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Abstract A novel model-based approach for global self-localization using active
stereo vision and density Gaussian spheres is presented. The proposed object recog-
nition components deliver noisy percept subgraphs, which are filtered and fused into
an ego-centered reference frame. In subsequent stages, the required vision-to-model
associations are extracted by selecting ego-percept subsets in order to prune and
match the corresponding world-model subgraph. Ideally, these coupled subgraphs
hold necessary information to obtain the model-to-world transformation, i.e., the
pose of the robot. However, the estimation of the pose is not robust due to the un-
certainties introduced when recovering Euclidean metric from images and during
the mapping from the camera to the ego-center. The approach models the uncer-
tainty of the percepts with a radial normal distribution. This formulation allows a
closed-form solution which not only derives the maximal density position depicting
the optimal ego-center but also ensures the solution even in situations where pure
geometric spheres might not intersect.

1 Motivation

Autonomous systems require the fundamental capability of self-localization in or-
der to properly process, associate, and interpret the incoming environmental sensor
signals and properly act in the environment. Remarkable examples of such systems
are humanoid robots operating in human-centered environments [1], see Fig. 1(a).
A formal representation of the elements composing the surroundings and their
interrelationships is needed to enable the robot to perform complex tasks through the
composition of multimodal skills accomplished through a perception—action cycle.
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Fig. 1 (a) The humanoid robot ARMAR-IIIa and its kitchen environment, see [2]. (b) The active
vision Karlsruhe humanoid head, equipped with seven DoF and two cameras per eye, see [3]. The
wide-angle lens are used for peripheral vision, while the narrow-angle lens are applied for foveated
vision

An effective mechanism to achieve the self-localization in these environments
ought to profit from the intrinsic topological and geometric structure of the world
by either constraining the search within a tailored feature space or by extracting in-
variant properties of the world elements. This mechanism has to sagaciously face
many diminishing factors that complicate the self-localizing task, i.e., the granular-
ity of the model, the nature of the sensors, and the uncertainty of the perception—
recognition cycle.

This chapter presents a novel geometric and statistical approach for model-
based global self-localization using an active-vision sensing paradigm for humanoid
robots. The global localization concerns about the position and orientation (6D-
pose) of the robot during the initialization.

The natural and inherent usage of conformal geometric algebra [5] arises from
the fundamental key idea of using conjuncted restriction subspaces in order to con-
straint and find the location of the robot. In this manner, the formulation prof-
its from those interesting features of this powerful mathematical framework [6].
For instance, the generalized intersection operator of geometric entities such as
planes, lines, spheres, circles, point pairs, and points is an ideal instrument to
attain the generation and validation of the ego-center location candidates of the
robot.

This proper treatment of subspaces helps to reduce the complexity of the percept-
to-model matching by a computationally efficient, conceptually clear, and consistent
apparatus for expressing the intersection among the geometric primitives.

In contrast to standard methods in linear algebra, where usually a case-based pro-
cedure is applied to determine the intersection subspaces, the conformal geometric
algebra provides a generalized mechanism, the meet operator [5, 6].



Model-Based Visual Self-localization Using Gaussian Spheres 301

2 Outline of Visual Self-localization

The upper bar of the Fig. 2 shows the three strata comprising the self-localization.
First, the physical space encloses the real world where the robot is located. The
visual space refers to the stratum where the image information from the world is
contained.

Finally, the world-model space is a graph-based representation of the surround-
ings consisting of two sublayers, the geometric-level with the 3D vertices and their
composition information and the topological-level describing the interrelation of
object components.

Visual space ‘World-model space Physical space

—~

Percepts

ot
&)

Fig. 2 Model-based visual self-localization approach (see [9]). (1) Appearance-based object
recognition components. (2) Extracted percepts mapped into the ego-frame. (3) Multitrial per-
cepts fusion. (4) Fused ego-percepts with their corresponding world-model associations. (5) Prox-
imity filtering for pruning purposes upon world model. (6) Orientation filtering. (7) Hypotheses
generation. (8) Hypotheses validation. (9) Geometric and statistical pose-estimation optimization.
(10) Resulting pose
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Fig. 3 Results of the class specific object recognition algorithms for door and door-handle, for a
detailed description, see [9]

Due to the model-based nature of the problem, the global localization can be
split into three sequential phases: visual acquisition of landmarks, data association
for model matching, and optimization of pose estimation.

2.1 Visual Acquisition of Landmarks

The active-vision perception and recognition components' are responsible for deliv-
ering the 3D position and orientation (6D-pose) of the instances of those elements
described in the world model, see Fig. 2.

In contrast to previous approaches, the perception layer is not based on image
saliences or singularities such as Harris corners [7] or SIFT features [8] because
these partially significant landmarks not only imply a burden during data associa-
tion, but at a certain point the humanoid robot utterly needs to visually recognize
the environmental elements in order to perform tasks.

In this way, the visually recognized instances (from now on Percepts) of those
environmental objects provide not only useful information to perform actions, but
they also partially solve? the data association between the visual and model spaces.
In a concrete context, percepts are doors and door-handles in a building, see Fig. 3.
The advantage of using class-based object recognition schema has been previously
exploited, see [10]. In this way, faster and more robust methods can be applied.

In contrast to general feature approaches, like in [11], they lack of feature model
association, besides offering poor reliability compared to those approaches designed

IThese are class-specific object recognition modules that were implemented as stated in the au-
thors’ previous publication [9].

