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Abstract The aim of this paper is to define a Clifford–Fourier transform that is
suitable for color image spectral analysis. There have been many attempts to define
such a transformation using quaternions or Clifford algebras. We focus here on a
geometric approach using group actions. The idea is to generalize the usual defi-
nition based on the characters of abelian groups by considering group morphisms
from R

2 to spinor groups Spin(3) and Spin(4). The transformation we propose is
parameterized by a bivector and a quadratic form, the choice of which is related to
the application to be treated. A general definition for 4D signal defined on the plane
is also given; for particular choices of spinors, it coincides with the definitions of
S. Sangwine and T. Bülow.

1 Introduction

During the last years several attempts have been made to generalize the classical ap-
proach of scalar signal processing with the Fourier transform to higher-dimensional
signals. The reader will find a detailed overview of the related works at the beginning
of [1]. We only mention in this introduction some of the approaches investigated by
several authors.

Motivated by the spectral analysis of color images, S. Sangwine and T. Ell have
proposed in [13] and [5] a generalization based on the use of quaternions: a color
corresponds to an imaginary quaternion, and the imaginary complex i is replaced by
the unit quaternion μ coding the grey axis. A quaternionic definition is also given
by T. Bülow and G. Sommer in the context of analytic signals, for signals defined on
the plane and with values in the algebra H of quaternions [3]. Concerning analytic
signals, M. Felsberg makes use of the Clifford algebras R2,0 and R3,0 to define an
appropriate Clifford–Fourier transform [6].
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A generalization in the Clifford algebras context appears also in J. Ebling and
G. Scheuermann [4]. The authors mainly use their transformation to analyze fre-
quencies of vector fields. Using the same Fourier kernel, B. Mawardi and E. Hitzer
obtain an uncertainty principle for R3,0 multivector functions [11]. The reader may
find in [1] definitions of Clifford–Fourier transform and Clifford–Gabor filters based
on the Dirac operator and Clifford analysis.

One could ask the reason why to propose a new generalization. An important
thing when dealing with Fourier transform is its link with group representations.
We then recall in Sect. 2 the usual definition of the Fourier transform of a function
defined on an abelian Lie group by means of the characters of the group. The defini-
tion we propose in Sect. 3 relies mainly on the generalization of the notion of char-
acters; that is why we study the group morphisms from R

2 to Spin(3) and Spin(4).
These morphisms help to understand the behavior of the Fourier transform with re-
spect to well chosen spinors. We treat in Sect. 4 three applications corresponding to
specific bivectors of R4,0. They consist in filtering frequencies according to color,
hue, and chrominance part of a given color. In Sect. 5, we show that for particular
choices of group morphisms and under well-chosen identification with quaternions,
the Clifford–Fourier transform we propose coincides with the definitions of S. Sang-
wine [5] and T. Bülow [2].

2 Fourier Transform and Group Actions

Let us recall briefly some basic ideas related to the group approach of the definition
of the Fourier transform. Details can be found in the Appendix; see also [15] for
examples of applications to Fourier descriptors.

Let G be a Lie group. The Pontryagin dual of G, denoted ̂G, is the set of equiv-
alence classes of unitary irreducible representations of G. It appears that if G is
abelian, every irreducible unitary representation of G is of dimension 1, i.e., is a
continuous group morphism from G to S1. This is precisely the definition of a char-
acter. It is well known that the characters of R

m are given by

(x1, . . . , xm) �−→ ei(u1x1+···+umxm)

with real u1, u2, . . . , um. This shows that ̂Rm = R
m. The characters of SO(2) are the

group morphisms

θ �−→ einθ

for n ∈ Z, and the corresponding Pontryagin dual is Z. The characters of Z/nZ are
the group morphisms

u �−→ ei 2πku
n

for k ∈ Z/nZ, from which we deduce that Z/nZ is its own Pontryagin dual.
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In the general case (provided that G is unimodular), the Fourier transform of a
function f ∈ L2(G;C) is defined on ̂G by

̂f (ϕ) =
∫

G

f (x)ϕ
(

x−1)dν(x)

(for ν a well-chosen invariant measure on G). Applying this formula to the case G =
R

m, resp. G =SO(2), resp. G = Z/nZ leads to the usual definition of the Fourier
transform, resp. Fourier coefficients, resp. discrete Fourier transform.

Traditionally, the Fourier transform in L2(Rm, (Rn,‖‖2)) is defined by n stan-
dard Fourier transforms in L2(Rm,R) on each one of the components, embedding R

into C. Using group representations theory, we are able to define Fourier transforms
that treat jointly the different components.

From now on, we deal with the abelian group G = (R2,+) since this paper is
devoted to image processing applications.

Let us make some crucial remarks about the case n = 2.
Let f be a real- or complex-valued function defined on R

2. Its Fourier transform
is given by

̂f (a, b) =
∫

R2
f (x, y)e−i(ax+by) dx dy.

Identifying C with (R2,‖‖2), we have S1 = SO(2), and the action of S1 on C,
given by the complex multiplication, corresponds to the action of the group SO(2)
on (R2,‖‖2). Hence, we can define a Fourier transform in L2(R2, (R2,‖‖2)) using
the action of group morphisms from R

2 to SO(2) on (R2,‖‖2). These ones are real
unitary representations of the group R

2 of dimension 2.
The Fourier transform of f ∈ L2(R2, (R2,‖‖2)) defined above can be written in

the Clifford algebra language. Indeed, from the embedding of (R2,‖‖2) into R2,0,
f may be viewed as an R

1
2,0-valued function

f (x, y) = f1(x, y)e1 + f2(x, y)e2,

where e2
1 = e2

2 = 1 and e1e2 = −e2e1. From this point of view, the Fourier transform
of f is given by

̂f (a, b) =
∫

R2

[

cos
(

(ax + by)/2
)

1 + sin
(

(ax + by)/2
)

e1e2
]

× (

f1(x, y)e1 + f2(x, y)e2
)

× [

cos
(−(ax + by)/2

)

1 + sin
(−(ax + by)/2

)

e1e2
]

dx dy

using the fact that the action of Spin(2) on R
1
2,0 corresponds to the action of SO(2)

on (R2,‖‖2) (see Appendix). We can write this last formula in the following form:

̂f (a, b) =
∫

R2

(

f1(x, y)e1 + f2(x, y)e2
)⊥ϕa,b(−x,−y)dx dy,
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where ϕa,b is the morphism from R
2 to Spin(2) that sends (x, y) to

exp[((ax + by)/2)(e1e2)], and ⊥ denotes the action v⊥s = s−1vs of Spin(2) on
R

1
2,0 and, more generally, the action of Spin(n) on R

1
n,0.

