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Foreword

Pattern recognition basically deals with the recognition of patterns, shapes, objects,
things in images. Document image analysis was one of the very first applications of
pattern recognition and even of computing. But until the 1980s, research in this field
was mainly dealing with text-based documents, including OCR (Optical Character
Recognition) and page layout analysis. Only a few people were looking at more
specific documents such as music sheet, bank cheques or forms.

The community of graphics recognition became visible in the late 1980s. Their
specific interest was to recognize high-level objects represented by line drawings
and graphics. The specific pattern recognition problems they had to deal with was
raster-to-graphics conversion (i.e., recognizing graphical primitives in a cluttered
pixel image), text-graphics separation, and symbol recognition.

The specific problem of symbol recognition in graphical documents has received
a lot of attention. The symbols to be recognized can be musical notation, electrical
symbols, architectural objects, pictograms in maps, etc. At first glance, the symbol
recognition problems seems to be very similar to that of character recognition; af-
ter all, characters are basically a subset of symbols. Therefore, the large know-how
in OCR has been extensively used in graphical symbol recognition: starting with
segmenting the document to extract the symbols, extracting features from the sym-
bols, and then recognizing them through classification or matching, with respect to
a training/learning set.

However, this approach has its limitations for various reasons, one of the most
important being that the segmentation methods which are available do not always
provide complete enough information for the recognition task to be completed. On
the other hand, in order to get a better segmentation, one often needs some contex-
tual information provided by the recognition process. This is the well-known Sayre
paradox, inspired by Kenneth Sayre’s early work on handwriting recognition: in or-
der to correctly recognize, you need to segment, but in order to segment you need
to recognize!

There is no perfect solution to this dilemma. However, there are actually a num-
ber of applications where the need is not for full-scale recognition, but rather for
localization of some useful information without any claim of being able to analyze
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vi Foreword

the whole content. This is sometimes called information spotting and has been ad-
dressed in various application contexts. At the beginning of the twenty first century,
the graphics recognition community therefore acknowledged the need for symbol
spotting methods, i.e., ways of detecting symbols in maps or technical drawings
without having to actually fully segment or fully recognize everything.

It is a great pleasure for me to introduce the present work by Marçal Rusiñol and
Josep Lladós; it is probably the first complete, integrated and large-scale solution
to the challenge of designing a robust symbol spotting method without dedicating it
to a very specific application. Drs. Rusiñol and Lladós have carefully explored the
methods which can be used for that purpose. They start with basic photometric de-
scriptors from usual computer vision techniques and identify their limitation for the
symbol spotting problem. They then focus on the use of a number of features and de-
scriptors which are specific to graphical shapes: vectorial signatures expressing the
geometric and structural constraints between basic graphical entities, a prototype-
based search using the decomposition into closed regions which are represented by
attributed strings and organized in lookup tables, and a relational indexing approach
to retrieve locations of interest.

The authors take also a very insightful look into the problem of performance
evaluation of such spotting methods, so as to avoid having only subjective assess-
ments of a method’s strengths and weaknesses. This methodology can be used in
a number of contexts, and I am convinced that it will be of great use to the whole
graphics recognition community.

All in all, this work gives us the first general and complete framework for sym-
bol spotting in graphical documents. It is recommended reading for any researcher
wanting to contribute to this challenging problem. Of course, there are still a num-
ber of open problems, as Drs. Rusiñol and Lladós mention themselves, but I would
advise to start using this framework, and then address the open problems from that
point.

Nancy, France Karl Tombre



Preface

Pattern recognition systems usually consist of two main parts. On the one hand, the
data acquisition and learning stage and, on the other hand, the classification of this
data to a certain category. In order to recognize which category a certain query ele-
ment belongs to, a set of pattern models must be provided beforehand. An off-line
learning stage is needed to train the classifier and to offer a robust classification
of the patterns. Within the pattern recognition field, we are interested in the docu-
ment image analysis topic and, in particular, in the recognition of graphics appearing
within documents rich in graphical information. In the particular case of graphical
symbol recognition, descriptors are extracted from the symbol to recognize and are
subsequently matched with the set symbol models. In this context, one of the main
concerns is to see if the proposed systems remain scalable with respect to the data
volume to be able to handle growing number of symbol models. In order to avoid
working with a database of reference symbols, symbol spotting and on-the-fly sym-
bol recognition methods have been introduced in the past years.

Generally speaking, the symbol spotting problem can be defined as the identifi-
cation of a set of regions of interest from a document image, which are likely to con-
tain an instance of a certain queried symbol without explicitly applying the whole
pattern recognition scheme. Our application framework consists in indexing a col-
lection of graphic-rich document images. This collection is queried by example with
a single instance of the symbol to look for and, by means of symbol spotting meth-
ods, to retrieve the regions of interest where the symbol is likely to appear within
the documents. This kind of applications are known as focused retrieval methods.

In order that the focused retrieval application can handle large collections of
documents, there is a need to provide an efficient access to the large volume of
information that might be stored. Indexing strategies are used in order to efficiently
retrieve by similarity the locations where a certain part of the symbol appears. In that
scenario, graphical patterns should be used as indices for accessing and navigating
the collection of documents. These indexing mechanisms allow the user to search
for similar elements using graphical information rather than textual queries.

In this book, we present a spotting architecture and different methods aimed at
building a complete focused retrieval application dealing with a graphic-rich docu-
ment collections.
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viii Preface

Different symbol descriptors encoding geometric and structural information are
proposed. These descriptors aim at describing parts of the symbols in a very com-
pact and efficient way. Vectorial signatures, attributed strings and off-the-shelf shape
descriptors are used to cluster parts of the symbols by similarity.

Several strategies to search for graphical information by similarity are used in
this book. In order to retrieve locations from the document collection where parts
of the symbols appear, we use lookup tables and grid files indexed by graphical
patterns. A final validation phase is introduced to validate the hypothetic locations
where a symbol is likely to be found. This validation stage is formulated in terms of
spatial and relational information.

In addition, a protocol to evaluate the performance of symbol spotting systems in
terms of recognition abilities, location accuracy and scalability is also studied. Eval-
uation measures allowing to determine the weaknesses and strengths of the methods
under analysis are presented. All the methods under analysis have been tested on an
experimental scenario consisting of a collection of architectural drawings with its
corresponding ground-truth.

Structure

This book is divided into four parts. Part I is of introductory nature consisting of two
chapters. Chapter 1 presents the symbol spotting and focused retrieval problems and
outlines the proposed architecture. Chapter 2 reviews the related work to symbol
spotting which has been proposed in the last years.

Part II is centered on the application of well-known methods of Computer Vision
for recognizing objects in scenes to the specific problem of spotting graphical sym-
bols in documents. Chapter 3 presents, as a running example, an application of logo
spotting for a document categorization application. The method processes incoming
document images such as invoices or receipts. The categorization of these document
images is done in terms of the presence of a certain graphical entity detected without
segmentation.

Part III is centered on the use of geometrical and structural constraints as symbol
description techniques. Chapter 4 presents a method to determine which symbols
are probable to be found in technical drawings by the use of vectorial signatures as
symbol descriptors. Chapter 5 presents a spotting method which uses a prototype-
based search as the basis for the focused retrieval task. Finally, Chapter 6 presents
an indexing method to retrieve locations of interest where a query symbol is likely
to be found. In order to foster the querying speed, a hashing technique is used in
order to retrieve primitives by similarity very efficiently.

Part IV including just Chapter 7 is centered on the performance evaluation of
spotting systems. Since symbol spotting systems and focused retrieval applications
shall have the ability to recognize and locate graphical symbols in a single step, the
measures to evaluate the performance of a symbol spotting system are defined in
terms of recognition abilities, location accuracy and scalability.



Preface ix

Finally, Chapter 8 gives some concluding remarks about this study, and specifies
some possible future research lines on symbol spotting techniques. Throughout this
book, different symbolic databases have been used to perform the experiments. All
these databases are explained in Appendix A.

Audience

This book is intended for researchers and practitioners from the field of graphics
recognition who are interested in the problem of symbol spotting and focused re-
trieval applications in the context of digital libraries. Some basic knowledge of pat-
tern recognition, document image analysis and graphics recognition is assumed.
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Chapter 1
Introduction

Abstract This first chapter puts in context the symbol spotting problem. By giving
a general overview of the Document Image Analysis and Recognition field and, in
particular, of the Graphics Recognition research topic, we present the motivations
for the present study. We summarize the objectives and contributions of this book
as well as the contents of each chapter.

1.1 Document Image Analysis and Recognition Context

Document image analysis and recognition (DIAR) is one of the most important
subfields of Pattern Recognition. In its early years, the research efforts were mainly
focused on the processing of textual documents. In particular, most research efforts
were centered on the development of automatic reader systems which entailed the
design of effective page layout analysis (PLA) methods and optical character recog-
nition (OCR) techniques. However, nowadays, commercial OCR software achiev-
ing good recognition results in type-written documents can be purchased, and we
can say that OCR in type-written documents is a mature problem from the scientific
point of view. Today, the interests of the Document Image Analysis and Recognition
community cover a wide spectrum of open challenges. Let us enumerate a few of
them. For instance, the processing of hand-written documents, for both off-line [1]
and on-line [11] inputs, is still an important research topic. The huge variability of
the character shapes among different writers make hand-written character recogni-
tion a much more complex and interesting problem that type-written OCR. Another
research topic which has attracted the attention of researchers in the last years is the
problem of processing documents acquired with low-resolution digital cameras [8].
This problem has emerged due to the presence of such cameras in ordinary devices
like PDAs or cell-phones and a big number of interesting applications that can be
envisaged with the inclusion of recognition tasks in portable devices. As an exam-
ple, nowadays, several cell-phone models have built-in OCRs able to process busi-
ness cards by finding names, phone numbers, addresses and automatically import
them to the phone-book. Another actual and interesting problem is the analysis of

M. Rusiñol, J. Lladós, Symbol Spotting in Digital Libraries,
DOI 10.1007/978-1-84996-208-7_1, © Springer-Verlag London Limited 2010
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4 1 Introduction

web documents, as presented in [4, 17]. Although the processing of web documents
might seem quite easy since they are digitally-born documents, they may still be a
great challenge since they can contain a great amount of artwork, great variability
of font types, different font sizes, non-standard layouts, a large variety of colors,
etc. which present difficult recognition tasks. Finally, another example of an open
problem that nowadays is receiving a lot of interest is the management of digital
libraries of cultural heritage documents [2, 3]. Usually, the main problem to tackle
such applications is the management of historic documents which may be very old
and degraded. In addition, these document collections are quite large and the meth-
ods to analyze these documents should be conceived to provide an efficient access
to such amounts of information.

1.1.1 Accessibility to Large Document Collections

Nowadays, there is still a huge amount of information stored in paper format. Li-
braries are the main example. For instance, the Spanish National Library1 has about
eight million paper documents (besides books) of different kinds, such as musical
scores, maps, plans, engravings, etc. Great efforts are made to digitize such infor-
mation mainly for space saving and preservation issues, but also in order to avoid
physical boundaries and to facilitate the information retrieval. For example, Gallica2

is the digital library for on-line users of the French National Library. It provides
free access to 90,000 scanned and OCRed books and has made available more than
80,000 document images. The interest of providing access to books through the web
has also gained importance with big initiatives such as Google Books.3 However, the
need of digitizing paper documents is not just a specific problem of libraries, and it
is not just focused on old and rare documents which need preservation. Hundreds
or even thousands of invoices, receipts, faxes, etc. can be managed per day by big
companies. Obviously, the cost of storing and consulting this information in paper
format becomes unaffordable, and the use of a digital collection becomes a must.

However, these huge amounts of digitized information are usually stored in poor
formats making access to the contained information difficult. On the one hand, type-
written documents are scanned and then transcribed by an OCR software to provide
access to the text. The fact of storing these collections using the ASCII charac-
ter encoding allows retrieving desired contents from the collection by using textual
queries. In this particular scenario, the main challenge nowadays is to add semantic
information to these digital documents in order to permit a higher level information
extraction process. On the other hand, there are a lot of documents which cannot be
processed by an OCR software since they are hand-written or contain non-textual
information. In those cases, digital libraries use facsimile representations of these
documents, i.e., the image arising from the scanning process, to store them. Even

1See http://www.bne.es/.
2See http://gallica.bnf.fr/.
3See http://books.google.com/.
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if the use of facsimile representation is useful for storing and preservation issues, it
still presents a great drawback which is the lack of accessibility. Nowadays, recog-
nition methods for hand-written documents or non-textual elements do not reach
such reliable recognition rates as OCR systems. In addition, the computational cost
of recognizing type-written characters is very low in comparison with hand-written
character recognition or graphic recognition schemes. These constraints provoke
that usually facsimile documents are just manually annotated with a set of previ-
ously harvested metadata. This means that the only information we have about these
documents is a set of predefined keywords, these documents cannot be queried in
terms of their contents, but they can be retrieved just by querying the predefined
keywords. This problem is common to any search tool that has to face non-textual
information. For example, Google Image Search4 service bases its search engine on
the image filenames and text adjacent to the images. In this context, there is a need
of creating tools aiming to provide efficient categorization, indexation, browsing,
information retrieval in terms of visual contents, etc. for non-textual documents,
without any human inspection of each document. In particular, one of the main
motivations of this book is the adaptation of the idea of text mining techniques to
non-textual elements. In that scenario, graphical patterns should be used as indices
for accessing and navigating large collections of documents.

1.1.2 Information Spotting

The use of graphic indices to access non-textual documents is not straightforward.
One of the strategies proposed to enhance the accessibility of large data collections
that may result suitable in the case of non-textual documents is the Information
Spotting technique. We can define the term spotting as the task of locating and re-
trieving specific information from large datasets without explicitly recognizing it.
That means that if we want to provide a retrieval tool for non-textual documents,
with a spotting approach there is no need to fully recognize all the objects conform-
ing to a document in the database but to coarsely locate some regions of interest
where the queried object is likely to be found. These spotting approaches were al-
ready proposed some years ago within the speech recognition field in order to spot
spoken words from a sound recording. In [5, 6, 10], the use of hidden Markov mod-
els (HMM) allowed to process the speech signal and to focus the attention on a set
of time intervals where a certain keyword is likely to be pronounced. This problem
is known as phonetic word spotting.

Spotting techniques have also been applied to textual document images in the re-
cent years by following the same ideas of the word spotters used in the speech recog-
nition field. Even if images are two-dimensional structures, the text lines appearing
on those documents can be segmented and subsequently taken as one-dimensional
signals. These signals are then processed by a HMM or a neural network as pre-
sented in [16]. The locations where the output of the network has higher responses

4See http://images.google.com/.
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are the ones likely to contain the queried word. These techniques can be applied
to both type-written documents, as in the case of automatic fax routing applica-
tions [15], and hand-written documents, as in the historical word spotting method
presented in [9]. The use of spotting methodologies to treat textual documents al-
lows processing large amounts of documents without the need to apply an OCR
software to get the ASCII characters. These methods are of particular interest in
applications dealing with documents where an OCR would not produce a reliable
result.

Discussed methods are, however, hardly useful when we want to treat graphic-
rich documents. All word spotting methods make the strong assumption that all the
objects in the document can be segmented and transformed into a one-dimensional
signal in order to be processed in a linear way. This assumption is no longer valid
when we want to spot graphic elements instead of textual ones. In the last years,
the problem of spotting symbols within graphical documents has been an emerging
research topic.

1.2 Symbol Spotting

Among the Graphics Recognition community, a lot of efforts have been devoted
over the years to the problem of recognizing symbols. Several contests of Symbol
Recognition have been held during the last editions of the Graphics Recognition
Workshop (GREC). These contests are an excellent way to track the progress of the
research on this specific problem and aim at determining the challenges and the fu-
ture research directions. In the GREC 2007 edition,5 an important challenge to be
addressed has been identified. For many years, researchers of the Symbol Recog-
nition community centered their methods on recognizing isolated symbols under-
going several transforms and degradations. Nowadays, state-of-the-art recognition
schemes yield performances far above 90% recognition rates, but the real challenge
is not achieving the 100% rate but rather it should be centered on three different as-
pects. Firstly, we should see if the proposed methods are really scalable in terms of
the number of symbols to recognize. Secondly, we should test if the proposed meth-
ods could be applied to any symbol design or whether they are ad-hoc conceived
to recognize a specific dataset and tackle a specific source of noise. Finally and
most importantly, we should consider if these methods are able to recognize sym-
bols present in complete drawings without previous segmentation. In this direction,
the concept of spotting graphical symbols within graphic-rich documents has been
introduced by Tombre and Lamiroy in [13]. Five years later, the authors presented
some achievements in this field by pointing several open challenges in [14].

Generally speaking, the Symbol Spotting problem is defined as the location of
a set of regions of interest from a document image which are likely to contain an

5 Seventh IAPR International Workshop on Graphics Recognition, GREC07. Curitiba, Brazil,
20–21 September 2007.
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instance of a certain queried symbol without explicitly recognizing it. One of the
main applications for symbol spotting methods is its use in large collections of doc-
uments. This particular application can be seen as a content based image retrieval
(CBIR) application but having some particularities. The main difference is that stan-
dard document retrieval approaches find atomic documents, leaving to the user the
tasks of locating relevant information within the provided results. Whereas symbol
spotting provides the user a more direct access to relevant information by return-
ing a set of regions of interest which are sub-parts of the documents in the collec-
tion. Such applications which return passages of interest within documents instead
of complete documents, are known as Focused Retrieval systems. The interested
reader is referred to the recent review by Joty and Sadid-Al-Hasan [7] on the topic
of focused retrieval.

To the best of our knowledge, in the workshops organized by the focused re-
trieval community,6 no works dealing with graphics have ever been proposed, and
all the works have been centered on the retrieval of textual passages from ASCII
documents. Going back to the image documents, there is an important difference
between the spotting systems dealing with graphics and those dealing with word
images. In the case of word spotting, usually a learning step is required and only
a small subset of keyword queries is allowed. In the symbol spotting problem, the
amount of items comprising the symbol alphabet can increase indefinitely. In ad-
dition, the input of a spotting system is the user’s query symbol which he wants
to retrieve from the whole collection. Therefore, usually the spotting systems are
queried by example. That is, the user segments a symbol he wants to retrieve from
the document database and this cropped image acts as the input. This particularity
reinforces the fact that spotting methods should not work for a specific set of model
symbols nor have a learning stage where the relevant features describing a certain
symbol are trained. The retrieval of the relevant zones should be done on-the-fly.
Nevertheless, in the acquisition step, i.e., when a given document is added to the
collection (which is a process that could be done off-line) several steps of primi-
tive extraction and description can be computed. The desired output of the spotting
methods is a ranked list of zones of interest likely to contain similar symbols to
the queried one. That is, each result should have an associated confidence value de-
pending on a certain similarity function between the query and the result. We can
see an overview of the symbol spotting methodology applied to a focused retrieval
application in Fig. 1.1.

In Document Image Analysis and Recognition and in Computer Vision in gen-
eral, the relationship between recognition results and segmentation performance
presents a common problem known as the Sayre paradox [12]. In order to achieve
good recognition results, the objects should be previously segmented, but to get a
reliable segmentation, the objects should be previously recognized. To avoid such a
paradox, symbol spotting architectures do not use a preliminary segmentation step

6The first Workshop on Focused Retrieval http://www.cs.otago.ac.nz/sigirfocus/ held in Am-
sterdam in 2007, and the second Workshop on Focused Retrieval http://www.cs.otago.ac.nz/
sigirfocus2008/ held in Singapore in 2008.
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Fig. 1.1 Symbol spotting applied to a focused retrieval application overview

Fig. 1.2 General architecture of a symbol spotting system

followed by a proper recognition method, but are usually conceived to coarsely rec-
ognize and segment in a single step. We can appreciate our proposal of a general
architecture for symbol spotting systems in Fig. 1.2. Basically, three different levels
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can be identified. The first level aims at representing and compactly describing the
primitives that compound the graphical symbols. These features describing graphi-
cal symbols are then stored in a particular data structure. This data structure should
be chosen carefully in order to provide efficient access to the symbol descriptors.
During the querying process, this data structure is traversed and the locations within
the document images where to find similar primitives as the queried ones are re-
trieved. A final validation stage determines the valid hypotheses where the queried
symbol is likely to be found.

Summarizing, the present study has been motivated by the specific problem of
proposing a spotting methodology applied to a focused retrieval problem. The pro-
posed methods should be able to locate and retrieve graphical content within a
database of complete document images. From a methodological point of view, the
main challenges stem from the nature of the queries, which are iconic queries in-
stead of the ASCII strings used in the keyword-based searches. The fact of working
with graphical entities raises several problems to tackle. The first important problem
is how to compactly represent and describe symbols without a preliminary segmen-
tation stage. Another important issue is the choice of the data structures allowing to
efficiently retrieve graphical patterns by similarity.

1.3 Outline of this Book

The main objective of this study is to propose a symbol spotting methodology for
locating graphic symbols within a collection of complete documents. The spotting
method is formulated in terms of a search by similarity of all the primitives which
comprise the queried graphical symbol. Among the wide variety of possible symbols
and graphic documents, we have basically focused our research on a framework
dealing with technical line-drawings such as architectural floor-plans or electronic
schemes.

To this end, the problem will be tackled from different points of view and this
main objective can be detailed into the following points:

1. Testing Well-known Methods from the Computer Vision Field
Although symbol spotting has its own particularities, the problem of locating
symbols in documents can be seen as a particular case of the object recognition
problem from the Computer Vision field. Our first objective is to test if such well-
known techniques can be applied to the problem of spotting graphic symbols. In
this part of the book, we describe graphical symbols by means of well-known
photometric descriptors. We identify the limitations of those approaches in the
particular scenario of spotting symbols in line-drawing collections.

The main contribution of this part does not correspond to the recognition
methodology, since we use off-the-shelf recognition methods, but shows an ap-
plication of this kind of techniques to the graphics recognition domain.
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2. Geometric and Structural Symbol Description Techniques
Since this book is mainly focused on technical line-drawings, our specific frame-
work is mostly centered on the use of geometric and structural constraints to de-
scribe graphical symbols and graphic-rich documents. The primitives to extract
and the description techniques to represent a graphical symbol are expressed and
defined in the vectorial domain instead of working with the raw image format.
The objective of this part is to find a methodology to describe symbols to cope
with the different noise sources that we face in our framework. We present three
different proposals of vectorial primitives and the subsequent symbol description
techniques:

• Vectorial Signatures The use of signatures as a coarse description technique
is usually used on spotting systems. Taking vectors as the primitives which
compound a graphical symbol, a model of vectorial signature is proposed. The
symbols are described by the occurrences of simple geometric configurations
among segments.

• String Representation of Polygons The second proposal to represent graph-
ical symbols is the use of a higher-level entity than segments. In this
case, graphical symbols are described by a set of chains of adjacent seg-
ments grouped into polygon instances. These polygons are described as one-
dimensional attributed strings, and the distance between two similar polygons
is computed by using string edit operations.

• Off-the-shelf Shape Descriptors Applied to Vectorial Primitives Finally,
we will study the use of several well-known shape descriptors applied to the
vectorial primitives which comprise a symbol. In this case, the contribution is
not the descriptors themselves but its use to represent vectorial symbols.

3. The Descriptors Organization
The second main research axis of this study is centered on how the primitives’
descriptors can be organized in a data structure for posterior efficient access. The
main objective of this part is to find mechanisms allowing graphical patterns to
be used as indices so as to provide an efficient access to graphic information
contained in large data corpora.

Throughout this book, we present three different approaches, each one related
to the previous description of symbols. These structures aim at organizing by
similarity all the extracted vectorial primitives from the documents in the col-
lection. In focused retrieval applications, it is indispensable to avoid one-to-one
matching when querying a certain graphical primitive by providing mechanisms
which allow searching for graphical primitives by similarity.

4. The Hypotheses Formulation
The last step of spotting architectures is the hypotheses formulation. Regions of
interest where the queried symbol is likely to appear have to be generated with
their associated confidence values. The main objective of this part is to present
validation schemes to reduce the false alarms that may appear from the retrieval
of primitives by similarity.

Inspired by the classical voting schemes where the hypotheses’ validation is
done in terms of an accumulation of evidence, we present a validation scheme to
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discard false alarms. In addition of the accumulation of evidence in terms of loca-
tions within a document where the query symbol can be found, we also propose
a relational validation method which also takes into account the spatial config-
uration and the structural relationships among the primitives which comprise a
graphical symbol.

5. Performance Evaluation
Finally, one of the main concerns of the Graphics Recognition community is the
generation of evaluation studies to assess and compare the accuracy and robust-
ness of the proposed methods. To the best of our knowledge, there have been very
few attempts to describe a performance evaluation protocol for symbol spotting
architectures applied to focused retrieval tasks.

Inspired by several works on the performance evaluation of Graphics Recog-
nition methods and algorithms, and on the evaluation measures used in the Infor-
mation Retrieval field, we propose a set of measures to evaluate the performance
of symbol spotting systems in terms of their localization and recognition abili-
ties.

1.4 Organization

The rest of this book is organized into eight chapters and one appendix, structured
as four main parts.

Part I

In Chapter 2, the state-of-the-art in symbol spotting is reviewed. Since symbol spot-
ting is quite an emerging topic, the literature dealing with this problem is not vast.
Some other works which are not directly related to the problem of spotting symbols,
but which may be related to one of the three levels of the spotting architecture, are
presented. After a brief overview of the literature of symbol spotting, we organize
this chapter into three differentiated parts, namely, the state-of-the-art in symbol
description techniques, in feature organization and in hypotheses validation.

Part II

The second part of this book is centered on the application of well-known methods
of Computer Vision for recognizing objects in scenes to the specific problem of
spotting graphical symbols in documents.

• In Chapter 3, we present a method for spotting symbols by using techniques from
the Computer Vision field. As a running example, we present an application of
logo spotting for a document categorization application. The method processes
incoming document images such as invoices or receipts. The categorization of
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these document images is done in terms of the presence of a certain graphical
entity detected without segmentation. The symbols are described by a set of lo-
cal features computed using the well-known methods of SIFT and shape context
descriptors. The categorization of the documents is performed by the use of a
bag-of-visual-words model. Spatial coherence is introduced by a voting scheme
in order to reinforce the correct category hypotheses, aiming also to spot the logo
inside the document image. Experiments which demonstrate the effectiveness of
this system on a large set of real data are presented.

Part III

The third part of this book is devoted to proposing spotting methods in a frame-
work of line-drawing images. Therefore, it is centered on the use of geometrical and
structural constraints as symbol description techniques.

• In Chapter 4, we present a method to determine which symbols are probable
to be found in technical drawings by the use of vectorial signatures as symbol
descriptors. The proposed signature model is formulated in terms of geometric
and structural constraints among segments, as parallelisms, straight angles, etc.
After representing vectorized line drawings by attributed graphs, our approach
works with a multi-scale representation of these graphs, retrieving the features
that are expressive enough to create the signature. A window-based system aims
at computing these signatures within complete documents, identifying the zones
of interest where a symbol is likely to appear.

• In Chapter 5, we present a spotting method which uses a prototype-based search
as the basis for the focused retrieval task. First, symbols are decomposed into
primitives representing closed regions. These primitives are then encoded in terms
of attributed strings. Second, the strings are organized in a lookup table so that
the set median strings act as representative prototype of the clusters of similar
primitives. This indexing data structure aims at efficiently retrieving the locations
from the document collection where similar primitives as the queried ones can be
found. Finally, a voting scheme formulates hypotheses about the locations of the
line drawing image where there is a high presence of regions similar to the queried
ones, and therefore a high probability to find the queried graphical symbol. The
proposed approach has been proved to work even in the presence of noise and
distortion introduced by the scanning and raster-to-vector processes.

• In Chapter 6, we present an indexing method to retrieve locations of interest
where a query symbol is likely to be found. In order to foster the querying speed,
a hashing technique is proposed, which is able to retrieve primitives by simi-
larity very efficiently. Vectorial primitives are coarsely encoded by well-known
shape description methods providing a numerical description of the primitives.
A relational indexing approach is presented in order to introduce some structural
information of the symbols and to provide an accurate hypotheses validation. Ex-
perimental results show the performance of the proposed approach.
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Part IV

Finally, the fourth part of this book has just one chapter focused on the performance
analysis of spotting methods.

• Chapter 7 is centered on the performance evaluation of spotting systems. Since
symbol spotting systems and focused retrieval applications shall have the abil-
ity to recognize and locate graphical symbols in a single step, the measures to
evaluate the performance of a symbol spotting system are defined in terms of
recognition abilities, location accuracy and scalability. By testing the spotting
method of Chapter 6, we show that the proposed measures allow determining the
weaknesses and strengths of the analyzed method.

Finally, in Chapter 8, we give some concluding remarks about this study, and we
specify some possible future research lines on symbol spotting techniques.

Throughout this book, different symbolic databases have been used to per-
form the experiments. All these databases are explained in Appendix A. For each
database, we detail the kind of symbols it contains and the distortions which
have been introduced in the original elements. Some other characteristics for each
database, as the number of elements, the number of primitives in the vectorial rep-
resentation, their size, etc., are also detailed.
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Chapter 2
State-of-the-Art in Symbol Spotting

Abstract In this chapter, we will review the related work on symbol spotting which
has been done in the last years. We first present a review of the contributions from
the Graphics Recognition community to the spotting problem. In the second part, we
focus our attention on the different symbol description techniques and the families
we can find in the literature. Then, the existing data structures which aim to store
the extracted descriptors and provide efficient access to them will be analyzed. We
finally review the existing methods for hypotheses validation which can be used for
spotting purposes.

2.1 Introduction

Generally speaking, the architecture of a symbol spotting system consists of the
three main levels outlined in the previous chapter in Fig. 1.2. In the first level, the
documents are decomposed into a set of primitives which are characterized by a
descriptor capturing the most important cues. The second level is focused on how
these descriptors are organized to be posteriorly consulted. Finally, the third level
is in charge of validating the hypotheses arising from the matching between model
and stored data. This third level shall provide the resulting list of locations where a
queried symbol is likely to be found.

We organize this state-of-the-art into four different parts. First, in Sect. 2.2, we
briefly review the recent contributions of the Graphics Recognition community to
the spotting problem. The subsequent three parts refer to each level of the general
symbol spotting architecture. In Sect. 2.3, we focus on the symbol descriptor catego-
rization. Section 2.4 describes the organization and access to the stored descriptors,
and in Sect. 2.5 we present the existing approaches for hypotheses validation. We
finally summarize the suitable approaches for spotting graphics in Sect. 2.6.

2.2 Spotting Graphical Elements

Among the Graphics Recognition community, a lot of efforts have been devoted in
the last years to the problem of locating elements in document images. However,
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two different applications can be identified, namely locating words in textual image
documents in the image domain and identifying regions likely to contain a certain
symbol within graphics-rich documents. Although the problem is the same, the pro-
posed methods are very different whether the focus of the application is centered on
text or in graphics. Let us briefly review in the next sections the existing work on
both word and symbol spotting.

2.2.1 Word Spotting

OCR engines benefit from the nature of alphanumeric information, i.e., text strings
which are one-dimensional structures with underlying language models that facil-
itate the construction of dictionaries and indexing structures. Word spotting tech-
niques also take advantage of this aspect and usually represent words as one-
dimensional signals which will further be matched against the query word image.
The main idea of these approaches is to represent keywords with shape signatures
in terms of image features. The detection of the keyword in a document image is
usually done by a cross-correlation approach between the prototype signature and
signatures extracted from the target document image.

Using image features without word recognition though, the information is still
one-dimensional and it facilitates the use of some classical techniques used in
speech recognition. Rath and Manmatha [71, 72] presented a method to spot hand-
written words. They use the normalized projection profiles of segmented words as
word signatures. These word signatures are seen as time series and are aligned us-
ing the dynamic time warping (DTW) distance. We can see an example of such
approach in Fig. 2.1.

Kuo and Agazzi [45] used another classical technique from the speech processing
field. A hidden Markov model (HMM) is applied to spot words in poorly printed
documents. In this case, a learning step to train the HMM is needed. In addition, the
features describing each word the user wants to query have to be learned previously.
By also using HMMs, Rodríguez [74] presents a framework to spot handwritten
words.

Lladós and Sánchez [50] proposed a keyword spotting method based on the shape
context descriptor. Words are represented by a signature formulated in terms of the

Fig. 2.1 Word image signature for word spotting using the DTW distance (this image is based on
Figs. 2 and 4 appearing in [72])
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shape context descriptor and are encoded as bit vectors codewords. A voting strategy
is presented to perform the retrieval of the zones of a given document containing a
certain keyword.

Leydier et al. [48] presented a word spotting method in order to perform text
searches in medieval manuscripts. The orientation of the gradients in a given zone
of interest are taken as features describing the local structure of the strokes and
the orientation of the characters’ contours. A matching process is then proposed to
identify and retrieve the locations where a given word is likely to be found. The
experimental results show that the proposed method is tolerant to several kinds of
noises as well as geometric distortions.

In [42], Konidaris et al. presented another strategy for word spotting. In this
strategy, the query is not an image but is an ASCII string typed by the user. Thus,
the features which represent a word should be invariant enough to appear in both
synthetic characters and the character extracted from the ancient documents. The
authors propose a hybrid approach by using the density of pixels in a given zone
of the character and the projections of the upper and lower profile of the character.
In order to improve the retrieval performance, a user feedback procedure is also
proposed.

