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Preface

This book presents new results on applications of geometric algebra. The time when
researchers and engineers were starting to realize the potential of quaternions for ap-
plications in electrical, mechanic, and control engineering passed a long time ago.
Since the publication of Space-Time Algebra by David Hestenes (1966) and Clifford
Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics
by David Hestenes and Garret Sobczyk (1984), consistent progress in the appli-
cations of geometric algebra has taken place. Particularly due to the great devel-
opments in computer technology and the Internet, researchers have proposed new
ideas and algorithms to tackle a variety of problems in the areas of computer science
and engineering using the powerful language of geometric algebra. In this process,
pioneer groups started the conference series entitled “Applications of Geometric
Algebra in Computer Science and Engineering” (AGACSE) in order to promote the
research activity in the domain of the application of geometric algebra. The first
conference, AGACSE’1999, organized by Eduardo Bayro-Corrochano and Garret
Sobczyk, took place in Ixtapa-Zihuatanejo, Mexico, in July 1999. The contribu-
tions were published in Geometric Algebra with Applications in Science and Engi-
neering, Birkhäuser, 2001. The second conference, ACACSE’2001, was held in the
Engineering Department of the Cambridge University on 9–13 July 2001 and was
organized by Leo Dorst, Chris Doran, and Joan Lasenby. The best conference contri-
butions appeared as a book entitled Applications of Geometric Algebra in Computer
Science and Engineering, Birkhäuser, 2002. The third conference, AGACSE’2008,
took place in August 2008 in Grimma, Leipzig, Germany. The conference chairs,
Eduardo Bayro-Corrochano and Gerik Sheuermann, edited this book using selected
contributions that were peer-reviewed by at least two reviewers.

In the history of science, theories would have not been developed at all with-
out essential mathematical concepts. In various periods of the history of mathemat-
ics and physics, there is clear evidence of stagnation, and it is only thanks to new
mathematical developments that astonishing progress has taken place. Furthermore,
researchers unavoidably cause fragmented knowledge in their various attempts to
combine different mathematical systems. We realize that each mathematical sys-
tem brings about some parts of geometry; however, together, they constitute a sys-
tem that is highly redundant due to an unnecessary multiplicity of representations
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for geometric concepts. In contrast, in the geometric algebra language, most of the
standard matter taught in engineering and computer science can be advantageously
reformulated without redundancies and in a highly condensed fashion.

This book presents a selection of articles about the theory and applications of the
advanced mathematical language geometric algebra which greatly helps to express
the ideas and concepts and to develop algorithms in the broad domains of computer
science and engineering. The contributions are organized in seven parts.

The first part presents screw theory in geometric algebra, the parameterization
of 3D conformal transformations in conformal geometric algebra, and an overview
of applications of geometric algebra. The second part includes thorough studies on
Cliffor–Fourier transforms: the two-dimensional Clifford windowed Fourier trans-
form; the cylindrical Fourier transform; applications of the 3D geometric algebra
Fourier transform in graphics engineering; the 4D Clifford–Fourier transform for
color image processing; and the use of the Hilbert transforms in Clifford analysis
for signal processing. In the third part, self-organizing geometric neural networks
are utilized for 2D contour and 3D surface reconstruction in medical image process-
ing. The clustering and classification are handled using geometric neural networks
and associative memories designed in the conformal geometric algebra. This part
concludes with a retrospective of the quaternion wavelet transform, including an
application for stereo vision. The fourth part for computer vision starts with a new
cone-pixel camera using a convex hull and twists in conformal geometric algebra.
The next work introduces a model-based approach for global self-localization using
active stereo vision and Gaussian spheres. In the fifth part, the geometric character-
ization of M-conformal mappings is discussed, and a study of fluid flow problems
is carried out in depth using quaternionic analysis. The sixth part shows the im-
pressive space group visualizer for all 230 3D groups using the software packet
for geometric algebra computations CLUCalc. The second author studies geometric
algebra formalism as an alternative to distributed representation models; here con-
volutions are replaced by geometric products, and, as a result, a natural language
for visualization of higher concepts is proposed. Another author studies computa-
tional complexity reductions using Clifford algebras and shows that graph problems
of complexity class NP are polynomial in the number of Clifford operations re-
quired. The seventh part includes new developments in efficient geometric algebra
computing: The first author presents an efficient blade factorization algorithm to
produce faster implementations of the Join; with the software packet GALOOP, the
second author symbolically reduces involved formulas of conformal geometric al-
gebra, generating suitable code for computing using hardware accelerators. Another
chapter shows applications of Grobner bases in robotics, formulated in the language
of Clifford algebras, in engineering to the theory of curves, including Fermat and
Bezier cubics, and in the interpolation of functions used in finite element theory.

We are very thankful to all book contributors, who are working persistently to
advance the applications of geometric algebra. We do hope that the reader will find
this collection of contributions in a broad scope of the areas of engineering and
computer science very stimulating and encouraging. We hope that, as a result, we
will see our community growing and benefitting from new and promising scientific
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contributions. Finally, we thank also for the support to this book project given by
CINVESTAV Unidad Guadalajara and CONACYT Project 2007-1 82084.

CINVESTAV, Guadalajara, México
Universität Leipzig,
Institut für Informatik, Germany

Eduardo Bayro-Corrochano
Gerik Sheuermann
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Geometric Algebra



New Tools for Computational Geometry
and Rejuvenation of Screw Theory

David Hestenes

Abstract Conformal Geometric Algebraic (CGA) provides ideal mathematical
tools for construction, analysis, and integration of classical Euclidean, Inversive &
Projective Geometries, with practical applications to computer science, engineer-
ing, and physics. This paper is a comprehensive introduction to a CGA tool kit.
Synthetic statements in classical geometry translate directly to coordinate-free al-
gebraic forms. Invariant and covariant methods are coordinated by conformal splits,
which are readily related to the literature using methods of matrix algebra, biquater-
nions, and screw theory. Designs for a complete system of powerful tools for the
mechanics of linked rigid bodies are presented.

1 Introduction

Euclidean geometry supplies essential conceptual underpinnings for physics and
engineering. It was recognized and reported only recently that conformal geomet-
ric algebra (CGA) provides an ideal algebraic arena for all aspects of Euclidean
geometry, from theoretical formulation and analysis to practical design and compu-
tation [1]. I am pleased to say that response to that announcement has been rapid
and enthusiastic, with extensive applications ranging from computer science and
robotics to crystallography reported in these proceedings and elsewhere.

My purpose here is to set forth the central ideas and results of this “conceptual
revolution” as a convenient summary for practitioners and an outline for beginners.
For historical context and perspective on the relevant scientific literature, I comment
on where the ideas have come from and on opportunities for further development.
I take this opportunity to make minor changes and corrections to my previous ac-
counts [1, 2], as well as to clarify and emphasize important points that have been
generally overlooked. In particular, I recommend special attention to the different
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4 D. Hestenes

advantages and roles of invariant and covariant approaches to Euclidean geometry
and to the prospects for developing and applying Screw Theory.

The adaptation of CGA to serve the purposes of Euclidean geometry is a fun-
damental problem in the design of mathematics. Its objective is a mathematical
system that facilitates geometric modeling and analysis, optimizes computational
efficiency, and incorporates all aspects of rigid body mechanics. Mathematical in-
vention is most effective when its purpose is clear.

2 Universal Geometric Algebra

The geometric concept of vector as a directed number has a long historical de-
velopment culminating in the invention of geometric algebra [3]. To define it we
begin with the standard notion of a real vector space R

r,s{a, b, c, . . .} with dimen-
sion r + s = n. On reflection one can see that the concepts of vector addition and
scalar multiplication introduced in this way are insufficient to characterize relative
directions among vectors. That deficiency is rectified by introducing an associative
geometric product defined by the simple rule

a2 =±|a|2, (1)

where the real number |a| = 0 is the magnitude of the vector a, and the sign is its
signature. The vector is said to be null if a2 = |a|2 = 0. The vector space R

r,s is pre-
sumed to have nondegenerate signature {r, s}, where r/s are maximal subspaces of
vectors with positive/negative signature. Of course, the signature is not defined with-
out the geometric product, which specifies a multiplicative relation between vectors
and scalars. Finally, from the vector space R

r,s , the geometric product generates the
real geometric algebra (GA) G

r,s = G(Rr,s) with elements {A,G,M, . . .} called
multivectors.

Though this completes the definition of GA as an algebraic system, it is only
the beginning for development of GA as a mathematical language. Development
proceeds by creating a system of definitions and theorems that facilitate algebraic
encoding and analysis of geometric concepts. A systematic research program to do
precisely that was inaugurated in [4] and greatly extended in [5]. I am pleased to
say that many others have joined me in this enterprise, including [6–8] to name only
three. These references suffice to show that GA has a broader and deeper range of
applications than any other mathematical system, including matrix algebra.

Let me briefly review the basic definitions and theorems needed for most applica-
tions of GA: For a pair of vectors, a symmetric inner product a ·b and antisymmetric
outer product a ∧ b can be defined implicitly by

ab= a · b+ a ∧ b and ba = b · a + b ∧ a = a · b− a ∧ b. (2)

It is easy to prove that a · b is scalar valued, while the quantity a ∧ b, called a
bivector or 2-vector, is a new algebraic entity that can be interpreted geometrically
as an oriented area.
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The antisymmetric outer product can be generalized iteratively to define k-
vectors by

a ∧Ak = 1

2

(
aAk + (−1)kAka

)
, (3)

which generates a (k+ 1)-vector from k-vector Ak . It follows that the outer product
of k-vectors is the completely antisymmetric part of their geometric product:

a1 ∧ a2 ∧ · · · ∧ ak = 〈a1a2 · · ·ak〉k, (4)

where the angle bracket means k-vector part, and k is its grade. This product van-
ishes if and only if the vectors are linearly dependent. Consequently, the maximal
grade for nonzero k-vectors is k = n. It follows that every multivector A can be
expanded into its k-vector parts and the entire algebra can be decomposed into k-
vector subspaces:

G
r,s =

n∑

k=0

G
r,s
k =

{

A=
n∑

k=0

〈A〉k
}

. (5)

This is called a grading of the algebra. Note that the grading is generated from
primitive elements, the vectors or 1-vectors in this case, with the scalars regarded
as elements with grade 0. As seen below, alternative gradings are appropriate for
geometric subalgebras.

The inner product can also be generalized, leading to the very useful formula

a · (a1 ∧ a2 ∧ · · · ∧ ak)=
k∑

j=1

(−1)j+1a · aj (a1 ∧ · · · ∧ ăj ∧ · · · ∧ ak), (6)

where ăj indicates a missing factor in the outer product. This formula shows that the
inner product is a grade-lowering operator, while (3) shows that the outer product is
grade-raising.

Reversing the order of multiplication is called reversion, as expressed by

(a1a2 · · ·ak)∼ ≡ ak · · ·a2a1, and (a1∧a2∧· · ·∧ak)∼ = ak∧· · ·∧a2∧a1, (7)

and the reverse of an arbitrary multivector is defined by

Ã=
n∑

k=0

〈
Ã
〉
k
≡

n∑

k=0

(−1)k(k−1)/2〈A〉k. (8)

Similarly (space) inversion (regarded as the result of reversing the sign of all vectors
in geometric products) is defined by

A# ≡
n∑

k=0

(−1)k〈A〉k = 〈A〉+ − 〈A〉−, (9)



6 D. Hestenes

where 〈A〉± are the parts of A= 〈A〉+ + 〈A〉− with even/odd parity, respectively.
The unit n-vector (or pseudoscalar) is so important that it is given a special

symbol and defined (up to a sign) by the properties

I= 〈I〉n, ĨI= (−1)s, a ∧ I= 0 for every vector a. (10)

Every multivector A has a dual defined by A∗ =AI−1. This leads to the basic theo-
rem relating inner and outer products by duality:

a ·A∗ = a · (AI−1)= (a ∧A)I−1 = (a ∧A)∗. (11)

The algebraic system described to this point may be referred to as universal GA,
because of its broad applicability. That distinguishes it from specialized versions of
GA, such as the spacetime algebra [4, 6] tailored to the geometry of spacetime.

Names and nomenclature are of great importance in science and mathematics, as
they can suppress or reveal deep conceptual distinctions. In this regard, it is impor-
tant to mark crucial conceptual differences between Geometric Algebra (GA) and
Clifford Algebra (CA) that are often overlooked in the literature. Though they have
a common root in the work of W.K. Clifford, CA has been cultivated by mathemati-
cians up to present times as one among many formal algebraic systems with little
attention to its geometric meaning. In contrast, the systematic development of GA as
a universal geometric language is a more recent development that is still underway.
Since Clifford himself proposed the name Geometric Algebra, I believe he would
be embarrassed to have it named after him; for he was well aware of its universal
geometric import, and he attributed to Hermann Grassmann [9] the chief role in its
creation. Indeed, Clifford’s development of the algebra hardly progressed beyond
the rudiments, though it is clear that he had deep insights into the geometric and
algebraic issues [10]. No doubt the history of Geometric Algebra would have been
quite different if not for Clifford’s tragic early death.

Here are some important differences in viewpoint between CA and GA. CA is
typically defined with complex numbers instead of the reals as scalars, whereas GA
contends that this obscures geometric meaning without providing greater generality.
CA is often defined as an ideal in tensor algebra, whereas GA defines tensors as mul-
tilinear functions of vector variables [5]. CA is often characterized as the “algebra of
a quadratic form,” with a · b interpreted as a metric tensor. In contrast, GA contends
that the inner product should be regarded as a contraction (or grade-lowering oper-
ation) as originally conceived by Grassmann. Any metric tensor can then be defined
as a scalar-valued bilinear function g(a, b)= a · g(b), where g is a linear operator,
with a · b as the most important special case. Many further differences between GA
and CA are obvious in applications.

3 Group Theory with Geometric Algebra

A multivector G that can be expressed as a geometric product G = nk . . . n2n1 of
nonnull vectors is called a versor. Obviously it has a multiplicative inverse G−1 =
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n−1
k . . . n−1

2 n−1
1 and even or odd parity given by G# = (−1)kG. The multiplicative

group of all versors in G
r,s is the Pin group

Pin(r, s)= {G |GG−1 = 1
}
, (12)

within which the subgroup of all versors with even parity is the Spin group

Spin(r, s)= {G |G# =G
}
. (13)

The orthogonal group on R
r,s is the group of all isometries, that is, linear transfor-

mations G that preserve the magnitude of each vector a. In GA it has the elegant
representation

O(r, s)= {G | G(a)=G#aG−1}. (14)

The versors in Pin(r, s) are thus generators of the orthogonal group. The versors
of Spin(r, s) generate the special orthogonal group SO(r, s), a subgroup of O(r, s)

sometimes called the rotation group.
This GA approach to isometries has considerable advantages over matrix repre-

sentations: First, it is completely coordinate-free. Second, it reduces group compo-
sition of isometries G2G1 = G3 to simple multiplication of versors G2G1 = G3.
At the same time, it establishes direct connection between the orthogonal group and
its covering by the pin group. Third, it facilitates reduction of isometries to their
irreducible elements, namely, reflection in a hyperplane determined by its vector
normal ni :

G(a)= n#
i an
−1
i =−nian

−1
i . (15)

It is a simple matter then to prove the important

Cartan–Dieudonné Theorem Every isometry of R
r,s can be reduced to at most

n= r + s reflections in hyperplanes.

As usual, credit for the theorem could probably be more fairly attributed to oth-
ers, most notably to Lipschitz (1880), who pioneered the approach to isometries pre-
sented here. The best practice may be to give it a descriptive name such as “Isometry
Reduction Theorem.”

Evidently the GA approach can be profitably extended to the whole of group
representation theory [5]. The classical groups have been treated in [11]. We will be
most interested below in the conformal group C(r, s), which has a representation in
GA specified by the isomorphism

C(r, s)∼=O(r + 1, s + 1). (16)

This representation is so useful that we shall refer to G
r+1,s+1 as Conformal Geo-

metric Algebra (CGA).
This completes our summary of universal GA and its relation to group theory.

In the following we concentrate on practical applications to Euclidean geometry,
knowing full well that our results are readily generalized to spaces of arbitrary di-
mension and signature.
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4 Euclidean Geometry with Conformal GA

The conformal model of Euclidean 3-space E
3 is embedded in the CGA G

4,1 =
G(R4,1) as follows: First, we identify Euclidean points with vectors in the null cone

N
4,1 ≡ {x ∈R

4,1 | x2 = 0
}
. (17)

Next, we reduce the remaining degrees of freedom from four to three by choosing
a point at infinity e ≡ x∞ and normalizing all points to the hyperplane {x | e · x =
−1, e2 = 0}. Thus, we have

E
3 ∼=N

4,1 ≡ {x ∈R
4,1 | x2 = 0, x · e=−1

}
. (18)

Finally, we confirm this as a model of Euclidean space by verifying that

|x2 − x1|2 = (x2 − x1)
2 =−2x2 · x1 (19)

correctly determines the Euclidean distance |x2 − x1| between any two points. The
argument is completed below.

The amazing fact about this embedding of E
3 in CGA is that it automatically

imbues all elements of G
4,1 with rich geometric meaning and thereby facilitates

formulation, analysis, and computation in all aspects of Euclidean geometry. It has
two major advantages:

First, it unites the conceptual advantages of classical synthetic geometry with
the analytic power of algebra in providing direct algebraic representations of basic
geometric objects and their properties.

Second, it enlists the apparatus of the conformal versor groups for multiplica-
tive, coordinate- free representation of Euclidean symmetries and transformations.
Specifically, the invariance group of the Euclidean metric (19) is the Euclidean
group E(3)= {G}, defined as a subgroup of the conformal group C(3,0)∼=O(4,1)
by the constraint

G(e)=G#eG−1 = e. (20)

This group includes reflections. Its restriction to rigid displacements by requiring
G# =G is the Special Euclidean group SE(3). The rest of this paper is an elabora-
tion of these two points with specific recommendations for notation, representation,
and method. The subject is young and fluid, so the setting of standards for practice is
still open. Of course, I cannot cover everything. For further details and explanation,
I refer the serious student to [7], which provides the most thorough exposition of
CGA to date, with due emphasis on geometric visualization. Comparison with the
present account shows where I think that exposition can be improved.

In CGA the basic Geometric Objects {O = C,L,S,P } of 3D Euclidean geome-
try can be defined as follows:

• A Circle C is determined by three points:

C = x1 ∧ x2 ∧ x3. (21)
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• A Line L is a circle through the point at infinity:

L= x1 ∧ x2 ∧ e. (22)

• A Sphere S is determined by four points:

S = x1 ∧ x2 ∧ x3 ∧ x4. (23)

• A Plane P is a sphere through the point at infinity:

P = x1 ∧ x2 ∧ x3 ∧ e. (24)

• A Point x lies on object O if and only if:

x ∧O = 0. (25)

Note the distinction between a geometric object O (defined algebraically) and the
set of points O it determines, as expressed by

Line= {x | x ∧L= 0}, Plane= {x | x ∧ P = 0}. (26)

In this respect we follow Euclid in introducing points and lines as distinct objects
with properties specified by a system of axioms. The idea of defining a line as a set
of points emerged in the 19th century with “containment” replacing the geometric
concept of “incidence” as the basic relation between points and lines. From our
perspective, the limitations of that idea are clear, so we are prepared to use the
concepts of set theory but not to confuse them with concepts of geometry.

Of course our concept of geometric object goes beyond Euclid’s, most notably
in assigning to each an orientation (algebraic sign) and a weight or magnitude (e.g.
length, area, volume). Thus, interchanging the product of points in (21)–(24) re-
verses the sign, hence orientation, of the objects.

For many purposes, the dual representation for a geometric object O∗ = OI−1

is most convenient. From the duality of inner an outer products (11) it follows that
the intersection with a point (25) is then expressed by

x ·O∗ = 0. (27)

For a plane, the dual P ∗ = P I−1 = n is a vector normal to the plane (note the use
of lower-case letters for vectors). The equation x · n= 0 has the familiar form of an
equation for a plane through the origin of a vector space, but in this case it applies
to any plane in E

3. For the normal, n specifies a location as well as an orientation
for the plane. Moreover, the separation of E

3 into disjoint subsets can be neatly
expressed by the inequality x · n > 0 for points in front of the plane, and x · n < 0
for points behind the plane.

The intersection of two planes P1 = n1I and P2 = n2I is a line specified by

P ∗1 · P2 = n1 · P2 = n1 · (n2I)= (n1 ∧ n2)I. (28)
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Obviously, this vanishes if the planes are parallel. Moreover, as will be evident later,
with the normalization n2

1 = n2
2 = 1, the magnitude |n1 ∧ n2| is the sine of the dihe-

dral angle between the intersecting planes.
Similar expressions for the mutual intersections of lines, planes, circles and

spheres are discussed in [7].

5 Invariant Euclidean Geometry

There are two different ways to formulate the equations of spacetime physics: (1) co-
variant formulations expressed with respect to one inertial frame and related to other
frames by Lorentz transformations, and (2) invariant formulations independent of
any reference frame choice. Experts prefer to work with invariants, because they are
invariably simpler than covariants. However, beginners are usually introduced to a
covariant approach, mainly because of educational tradition.