Note that group morphisms from R
2 to Spin(2) followed by the action on R

1
2,0

correspond to the action of group morphisms from R
2 to SO(2) on (R2,‖‖2). In

other words, they are real unitary representations of R
2 of dimension 2 too.

Remark 1 As in the standard case, where the Fourier transform of a real-valued
function is defined by embedding R into C, we define here the Fourier transform of
a real-valued function by embedding R into R

2.

Starting from these elementary observations, we now proceed to generalize this
construction for R

n-valued functions defined in R
2. In other words, we are looking

for a generalization of the action of group morphisms to SO(2) on the values of an
(R2,‖‖2)-valued function.

3 Clifford–Fourier Transform in L2(R2, (Rn,Q))

Let f ∈ L2(R2, (Rn,Q)) where Q is a positive definite quadratic form. We pro-
pose to associate the Fourier transform of f with the action of the following group
morphisms on the values of f , depending on the parity of n.

If n is even, then we consider the morphisms

ϕ : R
2 −→ SO(Q).

If n is odd, then we embed (Rn,Q) into (Rn+1,Q⊕ 1) and consider the morphisms

ϕ : R
2 −→ SO(Q ⊕ 1).

Thus the generalization we propose is based on the computation of real unitary
representations of dimension n or n+1 of the abelian group R

2. The main fact is that
we no more consider equivalent classes of representations. This means in particular
that the Fourier transform we define depends on the positive definite quadratic form
of R

n.

Remark 2 Recall that up to a change of the basis, a positive definite quadratic form
is given by the identity matrix. Thus, f may always be viewed as an (Rp,‖‖2)-
valued function (p denotes n if n is even and n + 1 if n is odd). As a consequence
of the change of the basis, SO(Q) become SO(p) and group morphisms from R

2 to
SO(Q) become group morphisms from R

2 to SO(p).

As for the case of R
2-valued functions, we can rewrite the Fourier transform

in the Clifford algebra language, using the fact that the action of Spin(p) on R
1
p,0

corresponds to the action of SO(p) on R
p . Moreover, it appears to be much more
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easier to compute group morphisms to Spin(p) rather than group morphisms to the
matrix group SO(p).

If n is even, then from the embedding of R
n into Rn,0, f may be viewed as an

R
1
n,0-valued function:

f (x, y) = f1(x, y)e1 + f2(x, y)e2 + · · · + fn(x, y)en,

where e2
i = 1 and eiej = −ej ei . Denoting by ϕ a group morphism from R

2 to
Spin(n), we define the Clifford–Fourier transform of f by

̂f (ϕ) =
∫

R2
ϕ(x, y)f (x, y)ϕ(−x,−y)dx dy =

∫

R2
f (x, y)⊥ϕ(−x,−y)dx dy.

If n is odd, we first embed R
n into R

n+1. Then, from the embedding of R
n+1 into

Rn+1,0, f may be viewed as an R
1
n+1,0-valued function:

f (x, y) = f1(x, y)e1 + f2(x, y)e2 + · · · + fn(x, y)en + 0en+1,

where e2
i = 1 and eiej = −ej ei . Denoting by ϕ a group morphism from R

2 to
Spin(n + 1), we define the Clifford–Fourier transform of f by

̂f (ϕ) =
∫

R2
ϕ(x, y)f (x, y)ϕ(−x,−y)dx dy =

∫

R2
f (x, y)⊥ϕ(−x,−y)dx dy.

Remark 3 If n is even, the Clifford–Fourier transform of f is an R
1
n,0-valued func-

tion. If n is odd, the Clifford–Fourier transform of f is an R
1
n+1,0-valued function.

Remark 4 For Q = 1 on R, the Fourier transforms we define correspond to the
standard Fourier transforms of R-valued functions.

From now on, we deal with the case n = 3 since this paper is devoted to color
image processing. However, we have seen above that we treat the cases n = 3 and
n = 4 in the same manner, by computing group morphisms from R

2 to Spin(4).

3.1 The Cases n = 3,4: Group Morphisms from R
2 to Spin(4)

This part is devoted to the computation of group morphisms from R
2 to Spin(4).

Using the fact that the group Spin(4) is isomorphic to the group Spin(3) ×
Spin(3), we first compute group morphisms from R

2 to Spin(3).
One can verify that Spin(3) is the group

Spin(3) = {

a1 + be1e2 + ce2e3 + de3e1, a2 + b2 + c2 + d2 = 1
}

and is isomorphic to the group of unit quaternions.
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Proposition 1 The group morphisms from R
2 to Spin(3) are given by

(x, y) �−→ e
1
2 (ux+vy)B,

where B belongs to S
2
3,0 , the set of unit bivectors in R3,0 (see Appendix), and u and

v are real.

Proof We have to determine the abelian subalgebras of the Lie algebra spin(3) =
R

2
3,0 of the Lie group Spin(3). More precisely, as the exponential map of R

2 is onto,

group morphisms from R
2 to Spin(3) are given by Lie algebra morphisms from the

abelian Lie algebra R2 of R
2 to spin(3). Taking two generators (f1, f2) of R2, any

morphism ϕ from R2 to spin(3) satisfies

ϕ(f1) × ϕ(f2) = 0.

We deduce that Im(ϕ) is an abelian subalgebra of R
2
3,0 whose dimension is inferior

or equal to 2. If a = a1e1e2 + a2e3e1 + a3e2e3 and b = b1e1e2 + b2e3e1 + b3e2e3

satisfy a × b = 0, then the structure relations of R
2
3,0, i.e.,

e1e2 × e3e1 = e2e3, e3e1 × e2e3 = e1e2, e2e3 × e1e2 = e3e1,

imply

(a1b2 − a2b1)e2e3 − (a1b3 − a3b1)e3e1 + (a2b3 − a3b2)e1e2 = 0.

This shows that two commuting elements of R
2
3,0 are colinear and that the abelian

subalgebras of R
2
3,0 are of dimension 1. If we write ϕ(f1) = 1

2uB and ϕ(f2) = 1
2vB

for some u,v ∈ R and B ∈ S
2
3,0, we see that the morphisms from R2 to R

2
3,0 are

parameterized by two real numbers and one unit bivector and are given by

ϕu,v,B : (x, y) �→ 1

2
(ux + vy)B.

