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Abstract The Hilbert transform on the real line has applications in many fields.
In particular in one-dimensional signal processing, the Hilbert operator is used to
extract global and instantaneous characteristics, such as frequency, amplitude, and
phase, from real signals. The multidimensional approach to the Hilbert transform
usually is a tensorial one, considering the so-called Riesz transforms in each of
the cartesian variables separately. In this paper we give an overview of generalized
Hilbert transforms in Euclidean space developed within the framework of Clifford
analysis. Roughly speaking, this is a function theory of higher-dimensional holo-
morphic functions particularly suited for a treatment of multidimensional phenom-
ena since all dimensions are encompassed at once as an intrinsic feature.

1 Introduction: The Hilbert Transform on the Real Line

The Hilbert transform is named after D. Hilbert, who, in his studies of integral equa-
tions, was the first to observe what is nowadays known as the Hilbert transform pair.
However, the Hilbert transform theory was developed mainly by E.C. Titchmarsh
and G.H. Hardy. It was Hardy who named it after Hilbert. The Hilbert transform
is applied in the theoretical description of many devices and has become an indis-
pensable tool for both global and local descriptions of a signal. It has been directly
implemented in the form of Hilbert analogue or digital filters which allow one to
distinguish different frequency components and therefore locally refine the struc-
ture analysis. Those filters are essentially based on the notion of analytic signal,
which consists of the linear combination of a bandpass filter, selecting a small part
of the spectral information and its Hilbert transform, the latter basically being the
result of a phase shift by π

2 on the original filter (see, e.g., [33]).
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For a real one-dimensional finite energy signal f , i.e., f ∈ L2(R), its Hilbert
transform on the real line is given by

S[f ](x) = 1

π
Pv

∫ +∞

−∞
f (t)

x − t
dt, (1)

where Pv denotes the Cauchy principal value, meaning that in the integral the sin-
gularity at t = x is approached in a symmetrical way. Infinite energy signals, such
as (piecewise) constant functions and sines and cosines, should be interpreted as
tempered distributions for which the Hilbert transform is defined as the convolution

S[f ](x) = 1

π

(
Pv

1

t
∗ f (t)

)
(x), (2)

where Pv 1
t

is the Principal Value distribution satisfying, in the distributional sense,

d

dt
ln |t | = Pv

1

t
and t Pv

1

t
= 1.

In order to recall the fundamental properties of the Hilbert transform on the real
line, we introduce the Cauchy integral of a function f ∈ L2(R):

C[f ](x, y) = − 1

2πi

∫ +∞

−∞
f (t)

(x − t) + iy
dt, y �= 0. (3)

This Cauchy integral is, as a function of the complex variable z = x + iy, holo-
morphic in the upper and lower halves of the complex plane and decays to zero for
y → ±∞. In other words, for f ∈ L2(R), its Cauchy integral C[f ](x, y) belongs
to the Hardy spaces H2(C

±), respectively defined by

H2
(
C

±) =
{
F holomorphic in C

± such that sup
y≷0

∫ +∞

−∞
∣∣F(z)

∣∣2
dx < +∞

}
. (4)

Proposition 1 The Hilbert operator S : L2(R) → L2(R), (1), enjoys the following
properties:

P(1) S is translation invariant, i.e.,

τa

[
S[f ]] = S

[
τa[f ]]

with τa[f ](t) = f (t − a).
P(2) S is dilation invariant, i.e.,

da

[
S[f ]] = sgn(a)S

[
da[f ]]

with da[f ](t) = f (t/a)/
√|a|.

P(3) S is a linear, bounded, and norm-preserving operator.
P(4) S is invertible with S−1 = −S, and thus S2 = −1.
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P(5) S is unitary, i.e., S∗S = SS∗ = 1.
P(6) S commutes with differentiation, i.e.,

d

dt

(
S[f ](t)) = S

[
d

dt
f (t)

]
.

P(7) S arises in a natural way by considering the nontangential boundary limits
(in L2 sense) of the Cauchy integral (3), i.e.,

C±[f ](x) = lim
y→

NT
0±C[f ](x, y) = ±1

2
f (x) + 1

2
i S[f ](x), x ∈ R. (5)

The operators C± are usually called the Cauchy transforms, and formulae (5) and
P(7) are the Plemelj–Sokhotzki formulae in Clifford analysis.

Thus putting H = iS we obtain an involutive, norm-preserving, and bounded
linear operator H : L2(R) → L2(R), which may be used to define the Hardy
space H2(R) as the closed subspace of L2(R) consisting of functions g for which
H [g] = g. We call those functions g ∈ H2(R) analytic signals, inspired by the
fact that the nontangential boundary limit C+[f ] of the holomorphic (or analytic)
Cauchy integral C[f ], (3), indeed belongs to the Hardy space H2(R). The real and
imaginary parts u = Re[g] and v = Im[g] of an analytic signal g satisfy the Hilbert
formulae

H [u] = iv and H [iv] = u. (6)

It follows that

g = (1 + H)[u] and g = (1 + H)[iv], (7)

showing that an analytic signal contains redundant information since it can be re-
covered from its real (or its imaginary) part solely. Note that the Hardy spaces
H2(R) and H2(C

+), (4), are isomorphic, since the nontangential boundary limit
for y → 0+ of F(z) ∈ H2(C

+) exists a.e. and belongs to H2(R), and the Cauchy
integral in C

+ of F(x + i0) precisely is F(z).
In the frequency space the Hilbert transform, which is convolutional in nature,

takes the form of a multiplication operator. Denoting by F the usual Fourier trans-
form, for a function f ∈ L2(R), we have

F
[
H [f ]](ω) = sgnωF [f ](ω) and

H
[
F [f ]](ω) = −F

[
sgn tf (t)

]
(ω).

(8)

In particular the Fourier spectrum of an analytic signal g ∈ H2(R) is a causal func-
tion with only positive frequencies, and conversely; more explicitly, it reads:

F [g](ω) = F (1 + H)[u](ω) = (1 + sgnω)F [u](ω)

=
{

2F [u](ω), ω > 0,

0, ω < 0.
(9)
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2 Hilbert Transforms in Euclidean Space

The Hilbert transform was first generalized to m-dimensional Euclidean space by
means of the Riesz transforms Rj in each of the cartesian coordinates xj , j =
1, . . . ,m, given by

Rj [f ](x) = lim
ε→0+

2

am+1

∫
Rm\B(x,ε)

xj − yj

|x − y|m+1
f (y)dV (y), (10)

where am+1 = 2π(m+1)/2

Γ ((m+1)/2)
denotes the area of the unit sphere Sm in R

m+1. It was
Horváth who, already in his 1953 paper [29], introduced the Clifford vector-valued
Hilbert operator

S =
m∑

j=1

ejRj . (11)

The multidimensional Hilbert transform was taken up again in the 1980s and further
studied in, e.g., [21, 22, 27, 32, 36] in the Clifford analysis setting.