Recently, Lu and Tan [57] proposed a very simple typewritten word coding which
is useful enough to characterize documents. The proposed word code is based on
character extremum points and horizontal cuts. Words are represented by simple
digit sequences. Several similarity measures based on the frequency of the codes
are defined to retrieve documents written in the same language or describing similar
topics.

Terasawa and Tanaka [90] presented a word spotting method based on sliding
windows. In each window, a histogram of gradients (HOG) feature is computed in
order to locally describe parts of a word. The word matching step is done with a
dynamic programming algorithm very similar to dynamic time warping.

Finally, Kise et al. [41] addressed another interesting aspect of the word spotting
problem. Since they focus their approach on Japanese documents, they found that
a word can be formed by several Kanji characters. Locating a query word within
a document is then done by analyzing the character density distribution within a
document image. The same idea can be applied to other languages when we not
only want to spot a single word, but also to perform what is known as passage
retrieval.

One of the weak points we find in almost all the methods presented in the exist-
ing literature is that most of the approaches take advantage of the layout knowledge.
By assuming that the entities of the document images follow a certain spatial struc-
ture, they are able to segment words and take them as atomic elements. To the best
of our knowledge, there are very few methods which can deal with the document
image as a whole without the specific word segmentation step. This is a strong lim-
itation of these approaches since the performance of these methods will always be
strongly dependent on the performance of the previously done word segmentation.
We believe that rather than using cross-correlation approaches, the use of some in-
dexing structure pointing to the locations where the queried word is likely to appear
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would be much more interesting for spotting purposes. As we will see, some symbol
spotting methods are based on this idea.

2.2.2 Symbol Spotting

The main idea of symbol spotting is to describe symbols by a very coarse descrip-
tor to foster the querying speed rather than the recognition rates. Even if symbol
spotting is still an emerging topic, several works facing the problem can be found.

Müller and Rigoll [64] proposed one of the first approaches we can identify as
symbol spotting. By using a grid of a fixed size, technical drawing images are parti-
tioned. Each small cell acts then as an input in a two-dimensional HMM trained to
identify the locations where a symbol from the model database is likely to be found.
The main advantage the system presents is that symbols can be spotted even if they
appear in a cluttered environment. However, the fact that the recognizer must be
trained with the model symbols entails a loss of flexibility of the presented method.

On the other hand, some techniques work with a previously done ad-hoc rough
segmentation, as presented in [83]. In that case, an algorithm of text/graphics sepa-
ration is applied in order to separate symbols from the text and the background. In
[82, 84], the symbols which are linked to a network are segmented by analyzing the
junction points of the skeleton image by a loop extraction process. After these ad-
hoc segmentations, global numeric shape descriptors are computed at each location
and compared against the training set of pixel features extracted from model sym-
bols. Like most of the word spotting methods, in this case, when querying a certain
object, a set of segmentations are proposed. A descriptor is computed sequentially
for each sub-image and a distance metric decides whether it is the searched item or
not. The one-to-one matching is a clear limitation of such approaches which will not
be a feasible solution to adopt when facing large collections. In addition, the ad-hoc
segmentations are only useful for a restricted set of documents, which makes the
method not scalable to other application domains.

Other techniques, as in [6, 49, 52, 60, 70], rely on a graph based representation of
the document images. These methods focus on a structural definition of the graph-
ical symbols. Subgraph isomorphism techniques are then proposed to locate and
recognize graphical symbols with a single step. However, these approaches do not
seem suitable when facing large collections of data since graph matching schemes
are computationally expensive.

Realizing that the computational cost has to be taken into account, several works
(see, e.g., [20, 93, 102]) were centered on computing symbol signatures in some
regions of interest of the document image. These regions of interest can come from
a sliding window or be defined in terms of interest points. Obviously, these methods
are quicker than graph matching or sequential search, but they make the assumption
that the symbols always fall into a region of interest. In addition, symbol signatures
are usually highly affected by noise or occlusions.

Zuwala and Tabbone [103, 104] presented an approach to find symbols in graph-
ical documents which is based on a hierarchical definition of the symbols. They
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Fig. 2.2 Dendrogram representation for spotting symbols in technical drawings (this image is
based on Fig. 3.5 appearing in [103])

propose the use of a dendrogram structure to hierarchically decompose a symbol.
A symbol is represented by its subparts split at the junction points. These subparts
are merged according to a measure of density building the dendrogram structure.
Each subpart is described by an off-the-shelf shape descriptor. The dendrogram can
be subsequently traversed in order to retrieve the regions of interest of a line draw-
ing where the queried symbol is likely to appear. We can see an example on the use
of a dendrogram representation for symbols appearing in technical drawings and the
obtained spotting results in Fig. 2.2. In [85], the authors proposed an enhancement
of the traversal step, which, by the use of indexing strategies, allowed reducing the
retrieval time.

Finally, in some domains, graphical objects can be annotated by text labels. In
these cases, the spotting mechanism can manage textual queries to provide graphi-
cal results as presented by Lorenz and Monagan in [53]. Najman et al. [65] present
a method to locate the legend in technical documents. The text contained in the
legend can be posteriorly used to extract graphical areas annotated by these text
strings, as presented by Syeda-Mahmood in [81]. In this study, we do not con-
sider textual annotations, and thus the spotting method only manages graphical en-
tities.

We can find a summary of the state-of-the-art symbol spotting approaches in
Table 2.1. As in the case of word spotting, our feeling is that indexing mechanisms
and voting schemes are very useful when trying to not only recognize a graphical
object but also locate and recognize at the same time. Spotting methods which do not
use indexing structures may discriminate zones of interest from a document image,
but can hardly be transferred to a real focused retrieval application dealing with
large collections of document images. Let us focus on the problem of describing
graphical symbols in the next section.

2.3 Symbol Description

Symbol Recognition is at the heart of many of the Graphics Recognition applica-
tions. As pointed out in the state-of-the-art review of Lladós et al. [51], due to the
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Table 2.1 State-of-the-art symbol spotting approaches

Family Method Pros. Cons.

2D HMM [64] Segmentation-free Needs training

Pixel features [83]
[82]
[84]

Robust symbol description Ad-hoc previous segmentation

Graph-based [60]
[49]
[6]
[52]
[70]

Simultaneous symbol
segmentation and recognition

Computationally expensive

Symbol signatures [93]
[20]
[102]

Compact and simple symbol
description

Performance decreases if the
symbol could not be perfectly
isolated

Hierarchical
symbol
representation

[104]
[103]
[85]

Linear matching is avoided by
using an indexing technique

Dendrogram structure is
strongly dependent on the
merging criterion

Textual queries [53]
[81]
[65]

More robust since it is easier to
recognize characters than
symbols

Only applicable when textual
information is present

wide range of different graphic documents, each of them containing its particular
symbols, it is not easy to find a precise definition of what a symbol is. In the context
of graphic-rich documents, symbols can be defined as the graphical entities which
are meaningful in a specific domain and which are the minimum constituents that
convey the information.

From this definition, we can see that there is a large variety of entities that can be
considered symbols. Symbols can range from simple 2-D binary shapes composed
of line segments as in the case of the entities found in engineering or architectural
documents to complex sets of gray-level or even color sub-shapes as in the case of
trademarks or logos.

This vast and heterogenous nature of symbols provokes that, when facing the
problem of describing and recognizing symbols, the proposed methods found in
the literature can rely on different primitives and visual cues to describe a symbol
depending on the application at hand. In the different reviews of description tech-
niques, each author proposes a different taxonomy to cluster the methods following
different criteria. For instance, Mehtre et al. [59] base their classification of shape
description techniques on whether the methods describe the shapes from the previ-
ously extracted boundary of the objects, or if they are region-based and use all the
internal pixels to describe a shape. A more recent review of shape description was
proposed by Zhang and Lu in [101]. In that case, the authors add another criterion
to cluster the existing methods. Besides the contour-based or region-based nature of
the systems, they propose to check if they are structural or global. This sub-class
is based on whether the shape is represented as a whole or represented by seg-
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Fig. 2.3 Classification of symbol representation and description techniques

ments/sections. Lladós et al. [51] presented a state-of-the-art on symbol recognition
techniques, clustering the existing methods not only by the nature of techniques but
also by their intended applications. In this book, we propose to cluster the descrip-
tion techniques into three different categories depending on the visual cues which
the different methods aim to encode. In the first category, the photometric descrip-
tion of symbols describes the graphic objects in terms of the intensity of its pixels.
At the same time, it thus encodes several visual cues as the shape of the object, its
color, texture, etc. On the other hand, a geometric description of symbols is only
centered on the analysis of the shape as a basic visual cue. Finally, the syntactic
and structural description of symbols aims at representing the structure of a set of
geometric primitives by defining relationships among them. Obviously, some meth-
ods in the literature are difficult to classify following this taxonomy since they use
a combined strategy, or because they may be understood as belonging to different
categories at the same time. We can find the whole hierarchy of the classification in
the diagram shown in Fig. 2.3.

2.3.1 Photometric Description

The main interest of this kind of approaches to describe graphical symbols is that
the photometric description encodes several visual cues at the same time. This kind
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of description is suitable when we face complex symbols that could hardly be de-
scribed by the shape information only. The problem of logo recognitionis one of the
application examples where a photometric description is suitable.

Bagdanov et al. [4] present a method focused on the detection of trademarks ap-
pearing in real images. In order to describe those symbols, in that work, the authors
use the SIFT descriptor to match the trademark models against video frames. The
SIFT descriptor, presented by Lowe in [54, 55], basically characterizes the local
edge distribution around a given interest point by analyzing the intensity gradients
in a patch surrounding the previously extracted key point having a certain scale and
orientation. The feature descriptor is computed as a set of orientation histograms on
a grid of 4 × 4 neighborhoods. These histograms are computed relative to the key
point orientation in order to achieve invariance to rotations. In addition, the magni-
tude and orientation of the gradients are computed from the Gaussian scale space
image closest in scale to the key point’s scale. The contribution of each pixel is
weighted by the gradient magnitude, and by a Gaussian with a σ value proportional
to the scale of the key point. Histograms contain 8 bins each, and each descriptor
contains an array of 16 histograms around the key point. This leads to a SIFT feature
vector with 4 × 4 × 8 = 128 elements. The SIFT descriptor has been widely used
in Computer Vision for several applications as object recognition or robotics related
problems such as SLAM (simultaneous localization and mapping). It could be very
useful to describe complex graphic symbols as logos, but it looses effectiveness
when representing simpler symbol designs.

From another point of view, there is a family of photometric descriptors which
base the symbol representation in the spectral domain. The analysis of images in
the spectral domain overcomes the problem of noise sensitivity. Within this family,
we can find some works focused on the application of such descriptors for symbol
recognition. For instance, the generic Fourier descriptor (GFD) presented by Zhang
and Lu in [100] is used to recognize a set of trademarks. In this work, the raster
images of logos (as the one shown in Fig. 2.4) are transformed from the Cartesian to
the polar space and then a two-dimensional Fourier transform is applied to obtain the
symbol description. Another example of spectral descriptors is the Fourier–Mellin
transform. After a polar representation of the image, the angular parameter is ex-
pressed by the coefficients of the Fourier transform, whereas the Mellin transform
is applied to the radial parameter. In [1], Adam et al. present a method allowing
the classification of multi-oriented and multi-scaled characters appearing in techni-
cal documents. They base their set of invariants on the Fourier–Mellin transform,
and are able to deal even with connected characters without a prior segmentation
step.

Another family of photometric descriptors are those based on moments. As pre-
sented in Teh and Chin’s review [89], moments have been utilized as pattern features
in a number of applications to achieve invariant recognition of two-dimensional im-
age patterns. Let us briefly review some of the moment-based descriptors which can
be applied to the description of graphical symbols. Hu [33] first introduced a set of
moment invariants by using nonlinear combinations of geometric moments. Those
invariants have the properties of being invariant under image translation, scaling,
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Fig. 2.4 Example of a generic Fourier descriptor. (a) An original logo image; (b) polar-raster
sampled image plotted in Cartesian space; (c) Fourier spectra of (b); (this image is based on Figs. 4
and 5 appearing in [100])

and rotation. All these properties make Hu’s invariants a suitable symbol descriptor.
For instance, in [17], Cheng et al. presented a symbol recognition system focused on
the recognition of previously segmented electrical symbols. After a normalization,
a symbol is described by a feature vector representing the six geometric moment
invariants computed with respect to the symbol centroid. From the theory of orthog-
onal polynomials, Zernike moments have been introduced in [88]. By projecting the
symbol image to a vectorial space defined by a set of orthogonal polynomials named
Zernike polynomials, the Zernike moments are obtained. Independent moment in-
variants are then easily constructed of an arbitrarily high order. As an application
example, Khotanzad and Hong [39] use the Zernike moments to describe a small
set of upper case letters affected by several transformations and distortions. They
show that Zernike features compare favorably with Hu’s geometric moment invari-
ants. In addition, the Zernike moments have the ability to reconstruct the graphical
symbol from its description, which in some applications may result useful. Finally,
another kind of orthogonal moments are the Legendre moments which make use
of the Legendre polynomials. In [18], a descriptor based on an enhancement of
the Legendre moments is presented to recognize Chinese characters ongoing sev-
eral transformations. Usually, moment invariants are good descriptors since they
are easy to compute, and besides describing the intensity of the pixels, they also
have a relation with geometric properties as the center of gravity or axes of iner-
tia.

We can find a summary of the state-of-the-art photometric symbol descriptors in
Table 2.2. In the next section, let us focus on the geometric descriptors.

2.3.2 Geometric Description

Geometric description techniques are primitive-based methods encoding basically
the shape as the most important visual cue to describe graphical symbols. Sym-
bols are broken down into lower level graphical primitives and are then described
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Table 2.2 State-of-the-art photometric symbol descriptors

Name Application
to symbol
description

Notes

SIFT [4] Invariance to affine transforms and illumination
changes; set of orientation histograms computed over
previously extracted key points

GFD [100] Applied to segmented symbols; 2-D Fourier transform
of the polar image

Fourier–Mellin [1] Can be applied to non-segmented symbols

Hu’s invariants [17] Nonlinear combination of the lower order moments;
invariant to similarity transforms but not too much
discriminative

Zernike [39] Orthogonal moments; allow a reconstruction of the
shape; robust to noise

Legendre [18] Orthogonal moments; allow a reconstruction of the
shape; less robust than Zernike’s

in terms of these primitives. The usual extracted primitives from the symbols are:
contours, closed regions (loops), connected components, skeletons, etc. Within this
family, we will differentiate between methods which are only able to describe one
primitive, or methods which can be used to describe the whole symbol in terms of
all these composing primitives.

2.3.2.1 Single Primitive Description

A great variety of simple shape descriptors coping with geometric characteristics
exist in the literature. Those descriptors are very easy to compute but are usually
poorly discriminant. They can be used as a first stage of the selection process among
the shapes likely to be good candidates. Most of these simple descriptors are com-
puted over a contour primitive, but can also be used to describe the skeleton or a
region. Among the whole variety of simple shape descriptors, we can cite a few.
The area and the perimeter of the shape under analysis can be used as a coarse fil-
ter in applications where invariance to scale is not needed. The diameters of the
circles with the same area or perimeter as the considered shape can also be used
as simple descriptors, but again the scale invariance is not achieved. Usually, for
segmentation purposes, the orthogonal projections of the shape following the x and
y axes are used to describe whether a shape is present or not. To have invariance
to rotation, Feret’s diameters are used. Feret’s diameters are the maximal and min-
imal orthogonal projections of the shape on a line. In order to achieve invariance
to scale, some ratios among simple features are usually used. The eccentricity, also
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called aspect-ratio or Feret’s ratio, characterizes the dimensionality of the shape and
is computed as the ratio between the maximum and minimum Feret’s diameters.
The area–perimeter ratio computed as 4πA(X)/(P (X)2) (where A(X) and P(X)

are the area and the perimeter of the shape X, respectively) characterizes deviations
of the shape from a circular form. For a disc it is equal to 1, while for all other
shapes it is less than 1. The convexity ratio is defined as the ratio between the area
of the shape and the area of its convex-hull. It characterizes deviations from convex-
ity.

Obviously, not all of these simple descriptors have the desired invariance to rota-
tion or scale, but most of them can be easily normalized to achieve such invariance.
In addition to these simple descriptors, we can find several arc-length-based sig-
natures in the literature. These signatures represent a shape by a one-dimensional
function derived from its contour. From the variety of arc-length signatures, we can
cite:

• The radius-vector function rx(ϕ) which is the distance from a reference point O

in the interior of the shape X to the contour in the direction of the ϕ-ray, where
0 ≤ ϕ ≤ 2π .

• The tangent-angle function φx(p) which characterizes the changes of direction of
the points of the contour. The tangent angle at some point is measured relative to
the tangent angle at the initial point.

We can find an illustration on how these contour signatures are computed in
Fig. 2.5. These signatures are also normalized to achieve invariance to translation
and scale. Invariance to rotation is obtained by considering the function as peri-
odic and analyzing a circular permutation of the signature. In addition to the high
matching cost, contour signatures are sensitive to noise, and slight changes in the
boundary can cause large errors in matching.

Another family of descriptors are those working at different scales. The scale
space representation of a given shape is created by tracking the positions of interest
points (protrusions and inflections) in a shape boundary filtered by a Gaussian filter
of different width σ . As the σ value increases, little inflections are eliminated from
the contour and the shape becomes more and more smooth. The inflection points

Fig. 2.5 Computation of the arc-length-based signatures. (a) The radius-vector function; (b) the
tangent-angle function; (this image is based on Figs. 2.1.3 and 2.1.9 appearing in [40])
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of the shape under analysis that remain present in the representation are expected
to be significant object characteristics. Mokhtarian et al. [62] present the curvature
scale space (CSS) signature. The peaks from the curvature scale space contour map
are extracted and used as to match two shapes under analysis. The CSS signature
is tolerant to noise and changes in the boundary since it bases its representation at
different detail scales. However, since the matching process tries to find the best
match between the contour branches of the CSS signature by applying shifts and
different scales to achieve invariance to scale and rotation, the matching process
proves to be very expensive.

As another example of geometric descriptor for single primitives, we can cite the
shape context (SC) descriptor presented by Belongie et al. in [10]. The shape context
descriptors allow measuring shape similarity by recovering point correspondences
between the two shapes. Given a set of points from a symbol (e.g., interest points ex-
tracted from a set of detected edge elements), the shape context captures the relative
distribution of points in the plane relative to each point on the shape. Specifically,
a histogram using log-polar coordinates which counts the number of points inside
each bin is constructed. The descriptor offers a compact representation of the dis-
tribution of points relative to each selected point. An example of the shape context
descriptor to match shapes can be seen in Fig. 2.6. Translational invariance comes
naturally to the shape context. Scale invariance is obtained by normalizing all radial
distances by the mean distance between all the point pairs in the shape. In order
to provide rotation invariance in shape contexts, angles at each point are measured
relative to the direction of the tangent at that point. Shape contexts are empirically
demonstrated to be robust to deformations and noise. The shape context descrip-
tor has been tested on different datasets. It has been used to recognize handwritten
digits, to retrieve silhouettes by similarity and even to retrieve logos. In [61], Miko-
lajczyk and Schmid proposed enhancing the shape context descriptor by weighting
the point contribution to the histogram with the gradient magnitude and adding ori-
entation information to the histogram besides point locations. This enhancement
allows the shape context descriptor to be also classified as a photometric description
technique.

Fig. 2.6 Example of the shape context descriptor for shape matching. (a)–(b) Original shapes to
match with sampled edge points; (c) diagram of the log-polar histogram bins used in computing the
shape contexts; (d) correspondences found using bipartite matching for the two shapes (a) and (b);
(this image is based on Fig. 3 appearing in [10])
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Describing graphical symbols by geometric descriptors coping with a single
primitive can be very useful when the symbols are non-isolated and other entities
than the symbol may appear. These methods may also be very useful when the sym-
bols can be affected by occlusions. As the last example of geometric description
for single primitives, we can mention what we call a description based on graphical
tokens. Given a primitive (usually a contour or a skeleton of a symbol), it is parti-
tioned into small graphical entities which can be described by very simple attributes.
For example, Berretti et al. [12] present a system which partitions a contour into a
set of tokens by partitioning the shape at minima of the curvature function. Each
token τi is described through the features (mi, θi) representing the curvature of the
token and its orientation with respect to a reference system. Stein and Medioni [79]
propose to polygonally approximate a shape and then to partition this representation
into sets of adjacent segments named super-segments. Those chains of consecutive
segments are then represented by several attributes as the lengths, angles, orientation
and eccentricity of the token. Nishida [68] presents a simpler, yet effective approach.
He proposes applying quantized-directional codes to the approximated contour and
characterizing the tokens by a tuple representing the angular span and the direction
of the segment. Lorenz and Monagan [53] propose another set of simple tokens to
represent graphical entities. To describe regular structures, parallel segments and
junctions are taken as tokens and represented by attributes such as length ratios and
angles. To cope with irregular structures, chains of adjacent segments are taken as
more complex tokens and are encoded by using the first six harmonics of the Fourier
approximation of the segments chain. Those simple descriptions of symbols allow
coping with distorted symbols and with occlusions. However, as the symbol to be
recognized is composed of several tokens, usually, in order to match two different
symbols, an algorithm of bipartite graph matching has to be used.

2.3.2.2 Description of Several Primitives

The first example of geometric description of symbols which can handle several
primitives at the same time can be the grid-based method proposed by Lu and Sajjan-
har in [56]. This descriptor is inspired by the classic photometric descriptor known
as zoning [14], but adapted to work with primitives, thus encoding geometric con-
straints among them. After a primitive extraction step, e.g., of contours or skeletons,
the symbol is normalized for rotation and scale. The symbol is scaled into a fixed
size rectangle, shifted to the upper left of this rectangle and rotated so the major axis
Fmax(X) of the symbol is horizontal. Then, the symbol is mapped on a grid of fixed
cell size. Subsequently, the grid is scanned, and a binary value is assigned to the
cells depending on whether the number of points in the cell is greater than or less
than a predetermined threshold. A unique binary number is obtained as the symbol
descriptor. Despite its simplicity, this kind of simple description is very dependent
on the normalization step, and may not tolerate well slight distortions.

Inspired by the shape context descriptor described above, Mori et al. [63] present
the shapeme histogram descriptor. This approach computes the shape context de-
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scriptor for all the interest points extracted from a symbol and uses vector quanti-
zation in the space of shape contexts. Vector quantization involves a clustering step
of the shape context feature vectors and then represents these feature vectors by the
index of the cluster that it belongs to. These clusters are called shapemes. By such
means, we obtain a single descriptor for a symbol, no matter how many primitives
it has. Each symbol is represented by a collection of shapemes in a histogram. The
matching of two symbols is done by finding the nearest neighbors in the space of
histograms of shapemes.

Yang [99] presents a symbol descriptor which as the shape context descriptor
also captures the relative distribution of points from a symbol. However, the pixel
level constraint histogram (PLCH) descriptor encodes the complete symbol no mat-
ter how many primitives (skeleton branches in that case) comprise the symbol. The
descriptor represents geometric constraints between every pair of points from the
skeleton in reference to a third point. At each point from the symbol, we compute
a histogram depicting how the other points lie surrounding this point. Length ratios
and angles are computed for each pair of points by using one point as a reference.
Using an equal bin partition and an accumulation space, two matrices (one for the
length information and the other for the angle information) of fixed dimensions are
obtained. These matrices are used as the shape descriptor. The distance between two
symbols is then defined as the sum of differences between the model and the test
matrices. The tests, using the data from the symbol recognition contest held in the
Fifth IAPR International Workshop on Graphics Recognition (GREC 2003) [92],
give good recognition rates under diverse drawbacks such as degradation, distor-
tion, rotation and scaling. As the descriptor focuses on geometric constraints among
points, the rotation and scale-invariance are guaranteed. However, this method can
only work with segmented symbols and its computational complexity may become
very high (O(n3)), since all the pixel triplets of the skeleton image are considered.

Another family of methods to describe graphical symbols using geometric infor-
mation are the approaches based on vectorial signatures. This description technique
is best suited for applications dealing with symbols arising from line-drawings such
as electronic diagrams or architectural floor plans where the primitives are of vec-
torial nature. The primitives representing the symbols are the segments extracted
from a polygonal approximation of the contour or the skeleton of the symbol. The
signatures are defined as a set of elementary features, containing intrinsically a dis-
crimination potential. Huet and Hancock [34] present a simple and compact his-
togram representation which combines geometrical and structural information for
line-patterns. The attributes which are taken into account to built the signature are
computed between pairs of line segments. These pairwise geometric attributes are
the relative orientation between pairs of line segments, length ratios, distances and
projections. This representation can be effectively used to index a large database
according to shape similarity. Based on the work by Etemadi et al. [21], Dosch and
Lladós [20] present a method for symbol discrimination by using vectorial signa-
tures. The method starts with a study of basic relationship between pairs of lines.
Several main relations are thus enumerated: collinearity, parallelism and intersec-
tions. For each of these relations, some extensions are considered, like overlapping
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Fig. 2.7 Geometric constraints taken as features to build a vectorial signature. (a) Intersection
of segments; (b) parallelism; (c) perpendicularity; (d) constraints regarding arcs and circles; (this
image is based on Figs. 3, 4, 5, 6, and 7 appearing in [96])

for parallelism or the kind of intersection point. The number and the type of the re-
lations found in a particular zone will form the signature. In [96], Liu et al. present
a similar approach. In that case, symbols are also represented by the occurrences
of intersections among segments, parallelism and perpendicularities. Each of those
features is attributed to certain parameters such as angles, length ratios or directions.
We can see an illustration of the considered geometric constraints which built the
proposed signature in Fig. 2.7. These approaches present a very compact representa-
tion of graphical symbols having enough discriminative power to be used as a basis
for spotting systems. However, the main drawback of such signatures is that they
may be very sensitive to slight changes in the primitives.

We can find a summary of the state-of-the-art geometric symbol descriptors in
Table 2.3. In the next section, let us focus on the syntactic and structural description
family.

2.3.3 Syntactic and Structural Description

Finally, the syntactic and structural description approaches are focused on the struc-
ture of the analyzed symbol. Symbols are first decomposed into basic primitives
which may be represented by any description presented above. The syntactic and
structural descriptors aim then at defining the relationships among those primitives.
Whereas in syntactic description we offer a rule based description of the symbols,
in the structural description the recognition of a given symbol is performed by com-
paring its symbolic representation against a predefined model of the symbol under
analysis.

As introduced by Fu in [26], the syntactic approach to pattern recognition pro-
vides a capability for describing a large set of complex patterns by using small sets
of simple pattern primitives and of grammatical rules. The application of grammars
to the problem of symbol description has been widely used over the years since this
application is especially well suited to model description through syntactic rules.
Terminal elements of the grammars will correspond to the basic primitives compris-
ing a graphical symbol, and the non-terminal elements will describe the production
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Table 2.3 State-of-the-art geometric symbol descriptors

Name Application
to symbol
description

Primitives Notes

Simple ratios [66] Single Very simple to compute, low discriminant
power

Arc-length signatures [86] Single Sensitive to slight boundary deformations

CSS [62] Single Scale space analysis of a single contour;
tracking of the inflection points; robust to
boundary noise

Shape context [10] Single Compact representation of distribution of
points relative to a reference point; invari-
ant to similarity transforms

Graphical tokens [79], [53],
[12], [68]

Single Partition of graphical primitives into sim-
pler entities; tokens are described by sim-
ple geometric attributes; very useful in
case of occlusions

Grid-based [56] Multiple Provide a binary description of the sym-
bol’s shape; very simple representation,
but dependent on a prior normalization
step to achieve invariance to similarity
transforms

Shapeme [63] Multiple Vector quantization on the shape contexts
of a symbol; obtains a single feature vec-
tor for a symbol

PLCH [99] Multiple Represents geometric constraints between
every pair of points from the skeleton in
reference to a third point; invariant to sim-
ilarity transforms and robust to noise

Vector signatures [34], [20],
[96]

Multiple Compact representation of vectorial sym-
bols; invariant to similarity transforms,
but very sensitive to noise at the vector
level

rules. Syntactic analyzers are built from these grammars in order to group the basic
primitives following the production rules and in order to finally recognize graphi-
cal symbols. In the literature, we can find many kinds of grammars from the linear
ones as the PDL-grammars presented in [77] or the adjacency grammars used by
Mas et al. in [58] to more complex grammatical structures as the graph grammars
presented by Bunke in [15]. However, the syntactic approaches present the problem
that the rule based description schemes are very affected by noisy data. Since the
recognition of the symbols is done in terms of the rules of composition of primitives,
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Fig. 2.8 String
representation of closed
contours (this image is based
on Fig. A.1 appearing in [26])

slight perturbations on the terminal elements may provoke the production rules that
cannot be applied, and then the symbol cannot be recognized.

As the first example of structural descriptors, we focus on the string represen-
tation of symbols. Symbols are represented by an ordered set of primitives which
are encoded as a one-dimensional string. These descriptors codify in which order
we expect to find the primitives that comprise a given symbol. For instance, Fu [26]
proposed to represent chromosome shapes by a chain of boundary segments forming
codewords (see Fig. 2.8). In this kind of approaches, the similarity measure between
two string representations of a symbol will be computed by using the string edit op-
erations proposed by Wagner and Fischer in [94]. Tsay and Tsai [91] and Wolfson
[98] use the string edit operations applied to the recognition of polygons. Another
commonly used method for transforming shapes into one-dimensional strings is the
use of the chain codes presented by Freeman in [25]. In that case, shapes are de-
scribed by a sequence of unit-size line segments with a given set of orientations.

The most common structural representation of symbols is the attribute relational
graph (ARG). Graphical primitives are extracted from the symbols and a graph is
built representing the structural relationships among those primitives. Messmer and
Bunke [60] proposed a symbol recognition framework based on an ARG repre-
sentation. The primitives taken into account are the line segments that arise from
a polygonal approximation of an engineering drawing. An ARG is constructed by
taking the segments as the nodes of the graph, and the edges represent that two
segments are adjacent. Both nodes and edges have associated attributes. The length
of the segment is stored in the nodes, whereas the angle between two segments is
stored in the corresponding edge. We can see an example of such graphs in Fig. 2.9.
As a second example, Lladós et al. [49] present a different approach of using an
ARG. In this case, the authors use higher level primitives than segments. Closed
regions are identified from the symbol prototype and are used as the nodes of the
graph. The nodes of two adjacent regions of the symbol are linked through an edge
of the graph. The nodes of the region graph are attributed by the string representation
of the boundary of the region. The edges are attributed by the shared string of the
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Fig. 2.9 Attribute relational graph for symbol description. Nodes represent line segments and are
attributed by their length, while edges represent an adjacency relationship and are attributed by the
formed angle between the two segments (this image is based on Fig. 3 appearing in [60])

two adjacent regions. Length and orientation attributes are also added to this graph
representation. The use of attributed graphs for representing symbols has the main
advantage that we can have a very complete description of the symbols. Primitives
can be described by photometric or geometric descriptors and these descriptions can
be the attributes of the nodes. In addition, the relationships among those primitives
are represented by the edges, codifying structural information. In the general case of
the graph-based symbol description, the recognition of the symbols has to be done
by the use of a sub-graph isomorphism. For each symbol, a prototype of its ideal
shape is build as an attributed graph. An input symbol is recognized by means of the
matching between the representation of the symbol and the symbol prototype. The
main drawback of such powerful representation is that the sub-graph isomorphism
algorithms are extremely expensive with respect to computation time since they are
tackling an NP-complete problem as stated in [28].

In order to avoid the complex step of matching two graph representations, sev-
eral approaches can be found. For instance, Franco et al. [24] use the minimum
spanning tree as a simplification of a graph. By connecting all the pixels constitut-
ing the object under the constraint to define the shortest path, the shape topology
is captured. A template matching algorithm which uses minimum spanning trees as
symbol representation is presented.

We can find a summary of the state-of-the-art syntactic and structural symbol
description approaches in Table 2.4. In the next section, let us focus on the problem
of organizing the descriptors to provide an efficient access to the information.

2.4 Descriptors Organization and Access

In the problem of recognizing graphics appearing within document images, the basic
paradigm involves a matching step between the features extracted from the model
graphical symbol and the features extracted from the document images. To be able
to recognize and locate elements in documents, the descriptors should be stored in a
data structure and clustered by similarity. Once the user formulates a query in terms
of a symbol, we have to retrieve by an efficient mechanism the locations within
the document images where similar symbols to the queried one appear. As pointed
out by Califano and Mohan in [16], since all feature combinations may have to be
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Table 2.4 State-of-the-art syntactic and structural symbol descriptors

Name Application to
symbol description

Notes

Grammars [77], [58], [15] Rule-based description; performance highly affected
by noise in primitives

Strings [25], [98] One-dimensional representation of symbols; structural
information is the order followed by the primitives;
similarity measure defined in terms of edit operations

Graph-based [60], [49], [24] Prototype-based description; very powerful tool to de-
scribe symbols; extremely expensive with respect to
computation time

explored, brute-force matching is equivalent to an exponential search. In focused
retrieval applications with large databases, these costs may become unaffordable.
The choice of a data structure providing efficient access to the descriptors is cru-
cial to the final performance of the system. In this section, let us briefly review the
approaches that can be found in the literature.

