to form a network. Given this network, various al-
gorithms have been derived for extracting the low-dimensional representation from
the structure of the network.

The second data discovery problem that we address in this chapter is node rank-
ing. Node ranking is a process that identifies the relative influence of nodes in a net-
work. Knowing the relative influence of nodes is valuable in several areas, such as
social network analysis (identifying the most important people), computer network
analysis (identifying which critical machines to protect from attack), or in searching
the World Wide Web. The application of web search motivated the development of
both algorithms reviewed in this chapter: The PageRank algorithm and the HITS
algorithm.

7.1 Manifold Learning

The classical approach to dimensionality reduction is Principal Components Anal-
ysis (PCA) [117]. The PCA method reduces a high-dimensional representation of a
dataset into a lower-dimensional representation of the dataset such that the variabil-
ity of the high-dimensional representation is optimally represented. However, PCA
is a linear method for dimensionality reduction in the sense that PCA finds a suit-
able set of basis vectors and projects the high-dimensional data onto these vectors.
In contrast, the manifold learning techniques may be viewed as nonlinear methods
for dimensionality reduction. Many real-world datasets that may be described by
a lower-dimensional representation do not admit a linear projection onto a lower-
dimensional space. For example, Fig. 7.1 shows two examples of one-dimensional
data embedded in two-dimensional space. In the first example, PCA will find a sin-
gle basis vector which fully describes the variance of the data. However, no such
basis vector may be found that describes the data when embedded in a spiral.

Formally, we may describe the manifold learning problem as follows: Given a
set of points, vi , each described by a tuple of coordinates s̃i ∈ R

m, find a mapping
f (s̃i) = x̃i such that x̃i ∈ R

� for � < m. In general, we do not solve for the map-
ping f explicitly, but instead produce the set of coordinates x̃i from the given set of
initial coordinates s̃i . Note that the manifold learning problem is distinct from the
classical surface reconstruction problem (e.g., [203]) in which the goal is to find a
simplicial manifold which best fits a set of embedded points—in particular, in sur-
face reconstruction the dimensionality is typically known a priori and the sampling
of the points is often not dense enough for a unique solution.
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Fig. 7.1 Two examples of one-dimensional data embedded in two-dimensional space. The em-
bedding in (A) is described well by the single basis vector found by PCA. However, PCA finds no
useful basis-vector representation for the spiral in (B). The goal of manifold learning techniques is
to find a one-dimensional description of the points that works in both situations

In this section, we review several influential manifold learning techniques which
are related to the overall themes of this book: Isomap, Laplacian Eigenmaps and
Locality Preserving Projections (LPP). Each of these algorithms solve the manifold
learning problem described above. If the points lie on a manifold, then the neighbor-
hood of each point (with a sufficiently dense sampling) is locally Euclidean. Conse-
quently, the embedding space can be used to define local neighborhoods. Since the
neighborhood of each node is defined by the incident edges, the edge set is typically
chosen to connect nodes which are near each other as measured using Euclidean
distances in the high-dimensional embedding space. Therefore, a preliminary step
of all of these algorithms is to connect the input points locally via an edge set. The
standard approach to creating an edge structure is to find the k-nearest neighbors of
each node in the high-dimensional space and assign an edge between the node and
each of these nearest neighbors (see Chap. 4 for other possibilities). These edges
are then assigned distance weights by the Euclidean distance of the coordinates,
i.e., wij = ‖s̃i − s̃j‖. Having produced this initial weighted graph from the data,
the various manifold learning algorithms proceed differently to produce the low-
dimensional coordinates.

7.1.1 Multidimensional Scaling and Isomap

In order to understand the Isomap algorithm for manifold learning we must first con-
sider the Multidimensional Scaling (MDS) method for dimensionality reduction.
MDS was used for many years in the psychology and social sciences communities
before being introduced in the context of manifold learning. MDS inputs a distance
matrix between each pair of nodes (computed via any process), assumes that the
distances describe (squared) Euclidean distances between every two points and, if it
exists, finds a series of new coordinates for which the (squared) Euclidean distances
between the new coordinates match the desired input distances. Formally, if our
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m-dimensional input coordinates for each of the n nodes are represented by a set of
n coordinate vectors c̃ of dimension m, and we are given a symmetric n×n distance
matrix S defined as Sij =D(vi, vj ), then the goal of MDS is to compute coordinates
in an �-dimensional space (where � < m) in the form of a set of n coordinate vectors
x̃ of length � such that

‖x̃i − x̃j‖2
2 = Sij . (7.1)

If there exists a set of x̃ such that Sij = ‖x̃i − x̃j‖2
2 then we will call S a Eu-

clidean distance matrix. When S is a Euclidean distance matrix then the minimal
embedding may be found by employing the following theorem (see [65, 333] for
proof):

Theorem 7.1 A nonnegative symmetric matrix S ∈R
n×n with zeros on the diagonal

is a Euclidean distance matrix if and only if P=− 1
2 HSH, where H= I− 1

n
11T, is

positive semi-definite. Additionally, the minimum embedding dimension m is the
rank of P.

Since P is a symmetric positive semi-definite matrix, it admits a Cholesky de-
composition P= XTX. A convenient method for computing the Cholesky factors is
to consider the eigenvector decomposition of P=Q�QT, in which it is clear that the

Cholesky factors X=Q�
1
2 . Computation of the Cholesky factors via an eigenvector

decomposition is particularly useful. In particular, if m is the minimum number of
dimensions necessary to embed the points with Euclidean distances represented by
the distance matrix S, then all but m eigenvectors will correspond to eigenvalues
equal to zero.

In practice, it may not be possible to embed the vertices in a low dimension
such that Euclidean distances between the low-dimensional coordinates match the
prescribed distances given by the matrix S. However, it may be possible to ap-
proximately embed the vertices into m̂ < m dimensions (i.e., so that the embedded
Euclidean distances in R

m̂ approximate S). Therefore, the standard approach to pro-

jecting the data is to define a threshold β such that x is comprised of x = Q̂�̂
1
2

where Q̂ represents the r̂ eigenvectors corresponding to the set of �̂
1
2 eigenvalues

less than β .
The MDS algorithm may therefore be summarized by the following steps:

1. Input a distance matrix S.
2. Construct P=− 1

2 HSH, where H= I− 1
n

11T.
3. Compute the eigenvector decomposition of P= Q�QT.

4. Set the low-dimensional coordinates as X= Q�
1
2 . Each column i of matrix X is

the output coordinate vector x̃i of low-dimensional coordinates for vi .
5. Truncate x̃i by removing the coordinates corresponding to any eigenvectors with

eigenvalues having a magnitude less than the parameter β .

One popular way for finding a distance matrix S was proposed in the Isomap
algorithm of [373]. The Isomap algorithm begins by building a weighted graph from
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a set of points embedded in high-dimensional space (see above). Following this
graph construction, the Isomap algorithm uses Floyd’s algorithm to compute the
shortest distance within the graph between every pair of points and assigns these
distances to a matrix S, i.e., Sij = D(vi, vj ). This matrix is then used in the MDS
procedure to produce a reduced set of low-dimensional coordinates x̃, such that the
Euclidean distance between nodes approximates the distances prescribed by S.

The Isomap algorithm consists of the following steps:

1. Input a set of points with a high-dimensional coordinates c̃i for each vi .
2. Construct a graph by connecting every node to its k-nearest neighbors (measured

as Euclidean distances between the high-dimensional coordinates).
3. Weight each edge in this graph by the Euclidean distance between the coordinates

of the incident nodes.
4. Compute the matrix of all-pairs shortest paths, and calculate the distance ma-

trix S.
5. Use S as the distance matrix in MDS to compute the set of low-dimensional

coordinates, x̃i , for each vi .

7.1.2 Laplacian Eigenmaps and Spectral Coordinates

A different approach to manifold learning is given by the (LE) algorithm of Belkin
and Niyogi [23]. This algorithm substitutes the spectral coordinates of the graph
Laplacian matrix as the low-dimensional coordinates. We define the spectral coordi-
nates of node vi with respect to the symmetric Laplacian matrix L under the eigen-
vector decomposition L=Q�QT to be the spectra or the columns of the eigenvector
matrix Q, i.e., xi = [qi1, qi2, . . . , qin]T. The spectra therefore assigns a coordinate
in a n-dimensional space to each of the n nodes in the graph. If the eigenvectors
represented in Q are sorted by the magnitude of their corresponding eigenvalues λi ,
then lower-dimensional coordinates can be obtained either by assuming a threshold
β as above or by choosing the � < n eigenvectors corresponding to the � smallest
eigenvalues.

The spectral coordinates of the Laplacian matrix have been used for a long time
as a predictor for the “closeness” of two nodes in a graph (see [71, 345]). Specifi-
cally, a Euclidean measure of the distance between the spectral coordinates of two
points may be interpreted as the commute time between these points, when the spec-
tral coordinates are normalized by the eigenvalues. The commute time T (vi, vj ) is
defined as the expected number of steps required for a random walker to pass from
node vi to node vj and then back again to node vi (see Chap. 3 for more informa-
tion). In general, the commute time between two nodes vi and vj can be calculated
from the normalized eigenvectors of the Laplacian matrix with the expression

T (vi, vj )=Vol
n∑

k=2

1

λk

(qki − qkj )
2, (7.2)

where Vol=∑i di .
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Several authors have approached the dimensionality reduction problem directly
from the standpoint of commute times [313, 314, 327, 412]. A different view on
why the spectrum of a graph can characterize its intrinsic shape is to consider that
the spectrum of a membrane has long been linked to the membrane shape and geom-
etry. Kac famously asked whether one can “hear” the shape of a drum (membrane)
by listening to its spectral structure [220]. Although it has since been shown that two
different drums can share a spectrum [156], there is still a strong correspondence
between drum geometry and the spectrum of its Laplacian operator. Similarly, al-
though two (co-spectral) graphs can have the same Laplacian spectrum [35, 151],
the spectrum of the Laplacian encodes information about the graph structure. It is
an open question to characterize which graphs have a unique spectrum [387].

With this interpretation of the commute time, the LE algorithm and the Isomap
algorithm both appear to seek to preserve distances measured along the graph, how-
ever there is an important distinction between how these distances are quantified in
the two methods. The Isomap algorithm can be viewed as embedding the vertices
such that the resulting Euclidean distances between two nodes reflects the length
of the shortest path between the nodes (within the graph), while the LE algorithm
embeds the vertices such that the resulting Euclidean distances reflect a distance av-
eraged across parallel paths between the nodes (as a result of reflecting the commute
time between nodes in the graph). Since the Isomap algorithm treats edge weights as
shortest-path distances and the LE algorithm employs the edge weights in the Lapla-
cian matrix, it is important to carefully distinguish the role of the edge weights as
they are used in the two algorithms. Specifically, Chap. 2 discussed the important
distinction between distance weights and affinity weights. The affinity weights must
be employed whenever the gradient or Laplacian operators are employed, which is
the case in the LE method, whereas distance weights are more appropriate for the
Isomap method.

Recall that the affinity weights are inversely related (reciprocal) to the distance
weights. Furthermore, the convention in the implementation of LE is to employ a
nonlinear weighting function such as the Welsch function [23] (see Chap. 4 for more
details and possibilities).

To summarize, the LE algorithm computes low-dimensional coordinates x by the
following steps:

1. Input a set of points with a high-dimensional tuple of coordinates, c̃i for each
node vi .

2. Construct a graph by connecting every node to its k-nearest neighbors (measured
as Euclidean distances between the high-dimensional coordinates).

3. Weight each edge in this graph by an affinity weighting function (e.g., the Welsch
function) from Chap. 4.

4. Construct the Laplacian matrix L for this weighted graph.
5. Calculate the generalized eigenvectors of L, satisfying Lq= λDq where D is the

diagonal matrix of (weighted) node degrees.
6. Truncate the output low-dimensional coordinates as a subset of the general-

ized eigenvectors calculated above. The truncation may be established by either
keeping only those eigenvectors corresponding to eigenvalues lower than some
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threshold β or by simply keeping a predefined number of eigenvectors (corre-
sponding to the � smallest eigenvalues). The final coordinates for each node are
then given by x̃i = [qi2, qi3, . . . , qi�]T.

7.1.3 Locality Preserving Projections

Both the Isomap and LE algorithms require the solution of an eigenvector prob-
lem for a matrix of size n × n where n is the number of nodes. When n is large,
these algorithms can be computationally demanding. Furthermore, another weak-
ness shared by both the Isomap and LE algorithms is that after the dimensionality is
reduced for a point set, it is unclear how to efficiently reduce the dimensionality of
new points that arrive after the initial computation. The Locality Preserving Projec-
tions (LPP) algorithm [193] was developed primarily to reduce the computational
burden, but was also designed to permit fast dimensionality reduction of new points.

The LPP algorithm is essentially the LE algorithm with the extra assumption that
a low-dimensional coordinate for each node is a linear combination of the original
high-dimensional coordinates of that node. Additionally, this linear combination of
high-dimensional coordinates to produce a low-dimensional coordinate is the same
for all nodes. If we let C represent the m× n matrix where each column consists of
the original m-dimensional coordinates of a node, and r represents the m coefficients
of the linear combination used to compute one of the new coordinates for all n

nodes, then z= CTr. Substituting this combination into the LE algorithm yields the
coefficients r as satisfying

CLCTr= λCDCTr. (7.3)

This relation may be used to compute all � < m coordinates for each of the n nodes
via

XT = CTR, (7.4)

where X is the �× n matrix for which the columns contain the �-dimensional tuple
of coordinates for each point and R is an m×� matrix whose columns are composed
of a predetermined number of eigenvectors computed in (7.3). Once R is calculated,
any new high-dimensional point, c, may be projected onto low-dimensional coordi-
nates via the operation xT = cTR.

As in the LE algorithm, the presence of the Laplacian means that all edge weights
should be affinity weights, for the reasons given in Chap. 4. Following the convention
for LE, we may set edge weights using the Welsch function [23, 193] (see Chap. 4
for more details and possibilities).

The LPP algorithm computes low-dimensional coordinates x by the following
steps:

1. Input a set of points with a high-dimensional tuple of coordinates, c̃i for each
node vi .
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2. Construct an undirected graph by connecting every node to its k-nearest neigh-
bors (measured as Euclidean distances between the high-dimensional coordi-
nates).

3. Weight each edge in this graph by an affinity weighting function (e.g., the Welsch
function), see Chap. 4.

4. Construct the Laplacian matrix L for this weighted graph.
5. Solve the generalized eigenvector problem in (7.3) for a predetermined number

of the eigenvectors corresponding to the smallest generalized eigenvalues.
6. Output low-dimensional coordinates, X, via (7.4).

Figure 7.2 shows the application of these three manifold learning algorithms to
flatten to two dimensions the three-dimensional coordinates of the “Swiss Roll”

Fig. 7.2 Flattening of the
“Swiss Roll” data from
Tenenbaum et al. [373].
These points lie on a
two-dimensional manifold
with a complicated
embedding in
three-dimensional space. The
goal of a manifold learning
algorithm is to uncover the
“intrinsic” two-dimensional
structure and assign
meaningful two-dimensional
coordinates to each points.
The right column shows the
two-dimensional coordinates
assigned to each node by the
three algorithms, while the
left column shows a shading
of the three-dimensional data
by the horizontal coordinate
in the right column
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dataset from [373]. Note that the Swiss Roll is a three-dimensional version of the
spiral example in Fig. 7.1 which causes difficulties for a PCA-based dimensionality
reduction. We can see that the Isomap and LE algorithms produce a meaningful
two-dimensional set of coordinates for the Swiss Roll data, while the LPP algorithm
produces a projection of the data onto the plane.

7.1.4 Relationship to Clustering

One interpretation of the dimensionality reduction problem is that the goal is to
produce low-dimensional coordinates such that the Euclidean distance between the
new coordinates gives some measure of the similarity between data points. Con-
sequently, similar data points should be mapped close together and dissimilar data
points should be mapped further apart. The clustering problem has a similar goal:
Assign a value to each node such that similar nodes (i.e., nodes in the same clus-
ter) have similar values. Once all of the nodes have been assigned a meaningful
value, then they may be clustered by thresholding or by using an algorithm such
as k-means. From the standpoint of manifold learning, the clustering problem is
therefore a reduction to the ultimate low-dimensionality of one dimension.

Figure 7.3 illustrates the concept of using manifold learning techniques for clus-
tering through the application of all three manifold learning techniques to two point
clusters. Each point cluster is initially embedded in the “high-dimensional” space of
two dimensions and then reduced to one dimension via the manifold learning tech-
nique. Each point is shaded with the one-dimensional coordinate that it is mapped
to. Using manifold learning techniques in this way effectively removes any distinc-
tion between LE and the Normalized Cuts clustering algorithm reviewed in Chap. 6.
Since Normalized Cuts is just one specific case of the more general Untargeted Ba-
sic Energy Model algorithm presented in Chap. 6, it may be possible to generate
additional manifold learning techniques from this same Untargeted Basic Energy
Model clustering algorithm for other choices of the p and q parameters.

The most natural connection between manifold learning and clustering is via a
reduction of the nodes to one-dimensional coordinates which may be thresholded to
produce a hard clustering. However, a different approach to using manifold learning
techniques for clustering is to map the nodes to � dimensions as an initial clustering
step and then employ an additional clustering method in the dimensionality-reduced
space to produce a final clustering. This approach was also taken in the application
of Normalized Cuts to clustering [345] and in other studies [71].

7.1.5 Manifold Learning on Edge Data

Instead of high-dimensional data associated with each node, we could also seek a
dimensionality reduction of high-dimensional flows associated with each edge. In
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Fig. 7.3 Manifold learning as a clustering algorithm. Each algorithm is applied to two point clus-
ters to reduce the two-dimensional coordinates into a one-dimensional coordinate. The images in
the first and third column display the mapped one-dimensional coordinate as a shading of each
point. The images in the second and fourth column display a labeling of each point which was
obtained by thresholding the one-dimensional coordinate to produce two partitions of equal size
(other thresholding strategies are possible, see Chap. 6). All manifold learning techniques produced
a suitable clustering when the clusters were symmetric, but only LE produced two distinct clusters
using this method when the clusters were not symmetric

this case, each edge of the graph has associated with it multiple flow values. Given
this circumstance, we might ask whether or not it would be possible to replace these
high-dimensional input flows with a representative set of low-dimensional flows.

One motivation given for applying manifold learning techniques was to improve
the visualization of the data by reducing the data to a lower, more manageable,
dimension for display. However, visualization of edge data is a less important appli-
cation since visualization of edge data of any dimension is more difficult than the
visualization of node data.

A different motivation for applying manifold learning techniques was to reduce
the coordinates to a smaller, more meaningful set of coordinates which could be used
as inputs to a classification algorithm. This motivation can also be applied to high-
dimensional flow data that we wish to “distill” to more meaningful low-dimensional
data for purposes of classification. Consequently, it is reasonable to ask whether any
of the manifold learning techniques could be applied to high-dimensional edge flow
data.
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The MDS approach may be used for calculating low-dimensional edge coordi-
nates y if a distance metric can be defined for each pair of edges. However, we
are unaware of any method in the literature for computing a meaningful distance
between a pair of edges on a connected 1-complex that could be used in multidi-
mensional scaling.

The Laplacian Eigenmaps algorithm for manifold learning could be extended to
edge data by employing the edge Laplacian matrix. Since the degree matrix D was
interpreted in Chap. 2 as a weighting for each node, then a natural extension of the
Laplacian Eigenmaps algorithm to manifold learning on edge data would be to solve
the eigenvector problem

L1y= λy, (7.5)

where L1 represents the edge Laplacian matrix. Similar to the node-based Lapla-
cian Eigenmaps, we could solve (7.5) for a predetermined number of eigenvectors
corresponding to the smallest generalized eigenvalues. To our knowledge, manifold
learning has not been pursued to reduce the dimension of edge flow data.

7.2 Ranking

One task of data discovery is to determine the most significant or influential nodes
in a network. The significance of a node is represented numerically by a variable
assigned to each node which is called a node rank. The study of algorithms to de-
termine node rank were substantially motivated by the problem of searching the
World Wide Web [318]. The goal of the web search problem is to rank the signifi-
cance of nodes (webpages) that are associated with the search terms. In this section
we review the PageRank algorithm underlying the Google search engine [60] and
the Hyperlink-Induced Topic Search (HITS) algorithm underlying the Teoma search
engine [318]. In contrast to the majority of the rest of the book, the algorithms in
this section will apply exclusively to directed graphs. The recent paper by Jiang
et al. [219] gives an analysis of ranking algorithms from the standpoint of discrete
calculus operators (notably the edge Laplacian and curl operators).

7.2.1 PageRank

In node ranking, the goal is to calculate a value xi , assigned to each node, vi ,
(a 0-cochain) that represents the rank of node vi . As before, xi ∈ R. The magni-
tude of xi does not matter as much as the relative values of xi between different
nodes, which define the node ranking.

The first principle underpinning the PageRank algorithm [60] is that the rank
of a node should be high if (i) the rank of nodes linking to that node are high and
(ii) should be low if the node has few incoming edges or if the nodes linking to the
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node have low rank. By itself, this insight has been in use for a long time [223].
Specifically, we may calculate the rank iteratively via the equation

x
[k+1]
i =

∑
vj∈Nin

1

dj

x
[k]
j , (7.6)

where Nin is the set of nodes with an outgoing edge connected to vi and dj is the
outgoing degree of node vj . When the directed graph is strongly connected and
aperiodic, the iteration in (7.6) converges to the solution

xi =
∑

vj∈Nin

xj

dj

. (7.7)

The steady-state solution of (7.7) may be represented in matrix form using the no-
tation from before,

WD−1x= x, (7.8)

where we can view W as the adjacency matrix of the directed graph defined by

Wij =
{

1 if eji ∈E,

0 else.
(7.9)

Note that in the case of directed graphs, eij represents an oriented and directed
edge from node vi to node vj . Therefore, the steady-state solution of the PageRank
algorithm is given by the right eigenvector of WD−1 corresponding to the eigen-
value equal to unity (which is guaranteed to exist if the graph is strongly connected
[60]). The power method is a common method for finding this eigenvector (see Ap-
pendix B).

Viewed iteratively, the matrix form of (7.8) has been interpreted as a random
walk across the nodes of the network in which a walker located at a node has equal
probability of transitioning to each node connected with an outgoing edge. Under
the interpretation of a random walker model, the node rank of a given node may be
interpreted as the probability that a random walker dropped at any location in the
network can be found at the node after a substantial amount of time has passed (i.e.,
the system has equilibrated into a steady-state). In the context of ranking webpages
on the Internet, the random walker model is sometimes called the random surfer
model.

An important innovation of PageRank over older literature (see [149]) is that the
graph is modified such that, in addition to the original edges, every node is connected
to every other node with an outgoing edge. Any nodes that were previously con-
nected before this addition are now connected with two edges. The original edges
are given weight α (sometimes called the teleportation parameter) and the edges
of these additional connections are given weight (1− α). Empirically, the value of
α ≈ 0.85 appears to work best in practice. These additional edges are also referred
to as a dampening factor in the literature on PageRank.
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7.2.1.1 PageRank as Advection

The random walker model is a common interpretation of the PageRank algorithm. In
this section, we additionally show that the PageRank algorithm may be interpreted
as an advection equation in the same form as seen in Chap. 2. To see this connection
between PageRank and advection, we begin by letting x̃ = D−1x. We may then
rewrite our matrix equation for the node rank in terms of a Laplacian matrix for a
directed graph,1 defined as

Lij =

⎧⎪⎨
⎪⎩

di if i = j,

−1 if eji ∈ E,

0 else.

(7.10)

Rewriting our matrix equation for PageRank in terms of this Laplacian matrix con-
sists of the following operations:

Wx̃ = Dx̃, (7.11a)

Lx̃ = 0, (7.11b)

LD−1x = 0. (7.11c)

Therefore, the ranks in the PageRank algorithm are computed by finding the first left
eigenvector of this Laplacian matrix representing the directed graph. We note that it
is easy to see from (7.11c) that if the (directed) graph is symmetric then LT = L and
the solution to (7.11c) trivially ranks each node as proportional to its degree, since
the zero eigenvector of the Laplacian matrix is constant.

Recall from Chap. 2 that we can decompose this directed Laplacian matrix into
the components L= ATA+, where A+ indicates the incidence operator in which all
non-positive values are set to zero (i.e., A+ij =Aij if Aij > 0 and A+ij = 0 otherwise).
Consequently, we can rewrite the eigenvalue equation of (7.11c) as

LD−1x= ATA+D−1x= ATG−1A+x= 0, (7.12)

where G−1 = diag(g−1) and geij
= 1/di . Recall that in the context of the directed

graphs of this section, di represents the degree of outgoing edges at node vi .
Equation (7.12) represents an advection process on a graph described in Chap. 2.

