
Chapter 3
Transformation-Search Based Methods

Abstract Another way of object representation is to utilize object models consist-
ing of a finite set of points and their position. By the usage of point sets recognition
can be performed as follows: First, a point set is extracted from a scene image.
Subsequently, the parameters of a transformation which defines a mapping of the
model point set to the point set derived from the scene image are estimated. To
this end, the so-called transformation space, which comprises the set of all possible
transform parameter combinations, is explored. By adopting this strategy occlusion
(resulting in missing points in the scene image point set) and background clutter
(resulting in additional points in the scene image point set) both lead to a reduc-
tion of the percentage of points that can be matched correctly between scene image
and the model. Hence, occlusion and clutter can be controlled by the definition of a
threshold for the portion of the point sets which has to be matched correctly. After
introducing some typical transformations used in object recognition, some examples
of algorithms exploring the transformation space including the so-called generalized
Hough transform and the Hausdorff distance are presented.

3.1 Overview

Most of the global appearance-based methods presented so far suffer from their
invariance with respect to occlusion and background clutter, because both of them
can lead to a significant change in the global data representation resulting in a
mismatch between model and scene image.

As far as most of the methods presented in this chapter are concerned, they
utilize object models consisting of a finite set of points together with their posi-
tion. In the recognition phase, a point set is extracted from a scene image first.
Subsequently, transformation parameters are estimated by means of maximizing the
similarity between the scene image point set and the transformed model point set
(or minimizing their distance respectively). This is done by exploring the so-called
transformation space, which comprises the set of all possible transform parameter
combinations. Each parameter combination defines a transformation between the
model data and the scene image. The aim is to find a combination which maximizes

41M. Treiber, An Introduction to Object Recognition, Advances in Pattern Recognition,
DOI 10.1007/978-1-84996-235-3_3, C© Springer-Verlag London Limited 2010

42 3 Transformation-Search Based Methods

the similarity (or minimizes a distance, respectively). Finally, it can be checked
whether the similarities are high enough, i.e., the searched object is actually present
at the position defined by the transformation parameters.

Occlusion (leading to missing points in the scene image point set) and back-
ground clutter (leading to additional points in the scene image point set) both result
in a reduction of the percentage of points that can be matched correctly between
scene image and the model. Hence, the amount of occlusion and clutter which still
is acceptable can be controlled by the definition of a threshold for the portion of the
point sets which has to be matched correctly.

The increased robustness with respect to occlusion and clutter is also due to the
fact that, with the help of point sets, local information can be evaluated, i.e., it can
be estimated how well a single point or a small fraction of the point set located
in a small neighborhood fits to a specific object pose independent of the rest of
the image data (in contrast to, e.g., global feature vectors where any discrepancy
between model and scene image affects the global features). Additionally, it is pos-
sible to concentrate the point set on characteristic parts of the object (in contrast to
gray value correlation, for example).

After a brief discussion of some transformation classes, some methods adopting
a transformation-based search strategy are discussed in more detail. The degrees of
freedom in algorithm design for this class of methods are

• Detection method for the point set (e.g., edge detection as proposed by Canny [3],
see also Appendix A). The point set must be rich enough to provide discrimina-
tive information of the object. On the other hand, however, large point sets lead
to infeasible computational complexity.

• Distance metric for measuring the degree of similarity between the model and
the content of the scene image at a particular position.

• Matching strategy of searching the transformation space in order to detect the
minimum of the distance metric. A brute force approach which exhaustively
evaluates a densely sampled search space is usually not acceptable because the
algorithm runtime is too long. As a consequence a more intelligent strategy is
required.

• Class of transformations which is evaluated, e.g., affine or similarity transforms.

3.2 Transformation Classes

Before we take a closer look at some methods which search in the transforma-
tion space we have to clarify what kind of transformation is estimated. Commonly
used transformation classes are similarity transformations and affine transforma-
tions. Both of them are linear transformations, a fact that simplifies calculations
and therefore reduces the computational complexity significantly compared to the
usage of non-linear transformations. In reality, however, if a 3D object is moved in
3D space, the appearance change of the object in a 2D image acquired by a cam-
era at fixed position can only be modeled exactly by a perspective transformation,

3.2 Transformation Classes 43

which is non-linear. Fortunately, the perspective transformation can be approxi-
mated by an affine transformation with good accuracy if the “depth” of the object
resulting from the third dimension is small compared to the distance to the cam-
era and therefore the object can be regarded as planar. Affine transformations are
given by

xS,i =
[

xS,i
yS,i

]
= A · xM,i + t =

[
a11 a12
a21 a22

]
·
[

xM,i
yM,i

]
+

[
tx
ty

]
(3.1)

where xS,i denotes the position of a point or feature (e.g. line segment) in the scene
image and xM,i its corresponding model position. The matrix A and a translation
vector t parametrize the set of all allowed transformations. Altogether, affine trans-
formations are specified by six parameters a11, a12, a21, a22, tx, and ty. A further
simplification can be done if only movements of planar 2D objects perpendicular
to the optical axis of the image acquisition system together with scaling have to be
considered. In that case the affine transformation can be reduced to the similarity
transform

xS,i =
[

xS,i
yS,i

]
= S · xM,i + t = s ·

[
cos ϕ − sin ϕ

sin ϕ cos ϕ

]
·
[

xM,i
yM,i

]
+

[
tx
ty

]
(3.2)

characterized by four parameters s,ϕ, tx, and ty. s denotes a scaling factor, ϕ a rota-
tion angle, and tx and ty a translation in the image plane. If s is explicitly set to 1,
the transformation is called rigid transformation.

Some types of transformations are illustrated in Table 3.1: The rigid transform
comprises translation and rotation; the similarity transform in addition contains scal-
ing. The affine transform maps parallel lines to parallel lines again, whereas the
perspective transform, which is nonlinear, maps a square to a quadrangle in the
general case.

Perspective transformations can actually also be modeled linear if so-called
homogeneous coordinates are used: a 2D point for example is then represented by
the triple

[
λ · x, λ · y, λ

]
, where λ denotes a scaling factor. Points are regarded as

equivalent if they have identical x and y values, regardless of the value of λ. Using
homogeneous coordinates, the projective transformation of a point located in a plane
to another plane can be described as

Table 3.1 Overview of some
transformation classes

Translation Rigid
transform

Similarity
transform

Affine
transform

Perspective
transform

44 3 Transformation-Search Based Methods

xS,i =
⎡

⎣
λ · xS,i
λ · yS,i

λ

⎤

⎦ = T · xM,i =
⎡

⎣
t11 t12 t13
t21 t22 t23
t31 t32 1

⎤

⎦ ·
⎡

⎣
xM,i
yM,i

1

⎤

⎦ (3.3)

Hence, eight parameters are necessary for characterization of a perspective
transform.