2.4.1 Sequential Access

First, we can find a family of spotting methods which work with a sequential ac-
cess to the symbol descriptors, i.e., the descriptors are stored in a list or a similar
sequential data structure. In those methods, regions of interest where the symbols
are likely to be found are extracted by some means. A symbol descriptor for each
of these regions of interest is computed afterwards. When the user wants to retrieve
the zones of the image collection having similar description as the queried symbol,
the one-to-one matching has to be computed in a sequential way. The complexity
of searching similar descriptors by using data structures with sequential access is
O(N), with N being the number of segmented regions of interest for the entire col-
lection. Even if the use of sequential structures has several important drawbacks, it
is the most used approach in the literature dealing with symbol spotting.

As application examples we can mention the work by Tabbone et al. [83] where
an algorithm of text/graphics separation is applied in order to separate symbols from
the text and the background of technical documents. Each connected component
is represented by a photometric descriptor computed over the area defined by the
bounding box of the connected component. Subsequently, each descriptor is se-
quentially compared against all the model descriptors and if the distance between
two descriptors is small enough, the interest region is labeled as containing a certain
symbol. Such approaches are obviously very dependent on the segmentation phase.

To avoid the dependence on a prior segmentation method, some approaches as
[64] or [20] use a grid partition of the document or a sliding window approach to
compute the descriptors all over the documents. As in the previous method, each
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descriptor arising from a window is sequentially compared against all the model
descriptors. If the descriptor matches one of the model’s description, the window is
labeled as containing a certain symbol. In those cases, the number of descriptors to
compute and the number of distances among descriptors are dramatically increased.

The spotting methodologies which use a sequential access to the descriptors
present several drawbacks. On the one hand, the access to the descriptors is not
efficient, leading to an exponential search when all the combinations of descriptors
have to be tested. On the other hand, they are hardly scalable to a large number of
documents to consider or a larger number of symbol models.

2.4.2 Hierarchical Organization

In order to provide a more efficient search by similarity in the description space, we
can find a number of methods which work with a hierarchical representation of de-
scriptors. These methods use data structures such as trees, dendrograms, lattices or
graphs. Hierarchical data structures are based on the principle of recursive decom-
position. They are attractive because they are compact and depending on the nature
of the data they save space as well as time and also facilitate operations such as
search. The search by similarity is done by a traversal of the data structure that usu-
ally can be done in logarithmic time with respect of the number of clusters involved
in the structure.

Decades of research in the data mining field have resulted in a great variety of hi-
erarchical data structures that are suitable for retrieval by similarity. The interested
reader is referred to Gaede and Günther’s [27] comprehensive survey on multidi-
mensional access methods. As examples, we can, for instance, cite the K–D–B-
trees [73] which partition the universe and associate disjoint subspaces with tree
nodes in the same level. The LSD-trees [31] guarantee that the produced data struc-
ture is in addition a balanced tree, being much more efficient in the traversal step.

As application examples we can mention Lowe’s work [54] which uses a k-D
tree structure [11] to organize the instances of the SIFT descriptor. In their work,
Berretti et al. [12] divide contour primitives into diverse tokens which are subse-
quently stored in an M-tree indexing structure [19]. We can see an example of the
obtained M-tree structure in Fig. 2.10. From another point of view, Punitha and
Guru [69] use a B-tree [7] to represent the spatial organization of previously recog-
nized primitives.

Within the symbol recognition field, we can, for instance, cite the work of Zuwala
and Tabbone [104] who use a dendrogram to hierarchically represent the primitives
which compound the graphical symbols present in technical documents. The den-
drograms are tree structures which are used to illustrate the arrangement of the clus-
ters produced by a clustering algorithm. Following a similar idea, Guillas et al. [29]
use a concept lattice to hierarchically organize symbol descriptors. The navigation
of the concept lattice is done in a similar way as for a decision tree.

Finally, graphs can also be used to store information and provide some kind of
hierarchical organization of data. For example, in [96] graphs representing symbols
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Fig. 2.10 Hierarchical organization of descriptors by using an M-tree structure. Traversing the
structure allows a nearest neighbor search in logarithmic time (this image is based on Fig. 11
appearing in [12])

are reduced to a spanning tree which is posteriorly traversed to identify symbols
within technical documents. Messmer and Bunke [60] propose to build a network of
common subgraph patterns. This network is then traversed by applying graph iso-
morphisms. Ah-Soon and Tombre [2] propose building a graph of geometric con-
straints which are then used to recognize symbols appearing in line-drawings.

Structures for hierarchical organization of information based on the principle of
recursive decomposition can be very useful for the specific application of symbol
spotting. Thousands of feature vectors may arise from the documents, and in the
querying step a similarity search has to be done in an efficient way. However, trees
can grow arbitrarily deep or wide, and usually the efficiency of the traversal step is
very dependent on the tree topology. Balancing algorithms can be applied to main-
tain the structure usability, but they are very costly to apply.

2.4.3 Prototype-Based Search

Another kind of techniques conceived to avoid brute-force matching are based on a
prototype-based search. Although this kind of approach is not very common in the
data mining field, in the particular case of pattern recognition it has been used in
several applications to provide efficient access to clusters of patterns by similarity.
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In prototype-based search, we are given a set of distorted samples of the same
pattern and want to infer a representative model. In this context, the median concept
turns out to be very useful. Given a set of similar patterns, a representative of this set
having the smallest sum of distances to all the patterns in the set can be computed.
If we want to retrieve similar patterns to a certain query, by using a prototype-
based search the retrieval by similarity is done efficiently since only the distances
between the query pattern and the representative of a cluster of similar patterns
have to computed. Avoiding a brute-force distance computation allows a fast pattern
retrieval by similarity.

The computation of the median of a given set is straightforward when the feature
vectors used as descriptors are numeric; however, it is more complex to extend this
concept to the symbolic domain. In the literature, we can find several approaches
to compute the median of a set of symbolic representations. Recently, Ferrer et al.
[22, 23] presented a method to compute the median of a set of graphs. Jiang et al.
[37] review the possible applications of the median graphs. Obviously, due to the
extreme cost of computing the matching between graphs, prototype-based search
implementations are very efficient methods to provide access to the information.

2.4.4 Hashing Approaches

Finally, another widely used data structure is the lookup table to access the informa-
tion immediately without any structure traversal step. For instance, grid files [67] are
a bucket method which superposes a n-dimensional grid on the universe, and a di-
rectory (built with the definition of a hash function) associates cells with bucket’s in-
dices. When using hashing techniques, the search operations can theoretically reach
O(1) time with well chosen values and hashes. To perform a search by similarity by
using such structures, the hash function must be seen as a clustering function which
can assign the same index to similar shapes.

Multidimensional hashing methods partition the space into hypercubes of known
size and group all the records contained in the same hypercube into a bucket. To
identify the bucket to which a certain query belongs, the index of the query is auto-
matically computed using a hash function (performing one-dimensional partitions)
and the resulting bucket is obtained. In the specific case of shape retrieval, given
a primitive, a feature vector is computed using one of the presented descriptors.
A hash function establishes quantization criteria to apply to each dimension of the
feature vector to limit the index parameters to a finite number of discrete values.

Califano and Mohan [16] use a lookup table mechanism to replace the runtime
computation of one-to-one matching with a simpler lookup operation. The speed
gain can be significant since retrieving a value from this structure is faster than
traversing a tree structure, and much faster than a sequential comparison. Stein
and Medioni [79] propose a similar approach to retrieve by similarity subparts of
a shape. The subparts comprising a shape are encoded by a hash function resulting
in the bucket index of the indexing structure. The same hash function is applied in
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the querying step, and all the instances of similar primitives stored in the bucket
identified by the resulting index are retrieved.

Kumar et al. [44] present a word spotting method based on a locality sensitive
hashing indexing structure. This particular indexing structure aims at efficiently per-
forming an approximated nearest neighbor search by computing multiple hashes.
Word images are efficiently retrieved from a large database.

Another classical example of the use of such structures is the geometric hash-
ing method introduced by Lamdan and Wolfson in [46]. The geometric hashing
approach is applied to match geometric features against a database of such fea-
tures. Geometric hashing encodes the model information in a pre-processing step
and stores it in a hash table. During the recognition phase, the method accesses the
previously constructed hash table, indexing the geometric features extracted from
the scene for matching with candidate models. By using the geometric hashing, the
search of all models and their features is obviated. The simplest features one can
use are the coordinates of points forming a shape. Normalizing the shape scaling,
rotating and translating it, taking as basis a reference vector, will give the position
of hash table bins to store the shape entry. The major disadvantage of the method
is that the same subset has to be chosen for the model image as for the previously
acquired images.

In the data mining field, the main drawback of hashing techniques are the colli-
sions. Given two different entries to store in the database, the database system has to
guarantee that the hash functions used to index such entries do not assign the same
key-index to them. If such thing happens, it would provoke the data to be lost. To
overcome this problem, expensive re-hashing algorithms have to be applied once a
collision is detected. In the specific case of shape retrieval by similarity, collisions
are not a problem but rather the basis of the indexing strategy. Given two similar
(but not equal) primitives, they are represented by a compact feature vector. Hope-
fully, if the two primitives have similar shapes, the two feature vectors will be two
nearby points in an n-dimensional space. The hash function has to guarantee that
both points fall into the same bucket to have all the similar primitives stored in a
single entry.

2.4.5 Spatial Access Methods

So far, we have only focused on the point access methods, i.e., indexing structures
which can only handle information represented by n-dimensional points. However,
another family of indexing structures exists, designed to manage polygons and high
dimensional polyhedra, which is named the spatial access methods.

Point access methods cannot be directly applicable to databases containing ob-
jects with spatial extension. Spatial data consists of objects made up of points, lines,
regions, rectangles, surfaces, volumes, etc. The spatial access methods can be seen
as a joint shape description and feature organization. The spatial access methods can
handle such data and are finding increasing use in applications in urban planning,
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Fig. 2.11 Quadtree representation of a shape. (a) Sample region; (b) its maximal blocks from the
array representation; (c) its quadtree representation (this image is based on Fig. 1 appearing in [75])

geographic information systems (GIS), etc. The interested reader is referred to the
book on spatial access methods by Samet [76].

In the spatial access methods class, we can find the quadtree structures, illus-
trated in Fig. 2.11, which divide a two-dimensional space by recursively partition-
ing it into four quadrants or regions. The R-trees [30] which represents a hierarchy
of nested n-dimensional intervals store minimum bounding boxes in leaf nodes. An
improved structure are the R∗-trees [8], which try to minimize the overlap between
bucket regions, minimize the perimeter of the leaf regions and maximize the stor-
age utilization. SS-trees [97] use spheres instead of rectangular regions, SR-trees
[38] combine both R∗-trees and SS-trees and store the intersection between spheres
and rectangles. Finally, P -trees [36] manage polygon-shape containers instead of
intervals.
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Even if such data structures may be very helpful in the context of symbol spot-
ting, our study is focused on the use of symbol descriptors as a basis for data rep-
resentation. In this book, we will only focus on the use of point access methods to
organize feature vectors describing graphic objects.

2.4.6 Curse of Dimensionality

The curse of dimensionality is a term coined by Bellman [9] to describe the problem
caused by the addition of extra dimensions to a space which provokes an exponential
increase in volume. This volume increase usually results in a performance degrada-
tion. Weber et al. [95] argue that indexing techniques reduce to sequential search for
ten or more dimensions. However, in the case of symbol spotting, it is difficult that
we suffer from this problem.

The study by Korn et al. [43] showed that the feeling that the nearest neighbor
search in high dimensional spaces is hopeless, due to the curse of dimensional-
ity, may be overpessimistic. Real data sets disobey the assumption that the data
is uniformly distributed since they typically are skewed and exhibit intrinsic di-
mensionalities that are much lower than their embedding dimension due to subtle
dependencies between attributes.

In addition, for spotting purposes high-dimensional descriptors are not the best
suited. Usually, high-dimensional descriptors are more robust to noise and trans-
forms and are more reliable than simpler ones. Obviously, in the case of isolated
symbol recognition, it is desirable to have this robustness and accuracy despite
the volume explosion. However, in the case of symbol spotting, we are more in-
terested in the efficiency of the retrieval by similarity step than the final accuracy
of the recognition task. Usually compact representations are best suited for spotting
purposes despite the discriminative power loss. Therefore, for spotting applications
low-dimensional descriptors are usually chosen.

2.5 Hypotheses Validation

In the retrieval stage, the result of the traversal of the data structure is a set of prim-
itives similar to the ones which compound the searched symbol. The document lo-
cations accumulating several primitives are hypothetic locations where it is likely
to find the symbol under a certain pose. These hypotheses have to be validated in a
final phase of the retrieval process.

We can find two different approaches to face the hypotheses validation prob-
lem. The first one focuses on the feature vectors arising from the description phase
and whether these descriptors can or cannot be of the correct symbol. On the other
hand, there are several other approaches which focus on geometric and spatial rela-
tionships among primitives to finally validate if a zone is likely to contain a certain
symbol.
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The first family is usually focused on a statistical analysis of the features, whereas
the second family is based on a voting strategy and on the accumulation of little
evidences to solve the pose estimation problem.

2.5.1 Statistical Validation

One of the most common approaches to validate whether or not a zone contains a
symbol is based on the study of statistical measures with the help of a probabilis-
tic classifier. The features obtained by a symbol descriptor are seen as points in an
n-dimensional space, and the classifiers which are previously trained with a super-
vised learning step are able to identify the class which the symbols belong to. Within
this family of approaches, a lot of different classifiers are used for the problem of
classifying symbol instances. One of the most common approaches are the Bayesian
classifiers which, for instance, are used in [87] to recognize handwritten symbols.
The support vector machines (SVMs) are used in [32] to recognize sketched sym-
bols described by Zernike moments. The modeling of neural networks as classifiers
is another option; it was the method applied to musical symbol recognition presented
in [80].

From another point of view, there are some other validation methods which are
based on the bag-of-words (BoW) model. These approaches use a frequency vector
of features to decide whether or not a region can contain a symbol. The principle of
the bag-of-words model relies on a document representation as a vector of features
where each feature has an assigned frequency. Bag-of-words approaches have been
used over the years for text document classification as, for instance, in [3], but the
analogy to the bag-of-visual-words can be derived to classify images as in [78]. The
approaches based on bag-of-words models have the advantage that the hypotheses
validation is done without any spatial information, being very simple to implement
and quick to use. In [6], Barbu et al. present a method which applies the bag-of-
words model to the symbol recognition problem. However, instead of building the
vocabulary from a photometric description of the symbols, they propose a bag-of-
graphs model where structural descriptors act as words.

Although high recognition rates can be obtained with statistical validation, the
main drawback these approaches present is that they are dependent on a learning
stage. In order to have good performance, we need a lot of training samples to feed
the classifier. In the particular case of symbol spotting, we cannot use such a priori
knowledge nor have an immense sample set of every symbol we want to query. Since
spotting approaches are intended to be queried by example, a statistical validation
for symbol spotting approaches is usually out of the question.

2.5.2 Voting Strategies and Alignment

On the other hand, there exist other validation approaches which do not focus on
the features arising from the description phase, but rather on testing if the spatial
organization of features in a certain location agrees with the expected topology.
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Usually, these approaches are focused on some kind of voting strategy as the
generalized Hough transform (GHT) presented by Ballard in [5]. The problem of
finding a query object inside an image is transformed into the problem of identifying
accumulation points in a parameter space. A transformation function maps spatially
sparse shapes in the image space to compact regions in the parameter space. The
parameter space is divided into buckets. Then, every query descriptor votes in this
space according to transformations provided from the matchings with the database
descriptors. A high density of votes in a bucket indicates a high probability of detect-
ing the object with its corresponding transformations. For example, in [47], Lamiroy
and Gros extended the geometric hashing method with a Hough-like voting strategy
to validate the hypotheses in an object recognition application.

Depending on the nature of the symbols to retrieve, the hypotheses validation
can be seen as a registration problem. Some approaches validate the coherence of
the symbol retrieval using geometric alignment techniques that put in correspon-
dence the original information of the query symbol with the information of the re-
trieved zones of interest. Some affine transformations can be inferred to align the
information of the model object and the retrieved results. Classical techniques use
spatial distance between the contours of both images, but other characteristics such
as the gradient information can be used as shown in [35]. Other techniques such as
B-splines or snakes can also be used for elastic shape matching as in the approach
presented by Del Bimbo and Pala in [13]. However, these alignment techniques
based on deformable template matching are hardly applicable to symbols where the
extracted primitives are not their contour.

2.6 Conclusions and Discussion

In order to summarize this state-of-the-art chapter, let us recall the most suitable
methods to apply to the symbol spotting problem in each of the three levels.

Regarding the description phase, we should select one of the photometric de-
scriptors if our application has to deal with complex symbols such as logos which
may have information in several visual cues such as color, shape, texture, etc. since
the descriptors from this family have the ability to encode all this information. For
simpler symbol designs, as the ones appearing in line-drawings, geometric descrip-
tors are the most suitable methods to compactly represent the primitives’ shape. We
should carefully select the appropriate descriptor depending on whether the symbols
can be represented in an accurate fashion by a single primitive as the contour or, on
the other hand, if we need several primitives to describe a single symbol instance.
Finally, syntactic and structural descriptors are a powerful tool in the context of
symbol description, but present some drawbacks in the context of symbol spotting.
Syntactic approaches are very sensitive to noise and need a definition of the rule set,
which is a strong burden for the approach flexibility. Structural techniques should
be carefully applied due to the strong time constraints which spotting approaches
have to face.
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Another factor which is important to take into account is that for spotting pur-
poses it is not essential to look for the descriptor which provides the more accurate
description and the best recognition results. Usually, a simpler description able to
coarsely discriminate symbols would be a better choice than a complex descriptor
with high accuracy.

Once a suitable description technique has been chosen, we have to think how we
should organize all the information arising from the document collection to provide
an efficient search access. Obviously, the approaches which follow a sequential ac-
cess of the descriptors are simple to design, but their application to large databases
is not realistic. Indexing mechanisms, whether from the hierarchical category or the
hashing techniques, should be adopted to access the data. We believe that in the par-
ticular case of spotting, hashing techniques are a better choice since we avoid traver-
sal steps and costly balancing algorithms. However, a comparative study should be
further described in order to really determine which are the strengths and the weak-
nesses of both approaches in this application.

We strongly believe that the use of low-dimensional descriptors is highly recom-
mended in spotting applications in order to avoid the curse of dimensionality. As we
previously mentioned, the use of simpler descriptors will cause an accuracy loss and
an increase of false positives; however, these two phenomena are not a limitation in
the case of spotting since high recognition rates are not needed.

Finally, regarding the hypotheses validation step, our feeling is that voting strate-
gies are more recommendable than statistical validation schemes for a spotting ap-
plication. Voting strategies do not need a learning stage which is an advantage for
scalability reasons. In addition, some voting schemes such as the Hough transform
or some works inspired by the geometric hashing are formulated in terms of spa-
tial organization of primitives. The use of a geometric descriptor and such voting
schemes provides a combined geometrical definition and structural validation.
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Chapter 3
Symbol Spotting for Document Categorization

Abstract In this chapter, we present a method for spotting symbols in document
images by using a photometric description of symbols. As a running example we
present an application of logo spotting. The presented method uses a bag-of-words
model in order to perform a categorization of document images such as invoices or
receipts. The hypotheses validation is done in terms of spatial coherence by the use
of a Hough-like voting scheme. Experiments which demonstrate the effectiveness
of this system on a large set of real data are presented at the end of the chapter.

3.1 Introduction and Related Work

The problem of locating symbols within document images can be seen as a partic-
ular case of the object recognition problem from the Computer Vision field. In this
first part of this book, we want to test if some well-known techniques from the ob-
ject recognition field can be applied to the specific case of symbol spotting. Instead
of a focused retrieval application, we propose an application of detecting logos in
document images such as invoices, receipts, etc. for document categorization.

Companies deal with large amounts of paper documents in daily workflows. In-
coming mail is received and has to be forwarded to the correspondent addressee.
A study on the invoice processing in several German companies [6] revealed that on
average the cost of manually processing (opening, sorting, internal delivering, data
typing, archiving) these incoming documents is about 9€ per invoice. These costs
represent a substantial amount of money if we consider the number of documents
received by a big company at the end of the day.

Several systems intended to automatically process incoming documents have
been designed over the years. As an example, Viola et al. [16] presented a sys-
tem to automatically enroute incoming faxes to the correspondent recipient. How-
ever, most of the existing systems only process typewritten information, making
the assumption that the recipient information is printed in the document image. In
many cases, graphic elements present in the documents convey a lot of important
information. For instance, if a company receives a document containing the logo
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of a bank, usually this document should be forwarded to the accounting depart-
ment, whereas if the document contains the logo of a computer supplier, it is quite
probable that the document should be addressed to the IT department. The cate-
gorization of documents may also have other applications besides the automatic
rerouting. For instance, it is helpful in organizing documents and providing effi-
cient access to all the documents coming from a certain supplier. The recognition
of such graphic elements can help introduce contextual information to overcome
the semantic gap between the simple recognition of characters and the derived ac-
tions to perform brought by the document understanding. In this chapter, we use
the presence of graphical symbols (logos) to categorize the class of the incoming
documents.

Many contributions exist in the Graphics Recognition literature that deal with
logo recognition and retrieval, e.g., the recent work on trademark recognition from
Wei et al. [17]. However, they just focus on isolated or pre-segmented graphic
images which are affected by synthetic noise and deformation sources. As noted
in [15], one of the big challenges for the next years for the Graphics Recognition
community is the localization/recognition of graphic symbols appearing in com-
plete documents without any previous segmentation. To the best of our knowledge,
in the literature, only Zhu and Doerman [18, 19] addressed the problem of logo
spotting by means of a cascade of classifiers. In this chapter, we propose a method
to categorize documents and to detect graphical logos in a single step. The main
contribution of this chapter is the use of well-known strategies of the Computer Vi-
sion field to this particular kind of images. State-of-the-art photometric descriptors
are used to characterize graphical symbols and a bag-of-visual-words approach is
presented to categorize the documents. Such approaches are commonly used in ob-
ject recognition (see, e.g., [14]) and image classification applications. To the best
of our knowledge, very few works have been proposed in the literature using such
descriptors to the domain of document images. Due to the binary nature of the doc-
ument images, usually, photometric descriptors are not well suited for document
analysis applications. However, the fact that the recently proposed descriptors work
at several scales and blur the image makes its use on binary images possible. The
bag-of-visual-words is an analogy to the Computer Vision domain of the classic
bag-of-words model where a text is represented by an unordered set of words. In
that case, an image is represented by a collection of image patches. By the com-
bination of photometric descriptors and a bag-of-visual-words model, we propose
a segmentation-free recognition method which does not rely on a learning step but
uses a single instance of logo models so as to benefit the scalability of the method.

The presented application, however, differs a little from the main objective of
this book. By means of spotting graphical elements, we want to build an index-
ing mechanism to query a large collection of documents and perform focused re-
trieval tasks. Whereas object recognition methods rely on an off-line learning of
the models to search for, indexing methods should be queried by example with-
out any training step. Object recognition methods have an off-line stage where a
classifier is trained with several examples of the features extracted from the mod-
els to recognize and, usually, a set of negative examples to be considered as non-
objects. Once the classifier is trained, the images are given as input of the system,
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and the regions of interest of this image, where any of the trained models appear,
are retrieved. On the other hand, indexing mechanisms have also an off-line step
in which the documents are acquired and some features are extracted and orga-
nized, but the input of the system is one single instance of the model to retrieve.
The main difference of such applications stems for the training stage and the nature
of the input, even if both applications can perform spotting and focused retrieval
tasks.

The remainder of this chapter is structured as follows. The next section presents
an overview of the proposed method. In Sect. 3.3, we detail the detection proce-
dure from the feature extraction to the bag-of-words model used to categorize the
documents. Section 3.4 focuses on the addition of a set of spatial coherence rules
which aim to refine the results and, moreover, to perform logo spotting in addition
to the categorization. Section 3.5 presents the experimental setup by using a large
set of real documents. Finally, the conclusions and a short discussion can be found
in Sect. 3.6.

3.2 Outline of the Approach

Our document categorization method is based on the presence of graphical logos in
the incoming documents. This application is like a particular case of the problem
of object recognition but has certain particularities. First of all, the documents are
in binary format and are affected by the noise arising from the different acquisi-
tion systems. Since photometric descriptors are used to process gray-level (or even
color) images, usually when trying to codify a binary images, we obtain poorly dis-
criminative feature vectors. This may cause the number of false alarms to increase.
Secondly, object recognition methods usually rely on a costly learning stage where a
classifier is trained with multiple instances of the objects to recognize. In our appli-
cation, in order to benefit the scalability of the method, no learning stage is involved,
and a single instance of the logos to locate is needed. Generally speaking, the pre-
sented method has a structure like the one proposed by Sivic et al. in [14], where
a bag-of-words model is translated to the visual domain by the use of photometric
descriptors over the interest points.

We can see an overview of the presented method in Fig. 3.1. The extracted local
features from a document are matched against the codeword dictionary and an ac-
cumulator is used in order to decide which category the queried document belongs
to. In the next sections, we will further detail the following steps.

3.3 Document Categorization by Logo Detection

The document categorization and the logo detection is performed by using a bag-
of-words model of visual words. These visual words are defined in terms of local
features extracted from a photometric descriptor. Let us first detail how these fea-
tures are extracted and computed, and then focus on the bag-of-words model.
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Fig. 3.1 Overview of the
proposed document
categorization method

3.3.1 Feature Extraction and Description

Our method is inspired by the work of Bagdanov et al. presented in [1], focused
on the recognition of trademarks in real images. In that work, the authors use SIFT
features to match trademark models against video frames. We use a similar match-
ing approach, whereas our aim is to categorize and to use several different logos
as models. Logos are represented by a photometric descriptor applied to a set of
previously extracted key points.

3.3.1.1 Interest Point Detection: Harris–Laplace Detector

The interest points are detected by using the Harris–Laplace detector presented by
Mikolajczyk and Schmid in [10]. This algorithm extracts points with high curva-
tures (e.g., corners or junctions) and automatically selects the scale of the region
where the photometric descriptor is to be computed. Let us briefly review how this
detection algorithm works.

The corner detector proposed by Harris and Stephens in [4] is based on the sec-
ond moment matrix. This matrix is then adapted to scale changes to make it indepen-
dent of the image resolution. The scale-adapted second moment matrix is defined
by:

μ(x, σI , σD) = σ 2
Dg(σI ) ×

[
L2

x(x, σD) LxLy(x, σD)

LxLy(x, σD) L2
y(x, σD)

]
, (3.1)

where La is the derivative computed in the a direction. The local derivatives are
computed with Gaussian kernels of size σD . The derivatives are then averaged in
the neighborhood of the point by smoothing with a Gaussian window of size σI .
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The Harris measure is then defined in terms of the trace and the determinant of this
second moment matrix as:

Mc = det
(
μ(x, σI , σD)

) − κ trace2
(
μ(x, σI , σD)

)
, (3.2)

where local maxima of Mc determine the location of interest points, with κ being
a tunable sensitivity parameter. The Harris–Laplace detector uses the scale-adapted
Harris function from (3.2) to localize points in scale-space. The scale-space repre-
sentation of the Harris function is built for pre-selected scales σn = ξnσ0 where ξ

is experimentally set to 1.4. The matrix μ(x, σn) is computed with the integration
scale σI = σn and the local scale σD = sσn with an experimentally set parameter
s = 0.7. For each point, an iterative algorithm that detects the location and the scale
of interest points is applied. The extrema over scale of the Laplacian-of-Gaussian,
(3.3) are used to select the scale of interest points by rejecting the points for which
the LoG response does not attain any extremum or which response is below a certain
threshold. ∣∣LoG(x, σn)

∣∣ = σ 2
n

∣∣Lxx(x, σn) + Lyy(x, σn)
∣∣. (3.3)

3.3.1.2 Interest Point Description: SIFT and Shape Context

After the interest points are detected in an image, a photometric descriptor has to be
applied to each region of interest defined by these key points. In our experiments, we
use and compare the performance of two different photometric descriptors. On the
one hand, we use the SIFT features and, on the other hand, we use the shape context
descriptor.1 As we will see in the experimental results section, each descriptor has
its own strengths and weaknesses. Both descriptors are computed with the code
provided by Mikolajczyk et al.2

SIFT descriptors, presented by Lowe in [7, 8], are computed for normalized im-
age patches arising from the key point detection stage. The descriptor is a histogram
of gradient locations and orientations. The locations are quantized into a 4 × 4 lo-
cation grid and the gradient angles are quantized into eight predefined orientations.
The resulting descriptor has 128 dimensions. Each orientation plane represents the
gradient magnitude corresponding to a given orientation. In order to obtain illu-
mination invariance, the descriptor is normalized by the square root of the sum of
squared components.

The shape context descriptor implementation, based on the original presented by
Belongie et al. in [2], is similar to the SIFT descriptor, but is based on edges. Shape
context is a histogram of edge point locations and orientations. Edges are extracted

1Note that in Chap. 2 we classified the shape context descriptor as a geometric descriptor since it
copes with spatial arrangement of points. However, the enhancement of this descriptor proposed
by Mikolajczyk and Schmid in [11], which takes into account not only point locations but also
gradient magnitudes and orientations, allows this modified version to be considered as belonging
to the photometric class.
2See http://www.robots.ox.ac.uk/~vgg/research/affine/index.html.
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by the Canny detector. Location is quantized into nine bins of a log-polar coordi-
nate system and orientation quantized into four bins. A 36 dimensional descriptor is
therefore obtained. In addition, the point contribution to the histogram is weighted
with the gradient magnitude.

In the next section, we will see how we formally describe logos with the above
presented key point detection and description methods, and how similar logos can
be matched.

3.3.2 Logo Representation and Matching

A given logo Si is represented by its ni interest points extracted from the Harris–
Laplace detector. Each of these key points is then described by a feature vector
arising from a photometric descriptor. A logo instance is thus formally represented
as:

Si = {
(xk, yk, sk,Fk)

}
for k ∈ {1, . . . , ni}, (3.4)

where xk and yk are the x- and y-position, and sk the scale of the kth key point.
Fk corresponds to the photometric description of the region represented by the key
point. An individual key point k of the logo Si will be denoted as Sk

i . The same
notation applies when the key points and the description vectors are computed over
a complete document Dj . The matching between a key point from the complete
document and the ones of the logo model is computed by using the first two nearest
neighbors:

N1
(
Si,D

q
j

) = min
k

(Fq − Fk),

(3.5)
N2

(
Si,D

q
j

) = min
k �=N1(Si ,D

q
j )

(Fq − Fk).

Then the matching score is determined as the ratio between these two neighbors:

M
(
Si,D

q
j

) = N1(Si,D
q
j )

N2(Si,D
q
j )

. (3.6)

If the matching score M is lower than a certain threshold t this means that the
key point is representative enough to be considered. By setting a quite conservative
threshold (t = 0.6 in our experiments), we guarantee that the appearance of false
positives is minimized since only really relevant matches are considered. We can
appreciate an example of the feature extraction and matching between a model and
a document in Fig. 3.2. However, for categorization purposes, we cannot directly
apply this matching procedure between the query document and all the model logos
we consider. We use instead a bag-of-words model which has reached successful
results for topic categorization. Let us describe in the next section how we adapt
this model to the visual domain.
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Fig. 3.2 Matching logos in documents with the SIFT features. (a) SIFT features computed over
an isolated logo model; (b) feature matching between the model and the complete document

3.3.3 Bag-of-Visual-Words

The bag-of-visual-words is an analogy to the Computer Vision domain of the classic
bag-of-words model, where a text is represented by an unordered set of words. In
that case, an image is represented by a collection of image patches. In our particular
case, given a set of logo models considered as different categories, we extract all the
feature vectors F i

k from them. Each feature vector is associated with its correspond-
ing logo model Si . By joining all the feature vectors from all the logos, we obtain
the codeword dictionary W = [F 1

1 ,F 1
2 , . . . ,F i

k ]. This dictionary is computed off-
line from all the model logo database. Given a query document Dj , all the feature
vectors D

q
j are used as indexes and matched against the codewords of the dictio-

nary W . The matching function Mq returns the index i corresponding to the logo
class of the matched feature vector F i

k as follows:

Mq = {
i|M(

W,D
q
j

)
< t

}
. (3.7)

Finally, the determination of whether a document contains a logo is done by using
by accumulating hypotheses of document categories in a histogram H .

H [Mq ] = 0 at initialization,
(3.8)

H [Mq ] = H [Mq ] + 1 for q ∈ {1, . . . , nj }.
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In the original bag-of-words model, a given document is categorized in terms of
the frequency of appearance of certain words. For each document category, we have
a histogram of frequencies, and in order to determine which category an incoming
document belongs to, distances among its histogram and all the model histograms
must be computed. We face here a slightly different problem. If in a given document
we have several appearances of parts of a given logo, we shall consider that proba-
bly the document contains this logo. The document category is thus determined by
searching the maximum m of the accumulator H after normalizing each accumu-
lation cell with the total number ni of features of the corresponding logo k. If the
value of m is less than a threshold T , which has been experimentally set, we con-
sider that the document does not contain any logo and is categorized in a rejection
class.

3.4 Introducing Spatial Density for Logo Spotting

Whereas bag-of-words models have been very successful in the text domain, the
analogy to visual words for image categorization has an important drawback. Bag-
of-words models completely ignore the spatial relationship among features. Even if
this drawback in the text domain is overcome due to the important impact of few
keywords, in the image domain it is an important burden since the spatial layout
among features has similar importance as the feature description itself.

