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Abstract Associative memories (AMs) were proposed as tools usually used in the
restoration and classification of distorted patterns. Many interesting models have
emerged in the last years with this aim. In this chapter a novel associative mem-
ory model (Geometric Associative Memory, GAM) based on Conformal Geomet-
ric Algebra (CGA) principles is described. At a low level, CGA provides a new
coordinate-free framework for numeric processing in problem solving. The pro-
posed model makes use of CGA and quadratic programming to store associations
among patterns and their respective class. To classify an unknown pattern, an inner
product is applied between it and the obtained GAM. Numerical and real examples
to test the proposal are given. Formal conditions are also provided that assure the
correct functioning of the proposal.

1 Introduction

Two main problems in pattern recognition are pattern classification and pattern
restoration. One approach usually used to restore or classify desired patterns is
by means of an associative memory. Lots of models of associative memories have
emerged in the last 40 years, starting with the Lernmatrix of Steinbouch [25], then
the Linear Associator of Anderson [1] and Kohonen [19], and the well-known model
proposed by Hopfield, the Hopfield Memory [18]. For their operation, all of these
models use the same kind of algebraic operations. Later there appeared the so-called
Morphological Associative Memories (MAMs) [23] that are based on the mathemat-
ical morphology paradigm.

An associative memory M is a device whose main function is associating input
patterns with output patterns. The notation for a pattern association between two

R. Barron (�)
Center of Computing Research, Juan de Dios Batiz s/n Col. Nueva Industrial Vallejo Gustavo
A. Madero, C.P. 07738, Mexico DF, Mexico
e-mail: rbarron@cic.ipn.mx

E. Bayro-Corrochano, G. Scheuermann (eds.), Geometric Algebra Computing,
DOI 10.1007/978-1-84996-108-0_11, © Springer-Verlag London Limited 2010

211

mailto:rbarron@cic.ipn.mx
http://dx.doi.org/10.1007/978-1-84996-108-0_11


212 B. Cruz et al.

vectors x and y can be seen as an ordered pair (x, y). The whole set of all associa-
tions that form the associative memory is called fundamental patterns set or simply
fundamental set (FS). Patterns belonging to the FS are called fundamental patterns.

Associations are completely stored in a weighted matrix. This matrix can be used
to generate output patterns using the associated input patterns. This weighted matrix
is the associative memory M. The process by which M is built is called learning or
training phase, and the process through which an output pattern is generated using
an input pattern is called restoration or classification phase.

When by means of an associative memory M a specific fundamental pattern is
correctly classified, then M presents a perfect recall for that pattern [5]. An associa-
tive memory that presents perfect recall for all patterns of the FS is called a perfect
recalling memory. When an associative memory M recovers or classifies patterns
affected with noise correctly, it is said that M presents a robust recall or robust
classification.

1.1 Classic Associative Memory Models

In 1961, a first work of associative memories was developed by Karl Steinbouch,
the so-called Die Lernmatrix. This memory was proposed in 1961 and is capable
of both pattern classification and pattern association [25]. In 1972, two papers by
James A. Anderson [1] and Teuvo Kohonen [19] proposed the same model of asso-
ciative memory, the so-called Linear Associator model for associative memories.

In the same year, a new associative memory device was presented by Kaouru
Nakano, the Associatron [22]. This device was able to store entities represented by
bit-patterns in a distributed form. It was able to restore complete patterns using a
portion of them. Ten years later, John J. Hopfield introduced the so-called Hopfield
Memory [18]. Hopfield considers this model as a physical system described by x

that has locally stable points.
Almost 20 years after the Hopfield Memory, a new set of lattice algebra-

based associative memories appeared, the Morphological Associative Memories
(MAMs) [23]. Minima or maxima of sums are used for their operation, in contrast
to the sums of products used in previous models. A variant of these MAMs are the
Alpha–Beta Associative Memories (αβ) [27]. For these memories, two new opera-
tors are defined: α (alpha) and β (beta). These are detailed and discussed in [5].

There are two types of MAMs and αβ , the min memories that can cope with
patterns altered with subtractive noise and the max memories that can cope with
patterns altered with additive noise. However, contrary to what one might think, the
performance of these models in the presence of patterns altered with mixed noise
(most common in real situations) is too deficient [26].

In the literature, three ways to face the problem of mixed noise by means of
an associative memory can be highlighted. In [26], a way to solve this problem by
means of the so-called kernels is given. A kernel is a reduced version of an original
pattern; the basic idea is to use two associative memories, one for recalling the kernel
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using the distorted pattern and the other one for recalling the original pattern using
the obtained kernel. Kernels for MAMs are however difficult to find, and if new
patterns have to be added to the fundamental set, the kernels need to be computed
again [11].