2Up to the class instance association level.
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a) b) c)

Fig. 4 (a) Door-handle percepts recognized during scanning. (b) Multiple percepts corresponding
to the same element in the world. (¢) Percepts fused percepts into a stationary point X{q,;, ¢(1),¢; (1))
of the underlying multimodal density function 3 (x), delineation set, and its bounding box

for specific domains. In this implementation, doors and door-handles were robustly
recognized by means of Gaussian classification over characteristic feature spaces ex-
tracted from class specific descriptors® of the eigenvectors* from color-segmented
regions in stereo images, i.e., 2D recognition. For a detailed description of the meth-
ods, the reader is referred to [9]. Many specific recognition components may be
added to improve the performance of the system at graph filtering by increasing the
partition of the graph, i.e., reinforcing constraints and increasing pruning.

2.2 Data Association for Model Matching

There are two fundamental questions to be answered in order to properly solve the
data association:

e How to fuse multiple percepts corresponding to the same world element arising
from multiple vantage points, see Fig. 4(b).

e How to match these fused percepts against the world model in order to compose
the kinematic chain linking the selected perceptions to the world model, i.e., the
backwards transformation from the world to the robot, see (5).

Percepts Fusion

Initially, a reference ego-space frame is defined; it is attached to a references el-
ement of the humanoid robot, i.e., a kinematic frame of the robot which remains
stationary during the visual scanning phase. Then, the time-varying kinematic chain
of transformations coupling the stereo vision system with the ego-frame is taken
into account for the registration of the percepts. Subsequently, the percepts acquired

3Speciﬁc tailored feature vector.

4From the covariance matrix of the clustered binary regions.
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during discrete steps of the scanning trajectory are mapped into the reference ego-
frame, see Fig. 4.
The underlying multimodal spatial density function

de(x) : R¥ >R
of the a-type percepts implies that stationary points

X c0(1),61(0))

are the high-density locations («¢-modes) of elements of « type, i.e., door, window,
etc. These points describe the fused locations of the a-elements.> Percepts converg-
ing to X{; co(),c; (1)) constitute the fusion set, i.e., the cluster delineation in [13].
This is the key to properly fuse the multiple view percepts, see Fig. 2(3).

These ideas are commonly used in the nonparametric density estimation tech-
niques as Parzen Windows [12] and Mean Shift [13]. The problem of estimating the
bandwidth matrix and kernel type is coherently solved by using the geometric class-
description of the percept, i.e., the inverse covariance matrix obtained from the 3D
vertices of the geometric model.

The Epanechnikov [13] kernel was chosen over the Gaussian kernel because of its
faster convergence producing only negligible differences in the resulting delineation
set compared with the results when using the Gaussian kernel. By exploiting these
ideas, the multiple view perceptions are efficiently fused into a common reference
space constituting the fused percepts set Hr, see Fig. 2(4).

Fused Percepts Matching

Previously merged landmarks are matched with the model by simultaneously
trimming and coupling the elements of the world and those fused percepts, see
Fig. 2(5-6).

In order to achieve this mechanism, a graph-based representation of the world
was implemented, whereas the fused percepts are arranged into a set of subgraphs
according to their spatial distribution.

This coupling process requires to adequately incorporate the previous noisy
fused-percept subgraphs as proper constraints to trim the model graph. In this way,
the elements in the model which correspond to the selected acquired percepts re-
main active in the model space. The elements that cannot satisfy the constraints are
dismissed.

A selected percept subset could be partially matched against the model by using
relative distances and orientations among them, i.e., removing elements which have
no relative incidence within the perceived range of relative distances and orienta-
tions. These are the key ideas of the proximity and orientation filtering.

5In Figs. 2-3 the « elements are the door-handles acquired in multiple views; in this case the «
label refers to the class door-handle.



Model-Based Visual Self-localization Using Gaussian Spheres 305

For these purposes, the world has been computationally modeled with two levels
of abstraction. The first one describes the geometric composition of the elements and
their relative pose. This is basically a CAD® structure. On this level the entities are
data arrangements with information concerning 3D vertices and their composition
describing geometric primitives. In the second level, the latter structures compose
instances of object-model’ O}" with attributes, e.g., identifier, type, size, and pose.

The collection of object-model instances constitutes the node set v, whereas the
link set

Ac{of"x 070" 0 ev, i>j, |Xi—X,| <t}

depicts the connections A; ; formed by all object model instances with the relative
distance® falling below ¢ € R.

Proximity Filtering

When filtering links in the world-model graph, noise is taken into account in the
form of deviation parameter ¢; of the distance between the perceived-recognized
objects’ Ol.p /.

1 : 2
a=(1x/ -cu) M)
with location X lf and center of the left camera Cy, [15]. The result of the proximity

filter is the set of links

Via,p.¢,7) C A

connecting nodes of type « to nodes of type 8, e.g., door to door-handle, which are
separated by a distance ¢ with error-tolerance

T = max(€g),
ke®

where ® denotes the subset of recognized objects of both types:
Viap.nt C (O O g (¢ = 1Xi = Xjll)| <7}

The active link set Yryc; consists of nodes from the intersection of those g prox-
imity filtering partial results

q
Yact := m Vi B it}

i=1

6Coin3D: www.coin3d.org.
"Note that the superscript “m” emphasizes the model object instance.
8The magnitude of the threshold ¢ corresponds to the maximal length of the 3D-FOV, see [14].

