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Abstract Conformal geometric algebra is a powerful mathematical language for
describing and manipulating geometric configurations and their conformal trans-
formations. By providing a 5D algebraic representation of 3D geometric config-
urations, conformal geometric algebra proves to be very helpful in pose estima-
tion, motion design, and neuron-based machine learning (Bayro-Corrochano et al.,
J. Math. Imaging Vis. 24(1):55–81, 2006; Dorst et al., Geometric Algebra for Com-
puter Science, Morgan Kaufmann, San Mateo, 2007; Hildenbrand, Comput. Graph.
29(5):795–803, 2005; Lasenby, Computer Algebra and Geometric Algebra with Ap-
plications, LNCS, vol. 3519, pp. 298–328, Springer, Berlin, 2005; Li et al., Geo-
metric Computing with Clifford Algebras, pp. 27–60, Springer, Heidelberg, 2001;
Mourrain and Stolfi, Invariant Methods in Discrete and Computational Geometry,
pp. 107–139, Reidel, Dordrecht, 1995; Rosenhahn and Sommer, J. Math. Imaging
Vis. 22:27–70, 2005; Sommer et al., Computer Algebra and Geometric Algebra with
Applications, pp. 278–297, Springer, Berlin, 2005). In this chapter, we present some
theoretical results on conformal geometric algebra which should prove to be useful
in computer applications. The focus is on parameterizing 3D conformal transfor-
mations with either quaternionic Vahlen matrices or polynomial Cayley transform
from the Lie algebra to the Lie group of conformal transformations in space.

1 Terminology and Notations

By embedding Euclidean space R
n into the set of null vectors in R

n+1,1 in a nonlin-
ear manner, we get the conformal model of nD Euclidean geometry [2, 5, 6, 11]. In
the Minkowski space R

n+1,1, a nonzero vector is said to be null if its inner product
with itself is zero and is said to be positive if so is the inner product.
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A point in R
n is represented by a null vector in R

n+1,1, and the representation
is unique up to scale. There is a unique-up-to-scale null vector e ∈ R

n+1,1 in the
conformal model that does not represent any point in R

n. We say that it represents
the conformal point at infinity. A sphere or hyperplane in R

n is represented by a
positive vector in R

n+1,1, and the representation is unique up to scale. A positive
vector represents a hyperplane if and only if its inner product with e equals zero.

The Grassmann–Cayley algebra [19] over R
n+1,1, when equipped with the nD

Euclidean geometric interpretations of the algebraic elements in this algebra, is
called the conformal Grassmann–Cayley algebra of the nD space. The Clifford al-
gebra over R

n+1,1, when equipped with the nD conformal transformation interpre-
tations of the algebraic elements in this algebra, is called the conformal Clifford
algebra of the nD space. Conformal geometric algebra is an integration of con-
formal Grassmann–Cayley algebra and conformal Clifford algebra [9], the former
representing geometric configurations, and the latter representing geometric trans-
formations.

Terminology and notation:

1. Tensor product, denoted by “⊗”.
2. Outer product, denoted by “∧”.
3. Inner product, denoted by “·”.
4. Meet product, denoted by “∨”.
5. Geometric product, denoted by juxtaposition of participating elements. The ge-

ometric product of r identical elements A is denoted by Ar .
6. Multivector: any element in a Grassmann algebra (or Clifford algebra).
7. Exponential of a multivector A: exp(A) = eA = 1 + A + A2/2! + A3/3! + · · · .
8. Inverse of a multivector A, denoted by A−1.
9. Blade: a multivector which equals the outer product of several vectors.

10. Grade: the number of vector components in an outer product decomposition of
a blade. A blade of grade r is called an r-blade.

11. Homogeneous multivector: a linear combination of blades of the same grade.
The grade of a homogeneous multivector is that of any of the blade component.
A homogeneous multivector of grade r is called an r-vector. A 2-vector is also
called a bivector.

12. r-graded part of a multivector, denoted by “〈 〉r”.
13. Scalar part of a multivector: the 0-graded part, denoted by “〈 〉”.
14. Even (or odd) multivector: a linear combination of homogeneous multivectors

of even grades (or odd grades).
15. Even-graded part (or odd-graded part) of a multivector, denoted by “〈 〉+” (or

“〈 〉−”).
16. Versor: the geometric product of several invertible vectors.
17. Rotor: the geometric product of an even number of invertible vectors.
18. Positive vector: a vector whose inner product with itself is positive.
19. Positive versor: the geometric product of several positive vectors.
20. Positive rotor: the geometric product of an even number of positive vectors.
21. Grassmann algebra over V n, denoted by Λ(V n).
22. Clifford algebra over V n, denoted by C�(V n).
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23. Grassmann algebra or Clifford algebra generated by a blade In and denoted
by Λ(In) (or C�(In)). The base vector space V n of the Grassmann algebra (or
Clifford algebra) is composed of all vectors whose outer product with In equals
zero.

24. Even Clifford subalgebra of C�(V n), composed of all even multivectors, de-
noted by C�+(V n).

25. Odd vector subspace of C�(V n), composed of all odd multivectors, denoted by
C�−(V n).

26. Magnitude of a multivector: denoted by “| |”. The magnitude of a scalar is its
absolute value. The magnitude of A ∈ C�(V n) is |A| = ∑n

i=0
√|〈A〉i · 〈A〉i |.

27. Pseudoscalar: a blade of grade n in Λ(V n) or C�(V n).
28. Dual operator in a nondegenerate Clifford algebra, denoted by “∼”. Fixing a

pseudoscalar In of unit magnitude, for any multivector A, A∼ = AI−1
n .