Another approximation is by means of the so-called median memories [24].
These memories use the well-known median operator widely used in signal pro-
cessing instead of the maximum or minimum operators. Due the characteristics of
the median operator, these memories can cope with mixed noise directly. However,
the conditions for obtaining a perfect recall are difficult to achieve.

Finally in [11], it is shown how to solve the problem of the mixed noise by
decomposing a pattern into parts (sub-patterns). This method is feasible due to the
locality of the noise. Some parts of the pattern are less affected by noise than the
other ones. However this method can consume a lot of computing time.

2 Basics of Conformal Geometric Algebra

In the XIX century many scientists worked on the development of algebraic sys-
tems. Among these, William K. Clifford (1845–1879) introduced Geometric Al-
gebras (GA) called Clifford Algebras by mathematicians. They were completely
described in his paper Applications of Grassmann’s Extensive Algebra [10].

A geometric algebra is a priori coordinate-free [14]. In GA, geometric objects
and operators over these objects are treated in a single algebra [13]. A special char-
acteristic of GA is its geometric intuition. Another important feature is that the ex-
pressions in GA usually have low symbolic complexity [17].

The Conformal Geometric Algebra (CGA) is a (3,2)-dimensional coordinate-free
theory and provides a conformal representation for 3D objects. Spheres and circles
are both algebraic objects with a geometric meaning. In CGA, points, spheres, and
planes are easily represented as multivectors [15]. A multivector is the outer product
of various vectors [20].

CGA provides a great variety of basic geometric entities to compute with [17].
Intersections between lines, circles, planes, and spheres are directly generated. The
creation of such elementary geometric objects simply occurs by algebraically join-
ing a minimal number of points in the object subspace. The resulting multivec-
tor expressions completely encode in their components positions, orientations, and
radii [13].

The main products of Geometric Algebra are the geometric or Clifford product,
the outer product and the inner product. The inner product is used for the computa-
tion of angles and distances.

For notation purposes, Euclidean vectors will be noted by lowercase italic letters
(p,q, s, . . .), with the exception of the letters i, j, k, l,m,n that will be used to refer
to indices. The corresponding conformal points will be noted by italic capital letters
(P,Q,S, . . .). A Euclidean matrix will be noted by bold capital letters (M). To de-
note that an element belongs to an object (vector), a subscript will be used. To refer
that an object belongs to a set of objects of the same type, a superscript will be used.
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For example, if S is a sphere, then Sk is the kth component of it, and Sk is the kth
sphere of a set of spheres. To denote scalars Greek letters will be used.

In particular, an original Euclidean point p ∈ R
n is extended to an (n + 2)-

dimensional conformal space [16] as

P = p + 1

2
(p)2e∞ + e0, (1)

where p is a linear combination of the Euclidean base vectors. e0 and e∞ represent
the Euclidean origin and the point at infinity, respectively, such that e2

0 = e∞ = 0
and e0 · e∞ = −1 [13].

Equation (1) expresses a homogeneous relationship between both Euclidean and
conformal domains since, given a scalar α and a conformal point P , αP and P both
represent the same Euclidean point p. When the coefficient of e0 is equal to 1, then
P has a canonic representation. In this section, the algebra works in the conformal
domain, while the geometric semantics lies in the Euclidean domain. In the same
way, the sphere has the canonical form

S = C − 1

2
(γ )2e∞ = c + 1

2

(
(c)2 − (γ )2)e∞ + e0, (2)

where C is the central point in conformal form as defined in (2), where γ is the
radius of the sphere. Also, a sphere can be easily obtained by four points that lie on
it [13], as follows:

S = P 1 ∧ P 2 ∧ P 3 ∧ P 4. (3)

In this case, it is said that (3) is a dual representation of (2). In the same way, a
plane can be defined by three points that lie on it and the point at infinity [13] as
follows:

T = P 1 ∧ P 2 ∧ P 3 ∧ e∞. (4)

From (3) and (4) we can see that a plane is a sphere that passes through the point
at infinity [15].

A distance measure between two conformal points P and Q can be defined with
the help of the inner product [16] as follows:

P · Q = p · q − 1

2
(p)2 − 1

2
(q)2 = −1

2
(p − q)2 ⇐⇒ (p − q)2 = −2(P · Q),

(5)
resulting in the square of the Euclidean distance. In the same way, a distance mea-
sure between one conformal point P and a sphere S can be defined with the help of
the inner product [16] as

P · S = p · s − 1

2

(
(s)2 − 1

2
(γ )2

)
− 1

2
(p)2 = 1

2

(
(γ )2 − (s − p)2) (6)

or in a simplified form as

2(P · S) = (γ )2 − (s − p)2. (7)
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Based on (7), if P · S > 0, then p is inside of the sphere; if P · S < 0, then
p is outside of the sphere; and if P · S = 0, then p is on the sphere. In pattern
classification, therefore, if a CGA spherical neighborhood is used, the inner product
makes it possible to know when a pattern is inside or outside of the neighborhood.

