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Scanning Multi-sensor System for Measurement of 
Roundness 

5.1 Introduction 

Roundness is one of the most fundamental geometries of precision workpieces. 
Most of the round-shaped precision workpieces are manufactured by a turning 
process, in which a spindle is employed to rotate the workpiece. The out-of-
roundness of the workpiece is basically determined by the error motion of the 
spindle. Measurement of the workpiece roundness error and the spindle error is an 
essential task for assurance of the manufacturing accuracy.  

The scanning sensor method [1, 2] is the most widely used method for the 
measuring the roundness of a workpiece. In this method, a displacement sensor or 
a slope sensor, which is mounted on a rotary stage, is moved to scan the workpiece 
surface. The rotational scanning motion of the stage must be good enough so that it 
can be used as the measurement reference. To nanometrically roundness, however, 
the required measurement accuracy of the workpiece roundness must be at the 
same level as that of the scanning motion of the stage. Similar cases can be found 
in the on-machine measurement where the machine tool spindle is used. In such 
cases, it is essential to separate the workpiece roundness error from the spindle 
error [3, 4]. The error separation is also necessary in spindle error measurement, in 
which a ball or a cylinder is used as the measurement reference. 

To perform the error separation, it is necessary to establish simultaneous 
equations involving the workpiece roundness error and the spindle error. There are 
two kinds of error separation methods based on how the equations are established 
[5]. One is known as the multi-step technique [6–8], and the other is the multi-
sensor technique [9–13]. The multi-step methods including the reversal method 
establish the equations by making multiple measurements with one sensor. On the 
other hand, the multi-sensor methods establish the equations by using multiple 
sensors to make one measurement. Compared with multi-step methods, multi-
sensor methods are more suitable for on-machine measurements because the 
repeatability of the spindle error is not necessary.  
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Roundness measurement involves three parameters; roundness error of the 
workpiece, and the X-directional component and Y-directional component of the 
spindle error. The three-displacement sensor method [14], which employs three 
displacement sensors, can realize the error separation to get the accurate workpiece 
roundness. In this chapter, a new three-sensor method of using three 2D slope 
sensors, called the three-slope sensor method, is presented to measure not only 
workpiece roundness but also multi-degree-of-freedom spindle error components. 

However, some high-frequency components of roundness error cannot be 
accurately measured with the three-sensor method due to the problem of harmonic 
suppression. This problem cannot be completely solved by merely increasing the 
number of sensors [11, 14]. A new multi-sensor method, called the mixed method, 
is thus presented in the second part of this chapter to overcome this drawback of 
the three-sensor method. 

5.2 Three-slope Sensor Method  

Figure 5.1 shows the principle of the roundness measurement by using one 
displacement sensor. A displacement sensor, which is fixed spatially, is used to 
scan a round workpiece while the workpiece is rotating. Let P be a representative 
point of the workpiece, and the roundness error be described by the function r(), 
which is the deviation from the circle with an average radius of Rr.  is the angle 
between the point P and the sensor. Let  be the angle between the sensor and the 
Y-axis. If no rotational error of the spindle (spindle error) exists, as shown in 
Figure 5.1, the roundness error r() can be obtained correctly from the sensor 
output m() as follows: 

 )()(  rm  . (5.1) 

However, if the spindle error exists, as shown in Figure 5.2, the sensor output 
m() becomes, 

 )()()(  mrm  , (5.2) 

where  

  cos)(sin)()( YX eem  . (5.3) 

Here, eX() and eY() are the X-directional and the Y-directional components of 
the spindle error. 

