Chapter 13
Additional Topics

This chapter begins by introducing Bayesian inference for extreme value
processes, such as might be used to model high winds and flooding. It then gives
an overview of the Bayesian treatment of expert opinion, and then proceeds to an
example pointing out the pitfalls that can be encountered if ad hoc methods are
employed. We next illustrate how to encode prior distributions into OpenBUGS
that are not included as predefined distribution choices. We close this chapter with
an example of Bayesian inference for a time-dependent Markov model of pipe
rupture.

13.1 Extreme Value Processes

This section gives a brief introduction to statistical models for extreme quantities,
such as flooding levels, which are encountered in external events PRA. Much of
this material is adapted from [1], which gives an excellent overview of the subject
from a mathematical level that should be comfortable to those with a degree in
physical science or engineering, although with the exception of a quick overview
of Bayesian inference in the last chapter, the treatment of inference in [1] is from a
frequentist perspective.

As an example of the type of problem dealt with in this section, consider the
following data on annual maximum sea levels, taken from [1]. From these data,
one might wish to be able to project, with uncertainty, the maximum level for the
next 100 or 500 years. A characteristic feature of this type of problem is the desire
to extrapolate beyond the range of observed data.

The extrapolation is based on the so-called extreme value paradigm. It works by
using asymptotic statistical models to make predictions. For the example above, if
X1, X, ... are the sequence of daily maximum river levels, then we are interested
in the maximum level for an observation period of n days:

D. Kelly and C. Smith, Bayesian Inference for Probabilistic Risk Assessment, 177
Springer Series in Reliability Engineering, DOI: 10.1007/978-1-84996-187-5_13,
© Springer-Verlag London Limited 2011



178

13 Additional Topics

Fig. 13.1 Plot of annual sea
level in meters, from [1] ©
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M, = max{X,,..., X, } (13.1)

If the exact distribution of each daily maximum observation (X;) were known,
then we could find the distribution of M,,. It is given by the following, under the
(perhaps dubious) assumption that the X;s are mutually statistically independent:

PI‘(Mn < Z) = PI'(Xl < Z, X> SZ, ..
= [FEI"

B Xn SZ)

In practice, we do not know the distribution of each X;. We could estimate this
distribution, and find the distribution of M,, using the equation above, but small
errors in the estimate of F lead to large errors in F"'. However, we can find the
approximate distribution of M,, for large values of n, under certain assumptions.
We let n — o0, and this leads to a family of extreme value distributions, whose
parameters can be estimated from the observed data.

One can object to this procedure on the basis that the extrapolation to unseen
levels is faith-based; such a criticism is easy to make, and there is no real defense
against it, except to say that extrapolation is required, and using a method with some
rationale (asymptotic theory) is better than any existing alternatives. One must of
course be careful about gross violations of the underlying assumptions. For example,
what follows is based on the assumption that climate changes do not cause a sys-
tematic increase or decrease in the maximum annual river levels. Based on the plot in
Fig. 13.1, there does not appear to be any evidence of a change in the pattern of
variation over the observation period, but this is no guarantee for the future.

If you look at older references such as [2], you will find a somewhat confusing
set of limiting distributions, with names like the Gumbel distribution. Modern
references have unified all of these into a single family of limiting distributions,
referred to as the generalized extreme value (GEV) family of distributions.
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For technical reasons, we cannot just look at the limiting behavior of M,, as n —
co. Instead, we look at (M,, — a,)/b,, where {a, > 0} and {b,} are sequences of
constants that stabilize the location and scale of M, as n increases, keeping the
limiting distribution from becoming degenerate.

The big theorem is that Pr[(M,, — a,)/b, < z] — G(z) as n — oo, where G(z) has
the following form:

G@)zexp{—{l+f(Z;#)TJﬁ} (13.2)

G(z) is defined for 1 + &(z — p)/o > 0. The parameters of the GEV distribution
satisfy —o0 <yt < 00, ¢ >0, and —o0 < £ < c0. The parameter & is a shape
parameter and determines the tail behavior of G(z).