It has been shown that the spatial organization of photometric descriptors com-
puted from key points is a powerful tool to recognize objects in scenes and to index
images in terms of their contents as, for instance, the work of Mikolajczyk and
Schmid presented in [9] shows. In the document analysis field, Nakai et al. [12, 13]
introduced a method to retrieve document images acquired with a camera from a
large image database using the arrangement of invariants computed over extracted
feature points. The results are promising in terms of accuracy, time and scalability.

In order to overcome this drawback, we use a simple, yet effective voting scheme
to guarantee that the spatial organization of features maintains certain coherence by
introducing a density factor. Before contributing to the accumulator H , we get rid of
the all the feature points of the same category i that are isolated in space. A Hough-
like approach is used to transform the matched key points from the image domain to
a three-dimensional parameter space in order to cluster reliable model hypotheses
that agree upon a particular model pose. The three-dimensional parameter space is
built from the x- and y-locations of the matched key points and the third dimension i

which represents the logo class. This parameter space is quantized, and the problem
of finding coherent locations is transformed into the problem of finding maxima in
this parameter space. By this we mean that only clusters of key points which belong
to the same category and which are close in space are considered. As we can see in
Fig. 3.3, all the false alarms when matching key points are eliminated. The gray dots
are inconsistent hypotheses, and the black dots maintain a certain spatial coherence
and are taken as likely hypotheses. The bounding-boxes of likely hypotheses are
returned to the user as the zones of the document image where the logo should
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Fig. 3.3 Introducing spatial density information to spot logos. (a) Logo model; (b) parameter
space; (c) spotted region of interest

be found. The presented method, given that in a single step a document is able to
categorize it in a certain class and return the zones of the document which contain
the logo.

3.5 Experiments

To provide a realistic evaluation of the proposed method, we used a large docu-
ment collection. The collection consists of 1,000 real document images which were
sent by fax and then scanned. These images correspond to several kinds of docu-
ments such as invoices, letters, receipts, forms, etc. They contain both typewritten
and handwritten text. Graphical elements such as logos, stamps, tables, etc. are also
present in most of these documents. Typical dimensions of documents are about
2,500 × 3,500 pixels with varying resolutions. All the images were scanned in bi-
nary format by using the built-in thresholding method of the scanner. Ground-truth
of the entire collection was manually created identifying 18 different logo classes
appearing in nearly 180 images, the rest of document images do not contain any logo
and are used to test if the presented method is also able to reject these documents.
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3.5.1 Evaluation Methodology

We will base our performance evaluation on how well the categorization of the doc-
uments is done. The performance of categorization methods is usually evaluated by
confusion matrices to see if the systems under evaluation confuse two classes, mis-
labeling one as the other. In addition, the true positive rate (TPR) and false positive
rate (FPR) are used as evaluation measures in order to compare the performance
among different methods. These ratios are derived from the contingency table and
defined in terms of the amount of true positives (TP), false positives (FP), true neg-
atives (TN) and false negatives (FN):

TPR = TP

(TP + FN)
,

(3.9)
FPR = FP

(FP + TN)
.

The TPR ratio measures the effectiveness of the system in retrieving the relevant
items, whereas the FPR ratio measures the probability that a non-relevant document
is retrieved by the query. In our experiments, we use the TPR ratio to summarize
the correct categorization of documents containing a given logo. The FPR is used to
measure the number of documents that do not contain any logo which are incorrectly
identified as belonging to a certain class.

3.5.2 Performance Comparison

We can appreciate the obtained confusion matrices after running the whole experi-
mental categorization in Fig. 3.4. We can appreciate some differences between the
use of SIFT features and the shape context descriptor. For example, when using
shape context, a lot of documents are incorrectly classified as class 8 (shown in
row 8), or the documents corresponding to class 17 are usually misclassified in other
document categories (shown in column 17). These misclassifications lead the over-
all TPR shown in Table 3.1 to be lower when using the shape context descriptors
than when using SIFT features. On the other hand, when we test the documents that
do not contain any logo and should be categorized in the rejection class, the SIFT
features perform worse than the shape context descriptor, as the FPR of Table 3.1
shows. In addition, the computational complexity when using SIFT is higher due to
the highest number of dimensions of the feature vectors than when using the shape
context descriptor, resulting in a higher querying time.

In conclusion, the use of SIFT features should be preferred in applications where
it is important to correctly identify the incoming documents, no matter if false
alarms (documents which do not contain any logo) are present. On the other hand,
if for the intended application it is preferable to minimize the false alarms even if
we reject or misclassify some documents, or if we want a faster method, the shape
context descriptors should be considered.
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Fig. 3.4 Confusion matrices for the document categorization experiment. (a) Using SIFT features;
(b) using the shape context descriptor
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Table 3.1 Evaluation
measures for the document
categorization experiment

Descriptor TPR (%) FPR (%) Time (s)

SIFT 92.2 1 3.25

SC 81.6 0.3 1.34

3.6 Conclusions and Discussion

In this chapter, we have presented a method for spotting logos in document images
by using a photometric description of symbols. The use of a bag-of-words model
reformulated to manage feature vectors arising from photometric descriptors com-
bined with a Hough-like voting approach to guarantee the spatial and density coher-
ence aims at spotting logos inside the document image and, in addition, determining
the category of the queried document. The presented experiments demonstrate the
effectiveness of the method on a large set of real document images.

The presented application, although it can be understood as a symbol spotting ap-
plication, has been inspired by the characteristics of the object recognition methods
from the Computer Vision field. The spotting of logos by means of a bag-of-words
model applied to incoming documents is useful for categorization purposes, but not
for indexing or browsing of a large collection of documents. The main application
in the rest of this book is the focused retrieval in a collection of line-drawing images
rather than the object recognition.

In the following part of this book, we will focus on the use of geometric and
structural description techniques for the representation of graphical symbols rather
than photometric descriptors. Although photometric descriptors yield good recog-
nition results and can be used as a basis for symbol recognition and matching appli-
cations, they have several limitations in the context of spotting graphical symbols
from line-drawings.

The first conclusion that can come to our mind is that photometric descriptors
encode several visual cues at the same time, but the line-drawing images are usually
binary and the symbols appearing in them are usually made just from line segments.
Since the only discriminative visual cue to recognize such symbols is the shape,
it seems more natural to use a geometric or structural description to really cope
with the useful information. However, as we can appreciate in Fig. 3.5, the results
of matching line-drawn symbols by a photometric descriptor (the SIFT features in
this case) are not bad at all. We can notice nevertheless that for simpler symbol
designs (see Fig. 3.5b) very few key points are matched since the description is
not discriminative enough. This factor can be problematic when the images in the
collection are affected by some noise, and the symbol can be completely lost if these
few key points cannot be matched against the model. The main factor provoking
the discriminative power loss is that, in the case of line-drawings, the presence of a
corner or a junction is not so relevant as in the case of real images (or the logos in the
document analysis context). The information conveyed by the gradient magnitudes
and orientations is not really discriminant in this particular context.

In addition, there is another limitation to the use of photometric descriptors in
the context of spotting symbols for indexing a large collection of line-drawings.
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Fig. 3.5 Matching symbols in line-drawings with the SIFT features

Usually, photometric descriptors tend to be high-dimensional. The SIFT descriptor
has 128 dimensions, whereas the adaptation of the shape context descriptor has 36
dimensions. This high-dimensionality helps to be discriminant enough to recognize
objects in real images, but hinders the possibility of building indices over the high-
dimensional description space. Even if Califano and Mohan claim in [3] that multi-
dimensional indexing performs better than when using smaller spaces, the curse of
dimensionality affects such high-dimensional spaces. In order to reduce the impact
of the curse of dimensionally when trying to index such descriptors, a dimension re-
duction step such as PCA proposed by Ke and Sukthankar in [5] should be studied.
Since geometric and structural description techniques are based on a prior primitive
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extraction, they tend to have lower dimensionalities than photometric descriptors
which work at pixel level.

In the next part of this book, we will see three different approaches for symbol
spotting in line-drawings which are based on a geometric and structural description
of the symbols.
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Part III
On the Use of Geometric and Structural

Constraints for Symbol Spotting



Chapter 4
Vectorial Signatures for Symbol Recognition
and Spotting

Abstract In this chapter, we present a method to determine which symbols are
probable to be found in technical drawings by the use of vectorial signatures as
symbol descriptors. The proposed signature model is formulated in terms of ge-
ometric and structural constraints among segments, such as parallelisms, straight
angles, etc. After representing vectorized line drawings with attributed graphs, our
approach works with a multi-scale representation of these graphs, retrieving the fea-
tures that are expressive enough to create the signature.

4.1 Introduction and Related Work

Since in the context of recognizing and locating graphical symbols from line-
drawing images, the most important visual cue to describe graphical elements is
the shape, a geometric and structural description of primitives seems the most natu-
ral choice. In order to apply such description techniques, a primitive extraction step
is needed. Graphical symbols are broken down into lower level graphical primitives
such as contours, loops, connected components, skeletons, etc. In the field of symbol
discrimination, the approach which has probably gained most attention is the use of
vectorial signatures as the description technique to represent the graphical symbols.
Vectorial signatures are geometric symbol descriptors which compactly encode the
symbol in terms of particular geometric constraints among line primitives. The total
amount of occurrences of each constrain forms the final signature. In order to com-
pute the descriptors, the images must be processed in order to be broken down into
segments by the use of a raster-to-vector conversion algorithm. Since spotting tech-
niques are intended to coarsely recognize symbols, these particular descriptors are
conceived as being very compact and having enough discriminative power at least
to identify most of the zones of interest of a document image where a given symbol
is likely to appear. Let us briefly overview the related work on the use of signatures
for symbol description and focused retrieval.

One of the first vector-based signatures has been proposed by Ventura and Schet-
tini in [13]. In their work, the authors propose a signature for recognizing sym-
bols from the architectural and electronic fields. First, line-drawing images are
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DOI 10.1007/978-1-84996-208-7_4, © Springer-Verlag London Limited 2010
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pre-processed by a thin/thick line separation algorithm, and then the thin lines are
polygonally approximated by straight segments. From the segments composing a
symbol, they extract a number of geometric features such as the number of seg-
ments intersecting in one point, the angles among these segments, their lengths, etc.
Thick structures are described by their area, orientation and second order geometric
moments. All these features are combined to create the signature describing the vec-
torized symbols. In order to make the signature more reliable, two values are added
to each feature: a tolerance threshold and a weight. In the recognition step, the sig-
nature of the symbol to recognize is compared with all the model signatures. The
distance among features is computed dependent on the tolerance threshold and nor-
malized by the corresponding weight. A global threshold finally determines whether
the query symbol matches a certain model. Results show efficient recognition, but
this approach has the strong limitation that it has been conceived just to recognize
isolated or pre-segmented graphical symbols.

Recently, Zhang and Wenyin [15] presented another model of vectorial signature
for symbol description. Starting from the assumption that the symbols are in vec-
torial forms, primitive-pair relationships are recorded and employed to create the
signature which is subsequently used as descriptor. Besides the basic relationships
among segments, the authors propose a set of measures in order to describe sev-
eral relationships among primitives having different nature, i.e., relationships among
segments and arcs, segments and circles, etc. The proposed descriptor, however, can
also only be used to recognize isolated symbols.

Usually, in order to have a powerful representation of the vectorial symbols to
easily compute the signatures, an attributed graph is used. We can find several ex-
amples in the literature. Coustaty et al. [2] and Qureshi et al. [9] use a graph repre-
sentation of the symbols. At the nodes of the graph, primitives are stored, and edges
encode a certain geometric relationship among pairs of primitives. The use of the ad-
jacency matrix of the attributed graph as descriptor has been widely used. However,
despite the representative power of this structure, the proposed signatures are only
tested in a symbol recognition framework working with pre-segmented instances of
the graphic elements to recognize.

Inspired by the work of Ventura and Schettini and using some of the geomet-
ric features conceived to describe line-patterns presented by Etemadi et al. in [4],
Dosch and Lladós [3] proposed another signature model. In addition to the descrip-
tion itself, the authors proposed a windowing methodology in order to be able to
discriminate the regions of interest within a line-drawing where a given symbol is
likely to be found. The signature of a graphic element is defined as a set of elemen-
tary features, containing intrinsically a discrimination potential. The method starts
by a study on basic relationship between pairs of lines. Several main relations are
thus enumerated: collinearity, parallelism and intersections. For each of these rela-
tions, some extensions are considered, like overlapping for parallelism, or the kind
of intersection point. The number and the type of the relations found in a particular
zone will form the signature. The zones of interest are built from a decomposition of
the image in several non-overlapping tiles. The graphical primitives are then stored
in these buckets, and relationships are only computed between the primitives of
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a bucket and the primitives of its neighboring buckets. The results show that this
simple implementation can discriminate the learned symbols. A lot of false alarms
are present, however, especially with symbols not contained in the library. Symbols
containing arcs often lead to some non-relevant signatures. But the main drawback
is the fixed bucket partition of the image that makes the method not really scale
invariant and causes a lack of flexibility.

Besides the fact that most of the approaches of vectorial signatures are focused on
the application of symbol recognition and not on symbol spotting, we find that most
of these approaches present another important drawback. Since vectorial signatures
describe symbols in terms of geometric and structural constraints among sets of
primitives, the inclusion of errors in the process of primitive extraction may provoke
large variations in the signature, thus entailing a severe loss of discriminative power.
We propose a signature model inspired in the work of Huang [5], where the main
primitives describing a symbol are not just straight segments but are more complex
sub-shapes composing a symbol. Inspired on the work of Dosch and Lladós [3], we
also propose a window-based methodology allowing to compute different signatures
within the whole graphic document, permitting to locate symbols appearing within
a complete document image.

The remainder of this chapter is structured as follows. The next section presents
the pre-processing step to transform from the raw images acquired with the scan-
ner to a vectorial format by introducing some state-of-the-art methods we use to
achieve a raster-to-vector conversion. In Sect. 4.3, our vectorial signature model
is presented. Subsequently, in Sect. 4.4, we define the window-based methodology
which allows the computation of signatures within complete graphic documents.
Section 4.5 presents the experimental results. Finally, the conclusions and a short
discussion can be found in Sect. 4.6.

4.2 Pre-processing Step: Raster-to-Vector Conversion

In Part III of this book, we focus on the particular application of spotting symbols
in line-drawings by means of geometric and structural description techniques. Both
description families work with primitives such as line-segments, arcs, etc.; thus,
they need a prior step of conversion from the raw image to the primitive domain.
In this section, we present the pre-processing algorithms we use to convert the raw
images to the vectorial format. Basically, we follow three steps. First, gray-scale
images are denoised and binarized. In a second step, the skeletons of the foreground
components are extracted. Finally, these skeletons are polygonally approximated.

Two different approaches to reach a raster-to-vector conversion can be found in
the literature. Some methods are based on the combination of a skeletonization al-
gorithm, followed by some kind of polygonal approximation. On the other hand,
there exists another family of approaches which are not based on a recursive thin-
ning but on contour following. These algorithms do not compute the skeleton but
extract paths which are equidistant from contour lines, and approximate two parallel
contour lines by segments. Although both families have their advantages and draw-
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backs, we decided to use a skeleton-based vectorization. The interested reader can
find a review of the most suitable methods to build a raster-to-vector system in [11].

In this book, we work with the QGAR1 implementation of the raster-to-vector
conversion. In the QGAR library, the raster-to-vector conversion is based on Trier
and Taxt’s binarization, the (3,4)-Distance Transform skeletonization, and Rosin
and West’s polygonal approximation algorithm. In the following subsections, we
review these three methods.

4.2.1 Document Binarization

First, grayscale images should be denoised using simple operations based on mor-
phological operations. When working with scanned documents, the inherent noise
and distortions such as warping, paper folds, paper stains, etc. arising from these
processes have to be faced. The interested reader is referred to Loce and Dougherty’s
review [6] of some simple existing techniques for digital acquired document en-
hancement and restoration.

After the document beautification stage, the graysacle line-drawing images
should be transformed into binary format. A lot of well-known binarization methods
exist, the interested reader is referred to the recent benchmarking study of binariza-
tion methods of Ntirogiannis et al. [8]. We chose to use the approach of Trier and
Taxt [12]. This binarization method was conceived to treat document images and
yields good results. The interested reader can find a recent comparative study on the
performance of different binarization techniques in [8].

Trier and Taxt’s method is based on the method by White and Rohrer [14] where
a gradient-like operator is used to achieve a three level label image. Pixels with ac-
tivity below a manually set threshold TA are labeled ‘0’. Then if the Laplacian edge
operator of the pixel is positive, the pixel is labeled ‘+’, otherwise ‘−’. The idea is
that in a sequence of labels, edges are identified as ‘−+’ or ‘+−’ transitions and
object pixels are assumed to be ‘+’ and ‘0’ labels between a ‘−+’ and ‘+−’ pairs.

Trier and Taxt improved this method by three modifications. First, by smoothing
the input image with a 5× 5 mean filter in order to remove some noise. Then a print
pixel identification is done in order to delete the false positives corresponding to
noise blobs that are still present in the background area. The constraint of the orig-
inal method, namely that ‘+’ marked regions should be surrounded by ‘−’ pixels
to be labeled as print, is not a sufficient criterion to remove the false print objects.
For each ‘0’ marked region, the number of ‘−’ and ‘+’ labels that are 8-connected
is counted, and the pixel is labeled print only if the number of ‘+’ pixels is larger.
Finally, a postprocessing step is proposed to remove false print objects. The average
gradient value at the edge of each printed object is computed. Objects having an av-
erage gradient below a threshold TP are labeled as misclassified, and are removed.
In Fig. 4.1, we can see the results of binarizing an old document by several methods.

1See http://www.qgar.org.
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Fig. 4.1 Binarization of an old handwritten document. (a) Original image; (b) Otsu’s binarization;
(c) Niblack’s binarization; (d) Trier and Taxt’s binarization

Both Otsu’s and Niblack’s well-known methods to binarize images leave some mis-
classified regions, whereas Trier and Taxt’s method performs a good binarization of
document images.

4.2.2 Skeletonization

Sanniti di Baja [1] proposed a skeletonization method which is not based in thinning
operations, but rather on the analysis of the (3,4)-Distance Transform of the binary
image. Each pixel of the shape is labeled with its distance to the contour. Each pixel
p can be interpreted as the center of a disc, which includes all the pixels whose
distance from p is less than the label of p. A disc Dp not completely included in
the disc Dq centered at any neighbor q of p is called a maximal disc. The skele-
ton of a shape will include all the centers of maximal discs of the (3,4)-Distance
Transform, except for those whose removal is indispensable to allow the skeleton
to be a unit wide set. On the skeleton, the pixels can be classified into end points,
normal points and branch points, by taking into account the number of components
of neighbors not belonging to the skeleton. This method does not require the iterated
application of topology preserving removal operations, and does not need checking
a condition specifically tailored to end point detection, since end points are automat-
ically identified when the maximal centers are found. Skeletal pixels found on the
distance transform can be classified as “parallelwise detectable” and “sequentially
detectable” skeletal pixels. Parallelwise detectable pixels can be directly identified
by the distance transform due to the structure of their neighbors. This is the case
of the maximal discs. Sequentially detectable skeletal pixels can be found only af-
ter some of their neighbors with smaller labels have been identified and marked as
skeletal pixels. Sequentially detectable pixels are necessary to link to each other the
components of parallelwise detectable skeletal pixels. After detecting the skeletal
pixels, a raster scan inspection is done to reduce to unit width and to fill the holes.
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Fig. 4.2 (3,4)-Distance-based skeletonization. (a) Original images; (b) obtained skeletons

Then a pruning and beautification step is proposed to erase some non-significant
pixels of the skeleton. An example of the obtained skeletons is shown in Fig. 4.2.
The computational cost of this method is modest and independent of the thickness
of the pattern to be skeletonized.

4.2.3 Polygonal Approximation

The last step of the raster-to-vector conversion is to approximate skeleton images
by segments. Rosin and West [10] proposed a method of segmenting curves in im-
ages into a combination of circular arcs and lines. The method is an extension of
the algorithm proposed by Lowe in [7]. Lowe’s algorithm segments each curve by
recursively splitting it at the maximum deviation from the approximating straight
line. At each level a decision is made depending on whether the single straight line
is better than the representation at a lower level consisting of two or more approx-
imating straight lines. The measure of goodness of fit is termed the “significance”
and is defined as the ratio of the maximum deviation from the straight line to the
length of the straight line.

The attractive property of this algorithm is that no thresholds are used to control
the accuracy of the resulting representation. This is controlled by the significance
values that can be regarded as the error between the curve and the straight line
description weighted by the length of the straight line. Thus long straight lines are
regarded as being a better representation even though the error can be greater. This
introduces scale invariance such that a contour of different scales will have the same
or similar description.

A list Lij of skeleton pixels is hypothesized as being a straight line passing
through its end points Pi and Pj , the point Pn at the point of maximum devia-
tion dij corresponding to the straight line segments of the list Lij divides it into two
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Fig. 4.3 Three levels of the straight line approximation. (a) First iteration; (b) second iteration;
(c) third iteration

lists Lin and Lnj , and the process is repeated recursively on each of the two lists.
The recursive process is stopped when a line segment is smaller than four pixels
long or the deviation is less than three pixels. The result of the recursive process is
a multilevel tree where the description of the list of skeleton pixels at each level is a
finer approximation of the level above. The tree is then traversed back up to the root.
At each level, if any of the line segments passed up from the lower level are more
significant than the line segment at the current level, they are retained and passed
up to the next higher level as candidate line segments. If this is not the case, the line
segment at the current level is passed up. In Fig. 4.3, we can see an example of the
first steps of the algorithm in approximating a curve by a set of straight lines.

The significance measure is the ratio of the maximum deviation divided by the
line segment length. Thus, the lower the significance value, the more significant the
line. The procedure is weighted in favor of long line segments. The longer the line
is, the greater the deviations that will be tolerated. This algorithm produces a high
quality, general purpose polygonal approximation. No arbitrary error threshold is
required. Instead, the most appropriate values are chosen dynamically throughout
the procedure.

4.3 A Vectorial Signature for Symbol Description

Starting from a vectorial representation of the documents, in this section we propose
a model of vectorial signature to describe symbols in terms of geometric constraints.
In order to have a powerful representation of the vectorial symbols to easily com-
pute the signatures, an attributed graph is used. The nodes of the attributed graph
represent the segments of the symbol and graph edges represent spatial relationships
between segments. Let us formally define a graph G in the next subsection.

4.3.1 Representing Symbols by Attributed Graphs

Starting from a vectorial representation of the symbols from a line-drawing, we
represent these symbols with a graph G defined as follows:
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Definition 4.1 An attributed graph is denoted as G = (V ,E,μ, ν) where V is the
set of nodes representing the segments of the symbols, and E is the set of edges rep-
resenting the spatial relationships among them. A sub-graph of G containing the
nodes si, . . . , sj is denoted as G{si ,...,sj }. ΣV and ΣE are sets of symbolic labels,
and the functions μ : V → ΣV and ν : E → ΣE assign a label to each node and
each edge. ΣV = [θsi , ρsi ] contains the information of each segment si according
to a polar representation. ΣE = {L,T ,P,1,0} represents the different kind of spa-
tial relationships between a pair of segments. The possible relationships between
segments are:

1. L represents a straight angle between a pair of adjacent segments.
2. T represents a straight angle between a pair of non-adjacent segments.
3. P represents two parallel segments.
4. 1 represents two adjacent segments.
5. 0 represents a non-expressive relation between two segments.

We define a signature in terms of a hierarchical decomposition of symbols. Fol-
lowing the idea presented by Huang in [5], a symbol can be described by the number
of occurrences of particular sub-shapes. In our proposal, these expressive sub-shapes
are extracted from the analysis of the adjacency matrix. Following a combinatorial
approach on the number of sub-graph nodes, sub-shapes such as squares, triangles,
parallelisms, etc. are taken into account. In Fig. 4.4, we show a graph2 of a simple
symbol. In the next subsection, we will see how the signatures are built from the
analysis of the adjacency matrix.

Fig. 4.4 Attributed graph
representation of graphical
symbols. (a) Graphical
symbol; (b) its graph
representation

2The edges labeled by 0 are not shown.
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4.3.2 Building the Vectorial Signature

Starting from the analysis of the adjacency matrix, we propose a combinatorial ap-
proach to extract particular sub-shapes which comprise a symbol. For all the seg-
ments, all the sub-graphs formed by at least two nodes and a maximum of four
nodes are analyzed to search for some representative shapes. If n is the number of
segments, (4.1) gives the number of sub-graphs to analyze.

#G{...} =
4∑

k=2

Ck
n =

4∑
k=2

n!
(n − k)! × k! . (4.1)

For each sub-graph, we work with its adjacency matrix. The matrix MG is, in
fact, only computed once for all the segments, and when we want to focus on a
sub-graph, a group of rows and columns of this matrix is selected. Notice that in
most cases the relations between segments could be extracted in the vectorization
process. In the extraction of these constraints, each comparison has an associated
threshold value in order to be more tolerant. For the simple shape of Fig. 4.4, we
can see its corresponding adjacency matrix MG below in (4.2)

MG =

⎛⎜⎜⎜⎜⎜⎜⎝
s1 1 0 L P L

1 s2 T 1 0 0
0 T s3 1 1 0
L 1 1 s4 L P

P 0 1 L s5 L

L 0 0 P L s6

⎞⎟⎟⎟⎟⎟⎟⎠ . (4.2)

From this matrix, we examine all the possible combinations of sub-matrices tak-
ing four, three and two of the six possible nodes. Hence three different levels are
considered. For all the sub-matrices representing the sub-graphs, normally the anal-
ysis of one single row can determine the shape that it encodes.

The vectorial signature of a symbol is then defined as a 40-dimensional vector
VS where in each position we have the number of occurrences of a particular geo-
metric configuration of segments forming a given sub-shape. We have defined a set
of 30 geometric configurations among different number of segments which can be
efficiently extracted by analyzing the adjacency matrix. We can see some examples
the sub-shapes taken into account to build the signature in Table 4.1. In order to

Table 4.1 Examples of
sub-shapes composing the
vectorial signature

Level Considered Level Considered

sub-shapes sub-shapes

4 nodes 3 nodes

4 nodes 3 nodes

4 nodes 2 nodes

3 nodes 2 nodes

3 nodes 2 nodes
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Fig. 4.5 Sub-shapes
extracted from a symbol at
different levels. (a) Original
symbol; (b) symbol detached
at level four and at level two;
(c) symbol detached at level
three

provide a more accurate description of the symbols, some additional information
as the length-ratios and the distance-ratios are added at the last 10 positions of the
signature. Since these measure features can take values from 0 to 1, this space is
split into five bins where the occurrences of these geometric ratios among segments
are accumulated.

It may seem redundant to store the information for multiple levels of the sub-
graph, since if in the level of four nodes we find a square, it is obvious that we will
find two parallelisms and four straight angles at the level of two nodes. But this
redundancy helps to detach completely all the multiple shapes in the drawing. For
instance, a square with a cross inside can be seen as a square and a straight angle,
or it can be seen as a set of triangles (see an example in Fig. 4.5). This redundancy
helps to be more error tolerant and to store all the geometric configurations of all
the multiples sub-shapes of the drawing. The occurrences of each sub-shape are
accumulated to build the vectorial signature.

Once the signatures of the model symbols are extracted, in the querying step
we can compare the obtained signature with the model signatures and associate a
confidence value to each correspondence between the original symbol and all the
model symbols depending on a distance function. The used distance function is the
χ2 distance computed as follows:

χ2(i, j) = 1

2

K∑
k=1

(Vi[k] − Vj [k])2
Vi[k] + Vj [k] , (4.3)

where Vi and Vj are the vectorial signatures of two symbols i and j , and K the
length of the vectorial signature (40 in our experimental setup).

However, as we commented in the introduction Sect. 4.1, the approaches based
on vectorial signatures have the drawback that they cannot be straightforwardly
used to locate a given symbol within a complete document. The spotting approaches
based on vectorial signatures need a prior segmentation stage. Inspired by the work
on symbol discrimination in complete documents presented by Dosch and Lladós
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in [3], in the next section we present a window-based strategy to compute the vec-
torial signatures within documents.

4.4 Sequential Access to Signatures: Defining Regions of Interest

When working with complete drawings, the usual approach is to divide the drawing
into windows of fixed size which frame every symbol. In each zone of interest,
a signature is computed and compared against the set of model signatures. However,
these approaches lack of flexibility and may be quite sensitive to the scale of the
documents. We propose to use a more dynamic approach, where the windows are
built depending on the original line-drawing.

Regions of interest are computed from the maximum and minimum coordinates
of several adjacent segments. So, the size of the regions of interest is variable. Also,
a first filter of area and aspect-ratio can be easily implemented in order to delete
some non-relevant symbols such as the walls in the architectural field or the wiring
connections in electronic diagrams. Formally, for each node nsi of G (segment in
the drawing) we build a list of all the nodes connected to nsi by an edge. Having a
list of all the endpoints of the adjacent segments to a reference segment, we get the
maximum and minimum coordinates of the endpoints that will construct a framing
window of these segments. We can see an example of how to build the regions of
interest in Fig. 4.6. As in most cases of technical drawings, the symbols have a low
eccentricity, their bounding-box are square-shaped and such windows frame them.
But, as the windows are based on the connections of the segments, the efficiency
decreases if the symbols are disconnected or overlapped.

Moreover, in the vectorization step, more problems may happen: small vectors
can appear due to noise, straight lines can be split into several collinear vectors,
the arcs might be approximated by polylines, some neighboring lines in the draw-
ings may be not adjacent in the vectorial representation because of gaps, dashed
lines might appear as a set of small segments instead of one unique instance, etc.

Fig. 4.6 Computing a region of interest from a reference segment. In the second step, all the
adjacent segments to the reference segment are considered. A bounding-box is obtained from the
minimum and maximum coordinates
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To solve such problems, the best results are reached when we work with a lower
resolution of the drawing to calculate the windows. This sub-sampling step reduces
local distortions in the vectorial representation while preserving the most salient
geometrical properties.

First, a contraction of the normalized graph is done, merging the adjacent nodes
having a lower distance than a threshold thr. This graph contraction by distance al-
lows reducing the jaggness of some collinear straight segments. Then, applying (4.4)
to each node coordinate, we get a lower resolution graph. With this representation
of decreased resolution, the problems of the gaps or the split segments are solved.
Every endpoint is sampled for each step of m, so the minor errors are corrected.

x = m × round

(
x

m

)
,

y = m × round

(
y

m

)
.

(4.4)

Experimentally, in Fig. 4.7a, the graph has 154 nodes because a horizontal line
has been split in the vectorization process. When the graph contraction by distance
is done (with a threshold value thr = 0.06; see Fig. 4.7b), we get a graph with 52
nodes which lines are crooked due to the node contraction, and with the decreased
resolution graph (with m = 35; see Fig. 4.7c) we have to deal with only 33 nodes.
Finally, we can compare the resulting extracted windows where the vectorial signa-
ture is to be computed in Fig. 4.7d.

This change of resolution can cause some errors, for example, some lines which
are almost horizontal or vertical can be represented with a very different slope. But
these errors do not interfere with the obtained windows, since they continue to frame
the symbols. Notice that these lowest resolution images will only be used to calcu-
late the regions of interest, not for the spotting process. Since each segment proposes
a region of interest, there is no problem if one of the segments of a symbol gives a
mistaken window.

In the next section, we present the experimental results.

4.5 Experimental Results

Our experimental framework consist of two different scenarios. First, we test the
performance of the vectorial signatures to recognize and classify isolated symbols.
Second, we have used the method for symbol spotting in a small set of real archi-
tectural drawings, and we will show some qualitative results.

The first tests were done using the GREC-SEG database3 which is detailed in
Appendix A. This database contains a selection of symbols from the GREC2005
database which does not contain arcs. For each model symbol, we have applied

3The GREC-SEG database is available at http://www.cvc.uab.cat/~marcal/GREC-SEG/.
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Fig. 4.7 Obtaining regions of interest from a low-resolution representation of line-drawings.
(a) Original drawing; (b) graph contraction by distance; (c) low resolution representation; (d) ob-
tained windows in the document image

three levels of synthetic distortion, and 20 instances at each level have been gen-
erated. The symbols are represented by a graph where the nodes represent the seg-
ments endpoints. Each node from the graph is randomly shifted within a predefined
radius r . As the symbols are represented by a graph, the connectivity is not lost. We
can see an example of these distortions in Fig. 4.8.