Figure 5.2 shows the principle of the three-displacement sensor method using 
three displacement sensors schematically. The three displacement sensors are fixed 
around a cylindrical workpiece. The workpiece is scanned by the sensors while the 
workpiece is rotating. If the displacement outputs of the sensors are denoted by 
m1(), m2() and m3(), respectively, the outputs can be expressed as: 
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(b) With spindle error 

Figure 5.1. Roundness measurement by using a displacement sensor 
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 )()()(1  Yerm  ,  (5.4) 

  cos)(sin)()()(2 YX eerm  , (5.5) 

  cos)(sin)()()(3 YX eerm  . (5.6) 

The differential output m3D() of the three-displacement sensor method, in 
which the spindle error is canceled, can be denoted as 

 )()()()( 213   rararm D , (5.7) 

where 

 
)sin(

sin
1 




a , 
)sin(

sin
2 




a . (5.8) 

In Equation 5.7, r() can be treated as the input and m3D() as the output. 
According to the theory of digital filters [15], the relation between the input r() 
and the output m3D() can be defined by the following transfer function of the 
three-displacement sensor method: 
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Figure 5.2. The three-displacement sensor method for roundness measurement  
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where n is the spatial frequency (the number of undulations per revolution), and 
M3D(n) and R(n) are the Fourier transforms of m3D() and r(), respectively. R(n) 
can be obtained from M3D(n) and H3D(n). r() can be evaluated by IFFT of R(n).  

The amplitude of the transfer function H3D(n) represents the complex harmonic 
sensitivity of the three-displacement sensor method. The amplitude (harmonic 
sensitivity) and the phase angle of H3D(n) are expressed as follows: 

 ))(coscoscos(21)( 2121
2
2

2
13   naananaaanH D , 

  (5.10) 
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sinsin
(tan)(arg

21

211
3 


nana

nana
nH D 


  . (5.11) 

The transfer function H3D() is shown in Figure 5.3. As can be seen in the 
figure, the amplitude at some frequencies in the transfer function of the three-
displacement sensor method approaches zero. This prevents the three-displacement 
sensor method from measuring the corresponding frequency components correctly.  

As shown in Figure 5.4, we can also use one slope sensor to perform roundness 
measurement.  
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Figure 5.3. The harmonic sensitivity of the three-displacement sensor method for 
roundness measurement  
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Figure 5.4. Roundness measurement by using a slope sensor 

 



 Scanning Multi-sensor System 149 

Let the local slope of the surface be described by the function r'(). If no 
spindle error exists (Figure 5.4 (a)), the local slope r'() can be measured correctly 
from the output of the slope sensor as [16]: 

 )()(  r , (5.12) 

 
)(

)(
)(



rRd

dr
r  . (5.13) 

where Rr is the average radius of the workpiece. 
The roundness error can then be obtained by integrating r'(). However, if there 

exists a spindle error as shown in Figure 5.4 (b), because of the shift of the 
measuring point on the circumference of the workpiece, the spindle error will 
generate an angle change () in the sensor output as follows: 

 )()()(   r , (5.14) 

where  
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Figure 5.5 shows the principle of the three-slope sensor method using three-
slope sensors schematically. The three-slope sensors are fixed around a cylindrical 
workpiece, and scan the workpiece while it is rotating. If the slope outputs of the 
sensors are denoted by 1(), 2() and 3(), respectively, the outputs can be 
expressed as: 
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The differential output m3S() of the three-slope sensor method can be denoted 
as 

  )()()()( 213   rararm S , (5.19) 
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where 
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Consequently, the spindle error is canceled. 
The transfer function H3S(n) of the three-slope sensor method can be expressed 

as follows: 

 )1(
)(

)(
)( 21

3
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 jnjnS
S eaeajn

nR

nM
nH   ,  (5.21) 

where n is the spatial frequency (the number of undulations per revolution), and 
M3S(n) and R(n) are the Fourier transforms of m3S() and r(), respectively. R(n) 
can be obtained from M3D(n) and H3S(n). r() can be evaluated by IFFT of R(n). 
The amplitude (harmonic sensitivity) and the phase angle of H3S(n) are expressed 
as follows: 

 ))(coscoscos(21)( 2121
2
2

2
13   naananaaannH S ,  

  (5.22) 
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Figure 5.5. The three-slope sensor method for roundness measurement  



 Scanning Multi-sensor System 151 

   )
sinsin

coscos1
(tan)(arg

21

211
3 


nana

nana
nH S 


  . (5.23) 

The amplitude of the transfer function H3S(n) is shown in Figure 5.6. Similar to 
the three-displacement sensor method, the amplitude at some frequencies in the 
transfer function of the three-slope sensor method approaches zero. The 
frequencies at which the amplitude is zero are the same as those of the three-
displacement sensor method with the same sensor arrangement.  