Clifford analysis is a function theory which offers an elegant and powerful gener-
alization to higher dimension of the theory of holomorphic functions in the complex
plane. In its most simple but still useful setting, flat m-dimensional Euclidean space,
Clifford analysis focusses on so-called monogenic functions, i.e., null solutions of
the Clifford vector-valued Dirac operator

∂x =
m∑

j=1

ej ∂xj
, (12)

where (e1, . . . , em) forms an orthonormal basis for the quadratic space R
m underly-

ing the construction of the Clifford algebra R0,m, and where the basis vectors satisfy
the multiplication rules

ej ek + ek ej = −2 δj,k, j, k = 1, . . . ,m. (13)

Monogenic functions have a special relationship with harmonic functions of sev-
eral variables: they are refining their properties, since the Dirac operator factorizes
the m-dimensional Laplacian ∂2

x = −Δm. Euclidean space R
m is embedded in the

Clifford algebra R0,m by identifying the point (x1, . . . , xm) ∈ R
m with the vector

variable

x =
m∑

j=1

ej xj . (14)

For more details on Clifford analysis and its applications, we refer to, e.g.,
[2, 20, 23].
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2.1 Definition and Properties

In the framework of Euclidean Clifford analysis, the (Clifford–)Hilbert transform
for a suitable function or distribution f is given by

H [f ](x) = 2

am+1
e0 Pv

∫
Rm

x − y

|x − y|m+1
f (y)dV (y)

= 2

am+1
e0 lim

ε→0+

∫
|x−y|>ε

x − y

|x − y|m+1
f (y)dV (y). (15)

In the above expression, e0 is an additional basis vector for which also

e2
0 = −1 and e0 ej + ej e0 = −2 δ0,j , j = 1, . . . ,m. (16)

Furthermore, · stands for the usual conjugation in the Clifford algebra R0,m+1,
i.e., the main anti-involution for which ej = −ej , j = 0, . . . ,m. As in the one-
dimensional case, there is a strong relationship between the Hilbert transform and
the Cauchy integral of a function f ∈ L2(R

m). The functions considered here take
their values in the Clifford algebra R0,m+1. The space L2(R

m) is equipped with the
R0,m+1-valued inner product and corresponding squared norm:

〈f,g〉 =
∫

Rm

f (x) g(x) dV (x), ‖f ‖2 = [〈f,f 〉]0, (17)

where [λ]0 denotes the scalar part of the Clifford number λ. The Cauchy integral of
f ∈ L2(R

m) is defined by

C[f ](x) = C[f ](x0, x) = 1

am+1

∫
Rm

x0 + e0(x − y)

|x0 + x − y|m+1
f (y)dV (y), x0 �= 0.

(18)
Observe the formal similarity with the Cauchy integral (3) of f ∈ L2(R), x0 taking
the role of y, and the vector y taking the role of t . It is a (left-)monogenic function in

the upper and lower half spaces R
m+1± = {x0e0 + x : x ∈ R

m, x0 ≷ 0}. By a mono-
genic function in R

m+1 is meant a function annihilated by the Cauchy–Riemann
operator,

Dx = e0 ∂x = e0(e0∂x0 + ∂x) = ∂x0 + e0 ∂x, (19)

which decomposes the Laplace operator in R
m+1, DxDx = Δm+1.

Moreover the Cauchy integral decays to zero as x0 → ±∞. Summarizing, for a
function f ∈ L2(R

m), its Cauchy integral C[f ](x0, x), (18), belongs to the Hardy
spaces H2(R

m+1± ), respectively defined by

H2
(
R

m+1±
) =

{
DxF = 0 in R

m+1± such that sup
x0≷0

∫ +∞

−∞
∣∣F(x0 + x)

∣∣2
dx < +∞

}
.

(20)
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The properties of the multidimensional Hilbert transform are summarized in the
following proposition; they show a remarkable similarity with those of the one-
dimensional Hilbert transform listed in Proposition 1.

Proposition 2 The Hilbert transform H : L2(R
m) → L2(R

m) enjoys the following
properties:

P(1) H is translation invariant, i.e.,

τb

[
H [f ]] = H

[
τb[f ]]

with τb[f ](x) = f (x − b), b ∈ R
m.

P(2) H is dilation invariant, i.e.,

da

[
H [f ]] = H

[
da[f ]]

with da[f ](x) = 1
am/2 f (x/a), a > 0.

P(3) H is a norm-preserving, bounded, and linear operator.
P(4) H is an involution and thus invertible with H−1 = H .
P(5) H is unitary with H∗ = H .
P(6) H anticommutes with the Dirac operator (12).
P(7) H arises in a natural way by considering the nontangential boundary limits

in L2 sense of the Cauchy integral (18):

C±[f ](x) = lim
x0→

NT
0±C[f ](x0, x) = ±1

2
f (x) + 1

2
H [f ](x), x ∈ R

m. (21)

In the distributional sense, this boundary behavior is explicited by

E(0±, x) = lim
x0→0±E(x0, x) = ±1

2
δ(x) + 1

2
K(x), (22)

where E(x0, x) is the fundamental solution of the Cauchy–Riemann operator
Dx , (19):

DxE(x0, x) = Dx

(
1

am+1

x0 − e0x

|x0 + e0x|m+1

)
= δ(x0, x), (23)

and K is the Hilbert convolution kernel:

H [f ] = K ∗ f = 2

am+1
e0 Pv

x

|x|m+1
∗ f. (24)

As each function in the Hardy space H2(R
m+1± ), (20), possesses a nontangential

L2 boundary limit as x0 → 0±, one is lead to the introduction of the Hardy space
H2(R

m) as the closure in L2(R
m) of the nontangential boundary limits F(x + 0)

as x0 → 0+ of the functions F(x0, x) in H2(R
m+1+ ). As moreover the Cauchy in-

tegral of F(x + 0) is precisely F(x0, x), we may conclude that the Hardy spaces
H2(R

m+1+ ) and H2(R
m) are isomorphic.
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As the Hardy space H2(R
m) is, by definition, a closed subspace of the space

L2(R
m), the latter space may be decomposed as the orthogonal direct sum

L2
(
R

m
) = H2

(
R

m
) ⊕ H2

(
R

m
)⊥

. (25)

The corresponding projection operators are precisely the Cauchy transforms ±C±
since it can be directly verified that

f = C+[f ] − C−[f ];
C+[

C+[f ]] = C+[f ];(−C−)[−C−[f ]] = (−C−)[f ];
C+[

C−[f ]] = C−[
C+[f ]] = 0;〈

C+[f ],C−[f ]〉
L2

= 0.

