
Chapter 6
A Relational Indexing Method
for Symbol Spotting

Abstract In this chapter, we present a method to retrieve from a collection of doc-
ument images the regions of interest where a query symbol is likely to be found. In
order to foster the querying speed, a hashing technique is proposed which is able to
retrieve very efficiently primitives by similarity. Vectorial primitives are coarsely en-
coded by well-known shape description methods providing a numerical description
of the primitives. A relational indexing approach is presented in order to introduce
some structural information of the symbols and provide an accurate hypotheses val-
idation. Experimental results show the performance of the proposed approach.

6.1 Introduction and Related Work

The use of a lookup table providing a prototype-based search of similar primitives,
as presented in the last chapter, allows avoiding the computation of the similarity
measure for all the primitives extracted from the collection. The use of such in-
dexing structures aims at efficiently accessing and retrieving graphic elements by
similarity, and becomes a must when dealing with applications which have to face
large collections of documents. In the particular usage case presented in the last
chapter, we achieved reducing the number of distance computations by almost a
factor of 45 without missing a significant number of symbols. However, there is
still need to compute several hundreds of distances between descriptors. Even if this
is not an important burden when working with numeric descriptors, it may be an
important inconvenience when we use symbolic description of primitives such as
the attributed strings. In this chapter, we propose enhancing the accessibility to the
stored descriptors by two means. First, we will coarsely describe primitives by the
use of well-known descriptors with low dimensionality. These descriptors result in
a numeric feature vector. The distance among those descriptors is easily computed
as the distance between two points in the n-dimensional description space. Second,
this description space is efficiently organized and accessed by the use of a hashing
technique. The use of hashing techniques in ideal conditions allows retrieving items
by similarity with a complexity O(1). We can find many works which use such ef-
ficient indexing structures to organize and retrieve the primitive descriptors in the
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literature. Califano and Mohan [2] used a hash table indexed by four-dimensional
indices describing the geometric configuration of triplets of points extracted from a
contour image in order to efficiently locate the location of query objects in an im-
age. Stein and Medioni [19] also used a hash table in order to provide an efficient
retrieval of similar portions of a contour described by a set of features extracted from
a super-segment. Recently, Lladós and Sánchez [12] proposed a binary codification
of the shape context descriptor which is stored in an indexing structure aiming at ef-
ficiently retrieving the locations within a document image where a given typewritten
word is likely to appear.

Moreover, there is another drawback in the previously presented method. Since
graphical symbols are composed of several primitives, querying a symbol used to
involve separately querying each of its primitives. The locations showing a larger
accumulation of primitives were taken as the most plausible places to contain the
queried symbol. This technique may lead to several false alarms since we are not
checking which primitives appear in those zones and whether their spatial organiza-
tion and their structural configuration is consistent with the query symbol design. In
this chapter, we propose an indexing methodology to add structural information in
the primitive queries. In the literature, we can find several works such as by Chang
and Lee [3] or by Costa and Shapiro [5] which are focused on the addition of struc-
tural information to the primitive querying process. We can call such approaches
relational indexing since, besides indexing primitive objects, these works try to in-
dex also their spatial relationships. An enhanced voting scheme aiming at a better
validation of the spotted locations is also presented in this chapter.

The remainder of this chapter is structured as follows. We start by detailing how
the symbols are represented in terms of a polygonal approximation of contours and
a relational graph. Subsequently, in Sect. 6.3, we present the off-the-shelf shape de-
scriptors we have used in our experiments to coarsely describe and index the prim-
itives by similarity. Even if some of the descriptors were conceived to describe im-
ages, they are reformulated to be applied to a set of polygonal primitives. Section 6.4
presents the indexing structure to efficiently retrieve primitives, and Sect. 6.5 out-
lines how the relational indexing methodology works. In Sect. 6.6, we present some
qualitative results of using the proposed spotting architecture to retrieve locations
of interest from a collection of line-drawing images. Finally, the conclusions and a
short discussion can be found in Sect. 6.7.