The three-slope sensor method can also be used for measurement of the surface 
slope along the Z-direction and the spindle tilt error motions by using two-
dimensional slope sensors. Figure 5.8 shows the schematic of the measurement 
principle where r(, z) is the surface profile of the cylindrical workpiece. Each 
sensor detects the two-dimensional local slopes of a point on the workpiece surface. 
The local slope component along the circumference direction r'r(, z) is the same as 
that shown in Equation 5.13 and can be separated from the spindle radial error 
component er(, z) by using the radial output components of the slope sensors as 
shown in Equations 5.16–5.20. On the other hand, the local slope component along 
the Z-direction r'Z(, z) is defined as: 
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Figure 5.6. The harmonic sensitivity of the three-slope probe method for roundness 
measurement  
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The r'Z(, z) and the tilt error motion eT(, z) can be similarly separated from 
each other by using the angular output components of the slope sensor shown 
below: 

 )()(')(1  TYz er  ,  (5.25) 

  cos)(sin)()(')(2  TYTXz eer , (5.26) 

  cos)(sin)()(')(3  TYTXz eer . (5.27) 

The differential outputs for calculating the eTX() and eTY() are expressed by: 

 )()()()()( 14342313   aaaaTX  

)()( 3525   aa  

)()()( 21   TXTXTX eaeae , (5.28) 

 )()()()()( 12321121   aaaaTY  

)()()( 21   TYTYTY eaeae , (5.29) 
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Figure 5.7. The three-slope sensor method with two-dimensional slope sensors  
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where a1 and a2 are those defined in Equation 5.20. a3, a4 and a5 are defined by 
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Figure 5.8 shows a schematic of the 2D slope sensor unit designed and 
constructed for experiments. The sensor unit consists of three 2D slope sensors. 
The angles and between sensors were designed to be 60 and 96º, respectively. 
This sensor arrangement makes the three-slope sensor method sensitive to 
undulations per revolution of up to 28, which is the highest calculation number in 
the experiments. It should be pointed out that the sensor arrangement is needed to 
be optimized if it is necessary to measure higher undulations per revolution. The 
sensors utilize the principle of autocollimation for slope detection. As can be seen 
from the schematic of sensor 1, a collimated beam from a laser diode is projected 
onto point A on the workpiece surface after passing through a polarization beam 
splitter (PBS) and a quarter waveplate. The reflected beam is reflected again at the 
PBS and then accepted by the autocollimation unit consisting of an objective lens 
and a quadrant photodiode (QPD) placed at the focal position of the lens. The 2D 
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Figure 5.8. Schematic of the two-dimensional slope sensor unit for the three-slope 
sensor method 
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slope information at point A can be obtained from the photoelectric currents of the 
QPD. Sensors 2 and 3 share the same optical source for the purpose of 
compactness. The laser beam is divided into two beams by a beam splitter (BS). 
The beams are projected onto points B and C on the workpiece surface. The 
reflected beams are received by two autocollimation units so that the 2D slope 
information at points B and C can be detected, respectively. Diameters of the laser 
beams were set to be 0.5 mm and focal distances of the lenses were 30 mm. The 
slope sensitivity of the sensors was approximately 0.1 arcsec. The size of sensor A 
was 90 mm (L) × 80 mm (W) × 40 mm (H) and that of sensors B and C was 160 
mm (L) × 100 mm (W) × 40 mm (H). 