Quantiles of G(z) are often used, and are given by, for G(z,) =1 — p

n=2{1- -1l =p)) *}, £ 0

: (13.3)
p— clog[—log(l —p)], =0

Zp -

The quantity z,, is often called the return level associated with the return period
/p; z,, is exceeded, on average, once every 1/p years (if we’re measuring time in
years). Put another way, z, is exceeded by the annual maximum in any particular
year with probability p.

If we define y, = —log(1 — p), we can rewrite the quantiles as

u—%@—ﬂ?)é#O

p—ology, ¢=0

= (13.4)

If z, is plotted against log(y,), or z, is plotted against y, on a logarithmic scale,
the plot will be linear if ¢ = 0. If £ < 0, the plot approaches the limit ¢ — a/¢ as
p — 0. If £ > 0, there is no upper bound to z,. Such a graph is called a return
level plot.

13.1.1 Bayesian Inference for the GEV Parameters

We treat the annual maximum river level data in Fig. 13.1 as a random sample
from G(z) (n = 365 is close to o0). We will use OpenBUGS to perform the
Bayesian inference for the GEV parameters. We will use independent diffuse
priors: u ~ dflat(), ¢ ~ dgamma(10_4, 10_4), and ¢ ~ dflat(). The OpenBUGS
script is shown in Table 13.1. The initial values for the three chains were centered
on the maximum likelihood estimates of the parameters, which were obtained
using the R package [3]. The posterior means and 95% credible intervals are
shown in Table 13.2.
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Table 13.1 OpenBUGS script for river level example

model {

for(i in 1:N) {

level[i] ~ dgev(mu, sigma, eta)

}

sigma ~ dgamma(0.0001, 0.0001)

mu ~ dflat()

xi ~ dflat()

}

data

list(level = ¢(4.03, 3.83, 3.65, 3.88, 4.01,
4.08, 4.18, 3.8, 4.36, 3.96, 3.98, 4.69, 3.85, 3.96, 3.85, 3.93,
3.75,3.63,3.57,4.25,3.97,4.05,4.24,4.22,3.73,4.37, 4.06, 3.71, 3.96, 4.06, 4.55, 3.79, 3.89,
4.11, 3.85, 3.86, 3.86,4.21,4.01,4.11, 4.24,3.96,4.21, 3.74, 3.85, 3.88, 3.66, 4.11, 3.71, 4.18,
3.9, 3.78, 3.91, 3.72, 4, 3.66, 3.62, 4.33, 4.55, 3.75, 4.08, 3.9, 3.88, 3.94, 4.33), N = 65)

inits

list(mu=3.8, sigma=1, xi=0)

list(mu=3.9, sigma=2, xi=-0.2)

list(mu=3.8, sigma=1.5, xi=0.1)

Table 1;.2 Posterior Table Post mean 95% Interval

summaries for GEV

parameters in river level K 3.87 (3.82, 3.93)

example 4 0.20 (0.17, 0.25)
¢ —0.03 (—0.21, 0.19)

A 100 year return level can be estimated as follows. This corresponds to
p = 0.01 in Eq. 13.4. So we add the following line (based on Eq. 13.4) to the
OpenBUGS script in Table 13.1:

z.01 <- mu — sigma/xi*(1-pow (-Log(1-0.01),~x1))

The posterior mean is 4.8 m, with a 95% credible interval of (4.5, 5.4).
A 500 year return level would be given by a similar line of script for z.002.
The posterior mean for the 500 year return level is 5.1 m, with a 95% credible
interval of (4.6, 6.2).

13.1.2 Thresholds and the Generalized Pareto Distribution

One objection to the use of annual maxima is that it is wasteful of data; we throw
away all of the daily readings in each year except the largest one. Also, several values
in one year may be larger than the maximum value in another year, but this
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information is lost as well. A way around these problems is to keep all of the data, and
focus on the likelihood of exceeding some predetermined large threshold value.

