
Chapter 5
Three-Dimensional Object Recognition

Abstract Some applications require a position estimate in 3D space (and not just in
the 2D image plane), e.g., bin picking applications, where individual objects have to
be gripped by a robot from an unordered set of objects. Typically, such applications
utilize sensor systems which allow for the generation of 3D data and perform match-
ing in 3D space. Another way to determine the 3D pose of an object is to estimate
the projection of the object location in 3D space onto a 2D camera image. There
exist methods managing to get by with just a single 2D camera image for the esti-
mation of this 3D→ 2D mapping transformation. Some of them shall be presented
in this chapter. They are also examples of correspondence-based schemes, as the
matching step is performed by establishing correspondences between scene image
and model features. However, instead of using just single scene image and model
features, correspondences between special configurations of multiple features are
established here. First of all, the SCERPO system makes use of feature groupings
which are perceived similar from a wide variety of viewpoints. Another method,
called relational indexing, uses hash tables to speed up the search. Finally, a sys-
tem called LEWIS derives so-called invariants from specific feature configurations,
which are designed such that their topologies remain stable for differing viewpoints.

5.1 Overview

Before presenting the methods, let’s define what is meant by “3D object recogni-
tion” here. The methods presented up to now perform matching of a 2D model to
the 2D camera image plane, i.e., the estimated transformation between model and
scene image describes a mapping from 2D to 2D. Of course, this is a simplification
of reality where the objects to be recognized are located in a 3D coordinate system
(often called world coordinates) and are projected onto a 2D image plane. Some of
the methods intend to achieve invariance with respect to out-of-plane rotations in
3D space, e.g., by assuming that the objects to be found are nearly planar. In that
case, a change of the object pose can be modeled by a 2D affine transformation.
However, the mapping still is from 2D to 2D.

95M. Treiber, An Introduction to Object Recognition, Advances in Pattern Recognition,
DOI 10.1007/978-1-84996-235-3_5, C© Springer-Verlag London Limited 2010

96 5 3D Object Recognition

In contrast to that, 3D matching describes the mapping of 3D positions to 3D
positions again. In order to obtain a 3D representation of a scene, well-known meth-
ods such as triangulation or binocular stereo can be applied. Please note that many
of the methods utilize so-called range images or depth maps, where information
about the z-direction (e.g., z-distance to the sensor) is stored dependent on the

[
x, y

]
-

position in the image plane. Such a data representation is not “full” 3D yet and
therefore is often called 21/2 D.

Another way to determine the 3D pose of an object is to estimate the projection
of the object location in 3D space onto the 2D camera image, i.e., estimate the
parameters of a projective transformation mapping 3D to 2D, and that’s exactly what
the methods presented below are doing. The information provided by the projection
can for example be utilized in bin picking applications, where individual objects
have to be gripped by a robot from an unordered set of objects.

The projective transformation which maps a [X, Y , Z]T position of world coordi-
nates onto the

[
x, y

]
-camera image plane is described by

⎡

⎣
a
b
c

⎤

⎦ = R ·
⎡

⎣
X
Y
Z

⎤

⎦+ t (5.1)

[
x
y

]
=

[
f · a/c
f · b/c

]
(5.2)

with R being a 3 × 3-rotation matrix, t a 3D translation vector, and f is determined
by the camera focal length. Observe that in order be a rotation matrix, constraints are
imposed upon R, which makes the problem of finding the projective transformation
a non-linear one, at least in the general case. Detailed solutions for the parameter
estimation are not presented in this book; our focus should be the mode of operation
of the matching step.

Performing 3D object recognition from a single 2D image involves matching 2D
features generated from a sensed 2D scene image to a 3D object model. The meth-
ods presented here implement the matching step by establishing correspondences
between scene image and model features (or, more generally, feature combinations)
and are therefore also examples of correspondence-based schemes.

In terms of object representation, a complete 3D model can be derived either
from 3D CAD data or from multiple 2D images acquired from different viewpoints.
There exist two main strategies for model representation: an object-centered one,
where the model consists of a single feature set containing features collected from
all viewpoints (or the entire CAD model, respectively) or a view-centered one where
nearby viewpoints are summarized to a viewpoint class and a separate feature set is
derived for each viewpoint class.

Algorithms that perform 3D object recognition from a single 2D image are
mostly applied in industrial applications, as industrial parts usually can be modeled
by a restricted set of salient features. Additionally, the possibility to influence the

5.2 The SCERPO System: Perceptual Grouping 97

imaging conditions alleviates the difficulty involved by the fact of relying on config-
urations of multiple features, because usually it is very challenging to detect them
reliably. Three methods falling into this category are presented in the following.

5.2 The SCERPO System: Perceptual Grouping

5.2.1 Main Idea

The SCERPO vision system (Spatial Correspondence, Evidential Reasoning and
Perceptual Organization) developed by Lowe [3] is inspired by human recognition
abilities. It makes use of the concept of perceptual grouping, which defines group-
ings of features (e.g., lines) that are considered salient by us humans and therefore
can easily be perceived (cf. Fig. 5.1).