Figure 5.9 shows a schematic of the experimental setup for roundness and 
spindle error measurement. A diamond turned cylindrical workpiece with a 
diameter of 80 mm was employed as the artifact. The workpiece was mounted on 
an air-spindle. The outputs of the slope sensors were sampled simultaneously by a 
personal computer via a 12-bit AD converter. The rotational angle of the spindle 
was measured by an optical encoder. The roundness of the workpiece was also 
measured by the conventional three-displacement sensor method employing three 
capacitive-type displacement sensors for comparison. The measured spindle error 
and workpiece roundness are shown in Figures 5.10 and 5.11, respectively. 
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Figure 5.9. Photograph of the experimental setup for roundness and spindle error 
measurement by the three-slope sensor method 
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(b) Radial motion error 

Figure 5.10. Measured spindle motion error 
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Figure 5.11. Measured workpiece roundness 
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In the experiment, the spindle speed was approximately 60 rpm and the 
sampling number over one revolution was 200. Figure 5.10 (a) shows the two-
directional components of the tilt error motion, which were approximately 9.9 
arcsec in the X-direction and 12.0 arcsec in the Y-direction, respectively. The two-
directional components of the radial error motion of the spindle are plotted in 
Figure 5.10 (b). The X-directional component was approximately 2.0 m and the 
Y-directional component was approximately 3.3 m. Figure 5.11 shows the 
measured roundness of the cylindrical workpiece. The roundness was 
approximately 31.1 m. The same workpiece was also measured by the 
conventional three-displacement sensor method and the result was shown in the 
figure. It can be seen that the two results corresponded well with each other. 

5.3 Mixed Method  

The three-sensor method described above can separate the workpiece roundness 
error from the spindle error motion. However, some frequency components of 
roundness cannot be accurately measured using this method because of the 
problem of harmonic suppression. This problem cannot be completely solved by 
merely increasing the number of sensors [11, 14]. In this section, a method of 
mixing the displacement sensors and the slope sensors, which is called the mixed 
method, is described. This method can separate the roundness error from the 
spindle error completely, and capture high-frequency components. 

Figure 5.12 shows the schematics of the two-displacement/one-slope (2D1S) 
mixed method and the one-displacement/two-slope (1D2S) mixed method. In the 
2D1S mixed method, two displacement sensors (sensors 1 and 3) and one slope 
sensor (sensor 2) are employed. Let  and  be the angles between the sensors. The 
sensor outputs in the 2D1S mixed method are expressed by: 
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The differential output m2D1S() to cancel the spindle error can be denoted as: 
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(b) The one-displacement/two-slope (1D2S) mixed method 

Figure 5.12. The mixed method mixing displacement probes and slope probes for 
roundness measurement 
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Let the Fourier transforms of r() and m2D1S() be R(n) and M2D1S(n), 
respectively, the transfer function of the 2D1S mixed method can be defined by: 
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where n is the frequency. The amplitude (harmonic sensitivity) and the phase angle 
of H2D1S(n) are expressed as: 
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We can also employ one displacement sensor and two slope sensors to 
construct the mixed method as shown in Figure 5.12 (b). The sensor outputs of the 
1D2S mixed method can be expressed as: 
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The differential output, in which the effect of the spindle error is cancelled, can 
be given by: 
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The transfer function of the 1D2S mixed method can be defined as follows: 
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where M1D2S(n) is the Fourier transform of m1D2S(). 
With the angular distances  and  acting as parameters, the amplitudes of the 