Consequently, the group morphisms from R
2 to Spin(3) are the morphisms ϕ̃u,v,B

with

ϕ̃u,v,B : (x, y) �→ e
1
2 (ux+vy)B . �

Let us recall what group is Spin(4). Every τ in Spin(4) is of the form

τ = u + Iv

= (a1 + be1e2 + ce2e3 + de3e1) + I
(

a′1 + b′e1e2 + c′e2e3 + d ′e3e1
)

,

where I denotes the pseudoscalar of R4,0, and the following relations hold:

uu + vv = 1, uv + vu = 0.
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The morphism χ : Spin(4) −→ Spin(3) × Spin(3) with

χ(u + Iv) = (u + v,u − v)

is an isomorphism. An alternative description of Spin(4) relies on the following fact:
the morphism ψ : H1 × H1 −→ SO(4) defined by

(τ, ρ) �−→ (v �−→ τvρ)

(where v is a vector of R
4 considered as a quaternion) is a universal covering of

SO(4) (see [12]). This means that Spin(4) is isomorphic to H1 × H1. We will use
this remark later on to compare our transform to Sangwine’s and Bülow’s ones.

Proposition 2 The group morphisms from R
2 to Spin(4) are the morphisms

˜φu,v,B,w,z,C that send (x, y) to

e
1
8 [x(u+w)+y(v+z)][B+C+I (B−C)] e

1
8 [x(u−w)+y(v−z)][B−C+I (B+C)]

with u, v, w, z real and B , C two elements of S
2
3,0.

Proof The group law of Spin(3) × Spin(3) being

(

(a, b), (c, d)
) → (ac, bd),

the group morphisms from R
2 to Spin(3) × Spin(3) are the morphisms ϕ̃u,v,B,w,z,C

defined by

ϕ̃u,v,B,w,z,C : (x, y) �→ (

e
1
2 (ux+vy)B, e

1
2 (wx+zy)C

)

with u, v, w, z real and B , C two elements of S
2
3,0.

By χ−1, the group morphisms from R
2 to Spin(4) are the ˜φu,v,B,w,z,C that send

(x, y) to

e
1
2 (ux+vy)B + e

1
2 (wx+zy)C

2
+ I

e
1
2 (ux+vy)B − e

1
2 (wx+zy)C

2
.

However, this writing is not convenient to determine group morphisms to SO(4)
since it does not provide explicitly the rotations in R

4 that ˜φu,v,B,w,z,C generates
by its action on R

1
4,0. The solution comes from an “orthogonalization” of the corre-

sponding Lie algebras morphism from R2 to R
2
4,0, namely the linear map

φu,v,B,w,z,C(X,Y ) = T(0,0)
˜φu,v,B,w,z,C(X,Y ),

where T denotes the linear tangent map. By definition,

φu,v,B,w,z,C(X,Y ) = d

dt

(

˜φu,v,B,w,z,C

(

exp
(

t (X,Y )
)))∣

∣

t=0.
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The exponential map of R
2 being the identity map, we get

φu,v,B,w,z,C(X,Y ) = d

dt

(

˜φu,v,B,w,z,C

(

t (X,Y )
))∣

∣

t=0

= d

dt

(

e
1
2 t (uX+vY )B + e

1
2 t (wX+zY )C

2

+ I
e

1
2 t (uX+vY )B − e

1
2 t (wX+zY )C

2

)∣

∣

∣

∣

t=0

= (uX + vY )B + (wX + zY )C

4

+ I
(uX + vY )B − (wX + zY )C

4
.

The orthogonalization of the morphism φu,v,B,w,z,C consists in decomposing the
bivector φu,v,B,w,z,C(X,Y ) for each X,Y into commuting bivectors whose squares
are real. The corresponding spinor is written as a product of commuting spinors
of the form eFi with F 2

i < 0. These ones represent rotations of angle −F 2
i in the

oriented planes given by the Fi ’s. In our case, the bivector φu,v,B,w,z,C(X,Y ) is
decomposed into F1 + F2 where

F1 = 1

8

[(

X(u + w) + Y(v + z)
)(

B + C + I (B − C)
)]

,

F2 = 1

8

[(

X(u − w) + Y(v − z)
)(

B − C + I (B + C)
)]

(see the Appendix for details). The group morphisms ˜φu,v,B,w,z,C from R
2 to

Spin(4) can then be written as

˜φu,v,B,w,z,C(x, y) = e[ (ux+vy)B+(wx+zy)C
4 +I

(ux+vy)B−(wx+zy)C
4 ]

= e
1
8 [(x(u+w)+y(v+z))(B+C+I (B−C))]

× e
1
8 [(x(u−w)+y(v−z))(B−C+I (B+C))]. �

This is a convenient form to describe group morphisms from R
2 to SO(4).

To conclude this part, let us remark that the expression of the morphisms
˜φu,v,B,w,z,C may be simplified. Indeed, when B and C describe S

2
3,0 ⊂ R4,0, the

unit bivectors

D = 1

4

(

B + C + I (B − C)
)

and ID = 1

4

(

B − C + I (B + C)
)

describe S
2
4,0, the set of unit bivectors in R4,0.
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Therefore, the morphisms ˜φu,v,B,w,z,C are parameterized by four real numbers
and one unit bivector D ∈ S

2
4,0 and may be written

˜Φu,v,w,z,D(x, y) = e
1
2 [(x(u+w)+y(v+z))D] e

1
2 [(x(u−w)+y(v−z))ID].

3.2 The Cases n = 3,4: The Clifford–Fourier Transform

From the computation of group morphisms from R
2 to Spin(4), we give an ex-

plicit formula of the Clifford–Fourier transform ̂f of f ∈ L2(R2, (R3,Q)) or
L2(R2, (R4,Q)).

Definition 1 Let f ∈ L2(R2, (R3,Q)) resp. L2(R2, (R4,Q)) and denote by f the
embedding of f into the Clifford algebra Cl(R4,Q ⊕ 1) resp. Cl(R4,Q). The
Clifford–Fourier transform of f is given by

̂f (u, v,w, z,D) =
∫

R2
f (x, y)⊥˜Φu,v,w,z,D(−x,−y)dx dy

=
∫

R2
e

1
2 [(x(u+w)+y(v+z))D]e

1
2 [(x(u−w)+y(v−z))ID]f (x, y)

× e− 1
2 [(x(u+w)+y(v+z))D]e− 1

2 [(x(u−w)+y(v−z))ID] dx dy.

Decomposing f as f|| + f⊥ with respect to the plane generated by the bivector
D, we get

̂f (u, v,w, z,D) =
∫

R2
f||(x, y)e[−(x(u+w)+y(v+z))D] dx dy

+
∫

R2
f⊥(x, y)e[−(x(u−w)+y(v−z))ID] dx dy.

Indeed, the plane generated by ID represents the orthogonal of the plane generated
by D in R

4.