There is evidence that object recognition of the human vision system works in
a similar way. As there should be no assumptions about the viewpoint location
from which the image was acquired, these feature groupings should be invariant
to viewpoint changes, enabling the algorithm to detect them over a wide range of
viewpoints. Lowe describes three kinds of groupings that fulfill this criterion:

• Parallelism, i.e., lines which are (nearly) parallel
• End point proximity, i.e., lines whose end points are very close to each other
• Collinearity, i.e., lines whose end points are located on or nearby a single

“master-line.”

Fig. 5.1 Showing three kinds of perceptually significant line groupings: five lines ending at posi-
tions which are very close to each other in the lower left part, three parallel lines in the lower right,
and, finally, four almost collinear lines in the upper part of the picture

98 5 3D Object Recognition

5.2.2 Recognition Phase

Based on the concept of perceptual grouping, Lowe proposes the following algo-
rithm for recognition. Lets assume model data is available already, e.g., from CAD
data. Figure 5.2 illustrates the approach: as an example, the 3D poses of multiple
razors have to be found in a single scene image:

1. Edge point detection: at first, all edge points e have to be extracted from the
image. To this end, Lowe suggests the convolution of the image with a Laplacian
of Gaussian (LoG) operator. As this operation relates to the second derivative
of image intensity, edge points should lie on zero-crossings of the convolution
result. In order to suppress zero crossings produced by noise, pixels at zero
crossing positions additionally have to exhibit sufficiently high gradient values
in order to be accepted as edge pixels.

2. Edge point grouping: derivation of line segments li which approximate the edge
points best (see also the previous chapter for a brief introduction).

3. Perceptual grouping of the found line segments considering all three kinds of
grouping. In this step, a group gn of line segments is built if at least two lines
share the same type of common attribute (collinearity, parallelism or proximal
end points).

4. Matching of the found line groups to model features taking the viewpoint con-
sistency constraint into account. The viewpoint consistency constraint states
that a correct match is only found if the positions of all lines of one group
of the model can be fit to the positions of the scene image lines with a single
common projection based on a single viewpoint. In other words, the posi-
tions of the lines have to be consistent with respect to the transformation
parameters.

5. Projection hypothesis generation: each matching of a model line group to some
scene image features can be used to derive a hypothesis of the projection
parameters between a 3D object pose and the scene image.

6. Projection hypothesis verification: based on the hypothesis, the position of other
(non-salient) features/lines in the scene image can be predicted and verified. The
hypothesis is valid if enough consistent features are found.

As it might be possible to formulate many hypotheses it is desirable to do a
ranking of them with respect to the probability of being a correct transformation.
Most promising are groups consisting of many lines as they are supposed to be
most distinctive and have the additional advantage that most likely all projection
parameters can be estimated (because sufficient information is available; no under-
determination). This concept of formulating hypotheses with only a few distinctive
features followed by a verification step with the help of additional features can be
found quite often as it has the advantage to be insensitive to outliers (in contrast to
calculating some kind of “mean”).

5.2 The SCERPO System: Perceptual Grouping 99

5.2.3 Example

Edge
Grouping

Perceptual
Grouping

Model

Matching +
Hypotheses

Verification

Fig. 5.2 Individual razors are detected by perceptual grouping with the SCERPO system1

5.2.4 Pseudocode

function detectObjectPosPerceptualGrouping (in Image I, in

list of model groups gM , in list of model lines IM , in

distance threshold td , in similarity threshold tsim , out object

position list p)

//line segment detection

Convolve I with Laplacian of Gaussian (LoG) operator

IG ← gradient magnitude at zero crossings of convol. result

threshold IG in order to obtain list of edge points e
group edge points e to line segments li, if possible

remove very short segments from line segment list IS

// perceptual grouping

while unprocessed line segments exist in IS do

take next line segment lS,i from list IS

1Contains images reprinted from Lowe [3] (Figs. 9, 10, 11, 12, 14, and 16), © 1987, with
permission from Elsevier.

100 5 3D Object Recognition

init of group gn with lS,i
for all line segments lS,k in the vicinity of lS,i

if
[
endpt_prox

(
lS,k, gn

) ∨ collin
(
lS,k, gn

) ∨ parallel
(
lS,k, gn

)]∧
group type fits then

append lS,k to gn

set type of group gn if not set already (collinear,

endpoint prox. or parallel)

end if

next

if number of lines of gn >= 2 then

accept gn as perceptual group and add it to list

of perceptual groups in scene image gS
remove all line segments of gn from list lS

end if

end while

// matching

for i = 1 to number of model groups (elements of gM)

for j = 1 to number of scene groups (elements of gS)

if viewpoint consistency constraint is fulfilled for

all lines of gM,i and gS,j then

estimate transform parameters t // hypothesis

//hypothesis verification

sim ← 0

for k = 1 to total number of line combinations

if
∥∥t

(
lM,k

)− lS,k
∥∥ ≤ td then // positions fit

increase sim
end if

next

if sim ≥ tsim then

append t to position list p
end if

end if

next

next

5.2.5 Rating

An advantage of this procedure is that it is a generic method which doesn’t include
many specific assumptions about the objects to be detected. Furthermore, one image
is enough for 3D recognition.