29. Reversion operator in a Clifford algebra, denoted by “†”. For vectors a1,a2, . . . ,

ar , (a1a2 · · ·ar )
† = ar · · ·a2a1.

30. Grade involution in a Clifford algebra: denoted by overhat. For multivector A,
Â = 〈A〉+ − 〈A〉−.

31. Conjugate operator in a Clifford algebra: the composition of reversion and
grade involution, denoted by overbar. For multivector A, A = 〈A†〉+ − 〈A†〉−.

32. Spin group over V n, denoted by Spin(V n). It is composed of all rotors in
C�(V n) of unit magnitude together with the geometric product.

Example 1 In conformal Grassmann–Cayley algebra C�(R4,1), a circle passing
through three points 1,2,3 in the space is represented by 3-blade 1 ∧ 2 ∧ 3, where
1,2,3 are null vectors of R

4,1 representing points in R
3. The blade is Minkowski, so

its dual (1 ∧ 2 ∧ 3)∼ is a positive vector. Alternatively, the circle can be represented
by a positive vector.

The set N of all null vectors in R
n+1,1 has two connected components. In partic-

ular, null vectors ±a are always in different connected components, as 0 is not a null
vector. An orthogonal transformation in R

n+1,1 keeping each component of N in-
variant is called a positive orthogonal transformation. All such transformations form
a subgroup O+(n + 1,1) of O(n + 1,1), called the positive orthogonal group. The
orientation-preserving orthogonal transformations of R

n+1,1 form another subgroup
SO(n + 1,1) of O(n + 1,1), called the special orthogonal group. The intersection
of the two subgroups, denoted by SO+(n+1,1), is called the Lorentz group, and its
elements are called Lorentz transformations. Lorentz transformations are the linear
isometries of R

n+1,1 connected with the identity transformation IRn+1,1 .
In conformal Clifford algebra C�(Rn+1,1), any positive rotor U induces a unique

Lorentz transformation in R
n+1,1 via the following adjoint action:

AdU(x) = UxU−1 for all x ∈ R
n+1,1. (1)

Conversely, any Lorentz transformation in R
n+1,1 is induced by a positive rotor that

is unique up to scale.
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In the conformal model, any Lorentz transformation in R
n+1,1 induces a unique

orientation-preserving conformal transformation in R
n, and the converse is also true.

Hence, any orientation-preserving conformal transformation in R
n is induced by a

positive rotor in C�(Rn+1,1) that is unique up to scale.

2 Exponential Map and Exterior Exponential Map

By a classical theorem of Riesz [14], any linear isometry of R
n+1,1 connected with

the identity is induced by a rotor of the exponential form. The group of rotors in
C�(Rn+1,1) differs from Spin(Rn+1,1) by a factor R − {0}. Since the Lie algebra of
the spin group is all bivectors in Λ(Rn+1,1), any rotor connected with the identity
can be expressed up to scale as the exponential eB2 of a bivector B2 ∈ Λ(V n). As a
corollary, any positive rotor in C�(Rn+1,1) is in the range of the exponential map.

Example 2 The Lie algebra representation of 3D rigid body motions via the expo-
nential map.

Any rigid body motion in the space can be decomposed into a rotation followed
by a translation. It can also be decomposed into a translation followed by a rota-
tion. The decomposition is not unique without fixing the axis of rotation, which is
a straight line in the space. However, there is a unique decomposition, in which the
axis of rotation follows exactly the direction of translation. This is the screw motion,
and the unique decomposition theorem is known as Chasles’ Theorem.

In the conformal model of 3D Euclidean geometry, let e1, e2, e3 be an orthonor-
mal basis of R

3, and let e0, e be the pair of null vectors orthogonal to R
3 in R

4,1

and such that e0 · e = −1. The basis (e, e0, e1, e2, e3) is called a Witt basis of R
4,1.

The vector e0 represents the origin of R
3 in the conformal model, while the vector

e represents the conformal point at infinity.
In conformal geometric algebra C�(R4,1), the Lie algebra of the spin group of

rigid body motions is Λ2(e∼), which is the bivector subspace of the Grassmann
algebra generated by the vectors in R

4,1 that are orthogonal to e.
The vector space Λ2(e∼) has an orthonormal basis e1e2, e2e3, e1e3, ee1, ee2, ee3.

Any nonzero element in Λ2(e∼) can be written as

B2 = I2θ + et
2

, (2)

where 2-blade I2 ∈ Λ(R3) is of unit magnitude, θ ∈ R, and t ∈ R
3.

If θ = 0, then eB2 induces the translation by the vector t. If θ 
= 0, then

eB2 = e−e(t·I2)/(2θ)eI2θ/2ee(t·I2)/(2θ)e
eP⊥

I2
(t)/2

= cos
θ

2
+ I2 sin

θ

2
+ 1

θ
ePI2(t) sin

θ

2
+ 1

2
eP ⊥

I2
(t) cos

θ

2

+ 1

2
eP ⊥

I2
(t)I2 sin

θ

2
, (3)
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where

PI2(t) = (t · I2)I
−1
2 ,

P ⊥
I2

(t) = t − PI2(t).
(4)

Equation (3) induces a screw motion with the vector of translation P ⊥
I2

(t), the axis

of rotation passing through the point −t · I2/θ ∈ R
3, and the angle of rotation −θ .

In parameterizing 3D conformal transformations, the 10D vector space Λ2(R4,1)

provides an ideal parametric space for the group of 3D conformal transformations.
Since the exponential map from Λ2(R4,1) to the group of positive rotors is surjec-
tive, any orientation-preserving 3D conformal transformation can be parameterized
via the exponential map, although the parameterization is not unique.