3 Geometric Algebra Classification Models

While classic models all use the same kind of algebraic operations, MAMs make
use of the mathematical morphological paradigm (min and max operations). Next,
a description of how geometric algebra operations can be used to store the associ-
ation among a subset of patterns and their corresponding index classes is shown. It
is worth mentioning that the idea of using geometric algebra in classification is not
new.

In [2], a Quaternionic Multilayer Perceptron (QMLP) in Quaternion Algebra is
developed. A QMLP is a Multilayer Perceptron (MLP) in which both the weights
of connections and the biases are quaternions, as well as input and output signals.
With the help of the QMLP, the number of parameters of an MLP needed to perform
a multidimensional series prediction decreases [2].

A new set of Geometric Algebra Neural Networks was introduced in [7]. Real,
complex, and quaternionic neural networks can be further generalized in the geo-
metric algebra framework [7]. The weights, the activation functions, and the outputs
are represented by multivectors. The geometric product is used to operate these mul-
tivectors.

Bayro and Vallejo extended the McCulloch–Pitts neuron [21] to the geometric
neuron by substituting the scalar product with the Clifford or geometric product.
A feed-forward geometric neural network is then built, where the inner vector prod-
uct is extended to the geometric product, and the activation functions are a general-
ization of the function proposed in [2].

In [7], a new approach is also proposed, the Support Multivector Machines. The
basic idea is generating neural networks using Support Vector Machines (SVM) for
the processing of multivectors in geometric algebra. The use of geometric algebra in
SVMs offers both new tools and new understanding of SVMs for multidimensional
learning [7].

In [4], a special higher-order neuron, the so-called Hyper-sphere neuron was in-
troduced. A hypersphere neuron may be implemented as a perceptron with two bias
inputs. In that work, a perceptron based on conformal geometric algebra principles
was described. An iterative hypersphere neuron was also proposed. The decision
surface of the perceptron presented is not a hyperplane but a hypersphere. An ad-
vantage of this representation is that only a standard scalar product needs to be
evaluated in order to decide whether an input vector is inside or outside a hyper-
sphere.

So-called Clifford Neurons are introduced in [8], the weights and the threshold
of a classical neuron are replaced by multivectors, and the real multiplication is
replaced by the Clifford product. Two types of Clifford Neurons are described, the
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Basic Clifford Neuron, which can be viewed as a Linear Associator, and the Spinnor
Clifford Neuron. Both types of neurons can be the starting point to fast second-order
training methods for Clifford and Spinnor MLPs in the future [9].

In the following section, a new idea that has never been used before to develop
an associative memory model based on the conformal geometric algebra principles
will be explained.

4 Geometric Associative Memories

Definition 1 When two sets of points in R
n can be completely separated by a hyper-

plane, they are said to be linearly separable.

Linear separation is important for pattern classification; that hyperplane works
as a decision surface; it can be used for deciding to which class an unclassified will
be assigned by finding which side of the hyperplane the pattern is located. Many
classification models (i.e., neural networks) have better results when the patterns
are linearly separable.

In the same way, the next definition can be enunciated.

Definition 2 When two sets of points in R
n can be completely separated by a hy-

persphere, they are said to be spherically separable.

In this case the decision is made by finding if the pattern is located inside or
outside of the sphere. Thus, the following theorem can be established:

Theorem 1 Any two sets of linearly separable points in R
n are spherically separa-

ble too.

Proof Consider any two sets of linearly separable points in R
n. From (3) and (4) the

hyper-plane that separate them is a sphere that passes through the point at infinity.
Then, there is a sphere that separates them. Therefore, the two sets are spherically
separable. �

It is worth mentioning that Theorem 1 does not guarantee that two sets of spher-
ically separable points are linearly separable.

Spherical neighborhoods are usually difficult to handle, but in the context of
geometric algebra, this is not a problem. In [4], a method for building a hypersphere
neuron in an iterative way is described. In the following, three one-shot methods to
build a sphere are explained.

4.1 Creating Spheres

The goal of a Geometric Associative Memory (GAM) is to classify a pattern as
belonging to a specific class if and only if the pattern is inside of the support region
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(hypersphere) of that class. Building spherical neighborhoods implies to find the
center of each sphere and then a suitable radius. Some procedures to achieve this
with CGA have been reported in the literature. Three of them are described in the
following.