The analytic signal C+[f ] ∈ H2(R
m) and the anti-analytic signal (−C−[f ]) ∈

H2(R
m)⊥ thus possess a monogenic extension to H2(R

m+1± ), respectively. Note that
the Hardy space H2(R

m) and its orthogonal complement H2(R
m)⊥ are nicely char-

acterized by means of the Hilbert and Cauchy transforms:

Lemma 1 A function g ∈ L2(R
m) belongs to H2(R

m) if and only if H [g] = g, or
C+[g] = g, or C−[g] = 0.

Lemma 2 A function h ∈ L2(R
m) belongs to H2(R

m)⊥ if and only if H [g] = −g,
or C+[h] = 0, or C−[h] = −h.

2.2 Analytic Signals

Because of the properties mentioned in the preceding subsection, the functions in
H2(R

m) already deserve to be called analytic signals in R
m. But then their fre-

quency contents should show a property similar to one-dimensional causality (9),
thus involving a multidimensional analogue of the Heaviside step function. As in
the one-dimensional case, the Hilbert transform (15) in frequency space takes the
form of a multiplication operator; for a function f ∈ L2(R

m), there holds

F
[
H [f ]](y) = e0iξF [f ](y) and H

[
F [f ]](y) = e0 F

[
i ωf (x)

]
(y), (26)

where F denotes the standard Fourier transform in R
m given by

F
[
f (x)

]
(y) =

∫
Rm

f (x) exp
(−i〈x, y〉)dV (x), (27)

and ω = x/|x| and ξ = y/|y| may be interpreted as the multidimensional analogues
of the signum-function sgn(x) = x/|x| on the real line. As an aside, these formulae
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allow the practical computation of the Hilbert transform by means of the Fourier
transform:

H [f ](x) = F −1[e0 i ξF [f ](y)
]
. (28)

The Fourier spectrum of the Cauchy transforms C±[f ] (21) of a function f ∈
L2(R

m) then read

F
[
C±[f ]] = ± 1

2
F [f ] + 1

2
e0 i ξ F [f ]

= ± ψ± F [f ], (29)

where we have introduced the mutually annihilating idempotents

ψ+ = 1

2
(1 + e0 i ω) and ψ− = 1

2
(1 − e0 i ω) (30)

satisfying the following properties:

(i) ψ2± = ψ±
(ii) ψ+ψ− = ψ−ψ+ = 0

(iii) ψ+ + ψ− = 1
(iv) ψ+ − ψ− = e0 i ω

(v) ie0ωψ± = ±ψ±
The functions ψ±, (30), thus are the Clifford algebra-valued multidimensional

analogues to the Heaviside step function. They were introduced independently by
Sommen [35] and McIntosh [32]. They allow for the practical computation of the
Cauchy transforms of a function f ∈ L2(R

m) through

C±[f ] = F −1[± ψ± F [f ]], (31)

which will be used in the next subsection. Now take an analytic signal g ∈ H2(R
m);

then, in accordance with Lemma 1, g = H [g] or g = 1
2 (g + H [g]) = C+[g] and

C−[g] = 0, from which it follows that

F [g] = F
[
C+[g]] = ψ+F [g], (32)

whereas, trivially,

F
[
C−[g]] = −ψ−F [g] = 0, (33)

which is the multidimensional counterpart to the “vanishing negative frequencies”
in one dimension.

We now show that, similarly to the splitting of a complex signal into its real
and imaginary parts, see (6), a Clifford algebra-valued analytic signal can be split
into two components satisfying multidimensional Hilbert formulae. To that end,
we observe that, by the introduction of the additional basis vector e0, the Clifford
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algebra R0,m+1 may be decomposed, using two copies of the Clifford algebra R0,m,
as follows:

R0,m+1 = R0,m ⊕ e0 R0,m. (34)

Thus, if g is an R0,m+1-valued analytic signal, it can be written as g = u + e0 v,
where u and v are R0,m-valued functions satisfying, in view of Lemma 1,

H [u] = e0 v and H [e0 v] = u. (35)

This means that an analytic signal g is completely determined by one of its compo-
nents u or v:

g = (1 + H)[u] = (1 + H)[e0 v], (36)

and moreover shows a Fourier spectrum only containing ψ+-frequencies and dou-
bling those of u or v:

F [g] = (1 + e0 i ξ) F [u] = (1 + e0 i ξ) F [e0 v]
= 2ψ+ F [u] = 2ψ+ F [e0 v]. (37)

Similar considerations hold for anti-analytic signals in H2(R
m)⊥.

2.3 Monogenic Extensions of Analytic Signals

For any f ∈ L2(R
m), the Cauchy transforms ±C±[f ], (21), are (anti-)analytic sig-

nals, thus showing monogenic extensions to R
m±. A first possibility to construct these

monogenic extensions is by using the Cauchy integral, leading to the monogenic
functions

C
[
C+[f ]] =

{
C[f ] in R

m+,

0 in R
m−,

(38)

C
[−C−[f ]] =

{
0 in R

m+,

−C[f ] in R
m−,

(39)

which moreover tend to zero as x0 → ±∞. However there is also another way
to construct monogenic extensions to R

m+1 of functions in R
m, albeit that they

have to be real-analytic. This method, the so-called Cauchy–Kowalewska extension
principle, is a typical construct of Clifford analysis; for a given real-analytic function
φ in R

m, a monogenic extension in an open neighborhood in R
m+1 of R

m is given
by

CK[φ] = exp (−x0e0∂x)[φ] =
+∞∑
j=0

(−1)j

j ! x
j

0 (e0∂x)
j [φ]. (40)
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In particular the scalar-valued and real-analytic Fourier kernel exp (i〈x, y〉) in R
m

is monogenically extended to the whole of R
m+1 by

CK
[
exp

(
i〈x, y〉)] =

+∞∑
j=0

(−1)j

j ! x
j

0 (e0iy)j
[
exp

(
i〈x, y〉)]