6.2 Description of Graphical Symbols in Terms
of Vectorial Primitives

Recognition schemes rely on two basic steps, namely primitive extraction and de-
scription. First, the primitive extraction step has to transform the image drawings
arising from the scanning process to a vector domain. Then, in the second step, such
primitives have to be represented by a shape descriptor.
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6.2.1 Vectorial Primitives

Graphical symbols usually comprise a union of several simple sub-shapes. There-
fore, a symbol can be described in terms of the assembly of sub-shapes which com-
prises it. The basic primitives we want to extract to represent a graphical symbol are
these simple sub-shapes.

As our work is focused on the management of graphical data in vectorial format,
the documents which are in paper format need a digitalization process. In this chap-
ter, we use the same raster-to-vector process as in the previous chapter with just one
particularity. Since we want to add relational information between primitives to the
indexing framework, a graph representation of the symbols is also needed. The doc-
uments are scanned and de-noised by some simple morphological operations. The
raster-to-vector algorithm proposed in [14] is then applied to these line-drawing im-
ages to obtain a vectorial representation of the documents. However, such vectors
are not suitable to be used as primitives due to their instability in terms of artifacts,
fragmentation, errors in junctions, etc. A higher level entity has to be used as a prim-
itive. Adjacent vectors are merged together into a polyline instance. These polylines
represent then the sub-shapes forming a given graphical symbol. In our method, we
use the contour of the closed loops corresponding to a symbol as the primitives to
polygonally approximate and to merge as single polylines.

Formally, let p = {s1 . . . sn} be a polyline consisting of n segments si . A sym-
bol is represented in terms of its polylines representing loops and denoted as
S = {p1 . . . pm}. The gravity center of the symbol is computed as the average of the
gravity centers of each polyline, and it is denoted by mC . The gravity center of the
symbol will be used in the subsequent process of localization of the query symbol
inside the line-drawing images. To represent the spatial organization of primitives
which comprise a symbol, a proximity graph is constructed. Using the k-NN algo-
rithm, each primitive is linked to its k nearest primitives by an edge of the graph
G(S) = (V ,E). A node ni ∈ V is attributed with the primitive pi . An edge e ∈ E is
denoted as e = (ni, nj ,

−→vij ), where ni and nj are nodes of V and −→vij is a vector rep-
resenting the spatial relationship between the primitives pi and pj . This proximity
graph is the basis of the proposed relational indexing technique.

In Fig. 6.1, we can observe how the different parts of a symbol are detached,
making the regions meaningful primitives, and how their spatial organization can
describe a symbol.

Note that the same primitive representation and extraction is used for the com-
plete documents in the acquisition step. A given document D is composed of a
large number of polylines. A proximity graph G(D) is also computed to link nearby
primitives and to store their spatial relationship. Obviously, in this case we do not
know which polylines comprise a symbol; the graph just represents neighboring
primitives.

The polygonally approximated sub-shapes are used as the local components of
a given symbol. To describe them, at each primitive separately we apply one of the
off-the-shelf global numerical shape descriptors existing in the literature.
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Fig. 6.1 Primitive symbol
decomposition. A graphical
symbol is decomposed into
sub-shapes which are
polygonally approximated.
An attributed proximity graph
is the basis for the relational
indexing

6.3 Off-the-Shelf Shape Descriptors Applied to Vectorial Data

Formally speaking, given a symbol S = {p1 . . . pm} and a shape descriptor f defined
over the space of primitives, after applying f to each primitive we will have in return
a set of feature vectors f (pi) for all i ∈ [1,m]. A symbol is then expressed by a set
of feature vectors describing its primitives. Let us briefly review the used shape
descriptors in the next section.

Global numerical shape descriptors are formulated in terms of a compact repre-
sentation of expressive invariant features describing a shape as a whole. The inter-
ested reader is referred to Zhang and Lu’s [22] review of shape representation and
description techniques. In this section, we will summarize the global shape descrip-
tors used in our experiments. We make no claims about robustness of the chosen
descriptors. Depending on the nature of the data, better descriptors can be used.
The point here is only to test several shape descriptors seen as black-boxes which
one can plug-in into the system. The selection of one or another shape descriptor is
application dependent. For example, if we are interested in retrieving just the cor-
rect symbols despite missing some positives, an accurate shape descriptor has to be
chosen. On the other hand, if the user wants to retrieve all the instances of a given
symbol without giving real importance to the presence of false positives, one must
choose a simpler shape descriptor. Four shape descriptors with different accuracy
are chosen here to test the behavior of the system.