If we treat X;, X, ... as a sequence of independent and identically distributed
variables, each with distribution F, then we can use the earlier GEV results as
follows, and focus on the tail behavior of the GEV distribution. In other words, we
want to find the conditional distribution of z, given that z is in the tail of the
distribution, say z > p. First, we know that

Pr(M, <2) = [F" 6(0) = exp{ =1+ ()] _1/5}

[

Taking logs of both sides gives

log G(z) ~ _{1+§(Z;“)}7% (13.5)

The Taylor series of G(z) about u is given by

G(z2) = G(p) —g(W)(z —p) = 1 — g(p)(z — 1

where we have used G(u) =~ 1 because u is assumed to be large.
The Taylor series for log[G(z)] is given by

log[G(z)] ~ log[G(w)] — % (z— )~ —g(w)(z—p)

And so we can write
log[G(z)] ~ —[1 — G(2)]
Substituting into Eq. 13.5, we find

¢

G(z)=1- [1 +;(z — 1) (13.6)

} -1

The distribution in Eq. 13.6 is called a generalized Pareto distribution (GPD).
The parameters (u, o, &) are the parameters of the GEV distribution discussed
earlier. Our argument for deriving the GPD has been approximate, but a more
rigorous argument leads to the same result. The tail of the GPD is bounded for
¢ < 0, and unbounded for ¢ > 0.

The data now consist of a sequence of independent and identically distributed
measurements, z;, 2»,..., Zn. We have to choose a threshold value (u), and we then
keep all z;s that are above this threshold value. The values above this threshold are
treated as a random sample from a GPD with parameters y, o, and ¢.

As an example, the plot in Fig. 13.2 shows daily rainfall levels (in mm) for a
period of 17,531 days, taken from [1]. Assume we have decided that a rainfall of
30 mm or more in a single day is of concern, so we set this as our threshold. The
plot in Fig. 13.3 shows the rainfall values greater than this threshold.
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Fig. 13.2 Plot of daily
rainfall in millimeter, from

(1]

Fig. 13.3 Plot of daily
rainfall values from Fig. 13.2
in excess of 30 mm
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We model these excess values as a random sample from a GPD with parameters
u = 30, o, and . We use independent, diffuse priors as before: ¢ ~ dgamma
(10_4, 10_4), and £ ~ dflat(). We could parse the data into values in excess of
30 mm in OpenBUGS, via a line of script such as rain.large[i] <- rain
[i]*step(rain[i] - 30). However, because the data file is so large, BUGS
runs very slowly if we do this. So instead, we created another data file with just the
rainfall values in excess of 30 mm. The OpenBUGS script is shown in Table 13.3.
The initial values for the two chains were centered on the maximum likelihood
estimates of the parameters, which were obtained using the R package [3]. The
posterior means and 95% credible intervals are shown in Table 13.4.
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Table 13.3 OpenBUGS script for modeling excess rainfall data as GPD
model {

for(i in 1:N) {

rain.large[i] ~ dgpar(mu, sigma, xi)

}

mu <- 30

sigma ~ dgamma(0.0001, 0.0001)

xi ~ dflat()

}

list(sigma=7, xi=0.1)
list(sigma=7.5, xi=-0.1)

Table 13.4 Posterior

: Parameter Post. mean 95% Interval
summaries for GPD parame-
ters in excess rainfall example 74 (.7, 9.4)
0.21 (0.03, 0.44)

We can also calculate return levels with the GPD model. We are interested in
finding z,,, the value that is exceeded on average every m days. Thus, for a
100 year return rainfall level, we would have (ignoring leap years) m = (365)(100).
We can write

Pr(Z > z) = Pr(Z > w)[1 — G(zm)]

The first term in this equation we can denote as p,. The number of daily rainfall
values > u has a binomial distribution with parameters p, and n = number of daily
rainfall values, which is 17,531 in our example. We will use the Jeffreys prior for
P> Which is a beta (0.5, 0.5) distribution.

We then substitute in G(z), which is the GPD, given by Eq. 13.6:

-1 1
Zm
Pr(Z > z,) =p,¢[1 +§< ﬂ)} =
o m
Solving for z,, gives
g P
=0+ [(mp,) ¢~ 1]

The OpenBUGS script to calculate the 100 year return level is shown in
Table 13.5. The posterior mean and 95% credible interval for the 100 year return
level are 119 mm and (82.8, 201.2).