= exp(−ix0e0y) exp
(
i〈x, y〉), (41)

which takes its values in spanC(e0e1, . . . , e0em).
In view of (31), i.e.,

C+[f ] = F −1[ψ+ F [f ]], (42)

we thus obtain, following an idea of [34] and [30], as a monogenic extension of
C+[f ]:

CK
[
C+[f ]](x0, x)

= (2π)−m

∫
Rm

exp
(
i〈x, y〉) exp

(−ix0e0y
)
ψ+F [f ](y) dV (y). (43)

A direct computation yields

CK
[
C+[f ]](x0, x)

= (2π)−m

∫
Rm

exp
(
i〈x, y〉) exp(−x0ρ)ψ+F [f ](y) dV (y)

= (2π)−m

∫
Sm−1

ψ+ dS(ξ)

∫ +∞

0
exp

((
i〈x, ξ〉 − x0

)
ρ
)
ρm−1F [f ](ρξ) dρ,

(44)

since

exp (−ix0e0y)ψ+ = exp (−x0ρ)ψ+, (45)

where we have once more used spherical coordinates with y = ρξ . This further
leads to

CK
[
C+[f ]](x0, x)

= (2π)−m

∫
Sm−1

ψ+ dS(ξ)L
[
ρm−1F [f ](ρξ)

](
x0 − i〈x, ξ 〉), (46)

where L denotes the Laplace transform. It is clear that this monogenic extension
tends to zero only as x0 → +∞. Thus, with restriction to R

m+, we obtain

C[f ](x0, x) = (2π)−m

∫
Sm−1

ψ+ dS(ξ) L
[
ρm−1 F [f ](ρξ)

]

× (
x0 − i〈x, ξ〉), x0 > 0. (47)
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In a similar way, we obtain in R
m−

C[f ](x0, x) = (2π)−m

∫
Sm−1

ψ− dS(ξ) L
[
ρm−1 F [f ](ρξ)

]

× (−x0 − i〈x, ξ 〉), x0 < 0. (48)

2.4 Example 1

The direct sum decomposition of finite-energy signals goes through for tempered
distributions and even more so for compactly supported distributions. Let us illus-
trate this by the case of the delta- or Dirac-distribution δ(x) in R

m. Its Cauchy
integral is given by

C[δ](x0, x) = E(x0, x) ∗ δ(x) = E(x0, x) = 1

am+1

x0 − e0 x

|x0e0 + x|m+1
, (49)

which is monogenic in R
m+1± and even in R

m+1\{0} w.r.t. the Cauchy–Riemann
operator Dx (19). This implies that as long as x �= 0, there is a continuous transition
of this Cauchy integral over R

m as the common boundary of R
m+1+ and R

m+1− . Thus
the “jump” over R

m of C[δ](x0, x) will occur at x = 0, and indeed

C±[δ](x) = ± 1

2
δ(x) + 1

2
K(x) (50)

with K the Hilbert kernel (24), since

H [δ](x) = K ∗ δ(x) = K(x) = 2

am+1
e0 Pv

x

|x|m+1
. (51)

The direct sum decomposition of the Dirac-distribution δ(x) now follows readily:

δ(x) =
(

1

2
δ(x) + 1

2
K(x)

)
+

(
1

2
δ(x) − 1

2
K(x)

)
. (52)

The Cauchy integral of the first component is given by

C
[
C+[δ]] =

{
C[δ] = E(x0, x) in R

m+1+ ,

0 in R
m+1− ,

(53)

while the Cauchy integral of the second component is given by

C
[−C−[δ]] =

{
0 in R

m+1+ ,

−C[δ] = −E(x0, x) in R
m+1− .

(54)
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As the Hilbert transform is involutive, we obtain for the transform of the Hilbert
kernel itself:

H [K](x) = H2[δ](x) = δ(x), (55)

which is confirmed by the convolution

H [K] = K ∗ K = 4

a2
m+1

Pv
x

|x|m+1
∗ Pv

x

|x|m+1
= δ(x). (56)

This leads to the direct sum decomposition of the Hilbert kernel K(x):

K(x) =
(

1

2
K(x) + 1

2
δ(x)

)
+

(
1

2
K(x) − 1

2
δ(x)

)
, (57)

where both components may be monogenically extended through their Cauchy inte-
gral to respectively R

m+1± by the functions ±E(x0, x). Note in this connection that
(±C±)[δ] = C±[K].

As the delta-distribution δ(x) is R0,m valued—in fact real valued—and its Hilbert
transform K(x) is e0 R0,m valued, they sum up to an R0,m+1-valued analytic signal
δ(x) + K(x) which has its frequencies supported by ψ+ and doubling those of
δ(x). This is confirmed by the following results in frequency space. For the standard
Fourier transform (27), we have F [δ] = 1; thus,

F [K] = F

[
2

am+1
Pv

x

|x|m+1

]
= e0 i ξ , (58)

and thus also

F
[
δ(x) + K(x)

] = 1 + e0 i ξ = 2ψ+. (59)

As already mentioned, the (anti-)analytic signals ±C±[δ](x) = 1
2 δ(x)± 1

2 K(x) =
C±[K](x) may be monogenically extended to R

m+1± by the functions ±E(x0, x) ∈
H2(R

m+1± ), respectively, defined in (23). Alternatively the Cauchy–Kowalewska
technique (40) leads to

CK
[
C+[δ]] = (2π)−m

∫
Sm−1

ψ+ dS(ξ)L
[
ρm−1](x0 − i〈x, ξ 〉), x0 > 0, (60)

and

CK
[−C−[δ]] = (2π)−m

∫
Sm−1

ψ− dS(ξ)L
[
ρm−1](−x0 − i〈x, ξ 〉), x0 < 0.

(61)
As L[ρm−1] = Γ (m)

zm for Re(z) > 0, we arrive at

CK
[
C+[δ]] = (m − 1)!

(2π)m

∫
Sm−1

ψ+
(x0 − i〈x, ξ〉)m dS(ξ), x0 > 0, (62)
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and

CK
[−C−[δ]] = (m − 1)!