Let us further overview the numerical shape descriptors used in our work. First,
we introduce some basic notation. We consider an image I (x, y) containing an ob-
ject shape O with area A and perimeter P . Its centroid is the point c = (x̄, ȳ). The
boundary B of the shape is polygonally approximated by a polyline pO composed
by a set of n adjacent segments si = {(xi, yi), (xi+1, yi+1)}. A shape descriptor will
result in a compact representation of the shape formulated in terms of a feature
vector f (O). Let us briefly introduce the well-known shape descriptors we use.
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6.3.1 Geometric Moments

The central (p + q)th order moment for a digital image I (x, y) is expressed by

μpq =
∑

x

∑

y

(x − x̄)p(y − ȳ)qI (x, y). (6.1)

The use of the centroid c = (x̄, ȳ) allows for the invariance to translation. A nor-
malization by the object area is used to achieve invariance to scale.

ηpq = μpq

μ
γ

00

where γ = p + q

2
+ 1. (6.2)

6.3.1.1 Boundary Moments

The geometric moments can also be computed for the contour of the object as de-
scribed by Chen [4] and by Sardana et al. [16] by using (6.1) only for the pixels
of the boundary of the object. In that case, a normalization by the object perimeter
is used to achieve invariance to scale by using (6.2) with γ = p + q + 1. By sam-
pling the polygonal approximation, we can use the boundary moments as geometric
descriptors of the primitives.

6.3.1.2 Geometric Moments for Line Segments

When the contours of the objects are polygonally approximated, the geometric mo-
ments can be formulated for line segments as introduced by Lambert and Gao in
[10, 11]. Given a polygonally approximated shape composed of n segments, let us
take ai = (yi+1 − yi)/(xi+1 − xi) as the slope of the segment si . The line moments
are then computed by

μpq =
n∑

i=1

Di,

Di =
√

1 + (ai)2 ·
q∑

k=0

{(
q

k

)
ak
i (yi − aixi)

q−k · x
p+k+1
i+1 − x

p+k+1
i

p + k + 1

}
. (6.3)

And if the segment si is vertical, we use

Di = x
p
i · y

q+1
i+1 − y

q+1
i

q + 1
. (6.4)

6.3.1.3 Hu’s Moment’s Invariants

To obtain invariance with respect to translation, the centroid is used as in (6.1). The
normalization by the polyline length is used to obtain scaling invariance. Finally,
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invariance to rotation is achieved by using the set of seven functions proposed in [7]
involving moments up to the third order.

φ1 = η20 + η02,

φ2 = (η20 − η02)
2 + (2η11)

2,

φ3 = (η30 − 3η12)
2 + (3η21 − η03)

2,

φ4 = (η30 + η12)
2 + (η21 + η03)

2,

φ5 = (η30 − 3η12)(η30 + η12)
[
(η30 + η12)

2 − 3(η21 + η03)
2] (6.5)

+ (3η21 − η03)(η21 + η03)
[
3(η30 + η12)

2 − (η21 + η03)
2],

φ6 = (η20 − η02)
[
(η30 + η12)

2 − (η21 + η03)
2] + 4η11(η30 + η12)(η21 + η03),

φ7 = (3η21 − η03)(η30 + η12)
[
(η30 + η12)

2 − 3(η21 + η03)
2]

− (η30 − 3η12)(η21 + η03)
[
3(η30 + η12)

2 − (η21 + η03)
2].

Moment invariants can be normalized to get the different invariants fall into sim-
ilar numerical ranges. Usually, we can use the logarithm as a coarse normalization:

ψ1 = log |φi |, i ∈ {0, . . . ,7}. (6.6)

Hupkens and de Clippeleir [8] proposed the following normalization of invariants
to achieve a better robustness to noise:

φ′
1 = φ1 = η20 + η02,

φ′
2 = φ2/φ

2
1 ,

φ′
3 = φ3/φ

3
1 ,

φ′
4 = φ4/φ

3
1 , (6.7)

φ′
5 = φ5/φ

6
1 ,

φ′
6 = φ6/φ

4
1 ,

φ′
7 = φ7/φ

6
1 .