In precise analogy, there are covariant formulations of Euclidean geometry that
depend on designating an arbitrary point as origin, and invariant formulations that
do not. The conformal model supports both approaches, so we should examine their
respective advantages and how they are related.

The characterization of geometric objects in the preceding section is already an
invariant formulation. Let us consider it more closely for extension to an invariant
treatment of any topic in Euclidean geometry. We have seen that CGA supplies
sufficient algebraic structure to define basic geometric objects. Now note that the
structure of CGA suggests a somewhat different approach to geometric primitives
than the classical one.

The primitive algebraic objects are vectors. In CGA there are four types of vector
with distinct geometric meanings:

Points:
{
x | x2 = 0, x · e=−1

}
,

Planes:
{
n | n2 > 0, n · e= 0

}
,

Spheres:
{
s | s2 =±ρ2, s · e=−1

}
.

(29)

This suggests that the dual form for a plane n= P ∗ should be regarded as more
fundamental than the 4-vector form in (24). It is also algebraically much more con-
venient, especially for generating translations, as shown below.

According to (29), there are two types of sphere with radius ρ, corresponding to
the two signs in the square of the sphere vector s. The length of the sphere vector
is scaled so that its square gives the radius directly. The two sphere types are des-
ignated as real and imaginary for positive and negative square respectively. A real
sphere s = S∗ is the dual of the 4-vector sphere S in (23). It is of interest to note that
the center c of a real sphere can be obtained by a suitably scaled reflection from the
point at infinity:

c=−1

2
ses =−1

2
(2e · s − es)s = s + 1

2
ρ2e. (30)
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Fig. 1

An easy check verifies that c does indeed have the properties of a point. Moreover,
this gives us a natural measure for distance from a point to a sphere:

2s · x = 2

(
c− 1

2
ρ2e

)
· x = ρ2 − |x − c|2. (31)

Thus, the point x is inside, on, or outside the sphere when s · x is positive, zero, or
negative respectively. The order is reversed by changing the sign (orientation) of s.

Note that the reflection (30) has been defined with respect to the radius of the
sphere instead of unity. This kind of reflection is called inversion in a sphere. Ap-
plied to an arbitrary point, it gives a new point,

x′ = −1

2
sxs, (32)

and a little algebra reveals the distance inversion

∣∣x′ − c
∣∣2 = ρ4

|x − c|2 , (33)

as illustrated in Fig. 1. Though sphere inversion does not preserve Euclidean dis-
tance, it is a powerful means for geometric design and analysis.

The geometric significance of imaginary spheres is more subtle, and the reader is
referred to [7] for a discussion. The main point of interest here is that all four vector
types in (29) are needed for computational Euclidean geometry. Subject to scaling,
these constitute all the vectors in the CGA G

4,1 =G(R4,1). We can conclude then
that CGA supplies precisely the algebraic structure needed for Euclidean geometry
without anything superfluous.

Geometry can be regarded as a system of relations among points. Accordingly,
the most basic is the relation between two points described by the vector n21 =
x2 − x1. This vector is so important that it deserves a name. I like the venerable old
term chord, especially when it is relating points in a geometric figure or physical
object. Of course, it serves as a displacement vector in other contexts. However,
it has another geometric property unique to CGA; it is the perpendicular bisector
of the interval between the two points. The fact that it is the normal for a plane
is confirmed immediately by n21 · e = 0. The fact that it is the bisecting plane is
confirmed from the equation n21 ·x = 0, which as illustrated in Fig. 2, implies (using
(19)) that

|x − x1|2 =−2x · x1 = |x − x2|2.
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Fig. 2

Fig. 3

The chords of a triangle are especially significant (Fig. 3), for they determine the
basic properties of the Euclidean metric:

|xi − xj |2 = n2
ij ≥ 0.

The chords are related by the triangle equation

n21 + n32 + n13 = 0.

This gives us immediately the familiar law of cosines,

n2
21 + n2

32 + 2n32 · n21 = n2
13,

which determines the basic triangle inequalities for Euclidean distances.
Versor products among the chords generate all the reflection and rotation symme-

tries of a triangle and, consequently, values for all the vertex angles. For example,
the versor n32n21 is “complementary” to a rotation “about the vertex x2,” and van-
ishing of its scalar part reduces the law of cosines to the Pythagorean theorem. Note
that the chord nij generates a reflection that takes point xi to xj or vise versa. Hence,
the versor product of successive chords generates a walk of reflections along any se-
quence of points, which may return to the initial point if the path is closed, as in a
walk around a triangle.

There is much more to be derived from the invariant approach to Euclidean ge-
ometry. For example, according to (21) and (24), the outer product of three vertices
in a triangle determines its circumcircle and the plane in which it lies. Of course,
all this applies to 2D as well as 3D geometry. It would interesting to work out what
insights and simplifications it brings to the great theorems of classical geometry,
such as the nine circle theorem. Indeed, the results may even have practical value in
applications to mechanical engineering, as we see in later sections.

Finally, to complete our discussion of two point geometry, we note that the sum

s21 = x2 + x1 = c21 + 1

2
ρ2

21e (34)
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is a sphere with center c21 and poles at the two points. However, in contrast to the
real sphere (30), it is an imaginary sphere. Its role in Euclidean geometry remains
to be worked out.

6 Projective Geometry

Projective geometry is useful in many applications—in computer vision, for
example—but its methodology stands apart from the rest of mathematics. To make
the conceptual assets of projective geometry readily available, we need to incorpo-
rate them into the algebraic design of CGA. As Dieudonné has famously declared,
projective geometry is nothing but linear algebra. Accordingly, let us consider a
generic, nonsingular linear transformation that leaves the point at infinity invariant
(up to a scale factor σ at least):

f : x �→ x′ = f (x) with f (e)= σe. (35)

The trouble with this is that it need not preserve the null property of points, so we
have

f : x2 = 0 �→ [
f (x)2]= f (x) · f (x)= x · f f (x) �= 0.

Note: the underbar notation f denotes a linear operator, while the overbar f denotes
its adjoint. To solve this problem, Anthony Lasenby [12] has proposed that we ex-
tend the notion of points to include planes regarded as boundary points at∞. Thus,
we extend our model of Euclidean space to include two kinds of points:

interior points:
{
x | x2 = 0, x · e=−1

}
,

boundary points:
{
n | n2 = 1, n · e= 0

}
,

where the boundary points, like the interior points, are normalized to make them
unique. The set of boundary points can thus be regarded as a Plane (of directions)
at ∞. Indeed, each boundary point can be regarded as the intersection of parallel
lines at ∞, as parallel lines have a common direction. This is an old idea dating
back to Kepler.

Now, projective geometry suppresses metrical notions of scale while maintain-
ing the geometric concept of incidence, as expressed by (28). As that equation re-
quires use of the pseudoscalar and duality, we must extend our notion of projective
transformations to accommodate them. Happily, GA provides a natural way to do
precisely that.

A great advantage of GA is that it enables natural extension of a linear transfor-
mation on vectors to the entire algebra. This extension is called an outermorphism
[5–7, 13] because it preserves the outer product (hence grade), as expressed by

f (x ∧M)= f (x)∧ f (M). (36)
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It follows that the pseudoscalar is an eigenblade of the outermorphism, with the
determinant as its eigenvalue:

f (I)= (detf )I. (37)

This prepares us for the fundamental theorem [13]:

(detf )f
(
A∗ ·B)= f (A)∗ · f (B), (38)

which can be made to look more elegant by absorbing (detf ) in A∗ defined as the
dual with respect to the transformed pseudoscalar (37). This theorem could fairly
be called the Incidence Theorem, because it expresses the fact that outermorphisms
preserve the incidence property (28).

This fundamental theorem of linear algebra has been almost totally overlooked
in the literature, presumably because it is not so naturally expressed in standard
formalisms.

These developments invite us to employ the pseudoscalar to define “complex
objects” such as

N = x + In, (39)

where x is an interior point, and n is a boundary point. As explained in a later
section, this object can interpreted as a point in a plane if n · x = 0 or, equivalently,
N2 = −1. All this suggests that we should define projective transformations by
extending outermorphisms to include duality transformations.

I believe that we now have all the necessary ingredients to incorporate projective
geometry smoothly into CGA. There remains the large task of reformulating the
classical results of projective geometry. Since modern works have already formu-
lated many of these results in terms of linear algebra [14], the task should be fairly
straightforward. I recommend it as a good topic for a doctoral thesis.

7 Covariant Euclidean Geometry with Conformal Splits

The most widely used model of Euclidean geometry by far is the vector space model
based on the isomorphism of Euclidean space to a real vector space with Euclidean
inner product:

E
3 ∼=R

3{x}. (40)

The most effective means of exploiting this model is through its geometric algebra:

G
3 =G

(
R

3)= {α + a+ ib+ iβ}, (41)

where i is the unit right-handed pseudoscalar, and the geometric product of vectors
articulates perfectly with the standard dot and cross products:

ab= a · b+ a∧ b= a · b+ ia× b. (42)
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Efficient methods for applying G
3 to any aspect of mechanics are well developed

with many innovative features [15]. In particular, details of the quaternion theory of
rotations are thoroughly worked out and smoothly articulated with standard vector
methods and matrix representations.

These results even articulate smoothly with the arcane literature on applications
of complex quaternions to geometry and mechanics. For it is evident in (41) that
complex quaternions are isomorphic to multivectors in G

3, though practitioners
have not realized that their unit imaginary can be interpreted geometrically as a
pseudoscalar.

Despite all these advantages, the algebra G
3 suffers from the drawback of all

vector space models, namely, that the vector space (40) singles out the origin as a
preferred point. In other words, it introduces an asymmetry that is not inherent in the
concept of Euclidean space. Happily, that can be remedied by embedding the vector
space model in the conformal model, or better, by factoring it out of the conformal
model. We consider two ways to do that.

The first way is a conformal split of CGA into a commuting product of subalge-
bras:

G
4,1 =G

3 ⊗G
1,1. (43)

The split is defined geometrically by choosing one point e0 as origin and noting
that every other point x lies on the bundle of lines through that point. This defines a
mapping of points into trivectors:

x= x ∧ e0 ∧ e, (44)

which we identify with the vectors in (40). Thus, with a regrading of trivectors as
vectors, we generate G

3 as a subalgebra of G
4,1.

The other subalgebra G
1,1 =G(R1,1) in (43) is generated from the null vectors

{e0, e}. Its pseudoscalar is a bivector of sufficient importance to merit a special sym-
bol:

E = e0 ∧ e with E2 = (e · e0)
2 = 1. (45)

We examine this algebra more fully later on. For now, it suffices to note that its con-
tent, though not its structure, depends on the arbitrary choice of the origin point e0.
It is covariant in the sense that it changes with a change of origin. I have dubbed it
conformal split, because it is deeply analogous to the spacetime split [4, 6], which
is so useful in spacetime physics. The spacetime split is generated by selecting a
timelike vector rather than a null vector as here. Otherwise, the structure and utility
of the splits are quite comparable.

The nature of the conformal split may be clarified by examining a basis for R
4,1:

{e, e0, e1, e2, e3} with ej · ek = δjk for j, k = 1,2,3 and e · ek = 0= e0 · ek. (46)

This generates a basis for R
3:

{
σ k = ek ∧ e0 ∧ e= ek(e0 ∧ e)= ekE =Eek

}
(47)
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and a pseudoscalar

i = σ 1σ 2σ 3 = (e1E)(e2E)(e3E)= e1e2e3E = I. (48)

Thus, the pseudoscalar for G
3 is identical to the pseudoscalar for G

4,1. It is an
invariant of the conformal split!

An alternative to the conformal split is the additive split:

G
4,1 =G

(
R

3+ ⊕R
1,1)≡G

3+ ⊕G
1,1, (49)

defined by choosing {e1, e2, e3} from (46) as a basis for R
3+. Unlike the basis (47),

the basis in this case is not algebraically associated with lines through a point, and
the pseudoscalar I3 = e1e2e3 = IE is not an invariant. Furthermore, the σ k commute
with e, while the ek do not. Consequently, the additive split is not as convenient as
the conformal split. Even so, it has its place, most notably in modeling a rigid body,
as we shall see.

To demonstrate the felicity of the conformal split for relating invariant forms for
geometric objects to standard vector space forms, results for the most basic geomet-
ric objects (point, line, plane) are given here.

The mapping (44) of point x to vector x = x ∧ E can be inverted. The slickest
way to do that is to use the geometric product thus:

xE = x ∧E + x ·E with x ·E = x · (e0 ∧ e)= (x · e0)e+ e0. (50)

Multiplying the first equation by its reverse, we get

0= (x ∧E)2 − (x ·E)2; whence x2 = (x ·E)2 =−2x · e0. (51)

Inserting this back into (50), we solve to get

x =
(

x− 1

2
x2e+ e0

)
E =E

(
x+ 1

2
x2e− e0

)
= xE + 1

2
x2e+ e0. (52)

This can be regarded as the conformal split of point x with respect to point e0.
Illustrations of the two representations for points are superimposed in Fig. 4, which
may be misleading because the points are related by projection.

The conformal split of a line L through points x and a gives

L= x ∧ a ∧ e= x∧ ae+ (a− x)= (de+ 1)n. (53)

Fig. 4
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Fig. 5

Fig. 6

Note that this represents the line in terms of its Plücker coordinates, which consists
of a vector, bivector pair for the line tangent, and moment with respect to the origin
(Fig. 5):

tangent: n= a− x, (54)

moment: x∧ a= x∧ (a− x)= dn. (55)

The directed distance from origin to line is given by the directance:

d= (x∧ a)n−1 = (x∧ n)n−1 = x− (x · n−1)n. (56)

The conformal split of a plane P through points x, a, b gives

P = x ∧ a ∧ b ∧ e= x∧ a∧ b e+ (a− x)∧ (b− x)E. (57)

Its Plücker coordinates consists of the bivector–trivector pair (Fig. 6):

tangent: (a− x)∧ (b− x)= x∧ a+ a∧ b+ b∧ x= in, (58)

moment: x∧ a∧ b= x∧ [(a− x)∧ (b− x)
]= x∧ (in)= i(x · n). (59)

The dual form for the plane is:

P = i(xne+ nE)= in. (60)
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More explicitly, split of the plane normal n (Fig. 2) gives us

n = x2 − x1 = (x2 − x1)E + 1

2

(
x2

2 − x2
1

)
e

= (x2 − x1)E + 1

2
(x2 + x1) · (x2 − x1)e= nE + c · ne. (61)

The invariant forms for geometric objects are obviously much simpler than the split
forms. Therefore it is preferable to work with invariant forms directly. However, the
split forms are essential for relating results to the literature, so we will be using them
for that purpose below.

8 Rigid Displacements

From (20) it follows that every rigid displacement D is a linear transformation of
the form

D : x �→ x′ =D(x)=DxD̃, (62)

where its generator D is a versor of even parity that commutes with the point at
infinity and is normalized to unity; that is,

D# =D, De= eD, DD−1 =DD̃ = 1. (63)

With respect to any chosen point e0, the displacement can decomposed into a rota-
tion R followed by a translation T or vice versa. This defines a conformal split of
the displacement as follows:

D = T R =R′T , (64)

where the rotations satisfy

R(e0)=Re0R̃ = e0, R
(
e′0
)=R′e′0R̃′ = e′0, (65)

and the translation

T (e0)= T e0T̃ = e′0 =D(e0) (66)

is determined solely by the endpoints e0 and e′0. For given D and any choice of
e0, the translation can be computed, and the rotation is determined by R = T̃ D. As
all displacements can be generated from reflections in planes, let us consider the
various possibilities along with their conformal splits.

Reflection in a plane with unit normal n and e · n= 0 is specified by

x′ = n(x)=−nxn= x − 2x · nn. (67)

If the plane passes through a point c, we have c · n= 0 and the conformal split

n= nE + cne, whence x · n= n(x− c). (68)
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Fig. 7

Fig. 8

Fig. 9

Whence,

x′ = x− 2(x− c) · nn, (69)

as shown in Fig. 7.
Rotation by planes n and m intersecting through a point c (Fig. 8) is generated

by

Rc = mn= (mE +m · ce)(nE + n · ce)
=mn+ e(m∧ n) · c=R + e(R× c)= T −1

c RTc, (70)

where Tc generates the translation from origin e0 to c, R =mn, and we have used
the commutator product, defined by

A×B = 1

2
(AB −BA). (71)

Note that Rc in (70) can be identified with R′ in (65) if c= e′0 and T −1
c = T in (66).

Translation through parallel planes n and m is generated by

Ta =mn= (nE + 0)(nE + δe)= 1+ 1

2
ae, (72)
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where a = 2nδ, and, without loss of generality, one plane is presumed to pass
through the origin (Fig. 9).

Now we can use (72) and (61) to evaluate T = Ta in (66), with the result

a = e′0 − e0 = a+ 1

2
a2e. (73)

9 Framing a Rigid Body

The position and attitude of a rigid body in space is uniquely determined by spec-
ifying the positions of four points, say {x, x1, x2, x3}, embedded in the body. Iden-
tifying position with the base point x, the attitude can be represented by the body
frame {ek = xk − x}, as illustrated in Fig. 10.

And it is most convenient to orthonormalize the body frame, so ej · ek = δjk .
The body frame represents attitude by a set of three vectors. A promising alternative
representation in terms of a single geometric object has been proposed by Selig [16]
following ideas of Engels. He defines a Flag geometrically as a point on a line in a
plane. CGA gives it the elegant algebraic form,

F = x +L+ P = x + IQ, (74)

where line L and plane P are defined by

L = x ∧ x1 ∧ e= x ∧ (x1 − x)∧ e= x ∧ e1 ∧ e= In2n3,

P = x ∧ x1 ∧ x2 ∧ e= x ∧ e1 ∧ e2 ∧ e= e2 ∧L= In3,

and their combined dual forms are given by

Q= n3 + n2n3 = (1+ n2)n3, (75)

where nj · nk = δjk . As the nk are the normals for intersecting planes, they are
represented in Fig. 11 by arrows extending symmetrically to each side of the base
point.

Fig. 10
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Fig. 11

Of course, the fact that the base point lies on the intersection of line and plane is
expressed by

x ∧ (L+ P)= x ∧ (IQ)= 0, or dually by x ·Q= 0. (76)

Lasenby [12] arrived at Q in a different way, and, noting that Q2 = 0, he identified
it with the mysterious absolute conic of projective geometry.

As a related connection to projective geometry, note that the “complex vector”
N = x+ In introduced in (39) is a flag without the line component. There are many
other possibilities to explore, such as introducing vectors representing spheres in-
stead of planes.

It seems simplest to work with dual forms for line and plane. This suggests that
we consider a dual flag defined by

F ∗ = x +Q= x + n3 + n2n3, with x · F ∗ = 0. (77)

This looks unsymmetrical, as the plane n1 is not explicitly represented, though it
is determined indirectly by the intersection of the base point with the other planes.
Here is a more symmetrical representation for the rigid body:

Q′ ≡ n3 + n2n3 + n1n2n3, with x ·Q′ = 0. (78)

Note that this representation is a graded sum of nested subspaces with pseudoscalar
I3 = n1n2n3 intrinsic to the body—a practical instance of the additive split (49).
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Fig. 12

10 Rigid Body Kinematics

Motion of a rigid body is a one-parameter family of displacements, which we de-
scribe by a time-dependent versor function D =D(t). As illustrated in Fig. 12, this
determines the evolution of body points from some reference positions ek to instan-
taneous positions

xk(t)=DekD
−1 =DekD̃. (79)

From the versor character of D it can be proved that its derivative must satisfy

Ḋ = 1

2
VD and Ḋ−1 =−1

2
D−1V, (80)

where the velocity V = V (t) is a bivector, as expressed algebraically by Ṽ =−V =
〈V 〉2. Using (80) to differentiate (79), we get equations of motion for the body
points:

ẋk = C · xk. (81)

However, there is no need to integrate this system of three equations, as the body
motion is completely determined by integrating the displacement equation (80). In-
deed, the equation of motion for D is independent of any designation of specific
body points, although selection of a base point is necessary to separate rotational
and translational components of the motion. To decompose the (generalized) veloc-
ity V into rotational and translational parts, we introduce a conformal split defined
by

D =RT, De0D
−1 = T e0T

−1 = e0 + n, T = 1+ 1

2
ne. (82)

Derivatives of rotation and translation versors have the form

Ṙ =−1

2
ωR, Ṫ = 1

2
ṅe= 1

2
ẋe= 1

2
ẋeT = 1

2
ẋe, (83)
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where ω is the rotational velocity of the body, and ẋ= ẋ ∧E. Hence

Ḋ = ṘT +RṪ = 1

2

(−iω+ReẋR−1)RT = 1

2
VD,

so the velocity has the split form

V =−iω+ ev, with v=RẋR−1. (84)

One can write v = ẋ by adopting the instantaneous initial condition R(t) = 1
(as done implicitly in most references on kinematics), although that complicates
further differentiation of v if needed. (See the section on rotating systems in [15]
for further discussion of this point.) Also, the negative sign for rotational velocity in
(83) and (84) is dictated by the convention that the rotation is right handed around
the oriented ω axis [15]. Now consider the effect of shifting the initial base point
from the origin e0 to

e′0 = T0e0T̃0 = e0 + r0, where T0 = 1+ 1

2
r0e. (85)

This determines a shift in base point trajectory to

x′ =De′0D̃ =D′e0D̃′, (86)

where

D′ =DT0 = TrD, with Tr =RT0R̃ = 1+ 1

2
re. (87)

Differentiating, we have

Ḋ′ = ṪrD+ TrḊ = 1

2
eṙTrD+ 1

2
VDT0 = 1

2
(eṙ+ V )D′ = 1

2
V ′D′.

Thus, we have proved that a shift in base point induces a shift in velocity:

V =−iω+ ev �→ V ′ = V + eṙ=−iω+ e(v+ω× r). (88)

This result is the kinematic version of Chasles’ Theorem [15]. Note that the rota-
tional part is independent of the base point shift.