The problem of parameterizing with the exponential map lies in evaluating the
map and computing its inverse. While the map can be evaluated when restricted
to some vector subspaces such as Λ2(e∼), the evaluation for the general case is
still not available. Even when the evaluation exists, in many cases such as (3), it is
computationally expensive because the map is transcendental instead of algebraic.
Furthermore, the exponential map is not an isometry, and its tangent map preserves
volume only at the origin of the Lie algebra taken as a vector space. The exponential
map has infinitely many inverses in general.

The first alternative of exponential map is the following exterior exponential map:

Definition 1 Let V n be a vector space over a field K. The exterior exponential is
the following map from Λ2(V n) to Λ(V n):

e∧B2 = 1 + B2 + B2 ∧ B2

2! + · · · +
r

︷ ︸︸ ︷
B2 ∧ B2 ∧ · · · ∧ B2

r! , (5)

where r is the greatest integer such that

r
︷ ︸︸ ︷
B2 ∧ B2 ∧ · · · ∧ B2 
= 0.

The exterior exponential has two obvious properties: first, the scalar part of e∧B2

is 1; second, the mapping is injective because the bivector part of e∧B2 is B2.
Since any bivector has a completely orthogonal decomposition, i.e., for a bivector

B2, there exist vectors a1,b1,a2,b2, . . . ,ar ,br such that

B2 = λ1a1 ∧ b1 + λ2a2 ∧ b2 + · · · + λrar ∧ br , (6)

where ai · bj = 0 for any 1 ≤ i, j ≤ r , and ai · ak = bi · bk = 0 for any i 
= k, we
have

e∧B2 = (1 + λ1a1 ∧ b1)(1 + λ2a2 ∧ b2) · · · (1 + λrar ∧ br ).

So e∧B2 is invertible if and only if each λiai ∧ bi is not a Minkowski blade of unit
magnitude. When V n is Minkowski or Euclidean, then if e∧B2 is invertible, it must
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be a rotor connected with the identity, because so is each 1+λiai ∧bi ; furthermore,

(
e∧B2

)−1 = e∧(−B2)

e∧B2e∧(−B2)
. (7)

Below we assume that B2 is in the form of (6) and e∧B2 is invertible, and analyze
the range of the exterior exponential by restricting it to the conformal model R

4,1 of
3D geometry.

If B2 is a nonzero blade, then e∧B2 = 1 + λ1a1 ∧ b1. When λ1 varies, the range
of e∧B2 modulo scale contains all rotors in Λ(a1 ∧ b1) whose 0-graded part and
2-graded part are both nonzero.

If B2 is not a blade, then

e∧B2 = 1 + λ1a1 ∧ b1 + λ2a2 ∧ b2 + λ1λ2a1 ∧ b1 ∧ a2 ∧ b2, (8)

whose 0-graded part and 4-graded part are both nonzero. The range of e∧B2 modulo
scale is all rotors whose 0-graded part and 4-graded part are both nonzero.

Proposition 1 When the range of the exterior exponential is restricted to rotors in
C�(R4,1), the domain of definition is all bivectors in Λ(R4,1) satisfying

(B2 ∧ B2)
2 
= 4(B2 · B2 − 1) (9)

and is a set R
10 − V 9, where V 9 is a 9D algebraic variety in R

10. The image space
modulo scale is all rotors whose scalar parts are nonzero; topologically, it is the
remainder of the positive orthogonal group O+(4,1), which is a 10D Lie group
with two connected components, after removal of a 9D closed subset.

Proof By

e∧B2 = 1 + B2 + B2 ∧ B2

2
, (10)

we get e∧B2e∧(−B2) = 1 − B2 · B2 + (B2 ∧ B2)
2/4, and (9) follows. �

Similar to the exponential map, the exterior exponential provides half-scaled
bivector representations for rotations, translations, and dilations.

Given a rotor A in the image space of the exterior exponential, let B2 be a bivector
whose exterior exponential equals A up to scale. Then

1 + B2 + B2 ∧ B2

2
= A

〈A〉 , (11)

so

B2 = 〈A〉2

〈A〉 . (12)
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Example 3 Let eI2
θ
2 be a rotor inducing the rotation in space with axis I∼

2 and angle
−θ 
= π mod 2π . Then up to scale,

eI2
θ
2 = e∧I2 tan( θ

2 ). (13)

Let e
1
2 et = 1 + et/2 be a rotor inducing the translation by a vector t. Then

e
1
2 et = e∧ 1

2 et. (14)

Let e
θ
2 I2 be a rotor inducing the dilation of scale e−θ centering at point I2 (affine

representation, cf. [9]). Then up to scale,

eI2
θ
2 = e∧I2 tanh( θ

2 ). (15)

Let I2e
θ
2 I2 be a rotor inducing a dilation of scale −e−θ 
= −1. Then up to scale,

I2e
I2

θ
2 = e∧I2 ctanh( θ

2 ). (16)

On one hand, the exterior exponential is an injective quadratic map, which is
superior to the exponential map algebraically. On the other hand, the exterior expo-
nential has two severe drawbacks: first, the domain of definition is decomposed into
several disconnected regions, which blocks the construction of large-scope bivec-
tor parameters in the design of continuous conformal transformations; second, the
image space is also decomposed into several disconnected regions, making it im-
possible to represent rotors of large-scale continuous conformal transformations.