In [12], a one-shot method is described, where given a set of points {pi, i =
1, . . . ,m}, a spherical neighborhood is constructed. The center is computed as

c =
n∑

i=1

pi/m. (8)

In other words, the center is the average among all the patterns of each class. To
compute the radius, the following expression is used:

γ = min
[(

C · P i
)
, i = 1, . . . ,m

]
, (9)

where C and P i are the conformal representations of c and pi , respectively. This
procedure guarantees that all the patterns in the respective class will be inside of a
sphere of class. A disadvantage of this procedure is its high computational cost.

In [17], a second approach is presented: planes or spheres are fitted into point
sets by using a least squares approach. The algorithm uses the distance measure
between points and spheres with the help of the inner product. It performs a least
squares approach to minimize the square of the distances between a point and a
sphere.

With the help of this approach, spherical neighborhoods that fit a set of patterns
can be created. In this case, the spheres work as attractors with their corresponding
class patterns as centers. The drawback for this method is that generally some points
might appear located outside the resulting sphere.

In [17], bounding a sphere of cloud points is presented. The case for one and two
points is described, and the case of expanding an existing bounding sphere when
adding more points (or spheres) is presented. Using both cases, bounding a sphere
of a set of points can be easily performed.

In [6], a method to construct a smallest enclosing hypersphere using quadratic
programming and conformal geometric algebra was presented. The method com-
bines characteristics of the first two methods, i.e., fit an optimal sphere that contains
all the points.

The above methods can be used to build spherical neighborhoods for a specific
class by using the points (patterns) of that class. But they do not take into account
the patterns of other classes or the separation between classes.

In the following a new approach will be presented. It is inspired by ideas
from [12]. The proposal can be used to find an optimal spherical neighborhood
taking into account the patterns of the class that the sphere covers and the patterns
of the other classes.

Let P = {P i ∪ P j | i = 1, . . . , l, j = l + 1, . . . ,m} be a set of spherically sepa-
rable points in R

n, where {P i | i = 1, . . . , l} are points belonging to one class, and
{P j | j = l + 1, . . . ,m}, are points belong to the other class. The problem is to find
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an optimal sphere S with the least square error, such that P i are inside S and P j are
outside of it or, in other words, to solve

min
S

m∑

i=1

(
P i · S)

, (10)

subject to (11) for points inside of the sphere and (12) for points outside of it

P i · S ≥ 0, i = 1, . . . , l, (11)

P j · S < 0, j = l + 1, . . . , l. (12)

In order to find an optimal solution, a quadratic programming algorithm must
be applied. Therefore this problem must be changed into a Euclidean problem of
optimization, starting from (10) and considering that all the spheres are in canonical
form such that the term Sn+2 of them can be omitted:

m∑

i=1

(
P i · S)2 =

m∑

i=1

(
pi · s − Sn+1 − 1

2

(
pi

)2
)2

=
m∑

i=1

([
pi · s − Sn+1

] − 1

2

(
pi

)2
)2

=
m∑

i=1

([
pi · s − Sn+1

]2 − [
pi · s − Sn+1

](
pi

)2 + 1

4

(
pi

)4
)

, (13)

where Sn+1 = 1
2 (pi − s)2. Thus,

m∑

i=1

(
P i ·S)2 =

m∑

i=1

(
pi · s −Sn+1

)2 +
m∑

i=1

(−pi · s +Sn+1
)(

pi
)2 + 1

4

m∑

i=1

(
pi

)4
. (14)

Here, the third term is irrelevant because it does not depend on parameter S, and
thus it can be omitted. Without losing generality it can be rewritten in Euclidean
notation as in (15), where W and F are matrices whose components are (16) and
(17) respectively, and x = [S1, . . . , Sn+1].

m∑

i=1

(
P i · S)2 =

m∑

i=1

(
n+1∑

k=1

Wi,kxk

)

+
m∑

i=1

(
n+1∑

k=1

Fi,kxk

)

, (15)

Wi,k =
{

pi
k for k = 1, . . . , n,

−1 otherwise,
(16)
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Fi,k =
{

−(pi
k)(p

i)2 for k = 1, . . . , n,

(pi)2 otherwise.
(17)

Let wi = [Wi,1, . . . ,Wi,n+1]; then for the first term of the right side of expression
(15) and considering that wt

i is the transpose of the vector wi , we have

m∑

i=1

(
n+1∑

k=1

Wt
iSk

)2

=
m∑

i=1

(
wt

ix
)2

= (
wt

1x + · · · + wt
mx

)2

= wt
1xwt

1x + · · · + wt
mxwt

mx

= (
wt

1xwt
1 + · · · + wt

mxwt
m

)
x

= ([
xtw1 + · · · + xtwm

]
W

)
x

= xtWtWx. (18)