6.3.2 Simple Shape Description Ratios

The eccentricity, aspect-ratio or Feret’s ratio, of a given shape is the ratio of the
length of the longest chord of the shape to the longest chord perpendicular to it. It
can be computed by using the moments described in (6.3) as

ecc =
μ20 + μ02 +

√
(μ20 − μ02)2 + 4μ2

11

μ20 + μ02 −
√

(μ20 − μ02)2 + 4μ2
11

. (6.8)
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The circularity, or area-perimeter ratio of a shape, is defined as how closely-
packed the shape is. For a circle it is equal to 1, all other shapes have a circularity
smaller than 1. It is computed as

circ = 4πA

P 2
. (6.9)

Obviously, there are many other shape ratios describing certain geometrical prop-
erties. The interested reader is referred to [15, 20]. In our case, we only use these
two ratios as the feature vector describing a shape.

6.3.3 Fourier Descriptors

Given a polyline pO which is the polygonal approximation of the boundary of a
shape O , as a vectorial shape signature we use the centrical distance function com-
puted as

ri =
√

(xi − x̄)2 + (yi − ȳ)2 for (xi, yi) ∈ pO. (6.10)

Zahn [21] obtained a Fourier descriptor of a shape, applying the Fourier trans-
form on the signature representing the shape boundary. Sampling ri to N = 2n sam-
ples so that the use of the FFT is possible, the feature vector of the Fourier descriptor
is given by

f (O) =
[ |F1|
|F0| . . .

|FN/2|
|F0|

]
, (6.11)

where Fi corresponds to the ith component of the Fourier spectrum. Other shape
signatures such as curvature or complex coordinates can be used to compute the
Fourier descriptor. The interested reader is referred to [9].

In the case of graphical symbols, the shape descriptors presented above can be
applied to each of the primitives of the symbol extracted as mentioned in Sect. 6.2.1.
Formally speaking, given a symbol S = {p1 . . . pp}, applying one of the presented
descriptors will return a set of feature vectors f (pi) for all i ∈ [1,p]. In the next sec-
tion, we will study how to adapt classical indexing structures used in the databases
field to index graphical symbols in a document database.

6.4 Multidimensional Hashing to Index Primitives

The previously described methods for spotting symbols from a document database
present an important constraint. As the number of considered shape models is in-
creased, the computational cost of the matching step can be unaffordable. As pointed
in [2], in order to avoid a brute-force matching step, the use of indexing paradigms
becomes necessary.
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Among the wide taxonomy of indexing structures (cf. [6]), the point access meth-
ods are the ones which are the most suitable for our purposes. Tree-based structures
are frequently used in indexing mechanisms. Nevertheless, they suffer from several
drawbacks. The querying process can be computationally expensive since the tree
has to be traversed, and in addition, tree balancing algorithms are needed to maintain
an effective search performance. Since in our case we want to foster the querying
speed and we want a system where the data could be easily added at any moment,
a multidimensional hashing technique has been selected instead of a tree-based one.
In particular, we use a grid file structure, described in [13], in order to index the
vectorial primitives. Let us overview in more detail how multidimensional hashing
methods work.

Multidimensional hashing methods partition the space into hypercubes of known
size and group all the records contained in the same hypercube into a bucket. The
buckets are uniquely identified by a key-index which aims at a fast retrieval of all the
data contained in the bucket. A hash function performing one-dimensional partitions
automatically computes the key-index of a given query to identify the bucket to
which it belongs.

In our case, given a polyline, a feature vector is computed using one of the pre-
sented descriptors and then a hash function obtains the key-index. This hash function
establish a quantization criterion to apply to each dimension of the feature vector to
limit the key-index parameters to a finite number of discrete values. To avoid bound-
ary effects, each primitive is stored at the two closest buckets in each dimension.

Usually, the main drawback of hashing techniques is the collisions. Given two
different items to store in the database, we have to guarantee that the hash function
used to index such items does not assign the same key-index to them. To over-
come this problem expensive re-hashing algorithms are applied once a collision is
detected. In our case, collisions are not a problem but the basis of our indexing strat-
egy. Given two similar (but not equal) primitives, they are represented by a compact
feature vector. Hopefully, if the two primitives have a similar shape, the two feature
vectors will be two nearby points in the description n-dimensional space. The parti-
tion of this space by the grid file has to guarantee that both points fall into the same
bucket (or at least to neighboring buckets) to have all the similar primitives stored
in a single entry. This technique allows having an efficient retrieval by similarity.