3.3 Generalized Hough Transform

3.3.1 Main Idea

The Hough Transform was originally developed for the detection of straight lines
(cf. Hough [7] or Duda and Hart [4]), but can be generalized to the detection of
arbitrarily shaped objects if the object shape is known in advance.

Now let’s have a look at the basic idea of the Hough transform: given a set of
points P, every pixel p = [

x, y
] ∈ p could possibly be part of a line. In order to

detect all lines contained in P, each p “votes” for all lines which pass through that
pixel. Considering the normal form

r = x · cos (α)+ y · sin (α) (3.4)

each of those lines can be characterized by two parameters r and α. A 2D accu-
mulator space covering all possible [r, α], which is divided into cells, accounts for
the votes. For a given point

[
x, y

]
, all parameter combinations [r, α] satisfying the

normal form can be determined. Each of those [r, α] increases the corresponding
accumulator cell by one. Taking all pixels of the point set into account, the local
maxima of the accumulator reveal the parameters of the lines contained in the point
set (if existent).

The principle of voting makes the method robust with respect to occlusion or data
outliers, because even if a fraction of the line is missing, there should be enough
points left for a “correct” vote. In general the Hough transform works on an edge-
filtered image, e.g., all pixels with gradient magnitude above a certain threshold
participate in the voting process.

For a generalization of the Hough transform (cf. Ballard [1]) a model of the
object contour has to be trained prior to recognition. The thus obtained information
about the object shape is stored in a so-called R-Table. Subsequently, recognition is
guided by this R-Table information. The R-Table generation proceeds as follows.

3.3.2 Training Phase

1. Object contour point detection: In the first step all contour points xT ,i =
�xT ,i, yT ,i� of a sample image showing the object to be trained are located
together with their gradient angle θi, e.g., with the help of the canny edge

3.3 Generalized Hough Transform 45

θ1

θ2

x1 ; x2

x3

… …

… …

Fig. 3.1 Illustrative example of the generalized Hough transform. Left: R-table generation with
three example points; Right: 3D accumulator for translation and scale estimation of size 5 × 5 × 4

detector [3] including non-maximum suppression (cf. Appendix A). The under-
lying assumption is that the object contour is characterized by rapid gray value
changes in its neighborhood due to the fact that the background usually differs
from the object in terms of gray value appearance.

2. Center point definition: Specification of an arbitrary point
[
xC, yC

]
.

3. R-table calculation: For each detected contour point, remember its gradient angle
θi and the distance vector to the center �xR,i, yR,i� = �xT ,i − xC, yT ,i − yC�. This
model data can be stored in form of a table (often referred to as R-Table in the
literature) where for each θ the corresponding distance vectors to the center are
stored. The space of θ (usually ranging from –180◦ to 180◦) is quantized into
equally sized intervals. If, for example, each R-table entry covers an interval of
1◦, it consists of 360 entries altogether. Note that multiple distance vectors can
belong to a single gradient angle θ if multiple contour points exhibit the same θ .
Figure 3.1 gives an example for three arbitrarily chosen contour points and the
corresponding fraction of the R-table.

3.3.3 Recognition Phase

1. Object contour point detection: find all contour points xS,i = �xS,i, yS,i� in a
scene image and their gradient angle θi, in general by applying the same method
as during training, e.g., the canny edge detector with non-maximum suppression.

2. Derivation of assumed center points and voting: For each detected contour point
xS,i, assumed center points xCE,l = �xCE,l, yCE,l� can be calculated considering
the gradient angle θi and the model data:

[
xCE,l
yCE,l

]
=

[
xS,i
yS,i

]
+ s ·

[
xR,l
yR,l

]
(θi) (3.5)

46 3 Transformation-Search Based Methods

θ1

θ2

x1 ; x2

x3

… …

Fig. 3.2 Illustrating the voting process for one object contour point. In this example two entries
can be found in the R-table for the current angle θ1. Consequently, the content of two accumulator
cells (marked blue) is increased

The distance vectors xR,l = �xR,l, yR,l� (θ) are obtained based on the R-table
information: For each gradient angle θ a list rθ consisting of L distance vectors
xR,l with l ∈ [1, ..., L] can be retrieved by a look-up operation in the R-table. For
each distance vector a specific xCE,l is calculated and the corresponding cell in a
2D accumulator array is increased by one (cf. Fig. 3.2). Every cell represents a
certain range of x and y position values. The selection of the cell size is a trade-off
between accuracy and, on the other hand, memory demand as well as algorithm
runtime. s denotes a scale factor. Typically, s is varied in a certain range and with
a certain step size depending on the expected scale variation of the object and
the desired accuracy in scale determination. For each s another assumed center
point can be calculated. Hence, for each R-table entry multiple center points are
calculated and therefore multiple accumulator cells are increased. This can be
done in a 2D accumulator or alternatively in a 3D accumulator where the third
dimension represents the scale (see right part of Fig. 3.1). In most of the cases,
also the object angle φ is unknown. Therefore, again multiple center points can
be determined according to

[
xCE,l
yCE,l

]
=

[
xS,i
yS,i

]
+ s ·

[
xR,l
yR,l

]
(θi + φ) (3.6)

where φ is varied within a certain range and with a certain step size. Please note
that the distance vectors retrieved from the R-table have to be rotated by φ in that
case. The object angle φ represents a fourth dimension of the accumulator.

3. Maximum search in the accumulator: All local maxima above a threshold t are
found poses of the object.

3.3.4 Pseudocode

function findAllObjectLocationsGHT (in Image I, in R-Table

data R, in threshold t, out position list p)

// calculate edge point information

calculate x and y gradient of I: Ix and Iy

detect all edge points xS,i based on Ix and Iy, e.g. by

3.3 Generalized Hough Transform 47

non-maximum suppression and hysteresis thresholding(Canny)

for i=1 to number of edge points

θi ← arctan
(
Iy/Ix

)
// edge point orientation

next

//voting

init 4-dimensional accumulator accu with borders

�xmin, xmax, xStep�, �ymin, ymax, yStep�, �φmin, φmax, φStep�, �smin, smax, sStep�
for i=1 to number of edge points

for φ = φmin to φmax step φStep
retrieve list rφ+θi of R (entry at position φ + θi)

for l=1 to number of entries of list rφ+θi

for s = smin to smax step sStep
xR,l ← distance vector (list entry rφ+θi,l),

rotated by φ and scaled by s
calculate assumed object center point

xCE,l
(
xR,l, xS,i, s, φ

)
according to Equation 3.6

if xCE,l is inside
[
x, y

]
-pos. bounds of accu then

increment accu at position
[
xCE,l, yCE,l, φ, s

]

end if

next

next

next

next

// determine all valid object positions

find all local maxima in accu
for i=1 to number of local maxima

if accu (xi, yi, φi, si) ≥ t then

append position
[
xi, yi, φi, si

]
to p

end if

next

3.3.5 Example

Table 3.2 illustrates the performance of the generalized Hough transform: as an
example application, the pose of a key (x, y, scale, and rotation) has to be deter-
mined. The image shown in the left column of the top row served as training image
for R-table construction in all cases.