By considering that H = WtW we have

m∑

i=1

(
n+1∑

k=1

Wt
iSk

)2

= xtHx. (19)

For the second term of the right side of the expression (15), let yk = ∑m
i=1 Fi,k :

m∑

i=1

(
n+1∑

k=1

Fi,kxk

)

=
n+1∑

k=1

(
m∑

i=1

Fi,kxk

)

=
n+1∑

k=1

(ykxk). (20)

Let y = [y1, . . . , yn+1]; then

m∑

i=1

(
n+1∑

k=1

Fi,kSk

)

= ytx. (21)

With the help of (19) and (21), expression (10) can be converted into Euclidean
matrix notation as follows:

xtHx + ytx. (22)
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The constraint (11) for points inside of the sphere will change into

P i · S ≥ 0,

pi · s − Sn+1 − 1

2

(
pi

)2 ≥ 0,

pi · s − Sn+1 ≥ 1

2

(
pi

)2
,

n+1∑

k=1

(−Wk,i )Sk ≤ −1

2

(
pi

)2
,

(23)

where Wi,k was defined in (16). Equation (23) can be rewritten as

−Wx ≤ −1

2
p2

i , (24)

where x = [S1, . . . , Sn+1], and the constraint (12) for points outside of the sphere
will be

P i · S < 0,

pi · s − Sn+1 − 1

2

(
pi

)2
< 0,

pi · s − Sn+1 <
1

2

(
pi

)2
,

n+1∑

k=1

(−Wi,k)Sk <
1

2

(
pi

)2
, (25)

Wx <
1

2
p2

i . (26)

Let A = [−W,W], and b be a vector whose ith component is − 1
2 (pi)2 for i =

1, . . . , l and 1
2 (pi)2 − ε for i = l + m, . . . ,m. The ε is a smallest positive quantity

used to change the “<” of (26) to be the “≤”. Then the constraints (11) and (12) can
be converted to a Euclidean matrix notation,

Ax ≤ b. (27)

Finally, the problem of solving (10) has changed to a classical optimization prob-
lem with constraints

min
x

(
xtWx + ytx

)
,

s.t. Ax ≤ b.

(28)

Thus, the optimal sphere S is given by solving (28), where Sk = xk for k =
1, . . . , n + 1 and Sn+2 = 1. It is clear that by including in the restrictions all the
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points that stay out of the sphere, the solution S results in a separation surface that
allows differentiating between two classes (i.e., inner and outer points).

The procedure works perfectly for two spherically separable classes. In a mul-
ticlass situation, the procedure is similar. In this case, the subset {P i, i = 1, . . . , l}
will be all patterns for class k, and {P j , j = l +1, . . . ,m} will be all patterns for the
other classes. The kth sphere Sk is then found by solving (28). The same procedure
must be applied for all the other classes.

4.2 Pattern Learning and Classification

The learning phase of an associative memory consists on storing associations among
input patterns and output patterns. In the case of Geometric Associative Memories
(GAMs), the learning phase consists on creating the spherical neighborhoods for
each class. A GAM M is thus a matrix of size m × (n + 2) (m is the number of
classes, and n is the dimension of the space). The kth row are the components of the
kth sphere, as it can be seen in (29). Ck and γ k are the center and radius of the kth
sphere, respectively.

M =

⎡

⎢⎢⎢
⎣

S1

S2

...

Sm

⎤

⎥⎥⎥
⎦

. (29)

Classification of a pattern can be performed by using the idea from [4], an inner
product between the conformal notation of an unclassified pattern x ∈ R

n and M
must be applied to getting, as a result, a vector u. This vector will contain all the
inner products between the unclassified pattern and the spheres of class. This vector
is given as

uk = Mk · X = Sk · X. (30)

When X is inside a sphere, (30) returns a positive number (or zero) and a negative
number otherwise. Note that the classification phase is independent of the training
phase.

In some cases (mainly noisy patterns), X could be inside two or more spheres or
could be outside of all spheres. To decide to which sphere a given pattern belongs,
the following remapping must be used:

vk =
{

−∞ if uk < 0,

uk − (rk)2 otherwise.
(31)

This must be done for k = 1, . . . ,m. The class identifier j can be obtained as
follows:

j = arg max
k

[vk | k = 1, . . . ,m]. (32)
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As it can be seen, when x is outside of the k-sphere, expression (31) returns −∞,
and when x is inside of the k-sphere, the same expression returns the distance (with
minus sign) between x and ck . By doing this, x will be classified by a class sphere
covering its conformal representation; with the help of expression (32), x will be
classified by the sphere with center closest to it.