3 Twisted Vahlen Matrices and Quaternionic Vahlen Matrices

Recall that in complex analysis, any 2D conformal transformation can be repre-
sented by a fractional linear map from the Riemann sphere to itself, the sphere being
the complex plane plus the complex point at infinity. In Clifford analysis, there is
a similar representation for any nD conformal transformation. This is the so-called
Vahlen matrix representation [1, 11, 12, 16].

In this section, we introduce the classical work of Vahlen (1902) on representing
nD conformal transformations projectively by 2 × 2 matrices whose components
are in C�(Rn), by means of introducing two alternatives of Vahlen’s matrix repre-
sentation:

• Twisted Vahlen matrices: the product of two 2 × 2 matrices of multivector com-
ponents is no longer the usual matrix product, but a “twisted” one. The twisted
matrix product is exactly the geometric product in the conformal geometric alge-
bra C�(Rn+1,1).

• Quaternionic Vahlen matrices: When n = 3, any twisted Vahlen matrix can be
written as a 2 × 2 quaternionic matrix, and projectively, any 3D conformal trans-
formation can be represented by such a quaternionic matrix. The composition of
3D conformal transformations is just the usual matrix product.
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For 3D conformal transformations, twisted Vahlen matrices, Vahlen matrices,
and quaternionic Vahlen matrices provide three equivalent transcendental parame-
terizations in the Lie algebra Λ2(R4,1). The evaluation of each parameterization and
the computing of the inverse are both very easy.

With respect to the Witt basis (e, e0, e1, e2, . . . , en) of R
n+1,1, any vector has the

decomposition a+λe+μe0, where a ∈ R
n is a linear combination of e1, e2, . . . , en.

By ee0e = −2e and e0ee0 = −2e0, any versor M = (a1 + λ1e + μ1e0)(a2 + λ2e +
μ2e0) · · · (ar + λre + μre0), where ai ∈ R

n and λi,μi ∈ R, after multilinear expan-
sion, is changed into the following form:

M = −A
2

ee0 − B
2

e + Ce0 − D
2

e0e, (17)

where A,B,C,D ∈ C�(Rn). More generally, by means of linearity any multivector
M ∈ C�(Rn+1,1) has the unique decomposition (17).

Under the following correspondence of bases:

1 =
(

1 0
0 1

)

, e =
(

0 −2
0 0

)

, e0 =
(

0 0
1 0

)

,

ee0 =
(−2 0

0 0

)

, e0e =
(

0 0
0 −2

)

, e ∧ e0 =
(

1 0
0 1

)

,

(18)

(17) becomes

M = −A
2

ee0 − B
2

e + Ce0 − D
2

e0e =
(

A B
C D

)

. (19)

It is a classical result [11], which is also easy to verify, that (19) provides an al-
gebraic isomorphism between C�(Rn+1,1) and the following 2 × 2 twisted Clifford
matrix algebra M̂2×2(C�(Rn)):

Definition 2 The 2 × 2 twisted Clifford matrix algebra over R
n is the linear space

of 2 × 2 matrices whose components are in C�(Rn), equipped with the twisted
multiplication defined as follows: for any 2×2 matrices M1,M2 whose components
are in C�(Rn),

M1M2 =
(

A B
C D

)(
A′ B′
C′ D′

)

:=
(

AA′ + BĈ′ AB′ + BD̂′
CÂ′ + DC′ CB̂′ + DD′

)

. (20)

In each component on the right side of (20), the overhat (grade involution) is
always added to the element of the second matrix that is not in the same row with
the corresponding element of the first matrix multiplied with it. For example, in the
first component AA′ + BĈ′, A,A′ are each in the first row of the corresponding
matrix, while B,C′ are in different rows, so the overhat is added to C′.
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Let In be the unit pseudoscalar representing R
n with its positive orientation. The

following formulas can be easily derived from (19):

(
A B
C D

)†

=
(

D† B
C A†

)

,
̂

(
A B
C D

)

=
(

Â −B̂
−Ĉ D̂

)

,

(
A B
C D

)

=
(

D −B†

−C† A

)

,

(
A B
C D

)∼
=

(−AI−1
n BI−1

n

−CI−1
n DI−1

n

)

.

(21)

Under the correspondence (18), any vector a ∈ R
n+1,1 corresponds to the follow-

ing matrix:
(

x α

β x

)

, (22)

where

x = P ⊥
e∧e0

(a),

α = 2a · e0,

β = −a · e.

(23)

In particular, the null vector e0 +x+ex2/2, where x ∈ R
n, corresponds to the matrix

(
x −x2

1 x

)

. (24)

Of particular interest are the matrices corresponding to versors in C�(Rn+1,1).
We first take a look at some examples. Let I2 ∈ Λ2(Rn) and t ∈ R

n.

• The rotor of rotation eθI2/2 corresponds to
(

eθI2/2 0
0 eθI2/2

)
.

• The rotor of dilation eθe∧e0/2 corresponds to
(

e−θ/2 0
0 eθ/2

)
.

• The rotor of dilation (e ∧ e0)e
θe∧e0/2 corresponds to

( −e−θ/2 0
0 eθ/2

)
.

• The rotor of translation 1 + et/2 corresponds to
( 1 t

0 1

)
.

• The rotor of transversion 1 − e0t corresponds to
( 1 0

t 1

)
.