Proposition 3 The Clifford–Fourier transform is left-invertible. Its inverse is the
map ˇ given by

ǧ(a, b) =
∫

R4×S
2
4,0

g(u, v,w, z,D)⊥˜Φu,v,w,z,D(a, b) dudv dw dzdν,

where ν is a unit measure on S
2
4,0.
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Proof We have to verify that ˇ ◦ (̂f )(λ,μ) = f (λ,μ) for all (λ,μ) ∈ R
2.

ˇ ◦ (̂f )(λ,μ) =
∫

R4×S
2
4,0

[∫

R2
f||(x, y)e[−(x(u+w)+y(v+z))D] dx dy

]

× e[(λ(u+w)+μ(v+z))D] dudv dw dzdν (1)

+
∫

R4×S
2
4,0

[∫

R2
f⊥(x, y)e[−(x(u−w)+y(v−z))ID] dx dy

]

× e[(λ(u−w)+μ(v−z))ID] dudv dw dzdν. (2)

It is sufficient to prove that (1) = f||(λ,μ).

(1) =
∫

R4×S
2
4,0

∫

R2
f||(x, y)e[(λ−x)(u+w)+(μ−y)(v+z)]D dx dy dudv dw dzdν

=
∫

R4×S
2
4,0

∫

R2
f||(x, y)eu(λ−x)Dew(λ−x)Dev(μ−y)D

× ez(μ−y)D dx dy dudv dw dzdν

=
∫

R2

∫

R3×S
2
4,0

f||(x, y)

(∫

R

eu(λ−x)D du

)

ew(λ−x)Dev(μ−y)D

× ez(μ−y)D dw dv dzdν dx dy

=
∫

R2

∫

R2×S
2
4,0

f||(x, y)δλ,x

(∫

R

ew(λ−x)D dw

)

ev(μ−y)D

× ez(μ−y)D dv dz dν dx dy

=
∫

R2

∫

R×S
2
4,0

f||(x, y)δλ,xδλ,x

(∫

R

ev(μ−y)Ddv

)

dzdν dx dy

=
∫

R2

∫

S
2
4,0

f||(x, y)δλ,xδλ,xδμ,y

(∫

R

ez(μ−y)D dz

)

dν dx dy

=
∫

R2

∫

S
2
4,0

f||(x, y)δλ,xδλ,xδμ,yδμ,y dν dx dy

=
∫

R2
f||(x, y)δλ,xδλ,xδμ,yδμ,y dx dy = f||(λ,μ). �
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4 Application to Color Image Filtering

4.1 Clifford–Fourier Transform of Color Images

For the applications we have in mind to color image filtering, we define a partial
Clifford–Fourier transform, i.e., we deal with a subset of the set of unitary group
representations of R

2 of dimension 4. The subset we consider will depend of the
colors we aim at filtering.

More precisely, we restrict Definition 1 to the set of group morphisms ˜Φu,v,0,0,D

where the bivector D is fixed.

Definition 2 (Clifford–Fourier transform with respect to a bivector) Let f ∈
L2(R2, (R3,Q)) resp. L2(R2, (R4,Q)) and denote by f the embedding of f into
the Clifford algebra Cl(R4,Q⊕1) resp. Cl(R4,Q). The Clifford–Fourier transform
of f with respect to the bivector D is defined by

̂fD(u, v) =
∫

R2
f (x, y)⊥ ˜Φu,v,0,0,D(−x,−y)dx dy

=
∫

R2
e

1
2 (xu+yv)IDe

1
2 (xu+yv)Df (x, y)e− 1

2 (xu+yv)De− 1
2 (xu+yv)ID dx dy.

It follows the definition of the Clifford–Fourier transform of a color image.

Definition 3 (Clifford–Fourier transform of a color image) Let I be a color image.
We associate to I a function f ∈ L2(R2, (R3,Q)) defined by

f (x, y) = r(x, y)e1 + g(x, y)e2 + b(x, y)e3 + 0e4,

where r , g, and b correspond to the red, green, and blue levels.
The Clifford–Fourier transform of I with respect to Q and D is the

Cl(R4,Q ⊕ 1)-valued function ̂IQ,D defined by

̂IQ,D(u, v) = ̂fD(u, v) =
∫

R2
f (x, y)⊥˜Φu,v,0,0,D(−x,−y)dx dy.

Thus, given a color image, we define a set of associated Clifford–Fourier trans-
forms parameterized by the set of positive definite quadratic forms on R

3 and unit
bivectors in R4,0.

As the Clifford–Fourier transform in L2(R3,Q) and L2(R4,Q), we can show
that the Clifford–Fourier transform of a color image is invertible.

Proposition 4 Let f ∈ L2(R2, (R3,Q)), and D be a unit bivector in Cl(R4,Q⊕1).
Then, the Clifford–Fourier transform of f with respect to D is invertible. Its inverse
is the map ˇ defined by

ǧ(x, y) =
∫

R2
g(u, v)⊥ ˜Φu,v,0,0,D(x, y) dudv.
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Proof Decomposing f with respect to the plane generated by D as f = f|| + f⊥,
we have

̂fD(u, v) =
∫

R2

(

f||(x, y) + f⊥(x, y)
)⊥ ˜Φu,v,0,0,D(−x,−y)dx dy.

This can be written

̂fD(u, v) = ̂fD‖(u, v) + ̂fD⊥(u, v),

where

̂fD‖(u, v) =
∫

R2
f||(x, y)⊥˜Φu,v,0,0,D(−x,−y)dx dy

=
∫

R2
f||(x, y)e−(ux+vy)D dx dy

and

̂fD⊥(u, v) =
∫

R2
f⊥(x, y)⊥ ˜Φu,v,0,0,D(−x,−y)dx dy

=
∫

R2
f⊥(x, y)e−(ux+vy)ID dx dy.

Let us remark that each of the two integrals may be identified with the Fourier
transform of a function from R

2 to C. Then, we deduce that there exists an inversion
formula (left and right) for the Clifford–Fourier transform ̂fD given by

f (x, y) =
∫

R2

̂fD(u, v)⊥˜Φu,v,0,0,D(x, y) dudv.

Indeed, the right term equals
∫

R2

(

̂fD||(u, v) + ̂fD⊥(u, v)
)⊥˜Φu,v,0,0,D(x, y) dudv

=
∫

R2

̂fD||(u, v)e(ux+vy)D dudv +
∫

R2

̂fD⊥(u, v)e(ux+vy)ID dudv. (3)

Each of these integrals may be identified with the inversion formula of the Fourier
transform of a function from R

2 to C; hence,

(3) = f||(x, y) + f⊥(x, y) = f (x, y). �

The following proposition is useful for applications and in particular for appli-
cations to the frequencies filtering developed in the next section. It gives an integral
representation of any 3D-valued signal defined on the plane by 3D-valued cosinu-
soidal signals. This representation is obtained from the Clifford–Fourier transform
with respect to some bivector. In this proposition we show that the representation is
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invariant with respect to the choice of the bivector. In the discrete case, we obtain a
decomposition of the signal as a sum of cosinusoidal signals.