The left column shows scene images where the key has to be detected, whereas
the contour points extracted by a Canny edge detector with non-maximum sup-
pression are depicted right to it. In the rightmost two columns two cuts through
the 4D accumulator at the found position are shown; one cut revealing the

[
x, y

]
-

subspace of the accumulator at the found [s, φ]-position and another revealing the
[s, φ]-subspace of the accumulator at the found

[
x, y

]
-position.

48 3 Transformation-Search Based Methods

Table 3.2 Performance of the generalized Hough transform in the case of the unaffected training
image, when the object undergoes a similarity transform, in the presence of illumination change,
noise, and occlusion (from top to bottom)

Scene image

Edge image extracted
from scene image with
the Canny edge
detector

XY accu RS accu

y s

x Φ

The x and y accumulator size are the image dimensions (cell size 2 pixels), the
scale ranges from 0.6 to 1.4 (cell size 0.05) and the rotation from –36◦ to 36◦ (cell
size 3◦). The following examples are shown: same image for training and recogni-
tion, a similarity-transformed object, illumination change, strong noise, and finally
occlusion (from top to bottom). In all examples the accumulator maximum is sharp
and distinctive, which indicates good recognition reliability.

3.3 Generalized Hough Transform 49

Please note that the accumulator maximum position remains stable in case of
illumination change, noise, and occlusion despite a considerable appearance change
of the object caused by these effects. As far as the similarity transform example
is concerned, the accumulator maximum moves to the correct position (left and
upward in the XY accu; to the extreme top and right position in the RS accu)
and remains sharp. However, runtime of the algorithm is rather high, even for rel-
ative small images of size 300 × 230 pixels (in the order of 1 s on a 3.2 GHz
Pentium 4).

3.3.6 Rating

The main advantage of the generalized Hough transform is that it can compensate
for occlusion and data outliers (as demonstrated by the key example) as there should
be enough contour pixels left which vote for the correct object pose. On the other
hand, however, the accumulator size strongly depends on the dimensionality of the
search space and the envisaged accuracy.

Let’s consider an example with typical tolerances and resolutions: x-/y-
translation tolerance 200 pixel, cell resolution 1 pixel, rotation tolerance 360◦, cell
resolution 1◦, scale tolerance 50–200%, cell resolution 1%. As a consequence, the
4D accumulator size amounts to 200 × 200 × 360 × 150 = 2.16 × 109 cells,
leading to probably infeasible memory demand as well as long execution times due
to the time-consuming maximum search within the accumulator. Therefore, mod-
ifications of the scheme exist which try to optimize the maximum search in the
accumulator.

Another disadvantage is that the rather rigid object representation does only allow
for a limited amount of local object deformations. If the deformation is restricted to
minor parts of the object contour, the method is robust to these outliers, but if large
parts of the shape show minor deformations the accumulator maximum might be
split up into multiple maxima at similar poses. Noise can be another reason for
such a split-up. This fact can be alleviated by choosing a coarse accumulator reso-
lution. Then every accumulator cell covers a larger parameter range, and therefore
a boundary point at a slightly different location often still contributes to the same
accumulator cells. But keep in mind that the price we must pay is a reduction of
accuracy!

There exist numerous applets in the Internet which are very suitable for experi-
menting with and learning more about the Hough transform, its performance, and
limitations. The interested reader is encouraged to check it out.1

1See e.g. http://d0server1.fnal.gov/users/ngraf/Talks/UTeV/Java/Circles.html or http://homepages.
inf.ed.ac.uk/rbf/HIPR2/houghdemo.htm (links active January 13th 2010)

50 3 Transformation-Search Based Methods

3.3.7 Modifications

Even if the generalized Hough transform suffers from its high memory demand
and complexity, due to its robustness with respect to occlusion and large out-
liers the usage of the Hough transform as a pre-processing step providing input
for other schemes which actually determine the final pose is an interesting com-
bination. In that case rather large accumulator cell sizes are chosen as only
coarse pose estimates are necessary. This involves low or at least moderate mem-
ory and time demand as well as considerable tolerance with respect to local
deformations.

A possible combination might consist of the GHT and so-called active contour
models (see Chapter 6): contrary to the Hough transform, approaches aiming at
compensating local deformations by finding exact object contours with the help of
local information (e.g., like Snakes) only have a limited convergence area and there-
fore demand a reliable rough estimate of the object pose as input. Hence, advantages
of both approaches can be combined (see, e.g., the method proposed by Ecabert and
Thiran [5]).

In order to overcome the memory demand as well as speed limitations of the gen-
eralized Hough transform, Ulrich et al. [11] suggest a hierarchical approach utilizing
image pyramids for determining the x, y and φ position of an object. According to
their approach, the pyramids are built for the training as well as the scene image. On
the top pyramid level, a conventional GHT is performed yielding coarse positions
which are refined or rejected at lower levels. Therefore, a scan of the compete trans-
formation space has only to be performed at top level, where quantization can be
chosen very coarse which is beneficial in terms of memory demand. The knowledge
obtained in this step helps to speed up the computation as well. It can be exploited
as follows:

• Accumulator size reduction: as only parts of the transformation space close to the
coarse positions have to be examined, the size of the accumulator can be kept
small despite of the finer quantization.

• Limitation of image region: based on the coarse position and its estimated uncer-
tainties, the image region for gradient orientation calculation can be restricted
efficiently.

• Accelerated voting: as the object rotation φ is already approximately known,
look-up in the R-table can be restricted to very few rotation steps.

Ulrich et al. implemented a strategy incorporating separate R-tables for each
pyramid level and possible object rotation. This involves an increased memory
demand for the model, but they showed that this is overcompensated by the reduc-
tion of accumulator size as well as runtime. Both can be reduced by several orders
of magnitude compared to the standard scheme. In a comparative study Ulrich and
Steger [10] showed that a GHT modified in such a way can compete with other
recognition schemes which are widely used in industrial applications.

3.4 The Hausdorff Distance 51

3.4 The Hausdorff Distance

3.4.1 Basic Approach

3.4.1.1 Main Idea

The Hausdorff distance H is a nonlinear metric for the proximity of the points
between two point sets. When applied in object recognition, one point set M rep-
resents the model whereas the second, I, describes the content of a scene image
region. H can be used as a measure of similarity between the image content in the
vicinity of a given position and the model. If H is calculated for multiple positions it
is possible to determine the location of an object. The absolute value of H indicates
whether the object is present at all. H is defined by

H (M, I) = max (h (M, I) , h (I, M)) with (3.7)

h (M, I) = max
m∈M

(
min
i∈I
‖m− i‖

)
and h (I, M) = max

i∈I

(
min
m∈M
‖ i− m‖

)
(3.8)

where ‖·‖ denotes some kind of distance norm between a model point m and an
image point i, e.g., the Euclidean distance norm. h (M, I) is called forward dis-
tance and can be determined by calculating the distance to the nearest point of I
for each point of M and taking the maximum of these distances. h (M, I) is small
exactly when every point of M is located in the vicinity of some point of I.

h (I, M) (the reverse distance) is calculated by evaluating the distance to the near-
est point of M for each point of I and taking the maximum again. h (I, M) is small
exactly when every point of I is located in the vicinity of some point of M. Finally,
H is calculated by taking the maximum of these two values.