If we interpret PageRank as an advection process, then (7.12) describes a graph
having an advection flow field with direction equal to the edge directions and flow
field for each outgoing edge from node vi having magnitude of 1/di . Viewed as an
advection process, PageRank finds the unique distribution of concentrations (ranks)

1Note that Chung defined a symmetric conception of the Laplacian operator on a directed graph
[79]. See Chap. 2 for more information on this advection process and the corresponding Laplacian
matrix used here.
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whose transport under this advection process has zero divergence. We may write the
divergence for each node in summation form

div(vi)=
∑

vj∈Nin

1

dj

xj −
∑

vj∈Nout

1

di

xi =
∑

vj∈Nin

1

dj

xj − xi, (7.13)

where Nout indicates the set of nodes receiving an outgoing edge from vi . This
equation for the divergence returns us to the original summation formulation of
PageRank given previously in (7.7).

One value of this interpretation for the PageRank algorithm would be to form a
basis for the development of a PageRank algorithm for ranking edges. Specifically,
the advection interpretation suggests that the natural extension of PageRank to edges
would require a definition of an edge (vector) advection process which could be
brought to steady-state. At present, such an extension would be the subject of future
work.

7.2.2 HITS

The PageRank algorithm determines the influence of a node based on the number
of incoming edges from other influential nodes. However, real-world networks are
often built organically over time in which the links are primarily directed backward
in time. This phenomenon is exhibited in networks such as the World Wide Web or
the network of judicial citations (see Sect. 7.3.4). Consequently, the PageRank algo-
rithm favors older, established nodes even if more recent nodes are very important.
One approach to overcoming this bias toward older nodes is to identify some nodes
as hubs, which are nodes with a good track record of linking to important nodes.
If we have identified several good hubs, a new important node can immediately be
identified if it is linked to by the hubs. This approach to the ranking problem is taken
by the Hyperlink-Induced Topic Search (HITS) of Kleinberg [236]. The HITS al-
gorithms assigns each node two scores, a hub score and an authority score. The
authority score corresponds to the rank value of the PageRank algorithm, while the
hub score identifies a node which is good at linking to nodes with a high authority
score.

Specifically, the HITS algorithm assigns the authority score, xi , and the hub
score, x̄i , for vi via the iteration

x
[k+1]
i =

∑
vj if ∃eji∈E

x̄
[k]
j , (7.14)

x̄
[k+1]
i =

∑
vj if ∃eij∈E

x
[k]
j , (7.15)

which is shown to converge [236]. Note that the authority score looks backward
by searching over edges eji and the hub score looks forward by searching over
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edges eij . These equations may be written in matrix form using the directed adja-
cency matrix as

x[k+1] =WTx̄[k], (7.16)

x̄[k+1] =Wx[k]. (7.17)

Consequently,

x[k+1] =WTWx[k], (7.18)

x̄[k+1] =WWTx̄[k]. (7.19)

Therefore, HITS computes the node rank x as the eigenvector of WTW correspond-
ing to the eigenvalue equal to unity. Similarly, the node hub score x̄ is the eigenvec-
tor of WWT corresponding to the eigenvalue equal to unity. These eigenvectors are
often calculated via the power method (see Appendix B).

The HITS algorithm has several important differences with the PageRank algo-
rithm for computing node rank. First, the HITS algorithm computes not only a rank
for each node, but also a hub score. Second, the PageRank algorithm contains a free
parameter α which is not typically included with the HITS algorithm. Third, the
PageRank algorithm tends to favor older, downstream nodes, while the HITS algo-
rithm has less bias in this regard. Fourth, the PageRank algorithm finds a unique
solution while HITS may not [130]. Finally, the PageRank algorithm has two nat-
ural interpretations as a PDE on a graph (diffusion and advection), while the HITS
algorithm is not often interpreted in these terms. As a result of these differences,
the HITS algorithm and the PageRank algorithm often compute quite different node
ranks for a directed network.

7.3 Applications

We examine several applications of the manifold learning and ranking algorithms
presented in this chapter. Manifold learning is applied in a conventional manner to
study the shape deformations of the human liver and in an unconventional manner to
generate correspondences between vertices of a mesh. The ranking algorithms are
then applied to the Internet search problem for which they were designed and then
to analyze the network of US Supreme Court citations.

7.3.1 Shape Characterization

The most common use of manifold learning techniques is to reduce a high-
dimensional signal to a low-dimensional representation. This low-dimensional rep-
resentation may be used to accomplish several tasks, such as
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1. Data discovery: Generating an intuitive understanding and visualization of the
data.

2. Extracting a small set of numbers for each object (the low-dimensional coordi-
nates) which may be used with a machine learning algorithm to classify objects.

3. Interpolating between data points, e.g., to create an “average” object within the
space.

One area in which manifold learning can help with these tasks is in image pro-
cessing. Given a set of images to classify, the intensity of each pixel in an image may
be considered as one of the image dimensions. Therefore, an image with m pixels
can be viewed as an m-dimensional signal which may be described by manifold
learning techniques as an �-dimensional signal in which �#m. For example, in the
original Isomap study [373] the authors used manifold learning to characterize the
space of binarized handwritten digits of the number ‘2’. Each image with m pixels
was first rearranged into a column vector and then reduced to two dimensions with
the manifold learning technique. The authors observed that each dimension was se-
mantically meaningful, capturing the “bottom loop articulation” and the “top arch
articulation”.

To illustrate this type of manifold learning application, we have applied our tech-
niques to characterize the shape of the human liver, obtained from segmentations
of CT scans. Our data was comprised of 108 segmented (binarized) livers in three
dimensions that were registered to a common space with 128× 128× 128 voxels
(a space with 2,097,152 dimensions) [238]. Treating each segmented liver as a node,
we used the Hamming distance to compare two nodes and used this distance to es-
tablish an edge between each liver and its fourteen nearest neighbors. Each edge was
then weighted with the Hamming distance between the two nodes and the Isomap
and Laplacian Eigenmaps algorithms were used to generate a two-dimensional char-
acterization of the space of liver shapes.

Figure 7.4 displays the results of these two-dimensional embeddings. Selected
nodes (indicated with a circle) are illustrated with a small image displaying a three-
dimensional rendering of the liver corresponding to the node. These renderings of
the livers were intended to be displayed from a common viewing angle. The (nor-
malized) two-dimensional coordinates of each liver obtained from Isomap may be
interpreted semantically as characterizing the functional lobes of the liver. Each liver
is comprised of two functional lobes, the larger right lobe (pictured toward the left
and bottom) and the smaller left lobe (pictured toward the upper right). The hori-
zontal coordinate assigned to each liver by Isomap measures the distinctiveness of
these two functional lobes such that a liver mapped to a small horizontal coordi-
nate has distinct right and left lobes, while those livers mapped to a large horizontal
coordinate have a much less distinct right and left lobe. Similarly, the vertical coor-
dinate assigned by Isomap may be interpreted as describing the relative prominence
of the right or left lobe. A liver mapped to a smaller vertical coordinate has a more
prominent right lobe while a liver mapped to a larger vertical coordinate has a more
prominent left lobe. Although the coordinates produced by the Isomap embedding
had a natural semantic interpretation, the semantic interpretation for the embedding
obtained via Laplacian Eigenmaps is much less clear. However, we saw in the Swiss



7.3 Applications 259

Fig. 7.4 A characterization of the shape of the human liver by manifold learning. Each node rep-
resents one liver segmented from a database of CT images. Selected nodes (indicated with a circle)
are illustrated with a small image displaying a three-dimensional rendering of the liver correspond-
ing to the node. The embedding obtained from Isomap provides a semantic interpretation: The
horizontal coordinate of a liver describes how distinguishable the right and left lobes are, while the
vertical coordinate describes the relative prominence of the right or left lobes. These coordinates
could be used to train a classifier to diagnose hepatic pathologies, to cluster livers into different
types, to work in conjunction with an image segmentation algorithm to constrain the segmentation
to lie within the liver manifold, or simply as a visualization device to explore the dataset of livers
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Roll example of Fig. 7.2 that the two algorithms could produce a very different
embedding of the same graph.

7.3.2 Point Correspondence

The standard use of manifold learning is to reduce a high-dimensional dataset to
a lower number of dimensions. Indeed, a manifold learning technique should be
able to flatten a low-dimensional dataset embedded into a high-dimensional space
regardless of how the dataset is embedded. Therefore, a two-dimensional sheet em-
bedded in three dimensions should flatten back to two dimensions, regardless of
whether the sheet is embedded in three dimensions as a Swiss Roll or a crumpled
plane. This principle can be exploited to turn any manifold learning technique into
a point correspondence method between two high-dimensional objects [258, 274,
421]. Specifically, two manifolds which are fundamentally the same should flatten
to the same locations (up to a rigid transformation and sign ambiguity) regardless
of the initial embedding in higher dimension. Using this principle, the points of a
dataset with two different embeddings may be matched by “flattening” each object
and using the flattened coordinates assigned to each point as a signature which may
be used to produce point correspondences.

In this example, we show how to produce a point correspondence between the
three-dimensional meshes of two horses taken with a different pose [365]. Each
horse mesh is composed of the same number and topology of nodes, edge and faces.
Each edge was weighted by the Euclidean length of the edge in three dimensions.
Isomap, Laplacian Eigenmaps and LPP were used to “flatten” these meshes to three
dimensions, meaning that each three-dimensional coordinate of the mesh was re-
placed by a different set of canonical coordinates. These new three-dimensional
coordinates assigned to each vertex can then be used to find a point correspondence
between all of the points in each pose.

Previous studies in the literature of this point correspondence technique have
focused on Laplacian Eigenmaps, after which the two coordinate sets are aligned
via a rigid transformation. In this example, the rigid transformation was ignored.
Figure 7.5 (contained in the color plate section at the end of the book) displays
the results of the point correspondence where the horses are rendered with the
original three-dimensional coordinates of each vertex which are colored with an
RGB value that represents the “flattened” three-dimensional coordinates produced
by each manifold learning algorithm. If the algorithm works well, then the location
of each color on the manifold should be unique and vertices with the same colors
in the two meshes may be considered to be in correspondence. In this example,
Laplacian Eigenmaps appears to produce the best correspondence by successfully
matching the legs, head, and tail between the two poses, whereas the LPP method
performs slightly less well in matching the front right leg, and the Isomap method
mis-registers the front legs as well as the tail.

Point correspondences are often computed for surface matching in medical imag-
ing data where two anatomical regions are to be compared across individuals. For



7.3 Applications 261

Fig. 7.5 Two three-dimensional meshes of a horse in different poses. Each mesh was mapped to
three dimensions using the various manifold learning techniques. The mapped three-dimensional
coordinates of each point were mapped to RGB space for display. Two vertices having similar
colors should therefore be identified as the same coordinate location in the two meshes

example, the surface of the human brain exhibits a stereotyped folding pattern and
many specific brain functions are localized to specific folds, yet the overall size
shape of the brain and its folds—or, in other words, the embedding of the brain
surface—varies across individuals. Although powerful techniques exist for comput-
ing correspondences between brain surfaces generated from anatomical Magnetic
Resonance Imaging (MRI) data that align corresponding folds across individuals
(e.g., [137]), brain surface models contain up to 250,000 faces and therefore many
of these surface matching techniques are quite computationally demanding. The
Laplacian Eigenmaps method was applied to match two mesh representations of the
surface of the left cerebral hemisphere of the human brain generated from anatom-
ical MRI data collected in two patients, where the goal in this context is to align
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Fig. 7.6 Brain surface matching via the Laplacian Eigenmaps method. The first two eigenvectors
of the graph Laplacian are used to establish corresponding two-dimensional coordinate parame-
terizations of the surfaces which can be utilized as a correspondence map providing the matching.
The surfaces represent the outer surface of the cortical gray matter (i.e., the “pial surface”) and
each surface was generated automatically with the FreeSurfer software environment [96, 136].
The surface meshes for subjects A and B contained 248,868 and 259,792 triangles, respectively

the cortical folds of the two individuals. As before, the Laplacian matrices were
weighted by the edge length under the input embedding in three dimensions mea-
sured with the Euclidean metric, but only the computation of the largest two eigen-
vectors is required, making the method extremely fast. The results are presented in
Fig. 7.6 (contained in the color plate section at the end of the book). Corresponding
folds in the two surface models were assigned similar coordinates, indicating that
the Laplacian Eigenmaps performed well at matching the folding patterns.

7.3.3 Web Search

The ranking algorithms in the text were originally devised in the context of search-
ing the World Wide Web, which is treated as a directed network in which each node
is identified with a web page and each directed edge is identified with a link from
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Table 7.1 The top ranked web pages in a snapshot of the English language Wikipedia in 2005.
The PageRank and HITS algorithms emphasize different qualities, such that the ‘Year 2000’ is the
only page with a high authority ranking in both algorithms. In addition to the authority ranking, the
HITS algorithm provides a ranking of pages which link to many pages with a high authority score,
which are called hubs

Rank PageRank top pages HITS top authority pages HITS top hub pages

1 United States Year 2000 Taunton, MA

2 Race (U.S. Census) Population density Minneapolis, MN

3 United Kingdom Square kilometer Syracuse, NY

4 Year 2000 Census Philadelphia, PA

5 France Square mile Savannah, GA

one page to another. A ranking algorithm is then applied to this network (or a sub-
set). Ultimately, the pages with highest rank that are deemed relevant to the search
terms are returned. However, the details of how the search terms are used vary from
one search engine to another. One example is the approach taken by Kleinberg [236]
in which a subgraph of the web may be built by including (a) every web page con-
taining a keyword, (b) every page pointed to by those pages, and (c) some fraction
of the pages that point to a page containing the keyword. The ranking algorithm may
then be applied to this subgraph to produce a ranking which is returned to the user.

In this example, we sidestep the issues of properly utilizing the search terms and
simply offer an example of the rankings for a subgraph of the World Wide Web
taken at a point in time. We obtained the (English language) Wikipedia graph taken
from a snapshot on Nov. 11th, 2005 [86]. Running the PageRank (with α = 0.85)
and HITS algorithms on this subgraph of the entire Wikipedia in 2005 produced
the rankings displayed in Table 7.1. The PageRank algorithm assigned its highest
ranking to countries which are presumably linked by any page (influential or not)
which has any relationship with the country. In particular, the United States and
United Kingdom featured prominently in the rankings produced by PageRank, pre-
sumably because it was the English language Wikipedia pages that were included
in our experiment and because Wikipedia originated in the United States. In both
the PageRank and HITS rankings, the ‘Year 2000’ appeared with high rank. One
explanation for this high rank is that many pages in Wikipedia include a progressive
timeline with several dates, often with a tilt in the information toward the present
time. In contrast to the “authoritative” concepts in the PageRank and HITS authority
rankings, the HITS algorithm also provides a set of hubs, which are pages that link
to pages with high authority. All of the pages with high hub scores in 2005 were
cities in the United States. If we consider that these hubs link to pages with high
authority ranking, then it is not so surprising that cities provide good hubs—all of
the concepts with high authority shown to have the highest authority ranking would
appear in an overview page of one of these cities.
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7.3.4 Judicial Citation

The ranking algorithms described in this chapter were originally designed for web
search, but may be applied to any directed graph (or subgraph) to produce a list
of the most influential or important nodes. Instead of using the rankings to search
a network, the ranking algorithms may also be used to study a network and test
hypotheses about its structure. An example of this usage for the ranking algorithms
is given by the network of US Supreme Court judicial citations compiled and studied
by Fowler et al. [140, 141]. The network consists of 30,288 nodes where each node
is identified with a case decided before the US Supreme Court and a directed edge
between two nodes is identified with a case’s citation of a previous court case.

The judicial citation network allows for the analysis of many interesting ques-
tions. What were the most influential cases within a subgroup (e.g., criminal, civil)?
How did the influence of a particular case change over time? How did the judicial
priorities of the court change over time? Is there a correlation between the influence
of a case and other factors (e.g., whether the case was overturned)? Several of these
questions were addressed in the work by Fowler et al. In our experiments we simply
computed the PageRank and HITS rankings for the entire network in order to iden-
tify the level of influence of each case (using α = 0.85 for PageRank). Identifying
the most influential cases is a standard feature of several legal references, which is
intended to help focus the reader’s attention on which cases they should give partic-
ular attention. However, these lists of influential cases are generated in a somewhat
subjective manner which causes disagreement between different legal sources. For
example, Fowler et al. include the lists of influential cases provided by the Oxford
Guide’s list of salient cases and the Legal Information Institute’s (LII) list of im-
portant cases. The Oxford Guide and the LII includes about 1–2% of the cases as
influential. When one list names a case as influential, there is only about a 50%
chance that the other list also names the case as influential, indicating a high level of
subjectivity in the production of these lists. One appeal of a computational analysis
of the history of court citations is the ability to numerically assign an objective score
of the influence of each case.

Figure 7.7 shows the computed influence for each court case using the two algo-
rithms. Some cases are highlighted which have a high rank relative to the average
rank during that historical period. The PageRank algorithm favored older cases over
newer ones, while the HITS algorithm preferred cases which were more recent.
PageRank found that the most influential cases were Brown v. Maryland and Gib-
bons v. Ogden. The Oxford guide listed both of these cases as influential, while the
LII listed only Gibbons as influential. These two cases represent landmark decisions
in the early court of Chief Justice John Marshall who used these cases to establish
the court’s interpretation of the commerce clause in the US Constitution. The com-
merce clause is an extremely important aspect of the US Constitution because much
of the ability of the federal government to regulate states is derived from its ability
to regulate commerce. Consequently, the commerce clause of the US constitution is
often a flashpoint of contention between the state and federal governments. In con-
trast, the HITS algorithm identified Cantwell v. Connecticut and Schneider v. State
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Fig. 7.7 Calculation of the influence of each case decided by the US Supreme Court based on the
citation network compiled by Fowler et al. [140, 141]. The PageRank and HITS algorithms were
both applied and the rank scores for each algorithm were normalized. Cases with a high influence
score relative to the contemporary cases are labeled with a solid dot and the name of the case
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of New Jersey as the most influential cases. These two cases helped establish the
court’s interpretation of freedom of religion and specifically the right of a state to
restrict the practice and preaching of a religion. Although Cantwell was recognized
by both the Oxford Guide and the LII as an influential case, neither of these sources
listed Scheider as an influential case. One of the only court cases that was given a
high ranking by both PageRank and HITS relative to its contemporaries was Boyd
v. United States. The Boyd case was a landmark civil liberties case which developed
the protections of an individual’s right to privacy. The Oxford Guide lists Boyd as
an influential case, while the LII does not.

7.4 Conclusion

In this chapter we reviewed various methods for summarizing data and graph struc-
ture present in a network. The manifold learning methods all proceeded by first
generating a graph from a set of points and then computing the eigenvectors of a
matrix associated with the graph. We showed that manifold learning methods can
be useful for summarizing data and finding intrinsic coordinates to describe the data.
Additionally, we showed that manifold learning methods are strongly related to node
clustering and considered the possibility of extending these methods to edge flow
data. These manifold learning algorithms were seen to fit directly into the theme of
this work by the central appearance of the spectrum of the Laplacian operator.

The ranking algorithms presented in the chapter also provided a mechanism for
analyzing the importance of nodes in directed graphs. Due to the formulation on di-
rected graphs, the ranking algorithms could be interpreted as an advection equation
on a graph (reviewed in Chap. 2), as well as a directional diffusion operation.



Chapter 8
Measuring Networks

Abstract We have adopted the view of graphs and, more generally, cell complexes
as a domain upon which we may apply the tools of calculus to formulate differential
equations and to analyze data. An important aspect of the discrete differential opera-
tors is that the operators are defined by the topology of the domain itself. Therefore,
in an effort to provide a complete treatment of these differential operators, we ex-
amine in this chapter the properties of the network which may be extracted from
the structure of these operators. In addition to the network properties extracted di-
rectly from the differential operators, we also review other methods for measuring
the structural properties of a network. Specifically, the properties of the network that
we consider are based on distances, partitioning, geometry, and topology. Our partic-
ular focus will be on the measurement of these properties from the graph structure.
Applications will illustrate the use of these measures to predict the importance of
nodes and to relate these measures to other properties of the subject being modeled
by the network.

Measures of network properties have been important in several applications. Graph
measures may be used to summarize node or network properties to help understand
the network. These measures may also be used to make predictions about the sepa-
rability of the network or the importance of individual nodes or edges. A different
use of graph measures has been to predict properties of the subject which is being
modeled computationally as a network. For example, a series of network measures
have been used to determine whether the configuration of a network of cells inside
tissue imaged in a histological section can predict cancer [101, 180]. These network
measures have also been widely used in chemical graph theory to predict various
structural and behavioral properties of molecules. In this chapter, we review sev-
eral types of measures that describe the connectedness, topology, or geometry of
a network and then give applications of these measures in social networking and
chemical graph theory. Readers wishing to explore the network measurement topic
further are referred to the excellent review article of Costa et al. [89].
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8.1 Measures of Graph Connectedness

In 1947 the chemist H. Wiener observed that a particular measure on the graph that
represents an alkane molecule allows one to predict the boiling point of the com-
pound. Pursuing this line of research led Wiener to show that this same distance
measure could be used to calculate a series of chemical properties that had previ-
ously escaped prediction. When interest in this work was reawakened in the 1970s,
it triggered a search within chemical graph theory for other distance-based “topo-
logical indices” that could be used to predict various properties of molecules (see
Sect. 8.5.2 for a detailed example of this line of work). More recently, a set of similar
measures has been used to describe the characteristics of complex networks. Almost
all of these quantities are derived from measures of distance on a graph, which we
now review.

8.1.1 Graph Distance

We first review the distance between two nodes on a weighted graph that was defined
in Chap. 4. (If there are no weights specified and the graph is embedded in R

N ,
then the edge weights can be set to reflect the Euclidean length of the edge.) If we
consider a graph with any set of positive weights associated to the edge set, then
given these edge weights we may define the distance between any pair of nodes
using the distance operator D(·, ·) as

D(vi, vj )=min
�i,j

∑
eij∈�i,j

w(eij ), (8.1)

where w(eij ) is the distance weight of edge eij , �i,j is a set of edges representing a
path between vi and vj , and we define D(vi, vi)= 0. The optimal path connecting
the pair of nodes is called the shortest path, and thus the distance is defined as
the length of the shortest path between the pair of nodes along the edges of the
graph. If no path connects vi and vj (the graph is disconnected), then we define
the corresponding distance as D(vi, vj ) =∞. When the weights are positive, the
distance defined in this way establishes a formal metric between nodes on the graph,
since the distance is nonnegative, symmetric, discernible and satisfies the triangle
inequality (see Sect. 4.4).

A metric can be defined for any graph with positive edge weights by defin-
ing the distance between any pair of nodes by the length of the shortest path
connecting them.

There are many fast algorithms available to compute the distance between two
nodes. The most common algorithm for computing distance is Dijkstra’s algorithm
[108] which may be applied to any connected graph with nonnegative weights.
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8.1.2 Node Centrality

Armed with the notion of distance between two nodes given by (8.1), we may ex-
amine the importance of a particular node by considering the distance between the
node and the rest of the network. Measures of node importance are called node
centrality measures due to the use of distances to determine how “central” a node
is within a network (for a more extensive review of node centrality, see [247]). The
most natural method for using distance to measure the centrality of a particular node
is to examine the distance from the node to all other nodes in the graph. This mea-
sure of node centrality is known as the total distance of a node vi , which is defined
as

TD(vi)=
∑
vj

D(vi, vj ). (8.2)

The total distance is proportional to the closeness measure of a node, which is de-
fined as the average distance from the node to all other nodes in the graph, i.e.,

Closeness(vi)= 1

n− 1
TD(vi), (8.3)

where n is the number of nodes in the graph, n = |V|. Total distance for a single
node may be computed efficiently by Dijkstra’s algorithm.