In order to make the method work, however, it has to be ensured that there exist
some perceptual groups with suitable size which are detectable from all over the

5.3 Relational Indexing 101

expected viewpoint range. Compared to the methods presented below only lines
are used, which constrains the applicability. Additionally, 3D model data has to be
available, e.g., from a CAD model.

5.3 Relational Indexing

5.3.1 Main Idea

The algorithm presented by Costa and Shapiro [2], which is another example of
aiming at recognizing 3D objects from a single 2D image, uses a scheme which is
called relational indexing. In this method object matching is performed by estab-
lishing correspondences, too. However, these correspondences are not identified
between single features; a pair of so-called high-level features is used instead. The
features utilized by Costa and Shapiro are extracted from edge images (which, e.g.,
can be calculated from the original intensity image with the operator proposed by
Canny [1] including non-maximum suppression) and are combinations of primitives
such as lines, circular arcs, or ellipses. Therefore the method is suited best for the
recognition of industrial parts like screws, wrenches, stacked cylinders. A summary
of high-level features can be found in the top tow rows of Table 5.1. Most of them
are combinations of two or more primitives.

For matching, two of these high-level features are combined to a pair, which can
be characterized by a specific geometric relation between the two features, e.g., two
features can share one common line segment or circular arc (see also the bottom two
rows of Table 5.1).

The main advantage of the usage of two features and their geometric relation is
that their combination is more salient and therefore produces more reliable matches
compared to a single feature. This implies, however, that the object to be recognized
contains enough such combinations. Additionally, these combinations have to be
detected reliably, which is the more difficult the more complex the combinations are.

Object matching is performed by establishing correspondences between a pair
of two high-level model features (and their geometric relation) and pairs found in a
scene image. A correspondence is only valid if both pairs are composed by identical
feature types and share the same geometric relation. Each of the found correspon-
dences votes for a specific model. By counting these votes hypotheses for object
classification as well as pose identification can be derived.

In order to achieve invariance with respect to viewpoint change, a view-based
object model is applied. Therefore images taken at different viewpoints are pro-
cessed for each object in a training phase. Images where the object has a similar
appearance are summarized to a so-called view-class. For each view-class high-
level feature pairs are derived and stored separately, i.e., the model for a specific
object class consists of several lists of high-level feature pairs and their geometric
relation, one list for each view class.

102 5 3D Object Recognition

Table 5.1 High-level feature types (top two rows) and types of relations between the features
(bottom two rows) used by relational indexing

Ellipses Coaxials-3 Coaxials-multi Parallel-far Parallel-close

U-triple Z-triple L-Junction Y-Junction V-Junction

Share one arc Share one line Share two lines

Coaxial Close at extremal points Bounding box encloses/
enclosed by bounding box

The method is a further example of an indexing scheme; it can be seen as an
expansion of geometric hashing, which utilizes single features, to the usage of two
features and their relation for generating two indices (one based on the feature types,
one based on the geometric relation) when accessing the (now 2D) look-up table.
The entries of the look-up table represent view-based models which can be used
directly to cast a vote for a specific model – view-class combination.

5.3.2 Teaching Phase

The teaching process, which can be repeated for different view classes, consists of
the following steps:

1. Edge image generation: In the first step all edge pixels have to be identified.
A suitable implementation for this step is the Canny edge detector with non-
maximum suppression proposed in [1]. In principle one intensity image suffices
for the edge image generation. Nevertheless, Costa and Shapiro [2] suggest to
combine two intensity images with differently directed illumination in order to
exclude edges from the model which are caused by shading.

5.3 Relational Indexing 103

2. Mid-level feature extraction: Line segments lM , i and circular arcs cM,i are
extracted from the edge image. As the main focus here is on the matching
method, this step shall not be discussed in detail here (a short introduction to
feature detection is given in the previous chapter).

3. Mid-level feature grouping: in order to utilize the high-level features described
above (denoted by gM,i), they have to be extracted first. This is done by grouping
the mid-level features detected in the previous step.

4. High-level feature grouping: the high-level features just created are combined to
pairs (denoted by pgM,i) consisting of two high-level features and their geometric
relation (see the two bottom rows of Table 5.1). Later on, these groups act as an
index into a look-up table for the retrieval of model information.

5. Look-up table generation: the last training step consists of generating the look-up
table just mentioned (see also Fig. 5.3). The look-up table is a 2D table, where
one dimension represents the high-level feature combination (each high-level
feature type is labeled with a number; for a specific feature pair, these num-
bers are concatenated). The other dimension incorporates the geometric relation
between the two features; again each relation type is represented by a specific
number. After teaching, each element of the look-up table contains a list hM,ab

of model/view-class pairs, i.e., numbers of the object model and the class of
views from which the feature group was detected in the training phase. If, for
example, a pair of parallel lines and a z-triple of lines which share two lines
are detected for the model “2” in a viewpoint belonging to view-class “3” dur-
ing training, the information “2–3” is added to the list of the hash table entry
being defined by the indexes of “parallel-far”-“z-triple” and “share two lines.”
Please note that, in contrast to geometric hashing or the generalized Hough
transform, no quantization of the spatial position of the features is necessary
here.