Figure 3.3 should make things clear. The proceeding of calculating the forward
distance is shown in the top row: at first, for each model point (marked green)

Fig. 3.3 Illustrating the
process of calculating the
Hausdorff distance (model
points are marked green,
image points red)

52 3 Transformation-Search Based Methods

the nearest image point (marked red) is searched. This is explicitly shown for two
model points in the two leftmost point sets (the thus established correspondences
are marked by bright colors). After that, the forward distance is set to the maximum
of these distances (shown in the right part; marked light green). In the bottom row
the calculation of the inverse distance can be seen: for each image point the nearest
model point is detected (illustrated for two example image points marked light in
the leftmost two columns). Subsequently, the inverse distance is set to the maxi-
mum of these distances (marked light red). Finally, the Hausdorff distance is set to
the maximum of the forward and reverse distance.

Please note that, in general, forward and inverse distance are not equal:
h (M, I) �= h (I, M). In fact, this is also true for our example as one of the corre-
spondences established during calculation of the forward distance differs from the
correspondence of the reverse distance (see the upper left areas of the point sets
depicted in the right part of Fig. 3.3, where correspondences are indicated by red
and green lines).

The Hausdorff distance has the desirable property that the total number of model
points and the total number of image points don’t have to be identical, because
multiple image points i can be matched to a single model point m and vice versa.
Hence, a reliable calculation of the metric is still possible if the number of model
points differs from the number of image points, which usually is the case in real-
world applications.

For the purpose of object detection the directed Hausdorff distances have to
be adjusted to the so-called partial distances hfF (M, I) and hfR (I, M). Imagine an
image point set where one point, which is located far away form the other points,
is caused by clutter. This would result in a large value of h (I, M), which is obvi-
ously not intended. Respectively, an isolated point of M would produce large values
of h (M, I) if it is not visible in the image due to occlusion (see Table 3.3 for an
illustration).

Such a behavior can be circumvented by taking the k-largest value instead of the
maximum during the calculation of the directed distances h (I, M) and h (M, I). We
can define fF as the fraction of model points which need to have a nearest distance
below the value of hfF (M, I) which is finally reported. hfF (M, I) is called the partial
directed forward distance. If for example fF = 0.7 and the model consists of 10
points, their minimum distances to the image point set can be sorted in ascending
order and hfF (M, I) is set to the distance value of the seventh model point. For
fF = 1 the partial distance hfF (M, I) becomes equal to h (M, I). A respective
definition of fR exists for hfR (I, M).

As a consequence, it is possible to control the amount of occlusion which should
be tolerated by the recognition system with the choice of fF. The parameter fR
controls the amount of clutter to be tolerated, respectively.

3.4.1.2 Recognition Phase

Rucklidge [9] proposes to utilize the Hausdorff distance as a metric which indicates
the presence of searched objects. He suggests to scan a 6D transformation space in

3.4 The Hausdorff Distance 53

Table 3.3 Illustrating the problems due to occlusion and clutter which can be solved by the
introduction of the partial Hausdorff distance measures

Model point set (dark
green) and image point
set (dark red) that match
well. H is small. Please
note that the number of
model points is not
equal to the number of
image points

The same situation, but
with an extra model
point (light green) which
is not detected in the
image, e.g., due to occlu-
sion. H is large because
of the forward distance.

Now the image point set
contains an extra point
(light red), e.g., due to
clutter. H is large
because of the reverse
distance.

order to determine the parameters of an affine transformation. To this end, the trans-
formation space is sampled and for every sampled position, which consists of six
specific parameter values and defines a specific transformation t, the partial forward
and reverse Hausdorff distances hfF

t (t (M) , I) and hfR
t (I, t (M)) with respect to the

transformed model points t (M) are calculated. Valid object positions are reported
for transformation parameters where the Hausdorff distance reaches local minima.
Additionally, the distances have to remain below user defined thresholds τF and τR:

hfF
t (t (M) , I) < τF ∧ hfR

t (I, t (M)) < τR (3.9)

Hence the search can be controlled with the four parameters τF , τR, fF, and fR.
Each dimension of the transformation space (defined by one of the six transfor-

mation parameters) is sampled equally spaced with a step size such that the resulting
position difference of each transformed model point between two adjacent param-
eter values tk and tk+1 does not exceed the size of one pixel: |tk (m)− tk+1 (m)| ≤
1 pixel ∀ m ∈ M. Additionally, for each transformation t the transformed model
points t (m) are rounded to integer positions for speed reasons (see below). As
a result, no sub-pixel accuracy can be achieved, but a finer sampling and/or the
abdication of rounding would be prohibitive in terms of runtime. However, there is
still much demand for an acceleration of the search, which is until now still brute-
force, in order to reduce runtime. To this end, Rucklidge [9] suggests the following
modifications:

• Size restriction of the search space: The space of transformations which are rea-
sonable can be restricted by applying constraints. First, all transformed model

54 3 Transformation-Search Based Methods

points t (m) have to be located within the borders of the scene image under inves-
tigation. Additionally, in many applications a priori knowledge can be exploited,
e.g., the scale and/or rotation of the object to be found have to remain within
some rather narrow tolerances.

• Box-reverse distance: Usually, the objects to be located only cover a rather
small fraction of the search image. Therefore only points located in a box[
xmin···xmax, ymin···ymax

]
have to be considered when calculating the reverse

distance at a given position.
• Optimization of calculation order: A speedup due to rearranging the calculations

can be achieved in two ways:

– For most of the positions, the distances will not meet the threshold crite-
ria. Therefore it is worthwhile to calculate only the forward distance at first
and then to check whether its value is below τF . Only if this criterion is
met, the reverse distance has to be calculated, because otherwise the current
transformation has to be rejected anyway regardless of the reverse distance.

– Furthermore, with a modification of the partial distance calculation it is often
possible to stop the calculation with only a fraction of the points being exam-
ined. Let’s consider the forward distance: instead of calculating the minimum
distance to the image point set of every transformed model point t (m) and
then evaluating whether the distance at the fF-quantile is below τF , it is bet-
ter to count the number of model points which have a minimum distance to
the image point set that remains below τF . The final check is then whether
this number reaches the fraction fF of the total number of model points. This
enables us to stop the evaluation at a point where it has become clear that
fF cannot be reached any longer: this is the case when the number of model
points, which are already checked and have a distance above τF , exceeds the
fraction 1− fF with respect to the number of model points.