13.2 Treatment of Expert Opinion

The focus of this section is on methods for using information obtained from
experts. Whether one has information from one or several experts, one would
usually need to develop a representative estimate for use in the analysis. When
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Table 13.5 OpenBUGS script to estimate 100 year return level for rainfall, based on GPD
model

model {

for(i in 1:N) {

rain.large[i] ~ dgpar(mu, sigma, xi)
}

#100 year return level

x.large ~ dbin(p.mu, 17531)

p-mu ~ dbeta(0.5, 0.5)

m <- 100*365

z.m <- mu + (sigma/xi)*(pow(m*p.mu, xi) - 1)
mu <- 30

sigma ~ dgamma(0.0001, 0.0001)
xi ~ dflat()

}

data
list(x.large=152)

list(sigma=7, xi=0.1)
list(sigma=7.5, xi=-0.1)

the opinions of several experts are elicited, methods are needed to form the
“aggregated” or “consensus” opinion. The formulation is quite simple concep-
tually. Expert opinion is simply treated as information about the unknown
parameter of interest. The information is then used to update the analyst’s own
(prior) estimate through Bayes theorem. We will describe some of the basic
techniques for a number of important classes of problems, but the coverage will
not be exhaustive as the techniques for certain classes of problems tend to become
very complicated without any assurance of significant improvement in the
resulting estimates.

13.2.1 Information from a Single Expert

In this case the expert provides an estimate for an unknown parameter of interest,
such as / in the Poisson distribution. To use this information to update the ana-
lyst’s prior distribution for A via Bayes’ Theorem, a likelihood function is needed
for the information obtained from the expert. When the epistemic uncertainty in
parameter values spans several orders of magnitude, as is common in PRA,
a lognormal distribution is a convenient likelihood function. The parameter
7 (logarithmic precision) in the lognormal distribution will represent the analyst’s
assessment of the expert’s expertise: small values of t correspond to low confi-
dence (high uncertainty) and vice versa. A bias factor can also be introduced if
desired, with bias less than one meaning the analyst believes the expert tends to
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Table 13.6 OpenBUGS script for lognormal (multiplicative error) model for information from
single expert

model {

lambda.star ~ dlnorm(mu, tau) # Lognormal likelihood for information from expert
lambda.star <- I/MTTF

mu <-log(lambda*bias)

tau <- pow(log(EF.expert)/1.645, -2)

lambda ~ dlnorm(mu.analyst, tau.analyst) # Analyst’s lognormal prior for lambda
mu.analyst <- log(prior.median)

tau.analyst <- pow(log(prior.EF)/1.645, -2)

}

data

listMMTTF=500000, bias=0.75, EF.expert=10, prior.median=0.000001, prior.EF=10)

underestimate the true value of 7, and a factor greater than one means the expert
tends to overestimate the true value.

As an example, assume the analyst’s estimate for the failure of a level sensor is
10~%/h, but the analyst is not very confident of this estimate. The analyst adopts a
lognormal distribution with this estimate as the median, and an error factor of 10 to
describe the uncertainty. The level sensor vendor (the “expert”) provides an
estimate of the mean time to failure (MTTF) for the level sensor. The vendor’s
estimate for the MTTF is 500,000 h. We can develop a posterior distribution for
the level sensor failure rate that uses these two sources of information.

The first step is to convert the MTTF estimate provided by the vendor into an
estimate of the failure rate. This can be done by taking the reciprocal of the MTTF
estimate. The analyst must assess an uncertainty factor on the vendor’s estimate,
representing their confidence in the estimate provided by the vendor. Assume that the
analyst is not very confident in the vendor’s estimate, and assesses an error factor of
10. He also believes that the expert tends to overestimate the MTTF, that is, he
underestimates the failure rate, so a bias factor of 0.75 is assessed by the analyst. The
OpenBUGS script in Table 13.6 is used to analyze this problem. Running the script
in the usual way gives a posterior mean for 4 of 2.7 x 10~%h with a 90% credible
interval of (3.2 x 1077, 8.4 x 10™°). If the analyst thought the vendor tended to
underestimate the MTTF, that is, overestimate A, he would use a bias factor greater
than one. Changing the bias factor to 5, for example, changes the posterior mean to
1.0 x10~%h with a 90% credible interval of (1.3 x 1077,3.2 x 107°).