Figure 5.3 shows one step of the 2D hash table generation in more detail. In
this example a high-level feature pair (briefly called “feature pair” in the following)
consisting of parallel-far lines (e.g., defined as feature number 2) and a z-junction

Parallel-far lines: No. 2

Z-Junction: No. 7

Share two lines: No. 5

5

27

2D- Hash Table Hash Table
Entry list

[]31 ,VM

[]26 ,VM

[]53 ,VM

[]44 ,VM

...

. . .

...

...

Fig. 5.3 Illustrating one step of the hash table generation

104 5 3D Object Recognition

(e.g., defined as feature number 7) has been detected. Their relation is character-
ized by the sharing of two lines (number 5). The feature combination “27” as well
as relation “5” define the two indexes a and b of the entry hM,ab of the 2D hash
table which has to be adjusted: The list of this entry, where each list entry defines a
model number and view-class combination

[
Mi, Vj

]
, has to be extended by on entry

(marked blue). Here, the feature combination 27-5 belongs to model number 4 and
was detected in view-class number 4.

5.3.3 Recognition Phase

The beginning of the recognition process is very similar to the teaching phase. In
fact, step 1–4 are identical. At the end of step 4, all feature pairs pgS,k which could
be extracted from the scene image by the system are known. The rest of the method
deals with hypothesizing and verifying occurrences of objects in the scene based on
the extracted pgS,k and proceeds as follows:

5. Voting: For each high-level feature pair pgS,k the two indexes a and b into the
look-up table (a is based on the two high-level features of the pair and b is based
on their geometric relation) can be derived. The element hM,ab of the look-up
table that can be addressed by the two indexes consists of a list of models which
contain a feature pair pgM,i with feature types as well as relation being identical
to the ones of pgS,k and therefore support its occurrence in the scene image.
Each list entry hM,ab.l casts a vote, i.e., a specific bin (relating to the model index
defined in hM,ab.l) in an accumulator array consisting of indexes for all models
(i.e., the model database) is incremented by one.

6. Hypothesis generation: hypotheses for possible model occurrences in the scene
image can be generated by searching the accumulator for values above a certain
threshold tR

7. 3D Pose estimation: based on all feature pairs supporting a specific hypothesis hy
an estimation of the 3D object pose can be derived. To this end, the matched 2D
positions of the features in the scene image to their corresponding 3D positions
of the 3D object model (e.g., a CAD model) are utilized. In order to estimate a
3D pose six such 2D–3D feature matches are required. Details of the estimation
scheme, which in general requires nonlinear estimation, but can be linearized in
special cases, can be found in [2].

8. Verification: roughly speaking, a hypothesis hy is valid if enough edge points
of the back-projected 3D model into the camera image (with the help of the
estimated 3D pose of step 7) are located near an edge point detected in the scene
image. To this end, the directed Hausdorff distance h (t (m) , I) = min

i∈I
‖m− i‖

to the scene image edge point set I is calculated for each back-projected model
edge point m ∈ M. In order to consider a hypothesis as valid, two conditions must
hold: First of all, the average of the Hausdorff distances for all back-projected
model edge points must remain below a threshold tdist and, second, the fraction
of model pixels with actual distance below tdist must be above the value tfr:

5.3 Relational Indexing 105

[M1, V3]
[M6, V2]

2D-Hash Table

Hash Table
Entry list

+ +

1M 6M

Voting

Hypothesis 3D Pose est. Verification

. . .

Fig. 5.4 Screw nut detection with relational indexing

1

M

∑

m∈M

h (t (m), I) ≤ tdist (5.3)

N (m ∈ M|h (t (m), I) ≤ tdist)

M
≥ tfr (5.4)

where N (m ∈ M|h (t (m) , I) ≤ tdist) denotes the number of model points with a
distance at most equal to tdist. In [2] tdist is set empirically to 5 pixels and tfr
to 0.65. Please note that tfr controls the amount of occlusion which should be
tolerated by the system.

The entire recognition process is illustrated in Fig. 5.4: after edge extraction and
edge pixel grouping, several mid-level features (marked blue) are detected. In the
next step, they’re grouped to so-called high-level features (rightmost image in top
row; each high-level feature is indicated by a different color). Subsequently, the
high-level features are combined to pairs (e.g., the combination ellipse-coaxials
combination marked blue and the u-triple-ellipse part-combination marked red).
Note that other combinations are also possible, but are not considered here for bet-
ter visibility. Each combination can be used as an index into the 2D hash table built
during training. The hash table list entries are used during voting. Again, not all list
entries are shown because of better visibility.