The total distance and closeness both measure node centrality by examining the
distance between a single node and the entire network. Therefore, each quantity pro-
vides an aggregated measure of node centrality. Instead of examining an aggregated
measure of node centrality, we could adopt another view of node centrality by con-
sidering only the worst-case distance between a node and the remaining network.
A measurement of worst-case node centrality is provided by the node eccentricity,
which measures the maximum distance between the node and any other node in the
network. Eccentricity is defined for node vi as

Eccentricity(vi)=max
vj

D(vi, vj ). (8.4)

A different approach to measuring node centrality is to examine the importance of
a node as a link between other pairs of nodes. This betweenness has been charac-
terized numerically as

Betweenness(vi)=
∑
vj ,vk

vi �=vj �=vk

σvj ,vk
(vi)

σvj ,vk

, (8.5)

where σvj ,vk
(vi) indicates the number of shortest paths between vj and vk that pass

through vi , and σvj ,vk
indicates the total number of shortest paths joining vj and

vk . Therefore, the betweenness measure represents the fraction of optimal paths be-
tween every pair of nodes that cross through vi . Calculation of node betweenness
is more expensive than the previous measures due to the fact that it is necessary
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to know the optimal paths between all pairs of nodes. The classic algorithm for
computing all-pairs shortest paths is the Floyd–Warshall algorithm [87], although
Johnson’s algorithm or repeated applications of Dijkstra’s algorithm are considered
more efficient for sparse graphs [87]. Due to the usefulness of the betweenness mea-
sure in practice, specialty algorithms to compute betweenness have been developed
that are faster than computation of the all-pairs shortest paths (the most efficient
specialty algorithm is by Brandes [57]). However, even these specialty algorithms
for computing betweenness are too expensive for large graphs, causing continued
work on fast algorithms to approximate betweenness [16].

Not every measure of node centrality is based on shortest-path distance. Another
common measure of node centrality is simply the number of neighbors of the node
(the node degree). Degree may be a useful measure of node centrality for networks
in which there is a large range of different node degrees, but may be less useful to
describe the importance of nodes in networks for which the degree distribution has
low variance.

8.1.3 Distance-Based Properties of a Graph

Having explored methods for measuring the centrality of nodes from distance calcu-
lations, we may use these methods to define a series of distance-based measures to
describe the “connectedness” of the entire graph. The first of these global measures
is the most successful measure used in chemical graph theory, and was defined by
Wiener. Although many topological indices have since been proposed in the chem-
ical graph theory literature, the measure used by Wiener has had the most success
and influence. This measure is known as the Wiener index or Wiener number
which is defined for a graph G as

W(G)= 1

2

∑
vi

∑
vj

D(vi, vj ). (8.6)

The Wiener index represents the sum of the shortest path lengths between all pairs
of nodes in the graph. Therefore, a graph with a small Wiener index is more well-
connected than a graph (with the same number of nodes) having a large Wiener
index. In the network theory literature, it is more common to use the average path
length which normalizes the distances comprising the Wiener index by the number
of node pairs. The average path length is defined as

AveragePathLength(G)= 2W(G)

n2 − n
= 1

n2 − n

∑
vi

∑
vj

D(vi, vj ). (8.7)

Calculation of the Wiener index and average path length requires knowledge of
the shortest paths between all vertex pairs in a network. Consequently, the Floyd–
Warshall algorithm or the Johnson algorithms [87] are the most common methods
for calculating the Wiener index and average path length.
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The average path length and the Wiener index are measures of the connection
strength between all pairs of nodes in the graph. However, both of these measures
define the connection strength between nodes by the length of the optimal path.
Since these measures are based purely on the length of a single optimal path, they
may not reflect a more global measure of connectedness in the graph defined by
multiple paths. Therefore, a different view of node connectivity is to define the
strength of a connection between two nodes by the number of parallel paths. One
way of measuring the strength of parallel connections is to use the resistance dis-
tance [235] between two nodes when the graph is viewed as an electrical circuit (see
Chap. 3 for more discussion of the effective resistance and circuit analogy). Specifi-
cally, the resistance distance has been used to measure the strength of parallel paths
connecting all pairs of nodes by defining the Kirchhoff index [43, 109]

KI(G)= 1

2

∑
vi

∑
vj

Reff(vi, vj )= n trace{L†}, (8.8)

where L† indicates the pseudoinverse of the Laplacian matrix and Reff(vi, vj ) is the
effective resistance between nodes vi and vj , as defined in Sect. 4.4. The Kirch-
hoff index of any graph is always smaller than the Wiener index, since D(vi, vj )≥
Reff(vi, vj ) implies that W(G)≥ KI(G). This inequality becomes an equality when
there exists only a single path between all pairs of nodes, i.e., the graph is a tree.

When computing the Wiener index or Kirchhoff index for a weighted graph, care
must be taken in the interpretation of the weights. Weights are incorporated in the
definition of the distance measure (8.1) required by the Wiener index, and weights
are also incorporated in the definition of the Laplacian matrix (2.96) required by
the Kirchhoff index. However, in Chap. 2 we saw that the roles of the prescribed
weights are not the same in these two cases. Given a weighted graph, one must take
care to choose, depending on the problem and on the origin of the weights, whether
the weights are “distance weights” or “affinity weights”. Chapter 2 contains a dis-
cussion of these two interpretations of weights, and there it is shown that distance
weights correspond to the primal metric tensor and affinity weights to the dual met-
ric tensor. If the measures of distance are to be equivalent when quantified using the
distance operator and using the Laplacian operator, distance weights must be used
in the definition of the distance measure, and affinity weights in the definition of the
Laplacian.1 Specifically, for the two measures to operate using the same underlying
metric on a single graph, i.e., for the two measures to be compatible, the weights
used in the Laplacian matrix must be the reciprocal of the prescribed edge weights
used in the distance measure. For example, in the case of a tree the two indices
should be equal. However, improper interpretation of the weights will cause the two
calculated indices to be unequal (i.e., using distance weights for both measures or

1In the circuit theory analogy, for the two indices to be compatible the prescribed edge weights of
a weighted graph are interpreted as resistances when measuring the Wiener index, and the same
prescribed edge weights on the weighted graph are interpreted as conductances when measuring
the Kirchhoff index.
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affinity weights for both measures will not yield the same value). Therefore, the
comparison of the Wiener index and the Kirchhoff index provides a good example
of the importance of distinguishing these two interpretations of the prescribed edge
weights.

The quasi-Wiener index was also introduced [109, 279] to measure the strength
of parallel paths connecting all pairs of nodes by calculating the eigenvalues of
the Laplacian matrix. However, Gutman and Mohar proved that the quasi-Wiener
index and the Kirchhoff index are equal for all graphs [182] and therefore we do not
discuss the quasi-Wiener index any further.

Although the authors are not aware of any attempts to use topological indices
defined on the edge Laplacian to measure other aspects of the graph (or the chemical
properties of the molecule), the measures above suggest an easy extension to global
edge–face (edge–cycle) relationships. Specifically, a higher-order Kirchhoff index
could be defined as

Higher-OrderKI(G)=m trace{L†
1}, (8.9)

where m = |E| and L1 is the edge Laplacian (see Chap. 2). If the graph cycle set
constitutes a basis (see Chap. 4), then the edge Laplacian matrix has full rank and
the pseudoinverse is replaced by the true inverse of the edge Laplacian matrix. Re-
call from Chap. 4 that a set of |E| − |V| + 1 independent cycles will form a basis.
This measure of the higher-order Kirchhoff index does not retain its original inter-
pretation in terms of the effective resistance, since the effective resistance between
two edges does not have a conventional definition. Despite losing this interpreta-
tion, this measure on the edge Laplacian matrix provides a value that indicates the
relative “connectedness” of the edges via their incident nodes and cycles.

The Wiener index, average path length and Kirchhoff index all provide an aggre-
gate measure of distance between all nodes in the graph. As before, we may use the
definition of node eccentricity to define a measure of worst-case distance between
all nodes. Specifically, the definition of node eccentricity allows for the definition
of the graph radius and graph diameter

Radius(G) = min
vi

Eccentricity(vi), (8.10a)

Diameter(G) = max
vi

Eccentricity(vi). (8.10b)

A node for which Eccentricity(vi)= Radius(G) is called a graph center and a node
for which Eccentricity(vi)=Diameter(G) is called a peripheral node.

Figure 8.1 gives an example of these distance-based measures used to describe
a tree and a small lattice. The distance-based measures considered in this section
have all been applied to measure some aspect of connectedness in a graph. In the
next section we consider measures of graph separability.
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Fig. 8.1 Distance measures on two example graphs, displaying betweenness, TD and eccentricity
for each node. Greater values of these quantities are represented by darker shading. Each example
uses normalized values for the node quantities and unit weights for all edges. (Left) Measures for
tree example: Radius = 2, Diameter = 3, Wiener Index = 28, Average Path Length = 1.8667,
Kirchhoff Index = 28, Higher-Order Kirchhoff Index = 0. (Right) Measures for lattice exam-
ple: Radius = 4, Diameter = 8, Wiener Index = 1000, Average Path Length = 3.333, Kirchhoff
Index = 338.03, Higher-Order Kirchhoff Index = 814.42. From the node eccentricity examples
we can determine which nodes are centers and which nodes are peripheral. Tree graph: all nodes
with one neighbor are peripheral and the other two nodes are centers. Lattice graph: the corner
nodes are peripheral and the middle node is the only center
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8.2 Measures of Graph Separability

Similar to the distance-based measures of graph connectedness presented above,
measures of graph separability are built upon metric properties of the graph. We
first consider measures based on the volume of sets in a graph, then consider an
example of separability based on distances.

8.2.1 Clustering Measures

Clustering measures use partitions of a graph to determine the separability of the
graph. One of the most ancient measures of separability of a space arises from the
isoperimetric problem, which seeks the shape with largest area/volume from the
set of all shapes with the same perimeter/surface area. In the continuous, Euclidean
R

3 domain, the solution of this problem is known to be the sphere, and in R
2 the

circle. In a finite space (e.g., the surface of a closed object), one may define the
isoperimetric ratio of an N -dimensional closed Riemannian manifold, M, as [74]

h(M)= ∂S

min(Vol(S),Vol(S̄))
, (8.11)

where S represents an N -dimensional submanifold, S̄ represents its complement and
∂S represents the boundary length (surface area) of S. Instead of fixing a perimeter,
∂S, and seeking the submanifold S with greatest volume, we may generalize the
isoperimetric problem to seek the node set S⊂ V that minimizes the isoperimetric
ratio. Such a solution and its complement are called the isoperimetric sets of the
domain. The value of the minimum isoperimetric ratio gives a notion of separability
of the space. For example, if the domain were disconnected into two pieces, then the
isoperimetric sets would consist of each piece individually and the isoperimetric ra-
tio would be zero. Similarly, the solution to the isoperimetric problem on the surface
of a “dumbbell” is also the two balls of the dumbbell with a small neck separating
them [74]. Since the boundary of S would be measured on the neck, and the surface
area on the two balls, the isoperimetric ratio of a dumbbell is small, meaning that
a dumbbell is nearly disconnected. As a measure of separability for a domain, we
may also consider the isoperimetric ratio of a graph. To do so, we must define the
analogous concepts used above for a graph. Specifically, we let the set S refer to a
set of nodes such that S⊂ V, S �= ∅, |S| ≤ 1

2 |V| with boundary defined as the sum of
the weight of edges spanning the complementary subsets S and S̄. Two definitions
of the volume of a set of nodes in a graph are defined as [81, 285]

Vol1(S)= |S|, (8.12)

or

Vol2(S)=
∑
vi∈S

di, (8.13)
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where di represents the degree of node vi . These two definitions of volume have led
to two different definitions of the isoperimetric ratio of a graph.

We may write the isoperimetric ratio of the set S using an indicator vector, i.e.,
the vector x such that xi = 1 if vi ∈ S and xi = 0 otherwise. Using the indicator
vector allows us to write the isoperimetric ratio as either

h1(S)= ∂S

Vol1(S)
= xTLx

xTx
(8.14)

or

h2(S)= ∂S

Vol2(S)
= xTLx

xTDx
. (8.15)

As in the continuous case, the minimum isoperimetric ratio over all possible sets
S gives a measure of the separability of the graph. This minimum of h(S) over all
possible S is called the isoperimetric number, isoperimetric constant or Cheeger
constant. We note that there is some disagreement in the literature about these defi-
nitions, since all of these terms have been applied by various authors to either h1(G)

or h2(G). We will use the term isoperimetric constant, which we denote as h1(G)

or h2(G), depending on the definition of volume. The quantity h1(G) for a graph is
additionally known as the edge expansion and the quantity h2(G) is known as the
graph conductance.

The isoperimetric constant of a graph appears frequently in the literature. For
example, the isoperimetric constant has been used to characterize expander graphs
[6, 7]. Additionally, the graph partitioning problem is often formulated explic-
itly with the goal of finding the isoperimetric sets [169]. Unfortunately, calculation
of the minimum isoperimetric ratio of an arbitrary graph is NP-Hard [285, 286].
Therefore, one approach to estimating the isoperimetric number of a graph is to ap-
ply several different graph partitioning algorithms and use the smallest isoperimet-
ric ratio of these partitions as an estimate of the isoperimetric constant. Figure 8.2
shows examples of isoperimetric sets on two graphs, one of which exhibits a natural
clustering and the other which does not.

A different approach to estimating the minimum isoperimetric constant of a
graph is to use known bounds for the constant. The standard method for bound-
ing the isoperimetric constant is through use of the Fiedler value, which is defined
as the smallest nonzero eigenvalue of the Laplacian matrix. Fiedler observed that
this eigenvalue was a good predictor of graph separability. Based on this observa-
tion, Fiedler named the smallest nonzero eigenvalue of the Laplacian matrix the
algebraic connectivity [133] (although it is now known as the Fiedler value). The
algebraic connectivity is a meaningful measurement of the graph separability, but
it may also be used to bound the minimum isoperimetric constant h1(G) from both
above and below. Specifically, the following expression combines Cheeger’s in-
equality (upper bound) and Buser’s inequality (lower bound) [74, 81] to provide

√
2dmaxλ2 ≥ h1(G)≥ 1

2λ2, (8.16)
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where dmax is the maximum degree in the graph and λ2 is the Fiedler value. Note
that the these inequalities also hold for graphs with any set of positive edge weights.
The right side of this equality may be seen easily since a real-valued relaxation of x
causes (8.14) to be an expression for the Rayleigh quotient of L, which is minimized
by λ2 for all solutions of x orthogonal to the constant vector. Similarly, for h2(G)

we have √
2λ∗2 > h2(G)≥ 1

2λ∗2, (8.17)

where λ∗2 indicates the smallest nonzero eigenvalue of the normalized Laplacian
matrix. The appearance of the normalized Laplacian matrix is not surprising if we
view the two definitions of volume in (8.12) and (8.13) as different definitions of
node weights. Defining a node weight as unity (8.12) or defining a node weight as
the node degree (8.13) lead naturally to the standard unweighted Laplacian matrix
or the normalized Laplacian matrix, respectively (see Chap. 2 and [111, 112] for
more details).

In addition to the node Fiedler value, we may define a higher-order Fiedler value
defined on edges via the edge Laplacian. The higher-order Fiedler value is therefore
defined as the smallest eigenvalue of the edge Laplacian. If the complex is simply
connected (i.e., the number of faces included in the complex is greater than zero
and equals m− n+ 1), then this higher-order Fiedler value is positive. However, if
there are fewer than m− n+ 1 cycles in the complex, then the higher-order Fiedler
value would correspond to the first nonzero eigenvalue (in accordance with the node
case).

Another approach to measuring separability of a graph is the clustering coeffi-
cient, which looks locally for evidence of separability. The clustering coefficient is
computed for a node by counting the number of pairs of neighbors of a node that
are also neighbors of each other. This concept is motivated by social networks in
which it has been observed that if one individual (node) knows two other people
(has edges connecting them) then these people are likely to know each other (be
connected via an edge). Since this set of connections close a triangle in the graph,
this concept is sometimes known as triadic closure. Therefore, a pair of neighbors
is considered closed if these neighbors are connected. With these definitions, the
clustering coefficient at node vi is computed as

CC(vi)= Number of closed pairs of neighbors of vi

Total number of pairs of neighbors of vi

. (8.18)

Since CC(vi) is undefined if di < 2, we adopt the convention that CC(vi) = 0 for
these nodes. The clustering coefficient for the entire graph is given by

CC(G)= 1

n

∑
i

CC(vi). (8.19)

Therefore, this value takes a maximum at unity when G is fully connected and a
minimum of zero when G represents a tree. Unfortunately, this definition of the
clustering coefficient does not account for the graph weights. Several possibilities
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for extending this definition to include graph weights were proposed in [298] and
an extension of this measure beyond triangles was given in [230]. Examples of the
clustering coefficient and its comparison to the isoperimetric sets are provided in
Fig. 8.2.

8.2.2 Small-World Graphs

The intuitive concepts of distance-based connectedness and separability seem to
be opposite, i.e., that a separable network is not well-connected and vice versa.
However, it is known that social networks contain clear groups of tightly coupled
people but, despite this grouping, that the entire network is connected by short opti-
mal paths. Watts and Strogatz explained this phenomenon with a model known as a
small-world network [362, 396]. A small-world network was defined as any graph
that has both a small average path length as defined in (8.7) and a large clustering
coefficient as defined in (8.19). The name “small-world” network is derived from
the social experiments of Milgram [283] who found that it was possible to send
messages through a large, locally clustered, social network with approximately six
steps. This result brought the concept of six degrees of separation to popular cul-
ture. Since the introduction of small-world networks, these models have been widely
used to produce an understanding of many phenomena in physics, sociology and bi-
ology [397].

A key observation of Watts and Strogatz was that the average path length of
a random graph is small when the graph is connected. Random graphs were ini-
tially (and comprehensively) studied by Erdős and Rényi [124, 125]. A random
graph is defined as a graph which starts as a set of disconnected nodes to which k

edges are progressively added. The added edges are chosen randomly from the set
of all possible edges (node pairs), excluding multiple and self connections. Watts
and Strogatz used the results on average path length to show that any locally con-
nected graph (i.e., a graph with a large clustering coefficient) could be converted
into a small world graph by randomly rewiring a small number edges. This random-
ization of a small number of edges has the effect of drastically lowering the average
path length. This technique for producing a graph with small average path length
has been exploited in the context of improving the speed of graph-based computer
vision algorithms [167].

Following the publication of the initial work on small-world networks, other
types of small-world networks have also been studied. A motivation for studying ad-
ditional classes of small-world networks was the fact that the initial Watts–Strogatz
model did not resemble many real networks in the sense that most nodes in the
Watts–Strogatz model have the same degree. In fact, the degree distribution (the
histogram of node degrees) of many real networks follows a power law [20] (e.g.,
the world wide web [3]). A network with a degree distribution following a power
law is called a scale-free network. Recent interest in scale-free networks was gen-
erated by the work of Barabási and Albert [20], who suggested a mechanism for
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Fig. 8.2 Two examples of the clustering measures. The dumbbell graph on the left clusters well
while the 8-connected lattice on the right does not. Node membership in the isoperimetric sets
are indicated by coloring the nodes as white or black. Clustering coefficients are displayed for
each node via shading, where darker shading represents nodes with a higher clustering coefficient.
A node with a higher clustering coefficient may be interpreted as indicating that the node is more
“interior”. Dumbbell global clustering measures: Vol1 = 8, Vol2 = 26, h1 = 0.25, h2 = 0.0769,
Fiedler Value = 0.3542, Graph Clustering Coefficient = 0.8750, Higher-Order Fiedler Value =
0.3542. Lattice global clustering measures: Vol1 = 16, Vol2 = 84, h1 = 1.25, h2 = 0.2381, Fiedler
Value = 1.4364, Graph Clustering Coefficient = 0.6571, Higher-order Fiedler Value = 1.0. These
measures tell us that, compared to the dumbbell, the lattice graph is larger (greater volume), harder
to separate (larger isoperimetric constants and Fiedler value), and fewer of the neighbors of each
node are connected (smaller clustering coefficient)
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producing a scale-free network. This mechanism is known as preferential attach-
ment and roughly states that as edges are added to a graph, the nodes with larger
degree have an increased probability of being linked. This process therefore pro-
duces some nodes with very large degree (called “hubs”) and the remaining degree
distribution follows a power law [20]. An example of this type of process is in the
author citation network, in which a paper with many citations is more likely to con-
tinue to be cited in the future. Although scale-free networks are commonly used as
examples of small-world networks, the clustering coefficient is not always large (al-
though the diameter is small), meaning that scale-free networks are not necessarily
small-world graphs.

The measures of graph connectedness and graph separability considered thus
far are measures that naturally pertain to 1-complexes or graphs. We now consider
global topological measures for general p-complexes, and afterwards consider geo-
metric measures defined specifically for surfaces or 2-complexes.

8.3 Topological Measures

The distance-based measures that we have studied so far are often called “topolog-
ical indices” in the chemical graph theory literature. Although these methods do
measure aspects of the network topology, they do not measure the usual topological
invariants such as the Euler characteristic, genus, Betti numbers, torsion coefficients
and orientability. In this section, we will describe how to calculate these invariants
for a cell complex. Here we assume that we are measuring the topological prop-
erties of a p-complex. Recall from Chap. 2 that a p-complex is defined by sets of
p-dimensional cells, Sp . A standard graph is therefore a 1-complex, which contains
sets of nodes and edges only. The subject of computational topology on a complex
is treated extensively in the literature [119, 254, 425].

We begin our treatment of topological measures with a discussion of the Betti
numbers for a complex. The pth Betti number of an n-complex is defined as the
rank of the pth homology group [254]. Informally, the Betti number may be viewed
as the number of cuts that may be made without dividing a surface into two parts.
Therefore, when p = 0, the Betti number represents the number of connected com-
ponents, when p = 1, the Betti number represents twice the number of handles, and
for p = 2, the Betti number represents the number of voids. Computation of the pth
Betti number is possible from the incidence matrices via the formula [254]

Bettip = |Sp| −Rank(Np+1)−Rank(Np), (8.20)

where we may recall that Np represents the pth incidence matrix of the complex.
To make this definition hold for all p on a p-complex, we define Rank(Np) = 0
for p ≤ 0 or for p ≥ n. As an example, we may give the calculation of the Betti
numbers for p = 0 and p = 1 using our conventional notation as

Betti0 = |V| −Rank(A)− 0, (8.21)
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Betti1 = |E| −Rank(B)−Rank(A). (8.22)

Recall that Rank(A) equals |V|−c where c represents the number of connected com-
ponents (see Chap. 2). Therefore, Betti0 = c. Similarly, when a complex is closed
and simply connected, then we saw in Chap. 2 that Rank(B)= |E|− |V|+ 1. There-
fore, when c= 1 and the complex is closed and simply connected, Betti1 = 0.

A simpler method for calculating the Betti numbers was given by Friedman [143]
who noted that, by the definition of the pth-order Laplacian, it was possible to cal-
culate the Betti numbers as

Bettip =Dimension(Nullspace{Lp}). (8.23)

This approach to calculating the Betti numbers is often more straightforward since
it may be computed by counting the number of zero eigenvalues of Lp . This second
expression for the Betti numbers in (8.23) also recovers the fact that Betti0 = c,
since it is well-known [34] that Rank(Nullspace{L0})= c.

Multiplying the general expression for the Betti numbers in terms of the ranks
of incidence matrices given in (8.20) on both sides by (−1)p , results in the Euler–
Poincaré theorem which states that

p∑
i=0

(−1)p|Si | =
p∑

i=0

(−1)p Bettii . (8.24)

The value of this sum is known as the Euler characteristic of a p-complex, χ(G),
i.e.,

χ(G)=
p∑

i=0

(−1)p|Si | =
p∑

i=0

(−1)pBettii . (8.25)

When p = 2, this equation gives the usual formula for a surface χ(G)= |F| − |E| +
|V|. The Euler characteristic is one of the central invariants in topology. For a con-
nected complex, the Euler characteristic may be considered as the number of lin-
early independent cells which are possible, but not necessarily present, in the com-
plex (plus one). For example, we have seen that the number of linearly independent
cycles in a graph are equal to |E| − |V| + 1. Therefore, if all of these cycles are
included in our set of faces, then |F| = |E| − |V| + 1 and the Euler characteristic
equals one. If the “exterior face” is additionally included in the set of faces (see
Chap. 2) then the Euler characteristic equals two, which is the classical result for
a simply-connected closed surface.2 Two examples are given in Fig. 8.3 showing a
cube with Euler characteristic two and an annulus with Euler characteristic zero.

2The exterior face is a device to enable a finite graph to be defined such that it has no boundary and
is therefore closed. This imparts a global topology on the graph—that of a sphere or a sphere with
handles—which may be interpreted as a finite graph including a face “at infinity”, in analogy to
projections of the sphere into the plane (e.g., by stereographic projection) in which the coordinate
at the pole of the sphere opposite the origin is mapped to the point at infinity on the flat plane.