We can see the recognition results in Tables 4.2 and 4.3 expressed in terms of the
True Positive Rate (TPR). We can see that the method yields good results when
applying a low degradation of symbols. Most of the symbols of of the GREC-
SEG database are “square-shaped”, and the computed signatures are discriminative
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Fig. 4.8 Example of
synthetical distortion from
the GREC-SEG dataset.
(a) r = 5; (b) r = 10;
(c) r = 15

Table 4.2 Results of the recognition of GREC-SEG database (1)

Symbol TPR (%) Symbol TPR (%)

r = 5 r = 10 r = 15 Total r = 5 r = 10 r = 15 Total

001 100 100 100 100 002 100 100 100 100

003 95 70 45 70 005 100 100 100 100

007 100 100 95 98.3 008 100 100 100 100

011 100 100 100 100 012 100 100 100 100

013 100 100 70 90 014 90 60 25 58.3

015 100 100 25 75 018 100 95 60 85

020 100 100 80 93.3 023 100 100 95 98.3

027 100 100 100 100 028 100 85 70 85

029 100 90 65 85 030 100 100 100 100

031 100 100 85 95 032 100 100 60 86.6

033 100 95 70 88.3 034 100 100 100 100

037 100 100 100 100 041 100 100 100 100

042 100 100 100 100 043 100 100 100 100

044 100 85 40 75 045 100 100 100 100

048 100 100 100 100 051 100 100 100 100

052 100 100 100 100 053 100 100 60 86.6

054 100 85 55 80 055 100 100 100 100

057 100 100 100 100 058 100 100 95 98.3

059 100 100 100 100 060 100 100 100 100

062 100 75 50 75 063 100 100 100 100
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Table 4.3 Results of the recognition of GREC-SEG database (2)

Symbol TPR (%) Symbol TPR (%)

r = 5 r = 10 r = 15 Total r = 5 r = 10 r = 15 Total

065 100 100 70 90 068 100 100 85 95

069 100 100 100 100 072 100 100 100 100

074 100 100 100 100 078 100 90 40 76.6

079 100 100 100 100 084 50 10 10 23.3

085 100 100 100 100 088 100 100 75 91.6

091 100 100 100 100 093 100 100 100 100

094 40 50 80 56.6 098 100 80 60 80

104 100 100 100 100 106 100 100 100 100

107 100 100 100 100 108 100 100 100 100

110 100 100 100 100 111 100 85 60 81.6

113 100 90 40 76.6 114 100 65 30 65

115 100 100 100 100 120 100 100 100 100

121 100 100 100 100 126 100 100 100 100

127 100 100 100 100 128 100 100 100 100

130 100 85 30 71.6 132 100 100 100 100

133 100 100 100 100 134 100 100 95 98.3

136 100 100 90 96.6 137 100 100 95 98.3

138 100 100 100 100 143 100 100 100 100

144 100 100 85 95 145 100 95 95 96.6

147 100 100 100 100 Total 97.79 92.58 79.25 91.18

enough. But, when a symbol is composed of tiny little segments, and not very con-
nected, the results are worse. Let us analyze some problematic symbols. Symbols
014 and 015 are very thin, but composed of an expressive sub-shape which is re-
ally discriminative, a square. These two symbols give good results when applying
low degradation, 90% and 100% of recognition, respectively, but their recognition
rate falls to 25% in both cases when applying a huge geometric deformation. As
these symbols are composed of very short segments, a higher deformation distorts
the little segments too much and damages the performance. On the other hand, sym-
bols having segments which are not very connected between them also give bad
results, for example, Symbols 003, 054, 114, and 130. As the deformation model
guarantees the connectivity between segments, deforming the graph representation
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Fig. 4.9 Average true positive rates for three different symbol categories. (a) Three different sym-
bol categories depending on their average recognition rate; (b) its distribution on the database;
(c) average recognition rates per different symbol degradation levels

of the symbol and not the symbol itself, when the symbol is composed of non-
connected segments, these segments are more affected by the deformation than the
connected segments that, in some way, share the deformation between them. Notice
that the recognition performance of Symbol 094 evolves inversely to the expected
way. Symbol 094 does not have very expressive sub-shapes, only parallelisms and
adjacency can be found. As vectorial signatures encode the presence of salient ge-
ometric features, when a symbol is composed of few sub-shapes, the recognition
performance is very low. When applying a higher geometric noise, most of these
sub-shapes are not preserved, but as the model of distortion guarantees the connec-
tivity, this symbol is recognized better at high distortion levels than at the lower
ones.

Finally, in order to have an idea of whether the symbol design can affect the
performance of the recognition abilities of the signature model and to test if there
are some symbol designs which are more sensitive to distortions, we present some
indicators on the recognition performance in Fig. 4.9. We classified the symbols in
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the GREC-SEG database into three different classes dependent on their average true
positive rate. We can see that 74% of the symbols of this database attain an aver-
age true positive rate greater than 90%. A second symbol family can be identified.
18% of the symbols in the database have an average true positive rate ranging be-
tween 75% and 90%. Finally, 8% of the symbols have an average true positive rate
below the 75%. As we can observe in the example, the symbols in this last group
are formed by less discriminative sub-shapes, and thus, the description ability of the
signature is severely damaged. We can compare the different tolerance to the distor-
tions for all the three classes of symbols and how simpler symbol designs are mode
affected when we increase the synthetic deformations in Fig. 4.9c.

In the second test, we tried out the vectorial signatures with real architectural
drawings by using the windowing approach presented in Sect. 4.4. Using more re-
laxed threshold values than when we are working with the database of isolated sym-
bols, the symbols appearing within a complete document can be spotted. As we
can see in Fig. 4.10, some false positives appear (thick squares), and some symbols
are still missed. False positives appear when a window does not correctly frame a
symbol. The stairs which consist of a lot of segments give a lot of regions of interest
where false positives appear, and the wrong segmentation of the tables means that in
the part where the chairs are drawn, a sofa is spotted, because their representation is
very close. When we use vectorial signatures in real drawings, there are two factors
that may cause the spotting results not to be so good. First of all, the symbols can
be adjacent between them or to a wall, or the region of interest could not perfectly
frame the symbol, in this case we face up to occlusions and additions of segments
which distort the signature too much. On the other hand, in real drawings, the sym-
bol design may be different of the learned model, so the learned features of a symbol
could not appear in real drawings; in this case, it is obvious that the symbol cannot
be spotted, a semantic organization of different design instances for any symbol is
necessary.

4.6 Conclusions and Discussion

In this chapter, we have presented a vectorial signature model which is able to de-
scribe graphical symbols in terms of the occurrences of certain spatial configurations
of segments. Since signatures are compact and yet effective symbol descriptors, they
are very suitable to be used as the basis for a spotting approach. We have also pre-
sented a window-based segmentation system which uses the vectorial signatures to
spot symbols appearing within complete documents.

We can see that the symbol discrimination using vectorial signatures yields good
results when we are working with the database of pre-segmented symbols and
with symbols with synthetical distortion, which is a controlled framework. In real
scanned architectural drawings, even if the symbols are usually well spotted, a lot
of false positives appear. However, since the objective of spotting techniques is not
to recognize the symbol but in some way to index the drawing, the false positives
problem is not so significant.
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Fig. 4.10 Qualitative results of spotting symbols by using vectorial signatures. (a) Original draw-
ing; (b) spotting the sofa symbol; (c) spotting the door symbol
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4.6.1 Limitations of the Vectorial Signatures

Even if the recognition performance of the signatures attains good levels, the pro-
posed method presents some important drawbacks to be used as a spotting method
for indexing a document collection and be used by a focused retrieval application.
Let us enumerate the most important drawbacks and let us see how we can solve
these problems in the next two chapters.

Since the presence of the sub-shapes is determined from the analysis of the ad-
jacency matrix, the method is not tolerant at all to segment fragmentation. If the
number of segments comprising a symbol does not correspond to the number of
segments of the learned model, the signature can be severely damaged. In addition,
the connectivity of adjacent segments also must be guaranteed in order to achieve
an acceptable performance. Even if these effects do not occur on synthetic data such
as the one of the GREC symbol recognition competitions, these two phenomena
occur frequently in real document images treated with a raster-to-vector conversion.
A more tolerant set of features to base our signature on must be found to tolerate this
kind of errors. We introduce the notion of polylines instead of segments in the next
chapter. We will also see how we can represent the expressive sub-shapes defined
above at the polyline level.

Moreover, the extracted sub-shapes from the adjacency matrix comprising the
vectorial signature were ad-hoc defined to describe a particular family of graphical
symbols. We saw in the experimental results section that the recognition perfor-
mance of the signature model was dependent on the symbol design. However, spot-
ting approaches should be more scalable in terms of the nature of the documents,
and not be conceived for a particular collection. In the next chapters, we propose us-
ing more flexible description approaches which should perform similarly no matter
which nature the line-drawing is of.

In addition, the proposed signature model just captures geometric configurations
formed by straight segments. It is not able to deal with circular primitives such as
arcs, circles, ellipses, etc. This fact is a strong limitation since only symbols formed
by lines can be considered. The methods proposed in the next chapters can deal with
any polygonal shape.

Finally, the presented window-based system can be useful in applications with
a predefined set of model symbols. Given an input line-drawing, regions of inter-
est are extracted by the windowing approach, and the signatures are sequentially
computed and matched against the model database. However, these sequential ap-
proaches are hardly useful when facing focused retrieval applications. In these cases,
we can have large collections of documents, and the user can query any symbol.
We shall provide a more efficient access to the descriptors by using indexing data
structures. In the next chapters, we propose using particular data structures having
graphical patterns as indices for accessing and navigating large collections of doc-
uments and being able to use spotting methods as the basis of a focused retrieval
application.
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Chapter 5
Symbol Spotting Through Prototype-based
Search

Abstract In this chapter, we present a method to determine which symbols are
probable to be found in technical drawings by the use of a prototype-based search.
First, symbols are decomposed into primitives representing closed regions. These
primitives are then encoded in terms of attributed strings. Second, the strings are
organized in a lookup table so that the set median strings act as representative
prototypes of the clusters of similar primitives. This indexing data structure aims
at efficiently retrieving the locations from the document collection where similar
primitives as the queried ones can be found. Finally, a voting scheme formulates
hypotheses in the locations of the line drawing image where there is a high presence
of regions similar to the queried ones, and therefore, a high probability to find the
queried graphical symbol. The proposed approach has been proved to work even in
the presence of noise and distortion introduced by the scanning and raster-to-vector
processes.

5.1 Introduction and Related Work

The vectorial signature model presented in the last chapter is only able to discrimi-
nate symbols if the query symbol has the same number of segments that the symbol
present in the collection. Even if vectorial signatures yield good results when rec-
ognizing isolated symbols they present important weaknesses when trying to apply
them in a focused retrieval application dealing with a collection of real vectorized
line-drawings. Basically, one of the main problems to face is the noise and the seg-
ment fragmentation introduced by the raster-to-vector conversion process. In addi-
tion, the raster-to-vector algorithms used in this book do not detect arcs, but approx-
imate them by a set of adjacent segments. In the literature, the interested reader can
find some works concerning the arc detection for vectorization algorithms such as,
for instance, in [4, 20]. In the previous chapter, symbols formed by arcs or circles
were not considered because the vectorization algorithm was unable to detect them.
In order to enhance the robustness of the spotting method, we propose introducing
a polyline approximation in the raster-to-vector algorithm as a post-processing step.
Let us formally define the term polyline.

M. Rusiñol, J. Lladós, Symbol Spotting in Digital Libraries,
DOI 10.1007/978-1-84996-208-7_5, © Springer-Verlag London Limited 2010
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Definition 5.1 Given a segment si = (x1, y1), (x2, y2), the adjacency A(si) =
(p, k) of si is defined as the number of segments incident with (x1, y1) for p and
incident with (x2, y2) for k.

Definition 5.2 Let s1 . . . si . . . sn be a set of sorted and adjacent segments where

A(s1) = (p,1) with p �= 1,

A(si) = (1,1) with i ∈ {2, . . . , n − 1},
A(sn) = (1, k) with k �= 1.

The polyline Ps1...si ...sn is the geometric shape considering the set of adjacent seg-
ments s1 . . . si . . . sn as a unique instance. A polyline starts and ends at the points
were a segment sn finishes and no other segment is adjacent to sn, or at the points
where more than two segments are adjacent.

When the segment approximation is done in the raster-to-vector step, a grouping
of the adjacent segments is implemented. All the segments having A = (1,1) form
part of a polyline. Segments having A = (p,1) or A = (1, k) with p,k �= 1 are the
end-segments of a polyline. We can see an example of the polyline decomposition
in Fig. 5.1.

The main idea of treating multiple segments as a unique instance is that we should
not have the restriction of the number of segments forming a symbol. Since we ob-
tain more tolerance to the noise arising from the raster-to-vector conversion step, the
jaggness problem is not critical. The underlying problem is how to describe these
polylines in terms of geometric constraints. Since polylines are ordered sets of adja-
cent segments, a polyline can be seen as a one-dimensional chain. In the literature,
we can find several works describing shapes by chains of adjacent segments. Let us
briefly review a few.

Stein and Medioni [15, 16] proposed describing objects by a polygonal approx-
imation of their contours. The segments arising from the raster-to-vector conver-
sion are then grouped into sets of adjacent segments named super-segments. These
chains of consecutive segments are then described by a feature vector of geometrical
attributes as the lengths or the angles of the segments, and the global orientation and

Fig. 5.1 Polyline
decomposition of a vectorized
symbol. The vectorized
symbol has 31 segments
which are grouped into 12
polyline instances (displayed
in different colors)
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eccentricity of the super-segment. In order to be tolerant to changes in the number
of segments composing a super-segment, the authors propose working at multiple
cardinality scales. However, considering this cardinality scale implies an important
grow of the number of feature vectors describing a shape, thus exponentially in-
creasing the time of computing distances among shapes.

In order to provide more tolerance to changes in the number of segments com-
posing a polyline, we can find some works in the literature which, starting from an
attributed string representation of the shape, use string edit operations to compute
the distance between two strings representing two shapes. As examples, we can,
for instance, cite the work of Wolfson presented in [21], the methods of Bunke
and Bühler [3], or the more recent work of Kaygin and Bulut [7]. In all these
works, polygonally approximated contours are represented by attributed strings.
Similar shapes are matched depending on the costs of the operations needed to
edit and transform one string into the other. In this chapter, we use this particu-
lar shape description and matching technique in order to be tolerant to changes in
the number of segments composing a given polyline. Let us see which particular
data structure we use in order to provide an efficient access to the stored descrip-
tors.

One of the drawbacks of the method presented in the last chapter is that, in or-
der to retrieve similar symbols, all the matchings between the query descriptors
and the ones of the line-drawings have to be computed. In order to face a focused
retrieval application with a large document collection, we shall provide efficient ac-
cess to the descriptors by using indexing data structures. In this chapter, we propose
using a lookup table indexing structure to retrieve primitives by similarity which
drastically reduces the number of comparisons to be computed. The main idea is
to provide what we call prototype-based search. In prototype-based search, we are
given a set of distorted samples of the same primitive and want to infer a represen-
tative model. In this context, the median concept turns out to be very useful. The
use of the string matching algorithm to compute a similarity measure also allows
the computation of the set median strings. Given a set of similar strings representing
vectorial primitives, a representative of this set having the smallest sum of distances
to all the strings in the set can be computed. These set median strings act as index-
ing keys of a lookup table. When performing a query, the retrieval by similarity of
primitives is done efficiently since only the distances between the query primitive
and the representative of a cluster of similar polylines has to computed. Avoiding
brute-force distance computation allows fast primitive retrieval by similarity. By the
use of a lookup table together with a Hough-like voting scheme, in this chapter
we propose a framework able to spot graphical symbols within a document image
collection.

The remainder of this chapter is structured as follows. The next section reviews
the string matching theory and algorithms, and provides details about our particular
cost functions. Subsequently, in Sect. 5.3, we detail the proposed prototype-based
indexing framework allowing to spot graphical symbols within a document collec-
tion. Section 5.4 presents the experimental results. Finally, the conclusions and a
short discussion can be found in Sect. 5.5.
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5.2 String Matching Theory and Algorithms

String edit distances were first defined by Wagner and Fischer in [19] to find the
minimum cost edit sequence to convert the string A into the string B using edit
operations. Although the origin of the algorithm is spelling correction, it has been
used for different purposes, and particularly as an approach to the problem of rec-
ognizing and classifying polygons. The problem is to define dissimilarity measures
between polygons, and to find algorithms that compute these measures fast enough.
The string matching-based approaches should be independent of the scale, transla-
tion and rotation of the polygons under analysis. Let us review the string matching
theory and algorithms, and subsequently provide the details about our particular cost
functions to match polygons.

5.2.1 Definitions

Let us first introduce some basic notation and definitions of the basic string matching
algorithm first proposed by Wagner and Fischer in [19].

Definition 5.3 Let Σ be a set of elements called symbols and let Σ∗ denote the
set consisting of all finite strings over Σ . The length |A| of a string A ∈ Σ∗ is the
number of symbols in A. And let Λ denote the null string which has length 0.

Definition 5.4 For a string A = a1a2 . . . an ∈ Σ∗, a cyclic shift is a mapping σ :
Σ∗ → Σ∗ defined by σ(a1a2 . . . an) = a2a3 . . . ana1. For all k ∈ N, let σk denote
the composition of k cyclic shifts. Two strings A and A will be called equivalent if
A = σk(A).

Definition 5.5 An edit operation s is an ordered pair (a, b) �= (Λ,Λ) of strings,
each of a length less than or equal to 1, denoted by a → b. An edit operation a → b

will be called an insert if a = Λ, a delete operation if b = Λ, and a substitution
operation otherwise.

Definition 5.6 A string B results from a string A by the edit operation s = (a → b),
denoted by A → B via s, if there are strings C and D such that A = CaD and
B = CbD. An edit sequence S = s1s2 . . . sk is a sequence of edit operations. We say
that S takes A to B if there are strings A0,A1, . . . ,Ak such that A0 = A,Ak = B

and Ai−1 → Ai via si for all i ∈ {1,2, . . . , k}.

Definition 5.7 Let γ be a cost function that assigns a non-negative real number
γ (s) to each edit operation. For an edit sequence S, we define the cost γ (S) as

γ (S) =
k∑

i=1

γ (si).
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The edit distance δ(A,B) from string A to string B is then defined as

δ(A,B) = min
{
γ (S)

}
,

and the edit distance δ([A], [B]) of two cyclic strings [A] and [B] is given by

δ
([A], [B]) = min

{
δ
(
σk(A),σ l(B)

)|k, l ∈ N
}
.

Attributed string matching has been used for polygon matching in several appli-
cations. In order to avoid the segmentation inconsistencies due to the noisy images
or distorted shapes, Tsay and Tsai [18] introduced two other edit operations.

Definition 5.8 The split operation is the result of splitting a symbol ai into a se-
quence of k consecutive symbols, denoted as ai → ai1ai2 . . . aik .

Definition 5.9 The merge operation is the result of merging k consecutive symbols
into a symbol, denoted as aiai+1 . . . ai+k−1 → a′

i .

5.2.2 Linear String Matching

Let A and B be two strings over Σ∗ of length n and m, respectively. The Wagner
and Fischer [19] algorithm takes O(nm) time to a find δ(A,B) by determining a
minimum weighted path in a weighted directed graph. Let D(i, j) denote the cost of
a minimumweighted path from the vertex v(0,0) to the vertex v(i, j), so D(n,m) =
δ(A,B). We can see the details of linear string matching below in Algorithm 5.1.

Algorithm 5.1: Linear string matching algorithm
D(0,0) := 0;
for i := 1 to n do

D(i,0) := D(i − 1,0) + γ (ai → Λ);

end
for j := 1 to m do

D(0, j) := D(0, j − 1) + γ (Λ → bi);

end
for i := 1 to n do

for j := 1 to m do

D(i, j) :=
⎧⎨⎩

D(i − 1, j) + γ (ai → Λ)

D(i, j − 1) + γ (Λ → bi)

D(i − j, j − i) + γ (ai → bi)

end
end
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Fig. 5.2 Example of the string matching algorithm. Edit operations and obtained cost to transform
the string “YWCQPGK” into the string “LAWYQQKPGKA”

For the split and merge step, a window q × q is needed. For each D(i, j), the
cost of split and merge is considered as the minimum cost of all the possibilities in
a region starting at the vertex v(i, j) and ending at v(i − q, j − q). And the costs
are computed as a sum of three costs. For example, in the merge case

γ (akak+1 . . . ak+p → blbl+1 . . . bl+t )

= γ
(
akak+1 . . . ak+p → a′) + γ

(
blbl+1 . . . bl+t → b′) + γ

(
a′ → b′). (5.1)

5.2.3 Cyclic String Matching

Linear string matching cannot tackle strings having cyclic shifts since the computed
paths always start from a given initial symbol. A cyclic string matching procedure
is needed in the case of cyclic strings.

Given two finite strings A and B , the cyclic string matching problem is the prob-
lem of determining δ([A], [B]) and an edit sequence realizing this cost.

Let BB = b1b2 . . . bmb1b2 . . . bm be the concatenation of B with itself. For all
l ∈ {1,2, . . . ,m}, we can find a minimum cost edit sequence from A to σ l(B) by
determining a minimum weighted path from v(0, l) to v(n,m + l).

Although the computation of only one path takes O(nm) time, the computation
of all these paths can be done in O(nm logm) time, since all the paths can be chosen
such that two different paths never cross.
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Fig. 5.3 Attributed
representation of a chain of
adjacent segments

5.2.4 A String Matching Cost Function for Polygon Recognition

Visually, two chains of segments are similar if the length attributes and angles be-
tween consecutive segments can be aligned. In the literature on polygonal shape
recognition, most approaches base the distance definition between two polygonal
shapes on length and angle differences. For example, Arkin et al. [1] used the turn-
ing function which gives the angle between the counterclockwise tangent and the
x-axis as a function of the arc length. Their results are in accordance with the intu-
itive notion of shape similarity.

In order to use string matching for polygon recognition, we will use an attributed
string matching. Starting from a polygonal approximation of the shape, we will use
the segments as primitives, encoding them with a pair of numbers (li , φi), where
li denotes the length of the segment si and φi denotes the angle between si and
si−1 in the counterclockwise direction. We can appreciate an example on how these
attributes are computed for a sample shape in Fig. 5.3.

Let A and B be two chains of adjacent segments, represented as strings, with total
lengths |A| = n and |B| = m and with respectively attributed string representations:

A = (
lA1 ;φA

1

)
. . .

(
lAn ;φA

n

)
and B = (

lB1 ;φB
1

)
. . .

(
lBm;φB

m

)
. (5.2)

The costs functions for attributed string matching are as follows:

γ
((

lAi ;φA
i

) → (
lBj ;φB

j

)) = |φA
i − φB

j |
360

+
∣∣∣∣ lAi

|A| − lBj

|B|
∣∣∣∣,

γ
(
λ → (

lBj ;φB
j

)) = lBj

|B| ,
(5.3)

γ
((

lAi ;φA
i

) → λ
) = lAi

|A| ,

γ
((

lAi,j ;φA
i,j

) → (
lAu ;φA

u

)) =
(∑j

k=i l
A
k

) − lAu∑j
k=i l

A
k

,
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which are the proposed cost functions inspired by those introduced by Tsay and Tsai
in [18], where the authors use string matching for shape recognition. Maes [10]
proposed using a weighting factor in the length costs to compensate undesirable
cost bias for angle differences. However, in our experiments we did not observe
any improvement in adding such a parameter. Finally, for the sake of simplicity, the
previous operations are grouped by a block substitution using the merge operation.
The total cost of substituting the whole sequence of symbols by another is computed
as follows:

γ (Ai,j → Bk,l) = γ (Ai,j → u) + γ (Bk,l → v) + γ (u → v), (5.4)

where u and v are the segments starting at the initial point of Ai and Bk and ending
at the final point of Aj and Bl , respectively.

As all the length comparisons are weighted by the total perimeter of the chain of
segments and the angles are computed relatively to the previous segment, the pro-
posed string matching approach is rotation and translation invariant. In addition, the
merge operation attributes low edit costs to primitives undergoing noisy transforma-
tions such as the inherent segment fragmentation from the raster-to-vector process
and aims at comparing strings with different number of segments, making the sys-
tem tolerant to segment cardinality and to scale changes.

5.3 Spotting Method

Given a technical document, the main idea of this chapter is to organize clusters of
similar string primitives in a lookup table. Each entry of this table is indexed by a
representative string allowing the use of a graphical pattern as a query and avoiding
the computation of distances over all the stored primitives.

We divide the spotting method in four different parts. First, primitives are ex-
tracted from the symbol instances in terms of strings attributed with geometric con-
straints among their segments. Then, the off-line step builds the indexing data struc-
ture to organize the primitive descriptors. Third, the on-line process formulates a
graphical query and the search in the data structure for similar primitives. Finally,
the Hough-like voting scheme spots the zones of interest where there is a high prob-
ability to find the symbol. Let us further describe the above steps.

5.3.1 Symbol Representation in Terms of String Primitives

The first step to consider in any symbol recognition methods using geometric con-
straints as descriptors is the pre-processing step allowing to decompose into prim-
itives the target documents as well as queries. Let us briefly explain these pre-
processing steps of primitive extraction.
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Fig. 5.4 Symbol representation in terms of polygonal approximation of closed region contours.
Each of these region contours is represented by strings attributed by length and angles

Here we use the same raster-to-vector algorithm implementation presented in
the last chapter (see Sect. 4.2) with a slight modification. Rather than representing
symbols with a polygonal approximation based on a skeletonisation, our choice
for this chapter is focused on computing a closed region labeling and extrac-
tion based on a connected component analysis. The contours of these closed re-
gions are then polygonally approximated using the Rosin and West’s [13] algo-
rithm.

After computing the polygonal approximation of the contours of the closed re-
gions, an association of chains of adjacent segments resulting in a polyline is done.
These polylines are encoded as attributed strings, and used as primitives to describe
the symbol to be recognized.

Formally, let R be the contour of a closed region which is polygonally approx-
imated and represented by the chain of adjacent segments P(R) = {s1 . . . sn} con-
sisting of n segments si . As we have seen in the previous Sect. 5.2.4, each segment
si is attributed with the tuple (li , φi), where li denotes the length of the segment
si and φi denotes the angle between si and the previous segment si−1 in the coun-
terclockwise direction. A symbol is then described in terms of p region contours
comprising it and denoted as S = {P(R1) . . . P (Rp)}. We can see a graphical exam-
ple in Fig. 5.4.

The distance between two polylines is computed by using the string matching
algorithm and the particular cost functions defined in the previous section. The final
distance between two symbols is then computed as the sum of distances among the
corresponding primitives. We will focus on the primitive description organization
and the indexing structure construction in the next section.
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5.3.2 Off-line Lookup Table Construction

In this section, we propose using an indexing structure which allows a fast primitive
retrieval by similarity. The main idea is to cluster similar polylines into entries of a
lookup table. The retrieval of primitives by similarity is done by a prototype-based
search. Each entry of the lookup table is identified by a representative of a cluster
of similar primitives. When querying this lookup table, a list of locations to find
similar primitives is obtained without computing the distance between the query
and all the primitive instances, but rather just by computing the distance between
the query and the cluster prototypes. In order to correctly identify the lookup table
entries, a representative of the clusters of primitives has to be computed.

Each lookup table entry representing a cluster of similar strings appearing in the
document collection, consists of two different items: a representative polyline of
each cluster which acts as an indexing key and the stored list of locations where we
can find the polylines belonging to this cluster. If strings are used for representing
the objects under consideration, then we are faced with the task of finding the me-
dian of a set of similar strings. Let us see how we can compute the representative
string from a set of similar strings.

Generally speaking, the representative polyline of each cluster can be computed
in two ways, namely the mean string or the set median string. As proposed in
Sánchez et al. [14], the mean string M over a string cluster C = {A1 . . .An} is de-
fined as

M = argmin
M∈Σ∗

(
n∑

i=1

δ(Ai,M)

)
. (5.5)

The mean string is computed as a new string that represents the average shape
among all the strings in the set. The main drawback of this approach is its compu-
tational cost which increases with a large number of shapes. On the other hand, the
set median string M̃ is defined as the string in a given set minimizing the sum of
distances to all the strings in the set. The set median string is defined as

M̃ = argmin
M̃∈C

(
n∑

i=1

δ
(
Ai, M̃

))
. (5.6)

In our case, we have experimentally verified that a set median string is useful
enough to be used as an index of a table entry. Besides, it is less expensive since we
do not need to compute a new string which is an exact shape average of the set, but
to select it between the strings composing the cluster. Let us see how, from the set
median string formalism, we can build an indexing structure to retrieve by similarity
stored primitive strings.

The lookup table is built as follows. For all the polylines P(Ri) appearing in a
document of the collection, we store their locations in the lookup table. In order to
be able to query the indexing structure by similarity of graphical patterns, we should
select a cluster of similar polylines which they belong to. The selection of this cluster
is done by applying the string matching algorithm proposed above. We select the
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cluster where the cost of editing the string P(Ri) to match the set median string P̃C

of the cluster is lower than a threshold thr. Once we identified the corresponding
cluster, we add P(Ri) to it. The set median string P̃C of the corresponding cluster
is recomputed in order to keep offering a good cluster representative. If no cluster
has a set median string similar to P(Ri), then we define a new cluster having P(Ri)

as representative. The set median strings act as indexing keys of the lookup table
where at each entry a list of translation vectors −→vi = (xi, yi, di) are stored. Here
(xi, yi) are the coordinates of the middle point of the polyline, and di identifies
the corresponding document in the collection where P(Ri) appears. We can see the
details in Algorithm 5.2:

Algorithm 5.2: Algorithm to build a LUT from a list of primitives

for i = 0 to length(R) do
if LUT[P(Ri)] is not NULL then

LUT[P(Ri)].AddValue(−→vi );
LUT[P(Ri)].UpdateKey();

end
else

LUT[P(Ri)].CreateNewPos(−→vi );
end

end

When applying the algorithm described above, the order followed to add poly-
lines into the lookup table is important since the primitive clustering is done in an
incremental way. However, since in retrieval applications the user can add more
and more documents to the database at any time, we preferred using an incremental
primitive clustering to a classical classification method which would need a learning
stage, making difficult increasing the data collection. In addition, the coarse prim-
itive clustering offered by the lookup table is compensated by the use of a voting
scheme.

In the next subsection, we will detail how we use the lookup table in order to
retrieve the location of graphical primitives by similarity.

5.3.3 On-line Querying of Symbols: Activating Table Entries

Given a query symbol S = {P(R1) . . . P (Rp)} and the lookup table containing q en-
tries, a maximum of p table entries are activated, resulting, on the one hand, in a list
of locations to find similar primitives and, on the other hand, in a confidence value
depending on the similarity ratio between the query primitives and the prototypes
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representing these table entries. A table entry having as prototype a certain median
string P̃j is activated depending on the following condition:

δ
(
P(Ri), P̃j

)
< thr where 1 ≤ i ≤ p and 1 ≤ j ≤ q. (5.7)

From the traversal of the lookup table, we obtain a list of locations to find sim-
ilar primitives as the ones that compose the query symbol. The zones of a docu-
ment in the collection likely to contain the query symbol are the ones where we can
find larger accumulation of the symbol’s primitives. By using a Hough-like voting
scheme, we determine the zones of the collection where we have more primitives
by simply looking at maxima in the voting space. The locations where most of
the polylines comprising the symbol S are present form clusters of coherent votes.
The presence of similar polylines in other locations of the line drawing provokes
false positive votes which are scattered in the voting space. The accumulation of
evidences is done in terms of the similarity between the query primitive and the
prototype, so the values of the votes to distribute in the parameter space are propor-
tional to each δ(P (Ri), P̃j ). In the next section, we will detail how we proceed to
validate the location hypotheses.

5.3.4 Hough-Like Voting Scheme to Validate Location Hypotheses

The voting space is a four-dimensional space (x, y, s, d) consisting of 2D position
coordinates, a scale ratio and an index of a given document in the collection. Given
a query string Pq , we accumulate votes in the translation coordinates −→vi = (xi, yi)

of the corresponding line-drawing image d . The third dimension of this space rep-
resents the scale factor between the query polyline and the polylines stored in the
lookup table. This voting scheme formulates hypotheses of spatial location, docu-
ment instance, and scale of the queried symbol. The zones of the line-drawing where
we find similar primitives at a similar scale as the ones that form the query symbol
tend to accumulate more votes and thus to form clusters in the voting space. The
problem of finding zones where a symbol is likely to be found is then reduced to a
local maxima localization problem in the voting space.

For the sake of simplicity, the voting space is split into several bins,
I(1,1,1) . . . I(m,n,s), named buckets for each document d . The bin size has to be
related to the scale of the symbol so the different votes fall in nearby buckets.
In our experiments, the grid size has been empirically set and is determined in
terms of the size of the original image. In our case, m and n are determined such
as max(m,n) = 128, preserving the aspect ratio of the original image. The scale
dimension is sampled to s = 8 possible buckets. The parameter d is directly the
number of documents stored in the collection. Following a similar idea as the pro-
posed by Lorenz and Monagan in [9], we use a voting method known in signal
processing as anti-aliasing to relate (−→vi , s) to a set of Ij neighboring buckets, based
on the Euclidean distance between the voting location and the discrete bin partition
buckets. Each (−→vi , s) has the edit cost vote to distribute among its eight neighboring
buckets, depending on their proximity.
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Fig. 5.5 Anti-aliasing
method to cast votes. Even if
two votes fall into different
buckets due to discretization,
they still contribute to form
coherent peaks in the desired
values of the voting space

Given a symbol S, the activation of the lookup table entries results in a list
L = {(−→v1 , s1) . . . (−→vn , sn)} of translation vectors. For d((−→vi , si), Ij ) the Euclidean
distance between (−→vi , si) and one of the eight neighboring buckets Ij , we define
the value of the vote V (Ij ) received in the bucket Ij as

V (Ij ) = V (Ij ) + w1

d((−→vi , s), Ij )
+ w2

δ(P (Ri), P̃j )
, (5.8)

where w1 and w2 weigh the distance factor and the edit cost. We can see an example
of the voting distribution scheme in Fig. 5.5.