(2π)m

∫
Sm−1

ψ−
(−x0 − i〈x, ξ 〉)m dS(ξ), x0 < 0. (63)

But iψ+ = −e0ξψ+ and iψ− = e0ξψ−, from which it follows that

ψ+
(x0 − i〈x, ξ 〉)m = ψ+

(x0 + 〈x, ξ 〉ole0ξ)m
(64)

and

ψ−
(x0 + i〈x, ξ 〉)m = ψ−

(x0 + 〈x, ξ〉e0ξ)m
. (65)

Moreover the CK-extensions under consideration CK[C+[δ]] = E(x0, x), x0 > 0,
and CK[−C−[δ]] = −E(x0, x), x0 < 0, both are R0,m+1 valued, so their complex-
imaginary parts should vanish, which implies that

∫
Sm−1

ξ

(x0 + 〈x, ξ 〉e0ξ)m
dS(ξ) = 0, (66)

finally leading to

E(x0, x) = 1

2

(m − 1)!
(2π)m

∫
Sm−1

1

(x0 + 〈x, ξ 〉e0ξ)m
dS(ξ), x0 > 0, (67)

and

E(x0, x) = (−1)m−1

2

(m − 1)!
(2π)m

∫
Sm−1

1

(x0 + 〈x, ξ〉e0ξ)m
dS(ξ), x0 < 0. (68)

2.5 Example 2

Again we start with a scalar-valued tempered distribution

u(x) = exp
(
i〈a, x〉) = cos 〈a, x〉 + i sin 〈a, x〉, (69)

with a nonzero constant Clifford vector a, for which we put α = a/|a|.
From one-dimensional theory it is known that the Hilbert transform H = iS acts

as a rotator, mapping cosax and sinax to i sgn(a) sinax and −i sgn(a) cosax, re-
spectively. It is now shown that the Clifford–Hilbert transform (15) enjoys a similar
property in higher dimension. We have successively

F
[
u(x)

]
(y) = (2π)mδ(y − a), (70)
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and thus

F
[
H

[
u(x)

]]
(y) = e0iξF

[
u(x)

]
(y) = (2π)me0iξδ(y − a)

= (2π)mie0αδ(y − a), (71)

from which it follows that

H [u](x) = i e0 α exp
(
i 〈a, x〉) = e0 α

(− sin〈a, x〉 + i cos〈a, x〉), (72)

and thus

H
[
cos〈a, x〉] = −(e0 α) sin〈a, x〉 (73)

and

H
[
sin〈a, x〉] = (e0 α) cos〈a, x〉. (74)

Note that α = a/|a| is the multidimensional counterpart to the one-dimensional
sgn(a) and that (e0α)2 = −1.

We also obtain the following analytic signals:

(i) cos〈a, x〉 − (e0 α) sin〈a, x〉 = exp(−(e0 α)〈a, x〉)
(ii) sin〈a, x〉 + (e0α) cos〈a, x〉 = (e0α) exp(−(e0α)〈a, x〉)

(iii) (1 + i(e0 α)) exp(i〈a, x〉) = (1 + i(e0 α)) exp(−(e0α)〈a, x〉)

3 Generalized Hilbert Transforms in Euclidean Space

In the early 2000s, four broad families Tλ,p , Uλ,p , Vλ,p , and Wλ,p , with λ ∈ C and
p ∈ N0, of specific distributions in Clifford analysis were introduced and studied
by Brackx, Delanghe, and Sommen (see [3, 5]), and it was shown that the Hilbert
kernel K , introduced in the preceding section, is one of those distributions acting as
a convolution operator (see, e.g., [1]). Later on, those distributions were normalized
and thoroughly discussed in a series of papers [4, 6, 7, 9–11, 14]. We recall the
definitions of those normalized distributions, where l ∈ N0:

⎧⎨
⎩

T ∗
λ,p = π

λ+m
2 +p Tλ,p

Γ ( λ+m
2 +p)

, λ �= −m − 2p − 2l,

T ∗−m−2p−2l,p = (−1)pl!π m
2 −l

22p+2l (p+l)!Γ ( m
2 +p+l)

Pp(x)∂x
2p+2lδ(x),

(75)

⎧⎨
⎩

U∗
λ,p = π

λ+m+1
2 +p Uλ,p

Γ ( λ+m+1
2 +p)

, λ �= −m − 2p − 2l − 1,

U∗−m−2p−2l−1,p = (−1)p+1l!π m
2 −l

22p+2l+1(p+l)!Γ ( m
2 +p+l+1)

(
∂x

2p+2l+1δ(x)
)
Pp(x),

(76)

⎧⎨
⎩

V ∗
λ,p = π

λ+m+1
2 +p Vλ,p

Γ ( λ+m+1
2 +p)

, λ �= −m − 2p − 2l − 1,

V ∗−m−2p−2l−1,p = (−1)p+1l!π m
2 −l

22p+2l+1(p+l)!Γ ( m
2 +p+l+1)

Pp(x)
(
∂x

2p+2l+1δ(x)
)
,

(77)
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⎧⎨
⎩

W ∗
λ,p = π

λ+m
2 +p Wλ,p

Γ ( λ+m
2 +p)

, λ �= −m − 2p − 2l,

W ∗−m−2p−2l,p = (−1)p+1l!π m
2 −l

22p+2l+2(p+l+1)!Γ ( m
2 +p+l+1)

xPp(x)x ∂x
2p+2l+2δ(x),

(78)

the action of the original distributions Tλ,p , Uλ,p , Vλ,p , and Wλ,p on a testing func-
tion φ being given by

〈Tλ,p,φ〉 = am

〈
Fp r

μ+pe+ ,Σ(0)
p [φ]〉, (79)

〈Uλ,p,φ 〉 = am

〈
Fp r

μ+pe+ ,Σ(1)
p [φ]〉, (80)

〈Vλ,p,φ 〉 = am

〈
Fp r

μ+pe+ ,Σ(3)
p [φ]〉, (81)

〈Wλ,p,φ〉 = am

〈
Fp r

μ+pe+ ,Σ(2)
p [φ]〉. (82)

We explain the notation in the above expressions. First, the symbol Fp stands for the
well-known distribution “finite parts” on the real line; furthermore, μ = λ + m − 1,
and pe denotes the “even part of p,” defined by pe = p if p is even and pe = p − 1
if p is odd. Finally, Σ