transfer functions (harmonic sensitivities) of the two methods are plotted in Figure 
5.13, respectively. As can be seen in the figures, there is no frequency at which the 
harmonic sensitivity approaches zero, indicating that both the two mixed methods 
can measure high-frequency components correctly. In comparison with the 2D1S 
mixed method, the 1D2S mixed method is more sensitive when n ≤ 7. On the other 
hand, the 2D1S mixed method is superior to the 1D2S mixed method in the higher-
frequency range. The harmonic sensitivity of the 2D1S mixed method in the low-
frequency range, and that of 1D2S mixed method in the high-frequency range can 
be seen to be closely related to the sensor arrangement. As shown in Figure 5.13 
(a), the minimum harmonic sensitivity |H2D1S(2)| is only 0.16 for the symmetrical 
sensor arrangement (, ) = (22.5º, 45º). This value can be increased by changing 
the sensor arrangement to one that is asymmetrical. For a fixed , the largest 
|H2D1S(2)| is obtained when  is equal to 0º or . In this sensor arrangement, the 
slope sensor and one of the displacement sensors are placed at the same position. 
|H2D1S(2)| also improves as  increases. When (, ) = (0º, 90º) or (, ) = (90º, 90º), 
|H2D1S(2)| reaches its limiting value. In this sensor arrangement, the 2D1S mixed 
method yields the most well-balanced harmonic response. The same can be said 
with regard to the 1D2S mixed method. The mixed method with this sensor 
arrangement is called the orthogonal mixed method. 

Figure 5.14 shows the principle of the orthogonal mixed method. The output 
m1() of the displacement sensor and the output 2() of the slope sensor can be 
expressed as follows: 

 )()()(1  Yerm  ,  (5.45) 

 
r

Y

R

e
r

)(
)

2
()(2

  . (5.46) 

Therefore, the differential output mom(), in which the roundness error is 
separated from the spindle error, can be denoted as: 
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(a) The 2D1S mixed method 
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(b) The 1D2S mixed method 

Figure 5.13. The harmonic sensitivities of the mixed method 
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The transfer function of the orthogonal mixed method can be expressed by: 
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where Mom(n) is the Fourier transform of mom(). 
Figure 5.15 shows the amplitude of the transfer function (harmonic sensitivity) 

of the orthogonal mixed method. As can be seen from the figure, Hom(n) yields 
good characteristics. The minimum harmonic sensitivity |Hom(2)| is 2.24.  
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Figure 5.14. The orthogonal mixed method for roundness measurement  
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As shown in Figure 5.16, if a setting error  in the angular distance between 
the two sensors exists, the differential output of the orthogonal mixed method 
becomes 
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An error mom() in the differential output occurs as: 
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The evaluated Fourier transform Re(n) of the roundness error then becomes 
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Figure 5.15. The harmonic sensitivity of the orthogonal mixed method 
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where 

 
)(

)(
)(

nH

nM
nR

om

e
e


 . (5.54) 

Here, R(n) is the real Fourier transform of the roundness error. Me(n) and 
Me(n) are the Fourier transforms of me() and me(), respectively. The relative 
error of |Re(n)| to |R(n)| can then be evaluated as: 
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Figure 5.17 shows E(n) plotted versus n when = 0.5º. It can be seen that 
the largest error occurs at n = 5 (E(5) = 1.1%). 
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Figure 5.16. Setting error of angular distance  
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An optical sensor system consisting of one displacement sensor [17] and one 
slope sensor [18] with an angular distance of 90º was constructed to realize the 
orthogonal mixed method. Both the displacement sensor and the slope sensor 
utilize the principle of the critical angle method of total reflection. 

Figure 5.18 shows the experimental setup for displacement sensor calibration. 
A capacitive sensor was used as the reference. The surface was moved by using a 
PZT actuator, and the displacement of the surface was simultaneously measured by 
the developed displacement sensor and the reference sensor. Figure 5.19 shows 
calibration results obtained in two separate measurements. The residual error from 
fitting with a third-order polynomial is also plotted in this figure, and can be seen 
to be approximately 0.5% of the calibration range. Figure 5.20 shows the 
experimental setup for the slope sensor calibration. A photoelectric autocollimator 
was used as the reference. A lever system was used to introduce the angular 
displacement. The lever was driven by using a PZT actuator so that the lever could 
rotate about its fulcrum. The angular displacement of the lever was measured 
simultaneously by the developed slope sensor and the autocollimator. Two separate 
calibration results are plotted in Figure 5.21. The residual error from fitting with a 
third-order polynomial is approximately 0.5% of the calibration range.  