The base point need not be located within the rigid body, so at a given time the
vector r can be specified freely. In particular, one can specify

ω · r= 0 since r= ω−1 × v= i
(
v∧ω−1) (89)

to put V ′ in the form of a screw:

V ′ = −iω+ ehω= ω(eh− i) with pitch h= vω−1 = v ·ω/ω2. (90)

For positive pitch, this velocity generates an infinitesimal translation along the axis
of a right-handed rotation.
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From (79) and (82) it follows that chords nk = ek − e0 = T (ek − e0)T
−1 are

invariant under translations. Hence, the evolution of chords and products of chords
is simply a rotation, as described by

n′k =DnkD̃ =RnkR̃ and n′j n′k =DnjnkD̃ =RnjnkR̃. (91)

Likewise, evolution of the dual flag Q∗ in (79) is described by

Q∗ →Q∗(t)=DQ∗D̃ =RQ∗R̃. (92)

Note that the form of these rotations is independent of base point, though the value
of R is not, as described explicitly by (70).

11 Rigid Body Dynamics

In [15] GA is employed for a completely coordinate-free derivation and analysis of
the equations for a rigid body. The results are summarized here for embedding in a
more compact and deeper formulation with CGA. Then [15] can be consulted for
help with detailed applications.

For a rigid body with total mass m and inertial tensor I , the momentum p and
rotational (or angular) momentum l are defined by

p=mv and l= I (ω), (93)

where v is the velocity of a freely chosen base point (not necessarily the center of
mass), and the inertia tensor depends on the choice of base point, as determined by
the parallel axis theorem (see [15], where the structure of inertia tensors is discussed
in detail).

Translational and rotational motions are then determined (respectively) by New-
ton’s Force Law and Euler’s Torque Law:

ṗ= f=
∑

k

fk and l̇= I (ω̇)+ω× I (ω)= Γ =
∑

k

Γ k, (94)

where the net force f is the sum of forces applied to specified body points, and the
net torque Γ is the sum of applied torques.

Now, to combine p and l into a generalized comomentum P that is linearly related
to the velocity V in (88), we introduce the generalized mass operator M defined by

P =MV =mve0 − iIω= pe0 − il. (95)

The appearance of e0 instead of e in this expression requires some explanation. For
the moment, it suffices to note that it yields the standard expression for total kinetic
energy:

K = 1

2
V · P̃ =−1

2
V ·MV = 1

2
(ω · l+ v · p). (96)
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Next, using (95), we combine the two conservation laws (94) into a single equa-
tion of motion for a rigid body:

Ṗ =W where W = fe0 − iΓ (97)

is called a wrench or coforce. From this we easily derive the standard expression for
power driving change in kinetic energy:

K̇ = V · W̃ = ω · Γ + vf. (98)

Finally, we consider the effect of shifting the base point as specified by (85) and
(86). That shift induces shifts in the comomentum and applied wrench:

Parallel axis theorem

P �→ P ′ = P + ir× p= pe0 − i(l− r× p), (99)

W �→W ′ =W + ir× f= e0f− i(Γ − r× f). (100)

The comomentum shift expresses the parallel axis theorem, while the corresponding
shift in torque is sometimes called Poinsot’s theorem. As a check for consistency
with Chasles’ theorem (88), we verify shift invariance of the kinetic energy:

2K = V ′ · P̃ ′ = −(V + eω× r) · (P + ir× p)

= ω · (l− r× p)+ (v+ω× r) · p= ω · l+ v · p= V · P̃ .

This completes our transcription of rigid body dynamics into a single invariant
equation of motion (97). As indicated by the appearance of e0 in (95) and (97) and
verified by the shift equations (99) and (100), separation of the motion into rotational
and translational components is a conformal split that depends on the choice of base
point. In applications there is often an optimal choice of base point, such as the point
of contact of interacting rigid bodies, as in the rigid body linkages discussed below.

This is a good place to reflect on what makes CGA mechanics so compact and
efficient. In writing my mechanics book [15], I noted that momentum is a vector
quantity, while angular momentum is a bivector quantity, so I combined them by
defining a “complex velocity”

V = v+ iω, (101)

with corresponding definitions for complex momentum and force. That led to a
composite equation of motion just as compact as (97). However, it was more a cu-
riosity than an advantage, because you had to take it apart to use it. The trouble was,
as I fully understood only with the development of CGA, that the complex veloc-
ity (101) does not conform to the structure of the Euclidean group. That defect is
remedied by the simple expedient of introducing the null element e to change the
definition of velocity from (101) to (84).

The resulting velocity (84) is a bivector in CGA. To make that explicit, we note
that the first term is a bivector because it is the dual of a trivector: iω = Iω ∧ E =
I · (ω ∧ e0 ∧ e), while the second term is the contraction of a trivector by a vector:
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ev= (v∧E)e= (v∧e0∧e) ·e. Thus, (84) is a generic form for bivectors generating
Euclidean displacements. Of course, that fact was implicit already in the definition
of V in the displacement equation (80). It has been reiterated here to confirm consis-
tency with the conformal split. As we see next, the notion of V as bivector generator
of the Euclidean group is the foundation of Screw Theory. That is what makes the
equation of motion (97) so significant.

12 Screw Theory

Screw theory was developed in the latter part of the nineteenth century [17] from
applications of geometry and mechanics to the design of mechanisms and machines.
When formulated within the standard matrix algebra of today, the concepts of screw
theory seem awkward or even a bit screwy! Consequently, applications of screw
theory, deep and useful though they be, have remained outside the mainstream of
mechanical engineering.

Here we cast screw theory in terms of CGA to secure its rightful place in the
Kingdom of Euclidean geometry and facilitate access to its rich literature. To the
extent that the conformal model becomes a standard for applications of Euclidean
geometry, this will surely promote a rejuvenation of screw theory.

The foundations for screw theory in rigid body mechanics have been laid in the
preceding sections. Here we concentrate on explicating the screw concept in rela-
tion to displacements. For constant V , the displacement equation (80) integrates
immediately to the solution

D(t)= e
1
2V t = e

1
2T rV

′t = Tre
1
2V
′t T −1

r , (102)

where (87) to (90) have been used in the form

V = T rV
′ = TrV

′T −1
r =−iTrωT −1

r + ehω

= −iω+ e(hω+ r×ω)=−iω+ ev (103)

to exhibit the conformal split and shift of base point. The translation versor, which,
of course, generates a fixed displacement, also has an exponential form:

Tr = 1+ 1

2
re= e

1
2 re, T −1

r = e−
1
2 re = T−r . (104)

As expressed by (103), the rotation rate ω is invariant under a base point shift. As
ω = ω ∧ E is a trivector representing a line through the origin, the motion gener-
ated by D(t) in (102) is a steady screw motion with constant pitch along that line.
The translations in (102) can be understood as translating the line through a given
base point to one through the origin, unfolding the screw displacement, and then
translating it back to the original base point.
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To consolidate our concepts it is helpful to introduce nomenclature that conforms
to the screw theory literature as closely as possible. In general, any Euclidean dis-
placement versor can be given the exponential form:

D = e
1
2S, where S = im+ en. (105)

The versor D is called a twistor, while its generator S is called a twist or a screw.
The term “screw” is often restricted to the case where n and m are collinear and
m2 = 1. The line determined by m is called the screw axis or axode.

As implicitly shown in (62) and (63), the multiplicative group of twistors is a
double covering of the Special Euclidean group:

SE(3)= {rigid displacements D} ∼=2 {twistors D}. (106)

The set of all twists constitutes an algebra of bivectors:

se(3)≡ Lie algebra of SE(3)= {Sk = imk + enk}. (107)

This algebra is closed under the commutator product:

S1 × S2 = 1

2
(S1S2 − S2S1)= i(m2 ×m1)+ e(n2 ×m1 − n1 ×m2). (108)

Let us summarize important general properties of this algebra.
The representation of a Lie group by action on its Lie algebra is called the adjoint

representation [16]. In this case, we have

S′k =U(Sk)=USkU
−1 =AdUSk, where {U} = SE(3). (109)

This transformation preserves the geometric product S1S2 = S1 · S2 + S1 × S2 +
S1 ∧ S2; that is,

S′1S′2 =U(S1S2)=U(S1 · S2 + S1 × S2 + S1 ∧ S2)U
−1. (110)

Separating parts of different grade, we see first that the commutator product is co-
variant, as expressed by

S′1 × S′2 =U(S1 × S2)=U(S1 × S2)U
−1. (111)

Second, the scalar part is an obvious invariant:

S′1 · S′2 = S1 · S2 =−m1 ·m2, (112)

known as the Killing form for the group. Finally, the remaining term is a pseu-
doscalar invariant

S′1 ∧ S′2 =U(S1 ∧ S2)= S1 ∧ S2 = ie(m1 · n2 +m2 · n1), (113)
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because it is proportional to the Euclidean pseudoscalar Ie = ie, which is invariant
because i and e are invariant. This concept and result is unique to CGA, so it merits
further discussion.

The pseudoscalar Ie = ie squares to I 2
e = −e2 = 0, so it cannot be used for an

invertible duality mapping. However, we can define a conjugate pseudoscalar I∗e ≡
ie0 so that I∗e · Ie = 〈I∗e Ie〉 = −e · e0 = 1. Then we can express the invariant (113) as
a scalar:

(S1 ∧ S2) · (ie0)=m1 · n2 +m2 · n1 = S1 · S∗2 , (114)

where a dual screw = coscrew has been defined by

S∗k ≡ Sk · (ie0)= 〈Skie0〉2 =−ink − e0mk. (115)

This equivalent to the reciprocal screw first introduced by Ball [17]. Comparison
with (97) shows that wrenches are coscrews! Of course, the dual defined here should
not be confused with the dual introduced in (11). The asterisk notation has been used
for both to emphasize their conceptual commonality.

Finally, we note that for a single screw, the pitch h appears as a ratio of the
invariants (114) and (112):

h=−1

2

S · S∗
S · S = n ·m−1. (116)

Screw theory is basically about the generators of displacements. The simplicity of
its formulation within CGA belies the richness and complexity of its applications in
mechanical engineering, for which the serious student must consult the literature.

As guides to the screw theory literature, I recommend two books. The first book
[16] concerns use of modern mathematical concepts and notation, which can be
compared to the approach taken here. The second book [18] is by two long-time
practitioners of screw theory. Though it is designed as a textbook for the ill-prepared
engineering student of today, it provides a mature perspective on current status with
an authoritative entrée to the literature.

Screw theory literature going back to the nineteenth century contains many gems
that can be recovered by reformulation within CGA. Here is another worthy topic
for doctoral research. It requires more than historical study, for many of the gems
need polishing—there are unsolved problems to be addressed in the new light of
CGA.

To facilitate translations from the literature, relations between CGA and matrix
algebra are established next.

13 Conformal Split and Matrix Representation

Besides its invariance and incredible compactness, one great advantage of the CGA
formulation of rigid body mechanics in the preceding sections is the ease of relating
it to alternative formulations by a conformal split. In this section we consider the
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Fig. 13

conformal split in more detail, especially to clarify and facilitate connections to the
vast literature on mechanical systems.

As defined in (43), one factor in the conformal split is the geometric algebra
G

1,1 =G(R1,1). The vector space R
1,1 is sometimes referred to as 2D Minkowski

space to emphasize its similarity to 4D Minkowski space R
3,1, which is a standard

model for spacetime in relativistic physics [4, 6]. It can be generated from a null
basis {e, e0 | e2 = e2

0 = 0, e · e0 = −1} or from an equivalent orthonormal basis
{e± = 1√

2
(λe∓ λ−1e0), λ �= 0, e2± =±1}.

Though the orthonormal basis is more familiar to most readers, as we have
seen already, the null basis is more significant geometrically. It generates a basis
{1, e, e0,E} (depicted in Fig. 13) for the entire algebra G

1,1, with the basic proper-
ties

E2 = 1, e0e=E − 1, Ee=−eE = e, e0E =−Ee0 = e0. (117)

These properties have been used many times in previous sections.
The algebra of dual numbers D= {α + eβ} is an important subalgebra of G

1,1.
However, it was first proposed by Clifford as an extension of the real numbers anal-
ogous to complex numbers, with the null unit e replacing the imaginary unit i. He
introduced it as an extension of scalars in quaternions to form what he called bi-
quaternions [10, 16]. We can regard it as an extension of the algebra G

3 to G
3⊗D.

Clifford clearly recognized the geometric significance of this extension for incorpo-
rating the additivity and commutativity properties of translations. In terms of trans-
lation versors, these properties are expressed by

TaTb =
(

1+ 1

2
ae
)(

1+ 1

2
be
)
= 1+ 1

2
(a+ b)e= Ta+b = TbTa. (118)

Clifford’s biquaternions have been used to represent translations and screws by
many authors since. However, we have seen in the preceding section that the dual
numbers must be extended to the entire algebra G

1,1 to accommodate coscrews and
screw invariants. That has been done in the literature primarily by employing ma-
trices in the following way. The algebra G

1,1 is isomorphic to the algebra M2(R)

of real 2× 2 matrices. That is readily established by exhibiting the isomorphism of
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basis elements:

e+ �
[

0 1
1 0

]
, e− �

[
0 1
−1 0

]
,

E �
[

1 0
0 −1

]
, 1�

[
1 0
0 1

]
.

(119)

Accordingly, every multivector M in G
1,1 has a matrix representation M̂ explicitly

given by

M = 1

2
A(1+E)+B(e++e−)+C(e+−e−)+D(1−E)� M̂ =

[
A B

C D

]
, (120)

where the matrix elements are real numbers. This representation is readily gen-
eralized by allowing the matrix elements to have values in other algebras, G

3 in
particular. Thus, we arrive at the isomorphism:

G
4,1 =G

3 ⊗G
1,1 �M2

(
G

3). (121)

Properties of this isomorphism are surprisingly rich and have been thoroughly stud-
ied in [13]. That enabled a critique of the matrix representation for the conformal
group, which contributed to developing the invariant formulation in CGA introduced
in [1].

The matrix algebra M2(G
3) has been much used in screw theory with the ele-

ments of G
3 interpreted as complex quaternions. More often, it has been used with

the elements of G
3 represented as 3×3 matrices or column vectors. The alternatives

are best explained by a representative example.
With an obvious change of notation, we can write (103) for the change in screw

coordinates induced by a shift r = xQ − xP from base point P to point Q in the
form

VQ = evQ − iω= T rVP = e(vP − r×ω)− iω. (122)

This has a matrix representation V̂Q = T̂ r V̂P with the explicit form
[

vQ

ω

]
=
[

1 −r×
0 1

][
vP

ω

]
=
[

vP − r×ω

ω

]
. (123)

Similarly, we can write (100) for the induced change of coscrew coordinates in the
form

WQ =−e0f+ iΓ Q = T ∗rWP =−e0f+ i(Γ P + r× f). (124)

Its matrix representation ŴQ = T̂ ∗r ŴP has the explicit form
[

f
Γ Q

]
=
[

1 0
−r× 1

][
f

Γ P

]
=
[

f
ΓP + r× f

]
. (125)

These four equations suffice to show how any equation in the literature on screw
theory or robotics can be translated into CGA and vice versa. For example, in [18]
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the screws in (123) and coscrews in (125) are represented as 6-component column
vectors. This example reveals a significant drawback of the matrix representations:
the matrices do not encode the distinction between screws and coscrews, which,
in contrast, is explicitly expressed by the distinction between e and e0 in (122) and
(124). Expressed in more general terms: the matrix representations suppress the geo-
metric meaning of matrix elements, which is explicitly encoded in the algebra G

1,1.
Furthermore, the matrix representation (121) implicitly forces one to adopt a con-
formal split, which means, as we have seen, that one is forced into a covariant rather
than invariant approach to geometry. Nevertheless the isomorphism G

1,1 �M2(R)

is essential for relating CGA to the robotics literature.

14 Linked Rigid Bodies & Robotics

The potential for application of CGA to robotics is best illustrated by a simple ex-
ample. Figure 14 depicts a kinematic chain with three segments in a reference pose:

x0 = e0 + a + b+ c. (126)

Rotations at its three joints are specified by twistors {R1,R2,R3}. Rotation at the
first joint gives

x1 = e0 + a + b+R1cR
−1
1 = e0 + a + b+ c1. (127)

Subsequent or concurrent rotation at the second joint gives

x2 = e0 + a +R2
(
b+R1cR

−1
1

)
R−1

2 = e0 + a + b2 + c21. (128)

Finally, the net result of rotations at all the joints is general pose:

x = e0 +R3
[
a +R2

(
b+R1cR

−1
1

)
R−1

2

]
R−1

3 = e0 + a3 + b32 + c321. (129)

Fig. 14
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A conformal split with the fixed point e0 gives the position vector for the endpoint:

x= x ∧E =R3
[
a+R2

(
b+R1cR−1

1

)
R−1

2

]
R−1

3 = a3 + b32 + c321. (130)

Of course, the rotations need not be confined to a plane (as presumed in Fig. 14
for simplicity of illustration). Restrictions on the range of motion at each joint are
encoded in the twistors. For example, a rotation R1 with one degree of freedom can
be given the angular form

r1 = exp

(
−1

2
n1α1

)
, where 0≤ α1 ≤ π, (131)

and unit vector n1 is the direction of the joint axis for a right-handed rotation. Kine-
matics of the chain can be described a follows. Irrespective of how the joints are
characterized, the twistors satisfy equations of the form

Ṙk =−1

2
iωkRk. (132)

Hence, for R32 =R3R2, we have

Ṙ32 =−1

2
iω32R32 with ω32 = ω3 +R3ω2R

−1
3 . (133)

Finally, with ω321 = ω3 + R3ω2R
−1
3 + R3R2ω1R

−1
2 R−1

3 , for the derivative of the
end point position vector (130), we get

ẋ= ω3 × a3 +ω32 × b32 +ω321 × c321. (134)

This is only the beginning for application of CGA to robotics, but we have all the
theoretical machinery we need for any task. To incorporate dynamics we introduce
the inertia properties of each body with (95) and the applied wrenches with (97).
Moreover, CGA offers a promising approach to modeling complex interactions be-
tween bodies, such as viscoelastic coupling at joints [2].

The next phase in the development of CGA robotics is detailed applications to
specific problems. This development is already underway by attendees at this con-
ference and others in the GA community. However, I see a need for more systematic
mining of the robotics literature to incorporate established problems, results, and
methods in CGA and promote broader interaction within the engineering commu-
nity. I thought about offering suggestions for literature to consult. But the robotics
literature is so vast and variable in complexity and quality that I fear my suggestions
could be as misleading as helpful. Consequently, I add only one recent reference
[19] to those I have already mentioned.

To sum up, CGA provides a powerful mathematical framework for robotics R&D
with the twin goals of (1) simplicity and clarity in mathematical formulation, (2) ef-
ficiency and speed in computation.

Acknowledgement I thank Arvid Halma and Leo Dorst for assistance in preparing the docu-
ment.