8.4 Geometric Measures 281

Fig. 8.3 A cube, the flattened cube (with exterior face), and an annulus. The Euler characteristic
is χ = 6− 12+ 8 = 2 for the cube (flattened and not flattened), and χ = 4− 12+ 8= 0 for the
annulus. Faces included in the face set are shaded gray (including the exterior face for the flattened
cube)

Closely related to the Euler number of a closed, orientable 2-complex is its
genus, which may be defined in terms of the Euler characteristic via the relationship

χ(G)= 2− 2 Genus(G) (8.26)

for a closed surface. The genus is often thought of as the number of handles on the
surface. Therefore, the sphere has genus equal to zero, whereas the torus (a sphere
with a handle) has a genus equal to one. The genus of a 1-complex (graph) has been
defined as the minimum genus of the surface on which the graph may be embedded
such that is has no edge crossings [188]. Therefore, a planar graph is considered to
have genus zero.

The property of surface orientability describes whether or not it is possible to
describe the surface as the boundary of some object. A classical example of a non-
orientable structure is the Möbius strip. One test for surface orientability on a finite
complex is to examine the orders of the torsion subgroups of the homology group of
the complex, which are known as the torsion coefficients of the complex [254, 272].
These coefficients may be determined computationally by calculating the invariant
factors of the incidence matrix (i.e., the diagonal of the incidence matrix after plac-
ing it in Smith Normal Form). Specifically, the kth torsion coefficients are defined
as the set of invariant factors of the kth incidence matrix greater than unity [254].
Therefore, if the complex is orientable, then the complex is torsion-free and there
are no invariant factors of the kth incidence matrix greater than unity [272]. For ex-
ample, Fig. 8.4 shows a triangulated Klein bottle with its corresponding face–edge
incidence matrix and the incidence matrix in Smith Normal Form.

8.4 Geometric Measures

In addition to the properties considered above, we may also compute classical ge-
ometric quantities to describe a complex. Here we follow the computer graphics
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Fig. 8.4 Torsion coefficients may be extracted from the face–edge incidence matrix by placing
the matrix in Smith Normal Form. In this example, we give the face–edge incidence matrix of a
cell decomposition of the (flattened) Klein bottle [196] and show that the Klein bottle has a torsion
coefficient equal to two since the only invariant factor greater than unity lies at face f2

literature which defines measures of curvature for a 2-complex which is embedded
in R

3.
Geometric measures defined on simplicial complexes (i.e., triangular meshes rep-

resenting surface for 2-complexes) depend on the metrics ascribed to the complexes.
In the case of discrete surfaces the metric is typically derived from the embedding of
the two-dimensional surface in a three-dimensional metric space, although the no-
tion of distance may be produced from any process. Therefore, the distances along
the surface are the natural Euclidean distances inherited from the ambient space of
the embedding.

Here we will consider two forms of curvature defined on surfaces: Gaussian and
mean curvature. Gaussian curvature is an example of an intrinsic geometric prop-
erty of the surface in that Gaussian curvature is invariant under isometric transfor-
mations of the surface. That is, if the surface is deformed in a way that does not affect
the distance between any pair of vertices on the surface, then the Gaussian curvature
is also unaffected. For this reason, the Gaussian curvature is called intrinsic and de-
pends only on the metric of the surface. Mean curvature, however, is an example
of an extrinsic geometric property that can change under isometric transformations.
For instance, a punctured sphere and a flat disk in the plane are topologically equiva-
lent, and therefore a smooth homeomorphism exists between them, but a sphere has
constant positive Gaussian curvature and a disk has zero Gaussian curvature—it is
clear that the deformation between the two configurations cannot take place without
geometric distortion. However, the cylindrical tube is an example of a surface with
zero Gaussian curvature and non-zero mean curvature, so if the tube is cut straight
down its side (imagine a piece of paper rolled so that the two short ends meet) it
can be unrolled and flattened into the plane without stretching or intrinsic geometric
distortion.

8.4.1 Discrete Gaussian Curvature

Gaussian curvature is typically defined in terms of the principle curvatures [110].
However, an alternate definition of Gaussian curvature is provided by a special case
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of the Gauss–Bonnet theorem that applies equally well to the continuous or discrete
cases. This alternate definition of Gaussian curvature is based on the idea that, in
the plane, at a given vertex the sum of angles between adjacent edges connecting
the vertex to its neighbors always sum to 2π . For curved surfaces, this same sum
can be either greater than or less than 2π , and this angle deficiency is the basis of
Gaussian curvature.

The Gauss–Bonnet theorem establishes a deep result in differential geometry that
links the intrinsic geometry of a manifold M to its topology. For a given metric, the
integral of the Gaussian curvature K over the manifold (also known as the total
curvature), plus a boundary term consisting of the integral of the geodesic curva-
ture, kg, along the manifold boundary, is related to the Euler characteristic of the
manifold as ∫∫

M

K dV +
∫

∂M

kg ds = 2π χ(M). (8.27)

Therefore, for any topological sphere, the total curvature is always 4π , whereas the
total curvature for a 1-torus is always 0.

This general theorem can be applied locally to provide an integral definition for
Gaussian curvature on two-dimensional surfaces that holds for discrete spaces. If we
consider the total curvature of the dual cell surrounding each node of a graph, then
for a particular node vi at its corresponding dual cell C the Gauss–Bonnet theorem
reduces to ∫∫

C

K dV −
∫

∂C

kg ds = 2π (8.28)

since, by definition, χ(C) = 1 for the cell. For the case in which the dual cell is
conveniently given by the Voronoï cell at each vertex, the integral of the geodesic
curvature is zero at the piecewise linear edges of the cell boundary plus the angles at
the corners of its boundary. Furthermore, these angles are equivalent to the interior
angles θ at node vi formed between each pair of edges incident to vi in this special
case of a Voronoï cell [280, 366]. As a result, the Gaussian curvature K(vi) at node
vi may be neatly defined as

K(vi)=
2π −∑j ∀eij

θj

Avi

(8.29)

where θj is given by θj ≡ ∠{vj , vi, v(j+1)mod B} if B represents the number of
neighboring nodes, and Avi

represents the area of the Voronoï cell.

8.4.2 Discrete Mean Curvature

The definition of Gaussian curvature at a vertex in (8.29), which phrases the in-
tegral of the curvature over a small patch as the deviation from 2π of the internal
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Fig. 8.5 Example of discrete curvature measures applied to horse triangular mesh. (A) Gaussian
curvature calculated from the Gauss–Bonnet theorem. (B) Discrete mean curvature computed from
the method of Meyer et al. [280]. Both measures calculate curvature as a node quantity measured
for each vertex in the polygonal mesh based on the embedding of the neighboring vertices and the
incident faces. Both curvatures are visualized with a common color scale provided on the lower
right

angle sum, holds for finer and finer mesh spacing and is equivalent to the continuous
definition in the limit. In contrast, mean curvature does not possess an analogous
integral definition and therefore it is less natural to express mean curvature in the
discrete setting. One approach to defining mean curvature, adopted by Meyer et
al. [280], is to establish a similar integral relationship in the discrete setting that
approaches the continuous definition in the limit of finer mesh sampling in order to
provide a robust and compatible curvature measure. The definition begins by noting
that if one establishes a specific coordinate system for the surface that provides a
isothermal parameterization, the mean curvature H is related to the Laplacian oper-
ator ∇2 applied to this specific choice of coordinate functions [110], and therefore
the integral of the mean curvature around a vertex vi can be expressed as the integral
of the Laplacian operator evaluated at the midpoints of all edges incident to vi . The
resulting expression for mean curvature vector is then given by

H̃ (vi)= 1

2Avi

∑
j ∀eij

(cotαij + cotβij )(c̃i − c̃j ) (8.30)

where αij and βij represent the opposing angles in the two triangles containing
edge eij at the two vertices that are neither vi nor vj . The requirement of the two
coordinate vectors c̃i and c̃j demonstrates why the mean curvature formulation is
dependent on the embedding of the graph and is therefore an extrinsic quantity.

Although the mean curvature vector is a vectorial quantity in the ambient em-
bedding space, it is typically expressed as a scalar-valued curvature measure given
by the length of the vector, H = ‖H̃‖. Intuitively, this definition phrases the mean
curvature vector at a vertex as the average edge vector of all edges incident to the
vertex weighted by the angle sum around the vertex. Examples of these measures
for Gaussian and mean curvature are provided in Fig. 8.5 (contained in the color
plate section at the end of the book).
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Although these two curvature measures are not phrased in terms of the discrete
calculus operators that comprise the central theme of this book, they do provide ex-
amples of quantities that are typically considered only in the continuous setting. The
definition of Gaussian curvature holds equally well in the discrete setting, whereas
the translation of mean curvature to the discrete setting is not as straightforward.
From a practical standpoint, these measures are also generally useful for practition-
ers of discrete methods.

8.5 Applications

Measures of network structure may be useful in several ways. One way to use this
information would be to learn more about the network and focus attention on the
most relevant nodes. This type of application would employ individual node mea-
sures more than the global measures of the network. In this section, we will explore
an application in social networks as an illustration of this usage of the network mea-
sures.

A different way of using the network measures is to predict other properties of
the structure being represented by the network. This type of application effectively
summarizes the network structure via a collection of numbers which may then be
correlated to other quantities of interest. As a representative of this usage of the
network measures, we take an example from chemical graph theory.

8.5.1 Social Networks

Identification of important persons from the network structure is a typical applica-
tion in a social networks (e.g., [45]). For example, important individuals in a terrorist
network could be identified as the most effective leaders to capture. In Chap. 6 we
studied Zachary’s Karate Club network [415] in which two individuals in the net-
work split the club into two groups. Given just the network structure, we show that
the network measures allow us to predict the leaders of the two factions.

Figure 8.6 shows Zachary’s Karate Club network with the two actual leaders of
the factions identified. Without knowing who the actual leaders of the two factions
were, we could examine various node measures. For example, we would expect
that important nodes would have a large number of direct social connections to
other individuals (nodes) in the network, measured as node degree. Beyond direct
connections, we could reasonably expect that the leaders would be well-connected
indirectly to all of the individuals (nodes) in the network, measured as a low total
distance (closeness). Additionally, we would expect that the leaders would act as
a conduit for connecting other individuals in their faction, measured as node be-
tweenness. From Fig. 8.6 we see that the actual leaders of the two factions score
much better than the other nodes in terms of the node degree, total distance and
betweenness, and are therefore distinct and identifiable from the rest of the nodes.
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Fig. 8.6 Prediction of the leaders of the two factions in Zachary’s Karate Club network [415]
using node measures. Nodes are shaded darker to indicate greater values of each measure. Note
that the measures in each figure are normalized to use the full white–black range. (A) The two
actual leaders of the factions marked in black. (B) Number of neighbors for each node (degree).
(C) Node betweenness. (D) Node total distance (closeness). These measures tell us that the two
leaders knew the most other people (highest degrees), were hubs for other people to know each
other (highest betweenness) and had the fewest average number of links between them and the rest
of the network

Therefore, these three measures of node degree would provide an accurate predic-
tion of the two leaders in Zachary’s Karate Club network.

8.5.2 Chemical Graph Theory

Graph theory has a long history in chemistry, dating back to Sylvester’s work
in 1878 [367]. In fact, the term “graph theory” was coined by Sylvester in the con-
text of the “graphical notation” used to describe the chemical structure of a molecule
[37].

In chemistry, a graph represents a molecule by associating each atom with a
node and each bond between atoms with an edge. Hydrogen atoms (with just a
single bond) are conventionally removed from the graph structure. Network mea-
sures are widely used in chemical graph theory to predict quantitative structure–
property relationships (QSPR) and quantitative structure–activity relationships
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Fig. 8.7 Predicting the boiling point of 3-Ethylhexane from its structure. (A) 3-Ethylhexane.
(B) The hydrogen-depleted molecule commonly used for calculation (i.e., the hydrogen nodes are
removed). (C) The graph corresponding to the hydrogen-depleted molecule. W(G) = 72, P = 7,
α = 1.53, β = 5.5, γ =−30.35. Using Wiener’s formula in (8.31) we can predict the boiling point
for 3-Ethylhexane as 118.4°C. The actual boiling point for 3-Ethylhexane is 118.6°C

(QSAR). Examples of such molecular properties include the boiling point, melting
point, molar volume, refractive index, critical pressure, surface tension, viscosity,
rate of electro-reduction and heats of isomerization, vaporization, formation and at-
omization [109]. Several review articles [187, 282] and books [42, 44, 170] detail
the use of these measures in chemical graph theory to predict molecular properties.
In addition to molecular properties, network measures have been widely used to
predict pharmacological properties for purposes of drug discovery [265, 266, 325].

In this section, we do not intend to provide a comprehensive review of this vast
literature, but rather to focus on the first and most important measure to appear in
chemical graph theory: the Wiener index (8.6). Note that Wiener’s initial definition
was not phrased in graph theory language, but later formulated in this setting by
Hosoya [207]. In his early papers [404, 405], Wiener used his index to predict the
boiling point (b.p.) of alkanes from the formula

b.p.= αW(G)+ βP + γ, (8.31)

where α, β , γ are empirical constants and P , the “polarity number”, was defined as
the number of node pairs with distance equal to three. By fitting parameters to thirty-
seven alkanes, Wiener determined the parameters to be α = 98/n2, β = 5.5 and
γ = −30.35, where n represents the number of carbon atoms (number of nodes).
It is interesting to observe that the only difference between the definitions of the
Wiener index (8.6) and the Average Path Length (8.7) was the normalization of the
Average Path Length measure by the number of node pairs, n2 − n. However, in
Wiener’s original work, he used the parameter setting to normalize his measure by
n2, which brings these two measures very close together.

Figure 8.7 shows one of Wiener’s original examples in which he predicts the boil-
ing point of 3-Ethylhexane from the molecular structure alone (i.e., by measuring
network properties). Specifically, for 3-Ethylhexane we may calculate W(G)= 72,
P = 7. Using Wiener’s formula (8.31) and the parameter values listed above allows
us to calculate the boiling point for 3-Ethylhexane as 118.4°C. The actual boiling
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point for 3-Ethylhexane is 118.6°C. In Wiener’s original paper, he applied his for-
mula to ninety-four compounds to predict the actual boiling points with an average
deviation of 0.97°C. It remains a remarkable fact that a measure of the structure of
the network representing a molecule can provide such accurate predictions of the
molecule’s chemical properties.

Many additional models have been developed that predict molecular properties
from the Wiener index. Another example is the chromatographic retention time
(CRT) of monoalkyl- and o-dialkylbenzenes which are well modeled in [51] by

CRT= αW(G)β + γ, (8.32)

where α, β , γ are empirical constants (which are different from those appearing
above in (8.31)). The variety of models in which the Wiener index appears has been
explained by arguing that the Wiener index measures the van der Waals surface area
of a molecule [181].

By representing a molecule as a list of numerical descriptors, these descriptors
may be used in conjunction with machine learning techniques to predict many dif-
ferent QSPR and QSAR properties. In the present day, vast libraries of graph rep-
resentations of chemical compounds have been compiled which make it possible to
search for a compound with a particular set of properties or to numerically screen
compounds without having to manufacture and test them [171, 213, 370]. Many
structural descriptors have been devised in the chemical graph theory literature that
were not reviewed in this chapter. In this section, we have simply intended to pro-
vide the reader with a glimpse into this rich literature and to point the interested
reader to more comprehensive sources in this area.

8.6 Conclusion

In this chapter we considered methods of measuring different kinds of quantities
that describe the structure of the graph. The distance and clustering measures ap-
proached the related intuitive concepts of connectedness and separability. In con-
trast, the topological and geometric measures probe other aspects of the complex.

The measures may be applied in several ways. One method for applying these
measures has been to reduce a network to a series of numbers that may be used to
predict the behavior of certain processes on the graph or of the object represented
by the network. A central example of this usage is the success of the chemical graph
theory literature in relating the distance-based measures to the chemical properties
of the molecules represented by the graph. A smaller example of this usefulness is
the observation [175] that graph diameter is a good predictor of the convergence
of conjugate gradient applied to solving a linear system with the Laplacian matrix.
As network models are increasingly explored to describe computer networks, neu-
ral connections, traffic flow, gene regulation and sociology, we believe that these
measurements will provide useful predictions about the behavior of these networks.
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Finally we note that the distance and separability descriptors that have been em-
ployed in the literature to describe networks are exclusively dependent on node con-
nectivity and separability. We suggested some possibilities for extending these mea-
sures to higher-order connectivity, but we believe that measures defined on edge
and cycle connectivity and separability present an untapped source of additional
descriptors for a network or complex.



Appendix A
Representation and Storage of a Graph
and Complex

In the main text we treated graphs and cell complexes without discussing the nu-
merical representation and storage of these structures. Here we intend to fill this gap
by discussing how graphs and complexes may be represented and stored, since a
numerical representation is a prerequisite for performing any computation.

A.1 General Representations for Complexes

In general, chains and cochains will form both the inputs and outputs of the compu-
tations and algorithms presented. Storage of chains/cochains may be accomplished
efficiently with one-dimensional arrays (shown in the text as column vectors) of the
appropriate size (e.g., n for 0-cochains, m for 1-cochains). There are two equivalent
options for representing a complex, the cells list representation and the operator
representation.

A.1.1 Cells List Representation

A cells list representation stores a p-complex using p two-dimensional arrays. Each
two-dimensional array is the length of the number of k-cells for all 0 < k ≤ p,
and each array contains the node list (0-cells) of the corresponding k-cell. This list
encodes the orientation of the cell via the ordering of the nodes in the list. A cells list
representation stores the weights of a weighted complex as a separate array where
every entry in the cells list is matched by an entry in the weights list containing the
cell weight. The cells list representation is especially convenient for a graph (i.e.,
a 1-complex) or a triangular mesh (i.e., a 2-complex) since each edge or triangle in
the complex is composed of exactly the same number of nodes. For example, the
cells list representation is used in the common Geomview Object File Format as an
“.OFF file” for storing meshes.
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A general cell complex may contain k-cells that are composed of many different
numbers of nodes (e.g., an irregular mesh). In these situations, a list representation
requires that we additionally store the node count for each individual k-cell.

The cells list representation is simple and convenient, but may be redundant if the
complex possesses structure or topological regularity. For example, if the complex
represents a lattice, it is unnecessary to store the neighborhood of each cell and it
is therefore more efficient to employ the operator representation, which we now
describe.

A.1.2 Operator Representation

The operator representation stores the complex structure via two-dimensional ar-
rays or matrices such as the incidence matrices, Laplacian matrices, or adjacency
matrices discussed extensively in the main text. The primary advantage of the op-
erator representation is that a structured complex will generally allow for efficient
storage. For example, the Laplacian matrix for a lattice will be banded and symmet-
ric, resulting in the need for storing only the upper triangular bands. Therefore, in the
case of a 4-connected two-dimensional lattice, only 2n values require storage—the
graph weights. In the special case where the weights are all uniform, the dimensions
of the lattice completely specify the complex and no explicit storage is needed. In
other words, for a lattice with uniform weights, when the corresponding Laplacian
matrix is required for a computation (such as the matrix–vector product employed
in previous chapters) the computation can be expressed without any explicit storage
of the matrix, and the computation can be simply expressed as a function of the
inputs.

Of the three matrices commonly used to represent a complex (i.e., the Laplacian,
adjacency, and incidence matrices), only the incidence matrix stores the orientation
assigned to each of the cells. However, since the orientation may be arbitrary we
may assign the orientation of each cell as needed, so long as we maintain a consis-
tent orientation for each cell. Figure A.1 gives an example of the list and operator
representation for a small 1-complex (graph).

A secondary advantage of the operator representation is that one data structure
simultaneously represents a set of topological relations of the complex as well as
one of its differential operators. This practical advantage of the operator representa-
tion reinforces the topological nature of the differential operators, as highlighted in
Chap. 2. Although the operator representation requires a generic data structure akin
to a two-dimensional array to encode the incidence relations between elements of
the complex, in contemporary programming environments such as MATLAB such
two-dimensional arrays are also interpreted as matrix objects and are endowed with
the ability to perform matrix operations such as matrix multiplication. Therefore,
when using the operator representation the data structure representing the graph is
also literally the differential operator for the graph.
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Most graphs and complexes that arise in practice are sparse. Consequently,
a sparse matrix format will be the most efficient storage of an operator represen-
tation [19]. The Compressed Column (or Row) format is the most common ap-
proach for representing a sparse matrix, due to its generality. However, a common
motivation for using an operator representation is due to the structure of the matrix
operator. Consequently, a Compressed Diagonal Storage format is often appro-
priate to store a complex using the operator representation, e.g., for the Laplacian
matrix or adjacency matrix of a lattice.

A.2 Representation of 1-Complexes

In addition to the cells list representation and operator representation used above to
represent a general complex, there are numerical representations often used in the
special case where the complex is of dimension one i.e., a graph. Here we discuss
one data structure for a graph which can be more efficient for some algorithms.

A.2.1 Neighbor List Representation

A common representation for a graph may be called the neighbor list represen-
tation since it is motivated by the common numerical operation of traversing the
node neighbors of a graph. For example, shortest-path computation with Dijkstra’s
algorithm requires that when a node is added to the list of known nodes, all of the
neighbors of the added node are also pushed onto a heap [87]. Therefore, it is neces-
sary to know the neighbors of each node in order to apply this algorithm efficiently.
Unfortunately, the cells list representation does not allow for an efficient search for
the node neighbors of each node, since the cells list representation is organized by
the edges. Consequently, finding the neighbors of a particular node in an edge list
requires traversal of the entire edge list to search for edges that connect the node to
other neighbors.

To facilitate easy neighbor finding, we can employ the neighbor list representa-
tion which stores the graph using a two-dimensional array of length n× dmax. Each
entry in the array contains the neighboring nodes of the indexed node. A neighbor
list representation stores the weights of a weighted complex using a second two-
dimensional array of equal size where every entry in the second set of arrays stores
the weight of the edge connecting the neighboring nodes. In general, the neighbor
list representation is not as efficient as storage of the cells lists unless the graph is
regular. If the graph is irregular, then some entries of the two-dimensional array will
not be used, but memory for these entries must still be allocated (or the degree of
each node must be stored). Figure A.1 also displays the neighbor list representation
of the nodes in the example graph.
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Fig. A.1 An example graph
(A) and its numerical storage
with the representations
discussed in the text: (B) The
neighbor list representation,
(C) cells list representation
for edges, (D) cells list
representation for faces,
(E) operator representation
for the edge–node incidence
matrix, (F) operator
representation of the
face–edge incidence matrix



Appendix B
Optimization

The main text has provided the mathematical tools for formulating continuous con-
cepts in a discrete setting and provided applications in which this machinery may be
applied to solve real-world problems. The primary mechanism for applying these
discrete calculus operators was to formulate algorithms as variational or energy
minimization problems. We believe that an important motivation for the use of dis-
crete calculus is the availability of powerful optimization tools to allow efficient
energy minimization. Although some details and algorithmics were discussed in
the text for solving these optimization problems, it was generally assumed that the
reader was familiar with optimization techniques. In this appendix we provide more
information about the optimization techniques which appear in the text in an effort
to enable the reader to implement the techniques. This appendix is by no means in-
tended as a comprehensive treatment of the vast topic of optimization, but rather as
a tour of pertinent techniques and pointers to literature in which more information
may be found.

Optimization of both real-valued and integer-valued functions appears com-
monly in practical applications of discrete calculus. In the framework presented
in the text, the underlying spaces are discrete but the fields defined on these spaces
are free to be continuous-valued. Consequently, there is an asymmetry between the
treatment of chains and cochains. In general, cochains are defined with real-valued
variables (e.g., image intensity, vertex coordinates) and optimization for a cochain
is intended to find the optimum real-valued function to associate with the domain.
Examples of this kind of optimization are mesh filtering or dimensionality reduc-
tion. Conversely, chains are expressed as lists of cell indices and thus are generally
defined with integer (or binary) variables, therefore optimization of chain quantities
is usually intended to identify a set of nodes, edges or higher-dimensional struc-
tures. For example, segmentation and clustering are examples of chain optimization
in which the goal is to identify each node with its corresponding label.

In this appendix, we will treat the topic of optimization with both real-valued
variables and integer-valued variables. Additionally, we will devote particular at-
tention to linear and quadratic objective functions since these are very common in
mathematical physics and because they frequently appear in the optimization of an
energy defined on a graph.
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B.1 Real-Valued Optimization

Optimization of real-valued variables is generally much easier than the optimization
of integer- or binary-valued variables because it is possible to take a derivative of
a real-valued function, even if the function is defined as a cochain on a discrete
domain. Our focus in this section will primarily be on convex optimization. Before
addressing convex optimization, we begin with a few facts about derivatives of finite
real-valued functions that will be helpful in subsequent sections.