Definition 3 A 2 × 2 matrix M = ( A B
C D

)
over C�(Rn) is called a twisted Vahlen

matrix if

1. A,B,C,D are either versors or zero.
2. AB†,BD†,DC†,CA† are vectors.
3. Δ = AD† + BC† is a nonzero scalar.

In the above definition, Condition 1 guarantees B†A = A−1(AB†)A ∈ R
n if

AB† ∈ R
n. So in Condition 2, AB† can be replaced by any of BA†,B†A,A†B, and
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so for the other three elements in Condition 2. By Conditions 1 and 2,

(
A B
C D

)(
A B
C D

)†

=
(

AD† + BC† AB + BA
CD + DC CB† + DA†

)

=
(

AD† + BC† 0
0 (AD† + BC†)†

)

, (25)

so Condition 3 is equivalent to MM† being a nonzero scalar.

Theorem 1 In twisted Vahlen matrix M = ( A B
C D

)
, when A 
= 0, there exist λ ∈ R −

{0} and b, c ∈ R
n such that

M = A
(

1 b
c λ − cb

)

. (26)

When A = 0, there exist μ ∈ R − {0} and d ∈ R
n such that

M = B
(

0 1
μ d

)

. (27)

Proof (i) If A 
= 0 and B 
= 0, by denoting

A†B = b, A†C = c, B†D = d, A†A = λ−1, B†B = μ−1,

the matrix M can be written as
(

A B
C D

)

= A
(

1 λb
λc λμbd

)

,

where d satisfies

d = μ−1Δb−1 − μ−1bcb−1. (28)

By (28), λμbd = λΔ − λ2cb, so M can be written as

(
A B
C D

)

= A
(

1 λb
λc λΔ − λ2cb

)

.

(ii) If A 
= 0 but B = 0, then M can be written as
(

A B
C D

)

= A
(

1 0
λc λΔ

)

,

which is a special case of (i) where b = 0.
(iii) If A = 0, then B 
= 0, and M can be written as

(
A B
C D

)

= B
(

0 1
μΔ μd

)

. �
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Theorem 2 Any versor in C�(Rn+1,1) corresponds via (19) to a twisted Vahlen
matrix.

Proof Let M be a versor. When M is a vector, then it is of the form (22) and is a
twisted Vahlen matrix if and only if it is neither zero nor null. To prove the theorem
by induction, we need only prove that for any versor M and invertible vector M′,

MM′ =
(

A B
C D

)(
x α

β x

)

=
(

Ax + βB αA − Bx
−Cx + βD αC + Dx

)

(29)

is a twisted Vahlen matrix.
By (26) and (27), we only need to consider two cases:

(i) M =
(

1 λb
λc λΔ − λ2cb

)

, (ii) M =
(

0 1
μΔ μd

)

.

The corresponding matrix MM′ is respectively

(i)

(
x + λβb α − λbx

λΔβ − λc(x + λβb) λΔx + λc(α − λbx)

)

,

(ii)

(
β −x

μ(βd − Δx) μ(Δα + dx)

)

,

and it can be easily verified that each matrix is a twisted Vahlen matrix. �

Theorem 3 (Twisted version of Vahlen’s Theorem) Any twisted Vahlen matrix M
generates the following conformal transformation in R

n:

x �−→ M(x) = (Ax + B)
(
Ĉx + D̂

)−1 ∀x ∈ R
n. (30)

Conversely, any conformal transformation in R
n has such a twisted fractional linear

representation.

Proof In the conformal model, a point x ∈ R
n is represented by the null vector

e0 + x + ex2/2 whose twisted Vahlen matrix representation is (24). The graded
adjoint action of versor M on the null vector is, up to scale,

(
A B
C D

)(
x −x2

1 x

)(
A B
C D

)

=
(

AxD† + BD† + x2AC + BxC −AxB† − BB† − x2AA† − BxA†

−CxD + DD + x2CC† − DxC† CxB − DB − x2CA + DxA

)

=
(

(Ax + B)(D† + xC) −(Ax + B)(B† + xA†)

−(Cx − D)(D − xC†) (Cx − D)(B − xA)

)

.
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So in R
n, M changes a vector x to the vector

− (Ax + B)(D† + xC)

(Cx − D)(D − xC†)
= −(Ax + B)

(
D† + xC

)
̂

(
D† + xC

)−1
(Cx − D)−1

= −(Ax + B)
(
Ĉx − D

)−1

= (Ax + B)
(
Ĉx + D̂

)−1
. �

When C�(Rn) is represented by a matrix algebra, the twisted matrix multiplica-
tion is very inconvenient and needs to be revised to usual matrix multiplication. The
work was done by Vahlen in 1902.

Definition 4 The algebra of 2 × 2 Clifford matrices over C�(Rn), denoted by
M2×2(C�(Rn)), is the linear space of matrices of the form M = ( A B

C D

)
, where

A,B,C,D ∈ C�(Rn), equipped with the usual matrix multiplication
(

A B
C D

)(
A′ B′
C′ D′

)

=
(

AA′ + BC′ AB′ + BD′
CA′ + DC′ CB′ + DD′

)

. (31)

Definition 5 2 × 2 matrix M = ( A B
C D

)
over C�(Rn) is called a Vahlen matrix if

1. A,B,C,D are either versors or zero.
2. AB†,BD†,DC†,CA† are vectors.
3. Δ = AD† − BC† is a nonzero scalar.

It is easy to verify that Condition 3 in the above definition is equivalent to matrix
M being invertible.

Under the following correspondence, any twisted Clifford matrix corresponds to
a unique Clifford matrix, and vice versa:

twisted Clifford matrix

(
A B
C D

)

←→ Clifford matrix

(
A B
Ĉ D̂

)

. (32)

The above correspondence is in fact an algebraic isomorphism. All the previous
results presented in the form of twisted Clifford matrices can be translated easily
into Clifford matrices. For example, the following is a translation of Theorem 3.