(0)
p , Σ

(1)
p , Σ

(2)
p , and Σ

(3)
p are the generalized spherical mean

operators defined on scalar-valued testing functions φ by

Σ(0)
p [φ] = rp−peΣ(0)

[
Pp(ω)φ(x)

] = rp−pe

am

∫
Sm−1

Pp(ω)φ(x)dS(ω), (83)

Σ(1)
p [φ] = rp−pe Σ(0)

[
ωPp(ω)φ(x)

] = rp−pe

am

∫
Sm−1

ωPp(ω)φ(x)dS(ω), (84)

Σ(2)
p [φ] = rp−pe Σ(0)

[
ωPp(ω)ωφ(x)

]

= rp−pe

am

∫
Sm−1

ωPp(ω)ωφ(x)dS(ω), (85)

Σ(3)
p [φ] = rp−pe Σ(0)

[
Pp(ω)ωφ(x)

] = rp−pe

am

∫
Sm−1

Pp(ω)ωφ(x)dS(ω), (86)

where Pp(ω) is an inner spherical monogenic of degree p, i.e., a restriction to the
unit sphere Sm−1 of a monogenic homogeneous polynomial in R

m.
Making use of those Clifford distributions, we have then constructed two pos-

sible generalizations of the Hilbert transform (15), aiming at preserving as much
as possible of its traditional properties P(1)–P(7) listed in Proposition 2 (see also
[6, 9]). It is shown that in each case some of the properties—different ones—are
inevitably lost. Nevertheless we will obtain in Sect. 3.1 a bounded singular inte-
gral operator on L2(R

m) and in Sect. 3.2 a bounded singular integral operator on
appropriate Sobolev spaces.
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3.1 First generalization

In the first approach the Hilbert transform is generalized by using other kernels for
the convolution, stemming from the families of distributions mentioned above. They
constitute a refinement of the generalized Hilbert kernels introduced by Horváth in
[28], who considered convolution kernels, homogeneous of degree (−m), of the
form

Pv
S(ω)

rm
, x = rω, r = |x|, ω ∈ Sm−1, (87)

where S(ω) is a surface spherical harmonic. We investigate generalized Hilbert con-
volution kernels which are homogeneous of degree (−m) as well, however involv-
ing inner and outer spherical monogenics. We already have mentioned that an inner
spherical monogenic is the restriction to the unit sphere Sm−1 of a monogenic ho-
mogeneous polynomial in R

m. An outer spherical monogenic is the restriction to
the unit sphere Sm−1 of a monogenic homogeneous function in the complement of
the origin; an example of an outer spherical monogenic is the “signum” function ω

since it is the restriction to Sm−1 of the function x/|x|m+1, which is monogenic in
R

m\{0}.
We consider the following specific distributions:

T−m−p,p = Fp
1

rm
Pp(ω) = Pv

Pp(ω)

rm
,

U−m−p,p = Fp
1

rm
ωPp(ω) = Pv

ωPp(ω)

rm
,

V−m−p,p = Fp
1

rm
Pp(ω)ω = Pv

Pp(ω)ω

rm
,

W−m−p,p = Fp
1

rm
ωPp(ω)ω = Pv

ωPp(ω)ω

rm
,

Pv
Sp+1(ω)

rm
= − 1

2(p + 1)
(U−m−p,p + V−m−p,p),

Pv
ωSp+1(ω)

rm
= − 1

2(p + 1)
(W−m−p,p − T−m−p,p),

(88)

where Pp(x) = ∂xSp+1(x), Sp+1(x) being a scalar-valued solid spherical harmonic
and hence Pp(x) being a vector-valued solid spherical monogenic. These distribu-
tions are homogeneous of degree (−m), and the functions occurring in the numera-
tor satisfy the cancellation condition

∫
Sm−1

Ω(ω)dω = 0, (89)

Ω(ω) being either of Pp(ω), ωPp(ω), Pp(ω)ω, or ωPp(ω)ω.
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Their Fourier symbols, given by (see [14])

F [T−m−p] = i−pπ
m
2

Γ (
p
2 )

Γ (
m+p

2 )
Pp(ω), (90)

F [U−m−p] = i−p−1π
m
2

Γ (
p+1

2 )

Γ (
m+p+1

2 )
ω Pp(ω), (91)

F [V−m−p] = i−p−1π
m
2

Γ (
p+1

2 )

Γ (
m+p+1

2 )
Pp(ω)ω, (92)

F [W−m−p] = i−p−2π
m
2

pΓ (
p
2 )

(m + p)Γ (
m+p

2 )

(
ωPp(ω)ω − m − 2

p
Pp(ω)

)
, (93)

are homogeneous of degree 0 and moreover are bounded functions, whence

T−m−p,p ∗ f, U−m−p,p ∗ f, V−m−p,p ∗ f, W−m−p,p ∗ f (94)

are bounded Singular Integral Operators on L2(R
m), which are direct generaliza-

tions of the Hilbert transform H (15), preserving (properly adapted analogues of
the) properties P(1)–P(3).

We now investigate whether the new operators (94) will fulfil some appropriate
analogues of the remaining properties P(4)–P(7) as well. To this end, we closely
examine the kernel T−m−p,p . First, we observe that

T−m−p,p ∗ T−m−p,p = (−1)p

2p
π

m
2

Γ (m
2 )

Γ (p)

[
Γ (

p
2 )

Γ (
m+p

2 )

]2

T−m,pPp(∂x), (95)

which directly implies that the generalized Hilbert transform T−m−p,p ∗ f does
not satisfy an analogue of property P(4). Next, as it can easily be shown that the
considered operator coincides with its adjoint—up to a minus sign when p is even—
we may also conclude, in view of (95), that it will not be unitary, neither does it
commute with the Dirac operator.

Finally, the most important drawback of this first generalization is undoubtedly
the fact that we cannot establish an analogue of property P(7), since it turned out
impossible to find a generalized Cauchy kernel in R

m+1 \ {0}, for which a part of
the boundary values is precisely the generalized Hilbert kernel T−m−p,p . Similar
conclusions hold for the other generalized kernels used in (88).