13.2.2 Using Information from Multiple Experts

Cases encountered in practice often involve more than one expert. When multiple
experts are involved the main question concerns the method of aggregation or
pooling to form a single representative or aggregate estimate from the multiple expert
estimates. A number of ad hoc approaches have been used for combining information
from multiple experts, such as taking the geometric average (arithmetic average
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Table 13.7 Expert estimates

€ h - Expert Estimate (per hour) Confidence measure
;)itgrii(s)l:;e[ét‘r]ansmltter failure (error factor)
’ 1 3.0 x 107° 3
2 2.5 x 107° 3
3 1.0 x 107° 5
4 6.8 x 107° 5
5 2.0 x 107° 5
6 8.8 x 1077 10

Table 13.8 OpenBUGS script for combining information from multiple experts using multi-
plicative error model (lognormal likelihood)

model {
for(i in 1:N){
lambda.star[i] ~ dlnorm(mu, tau[i])
tau[i] <- pow(log(EF[i])/1.645, -2)
}
mu ~ dflat() # Diffuse prior on mu
lambda <- exp(mu) # Monitor this node for aggregate distribution

}

data

list(lambda.star=c(3.E-6, 2.5E-5, 1.E-5, 6.8E-6, 2.E-6, 8.8E-7), EF=c(3,3,5,5,5,10), N=6)
inits

list(mu=-10)

list(mu=-5)

of the logarithms) and taking the low and high estimates as the 5 and 95th percentiles
of a lognormal distribution. A justification commonly given for these ad hoc
approaches is that analytical techniques need not be more sophisticated than the pool
of estimates (experts’ opinions) to which they are applied. Therefore, a simple
averaging technique (equal weights) has often been judged satisfactory as well as
efficient, especially when the quantity of information collected is large.

The Bayesian approach of the previous section can be expanded to include
multiple experts. Basically, the hierarchical Bayes methods of Chap. 7 can be used
to develop a prior distribution representing the variability among the experts.
While mathematically cumbersome, this is straightforward to encode in Open-
BUGS, as the following example from [4] illustrates.

Six estimates are available for the failure rate of pressure transmitters. These
estimates along with the assigned measure of confidence are listed in Table 13.7.
The analyst wishes to aggregate these estimates into a single distribution that
captures the variability among the experts.

As in the previous section, the likelihood function for each expert will be
assumed to be lognormal. A diffuse prior is placed on A (actually on the logarithm
of 4). The OpenBUGS script in Table 13.8 is used to develop a distribution for 4,
accounting for the variability among the six experts. Running the script in the


http://dx.doi.org/10.1007/978-1-84996-187-5_7

13.2 Treatment of Expert Opinion 187

Table 13.9 Hypothetical

" Record number Failure mode Failures Demands
failure data for fan check
valves, from [5] 469 FTO 0 11,112
470 FTO 0 3,493
471 FTO 0 10,273
472 FTO 1 971
473 FTO 0 4,230
474 FTO 0 704
475 FTO 0 7,855
476 FTO 0 504
477 FTO 0 891
478 FTO 0 846
480 FTO 0 572
481 FTO 0 631
482 FTO 0 2,245
488 FTO 0 7,665
532 FTO 0 1,425
534 FTO 0 700
538 FTO 0 716
549 FTO 8 1,236
550 FTO 0 926
551 FTO 1 588
552 FTO 0 856
554 FTO 1 708
569 FTO 0 724
570 FTO 12 8,716
592 FTO 2 632
593 FTO 0 564

usual way gives a posterior mean for 4 of 6.5 x 10~%h, with a 90% credible
interval of 3.4 x 107%, 1.1 x 1075).

13.3 Pitfalls of ad hoc Methods

For a group of failure records, one ad hoc technique that has been encountered
by the authors is a type of data pooling that attempts to approximate the hier-
archical Bayes approaches of Chap. 7. For example, each source might be used
to generate a mean and variance as follows. If the number of failures (x) is
greater than zero, then each source can be used to generate a beta distribution for
p with parameters o = x and § = n — x, where n is the number of demands (the
standard conjugate updating approach). From the properties of a beta distribu-
tion, the mean is then x/n and the variance is approximately x(n — x)/n’. If no
failures were recorded for a particular data source, then o might be taken to be
0.5 (assuming the Jeffreys prior for p is used). For the hypothetical data in
Table 13.9, taken from [5], the overall mean and variance can be found to be
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Table 13.10 Summary of overall fan check valve prior, average-moment approach

Fitted distribution Mean 5th Percentile 95th Percentile
Beta 9.6E-4 9.4E-8 4.0E-3
Lognormal 9.6E-4 6.8E-5 3.3E-3

9.6E-4 and 2.8E-6, respectively. From these moments, the parameters of the
resulting beta distribution can be found using:

_ %ot (1 = fyoy)
b =—"——
Hior

A lognormal distribution could also be fit using these overall moments. For the
data in Table 13.9, the overall beta distribution has parameters 0.3 and 343.6. The
fitted lognormal distribution has mean 9.6E-4 and error factor (EF) of 7.