New Tools for Computational Geometry 33

References

1. Hestenes, D.: Old Wine in New Bottles: A new algebraic framework for computational ge-
ometry. In: Bayro-Corrochano, E., Sobczyk, G. (eds.) Advances in Geometric Algebra with
Applications in Science and Engineering, pp. 1–14. Birkhäuser, Basel (2001)

2. Hestenes, D., Fasse, E.: Homogeneous rigid body mechanics with elastic coupling. In:
Dorst, L., Doran, C., Lasenby, J. (eds.) Applications of Geometric Algebra in Computer Sci-
ence and Engineering, pp. 197–212. Birkhäuser, Basel (2002)

3. Hestenes, D.: A unified language for mathematics and physics. In: Chisholm, J.S.R., Com-
mon, A.K. (eds.) Clifford Algebras and their Applications in Mathematica Physics, pp. 1–23.
Reidel, Dordrecht (1986)

4. Hestenes, D.: Space-Time Algebra. Gordon & Breach, New York (1966)
5. Hestenes, D., Sobczyk, G.: CLIFFORD ALGEBRA TO GEOMETRIC CALCULUS, a unified lan-

guage for mathematics and physics. Kluwer, Dordrecht (1984). Paperback (1985). Fourth
printing 1999

6. Doran, C., Lasenby, A.: Geometric Algebra for Physicists. Cambridge University Press, Cam-
bridge (2002)

7. Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science. Morgan Kauf-
mann Publ., Elsevier, San Mateo, Amsterdam (2007/2009)

8. Li, H.: Invariant Algebras and Geometric Reasoning. World Scientific, Singapore (2008)
9. Hestenes, D.: Grassmann’s vision. In: Schubring, G. (ed.) Hermann Günther Grassmann

(1809–1877)—Visionary Scientist and Neohumanist Scholar, pp. 191–201. Kluwer, Dor-
drecht (1996)

10. Clifford, W.K.: Mathematical Papers. Macmillan, London (1882). Ed. by R. Tucker. Reprinted
by Chelsea, New York (1968)

11. Doran, C., Hestenes, D., Sommen, F., Van Acker, N.: Lie groups as spin groups. J. Math. Phys.
34, 3642–3669 (1993)

12. Lasenby, A.: Recent applications of conformal geometric algebra. In: Li, H., et al. (ed.) Com-
puter Algebra and Geometric Algebra with Applications. LNCS, vol. 3519, pp. 298–328.
Springer, Berlin (2005)

13. Hestenes, D.: The design of linear algebra and geometry. Acta Appl. Math. 23, 65–93 (1991)
14. Onishchik, A., Sulanke, R.: Projective and Cayley–Klein Geometries. Springer, Berlin (2006)
15. Hestenes, D.: New Foundations for Classical Mechanics. Kluwer, Dordrecht (1986). Paper-

back (1987). Second edition (1999)
16. Selig, J.: Geometrical Methods in Robotics. Springer, Berlin (1996)
17. Ball, R.S.: A Treatise on the Theory of Screws. Cambridge University Press, Cambridge

(1900). Reprinted in paperback (1998)
18. Davidson, J., Hunt, K.: Robots and Screw Theory: Applications of Kinematics and Statics to

Robotics. Oxford University Press, London (2004)
19. Featherstone, R., Orin, D.: Dynamics. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook

of Robotics, pp. 35–65. Springer, Berlin (2008)



Tutorial: Structure-Preserving Representation
of Euclidean Motions Through Conformal
Geometric Algebra

Leo Dorst

Abstract A new and useful set of homogeneous coordinates has been discovered
for the treatment of Euclidean geometry. They render Euclidean motions not merely
linear (as the classical homogeneous coordinates do), but even turn them into or-
thogonal transformations, through a clever choice of metric in two (not one) addi-
tional dimensions.

To take full advantage of this new possibility, a good representation of orthogo-
nal transformations is required. We find that multiple reflections, while classically
giving unwieldy expressions involving the dot product, become practical by intro-
ducing the more fundamental geometric product (which has the dot product merely
as its symmetric part). We obtain a sandwiching operation between products of vec-
tors as our representation of motions, which is not only easily concatenated, but also
incorporates the computational advantages of complex numbers and quaternions in
a real manner. The antisymmetric part of the geometric product produces a spanning
operation that permits the construction of lines, planes, spheres and tangents from
vectors. Since the sandwiching operation distributes over this construction, ‘objects’
are fully integrated with ‘motions’, in a structure preserving manner.

Additional techniques such as duality (permitting a universal intersection opera-
tion), and the rewriting of operators logarithmically (to obtain quantities that can be
interpolated linearly) complete the techniques of what is ultimately a very conve-
nient geometric algebra. It easily incorporates general conformal transformations,
and can be implemented to run almost as efficiently as classical homogeneous coor-
dinates. The resulting high-level programming language naturally integrates quan-
titative computation with the automatic administration of geometric data structures.

Rather than the usual introductions which plow through Clifford algebra before
they reach this very useful ‘conformal model’ (if they do at all), this tutorial does
the reverse. It structures the new concepts in a manner that shows how each ad-
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ditional sophistication is related to what went before, and how it extends its ex-
pressive and computational power. Throughout, the concepts and techniques will
be illustrated by interactive visualization software (GAviewer, freely available at
www.geometricalgebra.net).

1 Introduction

“Doing geometry” in computer science or engineering requires at least the following
ingredients in a practical computational framework:

• descriptive primitives: such as points, lines, planes, circles, spheres, tangents
• basic constructions: connections, intersections, parametric specification
• motions: translation, rotation, reflection, projection
• properties: size, location, orientation
• practical numerics: approximation, estimation, interpolation, linearization

These ingredients should interweave seamlessly. Notably, the framework should be
structure preserving, in the sense that constructions and properties of primitives
should be covariant under motions. For instance, when moving a circle determined
by three points, it should not be necessary to decompose the circle back into the
points, move those, and then reconstruct; rather, the circle should be a basic element
of computation with an associated motion operator (which should moreover prefer-
ably be identical to that for points). Also, all ingredients should be specifiable in a
sufficiently high-level programming language, which avoids coordinates as specifi-
cation level though it may revert to them when executing the operations. The usual
linear algebra tools have neither of these desirable properties, not even when us-
ing homogeneous coordinates. Yet a practical computational framework exists that
can do all of the above. It is called “conformal geometric algebra” (CGA), and this
chapter briefly exposes its essential structure. We will explain all elements of Fig. 1,
and more.

2 Conformal Geometric Algebra

2.1 Trick 1: Representing Euclidean Points in Minkowski Space

Let us focus on a 3D space in which we want to perform Euclidean motions. We
can consider it as a 3D vector space and use a position vector x to denote a point
X relative to an (arbitrary) origin. This is naive practice, and not very convenient,
since Euclidean motions are then not even linear transformations. A commonly used
improvement is the homogeneous model, in which the space is augmented with an
extra dimension eo, and the point X at x represented as eo + x. Now Euclidean mo-
tions are linear transformations but still not structure preserving. More is required.

http://www.geometricalgebra.net
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Fig. 1 An example of the ease of CGA (from [2]). A circle C is generated from three points c1,
c2, c3 as C = c1 ∧ c2 ∧ c3. A line is given as a 3-blade L. The circle C is to be rotated around the
line L, producing RCR−1, with R specified as R = exp(L∗φ/2). The rotation is interpolated in
k steps using R1/k . Then the whole scene is reflected in the plane π given by a normal vector n
and a point p on it as π = p · (n∧ e∞); any element X is reflected as X �→ (−1)grade(X)πXπ−1.
In appropriate software such as [3], these coordinate-free formulas are the literal specification of a
computer program producing the scene

In CGA, we introduce two extra dimensions for representational purposes, thus
constructing a five-dimensional space. We introduce two basis vectors for these extra
dimensions, eo and e∞, and the specific metric given below. As we will see, the
null vectors in this extended space (i.e., the vectors x satisfying x · x = 0 in the
chosen metric) represent weighted points in the Euclidean space (though one usually
employs unit weight points satisfying x · e∞ = 0). Such vectors representing points
have algebraic properties to construct other elements in a coordinate-free, invariant
manner, as explained in the paper by Hestenes [5] elsewhere in this volume.

In the present introductory paper, we mostly prefer to use an explicit expression
for such a vector x representing a point X, relating it to the “classical” Euclidean
position vector x of the point relative to the chosen origin through

x = eo + x+ 1

2
‖x‖2e∞. (1)
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Table 1 · eo x e∞

eo 0 0 −1

x 0 x · x 0

e∞ −1 0 0

If we ignore the component for e∞, we recognize in eo + x just the homogeneous
model. In that model, the extra dimension eo represents the point at the origin; and
the same interpretation holds in CGA (set x = 0). We see that the term with e∞
dominates as x gets large. In fact, e∞ can be interpreted consistently as the point
at infinity which is used in mathematics to “compactify” Euclidean space to remove
special cases from its algebra.

The Big Trick of CGA is the choice of a specific metric for the 5D represen-
tational space. We extend the dot product x · x for Euclidean vectors to the new
dimensions according to the multiplication table (Table 1), where the bold elements
are purely Euclidean and borrow the 3D Euclidean dot product. This table shows
that the usual Euclidean metric holds for the bold vectors, but a strange metric ap-
plies to the two additional dimensions eo and e∞, which are moreover “orthogonal”
to the Euclidean part of the representational space since they have dot product zero
with Euclidean vectors. (In fact, the full 5D space now has a Minkowski metric,
as can be seen by considering the alternative basis vectors σ+ = eo − e∞/2 and
σ− = eo + e∞/2 that have squared norms of +1 and −1, respectively. For more on
this basis, see [5].)

This metric is introduced to give a sensible real world meaning to the dot product
of two point representatives x and y:

x · y =
(
eo + x+ 1

2
‖x‖2e∞

)
·
(
eo + y+ 1

2
‖y‖2e∞

)

=
(

0+ 0− 1

2
‖y‖2

)
+ (0+ x · y+ 0)+

(
−1

2
‖x‖2 + 0+ 0

)

= −1

2
(x− y) · (x− y)=−1

2
‖x− y‖2. (2)

The dot product in conformal space therefore encodes the (squared) Euclidean dis-
tance of the original points! Since points have distance zero to themselves, they are
represented by null vectors; and since Euclidean transformations should preserve
the inter-point distance, they should preserve the dot product.

Euclidean transformations are represented as orthogonal transformations

in CGA.1 This is more specific than their representation as a certain strange class of
linear transformations in the usual homogeneous model, and it permits us to design

1We have simplified slightly; the general representation of a point at x in CGA is a scalar multiple
of x in (1); the scalar factor is the scalar −e∞ · x (as you may verify), and this can be consistently
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a more effective computational framework tailored to this property. Matrices are
actually not that great for representing orthogonal transformations, but fortunately
there is something better, as we will see in the next section.

First, let us determine what the vectors in the 5D representation space signify
geometrically. Suppose that we want to represent a sphere with center C and radius
ρ in Euclidean space. A point X on such a sphere would satisfy ‖x − c‖2 = ρ2

(using Euclidean vectors). Using (2), this can be written in terms of the dot product
of the representative vectors x and c as x · c = − 1

2ρ
2; and using −e∞ · x = 1, we

can even group into x · (c− 1
2ρ

2e∞)= 0. The vector σ = α(c− 1
2ρ

2e∞) is the most
general vector we can make in the conformal space (it has five parameters), and
written in this form we recognize it as representing a sphere with center c, radius
ρ, and “weight” α through the equation x · σ = 0. You may verify that ‖σ‖2 =
α2ρ2 (even “imaginary spheres” with ρ2 < 0 are included) and that a point is just a
sphere with radius zero, represented by a null vector (for which ‖x‖2 = 0). A plane
is the degenerate case of a sphere, and it is represented by a vector of the form
π = α(n+ δe∞) (which has no eo-component and therefore satisfies π · e∞ = 0).
Here n is the unit normal vector of the plane, δ is its oriented distance from the
origin, and α a weight. So:

the vectors in conformal space represent weighted spheres and planes.

In this tutorial, we will mostly use unit weights, focusing on the merely geometrical
aspects of the representation. In our notation, we will use bold for the elements of the
conformal model that are in its n-D Euclidean subspace, and nonbold for elements
residing in the full (n+ 2)-D representational space or its geometric algebra. Since
there is a clear correspondence between elements of Euclidean geometry and their
conformal representation, we will drop the distinction between X and x, and talk
about a point x at location x.

2.2 Trick 2: Orthogonal Transformations as Multiple Reflections
in a Sandwiching Representation

In mathematics, the Cartan–Dieudonné theorem states that all orthogonal transfor-
mations can be represented as multiple reflections. In linear algebra, this fact is not
used much, since reflections are represented awkwardly and therefore unsuitable as
atoms of representation. If we want to reflect a Euclidean vector x in a plane through
the origin with normal vector a, this is the linear transformation

x �→ x− 2(x · a)a/(a · a). (3)

interpreted as the weight of the point. The squared distance between weighted points is computed
by normalizing first as (x/(−e∞ · x)) · (y/(−e∞ · y)). Euclidean transformations should then not
affect this formula; this implies that they are the specific orthogonal transformations that preserve
the special vector e∞.
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It does not look elementary at all, and within linear algebra the dot products cannot
be simplified.

We now introduce a clever trick: we consider the dot product (which is symmet-
ric) as merely the symmetrical part of a more fundamental product between vectors.
That product (invented by Clifford in 1872) is called the geometric product and
denoted by a space. So we rewrite:

a · x= 1

2
(ax+ xa). (4)

This more fundamental product is defined to be bilinear and associative but not
necessarily commutative. We see that ‖x‖2 = x · x= xx= x2, so that the square of a
vector under the geometric product is a scalar. We extend the geometric product to
scalars (and later to other elements). Scalars commute under the geometric product,
so αx = xα for vector x and scalar α. A vector x has a unique inverse x−1 under the
geometric product, defined through xx−1 = 1= x−1x and therefore found explicitly
as

inverse of a vector: x−1 = x/
(
x2).

Now we see how this simplifies the reflection representation:

reflection in origin hyperplane with normal a: x �→ x− 2(x · a)a/(a · a)
= x− (xa+ ax)a−1

= −axa−1. (5)

The reflection of x in the origin hyperplane with normal vector a is therefore simply
a “sandwiching” of x by a and a−1 (with a minus sign). In this form, the fundamental
nature of reflections for the representation of transformations is more obvious.

You may rightly object that we have not really reflected a point x, but only
its Euclidean part x. Let us try to extend the formula to the point x, using the
explicit representation (1). Postulating distributivity of the geometric product, we
get −axa−1 =−a(eo + x+ 1

2‖x‖2e∞)a−1 =−aeoa−1 − axa−1 − 1
2‖x‖2ae∞a−1.

Evaluating this requires computing what −aeoa−1 and −ae∞a−1 are. We real-
ize from definition (4) and the dot product table that −aeoa−1 = −(aeo)a−1 =
−(2a · eo − eoa)a−1 = 0 + eoaa−1 = eo. Of course, you would expect this geo-
metrically: the point at the origin does not change after the reflection. Similarly for
e∞, as you may verify. Further realize that ‖ − axa−1‖2 = (−axa−1)(−axa−1) =
axxa−1 = x2(aa−1) = ‖x2‖—obviously, since reflection is an orthogonal transfor-
mation. Combining all this, we find −axa−1 = eo − axa−1 + 1

2‖ − axa−1‖2e∞,
which is precisely the representation of a point at the reflected location. Therefore a
point x is reflected by transfer of the Euclidean formula (3), as x �→ −axa−1. This
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structural principle may be illustrated as the commutative diagram

position x
normal vector−−−−−−−→ a

as reflector−−−−−→ position −axa−1

embed in CGA

⏐⏐� embed in CGA

⏐⏐� embed in CGA

⏐⏐�

point x
origin plane−−−−−−−→ a

as reflector−−−−−→ point −axa−1

If we perform a second reflection in another origin hyperplane, with normal vec-
tor b, this should be the mapping

x �→=−b
(−axa−1)b−1 = (ba)x(ba)−1,

using the associativity of the geometric product in the rewriting. Geometrically,
a double reflection is a rotation (see Fig. 2), so the operator (ba) represents a ro-
tation operator (in an axis through the origin, determined as the intersection of the
planes a and b). In this manner, we can generate all orthogonal transformations as
sandwiching products by elements that are themselves the geometric product of vec-
tors. These elements are called versors. A delightful property of versors is that they
do not only apply to vectors, but also directly to other geometric elements like lines
and circles. Let us first make those geometric elements part of our algebra.

Fig. 2 A reflection in two successive planes is equivalent to a rotation over double their separating
angle, around the line of their intersection (in 3D)
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2.3 Trick 3: Constructing Elements by Anti-Symmetry

When we introduced the geometric product for vectors, we used only its symmetric
part (that was the dot product). But of course there is an anti-symmetric part as well.
Let us denote that by ∧ and call it the outer product. For vectors, it is defined as

x∧ a= 1

2
(xa− ax).

It is clear that x∧ a=−a∧ x, so that x∧ x= 0.
To interpret this new element x∧a geometrically, let us use some classical linear

algebra and take x and a as direction vectors. If we take an orthonormal basis {e1, e2}
in the plane spanned by x and a, and choose it such that x= ‖x‖e1, then a can be
written as a= ‖a‖(cos(φ)e1+ sin(φ)e2) with φ the angle from x to a. We evaluate:

x∧ a = (‖x‖e1
)∧ (‖a‖(cos(φ)e1 + sin(φ)e2

))

= ‖x‖‖a‖(cos(φ)e1 ∧ e1 + sin(φ)e1 ∧ e2
)

= ‖x‖‖a‖ sin(φ)e1 ∧ e2,

for being the sum of two bilinear products, the outer product is itself bilinear. We
recognize in ‖x‖‖a‖ sin(φ) the signed area of the oriented parallelogram spanned
by x and a (in that order) and can therefore interpret e1 ∧ e2 as the algebraic speci-
fication of the unit area element in the (e1, e2)-plane. We call this a unit 2-blade.We
then interpret the 2-blade x ∧ a of direction vectors as the full specification of the
geometric area element spanned by x and a (in that order) in terms of its magnitude,
orientation, and geometrical attitude (i.e., spatial stance). Only the shape is not de-
termined, for you can easily verify that, for instance, x ∧ (a+ λx) = x ∧ a so that
x and a + λx span the same element as x and a. For parallel direction vectors x
and a, the outer product x∧ a is zero, so the commutativity relationship xa= ax is
the algebraic way of expressing parallelness of vectors. Orthogonality of vectors is
expressed as xa=−ax, or x · a= 0.

The outer product can be extended over more vector terms, always as the anti-
symmetric sum. This is done by permuting the geometric products and endowing
even permutations with a plus and odd permutations with a minus. For instance:

a∧ b∧ c= 1

3! (abc− bac+ bca− cba+ cab− acb)

(but this algebraic equation is a very inefficient way of computing the value of the
outer product; the equivalent a∧ b∧ c= 1

2 (abc− cba) is already better). It can be
shown that the outer product thus defined is associative and multilinear. To make
it fully defined over all elements, we can extend it to scalars simply by defining
α ∧ a= αa for scalar α and vector a.

The outer product of k vector factors is called a k-blade, and the number of vector
factors k is called its grade. Geometrically, a k-blade is a quantitative representation
of a weighted, oriented k-dimensional subspace of the space its vectors reside in,
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and its signed magnitude is an oriented hypervolume. For instance, if you would
compute the outer product of three direction vectors in 3D space, you would find
that the coordinates of the vectors combine to a familiar signed scalar multiple of
the unit volume: a ∧ b ∧ c = det([[a b c]])e1 ∧ e2 ∧ e3. This volume is zero when
the vectors are co-planar, and therefore x ∧ (a ∧ b) = 0 can be solved for x as
x= λa+μb. Again, the 2-blade a∧ b is seen to be a single computational element
representing the plane spanned by the direction vectors a and b.

In the conformal model, the outer product of vectors representing points a and
b takes on a different geometric interpretation, even though its algebra is the same.
In CGA, the blade a ∧ b represents an oriented point-pair, in the sense that the
set of points x satisfying x ∧ a ∧ b = 0 is either x = a or x = b. (Comparing to
the derivation just given, we do get x = λa + μb, as before, but to be a point in
CGA, x has to satisfy x · x = 0 by (2), as do a and b. Some algebra then leads to
λμ(a · b)= 0, and this implies λ= 0 and/or μ= 0.) Similarly, a ∧ b ∧ c represents
the oriented circle through the points a, b, and c, and the outer product of four
points a ∧ b ∧ c ∧ d represents an oriented sphere. We call these elements rounds.
If the points are in degenerate positions, or if one of them is the point at infinity e∞,
an oriented flat results (in 3D, these are: a line a∧b∧ e∞, a plane a∧b∧ c∧ e∞, or
a “flat point” a ∧ e∞). Showing these facts without too much computation requires
the technique of dual representation, introduced next.

2.4 Trick 4: Dual Specification of Elements Permits Intersection

A subspace can be characterized by the outer product, but it is often convenient
to take a “dual” approach, not specifying the vectors in it but the vectors or-
thogonal to it. We have already seen this for spheres: the orthogonality demand
x · (c − 1

2ρ
2e∞) = 0 solves for x lying on a sphere with center c and radius ρ.

Duality is a fundamental concept of geometric algebra and requires no more than
complementation relative to the volume of the vector space, through division.

An n-dimensional vector space cannot have nonzero blades of a grade exceed-
ing n. A nonzero blade of the maximum grade n is called a pseudoscalar for the
space. It is common to normalize this to a unit pseudoscalar and to denote it by
In or In. The choice of the sign of the unit pseudoscalar amounts to choosing
a reference orientation for the space. In a 3D Euclidean space of direction vec-
tors with an orthonormal basis, I3 = e1 ∧ e2 ∧ e3(= e1e2e3) picks the standard
“right-handed” orientation. In the conformal model space, a suitable pseudoscalar
is I4,1 = eo ∧ I3 ∧ e∞. The inverse of the unit pseudoscalar in 3D Euclidean space
is I−1

3 = −I3 (verify that I3I−1
3 = 1!). In the conformal space, I−1

4,1 = eo ∧ I−1
3 ∧

e∞ =−I4,1.
One can find the blade representing the orthogonal complement of any subspace

through right-dividing its blade A by the pseudoscalar, as AI−1
n . This is called the

dual of A and denoted A∗:

dualization: A∗ =AI−1
n . (6)
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For instance, the dual of the 2-blade e1∧e2 in 3D-space is (e1∧e2)(e1 ∧ e2 ∧ e3)
−1 =

−(e1e2)(e1e2e3)= e3. This is indeed the normal vector of the (e1, e2)-plane using
the right-hand rule. The familiar 3D cross product of vectors can be made in CGA
as x× a= (x∧ a)I−1

3 , though its use should be avoided.
Duality permits us to intersect subspaces. Let us denote the intersection (or meet)

of blades A and B as A∩B; then we can define it in terms of outer product and dual
as

dual specification of meet: (A∩B)∗ = B∗ ∧A∗, (7)

where the duality is to be taken relative to the smallest-grade blade containing both
A and B (this is known as their join, and the intersection as their meet). If one
simply takes duality relative to the full space, a meet can become zero in degenerate
situations. (More about these operations and their efficient implementation in [4].)