• Usage of the so-called distance transform: If the transformed model points are
rounded to integer positions, it is likely that the same position results for differ-
ent model points and transformations, i.e., t1 (ma) = t2 (mb). Therefore – when
evaluating the forward distance – it might be worthwhile to remember the mini-
mum distance to the image point set at a specific position t (m): provided that the
already calculated distance for t1 (ma) has been stored, the distance for t2 (mb)

can be set to the stored distance of t1 (ma) immediately. It can be shown that
an even more efficient way is to perform a calculation of the minimum distance
to the image point set for every pixel of the scene image prior to the Hausdorff
distance calculation, because then information can be re-used for adjacent pix-
els. This is done by calculating the so-called distance transform �

[
x, y

]
, which

specifies the minimum distance of position
[
x, y

]
to the image point set, and is

defined by

�
[
x, y

] = min
i∈I

∥∥[x, y
]− i

∥∥ (3.10)

3.4 The Hausdorff Distance 55

()()IMth fF
t ,

count

<τF

dist.
Fig. 3.4 Illustrating the
usage of the distance
transform (depicted as
grayscale image) in order to
speedup calculation of the
forward distance

As a consequence, each t (m) only probes �
[
x, y

]
during the calculation of

hfF
t (t (M), I). Figure 3.4 illustrates the proceeding: �

[
x, y

]
can be derived from

the image point set (red points) in a pre-processing step. Dark values indicate low
distances to the nearest image point. A model point set (green points) is super-
imposed according to the transformation t currently under investigation and the
forward distance can be calculated very fast. Besides, this speedup is the rea-
son why the forward distance is calculated first: a similar distance transform for
the reverse distance would depend on the transformation t, which complicates its
calculation prior to the search.

• Recursive scan order: Probably the most important modification is to apply a
recursive coarse-to-fine approach, which allows for a significant reduction of the
number of transformations that have to be checked in most cases. Roughly speak-
ing, the transformation space is processed by dividing it recursively into equally
spaced cells. In the first recursion step the cell size s is large. For each cell it is
evaluated with the help of a quick check whether the cell possibly contains trans-
formations with a Hausdorff distance below the thresholds. In that case the cell
is labeled as “interesting.” Only those cells are recursively split into sub-cells,
which are again evaluated, and so on. The recursion stops either if the cell can-
not contain Hausdorff distances meeting the criteria for a valid object location
or if the cell reaches pixel-size. The quick evaluation of a cell containing many
transformations is based on the observation that the distance transform �

[
x, y

]

decreases at most by 1 between adjacent pixels. Hence, many transformations
with similar parameters can be ruled out if �

[
x, y

]
is large for a certain parameter

setting. For details the interested reader is referred to [9].

3.4.1.3 Pseudocode

function findAllObjectLocationsHausdorffDist (in scene image

S, in model point set M, in thresholds fF, fR, τF, τR, out pos-

ition list p)

// calculate edge point information

detect all edge points e based on image gradients, e.g. by

non-maximum suppression and hysteresis thresholding (Canny)

set scene image point set I to locations of edge points e

56 3 Transformation-Search Based Methods

// preprocessing: calculate distance transform

for y = 1 to height (S)
for x = 1 to width (S)

calculate �
[
x, y

]
(Equation 3.10)

next

next

// scanning of transformation space

s ← sstart // set cell size to start size (coarse level)

while s ≥ 1 do

set the step sizes of the six transformation parameters

such that one step causes at most s pixels position diff.

// sampling-loop (actually six nested for-loops)

// use step sizes just derived

for each possible transformation cell (t’s within bounds)

if current cell of transformation space has not been

rejected already then

// evaluation of forward distance

r ← 0 // initialize number of rejected points

while unprocessed model points exist do

m ← next unprocessed point of M
if � [t (m)] > τF then

r ← r + 1 // reject current point

if r/NM > 1− fF then

r ← NM // forward distance too high

break // abort while-loop through all m
end if

end if

end while

if r/NM > 1− fF then

mark current cell defined by t as “rejected ”

else

// forward-dist. ok -> evaluate reverse dist.

calculate reverse distance hfR
t (I, t (M))

if hfR
t (I, t (M)) > τR then

mark current cell defined by t as “rejected”

else if s == 1 then

// finest sampling level-> object found

append position defined by t to p
end if

end if

end if

next

adjust cell size s // e.g. multiplication with 0.5

end while

3.4 The Hausdorff Distance 57

// post-processing

merge all adjacent positions in p such that only local

minima of the hausdorff distance are reported

3.4.1.4 Example

Two examples where the Hausdorff distance is used for object recognition are shown
in Figs. 3.5 and 3.6. In each case the objects to be found have been undergone a per-
spective transformation. For each example the model point set is shown in part (a),
followed by the scene image where the object has been undergone a projective trans-
formation (b), the point set extracted from the scene image by edge detection (c) and,
finally, all recognized instances in the scene image overlaid on the scene image point
set in bold black (d). The point sets are set to edge pixels, which can be extracted,
e.g., with the Canny detector including non-maximum suppression (cf. [3]).

It can be seen that all instances are recognized correctly, even in the presence
of clutter and partial occlusion (second example). The computational complexity is
very high, because of the rather high dimensionality of the transformation space (six
dimensions, as the parameters of an affine transformation are estimated) as well as
the cardinality of the sets (in the order of magnitude of 1,000 points for the model

Fig. 3.5 Taken from Rucklidge [9]2 showing an example of the detection of a logo

2 With kind permission from Springer Science+Business Media: Rucklidge [9], Fig. 1, © 1997
Springer.

58 3 Transformation-Search Based Methods

Fig. 3.6 Taken from Rucklidge [9]3 showing another example of the detection of a logo with
partial occlusion

and 10,000 points for the scene image). As a consequence, Rucklidge reported exe-
cution times in the order of several minutes for both examples. Even if the used
hardware nowadays is out of date, the method seems infeasible for industrial appli-
cations. But the method is not restricted to low-level features like edge pixels which
occur in large numbers. When high-level features like line segments are used, the
number of points in the point sets can be reduced significantly.

3.4.1.5 Rating

Due to the flexible object model consisting of an arbitrary point set a large range
of objects, including complex shaped objects, can be handled with this method.
The model generation process, which, e.g., extracts all points with gradient above
a certain threshold from a training image, imposes no a priori constraints about the
object appearance. Moreover, because of the usage of partial distances the method
is robust to occlusion and clutter.

On the other hand, the gradient threshold also implies a dependency on the illu-
mination: if the image contrast is reduced in the scene image, some points might
be missed which are contained in the model. Additionally, the method tends to be

3With kind permission from Springer Science+Business Media: Rucklidge [9], Fig. 2, © 1997
Springer.