Assume that we have a real-valued vector of N variables, x ∈ R
N . Given an en-

ergy functional Q[x] evaluating to a scalar, ∂Q/∂x is defined as the vector quantity

∂Q
∂x
=

⎡
⎢⎢⎢⎢⎣

∂Q
∂x1

∂Q
∂x2
...

∂Q
∂xN

⎤
⎥⎥⎥⎥⎦ , (B.1)

which is the derivative of the energy functional Q[x] with respect to each of the N

components of the vector x. Similarly, the derivative of a vector y with respect to
another vector x gives the matrix of all possible combinations of derivatives

∂y

∂x
=

⎡
⎢⎢⎢⎢⎢⎣

∂y1
∂x1

∂y1
∂x2

· · · ∂y1
∂xN

∂y2
∂x1

∂y2
∂x2

· · · ∂y2
∂xN

...
...

. . .
...

∂yN

∂x1

∂yN

∂x2
· · · ∂yN

∂xN

⎤
⎥⎥⎥⎥⎥⎦

. (B.2)

Due to their prevalence in physical systems, it is beneficial to pay particular at-
tention to quadratic energy functionals. Applying the above rules to the quadratic
energy Q[x] = xTHx evaluates to

∂Q
∂x
= (H+HT)x. (B.3)

If H is symmetric, then ∂Q/∂x= 2Hx. Taking a second derivative of Q with respect
to x gives us the Hessian matrix for Q with respect to x, which for a quadratic
energy Q[x] = xTHx is

∂2 Q
∂x2
= H+ HT. (B.4)

If Q[x] is a linear functional defined by Q[x] = xTy, the derivative with respect
to x is simply

∂Q
∂x
= y. (B.5)

With these preliminaries in place, we may now provide a tour of convex opti-
mization. The convexity of a functional (and the solution constraints) has long been
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recognized as the most important property for determining the difficulty of find-
ing an optimal solution [319]. The principal advantage of an unconstrained convex
optimization problem is that any local minimum is also a global minimum [52].
A function, f (x), defined on an interval (or convex subset of a vector space) is
convex if

f
(
θx+ (1− θ)y

)≤ θf (x)+ (1− θ)f (y), (B.6)

where θ is any value in the range [0,1] and x and y represent any points in the do-
main of f . If the inequality in the convexity definition (B.6) is strict for any valid
θ , then the function is said to be strictly convex. Strictly convex functions are im-
portant for optimization because a strictly convex function has a unique global min-
imum. In contrast, a convex function which is not strictly convex will have multiple
global minima and therefore an optimization of the functional will require addi-
tional regularization to produce a unique solution. It follows from the definition of
convexity that the sum of convex functions is a convex function and, importantly,
that any sum of functions will be strictly convex if any of the functions in the sum
are strictly convex.

A quadratic functional, Q[x] = xTHx, is convex if H is a symmetric positive
semidefinite matrix. If H is symmetric positive definite, then Q[x] is strictly convex.
The linear functional Q[x] =wTx is always convex for any w.

B.1.1 Unconstrained Direct Solutions

In the absence of solution constraints, the simplest way of finding an optimum solu-
tion to a convex functional is to find a critical point. Therefore, if a solution can be
found to the equation

∂Q[x]
∂x

= 0, (B.7)

then the x satisfying this equation is a global optimum.
Consider the minimization problem given by

min
x

Q[x] =min
x

1
2 xTHx− xTf, (B.8)

for a symmetric positive definite (SPD) matrix H and some vector f. The functional
Q[x] is convex and therefore the critical point (minimum) for Q[x] is given by

Hx= f. (B.9)

This equation may be efficiently solved for x using any technique for solving a
system of linear equations from standard linear algebra [154].

If H is a symmetric positive semidefinite matrix, then an optimum for Q[x] will
still satisfy (B.9), but this set of equations is no longer straightforward to solve be-
cause H is singular. In this circumstance, a regularization may be imposed to provide
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a unique answer. The most common regularization to employ in this circumstance
is the Tikhonov regularization, which replaces the Q[x] in (B.8) with

Q̃[x] = 1
2 xTHx− xTf+ λxTx, (B.10)

where λ is a free parameter controlling the strength of the regularization. The pur-
pose of the new term xTx is to penalize solutions with a large norm. Since the regu-
larization term is strictly convex, the new Q̃[x] will be strictly convex, producing a
unique optimum. The regularized optimum for Q̃[x] is now given by the solution to

(H+ λI)x= f, (B.11)

where I represents the identity matrix.
A quadratic functional with an SPD matrix always has a global minimum which

is achieved for some x, even if the x is not unique. In contrast, an unconstrained
optimization of a linear functional, Q[x] = wTx, is unbounded since there is no
critical point for this functional.

B.1.2 Constrained Direct Solutions

Most practical optimization problems impose constraints on the solution which must
be satisfied. Here we consider three commonly-encountered types of constraints:
boundary conditions, equality constraints and inequality constraints.

B.1.2.1 Optimization with Boundary Conditions

Given that many of the problems considered in the text have adopted a variational
framework and are solved using tools from the theory of partial differential equa-
tions, the first natural category of constraints to consider are boundary conditions.
We will treat only the most common boundary conditions on scalar fields, which are
Dirichlet boundary conditions and Neumann boundary conditions.

In the context of discrete calculus, we define a Dirichlet boundary condition on
a set of nodes, S⊂ V, by specifying the values of the function, bi , at the location of
those nodes, so that xi = bi, ∀vi ∈ S. Although we employ the traditional term of
a “boundary” condition, it is important to note that the set S may be arbitrary and
need not lie on the boundary of the complex. Allowing S to be arbitrary is analogous
in the continuum analysis to permitting “internal” boundary conditions.

Finding an optimum solution with respect to the Dirichlet boundary conditions is
equivalent to optimization over the nodes which are not fixed. Optimizing over the
nodes which are not fixed to a Dirichlet boundary condition may be accomplished
by separating x into two distinct components. One component corresponds to the
known boundary conditions, xS, and the other component is defined wherever no
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boundary conditions have been asserted, xS̄. Minimization of a quadratic functional
specified by an SPD matrix H, such as

min
x

Q[x] =min
x

1
2 xTHx− xTf, (B.12)

with respect to xS̄, may be accomplished by rewriting Q in block form to distinguish
the two distinct components,

Q[x] = 1
2

[
xT
S xT

S̄

][HS RT

R HS̄

][
xS

xS̄

]
−
[
xT
S xT

S̄

][fS
fS̄

]
, (B.13)

where R represents the off-diagonal block of H. Differentiating with respect to xS̄
gives

∂Q[x]
∂xS̄

= HS̄xS̄ + RxS − fS̄. (B.14)

Therefore, a critical point for the functional is achieved for a xS̄ satisfying

HS̄xS̄ = fS̄ −Rb, (B.15)

where the boundary function b has replaced xS.
Sometimes our Dirichlet boundary conditions appear in initial-value problems

with asymmetric operators (e.g., as in the advection equation treated in Chap. 2).
These asymmetric operators are not conveniently placed in quadratic form. For ex-
ample, consider the equation

∂x

∂t
= Ux− f, (B.16)

in which U is asymmetric. At steady-state, the solution x must satisfy

0= Ux− f=
[

US P
R US̄

][
xS

xS̄

]
−
[

fS
fS̄

]
. (B.17)

Therefore, at steady-state our unknowns xS̄ must satisfy

US̄xS̄ = fS̄ −Rb, (B.18)

which gives us the same form as the boundary-value problem stated in (B.15).
A similar procedure allows us to optimize with respect to Neumann boundary

conditions. Recall the standard definition of a Neumann boundary condition

�n · ∇x = b. (B.19)

In other words, the gradient of a function on the normal vector to some surface
(represented by �n) is prescribed by b. Given a set T ⊂ E of edges over which the
gradient is prescribed, we may rewrite a discrete formulation of (B.19) as

G−1
T ATx= b, (B.20)
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where AT indicates the rows of the edge–node incidence matrix corresponding to
the set T. For example, if we minimize the Dirichlet energy Q[x] = 1

2 xTATG−1Ax

subject to G−1
T ATx= b, we obtain the constrained cost function

Q[x] = 1
2 xTATG−1Ax= 1

2 xT
[
AT

T AT
T̄

][G−1
T 0
0 G−1

T̄

][
AT

AT̄

]
x

= 1
2

(
xTAT

T̄
G−1

T̄
AT̄x+ xTAT

Tb
)
. (B.21)

Therefore, taking a variation of Q with respect to x yields

∂Q
∂x
= AT

T̄
G−1

T̄
AT̄x+ 1

2 AT
Tb, (B.22)

which is minimized when

LT̄x=− 1
2 AT

Tb, (B.23)

where we have replaced AT
T̄

G−1
T̄

AT̄ with the Laplacian matrix LT̄ defined on the

subset T̄. Note that a set of Neumann boundary conditions may not permit a solution
to (B.23). For example, if all of the edges incident on a single node are fixed by
Neumann boundary conditions, then LT̄ is singular.

For a physical understanding of these boundary conditions in a discrete setting,
we may revisit circuit theory (see Chap. 3). In the context of circuit theory, fixing
a Dirichlet boundary condition at a node is equivalent to fixing the electrical po-
tential of the node by establishing a voltage source between the node and ground
with a voltage equal to the desired Dirichlet boundary condition. If we consider the
circuit example in Fig. 3.2, then node v4 has been fixed with a Dirichlet boundary
condition, since its potential has been fixed at 2V (with respect to ground). The cir-
cuit interpretation of Neumann boundary conditions may also be found in Chap. 3,
which showed that the gradient between two nodes corresponds to the current flow-
ing between the nodes. Therefore, fixing a Neumann boundary condition between
two nodes may be interpreted as fixing the current between the nodes. If we again
reference the example circuit in Fig. 3.2, then a Neumann boundary condition exists
between nodes v2 and v5 (ground) as a result of the current source.

In our treatment of Neumann boundary conditions, we considered the important
special case of optimizing the Dirichlet energy with respect to the boundary condi-
tions. However, we now show how to optimize a more general quadratic functional
with respect to Neumann boundary conditions. Consider the solution to the more
general minimization problem

min
x

Q[x] =min
x

1
2 xTHx

s.t. G−1Ax= b
(B.24)
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with SPD matrix H. In order to solve this problem, we may incorporate G−1Ax= b
into Q via a Lagrange multiplier to yield

Q[x] = 1
2 xTHx+ λ(G−1Ax− b). (B.25)

Taking a variation of Q with respect to x and setting the result to zero yields

Hx+G−1ATλ= 0. (B.26)

Therefore, the optimum solution to our problem may be obtained by solving the
linear system

[
H G−1AT

G−1A 0

][
x
λ

]
=
[

0
b

]
. (B.27)

This solution to the quadratic optimization problem in the presence of Neumann
boundary conditions may now be generalized to the solution to the quadratic opti-
mization problem in the presence of any linear equality constraints.

B.1.2.2 Optimization with Linear Equality Constraints

Optimization with respect to Dirichlet and Neumann boundary conditions are spe-
cial cases of the more general constrained optimization problem in the presence of
linear equality constraints. Specifically, the above procedure for quadratic optimiza-
tion in the presence of Neumann boundary conditions may be applied to any set of
linear equality constraints Rx= b. Therefore, the quadratic optimization problem

min
x

Q[x] =min
x

1
2 xTHx

s.t. Rx= b
(B.28)

may be solved by finding x and λ satisfying

[
H RT

R 0

][
x
λ

]
=
[

0
b

]
. (B.29)

Although a direct solution of (B.29) is possible, there are two unpleasantries with a
direct solution: (i) the matrix is not positive definite and therefore iterative methods
are not usable; (ii) one is generally concerned with only the variable x and not the
values of the Lagrange multipliers λ. There are three approaches to overcoming
these limitations: a Schur factorization, a nullspace method, and a penalty method.
We now review each of these approaches to avoid a direct solution to (B.29).
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Schur Factorization

Schur factorization is essentially Gaussian elimination of the block matrix. Apply-
ing a Schur factorization to (B.29) produces

[
H RT

0 −RH−1RT

][
x
λ

]
=
[

0
b

]
. (B.30)

Therefore, the optimization (B.29) may be solved in two steps

−RH−1RTλ = b, (B.31a)

Hx = −RTλ. (B.31b)

The Schur factorization approach to solving (B.29) is the preferred approach when
H is an easily invertible matrix, such as a diagonal matrix.

Nullspace Approach

The nullspace approach to solving (B.29) proceeds by observing that if we knew a
basis, P, for the nullspace of R so that RP= 0, then

R(x+ Px̄)= b. (B.32)

Therefore, if we had some initial guess x0 satisfying Rx0 = b, then we can change
variables to x̄ by allowing x = x0 + Px̄. This change of variables seeks a solution
for the x̄ that allows us to minimize xTHx knowing that the constraint Rx= b will
always be satisfied. Specifically, substituting x= x0 + Px̄ yields the unconstrained
optimization problem

Q[x] = xT
0Hx0 + 2x̄TPTHx0 + x̄TPTHPx̄, (B.33)

taking a minimum at

PTHPx̄=−PTHx0. (B.34)

The nullspace method is quite useful when the nullspace of R takes a convenient,
known form and it is possible to easily generate an x0. The node–edge and edge–
face incidence matrices are a good example of when this approach is useful because
of the convenient form of the nullspace operator.

Penalty Method

The final approach that we discuss to solving a constrained quadratic algorithm
is a penalty method in which the formal constraints are replaced by a modified
objective function that penalizes solutions which do not satisfy the constraints. The
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replacement of the constraints then allows for an unconstrained optimization of the
modified objective function. Specifically, we may transform the original problem

min
x

xTHx,

s.t. Rx= b,

(B.35)

into the unconstrained minimization problem

min
x

xTHx+ α‖Rx− b‖ =min
x

xTHx+ α(xTRTRx+ 2xTRTb), (B.36)

taking a minimum at

(H+ αRTR)x= αRTb. (B.37)

Although this form is generally easy to solve, there are two competing determina-
tions in choosing α: (1) the constraints are not enforced exactly unless α→∞,
(2) a reasonable, finite, α value must be chosen to cause the problem to be non-
singular (since RTR is generally singular). In practice, it is generally possible to
find an α that produces a usable solution for (B.37), but the constraints will not
be enforced exactly. A summary of each of the different approaches to solving the
equality-constrained quadratic problem may be found in Table B.1

When the objective function is linear rather than quadratic, then the equality-
constrained optimization problem is more challenging, and in the absence of any
further constraints, the solution to this problem is often unbounded. We begin with
the more difficult case of linear inequality constraints for both linear and quadratic
objective functions.

B.1.2.3 Optimization with Linear Inequality Constraints

Linear Energy Functionals

Optimization with respect to linear inequality constraints is generally much more
difficult than optimization with respect to linear equality constraints. Incorporation
of linear inequality constraints into the optimization of a linear functional leads us
to the generic linear programming problem in the form

min
x

Q[x] =min
x

wTx,

s.t. Rx≥ b,

x≥ 0.

(B.38a)

We may write the inequality constraint using Lagrange multipliers to give us the
Lagrangian equation for the linear programming problem,

min
x

Q[x] =min
x

wTx− λT(Rx− b)=min
x

wTx− λTRx+ λTb.
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Table B.1 Summary of methods for solving a quadratic optimization problem with linear equality
constraints

Solution
method

When to use Pros Cons

Direct Problem is small and
none of the other
methods apply

General, exact solution Extra variables due to
Lagrange multipliers,
matrix not SPD so that
iterative methods are
unavailable

Schur fac-
torization

Use when H is easily
invertible

Fast, exact solution
with an SPD matrix, no
extra variables from
Lagrange multipliers

Rare that H is invertible

Nullspace
method

Use when nullspace of
R is known and
convenient or when
rank of nullspace of R
is small (resulting in
few nullspace
variables)

Fast, exact solution
with an SPD matrix, no
extra variables from
Lagrange multipliers

Must understand
nullspace of R

Penalty
method

Use when Schur and
nullspace do not apply
and exact satisfaction
of constraint not
important

Fast solution with an
SPD matrix, applies to
general problem

Requires choice of α,
constraints not exactly
satisfied

Written in the Lagrangian form, we see that x may alternatively be viewed as the
Lagrange multiplier enforcing a constraint on the “variable” λ, i.e.,

min
x

Q[x] =min
x

xT(w−RTλ)+ bTλ.

Therefore we may rewrite the entire optimization problem in terms of the variable
λ as

max
λ

G[λ] =max
λ

bTλ,

s.t. RTλ≤w,

λ≥ 0.

(B.38b)

The form given in (B.38b) is known as the dual formulation and in this context the
Lagrange multipliers, λ, are known as the dual variables.

The general linear programming problem expressed in primal form (B.38a), or
dual form (B.38b), is generally solvable with a simplex algorithm or interior point
algorithm (see [52, 304, 312] for an introduction to the variety of techniques to
solve the general linear programming problem). For any particular problem it is
often possible to design a very efficient algorithm that alternately optimizes the
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primal and dual problems, using the current solution of one problem to perform a
constrained optimization of the other problem. This methodology leads to a primal–
dual algorithm. However, the development of a primal–dual algorithm specific to
a particular problem requires insight into the problem construction (see [304] for
more details on the development of primal-dual algorithms).

It is not our purpose here to further cover the excellent, extensive literature on
linear programming. However, we wish to show that, in the case of mixed equality
and inequality constraints, a version of the nullspace method also applies in this
context.

Consider the problem

min
x

wTx,

s.t. Ax= b,

Hx≥ h,

(B.39)

where a known operator B spans the nullspace of operator A, i.e., AB = 0. In this
situation, we can eliminate the equality constraints by again changing variables to
x= x0+By, under the new variable the constraint is satisfied for any y provided we
pick x0 such that Ax0 = b. The linear functional problem then becomes

min
y

wTBy,

s.t. HBy≥ h−Hx0,

(B.40)

which removes the equality constraints. We now proceed back to the optimization
of quadratic energy functionals in the presence of inequality constraints.

Quadratic Energy Functionals

Optimizing a quadratic energy functional with respect to inequality constraints is
harder than optimization with respect to equality constraints. The optimization of
a quadratic energy functional with respect to inequality constraints is known as the
quadratic programming problem, which may be written as

min
x

xTHx+ xTf,

s.t. Rx≥ b.

(B.41)

When H is SPD, the quadratic programming may be solved in polynomial time. We
refer the readers to [295] for more information on the optimization of a quadratic
programming problem.

B.1.2.4 Ratio Optimization

Before concluding this section on the direct optimization of a convex functional, we
briefly cover the optimization of a ratio of convex functionals. Specifically, consider
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the ratio

Q[x] = P[x]
R[x] , (B.42)

where P and R are convex functionals. Unfortunately, there is no guarantee that Q
is convex simply because P and R are convex. However, we may treat two important
cases in which Q is convex. In both cases, P[x] = xTHx for some SPD H, but in the
first case, R[x] = xTx and in the second case R[x] = xTf.

When R[x] = xTx, then Q becomes

Q[x] = xTHx

xTx
, (B.43)

which is known as the Rayleigh quotient of H. Before we can consider finding
an x to optimize Q[x] we need to avoid the problem at x= 0. This problem may be
avoided by requiring that xTx= k for some k > 0. If we conveniently choose k = 1,
then we may find an x optimizing Q[x] by solving the problem

min
x

xTHx,

s.t. xTx= 1.

(B.44)

Imposing the constraint via a Lagrange multiplier gives the problem

min
x

xTHx− λ(xTx− 1), (B.45)

which takes a minimum at

Hx= λx. (B.46)

Consequently, the optimal x is an eigenvector of H and λ is the corresponding eigen-
value. Furthermore, since

λ= xTHx

xTx
, (B.47)

we see that the minimum x is given by the eigenvector corresponding to the small-
est eigenvalue. Therefore, the optimization of the Rayleigh quotient in (B.43) is
achieved by the eigenvector of H corresponding to the smallest eigenvalue. Opti-
mization of the Rayleigh quotient can be used to generate eigenvectors correspond-
ing to larger eigenvalues if the additional constraint is imposed that the optimiza-
tion is performed over the space of vectors orthogonal to those eigenvectors corre-
sponding to the smaller eigenvalues. Additionally, optimization of the generalized
Rayleigh quotient

Q[x] = xTHx

xTCx
, (B.48)

produces the generalized eigenvector of H and C,

Hx= λCx, (B.49)
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corresponding to the smallest generalized eigenvalue.
The Lanczos algorithm [154] is the standard method for computing eigenvec-

tor/eigenvalue pairs for a sparse SPD matrix. However, since the power method is
used in the pagerank and HITS algorithms of Chap. 7, we briefly review this method.
The power method is a procedure for finding the eigenvector corresponding to the
largest eigenvalue, which consists of iterating

x[k+1] = Hx[k]

‖Hx[k]‖ , (B.50)

until convergence. In order to converge to the largest eigenvector, the initial solution
x[0] must not be orthogonal to the largest eigenvector. The division by ‖Hx[k]‖ in the
power method effectively normalizes the largest eigenvalue of H to unity and then
each iteration drives to zero every component of x which projects onto the other
eigenvalues. The power method is easy to implement and each iteration is fast when
H is sparse, however the convergence rate depends on the spread between the largest
eigenvalue and the second largest eigenvalue. In practice, the power method often
converges quickly for the pagerank and HITS algorithms presented in Chap. 7.

The second convex ratio problem that we consider here is the optimization of

Q[x] = xTHx

xTf
, (B.51)

for some arbitrary f. This problem appears in some clustering applications (see
Chap. 6). Unfortunately, the minimum of Q is generally unbounded. However, we
may again modify this optimization problem by constraining the denominator to
require that xTf= 1. Given this constraint, the optimization problem becomes

min
x

xTHx,

s.t. xTf= 1,

(B.52)

which may be formulated as an unconstrained optimization problem using a La-
grange multiplier

min
x

xTHx− λ(xTf− 1). (B.53)

This optimization problem takes a minimum at

Hx= 1
2λf. (B.54)

Solving for the value of the Lagrange multiplier produces

λ= 2

fTH−1f
, (B.55)

giving the optimum x as

x= H−1f

fTH−1f
. (B.56)
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B.1.3 Descent Methods

In the previous section we reviewed the direct methods for solving a convex opti-
mization problem, with a particular focus on quadratic and linear functionals. A sig-
nificant problem with direct methods is the requirement that we can identify a crit-
ical point of the solution, which may not always be possible. In contrast, descent
methods do not require that we can identify a critical point of the functional. In this
section we describe descent methods for solving a convex optimization problem.

B.1.3.1 Gradient Descent

The most common descent method for optimizing a differentiable convex func-
tional, Q[x], is gradient descent. The method of gradient descent starts with an
initial solution, x[0], and updates the solution with the iteration

x[k+1] = x[k] − α∇Q[x[k]], (B.57)

where α is a parameter whose value is chosen at each iteration to preserve
Q[x[k+1]] < Q[x[k]]. The iteration is typically stopped when the value of α nec-
essary to continue decreasing the energy falls below some tolerance.

Sometimes it is possible to compute the value of α that will produce optimal im-
provement of the solution. For example, if we apply the method of gradient descent
to solve Q[x] = 1

2 xTHx− xTf for some SPD H, then

∂Q[x]
∂x

= Hx− f= r, (B.58)

where r is defined as the residual. In this case, the optimal α can be calculated by
taking a derivative of Q[x[k+1]] with respect to α,

∂Q[x[k+1]]
∂α

= αrTHr− rTHx[k] + rTb. (B.59)

Setting this expression to zero shows that the optimal step value is

α = rTr

rTHr
. (B.60)

B.1.3.2 Newton’s Method

Gradient descent often has a poor convergence rate. However, we can improve the
convergence rate of the descent algorithm if the functional has a positive definite
Hessian by using Newton’s method. Newton’s method may be derived from the
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Taylor series, which describes the approximation for the change in the energy func-
tional Q[x] produced by a perturbation of the current solution x

Q[x+�x] ≈Q[x] +�xT Q′[x] + 1
2�xT Q′′[x]�x, (B.61)

(note the use of “prime notation” in this section to denote derivatives of Q with
respect to x). Consequently, a minimum of Q[x+�x] is obtained when �x satisfies

Q′′[x]�x=−Q′[x]. (B.62)

With this optimal update value for �x, we may write the iterative optimization
method as

x[k+1] = x[k] +�x= x[k] − (Q′′[x])−1 Q′[x]. (B.63a)

This iterative optimization method is known as Newton’s method. In practice, the
iteration is often modified by introducing a free parameter α which controls the step
size,

x[k+1] = x[k] − α(Q′′[x])−1 Q′[x]. (B.63b)

When the Hessian matrix is well-conditioned, this method generally converges
much faster than gradient descent.