5.3.4 Pseudocode

function detectObjectPosRelIndex (in Image I, in 2D hash table

H, in model data M for each object model, in thresholds

tR, tdist and tfr, out object position list p)

106 5 3D Object Recognition

// detection of high-level feature pairs

detect edge pixels (e.g. Canny) and arrange them in list e
group edge points e to line segments lS,k and circular arcs

cS,k and add each found mid-level feature to list lS or cS
group mid-level features to high-level features gS,k, if

possible , and build list gS
build pairs of high-level features pgS,k, if possible, and

collect them in list pgS

// voting

Init of 1-dimensional accumulator accu
for k = 1 to number of list entries in pgS
// derive indexes a and b for accessing the 2D hash table:

a ← concatenation of the types of the two high-level

features gS,i and gS,j which build pgS,k
b ← index of geometric relation between gS,i and gS,j
retrieve model list hM,ab from H(a,b)
for l = 1 to number of model entries in hM,ab

increment accu for model defined by hM,ab,l
next

next

// hypothesis generation

for all local maxima of accu (bin index denoted by m)
if accu(m) ≥ tR then

match model features to the found lS,k and cS,k
estimate t based on the involved feature matches

add hypothesis hy = [t,m] to list hy
end if

next

// hypothesis verification

for i = 1 to number of hypotheses hy
calculate directed hausdorff distances of back-projected

model edge point set

if equations 5.3 and 5.4 are fulfilled then

append hyi to position list p
end if

next

5.3.5 Example

Object recognition results achieved with this method are summarized in Table 5.2
(with images taken from the original article of Costa and Shapiro [2]), where

5.3 Relational Indexing 107

Table 5.2 Illustrating the performance of 3D object recognition with relational indexing2

Intensity image with
directed illumination from
the left

Intensity image with
directed illumination from
the right

Combined edge image.
Edges resulting from
shading are eliminated

Found line features Found circular arc
features

Found ellipse features

Incorrect hypothesis Incorrect hypothesis Incorrect hypothesis

Correct hypothesis Correct hypothesis Correct hypothesis

man-made workpieces have to be detected. The first row shows the two input
images (with illumination from different directions: left and right) together with the
combined edge image extracted from them. The different types of mid-level features
derived from the edge image are shown in the second row. The third row contains
some incorrect hypotheses generated in step 6 of the recognition phase; however, all
of them did not pass the verification step. All three objects of the scene were found
with correct pose, as the bottom row reveals.

2Contains images reprinted from Costa and Shapiro [2] (Figs. 22, 23, and 24), © 2000, with
permission from Elsevier.

108 5 3D Object Recognition

5.3.6 Rating

Experiments performed by the authors showed quite impressive results as far as
recognition performance is concerned. They reported no false detections in various
test images, whereas almost all objects actually being present in the images were
detected at correct position at the same time, despite the presence of multiple objects
in most of the images, causing considerable amount of occlusion and clutter.

On the other hand, however, the method relies on the objects to have a “suitable”
geometry, i.e., at least some of the high-level features defined in Table 5.1 have to
be present. Additionally, the feature groups must be detectable in the scene image.
Indeed, the major constraint of the method stems form the instability of the detec-
tion of the feature groups: sometimes a feature is missing, sometimes a feature is
split because of occlusion (e.g., a long line might be detected as two separate line
segments), and so on. Bear in mind that the feature group is only detected correctly
if all mid-level features are found correctly as well!

5.4 LEWIS: 3D Recognition of Planar Objects

5.4.1 Main Idea

In order to recognize objects with arbitrary 3D pose it is desirable to derive
features from the image of an object which remain constant regardless of the rel-
ative position and orientation of the object with respect to the image acquisition
system. Such so-called invariants allow for 3D object recognition from a sin-
gle 2D image of arbitrary viewpoint, because the viewpoint is allowed to change
between teaching and recognition phase. The invariant value remains stable even
if the object undergoes a projective transform. One example using invariants is
perceptual grouping described by Lowe [3] which was already presented in a
previous section. Although it can be shown that such invariants don’t exist for
arbitrarily shaped 3D objects, invariants can be derived for specific configura-
tions of geometric primitives (e.g., lines or conics) or a set of linearly independent
points.

The LEWIS system (Library Entry Working through an Indexing Sequence)
developed by Rothwell et al. [4] makes use of two different types of invariants when
performing recognition of planar objects (in this context “planar” means that the
object is “flat,” i.e., can be approximated well by a 2D plane).

Please note that, in contrast to the methods presented above, just a perspective
transformation mapping a 2D model to a 2D image (with eight degrees of freedom,
see Section 3.1) is estimated here. However, an extension to non-planar objects,
where the estimated transformation describes a projection of the 3D object pose
onto a 2D image plane, is possible and provided by the same research group [5].
The principle of invariants remains the same for both methods, and that’s the reason
why the LEWIS method is presented here.

5.4 LEWIS: 3D Recognition of Planar Objects 109

Observe that the usage of invariants imposes restrictions on the objects to be
recognized as they have to contain the aforementioned specific geometric configu-
rations (examples will follow) and, additionally, the invariants have to be detected
reliably in the scene images. A class of objects which meets these constraints
is man-made, planar objects like spanners, lock striker plates, metal brackets
(recognition examples of all of them are given in [4]), and so on.