3.2 Second Generalization

Subsequent to the observations made in the previous subsection, we now want to
find a type of generalized Hilbert kernel which actually preserves property P(7). To
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that end, we define the function

Ep(x) = Ep(x0, x) = 1

am+1,p

x̄e0

|x|m+1+2p
Pp(x)

= 1

am+1,p

x0 + e0x

|x0e0 + x|m+1+2p
Pp(x), (96)

where

am+1,p = (−1)p

2p

2π
m+1

2

Γ (m+1
2 + p)

, (97)

involving a homogeneous polynomial Pp(x) of degree p which we take once more
to be vector valued and monogenic. It is stated in the next proposition that these
functions Ep are good candidates for generalized Cauchy kernels. Note that for p =
1 and taking P0(x) = 1, the standard Cauchy kernel, i.e., the fundamental solution
of the Cauchy–Riemann operator Dx in R

m+1 is reobtained.
For the proofs of all results mentioned in the remainder of this section, we refer

the reader to [9].

Proposition 3 The function Ep , (96), satisfies the following properties:

(i) Ep ∈ Lloc
1 (Rm+1) and lim|x|→∞ Ep(x) = 0 ∀p ∈ N

(ii) Dx Ep(x) = Pp(∂x)δ(x) in distributional sense ∀p ∈ N

Here, Lloc
1 (Rm+1) stands for the locally integrable functions on R

m+1.

Next, we calculate their nontangential distributional boundary values as x0→0±.
To that end, we first formulate an interesting auxiliary result in the following lemma.

Lemma 3 For p ∈ N0, one has

lim
x0→0+

x0

|x0 + x|m+1+2p
= 1

2p+1p! am+1,p ∂
2p
x δ(x), (98)

am+1,p being given by (97).

Proposition 4 For each p ∈ N0, one has

Ep(0+, x) = lim
x0→0+Ep(x0, x) = 1

2
Pp(∂x)δ(x) + 1

2
Kp(x), (99)

Ep(0−, x) = lim
x0→0−Ep(x0, x) = −1

2
Pp(∂x)δ(x) + 1

2
Kp(x), (100)

where

Kp(x) = 2

am+1,p

e0 Fp
ω̄Pp(ω)

rm+p
= − 2

am+1,p

e0U
∗−m−2p,p. (101)
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The distribution Kp (101) arising in the previous proposition allows for the def-
inition of a generalized Hilbert transform Hp given by

Hp[f ] = Kp ∗ f. (102)

Because the Fourier symbol

F [Kp] = − 2

am+1,p

e0i
−p−1U∗

0,p (103)

of the kernel Kp is not a bounded function, the operator Hp , (102), will also not be
bounded on L2(R

m). However, the Fourier symbol (103) is a polynomial of degree
p, implying that Hp is a bounded operator between the Sobolev spaces Wn

2 (Rm) →
W

n−p

2 (Rm) for n ≥ p. It can indeed be proved that:

Proposition 5 The generalized Cauchy integral Cp given by Cp[f ] = Ep ∗f maps
the Sobolev space Wn

2 (Rm) into the Hardy space H 2(Rm+1+ ) for each natural num-
ber n ≥ p.

Corollary 1 The generalized Hilbert transform Hp , (102), is a bounded linear op-
erator between the Sobolev spaces Wn

2 (Rm) and W
n−p

2 (Rm) for each natural num-
ber n ≥ p.

Comparing further the properties of Hp with those of the standard Hilbert trans-
form H in Clifford analysis shows that the main objective for this second gener-
alization is fulfilled on account of Proposition 4: the kernel Kp arises as a part of
the boundary values of a generalized Cauchy kernel Ep , which constitutes an ana-
logue of the “classical” property P(7). However, the kernel Kp is a homogeneous
distribution of degree (−m − p), meaning that Hp is not dilation invariant.

4 The Anisotropic Hilbert Transform

The (generalized) multidimensional Hilbert transforms on R
m considered in Sects. 2

and 3 might be characterized as isotropic, since the metric in the underlying space is
the standard Euclidean one. In this section we adopt the idea of an anisotropic (also
called metric-dependent or metrodynamical) Clifford setting, which offers the pos-
sibility of adjusting the coordinate system to preferential, not necessarily mutually
orthogonal, directions intrinsically present in the m-dimensional structures or sig-
nals to be analyzed. In this new area of Clifford analysis (see, e.g., [13, 19]), we have
constructed the so-called anisotropic (Clifford–)Hilbert transform (see [15, 17]),
a special case of which was already introduced and used for two-dimensional image
processing in [26].
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4.1 Definition of the Anisotropic Hilbert Transform

For the basic language of anisotropic Clifford analysis, we first present the no-
tion of metric tensor, namely a real, symmetric, and positive definite tensor G̃ =
(gkl)k,l=0,...,m of order (m + 1), which gives rise to two bases in R

m+1: a covari-
ant basis (e0, . . . , em) and a contravariant basis (e0, . . . , em) corresponding to each
other through the metric tensor, viz

ek =
m∑

l=0

gkle
l and el =

m∑
k=0

glkek with G̃−1 = (
gkl

)
k,l=0,...,m

. (104)

Then, a Clifford algebra is constructed, depending on the metric tensor involved,
and all necessary definitions and results of Euclidean Clifford analysis are adapted
to this metric-dependent setting. We mention, e.g., that the classical scalar product
is replaced by the symmetric bilinear form

〈x, y〉G̃ =
m∑

k=0

m∑
l=0

gklx
kyl. (105)

The anisotropic Dirac and Cauchy–Riemann operators in R
m+1 take the forms

∂G̃ =
m∑

k=0

ek ∂xk (106)

and

DG̃ = e0∂G̃ = ∂x0 + e0∂G, (107)

where G = (gkl)k,l=1,...,m in R
m×m is the subtensor of the metric tensor G̃ in

R
(m+1)×(m+1). The fundamental solution of the latter operator,

EG̃(x) = 1

am+1

xe0

(〈x, x〉G̃)(m+1)/2
, (108)

is now used as the kernel in the definition of the metrodynamical Cauchy integral
given, for a function f ∈ L2(R

m) or a tempered distribution, by

CG̃[f ] = EG̃ ∗ f, (109)

which is monogenic in R
m+1+ (and in R

m+1− ). Taking limits in L2 or distributional
sense as x0 → 0+ gives, through careful calculation (see [15]),

lim
x0→0+

CG̃[f ] = 1√
det G̃

(
1

2
f + 1

2
e0Hani ∗ f

)
(110)
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with

Hani(x) =
√

det G̃

(
2

am+1
Pv

x

(〈x, x〉G)(m+1)/2

)
. (111)

Similarly, as x0 → 0−, we obtain

lim
x0→0−

CG̃[f ] = 1√
det G̃

(
−1

2
f + 1

2
e0Hani ∗ f

)
. (112)

The above results are the anisotropic Plemelj–Sokhotzki formulae, and they give
rise to the definition of the anisotropic Hilbert transform:

Hani[f ] = e0Hani ∗ f. (113)

As already mentioned in the introduction of this section, for m = 2, such an
anisotropic Hilbert transform was considered in [26], however, for the special case
where the e0-direction in R

3 is chosen perpendicular to the R
2-plane spanned by

(e1, e2). This corresponds to a G̃-matrix of order 3 in which g01 = g02 = 0.