Note that the superscript “ f”” emphasizes the fused-percept instance.


http://www.coin3d.org

306 D. Gonzalez-Aguirre et al.

Each filtering stage performs a strong reduction of the cardinality of the active
link set, because those remaining nodes are tightly constrained, i.e., nodes should
have neighbors with restricted types at constrained distance ranges. Fast perfor-
mance was achieved by using a distance lookup table and filtering only previously
selected nodes.

Orientation Filtering

A more powerful, but computationally expensive, technique to reduce the nodes
within active link set is attained by accepting only the nodes with incidences having
a certain relative pose. In this sense, the definition of the frame transformation has
to be consistent while considering the noisy nature of the percept as follows:

First, three noncollinear elements are selected,

OI.pf, Off, and Off € Hy;

then a frame is specified

Si,j,k o [Ri,j,k Xf]

Percept = L Percept’ “*i
relative to the ego-perception frame!©
f f =~ ~ o~
s XX s B -xhr e BB
1x] - x/ | 151 A X — X1l 151 A STl

which leads to

Lk _1sh o~
RPercePt - [8 ’ e”]n:l.‘.f%'

Note that these computations take place in G(3,0), and thus the dual of the wedge
product of two vectors corresponds to the cross product in vector calculus.

Next, the relative displacement from O f " to 0: /" expressed on the frame of
perception is computed:

Pf _ gk 143 Pf
Vi,jk - SPercept(Xj - Xk )

Such a vector merges the relative orientations of the three percepts in a signature-
like consistent manner. Therefore, it is possible to reject nodes which do not have a
“similar” displacement vector among two of the neighbors with corresponding type
and proximity. This noisy similarity is quantified by the length and angle discrepan-

cies u and « between the perception signature ijk and the model signature V,/",,,
u,w,v

vectors, expressed on the world model S ;.

10With orthonormal basis vectors {¢], &, &3}
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Fig. 5 World-model graph at pruning by means of proximity and orientation filtering. Example
of accepted node O%' with vector V5", 5'g.2 inside X Notice that the subspace X corresponds to the
boolean subtraction of two spherical cones [4]. The aperture of the implicit cone depicts the noise
parametric tolerance of the orientation filtering, see (3). The radii of both implicit spheres differ by
max, 1.€., the proximity filtering noise parametrical tolerance, see (2)

Figure 5 shows the subspace X bounded by
“ ijk u W “ < Mmax> 2)
arccos(\/'i’jk u,vw) < Kmax- 3)

When filtering a node, the combinational explosion is avoided by computing only
the subgraphs with link lengths falling into the range

(155l = ) < 1002 0 T < (V3 4 ).

2.3 Pose-Estimation Optimization

Previously extracted model subgraphs that simultaneously match the typed inci-
dences and relative pose of those acquired percepts subgraphs, embody the associ-
ation coupling the visual space, world model, and physical world.

They simultaneously impose restraints which are the geometric-compelling keys
to deduct the pose of the robot. Each association

{0/, 07)

constraints the position of the robot to the subspace of all points that are [|X; s I

units away from X ;” This subspace is actually the surface on a sphere, i.e.,

1
2(0”,07) =X]+5 (IX]|-|X"]) ex+eocPK® @&
D [ ——

Restriction Subspace Perception-Model Matching
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Fig. 6 (a) Constrained-sub-
space embodies the surface of
the sphere. (b) Cooccurring
constrained-subspaces
depicting a circle. (¢) Three
constrained-subspaces acting
in conjunction yielding to a
point pair. (d) Four
constrained-subspaces
yielding to a simultaneity
point, i.e., the point within the
intersection of these four
constrained-subspaces

|‘F,(1 A20304)

“'"--"Q
d)

centered at X;” with radius ||Xipf I, see Fig. 6(a).

Note that the sphere in (4) is an element of the conformal geometric space PK?>,
which has the Clifford algebra signature G, 1), see [S].

For a single percept, this idea provides no benefit, but on second thought, when
observing the same concept with two different percepts, it turns out to be a very
profitable formulation because the ego-center should reside in both constrained sub-
spaces, meaning that it has to be on the surface of both spheres at the same time.

Consider two restriction spheres simultaneously constraining the position of the
robot,

(0", 07) and  2,(0", O");

they implicate that the position of the robot belongs to both subspaces. Thus, the
restricted subspace is a circle, i.e., an intersection of spheres, see Fig. 6(b),

Zany =21(0;". OF) n 2(0;" . OF").

Following the same pattern, a third sphere £23 enforces the restriction to a point
pair

Janans) = Zany A $23(077, o),

i.e., circle—sphere intersection, see Fig. 6(c). Finally, a fourth sphere £24 determines
the position of the robot, i.e., the intersection point from the latter point pair, see
Fig. 6(d),

Panranszngy = J(1a2a3) A 94(0tpf, oy).