Newton’s method is the easiest procedure for solving several of the optimization
problems that appear in this book. Before showing how Newton’s method may be
applied to these optimization problems, we begin with a simpler example of using
Newton’s method. Consider the problem of fitting a set of unknown variables x to
a series of conflicting measurements f, where the number of measurements exceeds
the number of variables. A common approach to fitting the variables to the data is to
use a p-norm penalty to find the optimal x variables which fit the f measurements,

min
x

Q[x] =min
x

∑
|Rx− f|p, (B.64)

where R represents a matrix that matches xi variables with fj measurements. To
produce a least-squares estimate of f, we would employ p = 2 in the energy for-
mulation above. A choice of p = 2 would allow us to easily find the optimum x in
(B.64) by solving

RTRx= RTf. (B.65)

However, a least-squares estimate is often too sensitive to outliers in the measure-
ments f. In order to avoid the undue influence of outliers, we may choose a more
robust value of p in the range 1≤ p < 2. Unfortunately, choosing a p in this range
does not admit the straightforward solution that we saw for p = 2. However, New-
ton’s method provides a good alternative for this optimization. In order to apply
Newton’s method, we must find the gradient Q′[x] and the Hessian Q′′[x]

Q′[x] = pRT|Rx− f|p−1, (B.66)

Q′′[x] = p(p− 1)RT diag
(|Rx− f|p−2)R. (B.67)
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Therefore, the update rule for the kth iteration x[k] to x[k+1] = x[k] +�x is generated
by solving for �x given in (B.62) via

(p− 1)RT diag
(∣∣Rx[k] − f

∣∣p−2
)

R�x=−RT
∣∣Rx[k] − f

∣∣p−1
. (B.68)

Therefore, each iteration of Newton’s method requires solving a system of linear
equations. However, by comparing the solution for p = 2 in (B.65) with the update
given for an arbitrary p in (B.68), we can see that the only difference in the left hand
side is a diagonal weighting matrix which weights each equation by |Rx[k] − f|p−2.
We may pursue this idea further by rewriting the gradient of Q as

Q′[x] = p RT diag
(|Rx− f|p−2)(Rx− f). (B.69)

Formulating the gradient in this way allows us to rewrite the update as

RT diag
(∣∣Rx[k] − f

∣∣p−2
)

R
(
x[k] + (p− 1)�x

)= RT diag
(∣∣Rx[k] − f

∣∣p−2
)

f. (B.70)

Letting α = (p − 1) in (B.63b) allows us to view the equation above as solving
directly for x[k+1] = x[k] + α�x. This direct solution for x[k+1] given by

RT diag
(∣∣Rx[k] − f

∣∣p−2
)

Rx[k+1] = RT diag
(∣∣Rx[k] − f

∣∣p−2
)

f, (B.71)

is known as iteratively reweighted least squares (IRLS) because (B.71) can be
thought of as a weighted version of the least-squares solution in (B.65) in which the
weights are generated from the solution at the previous iteration x[k]. Consequently,
the IRLS method is just Newton’s method with a particular step size parameter.
The IRLS method is the most common method for optimizing the fitting problem
introduced in (B.64) due to its simplicity. However, care must be taken with IRLS
due to the fact that it will converge only for 1 < p < 3 (see [299]). Additionally,
when p < 2, the “weights” given by |Rx[k] − f|p−2 must be regularized to avoid
division by zero.

In the filtering Chap. 5 we described the Basic Energy Model. Optimization of the
Basic Energy Model allowed us to produce filtered data from noisy data associated
with an arbitrary graph. The filtered data was given as a minimum of Q[x] where

Q[x] =
∑
eij

w
p
ij |xi − xj |p + λ

∑
i

w
p
i |xi − fi |p

= 1T(G−1
1 )p|Ax|p + λ1T(G0)

p|x− f|p, (B.72)

where A represents the graph edge–node incidence matrix and f indicates the vector
of noisy data with one element for each node. The above procedure may be used to
optimize Q[x] for 1 < p < 3 via IRLS by solving for the update x[k+1] with

(
L(x[k])+ λH(x[k])

)
x[k+1] = λH(x[k])f, (B.73)
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Fig. B.1 Convex constraints
are necessary for a descent
algorithm to achieve the
global minimum. The
iso-energy lines are shown in
gray and the feasible region
(allowable solutions) is
indicated by the thick black
line. A solution starting at the
cross cannot descend the
energy profile and achieve the
global minimum while
remaining inside the feasible
region

where

H(x[k])= diag
(
(G−1

1 )p−2
∣∣x[k] − fp−2

∣∣), (B.74)

and similarly, L(x[k]) indicates the Laplacian matrix with weights equal to w∗ij =
w

p−2
ij |x[k]i − x

[k]
j |p−2. Consequently, the iteration in (B.73) allows for a straight-

forward solution of the Basic Energy Model presented in Chap. 5. The same model
appears in the clustering Chap. 6 with Dirichlet boundary conditions for some target
nodes. Incorporating these Dirichlet boundary conditions is a straightforward mod-
ification of the iteration in (B.73) that is left to the reader. However, we note that
the boundary conditions could also be enforced approximately using the unmodi-
fied iteration in (B.73) by setting a subset of the measurements fi to the Dirichlet
boundary condition at node vi and setting wi to a large number.

B.1.3.3 Descent Methods for Constrained Optimization

Finally, we consider the application of descent methods to the constrained optimiza-
tion of a convex functional. Consider the problem

min
x

Q[x],
s.t. g(x)≥ b,

(B.75)

where Q[x] is convex. The ability of descent methods to solve this problem is depen-
dent on whether the constraints are also convex. If the constraints are convex, then
any of the interior point methods are available to perform the optimization [312].
Figure B.1 illustrates why convex constraints are necessary. If the constraint set is
not convex, then the only way to arrive at the minimum from some initial points
may be to move away from the solution. Interior point methods are generally good
optimization techniques (see [52, 312] for details on implementation of an interior
point method), but the generality of interior point methods causes them to be less
competitive with optimization algorithms developed for specific problems.
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B.1.4 Nonconvex Energy Optimization over Real Variables

The solution of nonconvex energy optimization problems is, in general, NP-Hard
[27]. The easiest (and most common) approach in real-world applications is to
somehow find a good initialization and then apply a descent algorithm to produce
a reasonable local minimum. However, if a good initialization is difficult to find, a
gradient of the functional cannot be computed or if a near-global optimum solution
is desired, there exist a few general strategies for optimization in this context. When
all other optimization approaches have been exhausted, the most general class of
nonconvex, global energy minimization algorithms may be employed, such as sim-
ulated annealing [67, 233, 251], tabu search [150] and genetic algorithms [153,
192]. For more information about approaches to the general nonconvex optimiza-
tion problem, we refer the reader to [204, 205].

B.2 Integer-Valued Optimization

The real-valued problems studied above allow us to take derivatives of the energy
with respect to the unknown variables, often permitting us to find optimal solutions.
Unfortunately, the general integer programming problem in which the domain is the
set of integers is considerably harder. In fact, the integer programming problem

min
x

wTx,

s.t. Hx≥ b,

x ∈ Z
N,

(B.76)

is generally NP-Hard [291]. A full treatment of this problem is beyond the scope
of the present work (we refer the reader to the excellent work of Nemhauser and
Woosley [291] for more information). However, there are some problems relevant
to this book for which we can still find an optimal solution efficiently.

B.2.1 Linear Objective Functions

One approach to solving the integer optimization problem is to simply relax the con-
straint x ∈ Z

N to x ∈R
N , in which case the problem becomes a linear programming

problem with a polynomial-time solution. Unfortunately, the optimum of this re-
laxed problem will generally not produce an integer solution for x. This real-valued
solution for each element xi could be rounded to the nearest integer, but this integer
solution may be arbitrarily far away from the true integer-valued minimum of the
cost function.

In some circumstances, we may relax x ∈ Z
N to x ∈ R

N and still guarantee that
the solution x is integer. The solution of the relaxed problem is integer if and only
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if H has the property of being totally unimodular and the constraint b ∈ Z
M is also

integer-valued [304]. Consequently, if H is totally unimodular, then we may relax to
x ∈R

N and find the optimal solution via traditional LP methods. A matrix is defined
to be totally unimodular if every submatrix has a determinant equal to an element
of the set {−1,0,+1}. The edge–node incidence matrix (of any graph) is the pro-
totypical matrix which is totally unimodular [291]. In fact, it is known that almost
every totally unimodular matrix can be considered as the edge–node incidence ma-
trix for some graph (with two strange exceptions) [291]. Although the edge–node
incidence matrix is always totally unimodular, the face–edge incidence matrix is not
totally unimodular in general (e.g., [296, 338]). However, the face–edge incidence
matrix is totally unimodular when each edge is included in exactly two faces which
traverse the edge in opposite directions (e.g., a planar graph with a minimum cycle
basis). Total unimodularity of the face–edge incidence matrix in this circumstance
is because the face–edge incidence matrix is the edge–node incidence matrix of the
dual graph (see Chap. 2).

Total unimodularity of the constraint matrix H is both necessary and sufficient for
finding an integer solution to the integer optimization problem in (B.76). However,
if the inequality constraints in (B.76) are replaced with equality constraints

min
x

wTx,

s.t. Hx= b,

x≥ 0,

x ∈ Z
N,

(B.77)

then the total unimodularity condition on H is simply sufficient (i.e., not necessary)
to ensure an integer solution. This problem with equality constraints has received
much less attention than the problem with inequality constraints described in (B.76).
The original work on the equality-constrained problem was performed by Truemper
[383] and was expanded in later work by Grady [162]. Specifically, Grady intro-
duced the notion of pre-unimodular matrices for the case of equality constraints
described in (B.77) which are sufficient to produce an integer solution for x if x is
relaxed to optimize over real values.

Let us call matrix A pre-unimodular if

min
x

wTx,

s.t. Ax= Ax0,

x≥ 0,

(B.78)

has integer solution x for all integer x0.
Let A be of size M × N , rank(A) = r . Grady [162] proved that the following

conditions are equivalent:

(a) A is pre-unimodular.
(b) There exists totally unimodular matrix U such that Ker A= Im U.
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(c) A can be converted to a totally unimodular matrix by elementary row opera-
tions (namely: adding a (possibly fractional) multiple of one row to another,
adding/removing a zero row).

The interested reader may find the proof of this theorem in [162]. Note that a
totally unimodular matrix is always pre-unimodular, but not vice versa. This defini-
tion for pre-unimodularity implies that the face–edge incidence matrix for a com-
plex with trivial homology will be pre-unimodular. Therefore, the discrete Plateau’s
problem motivating the work on pre-unimodular matrices by Grady is solvable using
standard linear programming.

B.2.2 Quadratic Objective Functions

In the previous section we addressed the question of when an integer programming
problem with linear objective functions could be solved using standard methods in
linear programming. This section provides some guidance for addressing the more
difficult problem of unconstrained optimization of quadratic or pairwise objective
functions. Once again this problem is generally NP-Hard. However, there are im-
portant special cases in which the problem is solvable exactly.

B.2.2.1 Pure Quadratic

Consider a problem of optimizing a binary-valued quantity x of the form

min
x

Q[x] =min
x

gTx− xTWx, (B.79)

in which x ∈ B
N , gi ≥ 0, Wij ≥ 0, Wij =Wji and W has a zero diagonal (i.e., Wii =

0). It is known that functionals of this form are submodular and may be optimized
with the max-flow/min-cut method [291]. Recall that a functional is submodular if
it satisfies

Q[a∧ b] +Q[a∨ b] ≤Q[a] +Q[b], (B.80)

where ∧ and ∨ represent componentwise minimum/maximum respectively. The
somewhat surprising fact that (B.79) may be optimized with a max-flow/min-cut
method is seen more clearly if Q[x] is written as

Q[x] = xT(T−W)x= xTLx+ xT(T− D)x

=
∑
ij

Wij (xi − xj )
2 +

∑
i

(ti − di)x
2
i , (B.81)

where T = diag(t) and di is the degree of node vi (i.e., di =∑j Wij ). Written in
this form, the value of Q[x] can be seen to represent the cost of a cut in the graph
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represented by (the sparsity pattern) of W. Specifically, the value of Q[x] represents
the cost of the cut between a set S ⊂ V and its complement S̄ when x is a binary
indicator vector that defines membership in S. Since Q[x] represents the cost of
a cut, the minimum of Q[x] is achieved by the minimum cut in the graph. The
minimum cut between two terminals in a graph with nonnegative weights is solvable
by any algorithm for computing max-flow/min-cut. In this case, the “terminals” are
a result of the second term in which each node is attached to a terminal with weight
ai = |ti − di | with the node connected to the source terminal (xi = 1) if ai < 0 and
the node is connected to the sink terminal (xi = 0) if ai > 0.

A max-flow/min-cut computation is a key component of many binary and integer
optimization procedures. The utility of max-flow/min-cut in optimization is derived
from the ability to isomorphically map the state space of a binary-valued function
to a cut. When the state space is identified with the space of possible cuts and the
objective function is submodular, then an algorithm to find the minimum cut will
also find the minimum energy state. The mapping of a cut to a binary-valued state
is accomplished by associating each variable with a particular node and treating the
resulting binary-valued vector x as an indicator vector representing a set of nodes.
The indicator vector then represents a cut between nodes inside the set and nodes
outside the set. The edge weights between each node are then defined so that the
cost of each cut equals the value of the energy for the corresponding state. Note
that scalar Dirichlet boundary conditions for some of the xi variables (i.e., xS = 0,
xU = 1) can easily be enforced through manipulation of T to strongly penalize these
variables from deviating from their prescribed values.

If we are trying to solve a problem of the form (B.79) which is not submodular
(i.e., Wij ≥ 0 and ti ≥ 0 are not satisfied everywhere), then it will not be possible to
transform our state space into a minimum-cut problem on a graph with nonnegative
weights. However, it may still be possible to find a fast optimization. Specifically, if
the sparsity pattern of W represents the adjacency matrix of a planar graph, then it
is possible to produce an exact solution to (B.79) even if (B.79) is not submodular.
This surprising result is due to the fact that a minimum-cut problem with negative
weights may be cast as a maximum-cut problem, which is solvable for planar graphs
by equivalence with optimal matching [183, 346]. Fast, polynomial-time algorithms
exist for the solution of this matching problem (e.g., the Blossom algorithm [120]),
although better matching algorithms is an area of active research [241]. Problems on
planar graphs do appear often in practice, e.g., two-dimensional image processing
or surface mesh processing (when the surface has zero genus).

If (B.79) is not submodular and the sparsity pattern of W does not represent
a planar graph, then the solution (i.e., min-cut on a nonplanar graph with negative
weights) may be well-approximated in polynomial time using semidefinite program-
ming (SDP) [152]. Instead of approximating the solution with SDP, a very different
approach to finding an optimum solution was proposed by Hammer et al. [46, 186].
Hammer et al. proposed a method for optimizing functionals of the form in (B.79)
(more generally, to optimize quadratic pseudo-boolean functions) which showed
that, by solving a max-flow/min-cut problem on a modified graph, it is possible to
obtain a partial solution to the problem. In other words, the output of the optimiza-
tion by Hammer et al. is to definitively label some variables xi as xi = 1 or xi = 0,
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but some variables may be left unlabeled. The surprising aspect of this method is
that all of the variables which are output with labels are labeled optimally (i.e.,
these variables are labeled the same as they would be in an optimal solution). In
some practical problems in image processing, it has been demonstrated [243] that a
large number of variables are definitively labeled using this procedure and suggest
that the remaining unlabeled variables can be decided using a heuristic procedure.
Additionally, it was observed in [243] that the number of unlabeled variables after
this optimization procedure depended on the difference between t and the node de-
gree vector d. Specifically, if t = d, then all of the nodes will be unlabeled and if
the difference between t and d is large, then there will be fewer unlabeled nodes
(possibly none).

B.2.2.2 General Pairwise Terms

In the previous section we considered the energy for the purely quadratic optimiza-
tion which consisted of the sum of a linear term and a quadratic term with a binary
variable x. A more generalized way of viewing the quadratic term is to see it as a
term which incurs a cost based on the values of pair of variables xi and xj . There-
fore, we may write a more generalized “quadratic” optimization problem as finding
a minimum of Q[x] where

Q[x] =
∑
eij

E1[xi, xj ] +
∑
vi

E0[xi]. (B.82)

Therefore, our original quadratic optimization problem is a special case of this gen-
eralized energy when E1[xi, xj ] =Wijxixj +Wjixixj and E0[xi] = tixi .

We now consider the circumstances under which (B.82) may be solved for a
global optimum when our variable x is integer-valued, i.e., xi ∈ Z and 0 ≤ xi < k.
Ishikawa [211] showed that if

E1[xi, xj ] = f (xi − xj ), (B.83)

for some convex function f , then (B.82) may be solved for a global optimum [211]
via a single max-flow/min-cut computation on a graph. This graph has a number of
nodes equal to Nk where N represents the number of variables and k is the number
of integers that each variable is permitted to take. The key idea for this optimization
is to map each state of x to one cut in the graph, which causes the minimum cut to
represent the minimum state of x.

When E1[xi, xj ] is not a convex function, then it is generally NP-Hard to opti-
mize (B.82) over the set xi ∈ Z, 0≤ xi < k (see [331] for a more thorough charac-
terization of when these multilabel problems are solvable with a polynomial time
algorithm). Unfortunately, the descent methods discussed previously do not apply
to this case because we cannot take gradients of the energy with respect to integer-
valued variables. However, several good methods do exist for finding a local mini-
mum, given an initial state x[0]. The simplest method to generate an improved state
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x[k+1] from a previous state x[k] is a greedy algorithm known as Iterated Con-
ditional Modes [32]. One iteration of the Iterated Conditional Modes algorithm
updates only a single variable, such that the variable chosen for update produces
a label change with the best improvement to the energy functional in (B.82). This
iteration is then applied until convergence.

Iterated Conditional Modes is straightforward to implement, but the algorithm
has a tendency to quickly get stuck in an undesirable local minimum [56]. Boykov
et al. [56] noted that this tendency was due to the fact that the algorithm updated
just one variable at a time. Consequently, Boykov et al. [56] proposed different
algorithms that produced a much better local minimum if E1[xi, xj ] satisfied cer-
tain conditions. Specifically, the first of these algorithms applied to the case when
E1[xi, xj ] defines a semi-metric, i.e.

E1[xi, xj ] = 0, if xi = xj , (B.84a)

E1[xi, xj ] = E1[xj , xi] ≥ 0. (B.84b)

This algorithm, called the α–β-swap algorithm, iteratively proposes to change any
variable with value xi = α to xi = β and vice versa, with all other variables keep-
ing their label. The iterative update in the α–β-swap algorithm is cast as a max-
flow/min-cut problem which finds the optimal α–β-swap from one iteration to the
next. The advantage of this algorithm is that a large number of variables are up-
dated simultaneously. This simultaneous update is in contrast to Iterated Condi-
tional Modes which updates each variable independently. Boykov et al. [56] ad-
ditionally provide a stronger algorithm when E1[xi, xj ] defines a metric, mean-
ing that E1[xi, xj ] is a semi-metric and additionally satisfies the triangle inequality
E1[xi, xk] ≤ E1[xi, xj ]+E1[xj , xk]. This second algorithm, called α-expansion, op-
erates similarly to the α–β-swap algorithm, except that each variable xi �= α is given
the opportunity to switch to xi = α. The optimal update for all variables to switch
to xi = α from the current state is also accomplished by solving a max-flow/min-cut
problem. Boykov et al. [56] showed that the Potts Model [311] is a special case of
(B.82) with a metric E1[vi, vj ] defined by

E1[xi, xj ] =
{

1 if xi �= xj ,

0 otherwise.
(B.85)

Consequently, the α-expansion algorithm may be applied to find a good local opti-
mum of the Potts Model.

Since the general pairwise energy optimization problem in (B.82) is NP-Hard,
there is ongoing work into finding algorithms that produce better local minima in
practice. In particular, substantial effort has been recently devoted to fast approxima-
tion algorithms to this problem in the computer vision literature [245, 369]. Other
examples of this type of optimization algorithm are belief propagation [411] and
tree-reweighted message passing [390].
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B.2.2.3 Higher-Order Terms

The general pairwise energy in (B.82) could be described as assigning energy contri-
bution for individual variables (nodes) and pairs of variables (edges). Consequently,
it is natural to consider an energy which assigns contributions for higher-order struc-
tures, such as triplets (faces), e.g.,

Q[x] =
∑
fijk

E2[xi, xj , xk] +
∑
eij

E1[xi, xj ] +
∑
vi

E0[xi]. (B.86)

These energies frequently appear in the study of Markov Random Fields, for which
the Hammersley–Clifford theorem states that the probability of any configuration x
may be decomposed into the probabilities defined for each clique [231].

Our intention for covering the optimization of higher-order terms for integer-
valued variables is intended primarily to direct the reader to the ongoing work on
this topic (see [212, 245, 324] for the most recent work in the context of computer
vision). Kolmogorov and Zabih [244] showed that an optimal solution for (B.86)
may be obtained by solving a max-flow/min-cut problem if x is binary-valued and
fixing any one value in every E2[xi, xj , xk] term is submodular in the remaining two
variables. Kohli et al. [239] extended the α-expansion algorithm to higher-order
energies, such as (B.86). The belief propagation method has also been extended to
address the minimization of a higher-order energy functional [252, 309].

B.2.3 General Integer Programming Problems

We have now reviewed some of the known strategies for solving the integer pro-
gramming problem in which an exact solution is obtainable in polynomial time.
However, there are many real-world problems in which the integer programming
problem is not addressed by the techniques discussed previously.

When we considered the optimization of real-valued variables, we eventually ran
out of good optimization choices. If none of the reviewed techniques are applica-
ble, then the most general set of optimization tools may be applied to the integer
optimization problem. One technique to avoid an exhaustive search for an integer
solution is known as branch-and-bound in which a search tree is defined to partition
the space of possible solutions into leaves of a search tree and the energies of the
solutions in various branches are bounded to avoid traversing the entire tree [62,
253]. In addition to the branch-and-bound methodology, one can always employ the
most general set of optimization techniques such as simulated annealing [67, 233,
251], tabu search [150] and genetic algorithms [153, 192] for the optimization of
a general energy functional. For more information about approaches to the general
integer optimization problem, we refer the reader to Nemhauser and Wolsey [291].



Appendix C
The Hodge Theorem: A Generalization
of the Helmholtz Decomposition

In this appendix, the basic Helmholtz decomposition theorem is reviewed, and the
generalization of the decomposition known as the Hodge decomposition is pre-
sented.

Consider a closed, compact, n-dimensional Riemannian manifold Mn. The cen-
tral result of Hodge theory is that for any p-form α̃ there is a uniquely determined
cohomologous p-form β̃ , β̃ ∼ α̃, β̃ ∈∧p , such that �β̃ is closed, and if α̃ is closed
then β̃ is harmonic [201, 401]. Simply put,

Ker{�p} ∼=Hp(Mn;G) (C.1)

for some Abelian group G, where the isomorphism results from the uniqueness of a
harmonic representative for each de Rham class with coefficients in G.

In addition to this isomorphism, Hodge theory presents a unique decomposition
of a p-form into the sum of an exact form, a coexact form, and a harmonic part.
Viewed in this way, the Hodge decomposition is the natural generalization of the
Helmholtz decomposition, which is defined only for 1-forms on noncompact three-
dimensional manifolds with the trivial first cohomology group.