Theorem 4 (Vahlen’s Theorem) Any Vahlen matrix M generates the following con-
formal transformation in R

n:

x �−→ M(x) = (Ax + B)(Cx + D)−1 ∀x ∈ R
n; (33)

and any conformal transformation has such a fractional linear representation.

Consider the special case where n = 3. Any 3D conformal transformation is in-
duced by the adjoint action of a rotor in C�(R4,1), and the rotor is unique up to scale.
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A rotor in C�(R4,1) corresponds to a twisted Vahlen matrix M = ( A B
C D

)
, where A,D

are even and B,C are odd. Such a matrix is called an even twisted Vahlen matrix.
Fix a Witt basis (e, e0, e1, e2, e3) of R

4,1. Under the well-known correspondence

i = e2 ∧ e3,

j = e1 ∧ e3,

k = e1 ∧ e2,

(34)

the algebra of quaternions Q is isomorphic to the even subalgebra C�+(R3). Any
nonzero element of C�+(R3) is a rotor, and by duality, any nonzero element of
C�−(R3) is an odd versor.

Definition 6 A 2×2 quaternionic matrix M = ( α β

γ δ

)
is called a quaternionic Vahlen

matrix if

1. αβ, βδ, δγ , γ α are all pure imaginary, or equivalently, 〈αβ〉 = 〈βδ〉 = 〈δγ 〉 =
〈γ α〉 = 0;

2. The determinant Δ = αδ + βγ 
= 0 is real.

It can be easily proved that a quaternionic Vahlen matrix is invertible if and only
if its determinant is nonzero.

Theorem 5 The following correspondence, together with (34), provides an alge-
braic isomorphism between the group of even twisted Vahlen matrices and the group
of quaternionic Vahlen matrices:

M =
(

A B
C D

)

�−→
(

A BI−1
3

CI−1
3 D

)

. (35)

Proof First, in C�(I3), AB† being a vector is equivalent to A(BI−1
3 ) being a bivec-

tor. Second,

Δ = AD† + BC† = AD + (
BI−1

3

)(
CI−1

3

)† = AD + (
BI−1

3

)(
CI−1

3

)
.

Third, by usual matrix multiplication,
(

A BI−1
3

CI−1
3 D

)(
A′ B′I−1

3
C′I−1

3 D′
)

=
(

AA′ − BC (AB′ + BD)I−1
3

(CA′ + DC′)I−1
3 DD′ − CB′

)

=
(

AA′ + BĈ (AB′ + BD̂)I−1
3

(CÂ′ + DC′)I−1
3 DD′ + CB̂′

)

.

�

A point x ∈ R
3 is represented by the pure imaginary quaternion xI−1

3 under the
correspondence (34), or in the 2D right-linear quaternionic vector space Q

2 realizing
the 1D projective space QP

1, is represented by the vector (xI−1
3 1)T .
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The matrix multiplication of a quaternionic Vahlen matrix M = ( A BI−1
3

CI−1
3 D

)
with

(xI−1
3 1)T results in

(
A BI−1

3
CI−1

3 D

)(
xI−1

3
1

)

=
(

(Ax + B)I−1
3−Cx + D

)

=
(

(Ax + B)I−1
3

Ĉx + D̂

)

. (36)

Combining the above result with (30), we get the following:

Theorem 6 (Vahlen’s Theorem in quaternionic form) Any quaternionic Vahlen ma-
trix M = ( α β

γ δ

)
generates the following 3D conformal transformation: for any pure

imaginary quaternion υ representing a point in space,

υ �−→ M(υ) = (αυ + β)(γ υ + δ)−1; (37)

or equivalently, in QP
1 where the point is represented homogeneously by (υ : 1), the

conformal transformation is just the projectivity induced by the following invertible
right-linear transformation over Q:

(
υ

1

)

�−→
(

α β

γ δ

)(
υ

1

)

=
(

αυ + β

γυ + δ

)

. (38)

Conversely, any 3D conformal transformation has such a quaternionic fractional
linear representation.

Any bivector B2 ∈ Λ2(R4,1) has the following decomposition:

B2 = A2 + b ∧ e + c ∧ e0 + λe ∧ e0, (39)

where A2 ∈ Λ2(R3), λ ∈ R, and b, c ∈ R
3. The following map from the Lie algebra

Λ2(R4,1) to the group of quaternionic Vahlen matrices under the correspondence
(34) provides a transcendental parameterization of 3D conformal transformations,
called quaternionic Vahlen parameterization:

B2 = A2 + b ∧ e + c ∧ e0 + λe ∧ e0 �−→ eA2

(
1 bI−1

3
cI−1

3 λ − cb

)

if λ 
= 0. (40)

The Jacobian of the above parameterization is that of the exponential map A2 �→
eA2 from Λ2(R3) to Spin(R3). It is always bounded. Those not in the range of the
parameterization are conformal transformations induced by twisted Vahlen matrices
of the form (27). The effect of such a transformation is

x ∈ R
3 �−→ AdBI−1

3

(
(μx − d)−1) ∈ R

3, (41)

which is the composition of the translation by vector −d/μ, the inversion with re-
spect to the sphere centering at the origin and of radius μ−1/2, and a rotation whose
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axis passes through the origin of R
3. The dimension of the conformal transforma-

tions outside the range of the parameterization is 7.
Collecting results from the above two paragraphs, we get the following:

Proposition 2 The domain of definition of quaternionic Vahlen parameterization is
a set R

10 − R
9 parameterized by (A2,b, c, λ) according to (39), where λ 
= 0. The

image space is all 3D conformal transformations whose fractional linear represen-
tation (30) has the property that A = 0; it is the remainder of O+(4,1) after removal
of a 7D closed subset and is topologically S

3 × (R − {0}) × R
6.