Latter concepts outline a technique which uses the previously partially matched
elements of the world model and process them by a geometric apparatus for generat-
ing the ego-center candidates. This apparatus uses the centers of the spheres within
the model space and the radii from the fused-percepts, see Fig. 2(6-9). The formu-
lation and treatment of the uncertainty acquired during perception is presented in
Sect. 3.
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Fig. 7 Location hypotheses
generation—validation
mechanism systematically
manages the location
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The computational complexity of this location hypotheses management process
is upper bounded by O(n*), where n is the cardinality of the subset of percept-
spheres. The amount of spheres n is never greater than 6 while generating candi-
dates; besides, in rare cases the internal partial result is that the intersection stages
are densely populated. This could be easily seen when intersecting two spheres. The
resulting circle occupies a smaller subspace which in successive stages meets only
fewer remaining spheres. One important factor why there are less operations in this
combinational computation is because the child primitives that result from the in-
tersection of parent spheres should not be combined with their relatives avoiding
useless computation effort and memory usage.

Hypotheses Generation

Each percept subgraph is used to produce the zero-level set, composed of spheres,
see Fig. 7,

P ={$2:(0]". O )}y

These spheres are then intersected by means of the wedge operator A in an upper
triangular fashion producing the first-level set @1 containing circles.

The second-level set @, is computed by intersecting the circles with spheres
from @ excluding those directly above. Then the latter resulting point-pairs are
intersected in the same way creating the highest possible level (third-level set) ®@3;
here the points resulting of the intersection of four spheres are contained.

Finally, elements of @, that have no descendants in @3 and all elements on @3
represent the location hypotheses

A=\ 2(or, 07).
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Fig. 8 Kinematic frames
involved in the ideal visual
self-localization. Notice the
directions of the coupling
transformations in order to
reveal the frame Sego

Hypotheses Validation

Hypotheses are checked by selecting associations, see Figs. 28,
pf
(o}, o)

that were not considered in the generation of the current validating hypothesis. In
case there is more than one prevailing hypothesis, which rarely happens in nonsym-
metric repetitive environments, an active validation needs to take place selecting
objects from the model and then localizing them in the visual space. The criterion
to select the discriminator percept le’fj (priming instance) is the maximal pose dif-
ference between hypotheses pairs.

Ideal Pose Estimation

Once the location hypothesis has revealed, the position of the robot Xeg, (see Fig. 8)
and the orientation Seg, are expressed as

_ u,w,v i,j.k 1-1
Sego - model [S Percept] ’ o)
~—— ——— <

Self-Localization =~ Model-Matching Visual-Perception

which is actually the transformation from the kinematic chain that couples the
world-model frame Spogel (forwards) and the perception frame [Sll;e]r’ckept]_l (back-
wards), see Fig. 8.

There are situations where a variety of diminishing effects alter the depth calcu-
lations of the percepts in a way that the ideal pose calculation may not be robust
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or could not be assessed. The subsequent sections describe the sources and nature
of the uncertainties, which are modeled and optimized by the proposed technique
to determine the optimal location of the robot, i.e., the maximal probabilistic posi-
tion.

3 Uncertainty

The critical role of the uncertainty cannot only strongly diminish the precision of
the estimated pose, but it can also prevent the existence of it by drawing away the
intersection of the restriction subspaces, i.e., the spheres might not intersect due to
numerical instability and errors introduced by the perception layer.

In order to sagaciously manage these conditions and other derived side effects,
it is crucial to reflect upon the nature of the acquired uncertainties regarding this
localization approach. There are two remarkable categorical sources of uncertainty,
image-to-space and space-to-ego uncertainties.

3.1 Image-to-Space Uncertainty

Image-to-space uncertainty is obtained from the appearance-based vision recogni-
tion process. It begins with the pixel precision limitations, e.g., noise, discretization,
quantization, etc., and ends with the error limitations of the camera model and its
calibration, e.g., radial-tangential distortion and intrinsic parameters [16]. This un-
certainty could be modeled, according to the central limit theorem [17], as a normal
distribution where the standard deviation o; is strongly related to the perception
depth p;:

o = <P (6)

where ¢ > 1 € R is an empirical scalar factor depending on the resolution of the
images and the vergence angle of the stereo rig, whereas the perception depth

pi=x —CpL)-éq @)

depicts the distance between camera center C, and point in space x; along the stereo
rig normal vector &4, see Fig. 9. This deviation model arises from the following
superposed facts: first, considering only the monocular influence in each camera of
the stereo rig.

The surface patch A; on the plane perpendicular to the optical axis of the camera
imaged into a single pixel P4 grows as function of the distance p;:

6 0
A = ,oi2 tan(—h) tan(—v>,
h v
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Fig. 9 The image-to-space uncertainty factors in a front-parallel configuration

where 6;, and 6, are the horizontal and vertical angular apertures of the field of view,
whereas /1 and v depict the width and height resolutions of the image, see Fig. 9.

Consequently, the stereo triangulation has an additional effect during the estima-
tion of the 3D position Mgereo(X;) of a matched point pair. The distance p; affects
the magnitude of the disparity d;. Therefore, the precision of the pixel computations
plays a decisive role, i.e., the 3D space points which are closer to the base line have
wider disparities along the epipolar lines, meanwhile the points located after dis-
tance pry > fb have a very narrow disparity, falling in the subpixel domain d < 1,
which results in inaccurate depth calculations.

This situation also produces a sparse distribution of the iso-disparity surfaces
[15], meaning that the subspace contained between this surface-strata grows as

fb
di = —, ®)
pi
where the focal distance f and the base line size b play relevant roles in the mea-
surement precision

b=|CL—Crll

Figure 9 shows the ideal front parallel case iso-disparity edges delineating the
subspaces contained between two discrete steps in the disparity relation of (8).