4.2 Properties of the Anisotropic Hilbert Transform

In order to study the properties of the linear operator Hani, (113), we will also
have to pass to frequency space, so we need to introduce a proper definition for
the anisotropic Fourier transform on R

m in the present metric-dependent setting:

FG[f ](x) =
∫

Rm

exp
(−2πi〈x, y〉G

)
f (y)dV (y)

=
∫

Rm

exp
(−2πixT Gy

)
f (y)dV (y). (114)

Due to the assumed symmetric character of the tensor G, it is found that

FG[f ](x) = F [f ](Gx). (115)

The following properties of Hani may then be proved (see [15]):

(P1) Hani is translation invariant.
(P2) Hani is dilation invariant, which is equivalent to its kernel Hani, (111), being a

homogeneous distribution of degree −m.
(P3) Hani is a bounded operator on L2(R

m), which is equivalent to its Fourier sym-
bol

FG[Hani](x) =
√

det G̃

detG
i

x

〈x, x〉G (116)

being a bounded function.
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(P4) Up to a metric related constant, Hani squares to unity or, more explicitly,

(Hani)
2 = det G̃

detG
1. (117)

(P5) Hani is selfadjoint.
(P6) Hani arises in a natural way by considering nontangential boundary values of

the Cauchy integral CG̃, (109), in R
m+1.

Note that the anisotropic Hilbert transform shows the influence of the underlying
metric in two different ways: (1) the determinant of the “mother” metric G̃ on R

m+1

arises as an explicit factor in the expression for the kernel, and (2) the induced metric
G on R

m comes into play explicitly through the denominator of the kernel and also
implicitly through its numerator since the vector x contains the (skew) basis vectors
(ek)

m
k=1.

The particularity of this metric dependence may also be seen in frequency space,
where the metric G not only arises in the Fourier symbol (116) of Hani but is
also hidden in the definition of the anisotropic Fourier transform itself, while the
“mother” metric G̃ again only is seen to arise through its determinant.

The above observations do raise the question whether there exists a one-to-one
correspondence between a given Hilbert transform on (Rm,G) and the associated
Cauchy integral on (Rm+1, G̃) from which it originates, or in other words: does the
Hilbert transform contain enough geometrical information to completely determine
the “mother” metric G̃? The answer is negative. It turns out that, given a Hilbert
kernel

Hani = c

(
2

am+1
Pv

x

(〈x, x〉)(m+1)/2

)
(118)

being dependent on the m-dimensional metric G and on the strictly positive constant
c, it is part of the boundary value of a Cauchy kernel in (Rm+1, G̃) with

G̃ =
(

g00 uT

u G

)
, (119)

where (g00, u
T ) are characterized, but not uniquely determined, by the equation

g00 − uT G−1 u = c

detG
. (120)

4.3 Example

It is interesting to demonstrate the difference between the Clifford–Hilbert transform
of Sect. 2 and its anisotropic counterpart. So consider in R

m again the scalar-valued
tempered distribution f (x) = exp(i〈a, x〉), where a is a constant, nonzero Clifford
vector.
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In the isotropic case we find (see Sect. 2.4)

H [f ](x) = ie0
a

|a| exp
(
i〈a, x〉). (121)

In the anisotropic case we successively obtain

FG[f ](y) = F [f ](Gy) = δ(Gy − a), (122)

and thus

FG

[
HG,c[f ]](y) = e0 i

√
det(G̃)

det(G)

G−1a

|G−1a|G δ(Gy − a) (123)

with
∣∣G−1a

∣∣
G

= [(
G−1a

)T
G

(
G−1a

)] 1
2 = [

aT G−1a
] 1

2 . (124)

Subsequent calculations reveal that

F −1
G

[
δ(Gy − a)

]
(x) =

∫
Rm

exp
(
i xT Gy

)
δ(Gy − a)dV (y)

= 1

det(G)

∫
Rm

exp
(
ixT y′)δ(y′ − a

)
dV

(
y′)

= 1

det(G)
exp

(
i〈a, x〉). (125)

Hence,

Hani[f ](x) = ie0

√
det(G̃)

(det(G))3

G−1a

|G−1a| exp
(
i〈a, x 〉). (126)

5 Conclusion

The concept of analytic signal on the real time axis is fundamental in signal pro-
cessing. It contains the original signal and its Hilbert transform and allows for the
decomposition of a finite-energy signal into its analytic and anti-analytic compo-
nents. In mathematical terms, this is rephrased as the direct sum decomposition of
L2(R) into the Hardy space H2(R) and its orthogonal complement, and the analytic
signals are precisely the functions in H2(R). In this paper we have presented several
generalizations of the Hilbert transform and the corresponding analytic signal to
Euclidean space of arbitrary dimension, and we have indicated the properties which
are characteristic in the one-dimensional case and persist in each of those general-
izations. It becomes apparent, also from the given examples, that the Clifford analy-
sis framework is most appropriate to develop these multidimensional Hilbert trans-
forms. That Clifford analysis could be a powerful tool in multidimensional signal
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analysis became already clear during the last decade from the several constructions
of multidimensional Fourier transforms with quaternionic or Clifford algebra-valued
kernels with direct applications in signal analysis and pattern recognition, see [8, 12,
18, 24–26, 31] and also the review paper [16], wherein the relations between the dif-
ferent approaches are established. In view of the fact that in the underlying paper the
interaction of the Clifford–Hilbert transforms with only the standard Fourier trans-
form was considered, their interplay with the various Clifford–Fourier transforms
remains an intriguing and promising topic for further research.
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