In Fig. 6.2, we can see an overview of how the indexing mechanism works.
Formally speaking, a symbol S = {p1 . . . pm} is described by a set of feature vec-
tors f (pi) for all i ∈ [1,m] arising from one of the descriptors presented above in
Sect. 6.3. A hash function hp(f (pi)) = ki returns a key-index identifying a certain
bucket in the n-dimensional indexing space. As the shape descriptors are invariant
to similarity transformations and robust to noise, even if the input primitives are not
completely equal, the whole procedure leads to the same bucket. The symbol S is
then represented by the set of key-indices {k1 . . . kk} with k ≤ m since all the similar
primitives are represented by the same key-index.

In each bucket, the information of the position in a three-dimensional space (i.e.,
(x, y) coordinates of the primitive gravity center appearing in a certain document d

of the collection) of all the primitives in the document database having key-index
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Fig. 6.2 The use of a grid
file to index vectorial
primitives. The hash function
projects the feature vectors
into key-indices. Two similar
primitives are stored at the
same bucket

ki is stored. Summarizing this section, the proposed indexing methodology allows
retrieving all the spatial locations where similar primitives as the queried one are
likely to be found.

6.5 Relational Indexing and Hypotheses Validation

Since graphical symbols are composed of several primitives, indexing a symbol con-
sists in separately indexing each of its primitives. This approach has a big drawback
since the spatial coherence of the retrieved primitives is not taken into account. In
this section, we present a relational indexing algorithm to furnish the indexation
methodology with spatial information. A voting scheme to validate the spotted lo-
cations is also presented.

6.5.1 Relational Indexing

When considering large databases, many symbols may share a substantial part of
primitives with each other. Bag-of-words models describe objects in terms of the
presence of the primitives which compound them, ignoring their spatial structure.
Recently, a method to locate objects in images using a bag-of-words model has been
proposed in [17]. The large number of features taken from interest points aim to dis-
card spatial information. However, in our case, the presence of a set of primitives
in a given location does not guarantee the presence of the searched symbol since
symbols are not usually composed of too many primitives. The geometrical con-
figuration of these primitives is crucial information to refine the zones of interest.
Inspired by the work presented in [5], spatial relationships among primitives are
also considered when indexing in order to obtain much more valid hypotheses.

Given a symbol represented by a set of primitives S = {p1 . . . pm}, the similar
primitives appearing in a document can be retrieved by using the set of key-indices
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Fig. 6.3 Relational indexing. For the sake of visibility, only two primitives p1 and p2 are queried.
(a) Sample line-drawing and the query symbol; (b) results of retrieving a couple of primitives by
similarity without taking into account the spatial information, the resulting primitives are high-
lighted in gray; (c) retrieving the same two primitives by using the relational indexing mechanism

{k1 . . . kk}. To take into account the spatial configuration of those primitives, the
proximity graph G(S) has to be used. The edges eij ∈ E represent the relationship
between two primitives stored in the nodes ni and nj . These edges can be used to
retrieve by similarity pairs of primitives agreeing with a certain spatial distribution.
We can find an example of the use of relational indexing in Fig. 6.3.

To efficiently retrieve all the edges of a query symbol, a hash table HR is used to
store the adjacency matrix of the proximity graphs in the memory. This hash table
is indexed by pairs of primitives. The use of hash tables with multiple indices has
been used over the years to store and guarantee an efficient access to sparse matrices
like in [18]. The entry of the table HR[ka, kb] stores all the possible edges eij where
the primitive stored at the node ni is indexed by ka and the primitive of the node nj

is indexed by kb. In the acquisition step, for all the documents D in the collection,
each graph G(D) is added to the table HR so a spatial relationship between two
given primitives can be efficiently retrieved from all the document collection.