Compared with the exterior exponential, quaternionic Vahlen parameterization
has the drawback that it is transcendental, and generally there are infinitely many
inverses, but has the significant advantage that its domain of definition is simpler,
and its image space is larger.

Example 4 Let there be a rotation in the space with fixed axis I∼
2 and angle of

rotation θ = θ(t), where t is the time variable, and the range of θ is an interval

of R. The parameterization of the motion by outer exponential is e∧I2 tan(
θ(t)

2 ) and is
invalid when θ(t) = π mod 2π .

In contrast, in the special case where the axis passes through the origin, the pa-

rameterization of the motion by quaternionic matrix is eI2
θ(t)

2
( 1 0

0 1

)
. In the general

case, let I∼
2 represent the line passing through point p ∈ R

3 and following unit di-
rection n ∈ R

3, i.e.,

I∼
2 = e ∧ (e0 + p) ∧ n, (42)

then the parameterization of the motion by quaternionic matrix is
(

1 −pI−1
3

0 1

)

enI−1
3

θ(t)
2

(
1 pI−1

3
0 1

)

= enI−1
3

θ(t)
2

(
1 (p − e−nI−1

3
θ(t)

2 penI−1
3

θ(t)
2 )I−1

3
0 1

)

. (43)

It is valid for all θ(t) ∈ R.

4 Cayley Transform

In application, rational polynomial functions are much simpler than exponentials
or trigonometric functions. For the special orthogonal group SO(p, q), whose Lie
algebra so(p, q) is the set of antisymmetric linear transformations in R

p,q , besides
the exponential map, there is also a classical rational polynomial map from the Lie
algebra to the Lie group, called Cayley transform [11]:

so(p, q) −→ SO(p, q),

g �−→ (IRp,q + g)(IRp,q − g)−1, where IRp,q − g is invertible.
(44)
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The map is injective but generally not surjective.
In the conformal model of 3D space, a natural idea is to consider simplifying the

exponential map from Λ2(R4,1) to the group of rotors by a fractional linear map
similar to (44). The following mapping C:

Λ2(
R

4,1) −→ C�
(
R

4,1),

B2 �−→ (1 + B2)(1 − B2)
−1, where 1 − B2 is invertible,

(45)

is called the Cayley transform from Lie algebra Λ2(R4,1) to the group of rotors in
C�(R4,1).

The Cayley transform in terms of dual quaternions has been an important tool in
describing and manipulating 3D rigid-body motions [17]. In this section, we enlarge
the scope to 3D conformal transformations, explore the range and domain of defini-
tion of the Cayley transform, and present a degree-4 polynomial form of it, together
with several neat formulas for the inverse of Cayley transform.

By computing the inverse (1 − B2)
−1, we get that for any B2 ∈ Λ2(R4,1) such

that B2
2 
= 1, the following equality holds up to scale:

C(B2) = (1 + B2)
2(1 − B2 · B2 + B2 ∧ B2). (46)

If C(B2) is required to be of unit magnitude, then

C(B2) = (1 + B2)
2(1 − B2 · B2 + B2 ∧ B2)

(1 − B2 · B2)2 − (B2 ∧ B2)2
. (47)

Equation (46) can be used as an alternative definition of the Cayley transform.
From this aspect, the Cayley transform is just a polynomial of degree 4 in B2, with
values in the group of positive rotors of C�(R4,1); or equivalently, it is a rational
polynomial of degree 4, with values in Spin+(4,1).

Theorem 7 [9] The domain of definition of the Cayley transform C is all bivectors
except the Minkowski blades of unit magnitude and is a set R

10 − V 5, where V 5 is
a 5D algebraic variety in R

10. The image space of C modulo scale is all positive
rotors except those of the form a1a2a3a4, where the ai are pairwise orthogonal
positive vectors.

Geometrically, the image space modulo scale is composed of positive rotors gen-
erating all orientation-preserving conformal transformations except the antipodal
inversions, as shown in Fig. 1, each of which is the composition of an inversion with
respect to a sphere and the reflection with respect to the center of the sphere. Topo-
logically, the image space modulo scale is the remainder of the Lorentz group of
R

4,1, which is a 10D connected Lie group, after removal of a 4D open disk.

In the following, we present the “inverse” of the Cayley transform by finding all
the preimages of a rotor in its range. Given a positive rotor A such that A 
= 1 up to
scale, let B2 be a bivector whose Cayley transform equals A up to scale.
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Fig. 1 Antipodal inversion: composition of a reflection with respect to a point and an inversion
centering at the same point

A bivector is said to be entangled, or coherent, if in its completely orthogonal
decomposition there are two components having equal square. It can be proved that
for a bivector 〈A〉2 ∈ Λ2(R4,1) to be entangled, it is necessary and sufficient that

(〈A〉2 · 〈A〉2
)2 = (〈A〉2 ∧ 〈A〉2

)2
. (48)

Theorem 8 [9] A positive rotor A in the range of the Cayley transform has exactly
one bivector preimage if and only if either it is in Λ(C2), where C2 is a 2-blade of
degenerate signature, or its bivector part is entangled. The unique solution is

〈A〉2

〈A〉4 + 2〈A〉 + |〈A〉〈A〉4|/〈A〉 . (49)

Any other positive rotor A in the range of the Cayley transform has two bivector
preimages, and they are inverse to each other:

〈A〉2

〈A〉4 + 〈A〉 ± |A| . (50)

Example 5 In C�(R4,1), let A = eI2
θ
2 be a rotor inducing a 2D rotation, where I2 ∈

Λ(e∼) is a Euclidean 2-blade of unit magnitude such that I∼
2 is the axis of rotation,

and −θ is the angle of rotation. Then

B2 = eI2
θ
2 − e−I2

θ
2

eI2
θ
2 + e−I2

θ
2 + 2

= I2 tan
θ

4
, B−1

2 = −I2/ tan
θ

4
, (51)

and both generate A by the Cayley transform.