Note that, in some cases, vk = −∞ for k = 1, . . . ,m, that is, x is outside of all
the spheres. Then, when expression (32) is applied, it cannot return a value. At this
point, two choices can be taken. First, x does not belong to any class. Second, using
expression (32) directly on uk − (rk)2. In this case, the GAM works as a minimum
distance classifier, but the use of neighborhoods is relegated.

The classification phase is independent of the training phase. The proposed
method works perfectly when the classes are spherically separable.

4.3 Conditions for Perfect Classification

In associative memories, when an associative memory M recovers or classifies the
fundamental set correctly, it is said that M presents perfect recall or perfect classifi-
cation. Let M be a trained GAM, as it was presented in the previous section.

Theorem 2 Assume m sets of spherically separable classes in R
n, and let M be a

trained GAM for those classes. Then M presents perfect classification.

Proof Let k be an index class whose sphere Sk is the kth component in M, and let
p be a fundamental pattern of class k, and let j be an index j = 1, . . . ,m such that
j 
= k, Sk having being obtained using expression (10). Then according to condition
(11), P · Sk ≥ 0 because it is a pattern of class k and P · Sj ≥ 0 for some j 
= k.

When (31) is applied to P , v has a positive number or zero in position k and
−∞ in the other positions. Therefore, (32) returns k. This covers all patterns in all
classes. �

4.4 Conditions for Robust Classification

In associative memories, when an associative memory M recovers or classifies cor-
rectly patterns affected with noise, it is said that M presents robust recall or robust
classification. The robustness in a GAM depends on the size of its radius; the GAM
can classify any noise pattern as belonging to its class when that pattern is located
inside of it. Patterns located outside of a specific sphere (i.e., some noise patterns)
will not be classified as belonging to that class sphere.

The quantity of noise that can admit a fundamental pattern depends on the posi-
tion of it with respect to the center and the border of the sphere. Patterns nearest to
the center can admit more quantity of noise than patterns located near of the border.
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Fig. 1 Example 1, sets of
patterns. Square, pentagon,
triangle, and circle shapes are
patterns belonging to classes
1, 2, 3, and 4, respectively

5 Numerical Examples

In this section, two illustrative examples for the problem of classifying sets of pat-
terns are presented. For simplicity, in order to clarify the results, a 2D and 3D Eu-
clidean space for the geometric problem are used.

In both cases, a function of the Optimization Toolbox of MatLab was used to
solve the minimization problem. Function quadprog solves quadratic programming
problems. It finds an initial feasible solution by first solving a linear programming
problem.

Example 1 The following are linearly separable patterns set in R
n:

Class 1 x1 = [
1 1

]
, x2 = [

2 1
]
, x3 = [

3 2
]
, x4 = [

2 2
]
,

Class 2 x5 = [
2 −1

]
, x6 = [

1 −3
]
, x7 = [

3 −1
]
,

x8 = [
2 −2

]
,

Class 3 x9 = [−1 3
]
, x10 = [−3

]
, x11 = [−2 2

]
,

x12 = [−4 1
]
,

Class 4 x13 = [−2 −2
]
, x14 = [−1 −3

]
, x15 = [−1 −1

]
,

x16 = [−3 −1
]
.

(33)

Figure 1 shows a graphical representation of these patterns. By using (10), the
corresponding spheres (in this case, circles) are obtained. Their respective centers
and radii are

c1 = [
0.65 1.11

]
, γ 1 = 2.51,

c2 = [
1 −1

]
, γ 2 = 2,

c3 = [−1.5 1.5
]
, γ 3 = 2.55,

c4 = [−0.8 −0.6
]
, γ 4 = 2.41.

(34)
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Fig. 2 Circles obtained using
the method of Sect. 4.2. They
function as separation
surfaces

The value used for ε in this example was 0.0001. Finally, the GAM M is

M =

⎡

⎢⎢
⎢
⎣

S1 = C1 − ( 1
2 )(γ 1)2e∞

S2 = C2 − ( 1
2 )(γ 1)2e∞

S3 = C3 − ( 1
2 )(γ 1)3e∞

S4 = C4 − ( 1
2 )(γ 1)4e∞

⎤

⎥⎥
⎥
⎦

=

⎡

⎢⎢
⎣

S1 = 0.65e1 + 1.11e2 − 2.31e∞ + e0

S2 = e1 − e2 − e∞ + e0

S3 = −1.5e1 + 1.5e2 − e∞ + e0

S4 = −0.8e1 − 0.6e2 − 2.4e∞ + e0

⎤

⎥⎥
⎦ . (35)

In Fig. 2, the corresponding circles are presented. Note that the circle of class 1
is optimal, because if it grows a bit more, then X11 could fall inside of it, and if it
decreases a bit more, X3 could fall outside of it. The same happens with the other
circles. Now, let the following set of noisy patterns to be classified:

x̃1 = x1 + [
0 2

] = [
1 3

]
,

x̃8 = x8 + [−2 0
] = [

0 −2
]
,

x̃9 = x9 + [−1 1
] = [−2 4

]
,

x̃15 = x15 + [
0 −1

] = [−1 −2
] ;