3.4 The Hausdorff Distance 59

sensitive to erroneously detect object instances in image regions which are densely
populated with pixels featuring a high gradient (“false alarms”). Therefore, Ulrich
and Steger [10] reported the robustness inferior to other methods in a comparative
study. In spite of the significant speedup when searching the transformation space,
the scheme still is very slow. One reason is that no hierarchical search in the image
domain is applied. Finally, the method doesn’t achieve sub-pixel accuracy.

3.4.2 Variants

3.4.2.1 Variant 1: Generalized Hausdorff Distance

In addition to the gradient magnitude, most edge detection schemes determine
gradient orientation information as well. As the object recognition scheme utiliz-
ing the Hausdorff distance discussed so far doesn’t use this information, Olson
and Huttenlocher [8] suggested a modification of the Hausdorff distance which is
applicable to sets of edge pixels and also considers orientation information of the
edge points. For example, the thus obtained generalized forward Hausdorff distance
ha (M, I) is defined as

ha (M, I) = max
m∈M

min
i∈I

max

(∥∥
∥∥

[
mx − ix
my − iy

]∥∥
∥∥ ,

∣∣mϕ − iϕ
∣∣

a

)

(3.11)

The original h (M, I) serves as a lower bound for the new measure, i.e., the gradient
orientation difference mϕ−iϕ between a model and an image point is considered as a
second measure and the maximum of these two values is taken for the calculation of
ha (M, I). The parameter a acts as a regularization term which enables us to compare
location and orientation differences directly. For a robust detection the fF-quantile
instead of the maximum distance of all points m ∈ M can also be used.

Please note that the distance transform �
[
x, y

]
now becomes a 3D function, with

the additional dimension characterizing the distance measure evolving from orienta-
tion differences. An elegant way of considering this fact is to use separate models for
each possible rotation step of the object to be found, e.g., by successively rotating
the object model with a certain step size.

According to Olson and Huttenlocher [8], the additional consideration of the
orientation information leads to a significantly decreased false alarm rate, espe-
cially in densely populated image regions. Interestingly enough, they also reported a
considerable acceleration of the method as fewer transformations have to be checked
during the search.

3.4.2.2 Variant 2: 3D Hausdorff Distance

Another suggestion made by Olson and Huttenlocher is to extend the method to
a recognition scheme for 3D objects undergoing projective transformation. To this
end, each object is represented by multiple models characterizing its shape from a
specific viewpoint. Each model is obtained by rotating a sample of the object in 3D
space with a certain step size. The recognition phase is done by calculation of the
Hausdorff distance to each model.

60 3 Transformation-Search Based Methods

An observation which can be exploited for accelerating the scheme is that at least
a portion of the models should be very similar with respect to each other. To this end,
the models are clustered hierarchically in a tree structure during the training phase.
Each model is represented by a leaf at the bottom tree level. In higher levels, the most
similar models/leafs (or, alternatively, nodes already containing grouped leafs) are
grouped to nodes, with each node containing the portion of the edge points identical
in the two sub-nodes/leafs. The congruence incorporated in this structure can be
exploited in the recognition phase in a top-down approach: if the point (sub-)set
assigned to a certain node suffices for a rejection of the current transformation, this
holds for every leaf belonging to this node.

3.4.2.3 Variant 3: Chamfer Matching

A closely related approach, which is called “hierarchical chamfer matching”,
has been reported by Borgefors [2]. It utilizes the average distance of all trans-
formed model points to their nearest image point as a distance measure instead
of a quantile. For a rapid evaluation a distance transform is used, too. There
exists a fast sequential way of calculating the distance transform of a scene
image point set by passing the image only twice. Sequential distance trans-
forms are known as “chamfer distances” explaining the name of the method. The
search of the transformation space is not done by brute force; instead, the algo-
rithm relies on reasonable initial position estimates which are refined by iterative
optimization.

Speedup is achieved by employing a hierarchical search strategy, where an image
pyramid of the edge image of the scene (edge pixels are used as point sets) is built. A
distance transform can be computed for each level of the pyramid. As the start image
is a binary image, averaging or smoothing operations for calculating the higher lev-
els of the pyramid obviously don’t work. Therefore a logical “OR” operation is used
when adjacent pixels are summarized for higher levels.

Compared to the Hausdorff distance, chamfer matching has the property that due
to averaging occluded model points still contribute to the reported distance value
if a minor part of the object is not visible. Another point is the lack of a measure
comparable to the reverse Hausdorff distance: this results in an increased sensitivity
to false alarms in densely populated image regions which contain many edge points.

3.5 Speedup by Rectangular Filters and Integral Images

3.5.1 Main Idea

In their article “Robust Real-time Object Detection,” Viola and Jones [12] proposed
a transformation-search-based method which is optimized for computation speed.
They showed that their scheme is capable to do real-time processing when applied
to the task of detection of upright, frontal faces.

The method localizes instances of a single object class by applying a set of
rectangular-structured filters to a query image instead of using a point set. The

3.5 Speedup by Rectangular Filters and Integral Images 61

filter kernels are reminiscent of Haar wavelet filters , as they can be represented by
a combination of step-functions and consist of piecewise constant intervals in 2D.
The input image is convolved with a set of filters at various positions and scales.
Subsequently, a decision whether an object instance is present or not can be made
at each position. These decisions are based on weighted combinations of the filter
outputs. In other words, the

[
x, y, s

]
-space is searched.

The search can be done very fast, because the specific shape of the rectangular
filters allows for an extremely efficient implementation of the convolutions with the
help of so-called integral images. Additionally, the outputs of different filters are
combined in a smart way such that most of the time only a fraction of the filter set
has to be calculated at a particular position. Overall, three major contributions are
to be mentioned:

• Integral images: prior to recognition, a so-called integral image F is derived from
the input image I. Roughly speaking, F contains the integrated intensities of I
(details will follow). This pre-processing allows for a very rapid calculation of
the filter responses, as we will see below.

• Learning of weights: as there are many possible instances of rectangular-shaped
filter kernels, it has to be decided which ones to use and how to weight the indi-
vidual outputs of the chosen filters. These questions are answered by a modified
version of the AdaBoost algorithm proposed by Freund and Schapire [6], which
learns the weights of the filters from a set of sample images in a training phase.
The weighting favors filters that perform best if a single filter is utilized for object
detection.

• Cascaded classifying: for speed reasons, not the complete filter set is applied to
every position and scale. Instead, only a small subset of the filters searches the
complete transformation space. Just promising areas, where a simple classifier
based on these few filter responses reports possible object locations, are examined
further by larger subsets, which are used to refine the initial estimate in those
areas, and so on. This proceeding enables us to sort out large regions of I, which
are very likely to be background, very quickly.