While the bivector representation of a rotation via the exponential map is a
half-angle representation, the bivector representation via the Cayley transform is
a quarter-angle representation.

Example 6 In C�(R4,1), let A = 1 + et/2 be a rotor realizing a translation, where
t ∈ e∼ is a positive vector. Then

B2 = et
4

(52)
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generates A by the Cayley transform. So the Cayley transform provides a quarter-
distance bivector representation of the translation.

Example 7 Let A = e
θ
2 e∧a be a rotor realizing a dilation (or scaling), where θ ∈ R,

a is a null vector representing a point, and a · e = −1. Rotor A generates the dilation
centering at point a and with scale e−θ . Denote I2 = e ∧ a. Then

B2 = eI2
θ
2 − e−I2

θ
2

eI2
θ
2 + e−I2

θ
2 + 2

= I2 tanh
θ

4
, B−1

2 = I2/ tanh
θ

4
, (53)

and both generate A by the Cayley transform. So the Cayley transform provides a
quarter-scale bivector representation of the dilation.

All orientation-preserving similarity transformations in R
3 can be induced by

bivectors in Λ2(R4,1) through the Cayley transform and adjoint action. A translation
is induced by the Cayley transform of a unique bivector. Any other orientation-
preserving similarity transformation is induced by the Cayley transform of exactly
two bivectors.

When choosing between the two bivector preimages B2 and B−1
2 of a rotor, since

|B2||B−1
2 | = 1, one of |B2| and |B−1

2 | is greater than or equal to 1. By (50),

∣
∣B2 − B−1

2

∣
∣ = 2

|A|
|〈A〉2| ≥ 2. (54)

So for two rotors that are close to each other, we can always choose their bivector
preimages to be close to each other. If their magnitudes are greater than 1, we can
choose their inverses so that the magnitudes become smaller than 1.

Then what is the use of having two bivector preimages for the same rotor? Take,
as an example, the 2D rotation in Example 5. It is well known that SO(2) is a cir-
cle which has the following rational parameterization induced by the stereographic
projection from the north pole N :

eI2θ = cos θ + I2 sin θ = 2t

1 − t2
+ I2

1 + t2

1 − t2
, (55)

where, as shown in Fig. 2, t = tan(θ/2) is half the signed distance from the south
pole S to point X in the horizontal direction, and point eiθ in the complex plane is
represented by the intersection R of line NX with the unit circle.

Since the map θ �→ eI2θ is an isometric immersion, the Jacobian of the rational
parameterization (55) equals

dθ

dt
= 1

/
(

dt

dθ

)

= 2 cos2 θ

2
. (56)

When point R moves from the south pole S to point T , the Jacobian decreases from
2 to 1, while when point R continues to move from point T to the north pole N , the
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Fig. 2 Rational parametrization of a 2D rotation

Jacobian decreases from 1 to 0. The parameterization becomes practically useless
nearby the north pole.

The two preimages in (51) are both mapped to the rotor eI2θ/2 by the Cayley
transform. So the Cayley transform provides a generalization of the rational param-
eterization of a circle taken as the 2D rotation group. In fact, it serves as two rational
parameterizations of the circle derived from two different stereographic projections:
one from the north pole, and the other from the south pole.

Since the two maps

θ �→ I2 tan
θ

4
and θ �→ −I2 ctan

θ

4
(57)

have Jacobians 1/(4 cos2(θ/4)) and 1/(4 sin2(θ/4)), respectively, the maps

t = tan
θ

4

Cayley�−→ eI2θ/2,

t = −ctan
θ

4

Cayley�−→ eI2θ/2,

(58)

have Jacobians J1 = 2 cos2 θ
4 and J2 = 2 sin2 θ

4 , respectively.

• When (4k − 1)π ≤ θ ≤ (4k + 1)π , then 1 ≤ J1 ≤ 2 and 0 ≤ J2 ≤ 1.
• When (4k + 1)π ≤ θ ≤ (4k + 3)π , then 1 ≤ J2 ≤ 2 and 0 ≤ J1 ≤ 1.

Hence the two maps in (58) cover different zones of the parameter θ ∈ R for the Ja-
cobians to be effective between 1 and 2. They serve as two different local coordinate
charts whose union covers the whole Lie group.

The Cayley transform as a polynomial map of degree 4 is computationally su-
perior; its inverse map has two branches and involves only one square-root com-
puting. Its domain of definition and its image space, when restricted to orientation-
preserving conformal transformations, are both larger than those of exterior differ-
ential and quaternionic Vahlen parameterization. Thus the Cayley transform and its
inverse are an ideal tool for motion planning, interpolating, and fitting in the Lie
algebra of 3D conformal transformations.
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5 Conclusion

This chapter explores the issue of parameterizing 3D conformal transformations.
Two new results are presented, one on quaternionic Vahlen parameterization, the
other on the polynomial 3D Cayley transform. They provide compact representa-
tions of 3D conformal transformations and should prove to be useful in geometric
applications.
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