The experimental setup shown in Figure 5.22 was used to investigate the 
feasibility of canceling the spindle error in the differential output of the orthogonal 
mixed method defined in Equation 5.47. A precision ball with a diameter of 1 inch 
was used as the target. The spindle error eY() was introduced by moving the ball 
in the Y-direction by using a PZT. As shown in Figure 5.23, the spindle error eY() 
is canceled in the differential output of the orthogonal mixed method. 

0

0.5

1

1.5

2

1 10 100

R
el

at
iv

e 
er

ro
r 

  %

Frequency  n
 

Figure 5.17. Evaluation error of roundness caused by the setting error  
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Figure 5.18. Setup for calibration of the displacement probe 
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Figure 5.19. Calibration of the displacement sensor 
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Figure 5.20. Setup for calibration of the slope probe 
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Figure 5.21. Calibration result of the slope probe 
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Figure 5.22. Setup for testing of the differential output of the orthogonal mixed method 
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Figure 5.23. Differential output of the orthogonal mixed method 
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Figure 5.24 shows a photograph of the experimental measurement system 
constructed for the roundness measurement based on the orthogonal mixed method. 
The measurement system consists of the developed displacement and slope sensors, 
the precision ball shown in Figure 5.22, an air-spindle, and an optical rotary 
encoder. The rotational angle of the spindle was measured by the optical encoder. 
The positional signal of the optical encoder is sent to the AD converter as a trigger 
signal. The output signals are sampled simultaneously in order to avoid errors 
attributable to the sampling time delay. The ball can be adjusted in the X- and Y- 
directions by using adjustment screws so that the eccentric error can be adjusted to 
fall within the measurement ranges of the sensors. The sensors are mounted on 
XYZ micro-stages and the positions of the sensors relative to the ball can be 
adjusted in the X-, Y- and Z-directions.  

Figure 5.25 shows the result of stability test of the optical sensor. In the test, the 
output signals were sampled without rotating the ball. The displacement sensor and 
the slope sensor can be seen to have the stabilities of 1 nm and 0.01 arc-second, 
respectively in a test term of 20 s. 

Figure 5.26 shows the measured roundness errors of two separate 
measurements and the repeatability error between the two measured results. Figure 
5.26 (a) shows the polar plot of the roundness error and the repeatability error, and 
Figure 5.26 (b) shows the corresponding rectilinear plot. The sampling number was 
512. It can be seen that the roundness error is approximately 60 nm, and the 
repeatability error is approximately 5 nm. The measured spindle errors of the two 
repeated measurements and the difference between them are shown in Figure 5.27. 
The spindle error was approximately 800 nm, and the difference was 
approximately 140 nm. Vibration components, which were caused by the improper 
coupling between the spindle and the encoder, were found in the spindle errors. 
Comparison of the results plotted in Figures 5.26 and 5.27 shows that the 
roundness error is separated from large spindle errors with high repeatability. This 
confirmed the effectiveness of the orthogonal mixed method. 

5.4 Summary 

A multi-sensor method using three two-dimensional slope sensors for roundness 
and spindle error measurement, called the three-slope sensor method, has been 
described. This method can simultaneously measure the workpiece roundness error, 
the spindle radial error motion and the spindle tilt error motion accurately.  

A multi-sensor method mixing displacement sensors and slope sensors for 
roundness and spindle error measurement, known as the mixed method, has also 
been presented. This method can separate roundness and spindle error completely, 
and is well suited for measuring profiles that include high-frequency components. 
It was verified that well-balanced harmonic response can be achieved over the 
entire frequency range when the angular distance between the slope sensor and the 
displacement sensor is set to be 90º. The mixed method employing this sensor 
arrangement is called the orthogonal mixed method. This sensor arrangement is 
also the simplest one because the separation of the roundness error from the 
spindle error requires only one displacement sensor and one slope sensor.  
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Figure 5.24. Setup for roundness and spindle error measurement with the orthogonal 
mixed method 
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Figure 5.25. Results of stability test 
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(b) Rectilinear plot 

Figure 5.26. Measurement result of ball roundness 
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Figure 5.27. Measurement result of spindle error 
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