Proposition 5 Using the previous notation, if B and D are elements of S
2
4,0, we

have

̂fB(u, v)⊥ ˜Φu,v,0,0,B(x, y) + ̂fB(−u,−v)⊥ ˜Φ−u,−v,0,0,B(x, y)

= ̂fD(u, v)⊥ ˜Φu,v,0,0,D(x, y) + ̂fD(−u,−v)⊥ ˜Φ−u,−v,0,0,D(x, y).

Moreover, the e4 component of this expression is null.

Proof Simple computations show that

̂fB(u, v)⊥ ˜Φu,v,0,0,B(x, y) + ̂fB(−u,−v)⊥ ˜Φ−u,−v,0,0,B(x, y)

=
∫

R2
e− xu+yv

2 (B+IB)e
λu+μv

2 (B+IB)f (λ,μ) e− λu+μv
2 (B+IB)e

xu+yv
2 (B+IB) dλdμ

+
∫

R2
e

xu+yv
2 (B+IB)e− λu+μv

2 (B+IB)f (λ,μ) e
λu+μv

2 (B+IB)e− xu+yv
2 (B+IB) dλdμ

=
∫

R2
2 cos

(

u(x − λ) + v(y − μ)
)

f||(λ,μ)dλdμ

+
∫

R2
2 cos

(

u(x − λ) + v(y − μ)
)

f⊥(λ,μ)dλdμ. (4)

Hence,

(4) =
∫

R2
2 cos

(

u(x − λ) + v(y − μ)
)

f (λ,μ)dλdμ. �

This proposition justifies the fact that these filters are symmetric with respect to
the transformation (u, v) �→ (−u,−v).

4.2 Color Image Filtering

We now present applications to color image filtering. The use of the Fourier trans-
form is motivated by the well-known fact that nontrivial filters in the spatial do-
main may be implemented efficiently with masks in the Fourier domain. Although
it seems natural to believe that the results on grey level images may be generalized,
there are not so many works dedicated to the specific case of color images. Let us
mention [14], where an attempt is made through the use of an ad hoc quaternionic
transform. The mathematical construction we propose appears to be well founded
since it explains the fundamental role of bivectors and scalar products in terms of
group actions. As explained before, the possibility to choose the bivector D and the
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quadratic form Q is an asset allowing a wider range of applications. Indeed, Sang-
wine et al. proposal can be written in our formalism by considering appropriate D

and Q.
The applications proposed in this paper are based on the following fact:

(̂fD)|| = (̂f||)D and (̂fD)⊥ = (̂f⊥)D.

In other words, the part of the Clifford–Fourier transform of f that is parallel to D

corresponds to the standard Fourier transform of the part of f that is parallel to D.
The same principle holds for the orthogonal part.

We use low pass, high pass, and directional filters on the D-parallel part resp.
D-orthogonal part, leaving the D-parallel part resp. D-orthogonal unmodified.
The choice of the bivector D and the quadratic form Q (that determines the D-
orthogonal part) will depend on the colors we aim at filtering. Then, we show the
action of such filters using the inversion formula of the Clifford–Fourier transform.

There is another way to decompose a color α = (r, g, b), that is, with respect to
its luminance and chrominance parts, respectively denoted by lα and vα . Embedding
the color space RGB into the Clifford algebra R4,0 by

iα = r e1 + g e2 + b e3 + 0 e4,

the former corresponds to the projection of iα on the axis generated by the unit vec-
tor (e1 + e2 + e3)/

√
3; the latter its projection on the orthogonal plane in e1e2e3,

called the chrominance plane, represented by the unit bivector (e1e2 − e1e3 +
e2e3)/3. In what follows we make use of the following fact too: every hue can be
represented as an equivalence class of bivectors of R4,0. More precisely, we have
the following result.

Proposition 6 Let T be the set of bivectors

T = {

(e1 + e2 + e3) ∧ iα, α ∈ RGB
}

with the following equivalence relation:

B 
 C ⇐⇒ B = λC for λ > 0.

Then, there is a bijection between T/ 
 and the set of hues.

Proof We have

(e1 + e2 + e3) ∧ iα = (e1 + e2 + e3)vα.

Then, there is a bijection between T/ 
 and the set (e1 +e2 +e3) v for v a unit vector
in the chrominance plane. This latter being in bijection with the set of different hues,
we conclude that there exists a bijection between T/ 
 and the set of hues. �
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Fig. 1 Original images

Fig. 2 The Clifford–Fourier transform ̂HQ1,e1e4

Figure 1 shows the original images used for these experiments.1 Figure 1(a) H is
a modified color version of the Fourier house containing red, desatured red, green,
cyan stripes in various directions, a uniform red circle and a red square with lower
luminance. Figure 1(b) F is a natural image taken from the Berkeley image seg-
mentation database [10].

Figure 2(a) is the centered log-modulus of the D-parallel part of ̂HQ1,D , where
Q1 is the quadratic form such that Q1 ⊕ 1 is given by the identity matrix I4 in
the basis (e1, e2, e3, e4), and D is the bivector e1e4. Figure 2(b) is the result of a
directional cut filter around π/2 which removes of vertical frequencies. Let us point

1Available at http://mia.univ-larochelle.fr/ → Production → Démos.

http://mia.univ-larochelle.fr/
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Fig. 3 Low pass filtering

out that horizontal green stripes are not altered since green color 255 e2 belongs to
ID = e2e3.

Figure 3 shows the difference between a low pass filter in the D-parallel part of
̂HQ1,e1e4 (Fig. 3(a)) and the D-parallel part ̂H

Q1,
1√
2
(e2+e3)e1

(Fig. 3(b)). The first one

consists in removing high frequencies of the red components of the image, whereas
the second one consists in removing high frequencies of the red hue part of the
image.