An extension of the inner product beyond vector arguments can be developed as
a product in its own right, with its own set of algebraic rules. When done properly,
it is consistent with the rest of the framework in the sense that

extension of inner product: A ·B ≡ (A∧B∗
)−∗

, (8)

with duality relative to a blade containing the join (one usually takes the pseu-
doscalar In).2 This inner product has properties like

x · (a ∧ b)= (x · a)b− (x · b)a. (9)

The inner product is especially convenient to define orthogonal projection of sub-
spaces as

orthogonal projection of X onto B: X �→ (
X ·B−1) ·B.

For flats, this corresponds to the usual orthogonal projection but it is more general:
for instance, projecting a line onto a sphere produces a great circle.

Knowing duality also permits us to interpret elements like a∧ b. In CGA, a and
b are the dual representations of planes through the origin, for the points on these
planes satisfy x · a= 0 and x · b= 0. Therefore by (7), the 2-blade a∧ b should be
the dual representation of their intersection line. Points x on that line should then
satisfy x · (a∧ b)= 0, and expanding according to (9) shows that this indeed holds.
You may verify that the point at infinity e∞ is on the line (a∧ b)−∗.

We now have enough to show that in CGA, S = a ∧ b ∧ c ∧ d represents the
sphere through the four points a, b, c, d . The geometry is illustrated in Fig. 3. By
antisymmetry of ∧, we can subtract any factor from the others without changing
the value of S. We use a to produce S = a ∧ (b − a) ∧ (c − a) ∧ (d − a). To find
out what (b − a) represents, solve x · (b − a) = 0. This evaluates to x · a = x · b,
and because of (2), this means that x has the same distance to a and b. So (b− a)

2This inner product is called the left contraction and denoted “�” in [2]. It differs in details from
the inner product used in [1].
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Fig. 3 The proof that a ∧ b ∧ c ∧ d represents a sphere involves the intersection of the midplanes
b− a, c− a, and d − a

is the dual representation of the midplane between a and b. Therefore (b − a) ∧
(c − a) ∧ (d − a) is the dual representation of the intersection of three midplanes.
These planes intersect in two points: the center of the sphere m and the point at
infinity e∞, so (b− a)∧ (c− a)∧ (d − a) is proportional to (m∧ e∞)∗. Then we
find S ∝ a ∧ (m∧ e∞)∗ = (a · (m∧ e∞))∗ = (m− 1

2ρ
2e∞)

∗
with a · m = − 1

2ρ
2.

So indeed S is the dual of a dual sphere representation and therefore a sphere. This
also gives a very compact way to compute center and radius of a sphere given by
four points: they are simply the appropriate components of (a ∧ b ∧ c ∧ d)∗.

3 Bonus: The Elements of Euclidean Geometry as Blades

Closure of the operations of outer product and duality produces a suite of blades
representing recognizable elements of Euclidean geometry. We have seen many ex-
amples of this already, and the full list is given in Table 2 from [2] (where n is
the dimension of the Euclidean space, E a purely Euclidean element of appropriate
grade, E� denotes the Euclidean dual EI−1

n , and Tp denotes the translation versor
over p, see (11)). Care has been taken to orient the blades and their duals consis-
tently.

The square of a normalized round gives its radius squared, and this may be neg-
ative. Such “imaginary rounds” occur naturally, for instance, when intersecting two
spheres that are further apart than the sum of their radii. Because only the squared
radius occurs in the conformal model, these elements are tractable in a real alge-
bra. Tangents are in fact rounds of zero radius, indicative of their infinitesimal size.
A tangent 2-blade occurs, for instance, as the grade 3 element that is the meet of
two touching spheres. In this context, a weighted point may be viewed as a local-
ized tangent scalar.
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Table 2

Element Standard form X Defining properties

Direction E∧ e∞ e∞ ∧X = 0; e∞ ·X = 0

Dual direction −E� ∧ e∞ e∞ ∧X = 0; e∞ ·X = 0

Flat Tp(eo ∧E∧ e∞)T −1
p e∞ ∧X = 0; e∞ ·X �= 0

Dual flat Tp(E�(−1)n−grade(E))T −1
p e∞ ∧X �= 0; e∞ ·X = 0

Tangent Tp(eo ∧E)T −1
p e∞ ∧X �= 0; e∞ ·X �= 0; X2 = 0

Dual tangent Tp(eo ∧E�(−1)n)T −1
p e∞ ∧X �= 0; e∞ ·X �= 0; X2 = 0

Round Tp((eo + 1
2ρ

2e∞)∧E)T −1
p e∞ ∧X �= 0; e∞ ·X �= 0; X2 �= 0

Dual round Tp((eo − 1
2ρ

2e∞)∧E�(−1)n)T −1
p e∞ ∧X �= 0; e∞ ·X �= 0; X2 �= 0

It is especially notable that the various uses and meanings of “vector with direc-
tion u” from applied linear algebra get their own “algebraic data structures”:

• a point at location u is represented by the CGA vector eo + u+ 1
2 u2e∞

• a free vector is represented by the translation invariant 2-blade u∧ e∞
• a normal vector is the vector p · (u∧ e∞) and can shift on a localized plane
• a force vector is represented by the 3-blade p∧ u∧ e∞ and can shift along a line
• a tangent vector u at p is the localized 2-blade p · (p ∧ u∧ e∞)

All these automatically move appropriately under Euclidean versors, without a pro-
grammer needing to specify that they should (by giving them their own “classes”
and “methods,” as is required in common practice in classical software, even when
based on homogeneous coordinates).

4 Bonus: Euclidean Motions Through Sandwiching

We have seen how all orthogonal transformations can be made as multiple reflec-
tions and that a single reflection is represented by an invertible vector a as the
transformation x �→ −axa−1. Now that we know what the vectors in the conformal
model represent, we can easily generate the versors for common motions. Euclidean
motions are generated by multiple reflections in planes, and we have seen that those
are dually represented by vectors of the form π = n+ δe∞ that satisfy e∞ · π = 0.

• Rotation in a plane through the origin: If we take two unit dual planes at the
origin n1 and n2 with a relative angle of φ/2 from n1 to n2, the double reflection
first in n1 and then in n2 is represented as

RIφ = n2n1 = n2 · n1 + n2 ∧ n1 = cos(φ/2)− I sin(φ/2). (10)

When used in a sandwiching operation, this is a rotation over the angle φ around
the dual line given by the unit 2-blade I (proportional to n1 ∧ n2). Such a 2-blade
has the property I2 =−1. To show this, introduce an orthonormal basis {e1, e2},
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write I= e1 ∧ e2 = e1e2, and compute using the associativity property of the ge-
ometric product: (e1 ∧ e2)(e1 ∧ e2)= (e1e2)(e1e2)=−e2e1e1e2 =−e2e2 =−1.
In this real geometric algebra, we therefore naturally get elements that square
to −1. In 3D, there is a basis for 2-blades consisting of the elements I= e1 ∧ e2,
J= e2∧ e3, and K= e3∧ e1, each squaring to −1 and having multiplicative rela-
tionships like IJ=−JI=−K. These are of course isomorphic to the elementary
quaternions which have proven so useful for 3D rotation computations. In geo-
metric algebra, they are introduced in a real manner as products of vectors, fully
integrated with the real elements they operate on. We will soon see that they can
rotate any element, and derive the versor for a rotation around a general line in
Sect. 6.
• Translation: A translation over a vector t is generated by reflection in two dual

planes separated by a vector t/2, resulting in the element: (t + 1
2 t · te∞)t =

t2(1 − te∞/2). Since a scalar multiple generates the same motion in the sand-
wiching product with the inverse, we prefer to define

versor for translation over t: Tt ≡ 1− te∞/2. (11)

You can check that the point representation (1) is indeed related to the point at
the origin eo by translation over x, since x = TxeoT

−1
x .

• General rigid body motion: A general rigid body motion can be constructed in
the usual manner as a rotation followed by a translation. In CGA, an alternative is
to make it directly as the reflection in two lines, which produces a screw motion
(see [2]).
• Uniform scaling: Although not strictly a rigid body motion, the Euclidean simi-

larity transformation of uniform scaling can be made by subsequent reflection in
two dual spheres at the origin such as eo − 1

2ρ
2
1e∞ and eo − 1

2ρ
2
2e∞. After some

simplification, the scaling versor for a uniform scaling by eγ is found to be

Sγ ≡ cosh(γ /2)+ sinh(γ /2)eo ∧ e∞.

More versors can be generated by reflection in spheres, notably for the conformal
operation of a transversion—details may be found elsewhere [2].

5 Bonus: Structure Preservation and the Transfer Principle

All constructions of elements were based on the linear combinations of geometric
products, since the other products are ultimately expressible in that manner. There-
fore, when we act on them with a versor V in the sandwiching product, all construc-
tions transform covariantly. For the outer product, this means that equations hold
like the following:

V (a ∧ b)V −1 = (V aV −1)∧ (V bV −1).
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The same structure-preserving property holds for all operations we introduced, be
they spanning, inner product, or duality (relative to a transformed pseudoscalar). In
words: “the transformation of a construction equals the construction of the trans-
formed elements.” This fact is very convenient, for it implies that we can simply
construct something at the origin and then move it into place to find the general
form (hence our preference for origin-based specification in the table above). And
composite elements move by the same versor as points do: the translation versor
Tt universally translates points, lines, planes, spheres, or tangent elements. As we
mentioned, there is no longer any need for data structures distinguishing between
“position vectors” which feel translations and “direction vectors” which do not; all
is automatically administrated in the algebraic behavior of the corresponding ele-
ments. This is an enormous advantage relative to the classical homogeneous model
for the development of structural code, either by hand or using a code genera-
tor [3].

This principle is also extremely useful in derivations. Let us, for instance, use
it to prove the general formula for the reflection of a line Λ in a dual plane π as
Λ �→ −πΛπ−1, simply from the 1-D direction reflection formula (5). A line Λ0

with direction u through the origin is given as Λ0 = eo ∧ u∧ e∞, and a dual plane
π0 through the origin with normal vector n as π0 = n. The reflection of the direction
u is affected by (5) as u �→ u′ ≡ −nun−1 = −π0uπ0

−1. The reflected line is then
Λ′0 = eo∧u′ ∧e∞. Now we note that due to the algebraic commutation (i.e., the geo-
metric orthogonality) of the bold Euclidean and the nonbold extra dimensions eo and
e∞, we have −π0eoπ0

−1 = −neon−1 = eo and −π0e∞π0
−1 =−ne∞n−1 = e∞.

Therefore we can “pull out” the reflection operator to act on the whole line Λ0

by (5):

Λ′0 =
(−π0eoπ0

−1)∧ (−π0uπ0
−1)∧ (−π0e∞π0

−1)

= −π0(eo ∧ u∧ e∞)π0
−1 =−π0Λ0π0

−1.

This is still only true at the origin, but we can move this construction by a mo-
tion versor V to an arbitrary location. All elements change to their general form
π = Vπ0V

−1, Λ= VΛ0V
−1, and the reflection transformation preserves its struc-

ture since VΛ′0V −1 = (V π0V
−1)(VΛ0V

−1)(V π0V
−1) = πΛπ−1. Therefore the

general reflection formula of a line in a plane is simply

reflection of a line Λ in the dual plane π : Λ �→ −πΛπ−1.

This includes all aspects of location, direction, and orientation. Note that this com-
putation reflects a general line in a general plane without computing its intersection
point—try doing that using linear algebra! (If you need the intersection point of line
and plane, it is π ·Λ, by straightforward application of the universal meet opera-
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tion (7) and duality (6), (8).)

direction u
normal vector−−−−−−−→ a

as reflector−−−−−−−→ direction u− 2(u · a)a/‖a‖2)
embed in GA

⏐⏐
� embed in GA

⏐⏐
� embed in GA

⏐⏐
�

direction u
normal vector−−−−−−−→ a

as reflector−−−−−−−→ direction u′ = −aua−1

embed in CGA

⏐⏐
� embed in CGA

⏐⏐
� embed in CGA

⏐⏐
�

origin line Λo = eo ∧ u∧ e∞
dual eo-plane−−−−−−−→ πo

as reflector−−−−−−−→ origin line Λ′o =−πoΛoπo
−1

Euclidean versor

⏐⏐
� Euclidean versor

⏐⏐
� Euclidean versor

⏐⏐
�

general line Λ= VΛoV
−1 dual plane−−−−−−→ π

as reflector−−−−−−−→ general line Λ′ = −πΛπ−1

conformal versor

⏐
⏐� conformal versor

⏐
⏐� conformal versor

⏐
⏐�

general circle K = VΛV −1 dual sphere−−−−−−→ σ
as invertor−−−−−−→ general circle K ′ = −σKσ−1

We can even apply an arbitrary conformal versor and change the reflecting dual
plane π into a dual sphere σ , and the line L into a circle K ; the result is a spherical
inversion operation. (As a further extension, another application of the structure
preservation property shows that the reflection in σ of a general element X is X �→
(−1)grade(X)σXσ−1.)

The conformal model renders all transitions trivial in this transfer, all the way
from a reflection of a Euclidean direction vector at the origin to the inversion of
a general circle in a general sphere. Such is the power of a structure-preserving
framework!

6 Trick 5: Exponential Representation of Versors

Even-graded versors, made by an even number of reflections, represent motions that
can be performed continuously and in small amounts. In Euclidean and Minkowski
spaces, all even-graded versors can be written as the exponentials of bivectors. The
bivector specification of an even versor is often more directly related to the geometry
of the situation than the “product of vectors” method.

As an example of the exponential rewriting, take the rotation RIφ over the an-
gle φ, parallel to the I-plane as treated in (10),

RIφ = cos(φ/2)− sin(φ/2)I= e−Iφ/2.

It is the property I2 =−1 that makes the exponential rewriting permitted:
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e−Iφ/2 = 1+ 1

1! (−Iφ/2)1 + 1

2! (−Iφ/2)2 + · · ·

=
(

1− 1

2! (φ/2)2 + · · ·
)
+
(

1

1! (φ/2)1 − 1

3! (φ/2)3 + · · ·
)

I

= cos(φ/2)− sin(φ/2)I.

The translation versor of (11) can also be written in this exponential form; but since
it involves the bivector t∧ e∞, the expansion truncates after two terms (fundamen-
tally due to e2∞ = 0):

Tt = 1− t∧ e∞/2= e−t∧e∞/2.

A rotation around a general 3D unit line Λ over φ is now generated by the versor:

rotation around Λ over φ: RΛ,φ = eΛ
∗φ/2

Proof This follows from the simply derived structural property

V exp(B)V −1 = exp
(
VBV −1)

and the transfer property applied as follows. First recognize that the rotation axis
of the origin rotation RIφ is the line Λ0 = I∗ = −I−∗, so the origin rotation is
exp(Λ0

∗φ/2). Then transfer this by a translation T to the actual location of the de-
sired axis Λ, which changes Λ0

∗ to T (Λ0
∗)T −1 = (T Λ0T

−1)/(T I4,1T
−1) = Λ∗

since the pseudoscalar I4,1 involved in the dualization is translation invariant.
Done. �

General rigid body motions can of course also be made, for instance, by the
usual method of combining an origin rotation with a translation. You find that the
result can be written as the exponential of a general conformal bivector on the ba-
sis {e1 ∧ e2, e2 ∧ e3, e3 ∧ e1, e1 ∧ e∞, e2 ∧ e∞, e3 ∧ e∞}, giving the six degrees of
freedom required. Since this space of bivectors is linear, it can be used for motion in-
terpolation. To interpolate between two poses characterized by the versors M0 and
M1, find their bivectors B0 = log(M0) and B1 = log(M1). Now apply a standard
vector interpolation method to smoothly change B0 into B1 through intermediate
bivectors Bi ; then use the versors exp(Bi) to generate the interpolated poses. To ex-
ecute this procedure, one needs to find the bivector corresponding to a given versor;
such “versor logarithms” may be found in [2].

Linearization of versor motions for extrapolation or estimation is also possible
and requires geometric calculus. When performed (see [1]), the first order change in
an element X that is moved by a changing versor V (τ) from a standard element X0
as X(τ)= V (τ)X0V (τ)−1 is

X(τ + dτ)=X(τ)+ (Ω(τ)X(τ)−X(τ)Ω(τ)
)

with Ω(τ)=
(

d

dτ
V (τ)

)
V (τ)−1.
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Fig. 4 The mirror Π rotates φ round a line Λ, and a line X is reflected in it. Using a local
first-order linearization of the reflection versor, one can derive the perturbation of the reflected line
to second order (in black) to be the rotation with versor exp(−φ((Λ ·Π)/Π)∗), i.e., around the
projection of Λ onto Π with angle 2φ cos(Π,Λ). For details, see [2]

If V is normalized, Ω is a bivector, and its commutator product with X(τ) pre-
serves the grade. This linearization of geometrical perturbations is very useful in
applications, see Fig. 4. The full geometric calculus is truly powerful, and one can
differentiate relative to an arbitrary element of the algebra (such as a blade or a ver-
sor). We cannot treat that here, and the reader is referred to introductions like [2]
and [1].

7 Trick 6: Sparse Implementation at Compiler Level

Implementation of CGA may seem to be expensive. After all, to treat a 3D space,
we embed into a 5D representational space and use the geometric algebra of that,
which involves a 25-D basis of constructible elements of all grades. Yet the use we
make of this space is restricted, and the elements are therefore somehow sparse.
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Ultimately, the main purpose of the algebraic organization is to keep track auto-
matically of the administration of the meaning of the coordinates of points, lines,
planes, spheres, etc., simultaneous with performing the quantitative computations.
That is in a sense a Boolean selection task of the algebra, which one would intu-
itively expect not to be too expensive. Indeed it has proved possible to limit the
overhead of the use of CGA to about 10% relative to the best available coordinate
code programmed classically. For the computer science techniques that achieve this,
consult [2] and [3]. A warning: before you start using CGA in commercial applica-
tions, be aware that it is covered by a US patent [6].
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Engineering Graphics in Geometric Algebra

Alyn Rockwood and Dietmar Hildenbrand

Abstract We illustrate the suitability of geometric algebra for representing struc-
tures and developing algorithms in computer graphics, especially for engineering
applications. A number of example applications are reviewed. Geometric algebra
unites many underpinning mathematical concepts in computer graphics such as vec-
tor algebra and vector fields, quaternions, kinematics and projective geometry, and
it easily deals with geometric objects, operations, and transformations. Not only are
these properties important for computational engineering, but also for the computa-
tional point-of-view they provide. We also include the potential of geometric algebra
for optimizations and highly efficient implementations.

1 Introduction

Computer graphics relies heavily on geometric models and methods. Geometric al-
gebra is a mathematical framework to easily describe geometric concepts and op-
erations. It allows us to develop algorithms fast and in an intuitive way. Geometric
algebra is based on the work of Hermann Grassmann (see the conference [45] cele-
brating his 200th birthday in 2009) and William Clifford [14, 15]. Pioneering work
has been done by David Hestenes, who first applied geometric algebra to problems
in mechanics and physics [24, 26].
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2 Benefits of Geometric Algebra for Computational Engineering

We first highlight some properties of geometric algebra that make it advantageous
for graphics engineering applications.

2.1 Unification of Mathematical Systems

In the wide range of engineering applications many different mathematical systems
are currently used. One notable advantage of geometric algebra is that it subsumes
mathematical systems like vector algebra, complex analysis, quaternions, Plucker
coordinates, and tensor analysis. Applications described in Sect. 3 will illustrate
this advantage.

2.2 Uniform Handling of Different Geometric Primitives

Conformal geometric algebra, the geometric algebra of conformal space we focus
on, is able to treat different geometric objects such as points, vectors, lines, circles,
spheres, and planes as the same entities algebraically. Consider the spheres of Fig. 1,
for instance. These spheres are simply represented by

S = P − 1

2
r2e∞ (1)

based on their center point P , their radius r , and the basis vector e∞ which rep-
resents the point at infinity. The circle of intersection of the spheres is then easily
computed using the outer product to operate on the spheres as simply as if they were
vectors:

Z = S1 ∧ S2. (2)

This way of computing with geometric algebra clearly benefits applications
like kinematics, pose estimation, and other computer graphics applications as seen
in Sect. 3.

Fig. 1 Spheres and circles
are basic entities of geometric
algebra. Operations like the
intersection of two spheres
are easily expressed
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2.3 Simplified Rigid Body Motion

Rigid body motions in geometric algebra can be described with one compact linear
expression, the so-called screw

S= im+ e∞n (3)

with the Euclidean pseudoscalar i= e1 ∧ e2 ∧ e3 includes both rotational and linear
parts described with the 3D vectors m and n (see [25]). The combinations of rota-
tional and linear velocities, forces and torques are also described with the help of
one linear expression.