(36)
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they have been affected with noise. If (30) is applied, the result is

u1 =

⎡

⎢⎢
⎣

1.31
−6
−1

−5.2

⎤

⎥⎥
⎦ , u8 =

⎡

⎢⎢
⎣

−1.92
1

−4
1.6

⎤

⎥⎥
⎦ ,

u9 =

⎡

⎢⎢
⎣

−4.53
−15

0
−8.4

⎤

⎥⎥
⎦ , u15 =

⎡

⎢⎢
⎣

1.31
−6
−1

−5.2

⎤

⎥⎥
⎦ .

(37)

The next step is to apply expression (31). By doing this, the following expressions
are obtained:

v1 =

⎡

⎢⎢
⎣

−1.83
−∞
−∞
−∞

⎤

⎥⎥
⎦ , v8 =

⎡

⎢⎢
⎣

−∞
−1
−∞
−∞

⎤

⎥⎥
⎦ ,

v9 =

⎡

⎢⎢
⎣

−∞
−∞

−3.25
−∞

⎤

⎥⎥
⎦ , v15 =

⎡

⎢⎢
⎣

−∞
−∞
−∞
−1

⎤

⎥⎥
⎦ .

(38)

The class index is then obtained by means of (32) for x̃1, x̃8, x̃9, and x̃15, j =
1,2,3,4, respectively. Note that in these cases, classification is correct even when
they are affected with noise and although x̃8 falls inside of two spheres. However,
consider the following pattern:

x̃3 = x3 + [
0.05 0

] = [
3.05 2

]
. (39)

Note that, in this case, the noise is minimum, but when expressions (30) and (31)
are applied,

u3 =

⎡

⎢⎢
⎣

−0.12
−4.6
−7.23
−7.89

⎤

⎥⎥
⎦ , v3 =

⎡

⎢⎢
⎣

−∞
−∞
−∞
−∞

⎤

⎥⎥
⎦ , (40)

and in this case, expression (32) cannot classify it, due to that it is located outside
of all spheres.
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Fig. 3 Example 2, sets of
patterns in 3D. Square, circle,
and triangle shapes are
patterns belonging to classes
1, 2, and 3 respectively

Example 2 Consider the following set of nonlinearly separable patterns in R
3:

Class 1 x1 = [
0.5 0.5 0.5

]
, x2 = [−0.5 2.5 −1

]
,

x3 = [
2.5 2 −1

]
, x4 = [

1 3 0
]
,

Class 2 x5 = [
2 0 −0.5

]
, x6 = [

0.5 −2 0
]
,

x7 = [
2 −1.5 0.5

]
, x8 = [

1 −1 −0.5
]
,

Class 3 x9 = [−0.5 0.5 0
]
, x10 = [−1 −1 −0.5

]
,

x11 = [−1 0 −0.5
]
, x12 = [

0 −0.5 0
]
.

(41)

Figure 3 shows a graphical representation of these patterns.
By using (10), the corresponding class spheres were obtained. Their respective

centers and radii are

c1 = [
1.19 1.60 0.61

]
, γ 1 = 2.11,

c2 = [
1.75 −0.75 1.72

]
, γ 2 = 2.47, (42)

c3 = [−0.29 −0.20 0.05
]
, γ 3 = 1.06;

the value used for ε in this example was 0.0001. Finally, the GAM M is

M =
⎡

⎣
S1 = 1.19e1 + 1.6e2 + 0.61e3 − 0.04e∞ + e0

S2 = 1.75e1 − 0.75e2 + 1.72e3 + 0.25e∞ + e0

S3 = −0.29e1 − 0.2e2 + 0.05e3 − 0.5e∞ + e0

⎤

⎦ . (43)

In Fig. 4, the corresponding spheres are presented. As in the previous example,
the spheres are optimal.

Now, let the following set of noisy patterns to be classified:

x̃1 = x1 + [
0.5 −0.5 −1

] = [
0.5 0.5 0

]
,

x̃7 = x7 + [−1 0.5 −0.5
] = [

1 −1 0
]
, (44)
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Fig. 4 Spheres obtained
using the method of Sect. 4.2.
They function as separation
surfaces

x̃10 = x10 + [
1 1 0

] = [
0 0 0

]
.