In Fig. 3(a), we can see that both green and cyan stripes are not modified. As
in the previous case, this comes from the fact that both green color and cyan color
255 e2 + 255 e3 belong to ID. The result is different in Fig. 3(b). The unit bivector

1√
2
(e2 + e3)e1 = 1√

2
(e1 + e2 + e3) ∧ e1 represents the red hue, involving that the

cyan stripes are blurred. Indeed, unit bivectors representing cyan and red hues are
opposite, and therefore they generate the same plane. Green stripes are no more
invariant to the low pass filter since the green axis e2 is not orthogonal to the bivector

1√
2
(e2 + e3)e1.
In Fig. 4, the color α has been chosen to match with the color of the background

green leaves. As the low pass filter (Fig. 4(a)) removes green high frequencies, the
center of flowers containing yellow high frequencies turns red. In Fig. 4(b), back-
ground pixels corresponding to green low frequencies appear almost grey.

To conclude this part, we propose to compare the results of two low pass filters on
the D-orthogonal part with respect to the same bivector D = e1e4 but changing the
quadratic form. As a consequence, the bivector ID differs in the two cases. For the
first one (Fig. 5(a)), we take Q1, whereas for the second one (Fig. 5(b)), we construct
the quadratic form Q2 such that Q2 is given by I4 in the basis (e1,

1√
2
(e1 + e2),

iα‖iα‖ , e4). In other words, we orthogonalize the red, the yellow, and the color of
leaves which are the main colors in the image.

In Fig. 5(a), the unit bivector ID is e2e3. Hence, the low pass filter removes
green and blue high frequencies but preserves red high frequencies. This explains
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Fig. 4 The Clifford–Fourier transform ̂F
Q1,

vα∧e4‖vα∧e4‖
with α = (96,109,65)

Fig. 5 Low pass filters in the ID part

why the image turns red. In Fig. 5(b), the unit bivector ID is (e1+e2)√
2

iα‖iα‖ ; it contains
the colors of the background and inside the flowers. Therefore, the low pass filter
removes all the high frequencies in the image except the ones of the red petals.

For some specific applications, a fine tuning of the quadratic form Q should give
better results.

5 Related Works

To conclude this paper, we show how to recover the hypercomplex Fourier transform
of S. Sangwine and the quaternionic Fourier transform of T. Bülow in the Clifford
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algebras context, using the appropriate morphism from R
2 to Spin(4). First of all,

let us recall the definitions of these Fourier transforms.

5.1 The Hypercomplex Fourier Transform of Sangwine et al.

In [5], the authors define the discrete hypercomplex Fourier transform. It can be ex-
tended to R

2 as follows. Let f : R
2 → H; then its hypercomplex Fourier transform

is given by

F(u, v) =
∫

R2
e−μ(xu+yv)f (x, y) dx dy,

where μ ∈ H0 ∩ H1.
There is a freedom in the choice of μ in the hypercomplex Fourier transform as

we have a freedom in the choice of the bivector D in the Clifford–Fourier trans-
form for color images. In fact, they have the same role, i.e., they decompose the
four-dimensional space R

4 into two orthogonal two-dimensional subspaces and de-
compose the Fourier transform into two standard Fourier transforms.

This is shown in the following proposition.

Proposition 7 Let μ = μ1i + μ2j + μ3k be a unit quaternion. Let f ∈ L2(R2,

(R4,Q)) where Q is the quadratic form represented by I4 in the basis (e1, e2, e3, e4),
and let C be the unit bivector e4 ∧ (μ1e1 + μ2e2 + μ3e3). Then, ̂fC given by

̂fC(u, v) =
∫

R2
f (x, y)⊥ ˜Φu,v,0,0,C(−x,−y)dx dy

=
∫

R2
e

1
2 (xu+yv)ICe

1
2 (xu+yv)Cf (x, y)e− 1

2 (xu+yv)Ce− 1
2 (xu+yv)IC dx dy

corresponds to the hypercomplex Fourier transform of f seen as an H-valued func-
tion under the identification2

e1 ↔ i, e2 ↔ j, e3 ↔ k, e4 ↔ 1.

Proof We have to determine the four-dimensional rotation that is generated by the
action of the unit quaternion eμφ on H given by

q �−→ eμφq.

It is explained in [5] that this rotation may be decomposed as the sum of two two-
dimensional rotations of angle −φ in the planes generated by (1,μ) and its orthog-
onal (with respect to the euclidean quadratic form).

2The product law needs not to be respected since we just use an isomorphism of vector spaces.
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Therefore, we can identify this rotation with the action of the spinor

e− φ
2 (C+IC)

on the four-dimensional space R
1
4,0. As a consequence, the action of group mor-

phisms (x, y) �−→ eμ(xu+yv) from R
2 to H1 on H corresponds to the action of group

morphisms (x, y) �−→ e− 1
2 (xu+yv)(C+IC) from R

2 to Spin(4) on R
1
4,0. �

Remark 5 To the best of our knowledge, the authors restrict for their applications to
μ taken as the grey axis, i.e.,

μ = 1√
3
(i + j + k).

In other words, the Fourier transform they propose is decomposed as a standard
Fourier transform of the luminance part and a standard Fourier transform of the
chrominance part.

5.2 The Quaternionic Fourier Transform of Bülow

The quaternionic Fourier transform [2] of a function f : R
2 → R is the quaternion-

valued function F (f ) defined by

F (f )(y1, y2) =
∫

R2
exp(−2πiy1x1)f (x1, x2) exp(−2πjy2x2) dx1 dx2.

The link between this Fourier transform and the one proposed here is given by the
next result.

Proposition 8 Let f ∈ L2(R2;Re4) where (e1, e2, e3, e4) is the basis of R
4 that

generates R4,0. The Clifford–Fourier transform of f defined by

̂fC(2πy1,0,0,2πy2)

=
∫

R2
f (x1, x2)⊥ ˜Φ2πy1,0,0,2πy2,C(−x1,−x2) dx1 dx2,

where C is the bivector

−1

4
(e1 + e2)(e3 − e4),

corresponds to the quaternionic Fourier transform of f seen as an H-valued func-
tion under the following identification:3

e1 ↔ i, e2 ↔ j, e3 ↔ k, e4 ↔ 1.

3The product law needs not to be respected since we just use an isomorphism of vector spaces.
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Proof We have to determine one of the two elements of Spin(3) × Spin(3) that
generate the following rotation in H:

f (x1, x2) �→ exp(−2πiy1x1)f (x1, x2) exp(−2πjy2x2).

Simple computations show that the rotation

f (x1, x2) �→ exp(−2πiy1x1)f (x1, x2)

can be written in R
1
4,0 as

f (x1, x2) �→ e−πx1y1(e4e1+e2e3)f (x1, x2)e
πx1y1(e4e1+e2e3).

In the same way,

f (x1, x2) �→ f (x1, x2) exp(−2πjy2x2)

corresponds to

f (x1, x2) �→ e−πx2y2(e4e2+e1e3)f (x1, x2) eπx2y2(e4e2+e1e3).