The overall posterior developed by this ad hoc method using the average-
moment approach depends on the fitted distribution and is summarized below for
two different distributions Table 13.10.

Because of the large source-to-source variability exhibited by the data in
Table 13.9, it may be inappropriate to pool the data as was done above. The
standard Bayesian approach to such a problem is to specify a hierarchical prior for
the demand failure probability, p, as described in Chap. 7. We will compare the
results from this approach with the ad hoc average-moment approach above. We
will analyze two different first-stage priors, beta and logistic-normal, with inde-
pendent diffuse hyperpriors in both cases. The OpenBUGS script in Table 13.11
was used to carry out the analysis.

13.3.1 Using a Beta First-Stage Prior

The overall average distribution representing source-to-source variability in p has
a mean of 1.2 x 1073, variance of 1.4 x 1074, and a 90% credible interval of
(3.5 x 107%°, 4.1 x 107?). The very small 5th percentile is an artifact of choosing
a beta distribution as a first-stage prior. The posterior mean of « is 0.12, and the
average variability distribution has a sharp vertical asymptote at p = 0.

13.3.2 Using a Logistic-Normal First-Stage Prior

The logistic-normal distribution is constrained to lie between 0 and 1, and because
the density function goes to O at both 0 and 1, it avoids the vertical asymptote at
p = 0 from which the above beta distribution suffers. For small values of p, the
logistic-normal and lognormal distributions are very close; we chose to use the
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Table 13.11 OpenBUGS hierarchical Bayes analysis of data in Table 13.9

model {

for(i in 1:N) {
x[i] ~ dbin(p[i], n[i]) # Binomial model for number of events in each source
pli] ~ dbeta(alpha, beta) # First-stage beta prior
#pli] <- exp(p.norm[i])/(1 + exp(p.norm[i])) # Logistic-normal first-stage prior
#p.norm[i] ~ dnorm(mu, tau)
x.rep[i] ~ dbin(p[i], n[i]) # Replicate value from posterior predictive distribution
#Generate inputs for Bayesian p-value calculation
diff.obs[i] <- pow(x[i] - n[il*plil, 2)/(n[il*p[il*(1-p[i]))
diff.repli] <- pow(x.repl[i] - n[il*p[il, 2)/(n[il*p[i]*(1-p[i]))
}

p.avg ~ dbeta(alpha, beta) #Average beta population variability curve

#p.avg ~ dlnorm(mu, tau)

#p.norm.avg ~ dnorm(mu, tau)

#p.avg <- exp(p.norm.avg)/(1 + exp(p.norm.avg))

#Compare observed failure total with replicated total

X.tot.obs <- sum(x[])

x.tot.rep <- sum(x.rep[])

percentile <- step(x.tot.obs - x.tot.rep) #Looking for values near 0.5

# Calculate Bayesian p-value

chisq.obs <- sum(diff.obs[])

chisq.rep <- sum(diff.rep[])

p-value <- step(chisq.rep - chisq.obs) #Mean of this node should be near 0.5

# Hyperpriors for beta first-stage prior

alpha ~ dgamma(0.0001, 0.0001)

beta ~ dgamma(0.0001, 0.0001)

#mu ~ dflat()

#tau <- pow(sigma, -2)

#sigma ~ dunif(0, 20)

}

inits

list(alpha=1, beta=100) #Chain 1
list(alpha=0.1, beta=200) #Chain 2
list(mu=-11, sigma=1)
list(mu=-12, sigma=5)

logistic-normal distribution because, with such large variability, the Monte Carlo
sampling in OpenBUGS can generate values of p > 1, and these have the potential
to skew the results, particularly the mean.