In this manner, points contained within one of these subspaces produce the same
discrete disparity when matching corresponding pixels. Hence, the location uncer-
tainty should be proportional to the distance contained between iso-disparity sur-
faces. These two applied factors produce an uncertainty growing in an attenuated
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a) b)

Fig. 10 The space-to-ego uncertainty acquisition process produced by the mapping of percepts
from camera coordinates to the ego-frame. (a) The whole transformation X; = M’ego (Mtereo (X))
(b) The transformation Mby, = [Ty Niy HCL] ™!

quadratic fashion, which is reflected in the model as a deviation spreading in the
same pattern reflected upon (7).

3.2 Space-to-Ego Uncertainty

The space-to-ego uncertainty is caused while relating the pose of the percepts from
the left camera frame to the ego-frame, i.e., head-base frame of the humanoid robot,
see Fig. 10(a).

It is caused by the physical and measurement inaccuracies, which are substan-
tially magnified by projective effects, i.e., the almost negligible errors in the en-
coders and mechanical joints of the active head of the humanoid robot are amplified
proportionally to the distance p; between the ego-center and the location of the per-
cept.

Figure 10(b) shows the kinematic chain starting at xiL, the left camera coordinates
of the space point X;. Subsequently, the transformation from the left camera frame
Cy, to the shoulders base T () passing through the eyes base H and neck frame N (¢)
is given by

X; =My, (x). ©

M., = [T()NoHCL]™", (10)
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where M’ego is the ego-mapping at time ¢. Here, the transformations T(;) and N
are time-dependent because they are active during the execution of the scanning

strategy, see Fig. 10(b).

4 Geometry and Uncertainty Model

Once the visual recognition components have provided all classified percepts within
a discrete step of the scanning trajectory, these percepts are mapped into the refer-
ence ego-frame using (9). This ego-frame is fixed during the scanning phase. In this
fashion all percepts from different trials are located in a static common frame, see
Fig. 10(b).

The unification-blending process done by the fusion phase simultaneously allows
the rejection of the percepts that are far from being properly clustered and creates
the delineation set which is later melted into a fused percept.

Next, the geometric and statistical phase for determining the position of the robot
based on intersection of spheres is properly formulated by introducing the Gaussian
sphere and its apparatus for intersection-optimization.

4.1 Gaussian Spheres

The considered restriction spheres £2; are endowed with a soft density function
f(2i.x), 2 ePK® xeR— (0.1]€R.

The density value decreases exponentially as a function of the distance from an
arbitrary point x to the surface of the sphere £2;:

S(x, Xiori) = |(Ilx — Xill —ri)

, 1D
—S()c,Xi,ri)2

f@ixn=e ™ . (12)
The latter function depicts the nonnormalized!! radial normal distribution
N(p, = {x | ker(S(x, Xi, r,-))}, ai2)

for x to be in the surface of £2;, i.e., the null space of S(x, X;, ;). Note that here the
standard deviation o; refers to (6).

The density of a point x in relation with a sphere £2; represents the nonnormal-
ized probability for the point x to belong to the surface of the sphere §2;. Obviously
the maximal density is on the surface of the sphere itself.

1
o2r”

1By the factor
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Fig. 11 Gaussian spheres meeting. (a) Two Gaussian spheres meeting £2; A §2; describing a
density-subspace A($21 A §22). (b) Three Gaussian spheres 2 ;—1 2,3 meeting in two regions de-
picting a subspace £21 A £22 A §23. (¢) Detailed view of one of the previous subspaces. (d) Dis-
crete approximation of the maximal density location x;. (e) Details of the implicit density-space
A(821 A 22 A §23). (F) (Upper-right) Implicit radius r, when estimating the density at position x

It is necessary to propose an effective mechanism which applies intersections
of restriction spherical subspaces as the essential idea for determining the robot
position. The nature of the applied intersection has to consider the endowed spatial
density of the involved Gaussian spheres.

In the following sections, the restriction spheres and their conjuncted composi-
tion properly model both uncertainties, allowing the meeting of spheres by finding
the subspace where the maximal density is located, see Fig. 11.

This could be interpreted as an isotropic dilatation or contraction of each sphere
in order to meet at maximal density of the total density function, see Figs. 12
and 13.
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Fig. 12 Gaussian circlgs, ie., 2D G/gussian spheres. (a) Three Gaussian circles setup. (b) The total
accumulative densityAfC (x) = Z:’ f(82;, x) allows a better visualization of the composition of its
product counterpart f;(x), see also Fig. 13. (¢) Density contours with seeds and their convergence
by means of gradient ascendant methods

Fig. 13 The Gaussian circles, i.e., 2D Gaussian spheres. (a) Three Gaussian circles setup. (b) The
total density f;(x) = ]_[l” f(£2;, x). (¢) Density contours and ego-center Xego; notice that the re-
sulting distribution is not Gaussian
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fix) — (0,11eR, xeR3, (13)
fi) = J]Fi0. (14)

Due to the geometric structure composed by n spheres, it is possible to foresee
the amount of peaks and the regions W where the density peaks are located, see
Fig. 12(c). Therefore, it is feasible to use state-of-the-art gradient ascendant methods
[18] to converge to the modes using multiple seeds. These should be strategically
located based on the spheres centers and intersection zones, see Fig. 12(b).