The outline of the LEWIS method is as follows: Characteristic invariants are
detected from edge images for each object to be recognized and stored in the
model database in an off-line training step. During recognition, invariants of a
scene image are derived with identical procedure. In order to speed up match-
ing, indexing is applied: the value of a single invariant derived from the scene
image leads to a hypothesis for the presence of an object model which con-
tains an invariant of identical type and with similar value. In other words, if an
invariant can be detected in a scene image, its value is derived and serves as
an index into a hash table for retrieving a list of object classes that contain an
invariant of identical type and with similar value. In a last step, the hypotheses
are verified (resulting in acceptance or rejection of a hypothesis) using complete
edge data.

5.4.2 Invariants

For 3D object recognition of planar objects Rothwell et al. [4] make use of two
types of invariants: algebraic and canonical frame invariants. As far as algebraic
invariants are concerned, they consist of a scalar value which can be derived from a
specific geometric configuration of coplanar lines and/or conics. This value remains
stable if the underlying feature configuration undergoes a projective transformation.
Table 5.3 summarizes the geometric configurations which are utilized by the LEWIS
method.

Two functionally independent projective invariants can be derived from five
coplanar lines. Given five lines

li = [μi sin θi,−μi cos θi, μidi]
T ; i ∈ {1, . . . , 5} (5.5)

Table 5.3 Illustration of three different types of geometric configurations of line and circular
features utilized by the LEWIS system in order to derive algebraic invariants

Five lines Two conics One conic and two lines

110 5 3D Object Recognition

(where θi denotes the orientation of line i with respect to the x axis, di the distance
of the line to the origin, and μi the scale factor introduced because of the usage of
homogeneous coordinates) the invariants IL1 and IL2 are defined by

IL1 = |M431| · |M521|
|M421| · |M531| (5.6)

IL2 = |M421| · |M532|
|M432| · |M521| (5.7)

where the matrices Mijk are built by a column-wise concatenation of the parameters
of three lines

[
li, lj, lk

]
.
∣∣Mijk

∣∣ denotes the determinant of Mijk.
Before we define the invariants where conics are used, let’s introduce the rep-

resentation of conics first. A conic is defined by the set of points xi =
[
xi, yj, 1

]

satisfying ax2
i + bxiyi + cy2

i + dxi + eyi + f = 0, or equally, the quadratic form

xT
i · C · xi = 0 with C =

⎡

⎣
a b/2 d/2

b/2 c e/2
d/2 e/2 f

⎤

⎦ (5.8)

In the presence of two conics C1 and C2, two independent invariants IC1 and IC2
can be derived:

IC1 =
tr
(

C−1
1 · C2

)
· |C1|1/3

|C2|1/3
(5.9)

IC2 =
tr
(

C−1
2 · C1

)
· |C2|1/3

|C1|1/3
(5.10)

where tr (·) denotes the trace of a matrix.
Two lines and one conic lead to the invariant ILC which is defined by

ILC =
(
lT1 · C−1 · l2

)2

(
lT1 · C−1 · l1

) · (lT2 · C−1 · l2
) (5.11)

Canonical frame invariants IV can be applied to the more general class of pla-
nar curves. As a projective transformation is specified by eight parameters, it can
be defined by four non-collinear planar points. If four non-collinear points can
be uniquely identified on a planar curve, the mapping of these points onto a so-
called canonical frame, e.g., a unit square, uniquely defines the eight parameters
of a projective transformation. In this context “uniquely defines” means that the
system always detects the same positions on the curve, regardless of the viewpoint
from which the image was taken. To this end, four points around a concavity of the
curve are utilized (see Fig. 5.5). Now the entire curve can be transformed into the
canonical frame. The transformed curve remains stable regardless of the viewpoint.

5.4 LEWIS: 3D Recognition of Planar Objects 111

Fig. 5.5 Summarizing the derivation of canonical frame invariants as implemented in the LEWIS
method, where curves of connected edge pixels which feature a concavity are exploited

For this reason a signature which is a projective invariant can be derived from the
transformed curve. To this end the lengths of equally spaced rays ranging from the
point [1/2, 0] to the transformed curve are stacked into a vector and serve as a basis
for the desired invariant IV (details see [4]).

Figure 5.5 illustrates the proceeding: In a first step, four non-collinear points
around a concavity are uniquely identified with the help of a common tangent (see
[4] for details). Next, these four points are mapped onto a unit square. Subsequently,
all points of the curve can be transformed to the thus defined canonical frame. The
lengths of equally spaced rays (shown in black in the right part; all originating at
the point [1/2, 0]) are the basis for the desired invariant. Observe that – compared to
algebraic invariants – there are less restrictions on the shape of the object. However,
the curve is not allowed to be arbitrarily shaped, as it is required to detect a common
tangent passing through two distinct points of the curve.

5.4.3 Teaching Phase

The model database can be built iteratively by extracting the model data for each
object class from a training image. For each model class, the data consists of a
collection of edge pixels, geometric features (lines, conics and curves of connected
edge pixels), and the invariant values derived from the features. The data is obtained
as follows:

1. Identification of edge pixels: In the first step all edge pixels with rapidly changing
intensity are found, e.g., with the operator proposed by Canny [1] (including
non-maximum suppression). For many man-made, planar objects, the set of thus
obtained edge pixels, captures most of the characteristics.