As we can see, the anti-aliasing method reduces the problem to working with a
discrete grid to distribute votes. Voting schemes are only efficient if a high num-
ber of votes fall in the right bin, so that the bin can be easily detected among the
background noise. If some votes fall in the neighboring bins, the significance of the
correct bin decreases. Since the votes are now distributed among nearby buckets,
even if the locations of a symbol do not fit a unique bin, the votes of close buckets
collaborate between them.

Since the intended application of the spotting methods is a focused retrieval pro-
cess, given a query symbol, the top k zones of interest in terms of accumulated votes
are returned to the user. The more primitives a symbol has, the more votes can be
accumulated in a given zone. However, since only one query is done at a time, there
is no need to normalize the votes to retrieve the zones of interest.

In the next section, we will see the experimental results of testing the perfor-
mance of the proposed description technique, and the ability of locating and retriev-
ing symbols within a collection of complete documents.
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5.4 Experimental Results

In order to evaluate the proposed spotting methodology, we present three different
experiments. The first focuses only on the string matching algorithm as a distance
measure between polygonal shapes. It aims at empirically determining a well suited
threshold value thr which determines whether or not two strings are considered
similar. The second experiment is designed to test if the proposed primitives are
sufficiently discriminative to represent a graphical symbol. Finally, the third exper-
iment tests the symbol spotting method by querying a document image database of
real architectural floor-plans.

5.4.1 Silhouette Shape Matching

The first experiment is designed to test the efficiency of the string matching algo-
rithm as a shape descriptor. The algorithm is used as a distance between two shapes
represented by a polygonally approximated contour. This experiment also aims at
empirically determining a well suited value of the threshold thr which influences
whether two polylines are similar or not. We used a subset of isolated silhouette
shapes from the MPEG-7 core experiment described by Latecki et al. in [8]. We call
this polygonal shapes collection the MPEG-POLY1 database.

For each of the 15 shape models, the noise model presented by Kanungo et al.
in [6] is applied to generate 300 degraded images per class, which are then polygo-
nally approximated. Applying the noise model and then converting the images from
raster to vector format introduces a lot of variations in the number of segments
approximating a given silhouette. All the details of this dataset can be checked in
Appendix A. We run a classification experiment with all this dataset. The distance
between each model and the vectorized shapes is computed by using the cyclic string
matching algorithm with the proposed cost functions. These results are sorted by in-
creasing distance to extract a Receiver Operating Characteristic (ROC) curve (the
interested reader is referred to the paper by Fawcett [5] on ROC analysis), which
plots the true positive rates against the false positive rates. These evaluation metrics
are the same as previously used by us to evaluate the performance of the document
classification method in Chap. 3. We can see how they are computed in (3.9).

We can compare the tradeoff between the correctly classified items and the ap-
pearance of false positives in Fig. 5.6. In our framework, as we use a voting scheme
toaccumulate evidences, we are more interested in achieving high true positive rates
values rather than having low false positive rates. We can find the obtained false
positives rates and thresholds for different true positives rates in Table 5.1.

In the presented spotting method, the lookup table offers a coarse clustering that
is then refined by the use of a voting scheme. The presence of false positives in a
lookup table entry is not a problem, but we want to minimize the missed primitives.

1The MPEG-POLY database is available at http://www.cvc.uab.cat/~marcal/GREC-POLY/.
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Fig. 5.6 Receiver operating characteristic curve for the silhouette matching experiment. Average
ROC curve is shown in black

Table 5.1 Obtained false
positive rates and decision
threshold thr for several true
positive rates

TPR FPR thr

0.25 0.025 0.008

0.5 0.105 0.014

0.75 0.281 0.024

0.9 0.511 0.035

In our experiments, we used a thr value of 0.03 which guarantees about a 75% of
correctly clustered shapes in a given lookup table entry. False positives appear, but
the voting strategy will hopefully discard them.
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5.4.2 Evaluation of the Contours as Primitives

The second test aims at seeing if the region contours are better primitives to repre-
sent a graphical symbol than the skeletons which were the extracted features to be
polygonally approximated in the last chapter. We compare the performance of the
presented method by using both vectorization strategies, one computing the skele-
tons of the objects and then applying the Rosin and West’s algorithm, and the other
trying to approximate the contours of the closed regions extracted from the image.
To carry this experiment, a real floor-plan has been degraded to build a collection of
500 synthetically distorted plans by using again the noise method of Kanungo et al.
These distorted images were then polygonally approximated with both representa-
tions: contours and skeleton primitives. We can compare the differences between
both primitives in Fig. 5.7.

In Fig. 5.8, we can see the obtained precision and recall graph (the interested
reader is referred to van Rijsbergen’s book [12] on information retrieval) when

Fig. 5.7 Symbol primitive representations. (a) Model floor-plan; (b) zoom of the toilet symbol;
(c) degraded image; (d) symbol with skeleton primitives; (e) symbol with contour primitives



5.4 Experimental Results 105

Fig. 5.8 Precision and recall plot when spotting the toilet symbol shown in Fig. 5.7 using two
different symbol primitives. The contours outperform the skeleton primitives in both precision and
recall

Table 5.2 Number of false
positives when requesting a
certain number of retrieved
zones

Primitives Retrieved items

200 300 400 475

False positives with Contours 6 7 29 159

False positives with Skeletons 73 76 89 273

querying a symbol. The graph shows that the presented primitives are more expres-
sive than skeletons since the spotting method using this representation outperforms
the skeleton in all cases. On average, there is a gain of about 17.5% in precision for
the same recall values. Details are shown in Table 5.2 where we can see the number
of false positives we have when requesting a certain number of the 500 possible
solutions. In addition, using contours as primitives, the queried symbol has been
missed in only 5 of the 500 images, and we miss the symbol in 73 of the 500 im-
ages using the skeleton. This yields a significant gain in the recall value when using
contours instead of approximating the symbol skeleton.

Finally, we tested the method on a database of isolated symbols affected by vec-
torial noise. We can see the obtained ROC curve for the matching experiment with
the 150 isolated symbols from the GREC-POLY2 database (fully detailed in Ap-
pendix A) in Fig. 5.9. The experimental setup is the same as in the silhouette match-
ing experiment. The main difference is that we do not try to match individual shapes
but rather all the primitives comprising a given graphical symbol. When all the prim-

2The GREC-POLY database is available at http://www.cvc.uab.cat/~marcal/GREC-POLY/.
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Fig. 5.9 Receiver operating characteristic curve for the symbol matching experiment. Average
ROC curve of the 150 symbols is shown in black

itives from a symbol are matched against the model primitives, the symbol is then
considered as recognized.

5.4.3 Symbol Spotting in a Document Database

Finally, we tested our method on a collection of ten real floor-plans and ten dif-
ferent symbols as queries. This is a subset of the FPLAN-POLY dataset3 detailed

3The FPLAN-POLY database is available at http://www.cvc.uab.cat/~marcal/FPLAN-POLY/.
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Fig. 5.10 Precision and recall plot for symbol spotting in the document database

in Appendix A. The query symbols appear in the floor-plans several times and are
segmented by cropping a zone in the floor-plan image and vectorizing it. Each floor-
plan has been polygonally approximated and ground-truthed. The database consists
of approximately 14,200 polylines which after the lookup construction result in
nearly 320 table entries. The number of distance computations is thus reduced by
a factor of 45 with respect to a sequential access to all the primitives appearing in
the collection. We can see the precision and recall plot resulting from spotting these
symbols in the whole floor-plan database in Fig. 5.10.

In Table 5.3, we present a detailed set of measures to evaluate the perfor-
mance of retrieval systems to evaluate the spotting architecture. As we can see,
the recall ratio is quite good. However, there is a significant number of false pos-
itives in the results which harm the precision value. The F -score is a composite
measure to rank the results. However, the most interesting point here is to no-
tice the difference between the precision and the average precision AveP values.
The average precision is a measure of quality which rewards the earliest return
of relevant items. Details on these measures can be found in Chapter 7. As we
can see in our experiments, even if the precision values are quite low, the av-
erage precisions are significantly higher. This means that the false positives are
usually ranked worse than the correct results, as we can also see in the qualita-
tive results shown in Fig. 5.11. Finally, we also show the average time taken by
our software prototype to spot a symbol per plan. It is remarkable that the sym-
bols which are composed by common simple primitive shapes (circles, squares,
etc.) are usually the ones which are more time consuming since the entries of the
lookup are more populated and more hypotheses have to be considered. No sig-
nificant differences due to the number of polylines comprising a symbol can be
observed.
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Table 5.3 Detailed retrieval measures for each model symbol for the symbol spotting in a docu-
ment database experiment

Symbol Retrieval measures

Class p Precision Recall F -score AveP Time

(%) (%) (%) (%) (s/plan)

Bidet 4 30.8 100 47.1 87.5 0.76

Chair 5 36.8 100 53.8 83.3 0.64

Burners 9 5.1 100 9.6 59.1 1.09

Toilet 5 50 37.5 42.9 27.1 0.98

Toilet sink 5 30 100 46.2 68.7 1.89

Kitchen sink 5 11.8 50 19 33.3 1.16

Single sofa 4 37.5 100 54.6 100 0.43

Double sofa 6 15 75 25 65 0.22

Table 7 16.7 100 28.6 100 0.24

Tv set 4 20 100 33.3 95 0.12

Average 5.4 25.4 86.2 36 71.9 0.75

5.5 Conclusions and Discussion

In this chapter, we have presented a method of symbol spotting and its use in a
focused retrieval application from a collection of technical line-drawings. First,
a suitable symbol representation as a set of closed region contours and its codifi-
cation with attributed strings has been presented. The distance definition using a
cyclic string matching algorithm allows tolerating the segment fragmentation prob-
lem. Then, a clustering of salient zones of interest and a voting method have been
presented and tested to spot symbols in real technical line-drawings.

The experiments show that the representation and distance approaches are able
to tackle the inherent noise arising from the scanning process and the distortions
introduced by the raster-to-vector algorithms. The presence of false positives is not
a critical problem since the purpose of spotting methods is to find by a fast technique
a coarse identification of zones where a given symbol appears. Finally, we can see
that the use of voting strategies is of vital importance for spotting problems. To reach
higher precision, one can use better shape descriptors; however, this also entails a
complexity increment. The accumulation of evidences allows working with a coarse
recognition in the indexing step.

There are still some aspects which should be further studied. The main concern
is that the order followed to add polylines in the lookup table is important and in
some cases could lead to some misclassifications. However, for spotting applica-
tions where the user can add more and more documents at any time, the primitive
clustering must be incremental. The use of incremental classifiers such as iPCA [2]
or iLDA [11] applied to primitive clustering should be studied. On the other hand,
the presented matching approach cannot cope with occlusions which will provoke
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Fig. 5.11 Qualitative results for symbol spotting by cyclic string matching. (a) Vectorized floor-
plan database; (b) query example; (d) ranked top-ten results

the polylines to be broken. A partial matching algorithm such as the one presented
in [17] by Tănase et al. could be helpful in such situations.

One of the main advantages of the proposed method regarding the vectorial sig-
nature approach is the use of a prototype-based search. This indexing technique
provides an efficient way to retrieve the locations of graphical patterns by similar-
ity. Even if the implementation of the method is still a prototype and has not been
optimized, the times to retrieve the occurrences of a symbol given in Table 5.3 are
encouraging. However, depending on the applications, the number of table entries
may increase drastically, and even the computation of the distance with the proto-
types can be time consuming. The use of hashing structures instead of lookup tables
can provide a more efficient access to the data without computing any distance with
prototype primitives. We propose using these particular data structures for a faster
primitive retrieval by similarity in the next chapter.
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There is another drawback in the presented approach. Since graphical symbols
are composed of several primitives, querying a symbol consists in separately query-
ing each of its primitives. The locations showing a higher accumulation of primitives
are the most plausible places to contain the queried symbol. The structural configu-
ration of these primitives in that location is not taken into account. Most of the false
alarms presented in the qualitative results do not contain any similar symbol as in
the query. But in those regions, there is usually a high presence of simple primi-
tives, and these locations accumulate several votes. In the next chapter, we present
an indexing methodology to add structural information in the primitive queries. An
enhanced voting scheme to better validate the spotted locations is also presented in
the next chapter.

Finally, our feeling is that representing the primitives as attributed strings is a
powerful description technique. The retrieval by similarity with this particular data
representation has, however, an important burden compared with descriptors work-
ing with a feature vector description. Symbolic descriptions are meaningful but
computationally expensive to match. Numerical descriptions are usually less ex-
pressive, but easier to match by just the definition of a distance. In the next chapter,
we will use several off-the-self numerical description techniques instead of sym-
bolic ones, in order to foster the retrieval by similarity.
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Chapter 6
A Relational Indexing Method
for Symbol Spotting

Abstract In this chapter, we present a method to retrieve from a collection of doc-
ument images the regions of interest where a query symbol is likely to be found. In
order to foster the querying speed, a hashing technique is proposed which is able to
retrieve very efficiently primitives by similarity. Vectorial primitives are coarsely en-
coded by well-known shape description methods providing a numerical description
of the primitives. A relational indexing approach is presented in order to introduce
some structural information of the symbols and provide an accurate hypotheses val-
idation. Experimental results show the performance of the proposed approach.

6.1 Introduction and Related Work

The use of a lookup table providing a prototype-based search of similar primitives,
as presented in the last chapter, allows avoiding the computation of the similarity
measure for all the primitives extracted from the collection. The use of such in-
dexing structures aims at efficiently accessing and retrieving graphic elements by
similarity, and becomes a must when dealing with applications which have to face
large collections of documents. In the particular usage case presented in the last
chapter, we achieved reducing the number of distance computations by almost a
factor of 45 without missing a significant number of symbols. However, there is
still need to compute several hundreds of distances between descriptors. Even if this
is not an important burden when working with numeric descriptors, it may be an
important inconvenience when we use symbolic description of primitives such as
the attributed strings. In this chapter, we propose enhancing the accessibility to the
stored descriptors by two means. First, we will coarsely describe primitives by the
use of well-known descriptors with low dimensionality. These descriptors result in
a numeric feature vector. The distance among those descriptors is easily computed
as the distance between two points in the n-dimensional description space. Second,
this description space is efficiently organized and accessed by the use of a hashing
technique. The use of hashing techniques in ideal conditions allows retrieving items
by similarity with a complexity O(1). We can find many works which use such ef-
ficient indexing structures to organize and retrieve the primitive descriptors in the
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literature. Califano and Mohan [2] used a hash table indexed by four-dimensional
indices describing the geometric configuration of triplets of points extracted from a
contour image in order to efficiently locate the location of query objects in an im-
age. Stein and Medioni [19] also used a hash table in order to provide an efficient
retrieval of similar portions of a contour described by a set of features extracted from
a super-segment. Recently, Lladós and Sánchez [12] proposed a binary codification
of the shape context descriptor which is stored in an indexing structure aiming at ef-
ficiently retrieving the locations within a document image where a given typewritten
word is likely to appear.

Moreover, there is another drawback in the previously presented method. Since
graphical symbols are composed of several primitives, querying a symbol used to
involve separately querying each of its primitives. The locations showing a larger
accumulation of primitives were taken as the most plausible places to contain the
queried symbol. This technique may lead to several false alarms since we are not
checking which primitives appear in those zones and whether their spatial organiza-
tion and their structural configuration is consistent with the query symbol design. In
this chapter, we propose an indexing methodology to add structural information in
the primitive queries. In the literature, we can find several works such as by Chang
and Lee [3] or by Costa and Shapiro [5] which are focused on the addition of struc-
tural information to the primitive querying process. We can call such approaches
relational indexing since, besides indexing primitive objects, these works try to in-
dex also their spatial relationships. An enhanced voting scheme aiming at a better
validation of the spotted locations is also presented in this chapter.

The remainder of this chapter is structured as follows. We start by detailing how
the symbols are represented in terms of a polygonal approximation of contours and
a relational graph. Subsequently, in Sect. 6.3, we present the off-the-shelf shape de-
scriptors we have used in our experiments to coarsely describe and index the prim-
itives by similarity. Even if some of the descriptors were conceived to describe im-
ages, they are reformulated to be applied to a set of polygonal primitives. Section 6.4
presents the indexing structure to efficiently retrieve primitives, and Sect. 6.5 out-
lines how the relational indexing methodology works. In Sect. 6.6, we present some
qualitative results of using the proposed spotting architecture to retrieve locations
of interest from a collection of line-drawing images. Finally, the conclusions and a
short discussion can be found in Sect. 6.7.

6.2 Description of Graphical Symbols in Terms
of Vectorial Primitives

Recognition schemes rely on two basic steps, namely primitive extraction and de-
scription. First, the primitive extraction step has to transform the image drawings
arising from the scanning process to a vector domain. Then, in the second step, such
primitives have to be represented by a shape descriptor.
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6.2.1 Vectorial Primitives

Graphical symbols usually comprise a union of several simple sub-shapes. There-
fore, a symbol can be described in terms of the assembly of sub-shapes which com-
prises it. The basic primitives we want to extract to represent a graphical symbol are
these simple sub-shapes.

As our work is focused on the management of graphical data in vectorial format,
the documents which are in paper format need a digitalization process. In this chap-
ter, we use the same raster-to-vector process as in the previous chapter with just one
particularity. Since we want to add relational information between primitives to the
indexing framework, a graph representation of the symbols is also needed. The doc-
uments are scanned and de-noised by some simple morphological operations. The
raster-to-vector algorithm proposed in [14] is then applied to these line-drawing im-
ages to obtain a vectorial representation of the documents. However, such vectors
are not suitable to be used as primitives due to their instability in terms of artifacts,
fragmentation, errors in junctions, etc. A higher level entity has to be used as a prim-
itive. Adjacent vectors are merged together into a polyline instance. These polylines
represent then the sub-shapes forming a given graphical symbol. In our method, we
use the contour of the closed loops corresponding to a symbol as the primitives to
polygonally approximate and to merge as single polylines.

Formally, let p = {s1 . . . sn} be a polyline consisting of n segments si . A sym-
bol is represented in terms of its polylines representing loops and denoted as
S = {p1 . . . pm}. The gravity center of the symbol is computed as the average of the
gravity centers of each polyline, and it is denoted by mC . The gravity center of the
symbol will be used in the subsequent process of localization of the query symbol
inside the line-drawing images. To represent the spatial organization of primitives
which comprise a symbol, a proximity graph is constructed. Using the k-NN algo-
rithm, each primitive is linked to its k nearest primitives by an edge of the graph
G(S) = (V ,E). A node ni ∈ V is attributed with the primitive pi . An edge e ∈ E is
denoted as e = (ni, nj ,

−→vij ), where ni and nj are nodes of V and −→vij is a vector rep-
resenting the spatial relationship between the primitives pi and pj . This proximity
graph is the basis of the proposed relational indexing technique.

In Fig. 6.1, we can observe how the different parts of a symbol are detached,
making the regions meaningful primitives, and how their spatial organization can
describe a symbol.

Note that the same primitive representation and extraction is used for the com-
plete documents in the acquisition step. A given document D is composed of a
large number of polylines. A proximity graph G(D) is also computed to link nearby
primitives and to store their spatial relationship. Obviously, in this case we do not
know which polylines comprise a symbol; the graph just represents neighboring
primitives.

The polygonally approximated sub-shapes are used as the local components of
a given symbol. To describe them, at each primitive separately we apply one of the
off-the-shelf global numerical shape descriptors existing in the literature.
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Fig. 6.1 Primitive symbol
decomposition. A graphical
symbol is decomposed into
sub-shapes which are
polygonally approximated.
An attributed proximity graph
is the basis for the relational
indexing

6.3 Off-the-Shelf Shape Descriptors Applied to Vectorial Data

Formally speaking, given a symbol S = {p1 . . . pm} and a shape descriptor f defined
over the space of primitives, after applying f to each primitive we will have in return
a set of feature vectors f (pi) for all i ∈ [1,m]. A symbol is then expressed by a set
of feature vectors describing its primitives. Let us briefly review the used shape
descriptors in the next section.

Global numerical shape descriptors are formulated in terms of a compact repre-
sentation of expressive invariant features describing a shape as a whole. The inter-
ested reader is referred to Zhang and Lu’s [22] review of shape representation and
description techniques. In this section, we will summarize the global shape descrip-
tors used in our experiments. We make no claims about robustness of the chosen
descriptors. Depending on the nature of the data, better descriptors can be used.
The point here is only to test several shape descriptors seen as black-boxes which
one can plug-in into the system. The selection of one or another shape descriptor is
application dependent. For example, if we are interested in retrieving just the cor-
rect symbols despite missing some positives, an accurate shape descriptor has to be
chosen. On the other hand, if the user wants to retrieve all the instances of a given
symbol without giving real importance to the presence of false positives, one must
choose a simpler shape descriptor. Four shape descriptors with different accuracy
are chosen here to test the behavior of the system.

Let us further overview the numerical shape descriptors used in our work. First,
we introduce some basic notation. We consider an image I (x, y) containing an ob-
ject shape O with area A and perimeter P . Its centroid is the point c = (x̄, ȳ). The
boundary B of the shape is polygonally approximated by a polyline pO composed
by a set of n adjacent segments si = {(xi, yi), (xi+1, yi+1)}. A shape descriptor will
result in a compact representation of the shape formulated in terms of a feature
vector f (O). Let us briefly introduce the well-known shape descriptors we use.
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6.3.1 Geometric Moments

The central (p + q)th order moment for a digital image I (x, y) is expressed by

μpq =
∑
x

∑
y

(x − x̄)p(y − ȳ)qI (x, y). (6.1)

The use of the centroid c = (x̄, ȳ) allows for the invariance to translation. A nor-
malization by the object area is used to achieve invariance to scale.

ηpq = μpq

μ
γ

00

where γ = p + q

2
+ 1. (6.2)

6.3.1.1 Boundary Moments

The geometric moments can also be computed for the contour of the object as de-
scribed by Chen [4] and by Sardana et al. [16] by using (6.1) only for the pixels
of the boundary of the object. In that case, a normalization by the object perimeter
is used to achieve invariance to scale by using (6.2) with γ = p + q + 1. By sam-
pling the polygonal approximation, we can use the boundary moments as geometric
descriptors of the primitives.

6.3.1.2 Geometric Moments for Line Segments

When the contours of the objects are polygonally approximated, the geometric mo-
ments can be formulated for line segments as introduced by Lambert and Gao in
[10, 11]. Given a polygonally approximated shape composed of n segments, let us
take ai = (yi+1 − yi)/(xi+1 − xi) as the slope of the segment si . The line moments
are then computed by

μpq =
n∑

i=1

Di,

Di =
√
1+ (ai)2 ·

q∑
k=0

{(
q

k

)
ak
i (yi − aixi)

q−k · x
p+k+1
i+1 − x

p+k+1
i

p + k + 1

}
. (6.3)

And if the segment si is vertical, we use

Di = x
p
i · y

q+1
i+1 − y

q+1
i

q + 1
. (6.4)

6.3.1.3 Hu’s Moment’s Invariants

To obtain invariance with respect to translation, the centroid is used as in (6.1). The
normalization by the polyline length is used to obtain scaling invariance. Finally,
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invariance to rotation is achieved by using the set of seven functions proposed in [7]
involving moments up to the third order.

φ1 = η20 + η02,

φ2 = (η20 − η02)
2 + (2η11)

2,

φ3 = (η30 − 3η12)
2 + (3η21 − η03)

2,

φ4 = (η30 + η12)
2 + (η21 + η03)

2,

φ5 = (η30 − 3η12)(η30 + η12)
[
(η30 + η12)

2 − 3(η21 + η03)
2] (6.5)

+ (3η21 − η03)(η21 + η03)
[
3(η30 + η12)

2 − (η21 + η03)
2],

φ6 = (η20 − η02)
[
(η30 + η12)

2 − (η21 + η03)
2] + 4η11(η30 + η12)(η21 + η03),

φ7 = (3η21 − η03)(η30 + η12)
[
(η30 + η12)

2 − 3(η21 + η03)
2]

− (η30 − 3η12)(η21 + η03)
[
3(η30 + η12)

2 − (η21 + η03)
2].

Moment invariants can be normalized to get the different invariants fall into sim-
ilar numerical ranges. Usually, we can use the logarithm as a coarse normalization:

ψ1 = log |φi |, i ∈ {0, . . . ,7}. (6.6)

Hupkens and de Clippeleir [8] proposed the following normalization of invariants
to achieve a better robustness to noise:

φ′
1 = φ1 = η20 + η02,

φ′
2 = φ2/φ

2
1 ,

φ′
3 = φ3/φ

3
1 ,

φ′
4 = φ4/φ

3
1 , (6.7)

φ′
5 = φ5/φ

6
1 ,

φ′
6 = φ6/φ

4
1 ,

φ′
7 = φ7/φ

6
1 .

6.3.2 Simple Shape Description Ratios

The eccentricity, aspect-ratio or Feret’s ratio, of a given shape is the ratio of the
length of the longest chord of the shape to the longest chord perpendicular to it. It
can be computed by using the moments described in (6.3) as

ecc =
μ20 + μ02 +

√
(μ20 − μ02)2 + 4μ2

11

μ20 + μ02 −
√

(μ20 − μ02)2 + 4μ2
11

. (6.8)
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The circularity, or area-perimeter ratio of a shape, is defined as how closely-
packed the shape is. For a circle it is equal to 1, all other shapes have a circularity
smaller than 1. It is computed as

circ = 4πA

P 2
. (6.9)

Obviously, there are many other shape ratios describing certain geometrical prop-
erties. The interested reader is referred to [15, 20]. In our case, we only use these
two ratios as the feature vector describing a shape.

6.3.3 Fourier Descriptors

Given a polyline pO which is the polygonal approximation of the boundary of a
shape O , as a vectorial shape signature we use the centrical distance function com-
puted as

ri =
√

(xi − x̄)2 + (yi − ȳ)2 for (xi, yi) ∈ pO. (6.10)

Zahn [21] obtained a Fourier descriptor of a shape, applying the Fourier trans-
form on the signature representing the shape boundary. Sampling ri to N = 2n sam-
ples so that the use of the FFT is possible, the feature vector of the Fourier descriptor
is given by

f (O) =
[ |F1|
|F0| . . .

|FN/2|
|F0|

]
, (6.11)

where Fi corresponds to the ith component of the Fourier spectrum. Other shape
signatures such as curvature or complex coordinates can be used to compute the
Fourier descriptor. The interested reader is referred to [9].

In the case of graphical symbols, the shape descriptors presented above can be
applied to each of the primitives of the symbol extracted as mentioned in Sect. 6.2.1.
Formally speaking, given a symbol S = {p1 . . . pp}, applying one of the presented
descriptors will return a set of feature vectors f (pi) for all i ∈ [1,p]. In the next sec-
tion, we will study how to adapt classical indexing structures used in the databases
field to index graphical symbols in a document database.

6.4 Multidimensional Hashing to Index Primitives

The previously described methods for spotting symbols from a document database
present an important constraint. As the number of considered shape models is in-
creased, the computational cost of the matching step can be unaffordable. As pointed
in [2], in order to avoid a brute-force matching step, the use of indexing paradigms
becomes necessary.
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Among the wide taxonomy of indexing structures (cf. [6]), the point access meth-
ods are the ones which are the most suitable for our purposes. Tree-based structures
are frequently used in indexing mechanisms. Nevertheless, they suffer from several
drawbacks. The querying process can be computationally expensive since the tree
has to be traversed, and in addition, tree balancing algorithms are needed to maintain
an effective search performance. Since in our case we want to foster the querying
speed and we want a system where the data could be easily added at any moment,
a multidimensional hashing technique has been selected instead of a tree-based one.
In particular, we use a grid file structure, described in [13], in order to index the
vectorial primitives. Let us overview in more detail how multidimensional hashing
methods work.

Multidimensional hashing methods partition the space into hypercubes of known
size and group all the records contained in the same hypercube into a bucket. The
buckets are uniquely identified by a key-index which aims at a fast retrieval of all the
data contained in the bucket. A hash function performing one-dimensional partitions
automatically computes the key-index of a given query to identify the bucket to
which it belongs.

In our case, given a polyline, a feature vector is computed using one of the pre-
sented descriptors and then a hash function obtains the key-index. This hash function
establish a quantization criterion to apply to each dimension of the feature vector to
limit the key-index parameters to a finite number of discrete values. To avoid bound-
ary effects, each primitive is stored at the two closest buckets in each dimension.

Usually, the main drawback of hashing techniques is the collisions. Given two
different items to store in the database, we have to guarantee that the hash function
used to index such items does not assign the same key-index to them. To over-
come this problem expensive re-hashing algorithms are applied once a collision is
detected. In our case, collisions are not a problem but the basis of our indexing strat-
egy. Given two similar (but not equal) primitives, they are represented by a compact
feature vector. Hopefully, if the two primitives have a similar shape, the two feature
vectors will be two nearby points in the description n-dimensional space. The parti-
tion of this space by the grid file has to guarantee that both points fall into the same
bucket (or at least to neighboring buckets) to have all the similar primitives stored
in a single entry. This technique allows having an efficient retrieval by similarity.

In Fig. 6.2, we can see an overview of how the indexing mechanism works.
Formally speaking, a symbol S = {p1 . . . pm} is described by a set of feature vec-
tors f (pi) for all i ∈ [1,m] arising from one of the descriptors presented above in
Sect. 6.3. A hash function hp(f (pi)) = ki returns a key-index identifying a certain
bucket in the n-dimensional indexing space. As the shape descriptors are invariant
to similarity transformations and robust to noise, even if the input primitives are not
completely equal, the whole procedure leads to the same bucket. The symbol S is
then represented by the set of key-indices {k1 . . . kk} with k ≤ m since all the similar
primitives are represented by the same key-index.

In each bucket, the information of the position in a three-dimensional space (i.e.,
(x, y) coordinates of the primitive gravity center appearing in a certain document d

of the collection) of all the primitives in the document database having key-index
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Fig. 6.2 The use of a grid
file to index vectorial
primitives. The hash function
projects the feature vectors
into key-indices. Two similar
primitives are stored at the
same bucket

ki is stored. Summarizing this section, the proposed indexing methodology allows
retrieving all the spatial locations where similar primitives as the queried one are
likely to be found.

6.5 Relational Indexing and Hypotheses Validation

Since graphical symbols are composed of several primitives, indexing a symbol con-
sists in separately indexing each of its primitives. This approach has a big drawback
since the spatial coherence of the retrieved primitives is not taken into account. In
this section, we present a relational indexing algorithm to furnish the indexation
methodology with spatial information. A voting scheme to validate the spotted lo-
cations is also presented.

6.5.1 Relational Indexing

When considering large databases, many symbols may share a substantial part of
primitives with each other. Bag-of-words models describe objects in terms of the
presence of the primitives which compound them, ignoring their spatial structure.
Recently, a method to locate objects in images using a bag-of-words model has been
proposed in [17]. The large number of features taken from interest points aim to dis-
card spatial information. However, in our case, the presence of a set of primitives
in a given location does not guarantee the presence of the searched symbol since
symbols are not usually composed of too many primitives. The geometrical con-
figuration of these primitives is crucial information to refine the zones of interest.
Inspired by the work presented in [5], spatial relationships among primitives are
also considered when indexing in order to obtain much more valid hypotheses.

Given a symbol represented by a set of primitives S = {p1 . . . pm}, the similar
primitives appearing in a document can be retrieved by using the set of key-indices
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Fig. 6.3 Relational indexing. For the sake of visibility, only two primitives p1 and p2 are queried.
(a) Sample line-drawing and the query symbol; (b) results of retrieving a couple of primitives by
similarity without taking into account the spatial information, the resulting primitives are high-
lighted in gray; (c) retrieving the same two primitives by using the relational indexing mechanism

{k1 . . . kk}. To take into account the spatial configuration of those primitives, the
proximity graph G(S) has to be used. The edges eij ∈ E represent the relationship
between two primitives stored in the nodes ni and nj . These edges can be used to
retrieve by similarity pairs of primitives agreeing with a certain spatial distribution.
We can find an example of the use of relational indexing in Fig. 6.3.

To efficiently retrieve all the edges of a query symbol, a hash table HR is used to
store the adjacency matrix of the proximity graphs in the memory. This hash table
is indexed by pairs of primitives. The use of hash tables with multiple indices has
been used over the years to store and guarantee an efficient access to sparse matrices
like in [18]. The entry of the table HR[ka, kb] stores all the possible edges eij where
the primitive stored at the node ni is indexed by ka and the primitive of the node nj

is indexed by kb. In the acquisition step, for all the documents D in the collection,
each graph G(D) is added to the table HR so a spatial relationship between two
given primitives can be efficiently retrieved from all the document collection.

When querying a given symbol, each edge of the graph is considered. A querying
function Q(eij ,mC), taking an edge and the center of the query symbol mC , results
in a list of hypothetic centers LhC = [hC1 . . . hCx] where the two primitives with a
given pose are to be found. We can see how this function proceeds in Fig. 6.4. The
key-indices representing the primitives stored at the nodes are computed by using
the hash function hp . Both indices identify an entry of the hash table HR storing a
list of edges, and most importantly the corresponding vectors −→vij . These vectors are
the spatial distributions of the primitives appearing in the document database. A cen-
ter mapping function Cmap(−→vi ,mC) = hCi applies a scale and rotation transform
to the center mC in order to find the pose of the hypothetic center hCi depending on
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Fig. 6.4 Relational indexing architecture. Starting from the proximity graph, each edge performs
a relational query based on the indices representing the primitives stored in the nodes. A list
of vectors is retrieved corresponding to spatial relationships between primitives in target docu-
ments. A center mapping function transform these vectors into hypothetic centers where the sym-
bol should be found

the vector −→vi . We can see an example of the hypothetic center location in Fig. 6.5.
Note that the center mapping process aligns the query edge with the retrieved edges
in the line-drawing database, thus being invariant to scale and rotation transforms.