One result of this property is the improvement of Finite Element methods [9].

2.4 Curl, Vorticity and Rotation

The vector algebra concepts of curl, vorticity, and rotation as expressed in geometric
algebra are defined in any dimension, whereas the cross-product in classical vector
algebra is restricted to three dimensions. Thus geometric calculus enables vector
algebra applications to be considered in any dimensions [13].

2.5 More Efficient Implementations

Geometric algebra as a mathematical language often suggests a clearer structure and
greater elegance in understanding methods and formulae. This regularly results in
more efficiency and lower runtime performance for derived algorithms. In Sect. 5
we present a dramatically improved optimization approach for kinematics. We will
see there that geometric algebra inherently has a large potential for creating opti-
mizations leading to more highly efficient implementations.

3 Some Applications

Computer graphics and the related areas of robotics and computer vision are active
areas of research in geometric algebra. In this section we survey some of these
applications in more detail.

For about a decade, researchers at the University of Cambridge, UK, have applied
geometric algebra to a number of graphics related projects. They started with ideas
in computer vision. Lasenby et al. [31, 32] and Perwass et al. [37, 41, 42] present
some applications dealing with structure and motion estimation as well as with the
trifocal tensor. Rigid-body pose and position interpolation, mesh deformation, and
catadioptric cameras articles using geometric algebra are presented by Cameron
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et al. [12] and Wareham et al. [54, 55]. Geomerics [53] is a start-up company in
Cambridge specializing in simulation software for physics and lighting, which pre-
sented its new technology allowing real-time radiosity in videogames utilizing com-
modity graphics processing hardware. The technology is based on geometric algebra
wavelet technology.

Dorst et al. [16–18, 33, 34] at the University of Amsterdam, the Netherlands, are
applying their fundamental research on geometric algebra mainly to 3D computer
vision. Zaharia et al. [56] investigated modeling and visualization of 3D polygonal
mesh surfaces using geometric algebra. Currently D. Fontijne is primarily focusing
on the efficient implementation of geometric algebra. He investigated the perfor-
mance and elegance of five models of 3D Euclidean geometry in a ray tracing, an
archetypical computer graphics application [22]. It summarized the investigation
by noting that 5D conformal space was the most elegant, but required appropriate
hardware to become the most efficient as current hardware supported the 4D affine
model. Along this line, research into hardware for geometric algebra continues. The
Amsterdam group developed a code generator for geometric algebras [23]. Also,
there is a book with applications of geometric algebra edited by Dorst et al. [19].
A new book [20] was published recently, which dedicates its major portion to the
issue of geometric algebra calculation.

The first time geometric algebra was introduced to a wider Computer Graphics
audience was through a couple of courses at the SIGGRAPH conferences 2000 and
2001 (see [35]).

Bayro-Corrochano et al. from Guadalajara, Mexico, are primarily dealing with
the application of geometric algebra in the field of computer vision, robot vision
and kinematics. They are using geometric algebra, for instance, for tasks like vi-
sual guided grasping, camera self-localization, and reconstruction of shape and mo-
tion [3]. Their methods for geometric neural computing are used for tasks like pat-
tern recognition [1, 8]. Registration, the task of finding correspondences between
two point sets, is solved based on geometric algebra methods in [47]. Some of their
kinematics algorithms can be found in [7] for the 4D motor algebra and in the con-
formal geometric algebra papers [5, 6] dealing with inverse kinematics, fixation, and
grasping as well as with kinematics and differential kinematics of binocular robot
heads. Books from Bayro-Corrochano et al. with geometric algebra applications are,
for instance, [2] and [4].

At the University of Kiel, Germany, Sommer et al. [51] are applying geometric
algebra to robot vision, e.g., Rosenhahn et al. [48, 49] concerning pose estimation
and Sommer et al. [52] regarding the twist representation of free-form objects. Per-
wass et al. are applying conformal geometric algebra to uncertain geometry with
circles, spheres, and conics [40] to geometry and kinematics with uncertain data
[44] or concerning the inversion camera model [43]. There is a book with applica-
tions of geometric algebra edited by Sommer [50] and a new book about the appli-
cation of geometric algebra in engineering applications by Christian Perwass [38].
Sven Buchholz, together with Kanta Tachibana from the university of Nagoya and
Eckhard Hitzer from the university of Fukui, Japan, do some interesting research
dealing for instance with neural networks based on geometric algebra [10, 11].
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In addition to these examples, there are many other applications like geometric
algebra Fourier transforms for the visualization and analysis of vector fields [21] or
classification and clustering of spatial patterns with geometric algebra [46] showing
a wide area of possibilities of advantageously using this mathematical system in
engineering applications.

4 The Geometric Primitives in More Detail

Here, we look into some details of the basic geometric primitives of conformal ge-
ometric algebra as introduced in Sect. 2.2 and listed in Table 1. We especially look
into the representations of spheres and planes and will see that planes are specific
spheres with infinite radius. Increasing the radius of a sphere to infinity, the resulting
plane is described by

π = n+ de∞ (4)

with n being the 3D unit normal vector of the plane, and d the distance of the plane
from the origin. This limit process can be used in order to fit the best suitable object
into a set of points, whether it is a plane or a sphere. A locally estimated sphere can
be used in order to describe local curvature of point clouds [27], while an estimation
of a plane describes vanishing curvature.

4.1 Planes as a Limit of Spheres

Spheres and planes, both, are vectors in conformal geometric algebra. In this section,
we will see how a sphere

S = s+ 1

2

(
s2 − r2)e∞ + e0 (5)

Table 1 List of the basic geometric primitives provided by the 5D conformal geometric algebra.
The bold characters represent 3D entities (x is a 3D point, n is a 3D normal vector, and x2 is
the scalar product of the 3D vector x). The two additional basis vectors e0 and e∞ represent the
origin and infinity. Based on the outer product, circles and lines can be described as intersections
of two spheres, respectively two planes. The parameter r represents the radius of the sphere and
the parameter d the distance of the plane to the origin

Entity Representation

Point P = x+ 1
2 x2e∞ + e0

Sphere s = P − 1
2 r

2e∞
Plane π = n+ de∞
Circle z= s1 ∧ s2

Line l = π1 ∧ π2
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Fig. 2 A sphere with a center
point s (in the opposite
direction of a normal
vector n) going to infinity
(and always adapting its
radius), at the end, results in a
plane with normal vector n
and distance d to the origin

with Euclidean center point s and radius r degenerates to a plane as the result of a
limit process.

According to the construction of Fig. 2, the minimum distance from the origin to
the sphere, having its center in the opposite direction of a normal vector n, is

d = r −
√

s2, (6)

and the radius is the sum of the length of the 3D vector s and d ,

r =
√

s2 + d, (7)

or

r2 = s2 + 2d
√

s2 + d2. (8)

Now, the sphere can be written as

S = s+ 1

2

(
s2 − s2 − 2d

√
s2 − d2)e∞ + e0 (9)

or equivalently

S = s+ 1

2

(−2d
√

s2 − d2)e∞ + e0. (10)

Now, we introduce S′ as a scaled version of the algebraic expression of sphere S

representing geometrically the same sphere as

S′ = − S√
s2
=− s√

s2
+ 1

2

(
2d + d2

√
s2

)
e∞ − e0√

s2
. (11)
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Since the ratio of the 3D vector s and its length
√

s2 correspond to the negative
normal vector n (see the construction in Fig. 2),

lim
s2→∞

− S√
s2
= n+ lim

s2→∞
1

2

(
2d + d2

√
s2

)
e∞ − lim

s2→∞
e0√
s2

. (12)

This is equivalent to

lim
s2→∞

− S√
s2
= n+ de∞, (13)

which is a representation of a plane with normal vector n and distance d to the
origin.

4.2 Distances Based on the Inner Product

Points, planes, and spheres are represented as vectors (as listed in Table 1). We
will see that the inner products of these vectors describe distances between these
geometric objects. The inner product between a vector P and a vector S is defined
by

P · S = (p+ p4e∞ + p5eo) · (s+ s4e∞ + s5eo). (14)

This corresponds to

P · S = p · s+ s4 p · e∞︸ ︷︷ ︸
0

+ s5 p · eo︸ ︷︷ ︸
0

+ p4 e∞ · s︸ ︷︷ ︸
0

+ p4s4 e2∞︸︷︷︸
0

+ p4s5 e∞ · eo︸ ︷︷ ︸
−1

+ p5 eo · s︸︷︷︸
0

+ p5s4 eo · e∞︸ ︷︷ ︸
−1

+ p5s5 e2
o︸︷︷︸
0

and, based on the rules of conformal geometric algebra, to

P · S = p · s− p5s4 − p4s5 (15)

or

P · S = p1s1 + p2s2 + p3s3 − p5s4 − p4s5. (16)

4.2.1 Distances Between Points

In the case of P and S being points, we get

p4 = 1

2
p2, p5 = 1,
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s4 = 1

2
s2, s5 = 1.

The inner product of these points is according to (15)

P · S = p · s− 1

2
s2 − 1

2
p2

= p1s1 + p2s2 + p3s3 − 1

2

(
s2

1 + s2
2 + s2

3

)− 1

2

(
p2

1 + p2
2 + p2

3

)

= −1

2

(
s2

1 + s2
2 + s2

3 + p2
1 + p2

2 + p2
3 − 2p1s1 − 2p2s2 − 2p3s3

)

= −1

2

(
(s1 − p1)

2 + (s2 − p2)
2 + (s3 − p3)

2)

= −1

2
(s− p)2.

We recognize that the square of the Euclidean distance of the inhomogenous points
corresponds to the inner product of the homogenous points multiplied by −2:

(s− p)2 =−2(P · S). (17)

4.2.2 Distance Between Points and Planes

For a vector P representing a point, we get

p4 = 1

2
p2, p5 = 1.

For a vector S representing a plane with normal vector n and distance d , we get

s= n, s4 = d, s5 = 0.

The inner product of point and plane is according to (15)

P · S = p · n− d, (18)

representing the Euclidean distance of a point and a plane.

4.2.3 Distance Between Point and Sphere

We will see now that the inner product of a point and a sphere can be used as a
measure of distance between a point and a sphere even if it does not correspond to
the minimal Euclidean distance between them.
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Fig. 3 The inner product of point and sphere [20], the bold segments describe the square root of
the inner product depending on (a) (s− p)2 = r2 − 2(P · S), the point p lies outside of the sphere;
(b) r2 = 2(P · S)+ (s− p)2, the point p lies inside of the sphere

For a vector P representing a point, we get

p4 = 1

2
p2, p5 = 1.

For a vector S representing a sphere, we get

s4 = 1

2

(
s2

1 + s2
2 + s2

3 − r2), s5 = 1.

The inner product of point and sphere is according to (15)

P · S = p · s− 1

2

(
s2 − r2)− 1

2
p2

= p · s− 1

2
s2 + 1

2
r2 − 1

2
p2

= 1

2
r2 − 1

2

(
s2 − 2p · s− p2)

= 1

2
r2 − 1

2
(s− p)2.

Finally, we get

2(P · S)= r2 − (s− p)2. (19)

Twice the inner product P · S equals to the square of the radius minus the square
of the distance between the point p and the center point s of the sphere. Figure 3
describes this relation geometrically. Equation (19) can be rearranged to

(s− p)2 = r2 − 2(P · S) (20)

describing the relations of the right angle triangle in case (a) with the point p being
outside of the sphere, while the equation

r2 = 2(P · S)+ (s− p)2 (21)
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describes the relations of the right angle triangle in case (b) with the point p being
inside of the sphere.

Please notice that, based on these observations, we can see that

P · S > 0: p is inside of the sphere
P · S = 0: p is on the sphere
P · S < 0: p is outside of the sphere

4.3 Approximation of Points with the Help of Planes or Spheres

In this section, a point set pi ∈ R
3, i ∈ {1, . . . , n}, will be approximated with the

help of the best fitting plane or sphere. Please find also an approach for the fitting of
circles into point sets in [40].

Plane and sphere in conformal space are vectors of the form

S = s1e1 + s2e2 + s3e3 + s4e∞ + s5e0, (22)

while the points are specific vectors of the form

Pi = pi + 1

2
p2
i e∞ + e0. (23)

In order to solve the approximation problem, we

• Use the distance measure of the previous section between point and sphere/plane
with the help of the inner product.
• Make a least squares approach to minimize the squares of the distances between

the points and the sphere/plane.
• Solve the resulting eigenvalue problem.

4.3.1 Distance Measure

From Sect. 4.2.3 we already know that a distance measure between a point Pi and
the sphere/plane S can be defined with the help of their inner product

Pi · S =
(

pi + 1

2
p2
i e∞ + e0

)
· (s+ s4e∞ + s5e0). (24)

According to (15), this results in

Pi · S = pi · s− s4 − 1

2
s5p2

i ,

or equivalently

Pi · S =
5∑

j=1

wi,j sj (25)
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with

wi,k =
⎧
⎨

⎩

pi,k, k ∈ {1,2,3},
−1, k = 4,
− 1

2 p2
i , k = 5.

4.3.2 Least Squares Approach

In the least-squares sense we consider the minimum of the sum of the squares of the
distances (in terms of the inner product) between all the points and the plane/sphere

min
n∑

i=1

(Pi · S)2. (26)

In order to obtain the minimum, this can be rewritten in bilinear form to

min
(
sT Bs

)
(27)

with

sT = (s1, s2, s3, s4, s5)

and the 5× 5 matrix

B =

⎛

⎜⎜⎜
⎝

b1,1 b1,2 b1,3 b1,4 b1,5
b2,1 b2,2 b2,3 b2,4 b2,5
b3,1 b3,2 b3,3 b3,4 b3,5
b4,1 b4,2 b4,3 b4,4 b4,5
b5,1 b5,2 b5,3 b5,4 b5,5

⎞

⎟⎟⎟
⎠

with entries

bj,k =
n∑

i=1

wi,jwi,k.

The matrix B is symmetric since bj,k = bk,j . We consider only normalized results
sT s = 1. A conventional approach to such a constrained optimization problem is
introducing

L = sT Bs − 0= sT Bs − λ
(
sT s − 1

)
,

sT s = 1,

BT = B.

Necessary conditions for a minimum are

0 = ∇L= 2 · (Bs − λs)= 0

→ Bs = λs.
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Fig. 4 The inner product of point and sphere, on one hand, describes already the square of a
distance but, on the other hand, has to be squared again in the least squares sense since the inner
product can be positive or negative depending on (a) the point p lies outside of the sphere and
(b) the point p lies inside of the sphere

Fig. 5 The constraint sT s = 1 leads implicitly to a scaling of the distance measure in order that it
gets smaller with increasing radius, leading to a plane as a sphere with infinite radius

The solution of the minimization problem is given as the eigenvector of B that
corresponds to the smallest eigenvalue.

Figures 4 and 5 discuss two properties of the distance measure of this approach
dealing with the double squaring of the distance and with the limit process of the
distance in the case of a plane as a sphere with infinite radius.

4.3.3 Example

Three distinct (not colinear) points are needed to describe a plane, while four distinct
(not coplanar) points exactly describe a sphere. In this example we use five points
in order to demonstrate that our approach is really able to fit the best fitting objects,
whether it is a sphere or a plane. First, let us have a look on an example with the
following five points with four of them being coplanar (see Table 2).
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Table 2 Fitting test case
with 5 *not* coplanar points Point x y z

p1 1 0 0

p2 1 1 0

p3 0 0 1

p4 0 1 1

p5 −1 0 1

Table 3 Fitting test case
with 5 coplanar points Point x y z

p1 1 0 0

p2 1 1 0

p3 0 0 1

p4 0 1 1

p5 −1 0 2

Fig. 6 Fitting a sphere into a
set of 5 points

The least squares calculation results in

S = −0.301511e1 + 0.301511e2 − 0.301511e3

− 0.603023e∞ + 0.603023e0.

Another scaled representation describing the same object is

S =−1

2
e1 + 1

2
e2 − 1

2
e3 − e∞ + e0.

This corresponds to a sphere with the center point s = (0.5,0.5,−0.5) and the
square of radius r2 = 2.75 (see Fig. 6). Let us now change the fifth point in order
that all the points are within one plane (see Table 3). Now, the result is

S = 0.57735e1 + 0.57735e3 + 0.57735e∞,

representing a plane according to Fig. 7.
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Fig. 7 Fitting a plane into a
set of 5 points

5 Computational Efficiency of Geometric Algebra using Gaalop

Since many of the applications depend on an appropriate calculation platform for
geometric algebra, it is worth investigating one approach in some detail. Gaalop
[28, 30] uses a two-stage approach for the automatic optimization of geometric al-
gebra algorithms. In a first step they optimize geometric algebra algorithms with the
help of symbolic computing. This kind of optimization results in very basic algo-
rithms leading to high efficient software implementations. These algorithms foster
a high degree of parallelization and are then used for hardware optimizations in a
second step.

They investigated performance issues with an inverse kinematics algorithm.
Naively implemented, the first algorithm was slower than the conventional one.
However, with the symbolic computation optimization approach the software im-
plementation became three times faster [29] and with a hardware implementation
about 300 times faster [30] (3 times by software optimization and 100 times by
additional hardware optimization) than the conventional software implementation.
This result served as a proof-of-concept for Gaalop [28].

Figure 8 shows an overview over the architecture of Gaalop. Its input is a ge-
ometric algebra algorithm written in CLUCalc (see [39]). Via symbolic simplifi-
cation it is transformed into a generic intermediate representation (IR) that can be
used for the generation of different output formats. Gaalop supports sequential plat-
forms with the automatic generation of C and JAVA code, while its main focus is
on supporting parallel platforms like reconfigurable hardware and modern acceler-
ating GPUs. FPGAs (field programmable gate arrays) are currently supported as a
structural hardware description, written in the Verilog language. Thanks to the lower
prices of powerful GPUs, for instance, based on the CUDA technology [36] from
NVIDIA or on the future Larrabee technology of INTEL, one can expect impressive
results using the powerful language of geometric algebra.

One focus of Gaalop will lie on mixed solutions handling reasonable combina-
tions of software and hardware implementations.
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Fig. 8 Architecture of
Gaalop

6 Conclusion

In this paper, we observed some properties of geometric algebra that have already
proven helpful in computer graphics engineering applications. With these proper-
ties, together with the potential of being the base for highly efficient implementa-
tions using tools like Gaalop, we are convinced that geometric algebra will become
more and more fruitful in a great variety of computational engineering applications.
As a consequence, it is worth noting the benefits for students, researchers, and prac-
titioners with geometric algebra. From the educational point of view, students do not
have to learn the different mathematical systems and the translations between them,
rather they learn one global mathematical system. Researchers gain new insights
into their research area using geometric algebra. Practitioners in the field of compu-
tational engineering benefit from the easy development, testing, and maintenance of
algorithms based on geometric algebra.
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Parameterization of 3D Conformal
Transformations in Conformal Geometric
Algebra

Hongbo Li

Abstract Conformal geometric algebra is a powerful mathematical language for
describing and manipulating geometric configurations and their conformal trans-
formations. By providing a 5D algebraic representation of 3D geometric config-
urations, conformal geometric algebra proves to be very helpful in pose estima-
tion, motion design, and neuron-based machine learning (Bayro-Corrochano et al.,
J. Math. Imaging Vis. 24(1):55–81, 2006; Dorst et al., Geometric Algebra for Com-
puter Science, Morgan Kaufmann, San Mateo, 2007; Hildenbrand, Comput. Graph.
29(5):795–803, 2005; Lasenby, Computer Algebra and Geometric Algebra with Ap-
plications, LNCS, vol. 3519, pp. 298–328, Springer, Berlin, 2005; Li et al., Geo-
metric Computing with Clifford Algebras, pp. 27–60, Springer, Heidelberg, 2001;
Mourrain and Stolfi, Invariant Methods in Discrete and Computational Geometry,
pp. 107–139, Reidel, Dordrecht, 1995; Rosenhahn and Sommer, J. Math. Imaging
Vis. 22:27–70, 2005; Sommer et al., Computer Algebra and Geometric Algebra with
Applications, pp. 278–297, Springer, Berlin, 2005). In this chapter, we present some
theoretical results on conformal geometric algebra which should prove to be useful
in computer applications. The focus is on parameterizing 3D conformal transfor-
mations with either quaternionic Vahlen matrices or polynomial Cayley transform
from the Lie algebra to the Lie group of conformal transformations in space.

1 Terminology and Notations

By embedding Euclidean space R
n into the set of null vectors in R

n+1,1 in a nonlin-
ear manner, we get the conformal model of nD Euclidean geometry [2, 5, 6, 11]. In
the Minkowski space R

n+1,1, a nonzero vector is said to be null if its inner product
with itself is zero and is said to be positive if so is the inner product.
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A point in R
n is represented by a null vector in R

n+1,1, and the representation
is unique up to scale. There is a unique-up-to-scale null vector e ∈ R

n+1,1 in the
conformal model that does not represent any point in R

n. We say that it represents
the conformal point at infinity. A sphere or hyperplane in R

n is represented by a
positive vector in R

n+1,1, and the representation is unique up to scale. A positive
vector represents a hyperplane if and only if its inner product with e equals zero.