When querying a given symbol, each edge of the graph is considered. A querying
function Q(eij ,mC), taking an edge and the center of the query symbol mC , results
in a list of hypothetic centers LhC = [hC1 . . . hCx] where the two primitives with a
given pose are to be found. We can see how this function proceeds in Fig. 6.4. The
key-indices representing the primitives stored at the nodes are computed by using
the hash function hp . Both indices identify an entry of the hash table HR storing a
list of edges, and most importantly the corresponding vectors −→vij . These vectors are
the spatial distributions of the primitives appearing in the document database. A cen-
ter mapping function Cmap(−→vi ,mC) = hCi applies a scale and rotation transform
to the center mC in order to find the pose of the hypothetic center hCi depending on
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Fig. 6.4 Relational indexing architecture. Starting from the proximity graph, each edge performs
a relational query based on the indices representing the primitives stored in the nodes. A list
of vectors is retrieved corresponding to spatial relationships between primitives in target docu-
ments. A center mapping function transform these vectors into hypothetic centers where the sym-
bol should be found

the vector −→vi . We can see an example of the hypothetic center location in Fig. 6.5.
Note that the center mapping process aligns the query edge with the retrieved edges
in the line-drawing database, thus being invariant to scale and rotation transforms.

By applying the relational indexing function to each edge of the proximity graph
of the query, the locations in the documents where we can really find the queried
symbol should appear several times in the hypothetic centers list. The use of a voting
scheme reinforces these hypotheses and validates the possible locations.

6.5.2 Voting Scheme

Following the idea of the Generalized Hough Transform (GHT) [1], each of these
centers accumulates votes. Applying the querying function to each edge of the graph
from the query symbol, we accumulate evidences in the hypothetic centers in the
stored documents where it is probable to find similar primitives with the same spatial
organization as the query. In the voting space, the coherent votes tend to form salient
peaks, the rest of the votes will be scattered in different locations but not forming
clusters. A simple ranking of these clusters results in the positions of the documents
where it is more feasible to find the queried symbol.

The querying process leads to considering each pair of primitives of the queried
symbol S = {p1 . . . pm}, implying Cm

2 accesses to the hash table HR . The number
x of hypothetic centers where to cast votes is the same as the number of how many
position vectors are stored at each table entry. Obviously, the x value is directly
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Fig. 6.5 Center mapping function to find the pose of the hypothetic centers given an edge of the
relational query and the gravity center of the query symbol

related to the number of documents stored in the library. The result is that for each
query symbol we have

x · Cm
2 = x ·

(
m

2

)
= x · m!

2(m − 2)! (6.12)

centers where to accumulate votes. The locations where the votes are cast are sorted
and returned as the retrieved regions of interest. Note that no threshold is used to
decide whether a symbol is present or not. In the next section, we present some
qualitative results of applying the presented relational indexing method.

6.6 Experimental Results

To obtain the experimental results, we worked with a collection of architectural
floor-plans consisting of 42 images (of 3,215 × 2,064 pixels on average) arising
from four different projects. This dataset is the FPLAN-POLY database,1 detailed
in Appendix A. These images are polygonally approximated, resulting in a collec-
tion of vectorial documents. The symbols taken into account for these experiments
are divided into 38 classes, and we have a total of 344 instances in the document

1The FPLAN-POLY database is available at http://www.cvc.uab.cat/~marcal/FPLAN-POLY/.

http://www.cvc.uab.cat/~marcal/FPLAN-POLY/
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images. In a single document image, the average number of symbols is around 8,
and it ranges from 0 to 28 symbols. The models to query the document database are
cropped from the document images, so they also contain vectorial distortions.

When querying a model symbol against the database, the convex hull of the acti-
vated polylines in the documents forms a set of regions of interest which are sorted
by confidence value depending on the number of received votes. We can see the first
20 results of querying several symbols in the whole document collection when us-
ing the Fourier shape descriptor in Figs. 6.6 and 6.7. As we can observe, most of the
results correspond to the correct queried symbol, but obviously some areas of false
positives appear. We observe two interesting phenomena, usually, two close sym-
bols (i.e., burners in Fig. 6.7f or chairs in Fig. 6.6d) are grouped into a single region
of interest; on the other hand, it is common to find that a symbol is well spotted but
the returned region of interest is bigger than expected (i.e., the burners in Fig. 6.7f).