Finally, the seed with maximal density represents the solution position x;,

Xy = arg max ]/‘,\(x). (15)

However, there are many issues of this shortcoming solution. The iterative solu-
tion has a precision limited by the parameter used to stop the shifting of the seeds. In
addition, the location and spreading of the seeds could have a tendency to produce
undesired oscillation phenomena, under- or oversampling and all other disadvan-
tages that iterative methods present.

The optimization expressed by (15) could be properly solved in a convenient
closed form. In order to address the solution x;, it is necessary to observe the con-
figuration within a more propitious space, which simultaneously allows an advanta-
geous representation of the geometrical constraint and empowers an efficient treat-
ment of the density, i.e., incorporating the measurements according to their uncer-
tainty and relevance while avoiding density decay.

4.2 Radial Space

The key to attain a suitable representation of the latter optimization resides in the
exponent of (12). There, the directed distance from a point x to the closest point on
the surface of the sphere is expressed by (11). When considering the total density
function, see (14), it unfolds the complexity by expressing the total density as a
tensor product.

The inherent nature of the problem lies in the radial domain, i.e., the expression
S(x, X;, r;)? is actually the square magnitude of the difference between the radius r;
and the implicit defined radius r, between the center of the spheres X; and the point
x, see Fig. 11(f). Hence, the optimization configuration can be better expressed in
radial terms, and the geometrical constraints restricting the relative positions of the
spheres are properly and naturally clarified in the following sections.

4.3 Restriction Lines

Consider the case of two spheres £21 and £2,, see Fig. 14(a). Here, the radii of both
spheres and the distance between their centers
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Fig. 14 The spheres’s intersection restriction lines derivation in the radial space S2. (a) The line
Ly is the first restriction for ensuring nonempty intersection of spheres. (b) The derivation of
reminding right side empty intersection restriction line Lg. (c¢) The left side symmetric case, gen-
erating the third restriction Line L,

Sz =11X1 = Xoll =v—=2(£21 - §22)

allow the formulation of the geometric restrictions which ensure the intersection of
the spheres in at least a single point P, .

These restrictions are expressed by the inequality line L, which describes the
radial configuration subspace represented by pairs of the form

P, =[r1,nl" €S,

the intersection of spheres §21 A §2;, i.e., a circle with zero radius, where the S2
refers to the radial configuration space of two spheres.

Note that in Fig. 14(d), the inequality line divides the configuration space into
two regions. The half space holding the restriction imposed by the inequality line
L, still contains configurations which produce no intersection of spheres, in fact
any configuration holding

7’2251’_24'7’]‘

In order to prevent these degenerated configurations two additional restriction
inequality lines arise, unveiled by following similar pattern.

In the same fashion, Fig. 14(b) shows the case where the minimal contact point
Pg occurs, subject to

r =z 85+ .
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In this configuration subspace, the sphere §2; fully contains the sphere £2,, and
their surfaces intersect solely at Pg. Once again, in order to ensure at least this
contact point, the fluctuation of the radii of both spheres is restricted by a linear
relation expressed by the inequality line Lg. The latter restriction actually happens
in a symmetric manner by interchanging the roles of 21 and £2,, resulting in a third
restriction, i.e., the inequality line L, see Fig. 14(c—d).

As a result, the space is divided in four regions Ky, Kg, K, and Kypee, all
open except K. Only those configurations within the subspace Kpee represent
nonempty intersections of spheres, e.g., the point x¢onr in Fig. 14(d) with

r T
Xconf = [rla }’2] € Kmeet-

The edge surface separating Kpeer from the other regions depict single-point
intersections of spheres, whereas elements within Kt represent intersection de-
picting a circle with nonzero radius.

Latter conceptualization soundly compounds the distance among centers of the
spheres with their radii. It produces a robust and general criterion to establish inter-
section guarantee, see Fig. 14(d).

4.4 Restriction Hyperplanes

The previous derivation of the restriction lines was achieved by considering only the
case involving two spheres; however, it is possible to extend these restrictions to n
spheres.

Formally, this affirmation is theoretically supported by representing the n sphere
radial configuration space S" as the Hilbert space C", where each dimension depicts
the radius of one sphere. An element x¢onr € S” of the n-dimensional radial configu-
ration space can be uniquely specified by its coordinates with respect to orthonormal
basis vectors

eieSiell,...,n)CZ,

which are, as expected in a Hilbert space, perpendicular to each other, because the
radius of each sphere is independent from the others. In this manner, the previous
restriction lines could be perpendicularly extruded in n — 2 dimensions creating the
restriction hyperplanes q)éf’j ),

Here again, each hyperplane divides the space in two subspaces. Configurations
within the region opposite to the normal vector V, (back of the hyperplane) repre-
sent nonintersecting spheres, see Fig. 15.

Even more, the set of hyperplanes expressed in their Hesse normal form could be
used to compose a matrix inequality

Ax <b, (16)
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Fig. 15 The radial density space Sb® containing the open polytope which delineates the subspace
Kmeet- The transformation-optimization vector Vopy implies an isotropic variation in the underlying
density domain while creating a general dilatation within the implicit radial domain

where A is an m x n matrix with m bounding half-spaces (normal vectors of the
hyperplanes), and b represents an m x 1 column vector formed by stacking the
Hesse distances of the hyperplanes, i.e., an open polytope, see Fig. 15.