The Grassmann–Cayley algebra [19] over R
n+1,1, when equipped with the nD

Euclidean geometric interpretations of the algebraic elements in this algebra, is
called the conformal Grassmann–Cayley algebra of the nD space. The Clifford al-
gebra over R

n+1,1, when equipped with the nD conformal transformation interpre-
tations of the algebraic elements in this algebra, is called the conformal Clifford
algebra of the nD space. Conformal geometric algebra is an integration of con-
formal Grassmann–Cayley algebra and conformal Clifford algebra [9], the former
representing geometric configurations, and the latter representing geometric trans-
formations.

Terminology and notation:

1. Tensor product, denoted by “⊗”.
2. Outer product, denoted by “∧”.
3. Inner product, denoted by “·”.
4. Meet product, denoted by “∨”.
5. Geometric product, denoted by juxtaposition of participating elements. The ge-

ometric product of r identical elements A is denoted by Ar .
6. Multivector: any element in a Grassmann algebra (or Clifford algebra).
7. Exponential of a multivector A: exp(A)= eA = 1+A+A2/2! +A3/3! + · · · .
8. Inverse of a multivector A, denoted by A−1.
9. Blade: a multivector which equals the outer product of several vectors.

10. Grade: the number of vector components in an outer product decomposition of
a blade. A blade of grade r is called an r-blade.

11. Homogeneous multivector: a linear combination of blades of the same grade.
The grade of a homogeneous multivector is that of any of the blade component.
A homogeneous multivector of grade r is called an r-vector. A 2-vector is also
called a bivector.

12. r-graded part of a multivector, denoted by “〈 〉r”.
13. Scalar part of a multivector: the 0-graded part, denoted by “〈 〉”.
14. Even (or odd) multivector: a linear combination of homogeneous multivectors

of even grades (or odd grades).
15. Even-graded part (or odd-graded part) of a multivector, denoted by “〈 〉+” (or

“〈 〉−”).
16. Versor: the geometric product of several invertible vectors.
17. Rotor: the geometric product of an even number of invertible vectors.
18. Positive vector: a vector whose inner product with itself is positive.
19. Positive versor: the geometric product of several positive vectors.
20. Positive rotor: the geometric product of an even number of positive vectors.
21. Grassmann algebra over V n, denoted by Λ(V n).
22. Clifford algebra over V n, denoted by C�(V n).
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23. Grassmann algebra or Clifford algebra generated by a blade In and denoted
by Λ(In) (or C�(In)). The base vector space V n of the Grassmann algebra (or
Clifford algebra) is composed of all vectors whose outer product with In equals
zero.

24. Even Clifford subalgebra of C�(V n), composed of all even multivectors, de-
noted by C�+(V n).

25. Odd vector subspace of C�(V n), composed of all odd multivectors, denoted by
C�−(V n).

26. Magnitude of a multivector: denoted by “| |”. The magnitude of a scalar is its
absolute value. The magnitude of A ∈ C�(V n) is |A| =∑n

i=0
√|〈A〉i · 〈A〉i |.

27. Pseudoscalar: a blade of grade n in Λ(V n) or C�(V n).
28. Dual operator in a nondegenerate Clifford algebra, denoted by “∼”. Fixing a

pseudoscalar In of unit magnitude, for any multivector A, A∼ =AI−1
n .

29. Reversion operator in a Clifford algebra, denoted by “†”. For vectors a1,a2, . . . ,

ar , (a1a2 · · ·ar )
† = ar · · ·a2a1.

30. Grade involution in a Clifford algebra: denoted by overhat. For multivector A,
Â= 〈A〉+ − 〈A〉−.

31. Conjugate operator in a Clifford algebra: the composition of reversion and
grade involution, denoted by overbar. For multivector A, A= 〈A†〉+ − 〈A†〉−.

32. Spin group over V n, denoted by Spin(V n). It is composed of all rotors in
C�(V n) of unit magnitude together with the geometric product.

Example 1 In conformal Grassmann–Cayley algebra C�(R4,1), a circle passing
through three points 1,2,3 in the space is represented by 3-blade 1 ∧ 2∧ 3, where
1,2,3 are null vectors of R

4,1 representing points in R
3. The blade is Minkowski, so

its dual (1∧ 2∧ 3)∼ is a positive vector. Alternatively, the circle can be represented
by a positive vector.

The set N of all null vectors in R
n+1,1 has two connected components. In partic-

ular, null vectors±a are always in different connected components, as 0 is not a null
vector. An orthogonal transformation in R

n+1,1 keeping each component of N in-
variant is called a positive orthogonal transformation. All such transformations form
a subgroup O+(n+ 1,1) of O(n+ 1,1), called the positive orthogonal group. The
orientation-preserving orthogonal transformations of R

n+1,1 form another subgroup
SO(n+ 1,1) of O(n+ 1,1), called the special orthogonal group. The intersection
of the two subgroups, denoted by SO+(n+1,1), is called the Lorentz group, and its
elements are called Lorentz transformations. Lorentz transformations are the linear
isometries of R

n+1,1 connected with the identity transformation IRn+1,1 .
In conformal Clifford algebra C�(Rn+1,1), any positive rotor U induces a unique

Lorentz transformation in R
n+1,1 via the following adjoint action:

AdU(x)=UxU−1 for all x ∈R
n+1,1. (1)

Conversely, any Lorentz transformation in R
n+1,1 is induced by a positive rotor that

is unique up to scale.
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In the conformal model, any Lorentz transformation in R
n+1,1 induces a unique

orientation-preserving conformal transformation in R
n, and the converse is also true.

Hence, any orientation-preserving conformal transformation in R
n is induced by a

positive rotor in C�(Rn+1,1) that is unique up to scale.

2 Exponential Map and Exterior Exponential Map

By a classical theorem of Riesz [14], any linear isometry of R
n+1,1 connected with

the identity is induced by a rotor of the exponential form. The group of rotors in
C�(Rn+1,1) differs from Spin(Rn+1,1) by a factor R− {0}. Since the Lie algebra of
the spin group is all bivectors in Λ(Rn+1,1), any rotor connected with the identity
can be expressed up to scale as the exponential eB2 of a bivector B2 ∈Λ(V n). As a
corollary, any positive rotor in C�(Rn+1,1) is in the range of the exponential map.

Example 2 The Lie algebra representation of 3D rigid body motions via the expo-
nential map.

Any rigid body motion in the space can be decomposed into a rotation followed
by a translation. It can also be decomposed into a translation followed by a rota-
tion. The decomposition is not unique without fixing the axis of rotation, which is
a straight line in the space. However, there is a unique decomposition, in which the
axis of rotation follows exactly the direction of translation. This is the screw motion,
and the unique decomposition theorem is known as Chasles’ Theorem.

In the conformal model of 3D Euclidean geometry, let e1, e2, e3 be an orthonor-
mal basis of R

3, and let e0, e be the pair of null vectors orthogonal to R
3 in R

4,1

and such that e0 · e=−1. The basis (e, e0, e1, e2, e3) is called a Witt basis of R
4,1.

The vector e0 represents the origin of R
3 in the conformal model, while the vector

e represents the conformal point at infinity.
In conformal geometric algebra C�(R4,1), the Lie algebra of the spin group of

rigid body motions is Λ2(e∼), which is the bivector subspace of the Grassmann
algebra generated by the vectors in R

4,1 that are orthogonal to e.
The vector space Λ2(e∼) has an orthonormal basis e1e2, e2e3, e1e3, ee1, ee2, ee3.

Any nonzero element in Λ2(e∼) can be written as

B2 = I2θ + et
2

, (2)

where 2-blade I2 ∈Λ(R3) is of unit magnitude, θ ∈R, and t ∈R
3.

If θ = 0, then eB2 induces the translation by the vector t. If θ �= 0, then

eB2 = e−e(t·I2)/(2θ)eI2θ/2ee(t·I2)/(2θ)e
eP⊥I2

(t)/2

= cos
θ

2
+ I2 sin

θ

2
+ 1

θ
ePI2(t) sin

θ

2
+ 1

2
eP⊥I2

(t) cos
θ

2

+ 1

2
eP⊥I2

(t)I2 sin
θ

2
, (3)
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where

PI2(t)= (t · I2)I
−1
2 ,

P⊥I2
(t)= t− PI2(t).

(4)

Equation (3) induces a screw motion with the vector of translation P⊥I2
(t), the axis

of rotation passing through the point −t · I2/θ ∈R
3, and the angle of rotation −θ .

In parameterizing 3D conformal transformations, the 10D vector space Λ2(R4,1)

provides an ideal parametric space for the group of 3D conformal transformations.
Since the exponential map from Λ2(R4,1) to the group of positive rotors is surjec-
tive, any orientation-preserving 3D conformal transformation can be parameterized
via the exponential map, although the parameterization is not unique.

The problem of parameterizing with the exponential map lies in evaluating the
map and computing its inverse. While the map can be evaluated when restricted
to some vector subspaces such as Λ2(e∼), the evaluation for the general case is
still not available. Even when the evaluation exists, in many cases such as (3), it is
computationally expensive because the map is transcendental instead of algebraic.
Furthermore, the exponential map is not an isometry, and its tangent map preserves
volume only at the origin of the Lie algebra taken as a vector space. The exponential
map has infinitely many inverses in general.

The first alternative of exponential map is the following exterior exponential map:

Definition 1 Let V n be a vector space over a field K. The exterior exponential is
the following map from Λ2(V n) to Λ(V n):

e∧B2 = 1+B2 + B2 ∧B2

2! + · · · +
r

︷ ︸︸ ︷
B2 ∧B2 ∧ · · · ∧B2

r! , (5)

where r is the greatest integer such that

r
︷ ︸︸ ︷
B2 ∧B2 ∧ · · · ∧B2 �= 0.

The exterior exponential has two obvious properties: first, the scalar part of e∧B2

is 1; second, the mapping is injective because the bivector part of e∧B2 is B2.
Since any bivector has a completely orthogonal decomposition, i.e., for a bivector

B2, there exist vectors a1,b1,a2,b2, . . . ,ar ,br such that

B2 = λ1a1 ∧ b1 + λ2a2 ∧ b2 + · · · + λrar ∧ br , (6)

where ai · bj = 0 for any 1 ≤ i, j ≤ r , and ai · ak = bi · bk = 0 for any i �= k, we
have

e∧B2 = (1+ λ1a1 ∧ b1)(1+ λ2a2 ∧ b2) · · · (1+ λrar ∧ br ).

So e∧B2 is invertible if and only if each λiai ∧ bi is not a Minkowski blade of unit
magnitude. When V n is Minkowski or Euclidean, then if e∧B2 is invertible, it must



76 H. Li

be a rotor connected with the identity, because so is each 1+λiai ∧bi ; furthermore,

(
e∧B2

)−1 = e∧(−B2)

e∧B2e∧(−B2)
. (7)

Below we assume that B2 is in the form of (6) and e∧B2 is invertible, and analyze
the range of the exterior exponential by restricting it to the conformal model R

4,1 of
3D geometry.

If B2 is a nonzero blade, then e∧B2 = 1+ λ1a1 ∧ b1. When λ1 varies, the range
of e∧B2 modulo scale contains all rotors in Λ(a1 ∧ b1) whose 0-graded part and
2-graded part are both nonzero.

If B2 is not a blade, then

e∧B2 = 1+ λ1a1 ∧ b1 + λ2a2 ∧ b2 + λ1λ2a1 ∧ b1 ∧ a2 ∧ b2, (8)

whose 0-graded part and 4-graded part are both nonzero. The range of e∧B2 modulo
scale is all rotors whose 0-graded part and 4-graded part are both nonzero.

Proposition 1 When the range of the exterior exponential is restricted to rotors in
C�(R4,1), the domain of definition is all bivectors in Λ(R4,1) satisfying

(B2 ∧B2)
2 �= 4(B2 ·B2 − 1) (9)

and is a set R
10 − V 9, where V 9 is a 9D algebraic variety in R

10. The image space
modulo scale is all rotors whose scalar parts are nonzero; topologically, it is the
remainder of the positive orthogonal group O+(4,1), which is a 10D Lie group
with two connected components, after removal of a 9D closed subset.

Proof By

e∧B2 = 1+B2 + B2 ∧B2

2
, (10)

we get e∧B2e∧(−B2) = 1−B2 ·B2 + (B2 ∧B2)
2/4, and (9) follows. �

Similar to the exponential map, the exterior exponential provides half-scaled
bivector representations for rotations, translations, and dilations.

Given a rotor A in the image space of the exterior exponential, let B2 be a bivector
whose exterior exponential equals A up to scale. Then

1+B2 + B2 ∧B2

2
= A
〈A〉 , (11)

so

B2 = 〈A〉2〈A〉 . (12)
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Example 3 Let eI2
θ
2 be a rotor inducing the rotation in space with axis I∼2 and angle

−θ �= π mod 2π . Then up to scale,

eI2
θ
2 = e∧I2 tan( θ2 ). (13)

Let e
1
2 et = 1+ et/2 be a rotor inducing the translation by a vector t. Then

e
1
2 et = e∧

1
2 et. (14)

Let e
θ
2 I2 be a rotor inducing the dilation of scale e−θ centering at point I2 (affine

representation, cf. [9]). Then up to scale,

eI2
θ
2 = e∧I2 tanh( θ2 ). (15)

Let I2e
θ
2 I2 be a rotor inducing a dilation of scale −e−θ �= −1. Then up to scale,

I2e
I2

θ
2 = e∧I2 ctanh( θ2 ). (16)

On one hand, the exterior exponential is an injective quadratic map, which is
superior to the exponential map algebraically. On the other hand, the exterior expo-
nential has two severe drawbacks: first, the domain of definition is decomposed into
several disconnected regions, which blocks the construction of large-scope bivec-
tor parameters in the design of continuous conformal transformations; second, the
image space is also decomposed into several disconnected regions, making it im-
possible to represent rotors of large-scale continuous conformal transformations.

3 Twisted Vahlen Matrices and Quaternionic Vahlen Matrices

Recall that in complex analysis, any 2D conformal transformation can be repre-
sented by a fractional linear map from the Riemann sphere to itself, the sphere being
the complex plane plus the complex point at infinity. In Clifford analysis, there is
a similar representation for any nD conformal transformation. This is the so-called
Vahlen matrix representation [1, 11, 12, 16].

In this section, we introduce the classical work of Vahlen (1902) on representing
nD conformal transformations projectively by 2 × 2 matrices whose components
are in C�(Rn), by means of introducing two alternatives of Vahlen’s matrix repre-
sentation:

• Twisted Vahlen matrices: the product of two 2× 2 matrices of multivector com-
ponents is no longer the usual matrix product, but a “twisted” one. The twisted
matrix product is exactly the geometric product in the conformal geometric alge-
bra C�(Rn+1,1).
• Quaternionic Vahlen matrices: When n = 3, any twisted Vahlen matrix can be

written as a 2× 2 quaternionic matrix, and projectively, any 3D conformal trans-
formation can be represented by such a quaternionic matrix. The composition of
3D conformal transformations is just the usual matrix product.
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For 3D conformal transformations, twisted Vahlen matrices, Vahlen matrices,
and quaternionic Vahlen matrices provide three equivalent transcendental parame-
terizations in the Lie algebra Λ2(R4,1). The evaluation of each parameterization and
the computing of the inverse are both very easy.

With respect to the Witt basis (e, e0, e1, e2, . . . , en) of R
n+1,1, any vector has the

decomposition a+λe+μe0, where a ∈R
n is a linear combination of e1, e2, . . . , en.

By ee0e=−2e and e0ee0 =−2e0, any versor M= (a1 + λ1e+ μ1e0)(a2 + λ2e+
μ2e0) · · · (ar + λre+μre0), where ai ∈R

n and λi,μi ∈R, after multilinear expan-
sion, is changed into the following form:

M=−A
2

ee0 − B
2

e+Ce0 − D
2

e0e, (17)

where A,B,C,D ∈ C�(Rn). More generally, by means of linearity any multivector
M ∈ C�(Rn+1,1) has the unique decomposition (17).

Under the following correspondence of bases:

1=
(

1 0
0 1

)
, e=

(
0 −2
0 0

)
, e0 =

(
0 0
1 0

)
,

ee0 =
(−2 0

0 0

)
, e0e=

(
0 0
0 −2

)
, e∧ e0 =

(
1 0
0 1

)
,

(18)

(17) becomes

M=−A
2

ee0 − B
2

e+Ce0 − D
2

e0e=
(

A B
C D

)
. (19)

It is a classical result [11], which is also easy to verify, that (19) provides an al-
gebraic isomorphism between C�(Rn+1,1) and the following 2× 2 twisted Clifford
matrix algebra M̂2×2(C�(Rn)):

Definition 2 The 2× 2 twisted Clifford matrix algebra over R
n is the linear space

of 2 × 2 matrices whose components are in C�(Rn), equipped with the twisted
multiplication defined as follows: for any 2×2 matrices M1,M2 whose components
are in C�(Rn),

M1M2 =
(

A B
C D

)(
A′ B′
C′ D′

)
:=
(

AA′ +BĈ′ AB′ +BD̂′
CÂ′ +DC′ CB̂′ +DD′

)
. (20)

In each component on the right side of (20), the overhat (grade involution) is
always added to the element of the second matrix that is not in the same row with
the corresponding element of the first matrix multiplied with it. For example, in the
first component AA′ + BĈ′, A,A′ are each in the first row of the corresponding
matrix, while B,C′ are in different rows, so the overhat is added to C′.
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Let In be the unit pseudoscalar representing R
n with its positive orientation. The

following formulas can be easily derived from (19):

(
A B
C D

)†

=
(

D† B
C A†

)
,

̂
(

A B
C D

)
=
(

Â −B̂
−Ĉ D̂

)
,

(
A B
C D

)
=
(

D −B†

−C† A

)
,

(
A B
C D

)∼
=
(−AI−1

n BI−1
n

−CI−1
n DI−1

n

)
.

(21)

Under the correspondence (18), any vector a ∈R
n+1,1 corresponds to the follow-

ing matrix:
(

x α

β x

)
, (22)

where

x= P⊥e∧e0
(a),

α = 2a · e0,

β =−a · e.
(23)

In particular, the null vector e0+x+ex2/2, where x ∈R
n, corresponds to the matrix

(
x −x2

1 x

)
. (24)

Of particular interest are the matrices corresponding to versors in C�(Rn+1,1).
We first take a look at some examples. Let I2 ∈Λ2(Rn) and t ∈R

n.

• The rotor of rotation eθI2/2 corresponds to
(
eθI2/2 0

0 eθI2/2

)
.

• The rotor of dilation eθe∧e0/2 corresponds to
(
e−θ/2 0

0 eθ/2

)
.

• The rotor of dilation (e∧ e0)e
θe∧e0/2 corresponds to

(−e−θ/2 0
0 eθ/2

)
.

• The rotor of translation 1+ et/2 corresponds to
( 1 t

0 1

)
.

• The rotor of transversion 1− e0t corresponds to
( 1 0

t 1

)
.

Definition 3 A 2 × 2 matrix M = (A B
C D

)
over C�(Rn) is called a twisted Vahlen

matrix if

1. A,B,C,D are either versors or zero.
2. AB†,BD†,DC†,CA† are vectors.
3. Δ=AD† +BC† is a nonzero scalar.

In the above definition, Condition 1 guarantees B†A = A−1(AB†)A ∈ R
n if

AB† ∈ R
n. So in Condition 2, AB† can be replaced by any of BA†,B†A,A†B, and
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so for the other three elements in Condition 2. By Conditions 1 and 2,

(
A B
C D

)(
A B
C D

)†

=
(

AD† +BC† AB+BA
CD+DC CB† +DA†

)

=
(

AD† +BC† 0
0 (AD† +BC†)†

)
, (25)

so Condition 3 is equivalent to MM† being a nonzero scalar.

Theorem 1 In twisted Vahlen matrix M= (A B
C D

)
, when A �= 0, there exist λ ∈R−

{0} and b, c ∈R
n such that

M=A
(

1 b
c λ− cb

)
. (26)

When A= 0, there exist μ ∈R− {0} and d ∈R
n such that

M= B
(

0 1
μ d

)
. (27)

Proof (i) If A �= 0 and B �= 0, by denoting

A†B= b, A†C= c, B†D= d, A†A= λ−1, B†B= μ−1,

the matrix M can be written as
(

A B
C D

)
=A

(
1 λb
λc λμbd

)
,

where d satisfies

d= μ−1Δb−1 −μ−1bcb−1. (28)

By (28), λμbd= λΔ− λ2cb, so M can be written as

(
A B
C D

)
=A

(
1 λb
λc λΔ− λ2cb

)
.

(ii) If A �= 0 but B= 0, then M can be written as
(

A B
C D

)
=A

(
1 0
λc λΔ

)
,

which is a special case of (i) where b= 0.
(iii) If A= 0, then B �= 0, and M can be written as

(
A B
C D

)
= B

(
0 1

μΔ μd

)
. �
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Theorem 2 Any versor in C�(Rn+1,1) corresponds via (19) to a twisted Vahlen
matrix.