C.1 The Helmholtz Theorem

In its original form, the Helmholtz theorem guaranteed that the infinitesimal defor-
mation of a deformable object or perfect fluid could be decomposed into a transla-
tion, rotation, uniform dilation, and two orthogonal components of shear [195]. In
vector notation, the Helmholtz theorem can be restated as follows:

Theorem 1 (Helmholtz theorem) Any vector field �F on R
3 approaching a limit

at∞
(a) is determined by its curl and divergence, and
(b) can be written as the sum of a curl and a gradient.
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In vector calculus, the Helmholtz theorem can be reconstructed from the defini-
tion of the Laplacian operator on three-dimensional vector fields. Recall that for a
vector field �F ∈R

3, the vector Laplacian is given by

� �F =∇(∇ · �F)−∇ × (∇ × �F) (C.2)

provided that �F is twice differentiable. Suppose φ = ∇ · �F and �A= ∇ × �F . Thus,
the Laplacian operator on �F may be rewritten as

� �F =∇φ −∇ × �A, (C.3)

thus our goal is to solve the Poisson equation in (C.3). In Cartesian coordinates, one
can label the components ci of the Laplacian of �F as

ci = (∇φ −∇ × �A)i for i = 1,2,3, (C.4)

in which case the vectorized Poisson equation becomes � �F = �c. If we specify that
Fi goes as 1

|�r| as |�r| →∞ as a boundary condition, the solution to the scalar Poisson
equation is computable via the Green’s function. In three dimensions, the Green’s
function G(�r, �r ′) corresponding to the scalar Laplacian operator is defined by the
equation �G(�r, �r ′)= δ3(�r − �r ′), thus the Green’s function for the Poisson equation
is given by

G(�r, �r ′)=− 1

4π |�r − �r ′| , (C.5)

representing the kernel of an integral transform. We may define a integral operator
based on the Green’s function kernel that we shall call the Green’s operator as

G[u(�r)] =
∫

R3

G(�r, �r ′)u(�r ′)dV ′ (C.6)

for an arbitrary function u(�r) defined over R
3.

For the scalar Poisson equation, the solution to (C.4) is given by

Fi(�r) = G[ci(�r)] =
∫

R3

G(�r, �r ′)ci(�r ′)dV ′

= − 1

4π

∫

R3

ci(�r ′)
|�r − �r ′|dV ′, i = 1,2,3 (C.7)

using the Green’s function given in (C.5). From the vector field components, the full
vectorial representation of the field,

�F(�r)=
∫

R3

G(�r, �r ′)�c(�r ′)dV ′ = − 1

4π

∫

R3

�c(�r ′)
|�r − �r ′|dV ′, (C.8)
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the Green’s function solution to the Poisson equation in (C.4), follows immediately.
From here, substitution of the gradient and curl that comprise �c finally yields

�F(�r)=− 1

4π

∫

R3

∇φ(�r ′)−∇ × �A(�r ′)
|�r − �r ′| dV ′ (C.9)

demonstrating how �F is determined by its curl and divergence, thus proving the
validity of the first half of the Helmholtz theorem.

To prove uniqueness, consider two solutions to (C.3), �F1 and �F2, such that both
� �F1 = ∇φ − ∇ × �A and � �F2 = ∇φ − ∇ × �A. By the linearity of the Laplacian

operator, their difference �̃F = �F1 − �F2 would satisfy � �̃F = � �F1 −� �F2 = 0. We

may extract conditions on the curl and divergence of �̃F from its harmonic character
by noting that

0=
∫

R3

�̃F ·� �̃FdV =
∫

R3

(∥∥∇ × �̃F∥∥2 + ∥∥∇ · �̃F∥∥2
)

dV + boundary terms, (C.10)

where the boundary terms vanish since �̃F is bounded at infinity. Therefore, both

∇ × �̃F = 0 and ∇ · �̃F = 0 in R
3. Since the curl of �̃F vanishes in R

3, the Poincaré

lemma guarantees that �̃F = ∇ψ for some ψ , and since the divergence of �̃F also
vanishes,

0=∇ · �̃F =∇ · ∇ψ =∇2ψ, (C.11)

showing that ψ must also be harmonic. It follows from the vanishing of �̃F at the
boundary that ψ is bounded at |�r| →∞, and by the Maximum Modulus theorem ψ

must be a constant. Then �̃F = 0 and �F1 = �F2, thus the solution is unique.
Now that it has been proven that the vector field �F is uniquely determined by

its curl and divergence on noncompact, but topologically trivial, R
3 provided it is

well-behaved at the boundary, it remains to be shown that �F can be written as the
sum of a divergence-free component and a curl-free component, i.e., the sum of a
curl and a gradient. Consider again the expression of the vector field �F(�r) given in
(C.8). By assumption, the vector Laplacian of �F(�r) may be expressed in terms of a
gradient and a curl as in (C.3), and thus serves to define �F(�r) in terms of a vector
Poisson equation such that �F(�r) may in turn be represented as

�F(�r) =
∫

R3

G(�r, �r ′)(∇φ(�r ′)−∇ × �A(�r ′))dV ′ (C.12a)

=
∫

R3

[G(�r, �r ′)∇φ(�r ′)−G(�r, �r ′)(∇ × �A(�r ′))]dV ′ (C.12b)

where again G(�r, �r ′) is the Green’s function of the Poisson equation. It is our goal
to manipulate the above expression for �F(�r) as the sum of a gradient with a curl in
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given only that �F approaches a constant at the boundary of the space in which it is
defined, R

3, and therefore both φ(�r)= 0 and �A(�r)= 0 on ∂(R3).
First we shall consider the term involving φ(�r ′). Integrating by parts—or invok-

ing the product rule—shows that

∇(G(�r, �r ′)φ(�r ′))= (∇G(�r, �r ′))φ(�r ′)+G(�r, �r ′)(∇φ(�r ′)) (C.13)

where the gradient operator is with respect to the primed coordinates, i.e., with
respect to �r ′. To extract a boundary term out of this relation, we require an integrand
with which we may invoke the Divergence theorem to translate a volume integral
over R

3 to a vanishing surface integral on its boundary. One method is to let �α(�r ′)=
�α ∈ R

3 be a constant vector, then we may integrate by parts the scalar product of �α
with G(�r, �r ′)φ(�r ′) to yield

∇ · (�αG(�r, �r ′)φ(�r ′))= (∇ · �α)G(�r, �r ′)φ(�r ′)+ �α · ∇(G(�r, �r ′)φ(�r ′)) (C.14a)

but since �α is constant, ∇ · �α = 0,

∇ · (�αG(�r, �r ′)φ(�r ′))= �α · ∇(G(�r, �r ′)φ(�r ′)) (C.14b)

then substituting in (C.13) into the left hand side term, we see that

∇ · (�αG(�r, �r ′)φ(�r ′))= �α ·
[
(∇G(�r, �r ′))φ(�r ′)+G(�r, �r ′)(∇φ(�r ′))

]
. (C.14c)

The volume integral of the term ∇ · (�αG(�r, �r ′)φ(�r ′)) may be re-expressed as a
boundary integral via the Divergence theorem, and since by construction φ(�r ′)= 0
on ∂(R3),

0 =
∫

∂(R3)

(�α · n̂)G(�r, �r ′)φ(�r ′)dS′ (C.15a)

=
∫

R3

∇ · (�αG(�r, �r ′)φ(�r ′))dV ′ (C.15b)

= �α ·
[∫

R3

(∇G(�r, �r ′))φ(�r ′)dV ′ +
∫

R3

G(�r, �r ′)(∇φ(�r ′))dV ′
]

(C.15c)

therefore ∫

R3

(∇G(�r, �r ′))φ(�r ′)dV ′ = −
∫

R3

G(�r, �r ′)(∇φ(�r ′))dV ′, (C.16)

where the right-hand side of (C.16) is equivalent to the φ(�r ′) term of the expression
for �F(�r) in (C.12). This construction has made it possible to transfer the gradient op-
erator acting on φ(�r ′) to a gradient operator acting on the Green’s function G(�r, �r ′).
We will now attempt to make a similar transfer of the curl operator on �A(�r ′).
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Again, for the �A(�r ′) term we wish to take advantage of the vanishing of �A(�r ′) on
the boundary of R

3 via an application of the Divergence theorem. By the product
rule we see that the G(�r, �r ′)(∇ × �A(�r ′)) term may be viewed as a term of

∇ × (G(�r, �r ′) �A(�r ′))= (∇G(�r, �r ′))× �A(�r ′)+G(�r, �r ′)(∇ × �A(�r ′)). (C.17)

Following the procedure above, consider a constant vector �α(�r ′)= �α ∈R
3, such that

integrating by parts the vector product of �α with G(�r, �r ′) �A(�r ′) yields

∇ · (�α ×G(�r, �r ′) �A(�r ′)) = (∇ × �α) ·G(�r, �r ′) �A(�r ′)
− �α · [∇ × (G(�r, �r ′) �A(�r ′))] (C.18a)

but since �α is constant, ∇ · �α = 0,

∇ · (�α ×G(�r, �r ′) �A(�r ′))=−�α · [∇ × (G(�r, �r ′) �A(�r ′))] (C.18b)

then substituting in (C.17) into the left hand side term, we see that

∇ · (�α×G(�r, �r ′) �A(�r ′)) = −�α ·
[
(∇G(�r, �r ′))× �A(�r ′)

+G(�r, �r ′)(∇ × �A(�r ′))
]
. (C.18c)

The volume integral of the term ∇ · (�α×G(�r, �r ′) �A(�r ′)) may also be re-expressed as
a boundary integral via the Divergence theorem, and since by construction �A(�r ′)= 0
on ∂(R3),

0 =
∫

∂(R3)

(�α×G(�r, �r ′) �A(�r ′))dS′ (C.19a)

=
∫

R3

∇ · (�α ×G(�r, �r ′) �A(�r ′))dV ′ (C.19b)

= −�α ·
[∫

R3

((∇G(�r, �r ′))× �A(�r ′))dV ′

+
∫

R3

G(�r, �r ′)(∇ × �A(�r ′))dV ′
]

(C.19c)

therefore,∫

R3

[(∇G(�r, �r ′))× �A(�r ′)]dV ′ =
∫

R3

[G(�r, �r ′)(∇ × �A(�r ′))]dV ′, (C.20)

where the right-hand side of (C.20) is equivalent to the φ(�r ′) term of the expression
for �F(�r) in (C.12). This construction has made it possible to transfer the curl oper-
ator acting on �A(�r ′) to a gradient operator acting on the Green’s function G(�r, �r ′).
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The vector field �F(�r) can now be seen as the sum of two integrals,

�F =−
∫

R3

(∇�r ′G(�r, �r ′))φ(�r ′)dV ′ −
∫

R3

[(∇�r ′G(�r, �r ′))× �A(�r ′)]dV ′, (C.21)

each with an integrand in terms of the gradient of the Green’s function. We have
introduced the notation ∇�r ′ to specify that the gradient operator in this case is with
respect to the primed coordinates given by the vector �r ′. We may now exploit the
natural symmetry of the Green’s operator relative to the two coordinate frames, one
given by �r and the other by �r ′. Explicitly evaluating the gradient of the Green’s
function of the Poisson equation with respect to the primed coordinates shows that
the result of the gradient operation with respect to unprimed coordinates is identical
to the gradient operation with respect to primed coordinates, i.e.,

∇�r ′G(�r, �r ′) = ∇�r ′ 1

4π |�r − �r ′| =
(�r − �r ′)

4π |�r − �r ′|3 =∇�r
−1

4π |�r − �r ′|
= −∇�rG(�r, �r ′), (C.22)

where the notation ∇�r specifies the gradient with respect to the unprimed coordi-
nates.

In the integral expression for �F(�r), by the symmetry of the gradient operator we
may freely substitute the gradient operators with respect to the primed coordinates
with the gradient operator with respect to unprimed coordinates, that is,

�F =
∫

R3

(∇�rG(�r, �r ′))φ(�r ′)dV ′ +
∫

R3

[(∇�rG(�r, �r ′))× �A(�r ′)]dV ′, (C.23)

without loss of generality. Since the fields φ(�r ′) and �A(�r ′) of the integrands are
both functions defined over the primed coordinates, they are constant with respect
to the unprimed coordinates and therefore their derivatives with respect to �r vanish
identically. Therefore, in the first integral term containing φ(�r ′),

(∇�rG(�r, �r ′))φ(�r ′) = ∇�r (G(�r, �r ′)φ(�r ′))−G(�r, �r ′)(∇�rφ(�r ′))
= ∇�r (G(�r, �r ′)φ(�r ′)) (C.24)

so the gradient operator may be applied to the product of G(�r, �r ′)φ(�r ′). Further, in
the second integral term containing �A(�r ′),

(∇�rG(�r, �r ′))× �A(�r ′) = ∇�r × (G(�r, �r ′) �A(�r ′))−G(�r, �r ′)(∇�r × �A(�r ′))
= ∇�r × (G(�r, �r ′) �A(�r ′)) (C.25)

so here the gradient operator may be extended to a curl operation on the product of
G(�r, �r ′) �A(�r ′). Given that the two gradient operators may be expressed as a gradient
and a curl operating on the full integrand, and the operators operate on the unprimed
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coordinates whereas the integration takes place over the primed coordinates, each
operator may be pulled out from the integrand.1 Therefore, substituting the results
from (C.24) and (C.25) into the integral expression for �F(�r), we see that

�F(�r) =
∫

R3

[∇�r (G(�r, �r ′)φ(�r ′))]dV ′ +
∫

R3

[∇�r × (G(�r, �r ′) �A(�r ′))]dV ′ (C.27a)

= ∇�r
[∫

R3

G(�r, �r ′)φ(�r ′)dV ′
]
+∇�r ×

[∫

R3

(G(�r, �r ′) �A(�r ′))dV ′
]

(C.27b)

and thus �F(�r) is finally expressed as the sum of a gradient and a curl. Using the
Green’s operator G in place of the integrals with the Green’s function as the kernel,
we may express the sum more suggestively as

�F(�r)=∇G[φ(�r)] + ∇ × G[ �A(�r)] = ∇G[∇ · �F(�r)] + ∇ × G[∇ × �F(�r)] (C.28)

where the curl, gradient, and divergence operators are defined with respect to the
unprimed coordinates, i.e., �r . Commonly, the arguments of the gradient and curl
operators are given explicitly as

ϕ(�r) � G[∇ · �F(�r)] = −
∫

R3

∇ · �F(�r ′)
4π |�r − �r ′|dV ′, (C.29a)

�A(�r) � G[∇ × �F(�r)] =
∫

R3

∇ × �F(�r ′)
4π |�r − �r ′|dV ′ (C.29b)

1As an aside for those familiar with electromagnetics, the exchange of the order of integration
and differentiation that takes place in (C.27) can be seen as example of the connection between
Coulomb’s law and Gauss’s law in the case of the scalar integrand, and as an example of the
connection between the Biot–Savart law and Ampère’s law in the case of the vector integrand
[214].

Assuming a constant permittivity, the integral form of the electric displacement field �D(�r) is
given by Coulomb’s law

�D(�r)=∇G[ρ(�r)] =
∫

R3

ρ(�r ′)(�r − �r ′)
4π |�r − �r ′|3 dV ′, (C.26a)

where ρ(�r) represents the charge density. Gauss’s law states that ∇ · �D = ρ.
For a constant permeability, the integral form of the magnetic field �H(�r) is given by the Biot-

Savart law

�H(�r)=∇ × G[ �J (�r)] =
∫

R3

�J (�r ′)× (�r − �r ′)
4π |�r − �r ′|3 dV ′, (C.26b)

where �J (�r) is the current density. Ampère’s law states that ∇ × �H = �J .
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such that (C.28) may be re-written as

�F(�r)=−∇ϕ(�r)+∇ × �A(�r) (C.29c)

thus both parts (a) and (b) of the Helmholtz theorem have been proven.
The limitations of the Helmholtz decomposition are apparent. Uniqueness of the

decomposition only holds on non-compact R
3 when the vector field �F approaches

a limit on the boundary. Immediately, one might question how the theorem breaks
down on a closed 3-manifold M3.

In addition to the requirement that the vector field behave “nicely” at the bound-
ary, the Helmholtz decomposition, due to its vector calculus representation, is con-
strained to apply only in three-dimensional space. The Hodge decomposition gen-
eralizes the Helmholtz decomposition for n-dimensional manifolds.

It is important to note that the Helmholtz theory outlined above provides an or-
thogonal decomposition of the vector field �F(�r). The set of irrotational vectors are
orthogonal in the Hilbert space sense to the set of solenoidal vectors. The orthog-
onality of the decomposition also translates into the differential forms setting in
which we shall consider the Hodge decomposition.

C.2 The Hodge Decomposition

To motivate the discovery of the Hodge decomposition—the generalization of the
Helmholtz decomposition for arbitrary p-forms in n dimensions—as the beginning
of continuous Hodge theory and harmonic integral theory, we shall attempt to follow
the logical path of the previous section.

Thus, we begin with a statement of the generalized Helmholtz theorem that will
grow into the central result of Hodge theory.

Theorem 2 (Generalized Helmholtz theorem) Consider an orientable, compact, n-
dimensional Riemannian manifold Mn. Consider the Laplace–de Rham operator
�p = dd∗ + d∗d on p-forms. Then, given a p-form ω̃,

(a) ω̃ is determined by η̃1 = dω̃ and η̃2 = d∗ω̃ if a finite number of compatibility
conditions are met, and

(b) ω̃ = dλ̃1 + d∗λ̃2 + λ̃H , where d∗λ̃1 = 0, dλ̃2 = 0, and dλ̃H = d∗λ̃H = 0, and
the space of all λ̃H is finite-dimensional.

On closed manifolds, the p-forms λ̃H satisfying dλ̃H = d∗λ̃H =�pλ̃H = 0 are
called harmonic p-forms. The space of harmonic forms on Mn will be denoted as
Hp(Mn) or equivalently as Ker{�p}. Before proceeding, the following definitions
are required.

Definition 1 A separable Hilbert space is an infinite-dimensional inner product
space where any vector v can be written as v =∑∞i=1 αivi where {vi}∞i=1 is a set of
basis vectors.
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Definition 2 A Fredholm operator is a linear operator whose spectrum is discrete
and all eigenvalues have finite multiplicity.

The Laplace–de Rham operator defined on p-forms in T ∗Mn, �p , is an elliptic
operator and if Mn is compact then �p is Fredholm.

The central result required to establish the generalized Helmholtz theorem is
the Fredholm Alternative, which provides a definition of the rank of an infinite-
dimensional linear operator and motivates a decomposition in terms of the range
and nullspace of the operator.

Theorem 3 (Fredholm Alternative) If a bounded operator L is Fredholm and if u

and f are elements of separable Hilbert spaces, then the equation

Lu= f (C.30)

has a solution if and only if f is orthogonal to all solutions v of L∗v = 0, i.e.,
〈f, v〉 = 0, where L∗ is the adjoint operator of L.

The Fredholm Alternative states that solutions ˆ̃ω to the Poisson equation �ω̃= η̃
must live in a space orthogonal to the space of solutions �∗ξ̃ = 0.

However, the Laplace–de Rham operator is formally self-adjoint [356].

Theorem 4 (Formal self-adjointness of �) Given that d∗ is the adjoint of d,
d∗ ≡ d∗, with respect to the Hodge inner product defined on the n-dimensional (Rie-
mannian) manifold Mn, and either (1) Mn is closed or (2) the Laplace–de Rham
operator is constrained to operate on the set of p-forms that are bounded on ∂Mn,
then �=�∗, i.e.,

〈�μ̃, ν̃〉 = 〈dd∗μ̃+ d∗dμ̃, ν̃〉 (C.31a)

= 〈dd∗μ̃, ν̃〉 + 〈d∗dμ̃, ν̃〉 (C.31b)

= 〈d∗μ̃,d∗ν̃〉 + 〈dμ̃,dν̃〉 (C.31c)

= 〈μ̃,dd∗ν̃〉 + 〈μ̃,d∗dν̃〉 (C.31d)

= 〈μ̃,dd∗ν̃ + d∗dν̃〉 (C.31e)

= 〈μ̃,�ν̃〉. (C.31f)

Combining � = �∗ with the Fredholm alternative, it follows that �ω̃ = η̃ has
a solution if and only if η̃ ⊥ λ̃H for all harmonic λ̃H satisfying �λ̃H = 0. In other
words, �ω̃= η̃ has a solution if and only if η̃ is orthogonal to the space of harmonic
forms. This also implies that if �ω̃= η̃ has a solution it is unique up to a harmonic
form, i.e., if ˆ̃ω is a solution, then ˆ̃ω+ λ̃H is also a valid solution. In this case, ˆ̃ω may
be considered the inhomogeneous solution and λ̃H the homogeneous solution to the
Poisson equation.

Consider the Poisson equation �ω̃ = ν̃ where here ν̃ is a p-form chosen as or-
thogonal to the space of harmonic forms (ν̃ ⊥Ker{�}).
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Fact 1 There exists a Green’s operator G :∧p
(Mn)→ (Hp)⊥ such that Gν̃ = ω̃

[394].

(Note that Gν̃ is equivalent to the right-hand side of (C.8) in the vector calculus
setting.)

To show that the Green’s operator commutes with the differential and codiffer-
ential operators, we must first show that the differential and codifferential operators
commute with the Laplace–de Rham operator. The commutativity of the two deriva-
tive operators is clear from the following manipulations:

d� = d(dd∗ + d∗d)= d2d∗ + dd∗d= dd∗d+ d∗d2

= (dd∗ + d∗d)d=�d, (C.32a)

d∗� = d∗(dd∗ + d∗d)= d∗dd∗ + d∗2d= dd∗2 + d∗dd∗

= (dd∗ + d∗d)d∗ =�d∗ (C.32b)

as both d2 = 0 and d∗2 = 0. Therefore, if in the orthogonal complement of the space
of harmonic forms (Hp(Mn))⊥ the composition of the Laplace–de Rham operator
with the Green’s operator is the identity operator, i.e., G�= Id on (Hp(Mn))⊥, then
on (Hp(Mn))⊥, by the commutativity of d and �,

d = G�d= Gd�, (C.33a)

d = dG� (C.33b)

so, subtracting (C.33a) and (C.33b),

(dG − Gd)�= 0 on (Hp(Mn))⊥. (C.34)

Since we are operating on the orthogonal complement of the kernel of the Laplace–
de Rham operator, the left hand side term (dG−Gd) must vanish. It is clear that the
commutativity relations

dG = Gd and, similarly, d∗G = Gd∗ on (Hp(Mn))⊥ (C.35)

hold. So, if the inhomogeneous solution ˆ̃ω ∈ (Hp(Mn))⊥ of �ω̃ = η̃, where by
necessity η̃ ∈ (Hp(Mn))⊥ for the solution to exist, can be expressed as � ˆ̃ω = η̃ =
dη̃1+d∗η̃2 for some p-forms η̃1 and η̃2 such that dη̃1,d∗η̃2 ∈ (Hp(Mn))⊥ and thus
η̃1, η̃2 ∈ (Hp(Mn))⊥, then one can decompose the p-form ω̃ into a component in
(Hp(Mn))⊥ and a component in Hp(Mn) as in

ω̃ = ˆ̃ω+ λ̃H = G� ˆ̃ω+ λ̃H = Gdη̃1 + Gd∗η̃2 + λ̃H

= d(Gη̃1)+ d∗(Gη̃2)+ λ̃H (C.36)

by the commutativity of d and d∗ with G on (Hp(Mn))⊥. This decomposition of
the p-form ω̃ into a closed, coclosed and harmonic form is known as the Hodge
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decomposition on p-forms, the generalization of the Helmholtz decomposition to
n dimensions.

The expression (C.36) provides an orthogonal decomposition of the elements of∧p defined over Mn equivalent to

p∧
=
(

�

p∧)
⊕Hp =

(
dd∗

p∧)
⊕
(

d∗d
p∧)
⊕Hp

=
(

d
p−1∧)

⊕
(

d∗
p+1∧)

⊕Hp (C.37)

where ⊕ denotes the direct sum between spaces.
The existence proof of the Hodge decomposition is difficult (see Refs. [139,

394]), but to demonstrate uniqueness of this result, suppose we have a Hodge de-
composition of the p-form β̃ given by

β̃ = dα̃ + d∗γ̃ + h̃= 0,

where α̃ ∈ ∧p−1, γ̃ ∈ ∧p+1, and h̃ ∈ Hp . It follows that d(dα̃) = 0 and that
dh̃= 0. Therefore,

dd∗γ̃ = 0, (C.38a)

〈dd∗γ̃ , γ̃ 〉 = 0, (C.38b)

〈d∗γ̃ ,d∗γ̃ 〉 = 0, (C.38c)

d∗γ̃ = 0, thus (C.38d)

dα̃+ h̃ = 0. (C.38e)

Similarly, one can show that both dα̃ = 0 and h̃ = 0 [139, p. 139]. Note that the
uniqueness is guaranteed for the summands of the Hodge decomposition only, e.g.,
dα̃ is unique, but α̃ is not, as we may add to α̃ any closed (p− 1) form. We are now
in a position to state Hodge’s theorem in its entirety.