We consider that if the resulting polygons are able to overlap at least a certain
percentage of the ground-truthed representation of a symbol, they can be considered
as recognized. On the other hand, if the resulting polygons do not cover the ground-
truth, the symbol should be considered as missed. Of course, as with all decisions
implying a certain threshold, its value can be critical, and the system’s evaluation
can depend on it. The definition of this threshold is completely subjective as it de-
pends on what the user considers a symbol as being detected or not. In our case, we
consider a symbol as detected if it overlaps at least 75% of the ground-truth area. In
Table 6.1, we can see the total True Positive Rate (TPR) when applying the different
shape descriptors and the average of False Positives (FP) regions obtained by all
these methods. Notice that the time to retrieve a symbol from a document is highly
related to the accuracy of the selected method. Methods having higher recognition
rates spend more time in retrieving zones of interest since the table entries are more
populated and the number of false positives is also increased. On the other hand,
the methods which have smaller recognition rate but also fewer false positives are
usually less computationally expensive.

However, in focused retrieval applications, there are some cases where perfor-
mance evaluation is not straightforward. Let us consider the example shown in
Fig. 6.8. Given a document in the collection, we query one symbol which can be
found twice within the document. Instead of obtaining two different regions of in-
terest framing the occurrences of this symbol, the system outputs a single region
framing both instances of the symbol. The two symbols were relatively close in
space in the document, so it is understandable that the system just retrieved one big
region of interest where the probability to find the query object was high enough.
However, the question of how to evaluate this result is not easy to answer. Both
symbols were retrieved, but the system failed to identify that there were two differ-
ent instances. By returning just one region, its area is big enough to contain other
graphic objects which are not parts of the symbol, but it is hard to consider this result
as a false alarm. In the last part of this book, we propose a protocol for performance
evaluation for symbol spotting and focused retrieval systems. In this part, we will
present the quantitative evaluation of the relational indexing method presented in
this chapter.
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Fig. 6.6 Qualitative results of the relational indexing method (1). (a) Query symbol chair;
(b) query symbol TV set; (c) query symbol toilet; (d), (e) and (f) first 20 retrieved regions when
querying the symbols of (a), (b) and (c), respectively

6.7 Conclusions and Discussion

A relational indexing mechanism to spot symbols in a collection of line-drawing
images in vectorial format has been presented. A first step of primitive extraction
and description has been introduced in order to have a compact representation of
the graphical symbols. These primitives are organized in an indexing structure to
retrieve by similarity all the primitives in the collection. A relational indexing mech-
anism has been presented in order to take into account not only the similarity of the
primitives which compound a symbol but also the spatial relationship among them.
Finally, a Hough-like voting scheme aims at validating the hypotheses where a sym-
bol is likely to be found.

The qualitative results show good performance results. Most of the approaches
in the literature always make a choice of using only structural information about
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Fig. 6.7 Qualitative results of the relational indexing method (2). (a) Query symbol stairs;
(b) query symbol sink; (c) query symbol burners; (d), (e) and (f) first 20 retrieved regions when
querying the symbols of (a), (b) and (c), respectively

Table 6.1 Recognition
results of the relational
indexing method

Description TPR (%) FP Time (s/plan)

Simple ratios 93.62 153.42 3.44

Hu’s boundary moments 91.3 76.76 0.71

Line segment moments 55.62 63.89 0.55

Fourier descriptor 73.33 58.76 0.78

the symbols or just numerical descriptions of a symbol. The presented approach
uses both structural and numerical information. The use of both information sources
increases the robustness of the method. It also aims at using very simple descriptors
with good results according to the user needs.
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Fig. 6.8 Illustration of a result which is difficult to evaluate. (a) Floor-plan image in the collection;
(b) queried symbol; (c) retrieved region

There is obviously still some room for improvements. By describing symbols
with closed regions, we make the assumption that the symbols are composed of
several loops. This may not be the case in certain graphic-rich documents. In such
cases, another primitive extraction process should be considered.

In some application domains, as, for instance, in the case of complex electronic
diagrams, some symbols share a substantial part of their design and only differ by
slight details. Symbols may also be composed of other known and significant sym-
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bols. In this context, the proposed focused retrieval methodology might result in an
important number of false alarms.
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