2. Feature extraction: Subsequently, all primitives which could potentially be part
of a configuration being suitable for derivation of invariants (namely lines, conics
and curves) are extracted from the edge image.

112 5 3D Object Recognition

3. Feature grouping: Now the lines and cones are grouped to one of the three con-
figurations from which algebraic invariant values can be derived (see Table 5.3),
if possible.

4. Invariant calculation: Subsequently, several invariant values can be calculated
and added to the object model, algebraic invariants, as well as canonical frame
invariants.

5. Hash Table creation: For speed reasons, the invariant values can be used to create
hash tables HL1, HL2, HLC, HC1, HC2, and HV (one table for each functionally
independent invariant). Each table entry consists of a list of object models which
feature an invariant of appropriate type and with a value that falls within the hash
table index bounds.

The data of each object model, which is available after teaching, essentially
consists of the following:

• A list e of edge pixels
• Lists of lines lM , conics cM and curves vM which could be extracted out of e.
• Feature groups gM,L (5-line configurations), gM,LC (2-line and conic config-

urations), gM,C (2-conic configurations) which serve as a basis for invariant
calculation.

• Invariant values IL1,i, IL2,i, ILC,j, IC1,k, IC2,k, and IV ,l derived from the entries of
lM , cM , and vM .

5.4.4 Recognition Phase

Recognition of the objects shown in a scene image is performed by compar-
ing invariants. To this end, invariants have to be derived from the scene image,
too. Hence, steps 1–4 of recognition are identical to training. In the following,
classification and verification are performed as follows:

5. Hypothesis formulation by indexing: in order to formulate a hypothesis for the
occurrence of a specific object based on a specific invariant value the following
two conditions must hold:

– An invariant of the same type (e.g., based on five lines) exists in the model
database.

– The value of the model database invariant is similar to the scene image
invariant value.

A fast hypothesis formulation can be achieved by the usage of hash tables:
each table entry, which covers a range of invariant values, consists of a list of
all object models containing an invariant of the same type whose value also falls
into this range. As we have different types of functionally independent invariants,
multiple hash tables HL1, HL2, HLC, HC1, HC2, and HV are used. At this stage,

5.4 LEWIS: 3D Recognition of Planar Objects 113

each invariant leads to a separate hypothesis. Based on the model data as well as
the extracted scene image feature groups, the transformation parameters t can be
derived.

6. Hypothesis merging: instead of a separate verification of each hypothesis it is
advantageous to combine them if they are consistent. As a joint hypothesis is
supported by more features, it is more reliable and the transformation parameters
can be estimated more accurately. The merging process is based on topologic and
geometric compatibility of different hypotheses, details can be found in [4].

7. Hypothesis verification: a (joint) hypothesis is verified if it is still broadly sup-
ported when all edge pixels and/or features (and not only the invariant values) are
taken into account. Verification is performed by back-projecting the edge pixel
point set as well as all extracted lines and conics of the model to the scene image.
A hypothesis is accepted if more than a certain proportion of the model data is
consistent with the scene image data. Two lines are regarded consistent if their
orientation is similar, conics have to possess similar circumference and area and
finally, edge pixels must have similar position and gradient orientation. Because
back-projection of many edge pixels is expensive in terms of runtime, it is prefer-
able to perform another verification in advance: in general, when calculating the
eight parameters of the projective transform, it is possible to formulate an over-
determined equation system. Over-determination should be possible, because the
number of available features should exceed four non-collinear points which are
necessary to determine eight transformation parameters. Consequently, if it is
not possible to compute common transformation parameters where the error
(due to the over-determination) remains small, the hypothesis can be rejected
immediately. Otherwise the parameters just calculated can be used for the
aforementioned back-projection verification.

5.4.5 Pseudocode

function detectObjectPosLEWIS (in Image I, in hash tables

HL1, HL2, HLC, HC1, HC2, and HV, in model data M for

each object model, in similarity threshold tsim, out object

position list p)

// invariant calculation

detect all edge pixels (e.g. Canny) (summarized in e)
group edge points e to line segments lS,i, cones cS,k and

curves vS,l and add each found feature to one of the lists

lS, cS or vS
detect all 5-line configurations gS,L,i and build list gS,L
detect all 2-line/1-conic configs gS,LC,j and build list gS,LC
detect all 2-conic configurations gS,C,k and build list gS,C
calculate algebraic invariants IL1,i, IL2,i, ILC,j, IC1,k and