By associativity, this shows that

exp(−2πiy1x1) f (x1, x2) exp(−2πjy2x2) = e−τ e−ρf (x1, x2)e
ρeτ ,

where

τ = πx2y2(e4e2 + e1e3)

and

ρ = πx1y1(e4e1 + e2e3).

By definition,

χ
(

eρeτ
) = χ

(

eπx1y1 e4e1
)

χ
(

eπx1y1 e2e3
)

χ
(

eπx2y2 e4e2
)

χ
(

eπx2y2 e1e3
)

.

By simple computations we get

χ
(

eρeτ
) = (

e2πx1y1 e2e3, e2πx2y2 e1e3
)

and conclude therefore that

(x1, x2) �→ (

e2πx1y1 e2e3, e2πx2y2 e1e3
)

is the morphism ˜φ2πy1,0,e2e3,0,2πy2,e1e3 .

From Sect. 3, this latter may be rewritten ˜Φ2πy1,0,0,2πy2, 1
4 (e1+e2)(e3−e4)

.
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Indeed, we have

1

4

(

e2e3 + e1e3 + I (e2e3 − e1e3)
) = 1

4
(e2e3 + e1e3 − e1e4 − e2e4)

= 1

4

(

e1(e3 − e4) + e2(e3 − e4)
)

= 1

4

(

(e1 + e2)(e3 − e4)
)

. �

6 Conclusion

We proposed in this paper a definition of Clifford–Fourier transform that is mo-
tivated by group actions considerations. We defined a Clifford–Fourier transform
that is associated with the action of all the group morphisms ˜Φu,v,w,z,D from R

2

to Spin(4), parameterized by four real numbers and one unit bivector. This trans-
form has the property of being left invertible. For the particular case of a color
image, we associate the Clifford–Fourier transform with the action of group mor-
phisms ˜Φu,v,0,0,D , specified by only two real numbers (the frequencies) and where
the bivector D is fixed. This transform is parameterized by a quadratic form on R

4

and a unit bivector in the corresponding Clifford algebra. Some previous Fourier
transforms based on quaternions are proved to be particular settings of ours. We
have treated in this context an application to color image filtering. Future works will
be devoted to find applications of the general transform that should easily deal with
relations between colors in the image. Applications to multispectral images such as
color/infrared images will be also investigated.

Acknowledgement This work is partially supported by the “Communauté d’agglomération de
La Rochelle.”

Appendix

A.1 Lie Groups Representations and Fourier Transforms

From the group theory approach, the basic structure we need to define Fourier trans-
forms is locally compact unimodular groups. Let us start by the definition of the dual
of a topological group G, that is, the set of the equivalence classes of its unitary ir-
reducible representations, denoted by ̂G. We refer to [16] for details.

Definition 4 (Group representation) Let G be a topological group, and V be a topo-
logical vector space over R or C.

A continuous linear representation (ϕ,V ) from G to V is a group morphism

ϕ : g �→ ϕ(g)
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from G to GL(V ) such that the map

(a, g) �→ ϕ(g)(a)

from V × G to V is continuous.

In general, V is a Hilbert space. If V is finite-dimensional, then the representation
is said to be finite, and the dimension of V is called the degree of the representation.

Definition 5 (Irreducible representation) A subspace W of V is said to be invariant
by ϕ if ϕ(g)(W) ⊂ W ∀g ∈ G.

Then, the representation ϕ is said to be irreducible if W , and {0} are the only
subspaces of V that are invariant by ϕ.

Definition 6 (Equivalent representations) Let (ϕ1,V1) and (ϕ2,V2) be two linear
representations of the same group G. We say that they are equivalent if there exists
an isomorphism γ : V1 → V2 such that

γ ◦ ϕ1(g) = ϕ2(g) ◦ γ ∀g ∈ G.

From now on, V is a C-vector space equipped with a hermitian form 〈 , 〉.

Definition 7 (Unitary representation) The representation ϕ is unitary with respect
to 〈 , 〉 if

〈

ϕ(g)(a),ϕ(g)(b)
〉 = 〈a, b〉 ∀a, b ∈ V, ∀g ∈ G.

We now restrict to locally compact unimodular groups. On such groups, we can
construct a measure that is invariant with respect to both left and right translations.
It a called a Haar measure. From a Haar measure a Haar integral of the group is
defined.

Proposition 9 Let G be a locally compact unimodular group, and let ν denote a
Haar measure. Then, for f ∈ L2(G;C) and h ∈ G, we have

∫

G

f (g)dν(g) =
∫

G

f (gh)dν(g) =
∫

G

f (hg)dν(g).

Remark 6 Locally compact abelian groups and compact groups are unimodular.

Definition 8 (Fourier transform on locally compact unimodular groups) Let G be a
locally compact unimodular group with Haar measure ν. The Fourier transform of
f ∈ L2(G;C) is the map f̂ defined on ̂G by

f̂ (ϕ) =
∫

G

f (g)ϕ
(

g−1)dν(g).
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Theorem 1 (Inversion formula of the Fourier transform) f̂ (ϕ) is a Hilbert–Schmidt
operator over the space of the representation ϕ. There is a measure over ̂G denoted
by ν̂ such that f̂ ∈ L2(̂G;C) and f �→ f̂ is an isometry. Moreover, the following
inverse formula holds:

f (g) =
∫

̂G

Trace
(

f̂ (ϕ)ϕ(g)
)

d ν̂(ϕ).

Let us now have a closer look on Lie groups. We refer to [7] for an introduction
to differential geometry.

Definition 9 (Lie group and Lie algebra) A real C∞ Lie group is a topological
group endowed with a structure of real C∞-manifold. The Lie algebra of G is (iso-
morphic to) the tangent space of G at the neutral element e: TeG. It is usually de-
noted by g. It can be made into an algebra over R by considering the Lie bracket [ , ]
that satisfies: (X,Y ) �→ [X,Y ] from g × g to g is R-bilinear. Moreover, it satisfies

[X,X] = 0 ∀X ∈ g

and
[

X, [Y,Z]] + [

Y, [Z,X]] + [

Z, [X,Y ]] = 0 ∀X,Y,Z ∈ g.

Definition 10 (Exponential map) Let G be a C∞ Lie group. The exponential map
of G is the map from g to G

exp : X �−→ f (1),

where f : R → G satisfies

f (t + s) = f (t)f (s) ∀t, s ∈ R

and

f ′(0) = X.

f is called a one-parameter subgroup.

To compute group morphisms from R
2 to Spin(3) and Spin(4), we use the fol-

lowing result on Lie groups morphisms.