With a logistic-normal first-stage prior, we found the overall average distri-
bution representing source-to-source variability to have a mean of 0.01, variance
of 8.7E-3, and 90% credible interval of (7.6E-11, 1.2E-2).
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Table 13.12 Posterior results for the ad hoc versus Bayesian method comparison

Method Mean 5th Percentile 95th Percentile
Ad hoc (beta) 1.3E-4 1.4E-8 5.9E-4
Ad hoc (lognormal) 3.0E-4 4.3E-5 8.3E-4
Hierarchical Bayes (beta) 4.9E-5 5.9E-23 2.9E-4
Hierarchical Bayes (logistic-normal) 4.7E-5 2.6E-11 2.5E-4
Jeffreys prior 2.5E-4 9.8E-7 9.6E-4

Fig. 13.4 Plot of the ; : : : T
posterior results for the Ad hot (beta fit) *
Bayesian versus ad hoc : : : : 4:
method comparison
Ad hoc (lognormal fit) ; i i o——
Hierarchical Bayes (beta prior) j : —
Hierarchical Bayes (logistic- : o
normal prior) : ' T
Jeffreys prior '—F—'i—"—-
s & 8 8 3 3
w w w w W w

13.3.3 Update with New Data

Assume we would like to update the overall check valve prior with new data,
which we take to be O failures in 2,000 demands. The results of the four different
update possibilities are shown in Table 13.12. As a reference point, we include an
update of the Jeffreys prior.

As shown in Fig. 13.4, a perhaps surprising outcome is that updating the log-
normal distribution fit with the ad hoc average-moment approach gives about
the same mean and 95th percentile for p as simply updating the Jeffreys prior
(however, the 5th percentile differs between the two posteriors). The beta prior
would give about the same result if there were not a vertical asymptote at p = 0,
causing excess shrinkage of the mean toward O.

Both hierarchical Bayes analyses give similar means and 95th percentiles; the
5th percentiles differ because of the vertical asymptote in the beta first-stage prior.
Hierarchical Bayes allows the large number of sources with zero failures to more
strongly influence the result than the average-moment ad hoc approach. With no
failures in 2,000 demands, the posterior mean is pulled more towards a value of
zero in the hierarchical Bayes analysis, giving a less conservative result.
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Table 13.13 Model validation results for the ad hoc versus Bayesian method comparison

Method Total replicated failures (mean) Bayesian p-value
Ad hoc (beta) 61.0 0.001

Ad hoc (lognormal) 67.3 0.001
Hierarchical Bayes (beta) 25.1 0.44
Hierarchical Bayes (logistic-normal) 25.0 0.38

13.3.4 Model Checking

We can generate replicate failure counts for the data sources in Table 13.9, and
then use the Bayesian p-value calculated from the chi-square summary statistic
described in Chap. 4 to compare models. Table 13.13 shows the results of this
model-checking calculation. The ad hoc distributions derived from the average-
moment approach are poor at replicating the observed data: they over-predict the
total number of failures (the observed total was 25) and they under-predict the
variability in the failure count, leading to a very low Bayesian p-value. In contrast,
the hierarchical Bayes models have much better predictive validity.

13.4 Specifying a New Prior Distribution in OpenBUGS

There are times when an analyst may wish to use a distribution that is not available
directly as a choice in OpenBUGS. We have already encountered two instances of
this. In Chap. 3, we say how to specify a logistic-normal prior for p in the binomial
distribution by specifying the underlying normal distribution and then transforming.
In Chap. 9 we saw how to specify an aleatory model for failure with repair in the case
of a power-law nonhomogeneous Poisson process. There, we used the d1loglik ()
distribution, which requires us to specify the logarithm of the likelihood function. In
this section, we show how to use the dloglik () distribution to enter a prior
distribution, where there is no underlying distribution to exploit via a transformation,
as we were able to do in the case of the logistic-normal distribution.