114 5 3D Object Recognition

IC2,k for all elements of lists gS,L, gS,LC, and gS,C
(equations 5.6 - 5.11)

calculate canonical frame invariants IV,l for all elems of vS

// matching

// generation of hypotheses

for i = 1 to number of list entries in gS,L
retrieve model list hM,L1 from HL1 (index specified

by IL1,i)

for m = 1 to number of model entries in hM,L1
estimate t based on gS,L,i and gM,L,n
add hypothesis hy = [t, m] to list hy // m: model index

next

repeat this proceeding with IL2,i
next

repeat this proceeding with gS,LC and gS,C and vS (here,

take the four non-collinear points for estimating t)
// hypothesis merging

for i = 1 to number of hypotheses hy -1

for j = i+1 to number of hypotheses hy
if similarity

(
hyi, hyj

)
then

hyk = merge
(
hyi, hyj

)

replace hyi by hyk and delete hyj
end if

next

next

// hypothesis verification

for i = 1 to number of hypotheses hy
sim ← 0

verify lines: adjust sim based on the position similarity

between lS,i and t
(
lM,i

)

repeat this for all cones and edge pixels

if sim ≥ tsim then

append hyi to position list p
end if

next

5.4.6 Example

The following examples show object poses found and verified by the LEWIS system
as white overlays on the original gray scale scene images. They demonstrate that
the system is able to detect multiple objects even in the presence of heavy occlusion
and/or background clutter, but also disclose some limitations of the method.

5.4 LEWIS: 3D Recognition of Planar Objects 115

Table 5.4 Recognition examples taken from the article of Rothwell et al. [4].3 The threshold for
the edge match in the verification step was set to 50%

Scene image containing
seven planar objects
which partly occlude each
other. Two of them
(spanner and lock striker
plate) are part of the
model database

Detected lines and conics
superimposed in white.
Altogether, 100 lines and
27 conics are found by
the system

 The two model objects are
 both found with correct
pose: the striker plate
with 50.9% edge match
based on a single
invariant, the spanner with
70.7% edge match based
on three invariants

Example of a false
positive due to clutter: the
spanner was identified in
wrong pose with 52.1%
edge match

Three detected objects in
another scene image with
74.4% edge match
(2 invariants), 84.6% (1 inv.)
and 69.9% (3 inv.) from
left to right

Spanner detected with the
help of canonical frame
invariants with 55.5%
edge match

5.4.7 Rating

As the examples show, it is indeed possible to utilize invariants for 3D object
recognition of planar objects with only a single image independent of the viewpoint
from which it was acquired. Experiments performed by the authors, where objects
were rotated full circle with a certain step size, revealed that algebraic as well as
canonical frame invariants remained stable (the standard deviation was at approx-
imate 1.5% of the mean value). There are numerous examples where objects were
found in spite of considerable occlusion and/or clutter. Moreover, the system is
also capable of identifying multiple objects in a single scene image. Compared to
an alignment approach, the number of hypotheses to be tested in the verification
step could be reduced dramatically (by 2–3 orders of magnitude for some example
images).

3With kind permission from Springer Science+Business Media: Rothwell et. al. [4], Figs. 27, 28,
32, and 42, © 1995 Springer.

116 5 3D Object Recognition

On the other hand, however, the system sometimes tends to generate false posi-
tives, especially in the presence of heavy clutter. This is due to the fact that clutter
leads to a dense occurrence of features. Consequently, sometimes a spurious solu-
tion can occur when an invariant calculated from clutter can be matched to the model
database (one example is shown in Table 5.4). The system doesn’t consider texture
or, more generally, appearance information which could contribute to alleviate this
effect. Additionally, the method only works well if objects are suited, i.e., if they
contain several feature primitives like lines or conics. More seriously, many fea-
tures have to be detected reliably in order to make the method work. This makes
the invariant calculation instable: for example, if only a single line of a five-line
group is occluded by another object, it is not possible to calculate the corresponding
invariant value any longer. In the meantime it is common sense that this limitation
is the main drawback of methods relying on invariants.

References

1. Canny, J.F., “A Computational Approach to Edge Detection”, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 8(6):679–698, 1986

2. Costa, M. and Shapiro, L., “3D Object Recognition and Pose with Relational Indexing”,
Computer Vision and Image Understanding, 79:364–407, 2000

3. Lowe, D.G., “Three-Dimensional Object Recognition from Single Two-Dimensional Images",
Artificial Intelligence, 31(3):355–395, 1987

4. Rothwell, C.A., Zisserman, A., Forsyth, D.A. and Mundy, J.L., "Planar Object Recognition
using Projective Shape Representation", International Journal of Computer Vision, 16:57–99,
1995

5. Zisserman, A., Forsyth, D., Mundy, J., Rothwell, C., Liu, J. and Pillow, N., “3D Object
Recognition Using Invariance”, Artificial Intelligence, 78(1–2):239–288, 1995

	5 Three-Dimensional Object Recognition
	5.1 Overview
	5.2 The SCERPO System: Perceptual Grouping
	5.2.1 Main Idea
	5.2.2 Recognition Phase
	5.2.3 Example
	5.2.4 Pseudocode
	5.2.5 Rating

	5.3 Relational Indexing
	5.3.1 Main Idea
	5.3.2 Teaching Phase
	5.3.3 Recognition Phase
	5.3.4 Pseudocode
	5.3.5 Example
	5.3.6 Rating

	5.4 LEWIS: 3D Recognition of Planar Objects
	5.4.1 Main Idea
	5.4.2 Invariants
	5.4.3 Teaching Phase
	5.4.4 Recognition Phase
	5.4.5 Pseudocode
	5.4.6 Example
	5.4.7 Rating

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