By applying the relational indexing function to each edge of the proximity graph
of the query, the locations in the documents where we can really find the queried
symbol should appear several times in the hypothetic centers list. The use of a voting
scheme reinforces these hypotheses and validates the possible locations.

6.5.2 Voting Scheme

Following the idea of the Generalized Hough Transform (GHT) [1], each of these
centers accumulates votes. Applying the querying function to each edge of the graph
from the query symbol, we accumulate evidences in the hypothetic centers in the
stored documents where it is probable to find similar primitives with the same spatial
organization as the query. In the voting space, the coherent votes tend to form salient
peaks, the rest of the votes will be scattered in different locations but not forming
clusters. A simple ranking of these clusters results in the positions of the documents
where it is more feasible to find the queried symbol.

The querying process leads to considering each pair of primitives of the queried
symbol S = {p1 . . . pm}, implying Cm

2 accesses to the hash table HR . The number
x of hypothetic centers where to cast votes is the same as the number of how many
position vectors are stored at each table entry. Obviously, the x value is directly
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Fig. 6.5 Center mapping function to find the pose of the hypothetic centers given an edge of the
relational query and the gravity center of the query symbol

related to the number of documents stored in the library. The result is that for each
query symbol we have

x · Cm
2 = x ·

(
m

2

)
= x · m!

2(m − 2)! (6.12)

centers where to accumulate votes. The locations where the votes are cast are sorted
and returned as the retrieved regions of interest. Note that no threshold is used to
decide whether a symbol is present or not. In the next section, we present some
qualitative results of applying the presented relational indexing method.

6.6 Experimental Results

To obtain the experimental results, we worked with a collection of architectural
floor-plans consisting of 42 images (of 3,215 × 2,064 pixels on average) arising
from four different projects. This dataset is the FPLAN-POLY database,1 detailed
in Appendix A. These images are polygonally approximated, resulting in a collec-
tion of vectorial documents. The symbols taken into account for these experiments
are divided into 38 classes, and we have a total of 344 instances in the document

1The FPLAN-POLY database is available at http://www.cvc.uab.cat/~marcal/FPLAN-POLY/.
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images. In a single document image, the average number of symbols is around 8,
and it ranges from 0 to 28 symbols. The models to query the document database are
cropped from the document images, so they also contain vectorial distortions.

When querying a model symbol against the database, the convex hull of the acti-
vated polylines in the documents forms a set of regions of interest which are sorted
by confidence value depending on the number of received votes. We can see the first
20 results of querying several symbols in the whole document collection when us-
ing the Fourier shape descriptor in Figs. 6.6 and 6.7. As we can observe, most of the
results correspond to the correct queried symbol, but obviously some areas of false
positives appear. We observe two interesting phenomena, usually, two close sym-
bols (i.e., burners in Fig. 6.7f or chairs in Fig. 6.6d) are grouped into a single region
of interest; on the other hand, it is common to find that a symbol is well spotted but
the returned region of interest is bigger than expected (i.e., the burners in Fig. 6.7f).

We consider that if the resulting polygons are able to overlap at least a certain
percentage of the ground-truthed representation of a symbol, they can be considered
as recognized. On the other hand, if the resulting polygons do not cover the ground-
truth, the symbol should be considered as missed. Of course, as with all decisions
implying a certain threshold, its value can be critical, and the system’s evaluation
can depend on it. The definition of this threshold is completely subjective as it de-
pends on what the user considers a symbol as being detected or not. In our case, we
consider a symbol as detected if it overlaps at least 75% of the ground-truth area. In
Table 6.1, we can see the total True Positive Rate (TPR) when applying the different
shape descriptors and the average of False Positives (FP) regions obtained by all
these methods. Notice that the time to retrieve a symbol from a document is highly
related to the accuracy of the selected method. Methods having higher recognition
rates spend more time in retrieving zones of interest since the table entries are more
populated and the number of false positives is also increased. On the other hand,
the methods which have smaller recognition rate but also fewer false positives are
usually less computationally expensive.

However, in focused retrieval applications, there are some cases where perfor-
mance evaluation is not straightforward. Let us consider the example shown in
Fig. 6.8. Given a document in the collection, we query one symbol which can be
found twice within the document. Instead of obtaining two different regions of in-
terest framing the occurrences of this symbol, the system outputs a single region
framing both instances of the symbol. The two symbols were relatively close in
space in the document, so it is understandable that the system just retrieved one big
region of interest where the probability to find the query object was high enough.
However, the question of how to evaluate this result is not easy to answer. Both
symbols were retrieved, but the system failed to identify that there were two differ-
ent instances. By returning just one region, its area is big enough to contain other
graphic objects which are not parts of the symbol, but it is hard to consider this result
as a false alarm. In the last part of this book, we propose a protocol for performance
evaluation for symbol spotting and focused retrieval systems. In this part, we will
present the quantitative evaluation of the relational indexing method presented in
this chapter.
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Fig. 6.6 Qualitative results of the relational indexing method (1). (a) Query symbol chair;
(b) query symbol TV set; (c) query symbol toilet; (d), (e) and (f) first 20 retrieved regions when
querying the symbols of (a), (b) and (c), respectively

6.7 Conclusions and Discussion

A relational indexing mechanism to spot symbols in a collection of line-drawing
images in vectorial format has been presented. A first step of primitive extraction
and description has been introduced in order to have a compact representation of
the graphical symbols. These primitives are organized in an indexing structure to
retrieve by similarity all the primitives in the collection. A relational indexing mech-
anism has been presented in order to take into account not only the similarity of the
primitives which compound a symbol but also the spatial relationship among them.
Finally, a Hough-like voting scheme aims at validating the hypotheses where a sym-
bol is likely to be found.

The qualitative results show good performance results. Most of the approaches
in the literature always make a choice of using only structural information about
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Fig. 6.7 Qualitative results of the relational indexing method (2). (a) Query symbol stairs;
(b) query symbol sink; (c) query symbol burners; (d), (e) and (f) first 20 retrieved regions when
querying the symbols of (a), (b) and (c), respectively

Table 6.1 Recognition
results of the relational
indexing method

Description TPR (%) FP Time (s/plan)

Simple ratios 93.62 153.42 3.44

Hu’s boundary moments 91.3 76.76 0.71

Line segment moments 55.62 63.89 0.55

Fourier descriptor 73.33 58.76 0.78

the symbols or just numerical descriptions of a symbol. The presented approach
uses both structural and numerical information. The use of both information sources
increases the robustness of the method. It also aims at using very simple descriptors
with good results according to the user needs.
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Fig. 6.8 Illustration of a result which is difficult to evaluate. (a) Floor-plan image in the collection;
(b) queried symbol; (c) retrieved region

There is obviously still some room for improvements. By describing symbols
with closed regions, we make the assumption that the symbols are composed of
several loops. This may not be the case in certain graphic-rich documents. In such
cases, another primitive extraction process should be considered.

In some application domains, as, for instance, in the case of complex electronic
diagrams, some symbols share a substantial part of their design and only differ by
slight details. Symbols may also be composed of other known and significant sym-
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bols. In this context, the proposed focused retrieval methodology might result in an
important number of false alarms.
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Chapter 7
Performance Evaluation of Symbol Spotting
Systems

Abstract Symbol spotting systems are intended to retrieve regions of interest from
a document image database where the queried symbol is likely to be found. They
shall have the ability to recognize and locate graphical symbols in a single step. In
this chapter, we present a set of measures to evaluate the performance of a symbol
spotting system in terms of recognition abilities, location accuracy and scalabil-
ity. We show that the proposed measures allow determining the weaknesses and
strengths of different methods. In particular, we have evaluated in detail the spotting
method presented in Chapter 6.

7.1 Introduction

Performance evaluation methods are essential tools to understand and compare the
behavior of algorithms and systems. A performance evaluation protocol should
identify the strengths and weaknesses of the methods under test. The analysis of
these strong points and drawbacks should determine which method is the most suit-
able for a certain use case and predict its behavior when using it in real applications
with real data.

In the last years, performance evaluation has been a quite prolific research topic
in the Document Image Analysis and Recognition field and in particular among the
Graphics Recognition community. Several competitions focused on particular top-
ics, namely, symbol recognition, layout analysis, and text detection among others,
have been organized in the major conferences and workshops of this field. We can
also find a lot of contributions in the recent literature proposing evaluation tech-
niques for different document image analysis applications. Performance evaluation
frameworks have been proposed for evaluating low-level applications such as line
and arc detection algorithms [37, 38] or raster-to-vector systems [31]. However,
in the last years, frameworks to evaluate higher level applications such as symbol
recognition [36] or layout analysis [2] have been proposed.

In this chapter, we propose a set of measures and methodologies to evaluate the
performance of spotting systems. Although we mainly focus on the specific case of
symbol spotting, these measures are also applicable to performance evaluation of
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other focused retrieval applications such as word spotting, or even object recogni-
tion in Computer Vision applications. Symbol spotting techniques should efficiently
locate graphical symbols in document images without using full recognition meth-
ods. Such systems are intended to index large collections of document images in
terms of the graphical symbols which appear in them. Given a graphical symbol
as a query, the system has to retrieve a ranked list of locations where the query
symbol is likely to be found. Since spotting systems deal with recognition and seg-
mentation at the same time, such abilities must be taken into account by the eval-
uation process. Segmentation errors must be punished as well as recognition mis-
takes.

As we illustrated in the review provided in Sect. 7.2, there exist many ap-
proaches to measure the performance of different Graphics Recognition algorithms.
However, in the particular case of symbol spotting, existing methods in the liter-
ature just provide measures based on binary decisions of found/not found. Along
this book we have evaluated the proposed methods on these binary decisions.
Based on a decision of wether to consider a symbol as being correctly located,
we have presented all the results by giving information about the true positive rate
(TPR) and the false positive rate (FPR) for the recognition and classification ap-
plications (Chapters 3, 4, 5 and 6). We gave the results for the focused retrieval
application in terms of the precision and recall of the binary decisions (Chap-
ter 5).

In this chapter, we develop the theory keeping in mind that the performance of a
symbol spotting system should be defined in terms of two components: the recogni-
tion and the location goodness. Starting from these hypotheses, the main contribu-
tion of this chapter is to propose a set of performance evaluation measures based on
the precision and recall concepts and to evaluate the performance of symbol spot-
ting systems in terms of two criteria, namely recognition and location. In addition,
the second contribution is the use of the same formalism to evaluate a third quality
criterion, the scalability under an increasing number of symbol prototypes. Most of
the work found in the literature dealing with performance evaluation of Graphics
Recognition systems is mainly focused on the computation of a score to allow an
easy way to rank different methods. We strongly believe that the proposed measures
can give a more accurate idea of the real behavior of the system under study than
typical recognition rates.

The remainder of this chapter is organized as follows. In Sect. 7.2, we briefly
overview the work on performance evaluation for related areas such as retrieval
systems, Graphics Recognition and Document Image Analysis applications. In
Sect. 7.3, we basically review the well-known measures of precision and recall
typically used in retrieval evaluation, and then discuss the measures we can de-
rive from precision and recall. Section 7.4 outlines how these measures can be
reformulated and applied to evaluate a spotting system in terms of retrieving re-
gions of interest from a document image database. Section 7.5 shows a use case
of such measures, evaluating the performance of the symbol spotting method
presented in Chapter 6, which is based on a set of four different off-the-shelf
shape descriptors. Finally, the conclusions and a short discussion can be found
in Sect. 7.6.
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7.2 Related Work

Symbol spotting systems are intended to produce a ranked list of regions of interest
cropped from the document images stored in the database where the queried symbol
is likely to be found. Symbol spotting can thus be seen as a particular application
within the Information Retrieval (IR) domain. Usually, retrieval systems are evalu-
ated by precision and recall ratios which give an idea about the relevance and the
completeness of the results (we will briefly review these measures in Sect. 7.3).
These basic measures can be enhanced considering many other indicators depend-
ing on the application. For instance, Lu et al. [20] evaluate a set of desktop search
engines by deriving a set of ratios from precision and recall to indicate the abil-
ities of the systems when incrementally retrieving documents. Müller et al. [25]
evaluate content-based image retrieval systems, proposing some strategies to take
into account the way the number of items stored in the collection affects the results
and how user feedback can improve the response of such systems. Kang et al. [16]
evaluate a text retrieval system which uses semantic indexing, focusing on the dis-
tribution and amount of key-indices used to index the database. Finally, in [12, 26],
we can find the performance analysis of some information retrieval systems having
the information distributed in a peer-to-peer network (P2PIR), which takes into ac-
count the query response time, the network resources requirements and the tradeoff
between distributed and centralized systems. As we can see, the coverage of infor-
mation retrieval topic is so wide that even if researchers use similar indicators to
evaluate the performance of their methods, no general evaluation framework can be
defined. In our case, we will also base our measures on the notions of precision and
recall by adapting them to the recognition and location abilities that the spotting
systems should present.

In the Document Image Analysis and more particularly the Graphics Recognition
field, some work focused on spotting can be found. However, all this work is evalu-
ated by ad-hoc measures. For instance, Rath and Manmatha [28] presented a system
able to spot handwritten words in ancient documents. They evaluate their system
with a score based only on the precision value. Marcus [24] presented an algorithm
to spot spoken words in an audio signal. The evaluation is based on Receiver Op-
erating Characteristics (ROC) graphs [11] which are related to precision and recall
measures. Tabbone and Zuwala [33] present a method to spot graphical symbols in
a collection of electronic drawings. They base the evaluation of their method in pre-
cision and recall graphs. Finally, Valveny et al. [36] present a framework to evaluate
symbol recognition methods envisaging a way to evaluate location and recognition
of symbols by also using precision and recall measures. However, all these methods
are computed on a binary retrieval notion: whether an item is considered retrieved
or not. By these measures one can see the ability of the system in retrieving relevant
items and discarding negative ones, but these measures do not evaluate how well the
system located the queried objects.

To avoid binary relevance labeling, our measurements are inspired by the tech-
niques used to evaluate layout analysis systems. In fact, layout analysis shares some
similarities with spotting in the sense that sub-regions from documents have to be
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labeled according to their content. Layout analysis competitions [3, 4, 6] were held
in last editions of the ICDAR conference. In these contests, the evaluation of the
participants’ methods was done according to the overlapping between regions of
the results and the ground-truth. Two indicators introduced in [27] are used to for-
mulate an entity detection measure from which an averaged segmentation measure
is deducted to score the systems. Following the same idea, in the text detection com-
petitions [21, 22] held in last editions of ICDAR, precision and recall measures were
computed in terms of overlapping between bounding-boxes of the ground-truth and
the results. From the precision and recall numbers, a score was computed to rank
the algorithm performance. However, we believe that the use of a single evaluation
score allows an easy ranking of the different systems, but hinders the understand-
ability of their behavior and the performance prediction when using other type of
datasets.

Finally, in the last symbol recognition competitions [1, 34, 35] held in the GREC
workshop editions, several symbol descriptors were evaluated. Here the perfor-
mance was evaluated by the recognition rates the systems yielded. In the last edition,
other measures such as the homogeneity and the separability of the symbol classes
in the description space have been introduced. We find very interesting the fact that
the scalability of the systems was also tested. This test was performed looking at
how the performance of the systems evolved as the number of symbol classes to
consider increased.

The measures we propose in this chapter are based on precision and recall since
this has been demonstrated to be a good way to evaluate recognition (or at least
classification) and location at the same time. We formulate the precision and re-
call notions in terms of overlapping between retrieved areas and ground-truth. The
presented measures and plots allow assessing the weaknesses and strengths of the
methods in terms of recognition abilities and location accuracy. In addition, we also
present a methodology to extract a scalability measure from precision and recall to
test if the methods can be used with a larger number of classes. Let us first review
the basic measures used to evaluate retrieval effectiveness.

7.3 An Overview on Measures to Evaluate Retrieval
Effectiveness

In this section, we review the basic measures provided in the literature used to eval-
uate the retrieval effectiveness. The measures outlined in this section will be refor-
mulated in Sect. 7.4 for the framework described in this work.

7.3.1 Precision and Recall

In the information retrieval field, most measures to evaluate effectiveness are based
on a binary labeling of relevance of the items, namely whether each item is con-
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Table 7.1 Retrieval matrix
Relevant Non-relevant Total

Retrieved |ret ∩ rel| |ret ∩ rel| |ret|
Not retrieved |ret ∩ rel| |ret ∩ rel| |ret|
Total |rel| |rel| |tot|

sidered as relevant or non-relevant. In addition, these measures are also based on a
binary retrieval notion, i.e., whether an item is retrieved or not.

Given a database consisting of a set of elements tot and a query item i to retrieve
from it, let us label as rel the set of relevant objects in the set and rel the set of non-
relevant items with regard to the query i. When querying this item in the database,
we label as ret the set of retrieved elements and as ret the set of elements from the
database which were not retrieved. The retrieval matrix of Table 7.1 shows all the
possibilities in terms of intersections between these sets.

The analysis of this table allows defining the well-known ratios of precision and
recall (see van Rijsbergen’s [29] book on Information Retrieval for more details)
to evaluate the behavior of the information retrieval system which are computed as
follows:

P = |ret ∩ rel|
|ret| , R = |ret ∩ rel|

|rel| . (7.1)

For a given retrieval result, the precision measure P is defined as the ratio be-
tween the number of relevant retrieved items and the number of retrieved items. The
precision measure measures the quality of the retrieval system in terms of the ability
of the system to only include relevant items in the result. A 100% precision means
that no false positive has been included in the system response. As the precision
value decreases, the more non-relevant items are included in the results.

The recall ratio R is defined as a ratio of the number of relevant retrieved items
to the total number of relevant items in the collection. It measures the effectiveness
of the system in retrieving the relevant items. A 100% recall means that all the
items labeled as relevant are retrieved, and none has been missed. As the recall
value decreases, the more relevant items are missed by the system which wrongly
considers them as non-relevant.

7.3.2 P @n and P(r)

The precision and recall measures are computed on the whole set of items returned
by the system. That is, they give information about the final performance of the
system after processing a query and do not take into account the quality of ranking in
the resulting list. Information retrieval systems return results ranked by a confidence
value. The first retrieved items are the ones the system believes are more likely to
match the query. As the system provides more and more results, the probability to
find non-relevant items increases.
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Relevance ranking can be evaluated computing the precision at a given cut-off
rank, considering only the n topmost results returned by the system. This measure
is called precision at n or P@n. However, this measure presents the drawback that
it does not give information about recall.

Let us define P(r) as the precision at a given recall cut-off, that is, the precision
at that point where recall has first reached the value r .

7.3.3 Precision and Recall Plots

The usual way to represent the stability of the system, as the user requires more
and more results, is to plot precision and recall against each other. Such plots are
computed stepwise retrieving at each step a given item, while varying the decision
threshold value over the confidence rate, i.e., computing P@n for the different val-
ues of n and plotting these values against their associated recall.

These plots show the tradeoff between precision and recall. Buckland and
Gey [8] analyzed the relationship between both ratios and concluded that they are
inversely related: trying to increase one usually provokes the other to be reduced.
Thus, when comparing several methods, the one yielding the higher values for both
precision and recall will be the best. However, it is not always easy to assess which
precision and recall plot corresponds to a better system.

7.3.4 Measures of Quality

Sometimes it is difficult to measure the effectiveness by a measure composed by
more than a number. In certain cases, the difficulty to assess which method is the
best has led to invest in some composite measures which are able to rank the meth-
ods under study according to a combination of precision and recall information.
However, as claimed by van Rijsbergen in [29], these measures are usually rather
ad-hoc and difficult to interpret.

Let us see a couple of composite measures which try to combine both precision
and recall information in a single number.

7.3.4.1 Average Precision

We can define the average precision AveP using each precision value after trun-
cating at each relevant item in the ranked list which resulted after a query. Average
precision is one of the evaluation measures used by the TRECVid1 community [30].

1TREC Video Retrieval Evaluation (http://www-nlpir.nist.gov/projects/trecvid/).
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For a given query, let r(n) be a binary function of the relevance of the nth item
in the returned ranked list. We define the average precision as

AveP =
∑|ret|

n=1(P@n × r(n))

|rel| . (7.2)

The average precision is a measure of quality which rewards the earliest return
of relevant items. Retrieving all relevant items in the collection and ranking them
perfectly will lead to an average precision of 1. The average precision can also be
seen as the area under the precision and recall plot. However, average precision does
not take into account the fact that a system returns non-relevant items after having
reached a 100% recall (i.e., having returned all relevant items).

7.3.4.2 F -score

Another classical composite measure is the F -score (see [13] for more details)
which is the weighted harmonic mean of precision and recall computed as

Fβ = (1+ β2) × P × R

(β2 × P) + R
, (7.3)

which for a value of β = 1 is equivalent to Dice’s coefficient (a well-known similar-
ity measure between two sets X and Y ) defined as

s = 2|X ∩ Y |
|X| + |Y | . (7.4)

Although there is some work like the one presented by Makhoul et al. in [23]
which point out some drawbacks of this measure, the F -score is widely used as a
measure of merit in the information retrieval literature.

The F -score can also be computed at several recall cut-offs to evaluate the stabil-
ity of a system’s response. We reformulate the F -score presented in (7.3) for several
recall values as

Fβ(r) = (1+ β2) × P(r) × r

(β2 × P(r)) + r
with r ∈ [0,R]. (7.5)

We can see some examples of how F 1(r)-score evolves for several synthetic
precision and recall plots in Fig. 7.1. The better the system responds, the higher its
values. As we can notice, the F -score heavily penalizes low values of precision or
recall.

7.3.5 Fall-out and Generality

Let us finally introduce two more measures, one related to the non-relevant retrieved
items and the other related to the dataset, which are computed as

Fo = |ret ∩ rel|
|rel| , G = |rel|

|tot| . (7.6)
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Fig. 7.1 F 1(r)-score plots for different synthetic precision and recall plots

The fall-out ratio Fo gives information about the number of non-relevant re-
trieved items with respect to the number of non-relevant items present in the collec-
tion. This measure is of special interest in unbalanced applications such as symbol
spotting, where the number of elements which are not relevant is much larger than
the number of relevant elements in the collection. Independent of the precision of a
system, to consider the behavior of the system good, this measure should have low
values either because very few non-relevant items have been retrieved or because
the number of non-relevant retrieved items is negligible in relation to the number of
non-relevant items in the dataset. To evaluate the evolution of the system response
in terms of false positives, the fall-out is usually plotted against recall. This plot
is equivalent to the typical ROC graphs [11] which are commonly used to evalu-
ate the performance of classifiers. We can find a study of the relationship between
precision-recall and ROC curves in [9].

Finally, the generality ratio G gives information about the collection dataset. It is
computed as the number of relevant items in the entire collection for a certain query.
It can then be averaged for all the considered queries in the experimental setup and
be denoted as the AveG ratio. This ratio does not give any measure about the effec-
tiveness of the retrieval itself, but complements the previous measures. As claimed
by Huijsmans and Sebe in [15], when evaluating the performance of a retrieval sys-
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Fig. 7.2 An example of computing the central tendency of precision and recall plots

tem, this measure should be given to really understand the meaning of the values of
precision, recall and fall-out.

7.3.6 Central Tendency of Precision and Recall

To evaluate a retrieval system, obviously, many queries have to be performed. Each
query under evaluation results in a precision and recall plot. To give an idea of how
well the system responds, the retrieval results are averaged over these queries. The
central tendency of several precision and recall plots is computed, sampling indi-
vidual curves at different points and averaging the samples. We can see an intuitive
example of the central tendency in Fig. 7.2.

The same averaging technique is applied to fall-out versus recall plots and to
Fβ(r)-score plots.

7.4 Precision and Recall for Spotting Systems

Spotting systems are intended to perform both recognition and location at the same
time, and thus, these abilities have to be evaluated together. Let us first propose a
formulation of the precision and recall measures to evaluate both concepts. To help
the interpretation of precision and recall plots, we propose using two more measures
focused at symbol level, which only consider a binary concept of retrieval. Finally,
we propose a scalability test to check the systems ability to achieve similar behavior
independent of the number of queried symbols.
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7.4.1 Precision and Recall of Regions of Interest

To evaluate the performance of a spotting system, we propose a set of measures
inspired by both information retrieval and layout analysis. The idea is to merge both
precision and recall measures with area overlapping rates. Precision and recall ratios
provide information on the incremental accuracy of the retrieval process in terms of
recognized items. On the other hand, the region overlapping between results and
ground-truth data is used to evaluate the segmentation accuracy.

To compute the region overlapping between a result and ground-truth, for both
data polygons we define representing regions of interest. The more accurate the
definition of the region of interest is, the more reliable the evaluation. To define
the region of interest where a symbol is located, we use the convex-hull algorithm
presented in [7] of all the points belonging to the symbol. In the particular setup of
Chapter 6, the graphical symbols are defined by the contours of the closed regions
composing a symbol, so the convex-hull of the contour pixels englobe the whole
symbol. Convex-hulls define the zones where a symbol is much more accurately
than bounding-boxes or ellipses. This representation can be extended to different
formats of the data of the collection (bitmap or vectorial format) and to different
symbol representations (internal pixels, skeleton, contours, segments, etc.).

Given a collection of graphical documents, we denote as Ptot the set of poly-
gons representing the whole document image database. For any graphical symbol S
to spot in the collection, we label as Prel the ground-truth polygon set which is
composed of all the polygons framing the locations where we find an instance of
the symbol S. When spotting the symbol S in the document collection, we de-
note by Pret the set of retrieved polygons. To match the results from the system
to the ground-truth polygon set, we define the polygon set intersection operation
Pk = Pi ⊕ Pj that, given two polygon sets Pi and Pj , results in a set of polygons
from the spatial overlapping of the polygons belonging to the different sets. To mea-
sure the total amount of polygon overlapping, we define the function A(Pi) as the
sum of areas of all the polygons in the set Pi .

From the above sets and functions, precision and recall ratios can thus be easily
formulated in terms of areas of the overlapping between sets of polygons represent-
ing results and ground-truth as follows:

PA = A(Pret ⊕ Prel)

A(Pret)
,

(7.7)

RA = A(Pret ⊕ Prel)

A(Prel)
.

We can see an example of ground-truthed symbols and a result from a spotting
system in Fig. 7.3. Some background region has been considered as forming part of
the symbol. When we compute the overlapping between retrieved regions and rel-
evant ones, this false positive region is identified, resulting in a precision decrease.
On the other hand, some part of the symbol has been missed, this results in the recall
value smaller than 100%.
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A(Pi) Precision (%) Recall (%)

A(Prel) = 60,560

88.99 91.56
A(Pret) = 62,307

A(Pret ⊕ Prel) = 55,449

A(Pret ⊕ Prel) = 5,111

A(Pret ⊕ Prel) = 6,858

(e)

Fig. 7.3 Overlapping between results and ground-truth. (a) Original image; (b) its ground-truth;
(c) the result of a spotting system; (d) overlapping between results and ground-truth labeled ac-
cording to Pret ⊕Prel (light gray), Pret ⊕Prel (dark gray) or Pret ⊕Prel (black); (e) detailed areas
and obtained precision and recall

7.4.2 Measures of Quality, Fall-out and Generality

Analogously, the measures of quality AveP and F -score, and the ratios of fall-out
and generality can be expressed in terms of the area of the overlapping between
polygon sets representing the ground-truth and the results from the spotting system.

We reformulate (7.2) by using the area precision at n (PA@n), that is, by comput-
ing the area precision value after truncating the result list after each polygon having
some overlapping with a polygon in the ground-truth. The average area precision is
then computed as:

AvePA =
∑|Pret|

n=1 (PA@n × r(n))

|Prel| . (7.8)

By using the area precision and area recall, we reformulate the F -score from (7.3)
as

F
β
A = (1+ β2) × PA × RA

(β2 × PA) + RA

, (7.9)
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and, by using the area precision at a certain area recall cut-off (PA(r)), we reformu-
late (7.5) as

F
β
A(r) = (1 + β2) × PA(r) × r

(β2 × PA(r)) + r
with r ∈ [0,RA]. (7.10)

Finally, if Prel is the complementary polygon set for the ground-truth, we can
reformulate the fall-out and the generality from (7.6) as

FoA = A(Pret ⊕ Prel)

A(Prel)
, GA = A(Prel)

A(Ptot)
. (7.11)

7.4.3 Measures at Symbol Level

As pointed out by Lucas in [21], precision and recall based measures are sometimes
difficult to interpret. A precision of 70% could mean that all symbols were found
with an accuracy of 70%, or on the other hand, that only 70% of the symbols were
correctly identified and the other 30% completely missed. A low precision value
can be due to a low accuracy in the recognition or to a bad location due to over-
segmenting. The recall value can also be affected by missed symbols or by under-
segmentation.

To complement the precision and recall based measures, in our experiments, we
also provide two measures focusing on the recognition at the symbol level. There
we only consider a binary concept of retrieval, that is, whether a symbol is found or
not. Let us consider one symbol Si and its polygonal representation Preli from the
ground-truth; it will be considered as recognized if

A(Preli ⊕ Pret) ≥ thr ∗ A(Preli ), (7.12)

that is, if the resulting polygons are able to overlap at least a certain percentage of
the ground-truthed representation of a symbol, this symbol is considered as recog-
nized. On the other hand, if the resulting polygons do not cover the ground-truth, the
symbol is considered as missed. Of course, as with all decisions implying a certain
threshold, its value can be critical, and the system’s evaluation can depend on it. Its
definition is completely subjective as it depends on what the user considers a sym-
bol as being detected or not. The important thing here is that this value is provided
when evaluating a system, so that the readers can easily interpret the meaning of
the evaluation results. In our case, we consider a symbol as detected if it overlaps at
least 75% of the ground-truth area.

At the symbol level, we derive the recognition rate of the spotting system under
study. In addition, if one of the polygons Pretj in the resulting set does not overlap
with any recognized symbol, it is considered a false positive. For all the possible
queries, the average of false positives Ave FP is computed. These two measures
help to better interpret the values of precision and recall.

Notice that the recognition rate is expressed as a percentage of the total number
of symbols in the ground-truth and can be used as a measure of quality by itself,
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but the false positives are not normalized and are given in absolute values. This is
due to the fact that we cannot define the negative set in terms of symbol items in
the dataset. The false positive average can only be expressed in absolute values and
used to compare methods between them.

7.4.4 Scalability Test

Finally, one of the main interests for spotting systems is that a system has to be
applicable to a large data corpora. To test the scalability of the system, i.e., its ability
to achieve similar behavior independently of the number of queried symbols, we
propose a measure to evaluate the scalability of the systems under study.

A scalable system has to yield similar responses no matter what the number of
model classes taken into account is. We can measure the scalability of a system
in terms of its variance in both precision and recall. Let us consider the synthetic
example of Fig. 7.4a which is highly damaged by the addition of new classes. Let
us define st dR and st dP , the standard deviations in precision and recall, for a cer-
tain sampling of the precision and recall plot. In Fig. 7.4b, we can see the central
tendency of all precision and recall plots with error bars following the vertical and
horizontal axes to check the effect in both precision and recall measures when con-
sidering more and more classes. The greater the deviation, the worse the system
tolerates changes in the class number; thus the system can be considered as less scal-
able. To allow an easier interpretation, the standard deviation can be computed for
the F

β
A(r)-score plots (as shown in Fig. 7.4c) having now a single variance measure

instead of one for precision and one for recall. To compare the scalability between
different methods, both the mean st d of all the samples of the standard deviation
and the maximum max(st d) of all the samples of the standard deviation are given
as variance measures.

On the other hand, the performance of a spotting system is not only affected by
the increasing number of considered models but also on the size of the document
collection. To observe how the system degrades with the expansion of the dataset,
we propose to work at the symbol level. Recognition rates and false alarms are
given to illustrate the performance variability in relation to the size of the database.
These measures help predict how the performance of a system will be affected by
the inclusion of more documents in the database. However, increasing the database
size has an important drawback. When adding new documents into the database, we
can implicitly be adding new graphical symbols contained in these new documents.
As a consequence of this, also the number of model symbols has to be increased
along with the dataset size.

7.5 Evaluating a Symbol Spotting System

In this section, to show an example of the application of the presented evaluation
framework, we tested a symbol spotting architecture. We first explain the ground-
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Fig. 7.4 Scalability test example. (a) Synthetic precision and recall plots; (b) averaged precision
and recall plot with standard deviations in recall and precision; (c) averaged F 1

A(r)-score plot with
associated standard deviations

truthing process, then we briefly detail the spotting system and the used dataset, and
finally we provide the evaluation results for this architecture.