Suppose that the analyst wishes to use a truncated exponential distribution for
p in a binomial aleatory model, this being a type of maximum entropy prior for
p, if the analyst knows a mean value, u, and lower and upper bounds a and
b, respectively. As discussed in [6], the density function is given by

_ Bel?
f(P) - e/fb _ e/fa

where f is determined by the specified mean constraint, ;. As an example, assume
that p is known to lie between a = 0.1 and b = 0.8. Assume that the mean is
specified as u = 0.7. The parameter f3 is found to be 4.5 by numerically solving the
following equation:


http://dx.doi.org/10.1007/978-1-84996-187-5_4
http://dx.doi.org/10.1007/978-1-84996-187-5_3
http://dx.doi.org/10.1007/978-1-84996-187-5_9
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Table 13.14 OpenBUGS script to specify maximum entropy prior for p

model {

p ~ dunif(0.1, 0.9)

zero <- 0

zero ~ dloglik(phi)

phi <- log(beta) + beta*p - log(exp(beta*b) - exp(beta*a))

beta <- solution(F(s), 2, 8, 0.1)

F(s) <- (b*exp(s*b) - a*exp(s*a))/(exp(s*b) - exp(s*a)) - 1/s - mu
x ~ dbin(p, n)

}

data
list(a=0.1, b=0.9, mu=0.7)
list(x=5, n=9)

beP? —aefr 1
=0
e/)’h _ eba ﬂ
The OpenBUGS script in Table 13.14, solves for f using the solution ()
function, specifies the maximum entropy prior for p, and updates it with 5 events
in 9 trials, giving a posterior mean for p of 0.63, which we note lies between the
prior mean of 0.7 and the MLE of 0.56.

13.5 Bayesian Inference for Parameters of a Markov Model

Markov models are occasionally encountered in PRA applications, especially
when time-dependence is an explicit concern. In this section, we illustrate the
capability to simultaneously perform Bayesian inference for the Markov model
parameters and solve the system of Markov ordinary differential equations (ODEjs)
within OpenBUGS.

We take as our example the Markov model used in [7] to estimate piping
rupture frequency. This model is shown in Fig. 13.5.

13.5.1 Aleatory Models for Failure

The occurrences of failures as a result of stress corrosion cracking (SC) and design
and construction defects (DC) were assumed to be described by independent
Poisson processes, with rates Agc and Apc, respectively. The occurrence of failures
overall is then described by a Poisson process with rate 4 = Agc + Apc. Data consist
of the number of SC and DC failures, ngc and npc, observed over specified
exposure times.

Reference [7] accounted for uncertainty in the exposure times via a discrete
distribution, with nine components for SC, and three for DC. Lognormal priors for
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Pipe Element States

S — success, no detectable damage
F — flaw detectable via NDE

L — detectable leak

R - rupture

State Transition Rates

¢ — flaw occurrence rate

Ae — leak failure rate given flaw
pe— rupture failure rate given flaw
p, — rupture failure rate given leak
@ — repair rate via NDE

w1 — repair rate via leak detection

Fig. 13.5 Markov model for piping rupture, taken from [7]

Asc and Apc were updated with ngc = 8 and npc = 4, with the exposure times and
weights given in Fig. 13.6.

The posterior distributions for Agc and Apc are obtained by averaging over the
weights given in Fig. 13.6. The overall failure rate, 4, is then found by summing
Asc and Apc. The posterior distribution for A is multimodal.

Occurrences of ruptures conditional upon failures were described by a binomial
distribution with parameters P(R;) and 12 (sum of ngc and npc). Each P(R)) has a
lognormal prior distribution, as given in Table 13.15.

The frequency of pipe rupture of a given size is found by multiplying 1 by P(R)).

13.5.2 Other Markov Model Parameters

Uncertainties for the other parameters were represented as described in [7], with
the exception of Pgp and Py p, for which [7] used a triangular distribution. Because
the triangular distribution is not implemented in OpenBUGS, a beta distribution
was used over the range given in [7], with a mean value approximately equal to the
mode of the triangular distribution.
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Base Exposure = (Reactor-Years)x(Welds per Reactor)=3088.6x366= 1.13E6 weld years Welds 366
Rx-yrs 3089
Base Exposureg 1,130,428

Fraction of Welds Exposure Exposure
Weld Count Uncertainty Susceptible to Stress Case Multiplier Exposure
Corrosion Cracking (SC) Probability
p=.25 [ 00625 | 0375 | 423910  weld-yrs |
High (.25 X Base)
p=.25 p-.50 R 0075 | 84,782 weld-yrs |
High (1.5 X Base) Medium