Consider the case where n = 3. Three spheres implying an open polyhedron,
within the radial space each line

Lg’j), L(ﬁi’j), and ng’j)

could be extruded in the complementary dimension creating restriction planes given
by q>§,"~f ), Next, the face cells, ridges, and vertices of the polytope are found using a
simple and fast implementation for vertex enumeration [19], see Fig. 15.

At this stage, it could be conveniently established whether the current configu-
ration is valid, in other words, determine if the point xcon belongs to the polytope.
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This assertion is formally given by
Axconf < b.

In case this assertion is held, there is no need to go through the following opti-
mization phase because of the spheres meeting on their surface, resulting the maxi-
mal density

F(Feont) = 1.

The opposite situations represent the degenerated configurations resulting from
noisy measurements and previously discussed errors. For instance, the point xconf
represents an invalid configuration, outside of the polytope where no intersection of
spheres exists, see Fig. 15.

The target solution for the latter cases necessarily implies a decay in the density,
because at least one of the vector components has to be modified for the point xconf
in order to become a valid configuration x;o;. This offset signifies a dilatation or
relative contraction of the sphere(s) depending on the magnitude and direction of
the displacement Vp,

Xeonf = Xconf + Vopt

which transforms the degenerated configuration into a valid one, see Fig. 15. Here,
the optimal criterion to accomplish is to calculate the minimal-length offset vector
transformation Vo,

Vopt :=[Vr, ..., v, 1 €8",

retaining as much density as possible by eluding degradation of the spheres, reduc-
ing the radial deviation within (12).

The geometric intuitive way of finding such a vector is to find the closest point
from xconf On the cells or ridges of the polytope that could be efficiently computed
by perpendicularly projecting the point x¢onf to each hyperplane,

W) (VD - x) VI a7)

and selecting the closest one from those points holding the assertion given by (16).
Although this technique is computationally efficient and geometrically correct, the
outcoming solution is not optimal, because within this space only the absolute di-
rected distance is considered. No contribution effects of different deviations are as-
sessed, producing nonminimal density decay.

This limitation could be vanquished by considering a homothety transformation
H(S"), i.e., a deviation normalization of the radial configuration space inspired by
the concept behind the Mahalanobis [4] distance.

The spatial density function of a Gaussian sphere £2; given by (12) could be
conveniently reformulated in the radial domain as

i

—_~ _Llerx _Tiy2
F@ix)=e a7 (18)
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so that the deviation of the endowed normal distribution scales the implicitly defined
radius ry and the mean radius r; of the sphere £2; by the factor ol._l. This normal-
ization mapping could be generalized for the whole radial configuration space S”
as

H=diag[o; ',....0, "] (19)

This matrix actually represents the inverse covariance matrix X! of the total
density function given by (20). This could be easily visualized by the alternative
expression!

—~ 1y =Xl riy2
frwy=e 2B a) (20)

Based on (20) and taking into account the uncorrelated radial distributions, it
is clear that the underlying covariance matrix H~! = X has zero elements outside
its trace. Because of this fact, the proposed normalization Sd" = H(S") could take

place by applying the matrix H as an operator over the orthonormal vector bases of
S™ as

¢; = He;.

The Euclidean metric within this resulting space is uniformly isomorphic with
the density space. Displacements of the same length arising from the same position
imply equal density decay in all directions reflecting different dilatation or contrac-
tions of those involved Gaussian spheres. Note that this normalization takes place
before the vertex enumeration for the polytope extraction has been computed, re-
flecting the effects within the affine!? strata while computing the optimal points
in (17), see Fig. 15.

The application of the previous methods within the normalized radial configura-
tion space Sd” does not only ensure the optimal solution with minimal decay, but
it also benefits from the available certainty provided from the spheres with smaller
deviation (higher reliable percepts) by introducing smaller displacements in the cor-
responding dimension of the displacement vector V(jf)[ e Sd".

In other words, the spheres which have a wider deviation easily expand (or con-
tract) their surfaces than those with smaller ones in order to obtain the highest pos-
sible density at the meeting operation.

This method delivers the optimal trade-off fusion while performing the manage-
ment of the modeled uncertainty.

4.5 Duality and Uniqueness

In case the latter method has taken place in Sd* (considering three spheres) obtain-

ing the optimal configuration x5 € Sd?, there is still a duality to solve while back

12By rewriting the exponent as a vector column and arranging in a standard form x’ X~ 'x.

131n the Hesse normal form of the hyperplanes.
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mapping this configuration into the physical Euclidean space. This issue is solved
straightforward by computing the point pair solution

3
Ths = /\Qi (01 (xgong - € Xi).

i=1

In case both solutions lie within the valid'# subspace, a simple cross-check
against the location of percepts not involved in previous calculations will robustly
disambiguate the solution. It is possible to obtain a unique solution by using four
spheres for the optimization task, i.e., to represent the setup within Sd*. In this way

~onf € Sd* could be again mapped back into the physical Euclidean space by means
of the meet operator unveiling the position of the robot as

4
Prs = /\Qi(ﬁi(xm-éi), X;).

i=1

5 Conclusion

This approach solves the model-based visual self-localization using conformal geo-
metric algebra and Gaussian spheres. The proposed method translates the statistical
optimization problem of finding the maximal density location for the robot into a
radial normalized density space Sd" which allows a very convenient description
of the problem. Within this domain, it is not only possible to draw the geometric
restrictions which ensure the intersection of spheres, but it also attains the optimal
fusion and trade-off of the available information provided from the percepts by in-
corporating the available information of each landmark according to its uncertainty.