Proposition 10 Let G and H be two C∞ Lie groups, and expG, expH be the cor-
responding exponential maps. Let φ : G → H be a Lie group morphism. The linear
tangent map of φ at g, denoted by Tgφ, is the linear map from TgG to Tφ(g)H given
by

Tgφ(X) = d

dt
φ
(

g expG(tX)
)|t=0.
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Then, if we note e the neutral element of G, we have

φ
(

expG(X)
) = expH

(

Teφ(X)
)

. (5)

The map Teφ is a Lie algebra morphism, i.e., it satisfies

Teφ
([X,Y ]) = [

Teφ(X),Teφ(Y )
] ∀X,Y ∈ g.

From (5) we deduce that if the group G is connected and the exponential map of G

is onto, then the Lie group morphisms from G to H are determined by Lie algebras
morphisms from g to h.

A.2 Clifford Algebras

Let V be a vector space of finite dimension n over R equipped with a quadratic
form Q. Formally speaking, the Clifford algebra Cl(V ,Q) is the solution of the
following universal problem. We search a couple (Cl(V ,Q), iQ) where Cl(V ,Q) is
an R-algebra and iQ : V −→ Cl(V ,Q) is R-linear satisfying

(

iQ(v)
)2 = Q(v).1

for all v in V (1 denotes the unit of Cl(V ,Q)) such that, for each R-algebra A and
each R-linear map f : V −→ A with

(

f (v)
)2 = Q(v).1

for all v in V (1 denotes the unit of A), then there exists a unique morphism

g : Cl(V ,Q) −→ A

of R-algebras such that f = g ◦ iQ.
The solution is unique up to isomorphisms and is given as the (noncommutative)

quotient

T (V )/
(

v ⊗ v − Q(v).1
)

of the tensor algebra of V by the ideal generated by v⊗v−Q(v).1, where v belongs
to V (see [12] for a proof).

It is well known that there exists a unique anti-automorphism t on Cl(V ,Q) such
that

t
(

iQ(v)
) = iQ(v)

for all v in V . It is called reversion and usually denoted by x �−→ x†, x in Cl(V ,Q).
In the same way there exists a unique automorphism α on Cl(V ,Q) such that

α
(

iQ(v)
) = −iQ(v)
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for all v in V . In this paper we write v for iQ(v) (according to the fact that iQ
embeds V in Cl(V ,Q)).

As a vector space, Cl(V ,Q) is of dimension 2n on R and a basis is given by the
set

{

ei1ei2 · · · eik , i1 < i2 < · · · < ik, k ∈ {1, . . . , n}}

and the unit 1. An element of degree k

∑

i1<···<ik

αi1...ik ei1ei2 · · · eik

is called a k-vector. A 0-vector is a scalar, and e1e2 · · · en is called the pseudoscalar.
We denote 〈x〉k the component of degree k of an element x of Cl(V ,Q).

The inner product of xr of degree r and ys of degree s is defined by

xr · ys = 〈xrys〉|r−s|

if r and s are positive and by

xr · ys = 0

otherwise.
The outer product of xr of degree r and ys of degree s is defined by

xr ∧ ys = 〈xrys〉r+s .

These products extend by linearity on Cl(V ,Q). Clearly, if a and b are vectors of
V , then the inner product of a and b coincides with the scalar product defined by Q.
When it is defined (for example, when x is a versor and Q is positive), we denote

‖x‖ =
√

xx†

and say that x is a unit if xx† = ±1.
In this paper, we deal in particular with the Clifford algebra of the Euclidean R

n

denoted by Rn,0. R
k
n,0 is the subspace of elements of degree k, and R

∗
n,0 is the group

of elements that admit an inverse in Rn,0. We denote by S
2
n,0 the set of elements of

R
2
n,0 of norm 1.
Let a be a vector in Rn,0, and B be the k-vector a1 ∧ a2 ∧ · · · ∧ ak . Then the

orthogonal projection of a on the k-plane generated by the ai ’s is the vector

PB(a) = (a · B)B−1.

The vector

a − (a · B)B−1 = (a ∧ B)B−1

is called the rejection of a on B .
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A.3 The Spinor Group Spin(n)

It is defined by

Spin(n) =
{

2k
∏

i=1

ai, ai ∈ R
1
n,0, ‖ai‖ = 1

}

or equivalently

Spin(n) = {

x ∈ Rn,0, α(x) = x, xx† = 1, xvx−1 ∈ R
1
n,0 ∀v ∈ R

1
n,0

}

.

It is well known that Spin(n) is a connected compact Lie group that universally
covers SO(n) (n ≥ 3). One can verify that Spin(3) is the group

{

a1 + be1e2 + ce2e3 + de3e1, a2 + b2 + c2 + d2 = 1
}

and is isomorphic to the group H
1 of unit quaternions. It is also a classical result

that Spin(4) is isomorphic to Spin(3) × Spin(3) (see [9] for more information on
spinors in R

3 and R
4).

The Lie algebra of Spin(n) is R
2
n,0 with Lie bracket

A × B = AB − BA.

As the exponential map from its Lie algebra to Spin(n) is onto (see [7] for a proof),
every spinor can be written as

S =
∞
∑

i=0

1

i!A
i

for some bivector A.
From Hestenes and Sobczyk [8] we know that every A in R

2
n,0 can be written as

A = A1 + A2 + · · · + Am,

where m ≤ n/2, and

Aj = ‖Aj‖ajbj , j ∈ {1, . . . ,m}
with

{a1, . . . , am, b1, . . . , bm}
a set of orthonormal vectors. Thus,

AjAk = AkAj = Ak ∧ Aj

whenever j �= k and

A2
k = −‖Ak‖2 < 0.
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This means that the planes encoded by Ak and Aj are orthogonal and implies that

eA1+A2+···+Am = eAσ(1) eAσ(2) . . . eAσ(m)

for all σ in the permutation group S(m). Actually, as A2
k is negative, we have

eAi = cos
(‖Ai‖

) + sin
(‖Ai‖

) Ai

‖Ai‖ .

The corresponding rotation

Ri : x �−→ e−Ai xeAi

acts in the oriented plane defined by Ai as a plane rotation of angle 2‖Ai‖. The
vectors orthogonal to Ai are invariant under Ri .

It then appears that any element R of SO(n) is a composition of commuting
simple rotations, in the sense that they have only one invariant plane. The vectors
left invariant by R are those of the orthogonal subspace to A. If m = n/2, this latter
is trivial. The previous decomposition is not unique if ‖Ak‖ = ‖Aj‖ for some j and
k with j �= k. In this case infinitely many planes are left invariant by R.
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