Theorem 5 (Hodge’s theorem [142]) Let Mn be a closed Riemannian manifold.
The space of harmonic p-forms, defined by

Hp(Mn) �
{
h̃ | h̃ ∈

p∧
, dh̃= d∗h̃= 0

}
, (C.39)

is finite-dimensional, and Poisson’s equation

�ω̃p = η̃p (C.40)

has a solution if and only if η̃ is orthogonal to Hp , i.e.,

〈η̃p, h̃
p〉 = 0 for all h̃

p ∈Hp. (C.41)
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The requirement of orthogonality between η̃ and h̃ can be seen as a necessity for
the Poisson equation to have a solution since if �ω̃= η̃ and h̃ ∈Hp ,

〈η̃, h̃〉 = 〈�ω̃, h̃〉 = 〈ω̃,�h̃〉 = 0

as h̃ ∈Ker{�}.
The finite dimensionality of Hp is a deep result that follows from the properties

of elliptic operators. It is unclear why [d(
∧p−1

)⊕ (d∗
∧p+1

)]⊥ =Hp given that∧p is infinite-dimensional, but the finite dimensionality of the space of harmonic
forms can help to prove that the de Rham cohomology groups defined on Mn are
finite-dimensional despite the fact that the closed and exact forms also form infinite-
dimensional spaces.

Consider the Hodge decomposition β̃ = dα̃+ d∗γ̃ + h̃ as presented above. If β̃
p

is closed, dβ̃
p = 0, thus dd∗γ̃ p+1 = 0, and β̃ is expressible in terms of the remaining

components as

β̃
p = dα̃p−1 + h̃

p
(C.42)

where h̃
p

is harmonic and is thus closed. Therefore, β̃ and β̃ − dα̃ = h̃ are in the
same de Rham class, i.e., β̃ ∼ h̃. From this observation, it is apparent that in each de
Rham class [β̃] there is a unique harmonic representative harm(β̃). Further, since

‖β̃p‖2 = ‖dα̃p−1‖2 + ‖h̃p‖2 (C.43)

the harmonic representative h̃ has the smallest norm within any de Rham class [β̃].
The pth Betti number bp = dim{Hp(Mn)} is the dimension of the space of com-

patibility conditions and the space of all λ̃H . Each vanishing period is a “compatibil-
ity condition”, all of which must be satisfied to guarantee a trivial pth cohomology
group. Thus there exists a unique harmonic p-form with bp prescribed periods on a
homology basis for the real p-cycles on Mn. Thus, if the compatibility conditions
are met, then for noncompact manifolds, such as R

n, the harmonic p-forms are
closed and coclosed, thus any p-form ω̃ is determined from η̃1 = dω̃ and η̃2 = d∗ω̃.

As a corollary, it is apparent that the de Rham cohomology groups for a com-
pact, orientable, differentiable manifold are all finite-dimensional [394]. This result
stands out against intuition as there is no a priori reason to think that the quotient
space of two infinite-dimensional spaces should be finite. It appears that this re-
sult is equivalent to the result on the finite dimensionality of the space of harmonic
p-forms at the center of Hodge theory.



Summary of Notation

We have attempted throughout this book to provide a consistent set of terminology
and notation. The list below proves a summary of this notation. Please note that
in a handful of circumstances we have deviated from this notation but have clearly
highlighted these exceptions in the text.

s A vector
si The ith element of the vector s
x A 0-cochain (function defined on nodes)
y A 1-cochain (function defined on edges)
z A p-cochain (function defined on p-cells), for p > 1
zi The ith element of the cochain z
0 The vector for which each entry contains the value ‘0’
1 The vector for which each entry contains the value ‘1’

‖x‖pq ‖x‖pq = (
∑

i |xi |q)
p
q ; if p or q are missing, it is assumed that p = 1

and q = 2
|x|p The element-wise exponentiation of a vector, i.e., |x|pi = |xi |p; if p is

missing, it is assumed that p = 1
sign{x} The sign operator applied to vector x, that returns a vector that is the

same length as x where each entry is either +1, −1, or 0 depending
on whether the corresponding entry in x is strictly positive, strictly
negative, or zero-valued

diag(d) The diagonal matrix operator applied to vector d that forms a
diagonal matrix with the entries of d along the diagonal

M A matrix
Mi,j The element in the ith row and j th column of matrix M
M(i, j) The element in the ith row and j th column of matrix M
|M| Determinant of matrix M
M∗ The adjoint of M
I The identity matrix
s̃ A data tuple
R Space of real numbers
R

N N -dimensional Euclidean space
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Z Space of integer numbers
B Space of binary numbers, i.e., 0 and 1
C A set
C̄ The complement of set C

|C| Cardinality of set C

V Set of vertices or nodes
E Set of edges
G A graph, consisting of a node and edge set, i.e., G= (V,E)

F Set of faces or cycles
eij The oriented edge connecting vi to vj

wij Weight of edge eij —may be a distance or affinity weight, depending
on context

di Degree of node vi , di =∑eij∈E wij

A Edge–node incidence matrix
B Face–edge incidence matrix
D Diagonal matrix of node degree
L Node Laplacian matrix
L† Pseudoinverse of the Laplacian matrix
Lp The Laplacian matrix for p-cells (note that the subscript is omitted

for nodes or 0-cells)
L0 The reduced node Laplacian matrix, in which one row/column has

been removed
Np The incidence matrix mapping p-cells to (p− 1)-cells
xnbhd(i) The set of values in 0-cochain x that are in the neighborhood of node

vi

G The primal metric tensor matrix, representing distance weights
Gp the primal metric tensor matrix, representing distance weights for the

set of p-cells (when the subscript is neglected, assume that p = 1)
g Vectorized distance weights, g=G1
G−1 The dual metric tensor, affinity weights
G−1

p The dual metric tensor, affinity weights for the set of p-cells (when
the subscript is neglected, assume that p = 1)

g−1 Vectorized affinity weights, g−1 =G−11
Mn An n-dimensional manifold
T Mn

q The tangent space of the n-dimensional manifold Mn at point q

T ∗Mn
q The cotangent space of the n-dimensional manifold Mn at point q

�F A vector in Euclidean space
x̄ A vector in general vector space
ω̃ A form or differential form
∂ The boundary operator
d The exterior derivative operator
d∗ The codifferential operator
∇·,∇ ,∇× The divergence, gradient, and curl operators in Cartesian coordinates

and a Euclidean metric
∇2 The scalar Laplacian operator
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∇2 The vector Laplacian operator
� The Laplace–de Rham operator
� The Hodge star operator
〈u,v〉 The inner product of chains u and v
〈〈u,v〉〉 The inner product of chains on the dual complex u and v
�ω̃,R� The integral of form ω̃ over chain R, expressed as a bilinear pairing
(ã, b̃) The scalar product of p-forms ã and b̃

voln Canonical volume element
voln Volume cochain
volume(τ ) Volume of the chain τ

D(a, b) The distance operator, measuring distance between points a and b

distGp (a,b) The distance operator on chains, measuring the distance between
chains a and b with respect to the metrix tensor matrix Gp

x[k] Variable x at iteration k

Q[f (x)] A functional of the function f (x)

δ(·) The Kronecker delta function
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A
Across and through variables, 32
Activation maps, 188
Active contours, 7
Adjacency matrix, 61
Adjointness, 30
Advection, 86, 87, 88, 255
Advection equation, 87
Affinity weights, 58 62, 80, 93, 135, 149,

235, 248, 249, 271
Algebraic connectivity, see Fiedler value
Allen Brain Atlas, 240
Antiderivation, 27
Antiderivative, 14
Argand plane, 2
Authority score, 256
Average path length, 270

B
Balloon force, 217
Barack Obama, 192
Basic Energy Model, 101, 164, 168, 178,

202, 251
optimization, 310

Basic p-chain, 45
Betweenness, 269
Biharmonic, 98, 99
Biological vision, 182
Blossom algorithm, 315
Boundary, 47
Boundary conditions, 298

Dirichlet boundary conditions, 298
Neumann boundary conditions, 298

Boundary length, 136, 206, 223

Boundary operator, 16
continuous, 30
discrete, 46

Brain data, 187
Brain matching, 260
Branch cuts, 31
Branch-and-bound, 318
Buser’s inequality, 81, 275

C
Canonical volume element, 33, 57
Cauchy functions, 140
Cell complex, 39, 40
Chain, 45, 46
Chan–Vese model, 223

multi-phase, 223
Cheeger constant, see isoperimetric constant
Cheeger’s inequality, 81, 275
Chemical graph theory, 286–288

quantitative structure–activity relation-
ships, 286

quantitative structure–property relation-
ships, 286

Circuit
superposition, method of, 115

Circuit theory, 91–122
admittance, 103
alternating voltage source, 102
apparent power, 103
capacitance, 102
capacitor, 102
complex power, 103
conductance, 93
current, 92
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Circuit theory (cont.)
current source, 94
delta–wye, 117
dependent sources, 98
electric potential, 92
equivalent circuit, 117
ground node, 92, 219
impedance, 103
inductor, 102
mesh analysis, 100
node analysis, 100
nonlinear resistors, 101
Ohm’s Law, 93
reactive power, 103
real power, 103
resistance, 92
star–mesh, 117
voltage, 92
voltage source, 94
voltage-controlled current sources, 98

Circulant matrix, 156
Citation networks, 264–266
Clique, 40
Closed form, 29
Clustering coefficient, 276
Coboundary operator, 30, 49
Cochain, 48–50
Codifferential operator, 36
Coherent orientation

complexes, 42
Cohomologous, 29
Cohomology, 319, 330
Cohomology theory, 31
Combinatorial manifold, 67
Commute time, 108, 247
Complex plane, 2
Conjugate gradients, 129
Constitutive, 105
Constitutive Determination Problem, 144
Constitutive laws, 35, 57

homogeneous, 83
inhomogeneous, 83

Constitutive relation, 144
Content extraction, 7
Continuous max-flow, 209, 209
Contravariant version, 25
Convexity, 296

strictly convex, 297
Convolution, 157

Coordinate invariance, 20
Cortical surface, 189, 355
Cotangent bundle, 22
Cotangent space, 22
Cotree, 132
Covariance matrix, 142
Covariant version, 24
Current source, 94
Curvature, 136, 213

Gaussian, 282
mean, 282
total, 283

Cycle, 47
Cycle basis, 126–134
Cycle double cover, 134
Cycle double cover conjecture, 52, 134
Cycle set, 51, 129

D
Dampening factor, 254
Data attachment term, 167
Data discovery, 243
Data tuple, 222
DC, see direct current
Degree, 18, 61
Dependent source, 97, 98, 99
Differentiable manifold, see manifold
Differential, 22
Differential form, 21
Differential forms, 16
Diffusion, 156
Diffusion equation, 82, 83, 84–86

diffusion constant, 83
Dijkstra’s shortest path algorithm, 153, 212
Direct current, 94
Directed edges, 42
Directed graph, 85, 86
Directional derivative, 21
Dirichlet boundary conditions, 167
Dirichlet’s Principle, 82, 100
Discrete Fourier Transform, 156
Distance operator, 150, 151–153, 268
Distance operator, on chains, 151, 152
Distance weights, 58, 135, 271
Divergence Theorem, see Gauss’s Theorem
Dongle nodes, 167
Dual basis, 19
Dual coboundary operator, 59
Dual metric tensor, 54, 149, 151
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Dual space, 19
Duality, 50–54

E
Edge expansion, 275
Edge Laplacian, 62, 147, 148
Edge set augmentation

via the Watts–Strogatz model, 128
Edge set generation, 126–129

by k-nearest neighbors, 128
from a Delaunay triangulation, 128
from an ambient metric, 127

Effective resistance, 108, 109–118, 152, 206,
271, 272

Elliptic equations, 79–81
Elongation, 105
Energy, 163
Euclidean distance matrix, 246
Euler characteristic, 131, 280
Exact form, 29
Expander graphs, 275
Extended Basic Energy Model, 168, 170,

171, 180, 204
Exterior algebra, 19
Exterior derivative, 26
Exterior face, see outside cell
Exterior product, 17

F
Fick’s Law, 83
Fiedler value, 217, 275
Fiedler vector, 218
Finite differences, 3, 69, 70
Finite element method, 3
Fisher iris data, 238
Flow, 71
fMRI, 187
Forms, 19
Fourier descriptors, 159
Fourier transform, 156–161
Foveal images, 182
Fredholm Alternative, 327
Fredholm operator, 327
FreeSurfer, 189, 262, 355, 359

Fundamental Theorem of Calculus, 14, 14–
16, 29–31

First Fundamental Theorem of Calculus,
14

Second Fundamental Theorem of Calcu-
lus, 14

G
Gauss–Green Theorem, 77
Gauss–Jordan elimination, 117
Gauss’s Theorem, 15, 30, 72
Gene expression, 240–242
Generalized Stokes’ Theorem, 16, 29, 38
Genetic algorithms, 312
Genus, 281
Geodesic segmentation, 207
Geographical information system, 192
Geometric cycles, 130
Geometric embedding, 127
Geospatial data, 192, 193
Gibbs distribution, 111
Global metric, 152
GPU, 127
Gradient descent, 308
Gradient manipulation, 174
Gradient Theorem, 15, 30
Graph, 39

arcs, 92
branches, 92
bridge, 130
bridgeless graph, 52, 134
center, 272
conductance, 275
degree distribution, 277
edges, 39
faces, 39
fully connected graph, 127
genus, 131
nodes, 39
volume, 274
weighted graph, 57

Graph cuts, 206
Graph diameter, 272
Graph partitioning problem, 275
Graph radius, 272
Grassmann algebra, see exterior algebra
Green’s Theorem, 15, 30
Gridding artifacts, 168, 204
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H
Harmonic, 79
Harmonic form, 37
Harnack Inequality, 81
Heat equation, see diffusion equation
Heffter–Edmonds Principle, 131
Helmholtz decomposition, 37, 76, 77, 319–

326
Helmholtz equation, 218
Hessian matrix, 296
HITS, see Hyperlink-Induced Topic Search
Hitting time, 107
Hodge decomposition, 37, 326–328, 329,

330
Hodge star operator, 32, 33–36

Hodge dual, 33
Hodge’s Theorem, 37
Homology theory, 31
Hooke’s Law, 105
Hubs, 256
Human eye, 140
Hyperlink-Induced Topic Search, 253, 256,

257

I
Image filtering, 180
Image segmentation, 229–234
Incidence matrix, 44, 45

edge–node, 93
face–edge, 100
reduced, 95, 113

Incompressible fluids, 148
Independent source, 97
Indicator vector, 46
Influence function, 139
Information matrix, 110
Inner product, 24
Integration by parts, 15, 30, 77, 78
Intelligent scissors, 212
Interior point methods, 311
Isomap algorithm, 246–249, 258
Isoperimetric algorithm, 220
Isoperimetric problem, 274

isoperimetric constant, 218, 275
isoperimetric number, 275
isoperimetric ratio, 274
isoperimetric sets, 274

Iterated Conditional Modes, 317
Iteratively reweighted least squares, 310

J
Joint statistics, 144
Judicial citation networks, 264–266

K
k-means model, 221
k-nearest neighbors, 128
Kirchhoff index, 271
Kirchhoff’s Current Law, 93
Kirchhoff’s Voltage Law, 94
Köningsberg bridge problem, 126

L
“λ–μ” filter, 161
Lanczos algorithm, 307
Laplace equation, 81
Laplace–Beltrami operator, see Laplace–de

Rham operator
Laplace–de Rham operator, 36, 61, 149
Laplacian Eigenmaps, 142, 247, 258

algorithm, 249
Laplacian matrix, 61, 94

normalized, 62, 161, 276
pseudoinverse, 152
reduced, 113

Laplacian smoothing, see spectral filtering
LE, see Laplacian Eigenmaps
Level sets, 7
Linear functional, 19
Linear programming, 303
Live wire, 212
Liver, 258
Lloyd’s algorithm, 216, 222, 223
Local metric, 152
Locality Preserving Projections, 142, 249

algorithm, 249–251
LPP, see Locality Preserving Projections
LTI system theory, 159

M
M-estimator, 140, 166
Machine learning, 236–240
MacLane’s Planarity Criterion, 132
Mahalanobis distance, 142
Manifold, 20, 243

orientable, 281
Manifold learning, 243, 244, 245–266
Markov random fields, 110–112, 138
Mathematical morphology, 208
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Matrix ordering, 121
Matrix-Tree Theorem, 113
Max-flow/min-cut, 101, 206, 314–318
Maximum spanning forest, 208
MDS, see Multidimensional Scaling
Mean filter, 164
Mean-value theorem, 80

local maximum principle, 80
local minimum principle, 80
maximum principle, 80
minimum principle, 80
strong local maximum principle, 80
strong maximum principle, 81

Median filter, 164
Mesh analysis, 100

mesh variables, 100
Mesh fairing, 185
Metric, 26, 150, 268
Metric tensor, 25, 54

dual metric tensor, 25
primal metric tensor, 25

Metrication artifacts, 168
Minimal Lipschitz extension, 207
Minimal surface, 213–215
Minimax filter, 164
Minimum cycle basis, 133
Minimum-degree orderings, 119
Mode filter, 164
Multidimensional Scaling, 245
Multivariate data, 141

N
NCuts, see Normalized Cuts
Negative weights, 143, 209
Neural connectivity, 193
Neuroscience, 187
Newtonian fluid, 148
Newton’s method, 308
Node analysis, 100
Node centrality, 269

closeness, 269
eccentricity, 269
total distance, 269

Non-local means, 143
Nonlinear anisotropic diffusion, 166, 167,

197
Nonlocal filtering, 174, 175
Norm, 26
Normalized Cuts, 218, 251

Nullspace approach, 302
Nullspace transformation, 100

O
Object File Format, 291
Optimal matching, 315
Optimization techniques

genetic algorithms, 318
simulated annealing, 318
tabu search, 318

Orientation, 42–44, 92
Outside cell, 51, 52, 134
Outside face, 132, 213
Over-representation, 153

P
P-Brush, 207
p-cell, 39
p-chain, 45
p-cochain, 48
p-domain, 29
p-form, 19
p-simplex, 40
p-vector, 18
PageRank, 253, 254–257
Penalty method, 302
Peripheral node, 272
Phantom seed, 206
Piecewise constant Mumford–Shah, 223
Pink noise, 163
Plateau’s problem, 213, 314
Poincaré duality, 51, 55, 60
Poincaré lemma, 31
Point correspondence, 260–262
Poisson equation, 81, 82, 174, 220
Polar and axial vectors, 32
Polling, 192
Polya’s theorem, 110
Potential matrix, see information matrix
Potts Model, 317
Power method, 254, 257, 307
Power watershed, 208, 209
Precision matrix, see information matrix
Preferential attachment, 279
Primal metric tensor, 151
Primal–dual algorithm, 305
Pseudocentroid, 224
Pseudoform, 32
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Q
Quadratic pseudo-boolean functions, 315
Quaternions, 2
Quincunx, 159

R
Rand index, 239
Random graph, 277
Random surfer, see random walker
Random walker, 206, 209
Random walks, 106–110
Rayleigh quotient, 306

generalized Rayleigh quotient, 306
Reduced Laplacian matrix, see Laplacian

matrix
Regular graphs, 6
Representations

cells list representation, 291
Compressed Column (or Row) format,

293
Compressed Diagonal Storage format,

293
neighbor list representation, 293
operator representation, 291

Resistance distance, see effective resistance
Riemannian metric, 55
Right-hand rule, 43
Robust error functions, 138
Rotation system, 130, 131

rotate operation, 130
rotation, 130
rotation table, 130
trace operation, 130

Roth diagram, 63
Rudin, Osher, Fatemi, see total variation

S
Scale-free network, 277
Schur factorization, 302
Screw-sense, 42
Seeds, 205
Semi-supervised learning, 201
Separable Hilbert space, 326
Shape characterization, 257–260
Shift invariant, 143, 158
Shortest path, 153, 207, 268
Simplicial complex

structured complex, 292
Simplicial decomposition, 44

Simulated annealing, 312
Six degrees of separation, 277
Small-world network, 128, 277
Smith Normal Form, 281
Smoothness term, 167
Social networks, 235, 236, 285, 286
Space-variant images, 182
Spatial statistics, 192
Spectral clustering, 218
Spectral coordinates, 247
Spectral filtering, 160, 165
Spring constant, 105
Spring networks, 104–106
Stereographic projection, 280
Stiffness matrix, 106
Stokes’ Theorem, 15, 30
Straight and twisted forms, 32
Submanifold, see manifold
Submodular functional, 314
Supervised learning, 201

T
t-links, see dongle nodes
Tabu search, 312
Tangent bundle, 21
Tangent space, 21
Targeted clustering, 199
Teleportation parameter, 254
Tellegen’s Theorem, 94
Tensors

antisymmetric tensors, 23
contravariant tensors, 23
covariant tensors, 23
index lowering, 26
index raising, 26
musical isomorphisms, 26

The First Law of Geography, 193
Tikhonov regularization, 298
Tobler’s Law, 193
Toeplitz matrix, 157
Tonti diagram, 63
Torsion coefficients, 281
Total unimodularity, 48
Total Variation, 169, 204

segmentation, 209
Totally unimodular matrix, 221, 313

pre-unimodular matrix, 214, 313
Touch sensor, 187
Transductive learning, 201, 236
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Transport equation, see advection equation
Tree, 113, 132

2-tree, 114
spanning tree, 47, 113

Tree counting, 112–117
Triadic closure, 276
Tukey biweight function, 140
Tuple, 64, 141
TVSeg, see total variation segmentation

U
Untargeted clustering, 199

V
Vector data, 141
Vector Laplacian, 62, 176
Viscosity, 63, 148

bulk viscosity, 148
shear viscosity, 148

Voltage source, 94

Volume cochain, 57, 150
Vorticity, 148

W
Wall filter, 161
Watershed algorithm, 208
Web search, 262, 263
Weber’s Law, 140
Wedge product, see exterior product
Weights, 57, 58, 135–153

edge weights, 135–146
higher-order weights, 147–150

Welsch function, 140, 208, 230
Wheatstone bridge circuit, 115
Wiener index, 270

quasi-Wiener index, 272
Wiener number, see Wiener index

Z
Zachary’s karate club, 235, 236, 285, 286
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Fig. 5.10 Filtering fMRI data along a cortical surface model. Surface models of the (A) exterior
surface, (B) interior surface, and (C) the “inflated” interior surface of the cortical gray matter of
the left cerebral hemisphere, with approximate location of area MT indicated by circle. (Surfaces
generated with FREESURFER [96, 136].) Legend indicates Front–Rear axis of brain. Locations of
negative mean curvature (within sulci) are rendered in dark gray and locations of positive mean
curvature (within gyri) are rendered in light gray. Measured activity map plotted as z-statistics,
with color scale provided at upper right. The threshold is set to exclude nodes where the activity
is not statistically significant, which leads to many isolated points or small clusters of activation
appearing in the map—likely false positives due to noise. The results of filtering the data using
(E) spectral filtering, (F) the Basic Energy Model with p = 0 and (G) p = 2, (H) Total Variation,
and (I) the Mumford–Shah algorithm are provided with the same color scale representing the
statistical significance. Note that many of the false positives are removed with the filtering. Arrows
indicate site of MT activation

L.J. Grady, J.R. Polimeni, Discrete Calculus,
DOI 10.1007/978-1-84996-290-2, © Springer-Verlag London Limited 2010
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Fig. 5.10 (Continued)
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Fig. 5.11 Effect of smoothing methods on sub-threshold fMRI activity. The data of Fig. 5.10 is
re-plotted with a color scale that highlights the relative performance and behavior of the filter-
ing methods on activity below the significance threshold. Reference arrows are positioned as in
Fig. 5.10
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Fig. 7.5 Two three-dimensional meshes of a horse in different poses. Each mesh was mapped to
three dimensions using the various manifold learning techniques. The mapped three-dimensional
coordinates of each point were mapped to RGB space for display. Two vertices having similar
colors should therefore be identified as the same coordinate location in the two meshes
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Fig. 7.6 Brain surface matching via the Laplacian Eigenmaps method. The first two eigenvectors
of the graph Laplacian are used to establish corresponding two-dimensional coordinate parame-
terizations of the surfaces which can be utilized as a correspondence map providing the matching.
The surfaces represent the outer surface of the cortical gray matter (i.e., the “pial surface”) and
each surface was generated automatically with the FreeSurfer software environment [96, 136].
The surface meshes for subjects A and B contained 248,868 and 259,792 triangles, respectively
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Fig. 8.5 Example of discrete curvature measures applied to horse triangular mesh. (A) Gaussian
curvature calculated from the Gauss–Bonnet theorem. (B) Discrete mean curvature computed from
the method of Meyer et al. [280]. Both measures calculate curvature as a node quantity measured
for each vertex in the polygonal mesh based on the embedding of the neighboring vertices and the
incident faces. Both curvatures are visualized with a common color scale provided on the lower
right
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