If (30) is applied, the result is

u1 =
⎡

⎣
1.25

−0.27
−0.65

⎤

⎦ , u7 =
⎡

⎣
−1.36
1.25

−0.59

⎤

⎦ , u10 =
⎡

⎣
0.04

−0.25
0.5

⎤

⎦ . (45)

The next step is to apply expression (31). By doing this, the following expressions
are obtained:

v1 =
⎡

⎣
−0.97
−∞
−∞

⎤

⎦ , v7 =
⎡

⎣
−∞

−1.79
−∞

⎤

⎦ , v10 =
⎡

⎣
−2.19
−∞

−0.06

⎤

⎦ . (46)

The class index is then obtained by means of (32) for x̃1, x̃7, and x̃10, j = 1,2,3,
respectively. As in Example 1, the classification is correct for some patterns altered
with noise.

As can be observed, although GAMs can classify some patterns altered with
noise, they are very sensitive in some other cases, mainly in the case of patterns
located at the border of the sphere. This problem might be fixed by adding a positive
value to restriction (24) and a negative value to restriction (26).

6 Real Examples

To test the potential of the proposal, two trials with real data were performed. In
the first trial, the best known database used by the pattern recognition community



228 B. Cruz et al.

Table 1 Results of the classification phase

Data Set Patterns used in FS Classification of FS Classification of TS

Iris Plant 15 100% 90%

Iris Plant 25 100% 93.3%

Iris Plant 30 100% 94.6%

Wines 15 90.6% 71.9%

Wines 25 91.1% 80.9%

Wines 30 97.7% 84.8%

was adopted, the Iris Plant Data Base. This data set contains three classes of 50
instances each, where each class refers to a type of iris plant. One class is linearly
separable from the other two; the latter two classes are NOT linearly separable from
each other. Each instance has four numeric, predictive attributes (sepal length, sepal
width, petal length, and petal width).

For the second trial, the Wine Recognition Data Base was used. These data are
the results of a chemical analysis of wines grown in the same region in Italy but
derived from three different cultivations. The analysis determined the quantities of
13 constituents found in each of the three types of wines. This data set contains three
classes of 59, 48, and 71 instances, respectively, where each class refers to a type of
wine. Each instance has 13 continuous attributes.

Both data bases were obtained from [3]. As in the previous section, the func-
tion quadprog of the optimization toolbox of Matlab was used in order to solve the
quadratic programming problem.

15, 25, and 30 instances, respectively, were used to form the Fundamental Set
(FS) for each type of problem. All of the instances were used to form the Test Set
(TS). In the training phase, patterns of each FS were used to build the GAMs. In
the classification phase, patterns of the TS were classified; the results are shown in
Table 1. The first column shows the number of patterns used for the learning phase,
and the second and third columns show the percentages of the patterns correctly
classified using the FS and the TS, respectively. In the case of the GAM from Iris
Plant data set, perfect recall was obtained because the patterns used for the FS are
spherically separable. In the case of the GAM from the Wine data set, perfect re-
call is not obtained because the patterns are not spherically separable. Thus some
patterns of a specific class may fall outside their respective class sphere.

It can be observed that classification rate of the patterns of the TS (for both data
sets) increases when the number of patterns used in the FS increases. When the FS
has more patterns, the corresponding spheres grow, and then more patterns of the
TS could fall inside of the class spheres.

7 Conclusions and Future Work

Geometric Algebra allows one to model situations and to formulate problems in
terms of high-level symbolic expressions. Nevertheless, it is possible to achieve an
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implementation working in an elementary coordinate system. Of course, in some
cases, it is possible to find a solution by purely handling symbolic expressions, but
this is rare for realistic problems.

In this work, a new associative memory model based on Conformal Geometric
Algebra has been described, the Geometric Associative Memory (GAM). The train-
ing phase is done by finding an optimal sphere with quadratic programming. GAMs
can perfectly operate when the classes are spherically separable.

For classification purposes, an inner product between the unclassified pattern and
the GAM was applied. Then a minimum function is used to obtain the index class.

Numerical and real examples were given to show the potential of the proposal. As
shown, the method can operate both with linearly and nonlinearly separable patterns.
The proposed model can also cope with distorted patterns.

Patterns located on the border of the sphere might not be well classified. At this
moment, a way to extend the radius of the sphere is been developing. The basic idea
is to change the restrictions of the optimization problem.

Formal conditions under which the proposed model can work were also given
and proven. In particular, the case of the perfect classification was presented. A brief
explanation about the functioning of the GAMs against the noise was presented; the
GAMs can cope with noise patterns when the noise version falls inside of the class
sphere.

Nowadays, we are also interested to test our method in more realistic situations
and in comparison (in computing time and performance) between the proposed
model and other geometric classification models. We are working too in GAMs
that work with separation surfaces other than spheres, like ellipses, squares, or other
irregular shapes; then, the GAMs can work with nonspherically separable classes.
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