3.5.2 Filters and Integral Images

The filter kernels used by Viola and Jones [12] exhibit a rectangular structure and
consist of two to four sub-rectangles. Some examples can be seen in Fig. 3.7. The
filter output fi of the convolution of an input image I with such a kernel ki is defined
by the sum of the intensities of I which are covered by the white areas minus the
sum of intensities covered by the black areas.

Fig. 3.7 Examples of filter
kernels utilized by Viola and
Jones

62 3 Transformation-Search Based Methods

Hence, the filter is well suited for rectangular-structured objects and yields high
responses for object areas with a partitioning similar to the filter kernel. Different
scales during search can be covered by different kernel sizes.

Overall, a great multitude of combinations of two to four sub-rectangles are pos-
sible. Note that the kernel center position, which is set arbitrarily by definition, can
be shifted with respect to the actual center of the filter structure. Therefore multiple
kernels with identical configurations of sub-rectangles exist.

The learning algorithm presented below has to choose the most promising filter
configurations for the recognition phase. In order to make this task feasible the vari-
ety of kernels can be restricted, e.g., by considering only sub-rectangles of equal
size, limiting the number of overall kernel sizes, or considering only small shifts or
shifts spaced at a rather large step size.

The so-called integral image F is specified as follows: its value at position
[
x, y

]

is defined by the sum of intensities of I considering all pixels located inside the
rectangular area ranging from [0, 0] up to and including

[
x, y

]
:

F (x, y) =
x∑

a=0

y∑

b=0

I (a, b) (3.12)

An example can be seen in Fig. 3.8, where the integral image is calculated for a
simple cross-shaped object.

The integral image F can be calculated in a pre-processing stage prior to recog-
nition in a recursive manner in just one pass over the original image I as follows:

R (x, y) = R (x, y− 1)+ I (x, y) (3.13a)

F (x, y) = F (x− 1, y)+ R (x, y) (3.13b)

where R (x, y) denotes the cumulative row sum. R and F are initialized by
R (x,−1) = 0 and F (−1, y) = 0.

By usage of F a very fast calculation of the convolution of I with one of the rect-
angular filter kernels is possible, because now the sum of intensities of a rectangular
area ranging from

[
x0, y0

]
to

[
x1, y1

]
can be calculated by just considering the values

Fig. 3.8 Example of an
integral image (right) of a
cross-shaped object (left)

3.5 Speedup by Rectangular Filters and Integral Images 63

Fig. 3.9 Exemplifying the calculation of the sum of intensities in a rectangular region with the
help of integral images

of F at the four corner points of the region instead of summing up the intensities of
all pixels inside:

x1∑

a=x0

y1∑

b=y0

I (a, b) = F (x1, y1)− F (x0, y1)− F (x1, y0)+ F (x0, y0) (3.14)

Figure 3.9 illustrates the proceeding: In order to calculate the intensity sum of the
purple region sown in the top left image, just four values of F have to be considered
(as stated in Equation 3.14). This is shown in the top middle image, where the four
corner points of the region are overlaid in color upon the integral image. The value of
F (x0, y0) defines the sum of intensities of the area marked yellow (as indicated in the
top right image), F (x1, y0) the intensity sum of the red, F (x0, y1) the intensity sum
of the blue, and F (x1, y1) the intensity sum of the green area, respectively (cf. the
images in the bottom row). As a consequence, the intensity sum of any rectangular-
shaped area can be calculated by considering as few as four values of F, regardless
of its size. This allows for an extremely fast implementation of a convolution with
one of the rectangular-shaped filter kernels describe above.

3.5.3 Classification

If multiple filter kernels are applied at a specific position, the question is how to
combine their outputs in order to decide whether an instance of the object is present
at this particular position or not. To this end, a so-called linear classifier cl is chosen:

64 3 Transformation-Search Based Methods

its output is set to 1 (indicating that an instance is present) if a weighted combination
of binarized filter outputs bt (which is a classification in itself by thresholding the
“original” filter outputs ft) is larger than a threshold, otherwise the output is set to 0:

cl (x, y, s) =
{

1
∑T

t=1 αt · bt (x, y, s) ≥ 1/2 ·∑T
t=1 αt

0 otherwise
(3.15)

where the αt denotes the weights of the particular filters. Details of linear classifica-
tion can be found in Appendix B.

Now it is also clear why shifted kernels with identical sub-rectangle configura-
tion are used: it’s because filters responding to different parts of the object should
contribute to the same object position.

In order to formulate such a classifier, the two tasks of selecting the filter ker-
nels kt and determining their weights αt are solved in a training step with the help
of a set of positive as well as negative training samples (i.e., images where the
object is not present). To this end, Viola and Jones [12] suggest an adapted version
of the AdaBoost algorithm (see Freund and Schapire [6]), where so-called “weak
classifiers” (which show relatively high error rates, but are simple and fast) are com-
bined to a so-called “strong classifier” . This combination, which can be a weighted
sum, enables the strong classifier to perform much better (“boost” its performance)
compared to each of the weak classifiers.

The learning of the weights αt and the selection of the kernels kt is done in T
rounds of learning. At each round t = 1, ..., T one kernel kt is selected. To this end,
a classification of the training images is done for each filter kernel ki based on its
binarized output bi. As the correct classification is known for every training image,
an error rate εi can be calculated for each bi. The kernel with the lowest error rate is
chosen as kt and its weight αt is adjusted to this error rate (low εi lead to high αt).

As training proceeds, the training images themselves are also weighted: if the
weak classifier based on kt misclassifies an image, its weight is increased; otherwise
it is decreased. The error rates in the next round of training are calculated based on
this weighting. This helps to find kernels that perform well for “critical images” in
later rounds. Overall, all terms/factors which are necessary for applying the linear
classifier as defined by Equation (3.15) are determined at the end of training.

Viola and Jones report good detection rates for classifiers consisting of approx-
imately 200 filters for their example of detection of upright, frontal faces. With an
implementation on a 700 MHz Pentium desktop computer processing a 384 × 288
image took approximately 0.7 s, which, however, is still too much for real-time
processing.

In order to achieve a speedup, they altered the classification to a cascaded appli-
cation of multiple classifiers. In the first stage, a classifier consisting of just a few
filters is applied for the whole transformation space. Search in the scale space is
implemented by changing the filter size. In the next stage, a second classifier, which
is a bit more complex, is applied only at those

[
x, y, s

]
-positions where the first

one detected an instance of the object. This proceeding goes on for a fixed number

3.5 Speedup by Rectangular Filters and Integral Images 65

of stages, where the number of filters contained in the classifiers increases pro-
gressively. At each stage, positions, which are highly likely to be background, are
sorted out. In the end, only those positions remain which are classified to contain an
instance of the object to be searched.