The considered world model of the kitchen consists of 611 rectangular prisms,
124 cylinders, and 18 general polyhedra with 846 faces, all arranged by 1,524 gen-
eral transformations (rotation, translation, and scaling) with a total of 13,853 ver-
tices and 25,628 normal vectors composed in the scene-graph from the CAD model
and verified against real furniture with laser devices, see Fig. 1(a).

The global self-localization of the humanoid robot ARMAR-III within the
modeled environment was successfully performed using this approach. The scan-
ning strategy takes 15-20 seconds processing 20 real stereo images. The graph
model pruning takes 100-150 ms. The hypotheses generation—validation takes 200—
500 ms. Finally, the vertex enumeration takes approximately 15-50 ms depending
on the configuration.
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14 Above the floor and inside the modeled space.



324 D. Gonzalez-Aguirre et al.

References

1. Asfour, T., Azad, P, Vahrenkamp, N., Regenstein, K., Bierbaum, A., Welke, K., Schroder, J.,
Dillmann, R.: Toward humanoid manipulation in human-centred environments. Robot. Auton.
Syst. 56(1), 54—65 (2008)

2. Asfour, T., Regenstein, K., Azad, P., Schroder, J., Bierbaum, A., Vahrenkamp, N., Dill-
mann, R.: ARMAR-3: an integrated humanoid platform for sensory-motor control. In: 6th
International Conference on Humanoid Robots, IEEE-RAS, 4-6 Dec. 2006, pp. 169-175

3. Asfour, T., Welke, K., Azad, P., Ude, A., Dillmann, R.: The Karlsruhe humanoid head. In:
IEEE-RAS International Conference on Humanoid Robots (2008)

4. John, H., Horst, S.: Handbook of Mathematics and Computational Science. Springer, Berlin
(2006). ISBN: 978-0-387-94746-4

5. Bayro, E., Sobczyk, G.: Geometric Algebra with Applications in Science and Engineering.
Birkhiuser, Basel (2001). ISBN: 978-0-8176-4199-3

6. Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science, An Object-
Oriented Approach to Geometry. The Morgan Kaufmann Series in Computer Graphics. Mor-
gan Kaufmann, San Mateo (2007). ISBN: 0-123-69465-5

7. Harris, C., Stephens, M.J.: A combined corner and edge detector. In: Alvey Vision Conference,
pp. 147-152 (1988)

8. Lowe, D.: Object recognition from local scale-invariant features. In: The Proceedings of the
Seventh IEEE International Conference on Computer Vision, Sept. 1999, pp. 1150-1157

9. Gonzalez-Aguirre, D., Asfour, T., Bayro-Corrochano, E., Dillmann, R.: Model-based visual
self-localization using geometry and graphs. In: ICPR 2008. 19th International Conference on
Pattern Recognition, Tampa, Florida Dic. (2008)

10. Ullman, S.: High-Level Vision. MIT Press, Cambridge (1996). ISBN: 978-0-262-71007-7

11. Se, S., Lowe, D., Little, J.: Vision-based global localization and mapping for mobile robots.
IEEE Trans. Robot. Autom. 21, 364-375 (2005)

12. Duda, R., Hart, P.: Pattern Classification and Scene Analysis. Wiley, New York (1973).
ISBN: 0-471-22361-1

13. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE
Trans. Pattern. Anal. Mach. Intell. 24, 603-619 (2002)

14. Gonzalez-Aguirre, D., Bayro-Corrochano, E.: A geometric approach for an intuitive percep-
tion system of humanoids. In: International Conference on Intelligent Autonomous Systems,
Proceedings IAS-9, March 2006

15. Pollefeys, M., Gool, L., Vergauwen, M., Verbiest, F., Cornelis, K., Tops, J., Koch, R.: Visual
modeling with a hand-held camera. Int. J. Comput. Vis. 59(3), 207-232 (2004)

16. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge Univer-
sity Press, Cambridge (2004). ISBN: 0521540518

17. Kallenberg, O.: Foundations of Modern Probability. Springer, New York (1997).
ISBN: 0387953132

18. Korn, T., Granino, A.: Mathematical Handbook for Scientists and Engineers. Dover, New York
(2000). ISBN: 0-486-41147-8

19. Avis, D., Fukuda, K.: A pivoting algorithm for convex hulls and vertex enumeration of ar-
rangements and polyhedra. Int. J. Discrete Comput. Geom. 8, 295-313 (1992)



	Model-Based Visual Self-localization Using Gaussian Spheres
	Motivation
	Outline of Visual Self-localization
	Visual Acquisition of Landmarks
	Data Association for Model Matching
	Percepts Fusion
	Fused Percepts Matching
	Proximity Filtering
	Orientation Filtering

	Pose-Estimation Optimization
	Hypotheses Generation
	Hypotheses Validation
	Ideal Pose Estimation


	Uncertainty
	Image-to-Space Uncertainty
	Space-to-Ego Uncertainty

	Geometry and Uncertainty Model
	Gaussian Spheres
	Radial Space
	Restriction Lines
	Restriction Hyperplanes
	Duality and Uniqueness

	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