7.5.1 Ground-Truthing

First, an annotation tool has been developed to build the ground-truth. The user can
select graphical entities in the document images roughly segmenting them using
a sketching application. All the contour pixels falling inside the delimited zone of
interest are taken as being part of the symbol. If a given connected component has
more pixels outside the zone of interest than inside, it is considered as being part of
the background. This basic annotation tool works fine with architectural drawings
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Fig. 7.5 Sketching annotation tool for ground-truth generation. (a) Graphical interface; (b) the
generated ground-truth XML file

where the symbols are usually not extensively connected with background elements.
For other kinds of documents, e.g., electronic diagrams or geographical maps, the
annotation tool should be enhanced in order to provide a trusted ground-truth. For
all the foreground pixels, we compute the convex-hull (as presented in [7]) as the
minimum area of interest which contains the symbol. Once the region of interest
is shown, the user can modify it using certain control points and label them by
their content. We can see a screen-shot of the sketching application in Fig. 7.5a.
The use of convex-hulls as the ground-truth primitive may be inadequate for some
spotting systems. The inclusion of noisy pixels in the spotting results may provoke
considerable deviations of the convex-hull from the one defined in the ground-truth.
However, the presented evaluation measures can be easily adapted to other choices
of ground-truth primitives. From coarser to more refined primitives, we can select,
for instance, to use bounding-boxes, ellipses, isothetic polygons, quad-trees, etc. as
ground-truth primitives. In all these cases, the computation of the overlap between
ground-truth and automatically extracted primitives is straightforward.

As the user labels the regions containing the graphical symbols, an XML file is
constructed to store the information about the whole library. Following the same file
structure used for page layout ground-truth presented in [5], the convex-hull coordi-
nates and the symbol category as well as other information about the document are
organized in the XML file which we can see in Fig. 7.5b.

As claimed in [19], creating a ground-truth for graphic documents is not always
straightforward due to ambiguous cases or subjectivity issues. For example, in the
architectural field, each architect tends to use its own symbol designs to represent a
furniture element. Whereas human observers have no difficulty in clustering these
elements despite the design differences, it is usually impossible for a spotting system
to be able to identify different designs as the same object. In the process of ground-
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truth building, we tried to avoid such problems, but we believe that the use of a
collaborative framework as proposed in [36] would enhance a lot the quality and the
accuracy of this ground-truth. To avoid subjective decisions on the ground-truthing
process, synthetic ground-truth can be generated for graphic rich documents, as re-
cently presented in [10]. Such tools which synthetically generate ground-truthed
data present several interesting advantages. Subjective decisions are avoided since
no human interaction is needed, thus providing an error-free labeling of graphical
items. In addition, we have complete control on the number of items in the collec-
tion and the number of symbols which have to appear in each document, making
the scalability tests much more easy and reliable. However, nowadays the data gen-
erated by these methods still appears quite artificial and the use of real data (when
possible) should be preferred.

7.5.2 Spotting Methods Under Test

The symbol spotting architecture we use to test the evaluation measures is based on
the relational indexing scheme presented in Chapter 6. Summarizing, symbols are
decomposed into basic primitives which are subsequently described by a geometric
symbol description technique. The feature vectors arising from the description are
indexed with a hashing technique. When querying this hash table, structural infor-
mation is added by means of a relational indexing technique. That is, only similar
primitives sharing the same spatial relationship are retrieved. One of the most impor-
tant points of the system is the way graphical primitives are described to be indexed.
We tested four off-the-shelf geometric symbol descriptors described below.

• Method a uses a set of simple ratios described in [32] such as the eccentricity or
the non-circularity as shape descriptors. These rough descriptors are formulated
from the shape contour of the symbol’s primitives. It is expected that the use of
such simple shape description can only discriminate very dissimilar shapes; the
system should result in a lot of false alarms, but should be tolerant to distortions
and thus retrieve almost all the instances of the queried symbol.

• Method b uses Hu’s geometric invariants [14] to describe contours. These invari-
ants are known as good shape descriptors. The expected performance is to have
good spotting rates in all aspects.

• Method c is based on a reformulation of the previous one. Geometric moments
can be formulated for polygonally approximated contours [18] which are taken
as primitives. In this case, the use of simpler primitives should result in smaller
tolerance to distortions.

• Method d uses the Fourier transform to compactly represent a curvature signature
computed over the shape contour. This descriptor is detailed in [17]. This is also
a good shape descriptor, and the system performance is expected to be good in all
aspects.
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Fig. 7.6 Symbol models and an example of a document in the database. (a) Burner symbol;
(b) chair symbol; (c) stairs symbol; (d) TV set symbol; (e) sample document

Note that we do not want to perform an exhaustive evaluation of shape descrip-
tors or primitives. These methods have been chosen because of their different na-
ture and to test if the proposed evaluation measures really determine the strong and
weak points of each method. As the descriptors are well-known among the Graph-
ics Recognition community, it is easy to assess whether the results correspond to the
expected behaviors.

7.5.3 The FPLAN-POLY Dataset

The dataset is a collection of architectural floor-plans consisting of 42 images (of
3,215 × 2,064 pixels in average) arising from four different projects. Any given
furniture symbol appears in several images in the database. The symbols taken into
account for these experiments are divided into 38 classes, and we have in total 344
instances in the document images. In a single document image, the average of sym-
bols is around 8, and the range is from 0 to 28 symbols. The models to query the
document database are cropped from the document images. We can see some exam-
ples of model symbols as well as a sample document from the database in Fig. 7.6.
More details of this dataset are given in Appendix A.
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Fig. 7.7 (a) Precision versus recall; (b) fall-out versus recall

7.5.4 Evaluation

We first present the plots showing precision versus recall and fall-out versus recall in
Fig. 7.7 for all the four spotting methods under evaluation using the whole collection
of documents. Methods b and d show an acceptable tradeoff between precision and
recall as expected. Method d misses many more symbols than method b but gives a
significantly smaller number of false positives. Method a yields good recall values,
i.e., it succeeds in retrieving most of the symbols in the document database but has
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Fig. 7.8 (a) F 1
A(r)-score plot for all methods under test; (b) F 1

A(r)-score plot depending on the
queried symbol for method b

poor precision due to the larger number of false positives. Finally, method d shows
good precision values at early recall stages but quickly falls missing more than half
of the symbols in the dataset. The proposed measures aim to stress the expected
good behavior of methods b and d and to point out the simplicity of method a as
well as the lack of tolerance of method c.

We can observe the F 1
A(r)-score plots in Fig. 7.8a. In this graph, we can see

again the clear dominance of methods b and d over the other two. As the F -score
combines both precision and recall, the methods which fail in one of those measures
are clearly demoted in the overall evaluation. Method a starts with a low precision
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Table 7.2 Measures of quality

Method AvePA F 1
A-score Rec. rate (%) Ave FP AveGA (%)

Ratios 20.08 6.87 93.62 153.42

Boundary 39.77 23.34 91.3 76.76
0.16

Line 23.69 12.57 55.62 63.89

Fourier 41.99 21.45 73.33 58.76

Table 7.3 Scalability test details

Method Recall Precision F -score

max(st dR) st dR max(st dP ) st dP max(st dF ) st dF

Ratios 11.37 6.06 4.2 2.32 4.09 2.2

Boundary 3.38 2.22 2.01 1.74 1.84 0.98

Line 1.6 1.02 2.64 2.18 2.17 1.21

Fourier 2.66 1.96 3.44 2.46 1.09 0.85

value, while the precision of method c quickly falls stopping at a 50% recall. Those
two methods are clearly at a disadvantage as expected. In Fig. 7.8b, we see how we
can use the F 1

A(r)-score plots to visually check the variance of performance of a
given method depending on the symbol the user queries.

In Table 7.2, we can see the measures of quality for all the methods. As the aver-
age precision AvePA measure does not take into account the recall, the method d is
ranked as the best. On the other hand, F 1

A-score gives the best mark for method b.
The measures working at the symbol level, which are intended to evaluate only the
recognition task, are consistent with the results shown in Fig. 7.7b. The number
of recognized symbols is related to the recall value, which ranks the methods in
the order a, b, d and c, in terms of the amount of correctly retrieved elements. On
the other hand, the average of false positives is related to the fall-off ratio, ranking
the methods in the order d , c, b and a, in terms of the false alarms present in the
results. Finally, the averaged generality gives an idea of the proportion between rel-
evant and total elements in the dataset. These last measures aim at interpreting the
precision, recall and fall-out values. For spotting applications, it is typical to have
an extremely low generality measure since the documents in the collections will
usually have much more background objects than foreground ones. This low gener-
ality explains the low precision values in both precision and recall plots and in the
average precision AvePA indicator.

Finally, the scalability test results are shown in Figs. 7.9 and 7.10. Several sets
of symbol classes are considered ranging from only 5 to 35 possible symbols to
query. We randomly selected n symbols from the dataset and computed the aver-
age precision and recall for these queries. This experiment has been repeated 100
times for the sake of stability and the averaged curves are presented in Figs. 7.9a
and 7.10a. First, in Figs. 7.9b and 7.10b, we notice that the changes in the number
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Fig. 7.9 Scalability tests for the two first methods. (a) Precision recall plots for several amount of
symbol classes; (b) averaged precision and recall plot with standard deviations following vertical
(precision) and horizontal (recall) axis; (c) averaged F 1

A(r)-score plot with associated standard
deviations

of classes affect different properties depending on the method. The recall of method
a drastically decreases when introducing more and more symbol classes, whereas
the precision of method c suffers much more than the recall. On the other hand,
methods b and d seem to be equally affected by changes in scale in both preci-
sion and recall. From Figs. 7.9c and 7.10c, we can see how the variations in the
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Fig. 7.10 Scalability tests for the two last methods. (a) Precision recall plots for several amount of
symbol classes; (b) averaged precision and recall plot with standard deviations following vertical
(precision) and horizontal (recall) axis; (c) averaged F 1

A(r)-score plot with associated standard
deviations

F 1
A(r)-score space are good indicators of the scalability of the methods under study.

We can see the quality indicators for scalability tests in Table 7.3. We present the
mean of the standard deviations and its maxima. Again, methods b and d showmuch
more scalability than methods c and a when looking at the composite measure. Fi-
nally, Fig. 7.11a and b show the scalability test at the symbol level when increasing
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Fig. 7.11 Scalability tests at symbol level. (a) Recognition rates; (b) false positives

both the number of models and the dataset size. As we can observe, the recognition
rates vary slightly, whereas the number of false alarms is exponentially increased in
all the cases along with the dataset size.

From these results, we can conclude that methods b and d seem to be much
better than the other two. Method b should be chosen when we desire to retrieve as
many symbols as possible, and on the other hand, method d is suitable if we want to
reduce the number of false positives. Method a should only be chosen if the presence
of false positives is not a problem and the user prioritizes finding all the positive
symbols despite the presence of false positives. However, its performance seems to
be affected by the number of considered symbols. Finally, method c is only suitable
if we are interested in retrieving positive symbols at the first positions of the ranked
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retrieved locations even if we completely miss the rest of the symbols. Methods b

and d also tolerate well changes in the number of considered classes and should be
considered when facing applications involving a large amount of data. On the other
hand, the strong points of methods a and c are compromised when introducing
more and more symbol classes. All these conclusions are in accordance with the
expected behavior of the studied methods, showing that the proposed evaluation
protocol emphasizes the expected strengths and weaknesses of the methods under
study.

7.6 Conclusions and Discussion

Times where algorithms were tested with a small set of data are over. Nowadays, it
is necessary to use the standard reference ground-truth and performance evaluation
protocols. The Graphics Recognition community is one of the most healthy com-
munities within the Pattern Recognition field regarding this aspect. A lot of works
and efforts are centered on proposing evaluation methods which aim tracking the
progress in a certain specific problem. As far as we know, the works focused on
symbol spotting always have been evaluated by an ad-hoc set of measures. We hope
that the proposal of the performance evaluation protocol presented in this part of the
book can be used to evaluate other spotting methods.

One of the main problems of evaluating spotting methods is that we do not have
any public dataset of real documents to test the proposed methods. Nowadays, the
only available ground-truthed dataset which can be used to test spotting and focused
retrieval of graphics is the one proposed by Delalandre et al. in [10]. The main prob-
lem of this dataset is that it is composed only of synthetical generated documents
which do not seem realistic, yet. We preferred to evaluate our work on a set of real
documents.

One of the main criticisms of using precision and recall to evaluate the perfor-
mance of classification and location tasks is that it is sometimes difficult to really
asses the behavior of the system under study. As claimed in [21], a low precision
value can be due to a low accuracy in the recognition or to a bad localization due to
over-segmenting. In addition, as pointed out in [39], the amount of overlap between
polygons seems not to be a perceptively valid measure of quality. Quality indica-
tors as the F -score have been also questioned, in [23] it is argued that this measure
makes the systems look like they are much better than they really are.

We believe that the presented measures are able to evaluate well the behavior of
symbol spotting and focused retrieval systems, emphasizing their strong and weak
points, and their tolerance to changes in scale. Precision is sometimes hard to in-
terpret or does not provide perceptively good indicators, but the point of a spotting
system is to retrieve zones of interest of document images, and the presented mea-
sures aim to measure the system’s ability to do this task. Quality indicators aim to
rank the methods according to certain ability, so even if the numbers by themselves
do not have an accurate absolute meaning they are useful to compare methods be-
tween them. Finally, precision and recall are enhanced by measures working only at
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symbol level and the generality factor which helps to interpret the meaning of the
plots. As shown in the evaluation section, the results obtained by using the proposed
evaluation protocol are consistent with the ratios working at symbol recognition
level, and most importantly, emphasize the expected strengths and weaknesses of
the methods under study.
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Chapter 8
Conclusions

Abstract In this chapter, we summarize the contributions of this book to the symbol
spotting problem and, in particular, to the application of focused retrieval of graph-
ical symbols from collections of line-drawing images. We also present a discussion
and the limitations of the presented approaches. We finally point some possible lines
of continuation on the field of symbol spotting and some improvements of the pro-
posed methods which should be further studied.

8.1 Summary of Contributions

In this book, we have introduced a complete framework for symbol spotting and, in
particular, for a focused retrieval application. As explained in Chapter 1, our work
has been motivated by the specific problem of proposing a spotting methodology
able to locate and retrieve graphical content within a database of complete docu-
ment images. A lot of interest is shown worldwide in mass digitization of document
collections and their storage in digital libraries. This results in digital repositories
rich in information provided they are semantically accessible. Although such se-
mantic access has been improved a lot for textual queries, iconic access is still in
early stages, especially when dealing with documents rich in graphical information
like technical documents. This is the starting hypothesis of the work developed in
this book. From a methodological point of view, the main challenges stem from the
nature of the queries which have to be iconic queries instead of the ASCII strings
used in the keyword-based searches. In addition to the nature of the queries, the re-
trieval of the relevant zones should be done on-the-fly. In our framework, the system
is queried by example, that is, the user segments a symbol he wants to retrieve from
the document database and this cropped image acts as the input. This particularity
reinforces the fact that the proposed spotting methods are not meant to work for a
specific set of model symbols nor have a learning stage where the relevant features
describing a certain symbol can be trained. The use of data structures having graph-
ical patterns as indices so as to provide an efficient access to the graphic information
contained in large data corpora is a must in focused retrieval applications.
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We have identified three different levels when conceiving a spotting architec-
ture. The first level aims at representing and compactly describing the primitives
that compound the graphical symbols. In the second level, these features describing
graphical symbols are organized in a particular data structure. This data structure
should be chosen carefully in order to provide efficient access to the symbol descrip-
tors. During the querying process, the data structure is traversed, and the locations
within the document images where to find similar primitives as the queried ones are
retrieved. The third level consists of a validation stage to determine the valid hy-
potheses where the queried symbol is likely to be found. Throughout this book, we
have made some contributions in each of the three stages. Let us briefly summarize
these contributions.

• Extraction of Vectorial Primitives Part III of the book has focused on the use
of geometric and structural description techniques to describe the graphical sym-
bols. This family of descriptors need a prior step of primitive extraction. Since
graphical symbols are usually composed of a union of several simple sub-shapes,
the basic primitives we have extracted to represent a graphical symbol are these
simple sub-shapes. In Chapter 4, the polygonally approximated skeletons of the
shapes have been taken as the basic primitives representing a symbol. A symbol
has been then represented by a set of line segments. Since this representation is
quite unstable, in Chapters 5 and 6, a higher level entity has been used as a prim-
itive. Adjacent vectors have been merged together into a polyline instance. We
have used the contours of the closed loops forming a symbol as the primitives to
polygonally approximate and to merge as single polylines. In Chapter 5, we have
proven that this primitive representation is more robust and representative than
the use of the line segments arising from a vectorization of the skeleton.

• Geometric Description of Symbols In order to describe these extracted primi-
tives, three different methods have been presented in the second part of the book.
In Chapter 4, we have proposed a signature model which was formulated in terms
of geometric and structural constraints among vectorial primitives, such as par-
allelisms, straight angles, etc. After representing vectorized line drawings with
attributed graphs, our approach encodes the features that are expressive enough
to create the signature. The proposed description technique is simple, yet effective
to discriminate graphical symbols. In Chapter 5, chains of adjacent segments have
been described by an attributed string formalism. In this chapter, we have used a
symbolic description instead of a numeric one. Distances between two primitives
have been computed by following a string matching algorithm with a particular
cost functions. Finally, in Chapter 6, we have proposed coarsely describing vec-
torial primitives by a reformulation of several off-the-shelf shape descriptors in
order to apply them in the vectorial domain.

• Efficient Access to Huge Amounts of Descriptors Once primitives are extracted
and described, we should organize all the data extracted from the document col-
lection in order to provide an efficient access to it. In Chapter 4, we have worked
with a window-based algorithm, so the access to the descriptors has been real-
ized in a sequential way. In Chapter 5, we have proposed the use of a lookup
table allowing a prototype-based search. By clustering primitives by similarity,
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this indexing data structure has aimed at efficiently retrieving the locations from
the document collection where similar primitives as the queried ones were to be
found. In order to reduce even more the complexity of accessing the data, we
have proposed the use of indexing structures based on the idea of multidimen-
sional hashing in Chapter 6. In particular, we have used a grid file structure to
organize the descriptor space.

• Hypotheses Validation The last of the three levels in the spotting architectures
is the validation of hypotheses. Since from the other levels we have obtained spa-
tial locations where similar primitives can be found, those locations should be
validated. Throughout this work, we have based our validation steps on the idea
of building a Hough-like voting scheme to validate the locations where several
hypotheses were present. The main contribution within this part has been mainly
introduced in Chapter 6 where spatial relationships among retrieved primitives
have been also introduced as a validation criterion, allowing a more robust iden-
tification of the zones of interest.

• Photometric Descriptors for Symbol Spotting Although we have centered our
research on a focused retrieval application dealing with line-drawing images, and
in this context, a geometric and structural approach seemed the most convenient,
we have also worked on another application in Part II of this book. An application
of document categorization via logo spotting has been presented, and well-known
photometric descriptors and matching techniques from the computer vision field
have been tested. Such description techniques have been rarely used in the Graph-
ics Recognition field, due to the bi-level nature of document images, and yet we
have shown their good performance even though the application has to face binary
and noised document images.

• Performance Evaluation Protocol Finally, in Part IV, we have presented a set
of measures to evaluate the performance of symbol spotting systems in terms of
recognition abilities, location accuracy and scalability. We have shown that the
proposed measures allowed determining the weaknesses and strengths of differ-
ent methods. In particular, we have evaluated in detail the spotting method pre-
sented in Chapter 6. Although within the Graphics Recognition community there
is significant interest in the research of the performance evaluation topic, to the
best of our knowledge, no framework for evaluating the performance of spotting
applications has been proposed in the past.

8.2 Discussion

In this book, we have made some contributions to the symbol spotting methods
and to the particular application of such methods to a focused retrieval system for
a collection of line-drawings. In the second part of the book, we presented three
different symbol spotting methods which base the description of primitives in a set
of geometric and structural constraints. The three methods should be seen as an
evolution from the most limited method to a more general and applicable in real
situations.
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Although it reaches good recognition results, our first method, presented in Chap-
ter 4, has several important limitations when being applied for spotting symbols in
large collections. In order for the vectorial signatures to reach good recognition re-
sults, we have to make the assumption that the number of segments comprising a
symbol will remain stable. When facing real data arising from a raster-to-vector
conversion step, this assumption is too strong, and the performance of the spotting
system drops. In addition, although the presented method is able to spot symbols,
it cannot be used as a focused retrieval application. The main cause is the use of
window-based systems. Windowing methods provoke a sequential access to the data
and are obviously not well suited for large collections.

The use of a prototype-based search as the one presented in Chapter 5 is clearly a
better choice than a sequential access to the data. In a retrieval by similarity frame-
work, such indexing structures allow drastically reducing the amount of distance
computations. However, the computation of the representatives from a given clus-
ter is not always straightforward. The decision of whether two primitives should
be considered as similar can be somehow subjective. In our experiments, we used
the MPEG-7 silhouette database in order to experimentally set up this kind of de-
cision thresholds. However, we believe that the performance of such systems might
be enhanced by the use of more complex classification and clustering algorithms.

Our feeling is that one of the right directions to follow in spotting-related prob-
lems for the next years is the use of coarser descriptors rather than accurate de-
scriptions techniques. We have shown that the combination of coarse description
and relational validation, i.e., combining numeric and structural description tech-
niques, yields very good results. In particular, we have proven in Chapter 6 that
there is no need for high-dimensional descriptors for spotting purposes, and with
really simple shape descriptors we can reach acceptable performances when com-
bining those descriptions with relational information. Obviously, depending on the
intended final application, the word “acceptable” may adopt several meanings. As
we have seen in Part IV, if the user of the final application is interested in retriev-
ing the most of the relevant portions of images from the collection, no matter the
number of false alarms, a simpler description should be used. If the user is more
interested in a better precision without caring for the fact that the system misses
symbols, then we should start using more and more complex and fine description
techniques. However, we strongly believe that for most of the applications, the use of
low-dimensional descriptors (in our experiments of Chapter 6, we use a maximum of
seven-dimensional feature vectors) is enough. The choice of such low-dimensional
feature vectors avoids the so-called curse of dimensionality and provides an effi-
cient access to the data. The good results obtained by such simple description tech-
niques are also favored by the inclusion of relational and structural information of
the graphical symbols. The use of a joint local numerical description and structural
analysis contributes to obtaining an important discriminative power. However, struc-
tural information should be added carefully since the analysis of complex structural
relationships (entailing comparisons in the graph domain) cannot be managed in the
context of symbol spotting due to its huge complexity.

One of the critical assumptions that we made throughout this book is that the
graphical symbols can be well represented by particular primitives, the region con-
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tours. Obviously, not in all the cases the symbols are formed by closed loops and
such proposed primitives can be used. However, the presented architecture and
framework remain valid no matter which kind of primitive representation we choose
and no matter which appropriate description we select.

Finally, we would like to mention the importance that the use of a performance
evaluation protocol has. Times where algorithms were tested with a small set of data
are over. Nowadays, it is necessary to use the standard reference ground-truth and
performance evaluation protocols. The Graphics Recognition community is one of
the most healthy communities within the Pattern Recognition field regarding this
aspect. A lot of works and efforts are centered on proposing evaluation methods
to track the progress in a certain specific problem. As far as we know, the works
focused on symbol spotting have always been evaluated by an ad-hoc set of mea-
sures. We hope that the proposal of the performance evaluation protocol presented
in Part IV can be used to evaluate other spotting methods and can help track the
progress on this topic as well as identify the strengths and weaknesses of the pro-
posed methods. However, one of the main problems is that we do not have any public
dataset of real documents to test the proposed methods. Nowadays, the only avail-
able ground-truthed dataset which can be used to test spotting and focused retrieval
of graphics is the one proposed by Delalandre et al. in [1]. The main problem of
this dataset is that it is composed of only synthetically generated documents which
do not seem realistic, yet; however, it is the only one available, and the community
related to spotting applications should start using it.

8.3 Open Challenges

Since symbol spotting is quite a novel problem, we are convinced that there is still
a lot of room for improvements and some open challenges.

First of all, the scalability of the proposed methods should be better checked
by analyzing other technical documents such as electronic diagrams or mechanical
schemes. In addition, even if we have used quite large databases, the methods should
be tested on massive data collections in order to assess their transference to real
systems.

We would also like to further investigate the use of a different architecture than
the one proposed in the introduction. We would like to use some of the spatial access
methods presented in [2] for spotting purposes. These data structures should be
able to describe and organize symbols in a single step and might be very useful for
focused retrieval applications. They have been used in related problems such as GIS
system querying for long time.

Another possible research line that we would like to investigate further is the use
of the proposed techniques to the retrieval of other elements besides graphical sym-
bols. To the best of our knowledge, most of the word spotting techniques existing
in the literature work with a prior segmentation of words and with a learning stage
where features from the words are extracted and trained. In the existing word spot-
ting methods, indexing strategies are rarely used and the access to the data is often
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sequential. We would like to apply the indexing mechanisms and the on-the-fly re-
trieval framework to the topic of retrieving typewritten or even handwritten words
in documents.

More generally, the focused retrieval problem dealing with non-textual queries
is and will be one of the major topics of interest for the computer vision and data
mining communities. The possibility of formulating queries in an abstract level (se-
mantic querying), i.e., graphics appearing in images, sounds being pronounced in
speeches, etc. will be one of the major breakthroughs of the next years. Nowadays
we are starting to see the first applications that are able to deal with massive data
collections. As an example, Google recently released a beta version of its Google
Similar Images1 search. It allows the user to search for similar images using pictures
rather than words. The similarity between images takes into account spatial infor-
mation, color, shapes, texture, etc., and the results are quite impressive. Although
from its behavior it is pretty clear that the software is getting clues from words asso-
ciated with images, the results are very promising. The similarity computation and
the indexation is all done off-line, and the interface still does not perform real-time
image analysis. The images the user would like to search for cannot be uploaded or
sketched, but need to be previously indexed.

Finally, another interesting topic which should be further studied is the use of
sketch queries instead of a query-by-example paradigm for spotting and focused re-
trieval applications. In this context, users could roughly sketch the symbol to search
for in the collection of graphical documents, thus enhancing the usability of the sys-
tem. Obviously, if the queries are sketched by the users, a distortion model has to
be introduced in order to be able to define whether or not a symbol in a document is
similar to the sketch, and to tolerate the inherent distortions of the sketches. The use
of the Gestalt laws of perceptual organization might be helpful in such applications.
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Appendix A
Databases

Abstract Throughout this work, several databases have been used, namely, the
GREC database of graphical symbols, the MPEG database of silhouette shapes,
and the floorplan database which is a selection of several real floorplans. In this
appendix, we will explain in detail all these databases. For each one, we will detail
the kind of graphical data that comprises the database, its vectorial representation,
and kinds of deformations and distortions which are applied to the data.

A.1 GREC 2005 Database

The GREC database comprises a set of graphical symbols coming from different
technical fields. It was originally created for the symbol recognition contests held in
the past GREC workshops. The results of these competitions are summarized in the
following communications [4–6].

The main goal of the contest is to provide a framework for the evaluation of
different methods for symbol recognition in graphic documents. This framework
is intended to be general and flexible enough so that it can be used to evaluate a
wide range of symbol recognition methods. The contest is based on a pre-defined
set of symbols (Tables A.1 to A.3). Using this set of symbols, different tests were
generated, consisting of several images of each symbol with increasing levels of
degradation and distortion in both bitmap images and vectorial representations.

Based on the complete collection of 150 model symbols, we have used two varia-
tions of the GREC database in our experiments. The first variation only involves the
symbols formed by straight lines. A distortion model is used to introduce noise at
the location of the endpoints by preserving the connectivity and the number of seg-
ments which comprise a symbol. The second variation is applied to all 150 models.
A degradation model is applied to the bitmap images which are then polygonally
approximated. In this variation, the number of polylines comprising a symbol is
guaranteed to be constant, but these polylines can be made with different number of
segments.
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Table A.1 GREC 2005 database (1)
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Table A.2 GREC 2005 database (2)
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Table A.3 GREC 2005 database (3)
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Fig. A.1 Example of variations for the GREC database: (a) bitmap model; (b) GREC-SEG vecto-
rial model; (c) GREC-SEG with endpoint distorition (r = 15); (d) GREC-POLY vectorial model;
(e) GREC-POLY with vectorial distortion

A.1.1 Variation GREC-SEG

In this variation,1 we have used a subset of 80 different symbols of the original
GREC database. The used symbols are only those made from straight lines and
having no arcs. For each class, 60 distorted instances have been generated by using
the following operations.

The vectorial representation of each symbol is represented by an attributed graph
where the nodes represent points and the edges are segments between two endpoints.
Each node from the graph is randomly shifted within a predefined radius r . Three
different levels of distortion are generated with values of r equal to 5, 10 and 15, re-
spectively. At each level, 20 different instances of the symbol are generated. Notice
that the graph representations aim to maintain the connectivity and the number of
segments which comprise the graphical symbol. In this variation, the symbols are
represented by segments stored in VEC format.2 Figure A.1c shows an example of
this vectorial distortion. Some complementary characteristics of this variation can
be seen in Table A.4.

1The GREC-SEG database is available at http://www.cvc.uab.cat/~marcal/GREC-SEG/.
2The vectorial file format used in the symbol recognition contests.
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Table A.4 Some
characteristics of GREC-SEG
dataset

Property Value

Number of classes 80

Total number of elements 4,800 (60 elements/class)

Max. number of segments
in a symbol

36

Min. number of segments
in a symbol

3

Mean number of segments
in a symbol

10.2

A.1.2 Variation GREC-POLY

In this variation,3 we have used all the 150 model symbols of the original GREC
database. For each class, 300 distorted instances have been generated by using the
following operations.

The bitmap images are degraded by using the method presented by Kanungo
et al. [1] to simulate the noise introduced by the scanning process. Some simple
morphological operations are applied to these degraded images to get rid of the
background noise. A connected component analysis is applied to label the closed
regions and to extract the internal and external contours comprising a symbol. These
distorted contours are then polygonally approximated by using the Rosin and West
algorithm introduced in [3]. In this variation, the symbols are composed of several
polylines each one made of a set of adjacent segments. The number of polylines
which comprise a symbol is constant for a given class, but the number of segments
of these polylines is affected by the distortion model and varies from one instance to
another. We store these symbols in DXF format. Figure A.1e shows an example of
this vectorial distortion. Some complementary characteristics of this variation can
be seen in Table A.5.

A.2 MPEG Database

The MPEG database consists of simple pre-segmented shapes defined by their outer
closed contours. This database is used in the MPEG-7 Core Experiment CE-Shape-1
(described in [2]) which aims at evaluating the performance of several 2D shape
descriptors. We have adapted a subset of this database to build a shape database in
vectorial format.

3The GREC-POLY database is available at http://www.cvc.uab.cat/~marcal/GREC-POLY/.
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Table A.5 Some
characteristics of
GREC-POLY dataset

Property Value

Number of classes 150

Total number of elements 45,000 (300 elements/class)

Max. number of polylines
in a symbol

16

Min. number of polylines
in a symbol

1

Mean number of polylines
in a symbol

3.9

Max. number of segments
in a symbol

264

Min. number of segments
in a symbol

11

Mean number of segments
in a symbol

73.7

Fig. A.2 Example of the
distortions of the
MPEG-POLY database

A.2.1 Variation MPEG-POLY

The silhouettes of the MPEG database may be affected by several distortions such
as change of view point or non-rigid object motion. As dealing with such strong
deformation was not in the scope of our work, we selected a subset of 15 shape
classes (20 elements per class) which are only affected by slight changes in shape.4

We can see some examples of the 15 shape classes in Tables A.6 and A.7.
For each contour image, we applied the same distortion model as in the GREC-

POLY variation. The noise model proposed by Kanungo et al. is applied to degrade
each image. The background noise is cleaned so the distortion only affects the shape
contours. These degraded contours are then polygonally approximated. For each im-
age, we generate 300 distorted vectorial shapes. In Fig. A.2, we can see an example

4The MPEG-POLY database is available at http://www.cvc.uab.cat/~marcal/MPEG-POLY/.
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Table A.6 MPEG database (1)

of the resulting polylines after the degradation process is applied to the same in-
stance of the carriage class. Note that as the database is made of closed contours,
the resulting vectorial shape comprises only a single closed polyline. These vecto-
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Table A.7 MPEG database (2)

rial shapes are stored in DXF format. Some complementary characteristics of this
variation can be seen in Table A.8.

A.3 FPLAN-POLY Database

The FPLAN-POLY5 database consist of a collection of 42 real floorplans in both
DWG and PDF format. The floorplans come from four different projects designed

5The FPLAN-POLY database is available at http://www.cvc.uab.cat/~marcal/FPALN-POLY/.
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Table A.8 Some
characteristics of
MPEG-POLY dataset

Property Value

Number of classes 15

Number of instances 300 (20 instances/class)

Total number of elements 90,000 (300 elements/instance)

Max. number of segments
in a shape

91

Min. number of segments
in a shape

7

Mean number of segments
in a shape

34.1

Fig. A.3 Example of the distortions of the FPLAN-POLY database

by the same architect. Nevertheless, the same symbol design can only be found in
floorplans from the same project. These originals have been ground-truthed and 388
symbols instances from 38 different symbol classes have been labeled.

To simulate the scanning acquisition process, we applied to each plan the same
strategy from the GREC-VECT and MPEG-VECT variations. The floorplan images
are degraded via the Kanungo noise, and after a cleaning process they are vectorized
to obtain the DXF files. Each floorplan image has been degraded 50 times to have a
large database. We can see the results of this distortion process in Fig. A.3. We find
the complementary characteristics of this database in Table A.9.
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Table A.9 Some
characteristics of
FPLAN-POLY dataset

Property Value

Number of real floorplans 42

Number of distorted floorplans 2,100 (50 instances/floorplan)

Number of symbol classes 38

Mean number of symbols
per floorplan

8.2

Max. number of polylines
in a floorplan

3,710

Min. number of polylines
in a floorplan

35

Mean number of polylines
in a floorplan

972.3

Mean number of segments
conforming a polyline

3.2
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