Each classifier has to be trained separately by the boosting procedure just
described. Please note that, compared to the threshold used in Equation (3.15),
the decision threshold has to be set much lower as we don’t want the classi-
fier to erroneously sort out positions where an object instance is actually present.
Nevertheless, much of the background can be sorted out very quickly in the first
stages. Experiments by Viola and Jones revealed that a speedup of a factor of about
10 could be achieved for a 10-stage cascaded classifier with 20 filters at each stage
compared to a monolithic classifier of 200 filters at comparable detection rates for
the example application of face detection.

3.5.4 Pseudocode

function detectObjectsCascadedClassify (in Image I, in list of

linear classifiers cl, out position list p)

// calculate integral image

for y = 1 to height (I)
for x = 1 to width (I)

calculate F(x,y) according to Equation 3.13

next

next

// cascaded classification

init 3D array map with 1’s // 1: obj. present; 0: no obj.

for i = 1 to number of stages

for y = 1 to height (I) step yStep
for x = 1 to width (I) step xStep

for s = 1 to smax step sStep
if map(x,y,s) == 1 then // current pos still valid

for t = 1 to nbr of kernels of current stage i
scale kernel ki,t acc. to current scale s

convolve I with filter kernel ki,t, use F
next

// classification according to cli
if cli(ki,1,. . .,ki,T)==0 then

map(x,y,s) ← 0 // mark as background

end if

end if

next

next

66 3 Transformation-Search Based Methods

next

next

// determine all valid object positions

for y = 1 to height(I) step yStep
for x = 1 to width(I) step xStep

for s = 1 to smax step sStep
if map(x,y,s)==1 then

append position [x,y,s] to p

end if

next

next

next

3.5.5 Example

Viola and Jones report experimental results for the detection of upright, frontal
faces. In the training images, the faces were approximately 24 × 24 pixel in
size. Their cascaded detector consists of 32 stages with approximately 4,300 fil-
ters used in total. As far as the detection rates are concerned, this classifier performs
comparable to other state-of-the-art detectors for that task, but takes much less time.

Fig. 3.10 Showing an example of the detection of an upright, frontal face with the filter kernels
used in the first stage of the cascaded classification proposed by Viola and Jones [12]

References 67

They report processing times of about 70 ms for a 384 × 288 image on a 700 MHz
Pentium processor.

Apparently, the combination of extremely fast filtering by integral images with
the speedup through cascading works very well. In fact, the classifier used in
first stage consists of as few as two filters and discards approximately 60% of
the background region while almost 100% of the objects are retained at the same
time.

An example can be seen in Fig. 3.10: the two filters selected by AdaBoost for the
first stage relate to the facts that the eye regions typically are darker than the upper
cheeks (first filter) and usually also darker than the bridge over the nose (second
filter). The results of the convolution of these two filters with an example image are
shown in the second row (bright areas indicate high convolution results).

3.5.6 Rating

On the positive side, in contrast to many other transformation-based schemes the
method proposed by Viola and Jones is extremely fast. Real-time processing of
video sequences of medium sized image frames seems possible with this method
when using up-to-date hardware. Additionally, detection results for the example
application of upright, frontal face recognition are comparable to state-of-the-art
methods.

On the other hand, the extremely fast filtering is only possible for-rectangular-
shaped filter kernels. Such a kernel structure might not be suited for some object
classes. Clearly, the kernels fit best to objects showing a rectangular structure them-
selves. However, the authors argue that due to the extremely fast filtering a large
number of filters can be applied (much larger compared to other methods using
filter banks), which should contribute to alleviate such a misfitting. Another disad-
vantage which has to be mentioned is that the method does not explicitly account
for differences of object rotation between training and recognition.

References

1. Ballard, D.H., “Generalizing the Hough Transform to Detect Arbitrary Shapes”, Pattern
Recognition,13(2):111–122, 1981

2. Borgefors, G., “Hierarchical Chamfer Matching: A Parametric Edge Matching Algorithm”,
IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(6):849–865, 1988

3. Canny, J.F., “A Computational Approach to Edge Detection”, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 8(6):679–698, 1986

4. Duda, R.O. and Hart, P.E., “Use of the Hough Transform to Detect Lines and Curves in
Pictures”, Communications of the ACM, 1:11–15, 1972

5. Ecabert, O. and Thiran, J., “Adaptive Hough Transform for the Detection of Natural Shapes
Under Weak Affine Transformations”, Pattern Recognition Letters, 25(12):1411–1419, 2004

6. Freund, Y. and Schapire, R., “A Decision-Theoretic Generalization of On-Line Learning and
an Application to Boosting”, Journal of Computer and System Sciences, 55:119–139, 1997

68 3 Transformation-Search Based Methods

7. Hough, P.V.C., “Method and Means for Recognizing Complex Patterns”, U.S. Patent No.
3069654, 1962

8. Olson, C. and Huttenlocher, D., “Automatic Target Recognition by Matching Oriented Edge
Pixels”. IEEE Transactions on Signal Processing, 6(1):103–113, 1997

9. Rucklidge, W.J., “Efficiently locating objects using the Hausdorff distance”, International
Journal of Computer Vision, 24(3):251–270, 1997

10. Ulrich, M. and Steger, C., “Performance Comparison of 2D Object Recognition Techniques”,
International Archives of Photogrammetry and Remote Sensing, XXXIV(5):99–104, 2002

11. Ulrich, M., Steger, C., Baumgartner, A. and Ebner H., “Real-Time Object Recognition Using
a Modified Generalized Hough Transform”, Pattern Recognition, 26(11):2557–2570, 2003

12. Viola, P. and Jones, M., “Robust Real-time Object Detection”, 2nd International Workshop
on Statistical and Computational Theories of Vision – Modelling, Learning, Computing and
Sampling, Vancouver, 1–20, 2001

	3 Transformation-Search Based Methods
	3.1 Overview
	3.2 Transformation Classes
	3.3 Generalized Hough Transform
	3.3.1 Main Idea
	3.3.2 Training Phase
	3.3.3 Recognition Phase
	3.3.4 Pseudocode
	3.3.5 Example
	3.3.6 Rating
	3.3.7 Modifications

	3.4 The Hausdorff Distance
	3.4.1 Basic Approach
	3.4.1.1 Main Idea
	3.4.1.2 Recognition Phase
	3.4.1.3 Pseudocode
	3.4.1.4 Example
	3.4.1.5 Rating

	3.4.2 Variants
	3.4.2.1 Variant 1: Generalized Hausdorff Distance Generalized Hausdorff distance
	3.4.2.2 Variant 2: 3D Hausdorff Distance
	3.4.2.3 Variant 3: Chamfer Matching

	3.5 Speedup by Rectangular Filters and Integral Images
	3.5.1 Main Idea
	3.5.2 Filters and Integral Images
	3.5.3 Classification
	3.5.4 Pseudocode
	3.5.5 Example
	3.5.6 Rating

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