Proof Let M be a versor. When M is a vector, then it is of the form (22) and is a
twisted Vahlen matrix if and only if it is neither zero nor null. To prove the theorem
by induction, we need only prove that for any versor M and invertible vector M′,

MM′ =
(

A B
C D

)(
x α

β x

)
=
(

Ax+ βB αA−Bx
−Cx+ βD αC+Dx

)
(29)

is a twisted Vahlen matrix.
By (26) and (27), we only need to consider two cases:

(i) M=
(

1 λb
λc λΔ− λ2cb

)
, (ii) M=

(
0 1

μΔ μd

)
.

The corresponding matrix MM′ is respectively

(i)

(
x+ λβb α − λbx

λΔβ − λc(x+ λβb) λΔx+ λc(α − λbx)

)
,

(ii)

(
β −x

μ(βd−Δx) μ(Δα + dx)

)
,

and it can be easily verified that each matrix is a twisted Vahlen matrix. �

Theorem 3 (Twisted version of Vahlen’s Theorem) Any twisted Vahlen matrix M
generates the following conformal transformation in R

n:

x �−→M(x)= (Ax+B)
(
Ĉx+ D̂

)−1 ∀x ∈R
n. (30)

Conversely, any conformal transformation in R
n has such a twisted fractional linear

representation.

Proof In the conformal model, a point x ∈ R
n is represented by the null vector

e0 + x + ex2/2 whose twisted Vahlen matrix representation is (24). The graded
adjoint action of versor M on the null vector is, up to scale,

(
A B
C D

)(
x −x2

1 x

)(
A B
C D

)

=
(

AxD† +BD† + x2AC+BxC −AxB† −BB† − x2AA† −BxA†

−CxD+DD+ x2CC† −DxC† CxB−DB− x2CA+DxA

)

=
(

(Ax+B)(D† + xC) −(Ax+B)(B† + xA†)

−(Cx−D)(D− xC†) (Cx−D)(B− xA)

)
.
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So in R
n, M changes a vector x to the vector

− (Ax+B)(D† + xC)

(Cx−D)(D− xC†)
= −(Ax+B)

(
D† + xC

)
̂

(
D† + xC

)−1
(Cx−D)−1

= −(Ax+B)
(
Ĉx−D

)−1

= (Ax+B)
(
Ĉx+ D̂

)−1
. �

When C�(Rn) is represented by a matrix algebra, the twisted matrix multiplica-
tion is very inconvenient and needs to be revised to usual matrix multiplication. The
work was done by Vahlen in 1902.

Definition 4 The algebra of 2 × 2 Clifford matrices over C�(Rn), denoted by
M2×2(C�(Rn)), is the linear space of matrices of the form M = (A B

C D

)
, where

A,B,C,D ∈ C�(Rn), equipped with the usual matrix multiplication
(

A B
C D

)(
A′ B′
C′ D′

)
=
(

AA′ +BC′ AB′ +BD′
CA′ +DC′ CB′ +DD′

)
. (31)

Definition 5 2× 2 matrix M= (A B
C D

)
over C�(Rn) is called a Vahlen matrix if

1. A,B,C,D are either versors or zero.
2. AB†,BD†,DC†,CA† are vectors.
3. Δ=AD† −BC† is a nonzero scalar.

It is easy to verify that Condition 3 in the above definition is equivalent to matrix
M being invertible.

Under the following correspondence, any twisted Clifford matrix corresponds to
a unique Clifford matrix, and vice versa:

twisted Clifford matrix

(
A B
C D

)
←→ Clifford matrix

(
A B
Ĉ D̂

)
. (32)

The above correspondence is in fact an algebraic isomorphism. All the previous
results presented in the form of twisted Clifford matrices can be translated easily
into Clifford matrices. For example, the following is a translation of Theorem 3.

Theorem 4 (Vahlen’s Theorem) Any Vahlen matrix M generates the following con-
formal transformation in R

n:

x �−→M(x)= (Ax+B)(Cx+D)−1 ∀x ∈R
n; (33)

and any conformal transformation has such a fractional linear representation.

Consider the special case where n= 3. Any 3D conformal transformation is in-
duced by the adjoint action of a rotor in C�(R4,1), and the rotor is unique up to scale.
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A rotor in C�(R4,1) corresponds to a twisted Vahlen matrix M= (A B
C D

)
, where A,D

are even and B,C are odd. Such a matrix is called an even twisted Vahlen matrix.
Fix a Witt basis (e, e0, e1, e2, e3) of R

4,1. Under the well-known correspondence

i = e2 ∧ e3,

j = e1 ∧ e3,

k = e1 ∧ e2,

(34)

the algebra of quaternions Q is isomorphic to the even subalgebra C�+(R3). Any
nonzero element of C�+(R3) is a rotor, and by duality, any nonzero element of
C�−(R3) is an odd versor.

Definition 6 A 2×2 quaternionic matrix M= ( α β

γ δ

)
is called a quaternionic Vahlen

matrix if

1. αβ, βδ, δγ , γ α are all pure imaginary, or equivalently, 〈αβ〉 = 〈βδ〉 = 〈δγ 〉 =
〈γ α〉 = 0;

2. The determinant Δ= αδ + βγ �= 0 is real.

It can be easily proved that a quaternionic Vahlen matrix is invertible if and only
if its determinant is nonzero.

Theorem 5 The following correspondence, together with (34), provides an alge-
braic isomorphism between the group of even twisted Vahlen matrices and the group
of quaternionic Vahlen matrices:

M=
(

A B
C D

)
�−→

(
A BI−1

3
CI−1

3 D

)
. (35)

Proof First, in C�(I3), AB† being a vector is equivalent to A(BI−1
3 ) being a bivec-

tor. Second,

Δ=AD† +BC† =AD+ (BI−1
3

)(
CI−1

3

)† =AD+ (BI−1
3

)(
CI−1

3

)
.

Third, by usual matrix multiplication,
(

A BI−1
3

CI−1
3 D

)(
A′ B′I−1

3
C′I−1

3 D′
)
=
(

AA′ −BC (AB′ +BD)I−1
3

(CA′ +DC′)I−1
3 DD′ −CB′

)

=
(

AA′ +BĈ (AB′ +BD̂)I−1
3

(CÂ′ +DC′)I−1
3 DD′ +CB̂′

)
.

�

A point x ∈ R
3 is represented by the pure imaginary quaternion xI−1

3 under the
correspondence (34), or in the 2D right-linear quaternionic vector space Q

2 realizing
the 1D projective space QP

1, is represented by the vector (xI−1
3 1)T .
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The matrix multiplication of a quaternionic Vahlen matrix M= ( A BI−1
3

CI−1
3 D

)
with

(xI−1
3 1)T results in

(
A BI−1

3
CI−1

3 D

)(
xI−1

3
1

)
=
(
(Ax+B)I−1

3−Cx+D

)

=
(
(Ax+B)I−1

3

Ĉx+ D̂

)
. (36)

Combining the above result with (30), we get the following:

Theorem 6 (Vahlen’s Theorem in quaternionic form) Any quaternionic Vahlen ma-
trix M= ( α β

γ δ

)
generates the following 3D conformal transformation: for any pure

imaginary quaternion υ representing a point in space,

υ �−→M(υ)= (αυ + β)(γ υ + δ)−1; (37)

or equivalently, in QP
1 where the point is represented homogeneously by (υ : 1), the

conformal transformation is just the projectivity induced by the following invertible
right-linear transformation over Q:

(
υ

1

)
�−→

(
α β

γ δ

)(
υ

1

)
=
(
αυ + β

γυ + δ

)
. (38)

Conversely, any 3D conformal transformation has such a quaternionic fractional
linear representation.

Any bivector B2 ∈Λ2(R4,1) has the following decomposition:

B2 =A2 + b∧ e+ c∧ e0 + λe∧ e0, (39)

where A2 ∈Λ2(R3), λ ∈R, and b, c ∈R
3. The following map from the Lie algebra

Λ2(R4,1) to the group of quaternionic Vahlen matrices under the correspondence
(34) provides a transcendental parameterization of 3D conformal transformations,
called quaternionic Vahlen parameterization:

B2 =A2 + b∧ e+ c∧ e0 + λe∧ e0 �−→ eA2

(
1 bI−1

3
cI−1

3 λ− cb

)
if λ �= 0. (40)

The Jacobian of the above parameterization is that of the exponential map A2 �→
eA2 from Λ2(R3) to Spin(R3). It is always bounded. Those not in the range of the
parameterization are conformal transformations induced by twisted Vahlen matrices
of the form (27). The effect of such a transformation is

x ∈R
3 �−→ AdBI−1

3

(
(μx− d)−1) ∈R

3, (41)

which is the composition of the translation by vector −d/μ, the inversion with re-
spect to the sphere centering at the origin and of radius μ−1/2, and a rotation whose
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axis passes through the origin of R
3. The dimension of the conformal transforma-

tions outside the range of the parameterization is 7.
Collecting results from the above two paragraphs, we get the following:

Proposition 2 The domain of definition of quaternionic Vahlen parameterization is
a set R

10 −R
9 parameterized by (A2,b, c, λ) according to (39), where λ �= 0. The

image space is all 3D conformal transformations whose fractional linear represen-
tation (30) has the property that A= 0; it is the remainder of O+(4,1) after removal
of a 7D closed subset and is topologically S

3 × (R− {0})×R
6.

Compared with the exterior exponential, quaternionic Vahlen parameterization
has the drawback that it is transcendental, and generally there are infinitely many
inverses, but has the significant advantage that its domain of definition is simpler,
and its image space is larger.

Example 4 Let there be a rotation in the space with fixed axis I∼2 and angle of
rotation θ = θ(t), where t is the time variable, and the range of θ is an interval

of R. The parameterization of the motion by outer exponential is e∧I2 tan( θ(t)2 ) and is
invalid when θ(t)= π mod 2π .

In contrast, in the special case where the axis passes through the origin, the pa-

rameterization of the motion by quaternionic matrix is eI2
θ(t)

2
( 1 0

0 1

)
. In the general

case, let I∼2 represent the line passing through point p ∈ R
3 and following unit di-

rection n ∈R
3, i.e.,

I∼2 = e∧ (e0 + p)∧ n, (42)

then the parameterization of the motion by quaternionic matrix is
(

1 −pI−1
3

0 1

)
enI−1

3
θ(t)

2

(
1 pI−1

3
0 1

)

= enI−1
3

θ(t)
2

(
1 (p− e−nI−1

3
θ(t)

2 penI−1
3

θ(t)
2 )I−1

3
0 1

)
. (43)

It is valid for all θ(t) ∈R.

4 Cayley Transform

In application, rational polynomial functions are much simpler than exponentials
or trigonometric functions. For the special orthogonal group SO(p, q), whose Lie
algebra so(p, q) is the set of antisymmetric linear transformations in R

p,q , besides
the exponential map, there is also a classical rational polynomial map from the Lie
algebra to the Lie group, called Cayley transform [11]:

so(p, q)−→ SO(p, q),

g �−→ (IRp,q + g)(IRp,q − g)−1, where IRp,q − g is invertible.
(44)
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The map is injective but generally not surjective.
In the conformal model of 3D space, a natural idea is to consider simplifying the

exponential map from Λ2(R4,1) to the group of rotors by a fractional linear map
similar to (44). The following mapping C:

Λ2(
R

4,1)−→ C�
(
R

4,1),

B2 �−→ (1+B2)(1−B2)
−1, where 1−B2 is invertible,

(45)

is called the Cayley transform from Lie algebra Λ2(R4,1) to the group of rotors in
C�(R4,1).

The Cayley transform in terms of dual quaternions has been an important tool in
describing and manipulating 3D rigid-body motions [17]. In this section, we enlarge
the scope to 3D conformal transformations, explore the range and domain of defini-
tion of the Cayley transform, and present a degree-4 polynomial form of it, together
with several neat formulas for the inverse of Cayley transform.

By computing the inverse (1− B2)
−1, we get that for any B2 ∈ Λ2(R4,1) such

that B2
2 �= 1, the following equality holds up to scale:

C(B2)= (1+B2)
2(1−B2 ·B2 +B2 ∧B2). (46)

If C(B2) is required to be of unit magnitude, then

C(B2)= (1+B2)
2(1−B2 ·B2 +B2 ∧B2)

(1−B2 ·B2)2 − (B2 ∧B2)2
. (47)

Equation (46) can be used as an alternative definition of the Cayley transform.
From this aspect, the Cayley transform is just a polynomial of degree 4 in B2, with
values in the group of positive rotors of C�(R4,1); or equivalently, it is a rational
polynomial of degree 4, with values in Spin+(4,1).

Theorem 7 [9] The domain of definition of the Cayley transform C is all bivectors
except the Minkowski blades of unit magnitude and is a set R

10 − V 5, where V 5 is
a 5D algebraic variety in R

10. The image space of C modulo scale is all positive
rotors except those of the form a1a2a3a4, where the ai are pairwise orthogonal
positive vectors.

Geometrically, the image space modulo scale is composed of positive rotors gen-
erating all orientation-preserving conformal transformations except the antipodal
inversions, as shown in Fig. 1, each of which is the composition of an inversion with
respect to a sphere and the reflection with respect to the center of the sphere. Topo-
logically, the image space modulo scale is the remainder of the Lorentz group of
R

4,1, which is a 10D connected Lie group, after removal of a 4D open disk.

In the following, we present the “inverse” of the Cayley transform by finding all
the preimages of a rotor in its range. Given a positive rotor A such that A �= 1 up to
scale, let B2 be a bivector whose Cayley transform equals A up to scale.
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Fig. 1 Antipodal inversion: composition of a reflection with respect to a point and an inversion
centering at the same point

A bivector is said to be entangled, or coherent, if in its completely orthogonal
decomposition there are two components having equal square. It can be proved that
for a bivector 〈A〉2 ∈Λ2(R4,1) to be entangled, it is necessary and sufficient that

(〈A〉2 · 〈A〉2
)2 = (〈A〉2 ∧ 〈A〉2

)2
. (48)

Theorem 8 [9] A positive rotor A in the range of the Cayley transform has exactly
one bivector preimage if and only if either it is in Λ(C2), where C2 is a 2-blade of
degenerate signature, or its bivector part is entangled. The unique solution is

〈A〉2
〈A〉4 + 2〈A〉 + |〈A〉〈A〉4|/〈A〉 . (49)

Any other positive rotor A in the range of the Cayley transform has two bivector
preimages, and they are inverse to each other:

〈A〉2
〈A〉4 + 〈A〉 ± |A| . (50)

Example 5 In C�(R4,1), let A= eI2
θ
2 be a rotor inducing a 2D rotation, where I2 ∈

Λ(e∼) is a Euclidean 2-blade of unit magnitude such that I∼2 is the axis of rotation,
and −θ is the angle of rotation. Then

B2 = eI2
θ
2 − e−I2

θ
2

eI2
θ
2 + e−I2

θ
2 + 2

= I2 tan
θ

4
, B−1

2 =−I2/ tan
θ

4
, (51)

and both generate A by the Cayley transform.

While the bivector representation of a rotation via the exponential map is a
half-angle representation, the bivector representation via the Cayley transform is
a quarter-angle representation.

Example 6 In C�(R4,1), let A = 1+ et/2 be a rotor realizing a translation, where
t ∈ e∼ is a positive vector. Then

B2 = et
4

(52)
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generates A by the Cayley transform. So the Cayley transform provides a quarter-
distance bivector representation of the translation.

Example 7 Let A= e
θ
2 e∧a be a rotor realizing a dilation (or scaling), where θ ∈ R,

a is a null vector representing a point, and a · e=−1. Rotor A generates the dilation
centering at point a and with scale e−θ . Denote I2 = e∧ a. Then

B2 = eI2
θ
2 − e−I2

θ
2

eI2
θ
2 + e−I2

θ
2 + 2

= I2 tanh
θ

4
, B−1

2 = I2/ tanh
θ

4
, (53)

and both generate A by the Cayley transform. So the Cayley transform provides a
quarter-scale bivector representation of the dilation.

All orientation-preserving similarity transformations in R
3 can be induced by

bivectors in Λ2(R4,1) through the Cayley transform and adjoint action. A translation
is induced by the Cayley transform of a unique bivector. Any other orientation-
preserving similarity transformation is induced by the Cayley transform of exactly
two bivectors.

When choosing between the two bivector preimages B2 and B−1
2 of a rotor, since

|B2||B−1
2 | = 1, one of |B2| and |B−1

2 | is greater than or equal to 1. By (50),

∣
∣B2 −B−1

2

∣
∣= 2

|A|
|〈A〉2| ≥ 2. (54)

So for two rotors that are close to each other, we can always choose their bivector
preimages to be close to each other. If their magnitudes are greater than 1, we can
choose their inverses so that the magnitudes become smaller than 1.

Then what is the use of having two bivector preimages for the same rotor? Take,
as an example, the 2D rotation in Example 5. It is well known that SO(2) is a cir-
cle which has the following rational parameterization induced by the stereographic
projection from the north pole N :

eI2θ = cos θ + I2 sin θ = 2t

1− t2
+ I2

1+ t2

1− t2
, (55)

where, as shown in Fig. 2, t = tan(θ/2) is half the signed distance from the south
pole S to point X in the horizontal direction, and point eiθ in the complex plane is
represented by the intersection R of line NX with the unit circle.

Since the map θ �→ eI2θ is an isometric immersion, the Jacobian of the rational
parameterization (55) equals

dθ

dt
= 1
/( dt

dθ

)
= 2 cos2 θ

2
. (56)

When point R moves from the south pole S to point T , the Jacobian decreases from
2 to 1, while when point R continues to move from point T to the north pole N , the
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Fig. 2 Rational parametrization of a 2D rotation

Jacobian decreases from 1 to 0. The parameterization becomes practically useless
nearby the north pole.

The two preimages in (51) are both mapped to the rotor eI2θ/2 by the Cayley
transform. So the Cayley transform provides a generalization of the rational param-
eterization of a circle taken as the 2D rotation group. In fact, it serves as two rational
parameterizations of the circle derived from two different stereographic projections:
one from the north pole, and the other from the south pole.

Since the two maps

θ �→ I2 tan
θ

4
and θ �→ −I2 ctan

θ

4
(57)

have Jacobians 1/(4 cos2(θ/4)) and 1/(4 sin2(θ/4)), respectively, the maps

t = tan
θ

4

Cayley�−→ eI2θ/2,

t =−ctan
θ

4

Cayley�−→ eI2θ/2,

(58)

have Jacobians J1 = 2 cos2 θ
4 and J2 = 2 sin2 θ

4 , respectively.

• When (4k − 1)π ≤ θ ≤ (4k + 1)π , then 1≤ J1 ≤ 2 and 0≤ J2 ≤ 1.
• When (4k + 1)π ≤ θ ≤ (4k + 3)π , then 1≤ J2 ≤ 2 and 0≤ J1 ≤ 1.

Hence the two maps in (58) cover different zones of the parameter θ ∈R for the Ja-
cobians to be effective between 1 and 2. They serve as two different local coordinate
charts whose union covers the whole Lie group.

The Cayley transform as a polynomial map of degree 4 is computationally su-
perior; its inverse map has two branches and involves only one square-root com-
puting. Its domain of definition and its image space, when restricted to orientation-
preserving conformal transformations, are both larger than those of exterior differ-
ential and quaternionic Vahlen parameterization. Thus the Cayley transform and its
inverse are an ideal tool for motion planning, interpolating, and fitting in the Lie
algebra of 3D conformal transformations.
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5 Conclusion

This chapter explores the issue of parameterizing 3D conformal transformations.
Two new results are presented, one on quaternionic Vahlen parameterization, the
other on the polynomial 3D Cayley transform. They provide compact representa-
tions of 3D conformal transformations and should prove to be useful in geometric
applications.
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Part II
Clifford Fourier Transform



Two-Dimensional Clifford Windowed Fourier
Transform

Mawardi Bahri, Eckhard M.S. Hitzer,
and Sriwulan Adji

Abstract Recently several generalizations to higher dimension of the classical
Fourier transform (FT) using Clifford geometric algebra have been introduced, in-
cluding the two-dimensional (2D) Clifford–Fourier transform (CFT). Based on the
2D CFT, we establish the two-dimensional Clifford windowed Fourier transform
(CWFT). Using the spectral representation of the CFT, we derive several important
properties such as shift, modulation, a reproducing kernel, isometry, and an orthog-
onality relation. Finally, we discuss examples of the CWFT and compare the CFT
and CWFT.

1 Introduction

One of the basic problems encountered in signal representations using the conven-
tional Fourier transform (FT) is the ineffectiveness of the Fourier kernel to represent
and compute location information. One method to overcome such a problem is the
windowed Fourier transform (WFT). Recently, some authors [4, 7] have extensively
studied the WFT and its properties from a mathematical point of view. In [6, 8] they
applied the WFT as a tool of spatial-frequency analysis which is able to characterize
the local frequency at any location in a fringe pattern.

On the other hand, Clifford geometric algebra leads to the consequent generaliza-
tion of real and harmonic analysis to higher dimensions. Clifford algebra accurately
treats geometric entities depending on their dimension as scalars, vectors, bivec-
tors (oriented plane area elements), and trivectors (oriented volume elements), etc.
Motivated by the above facts, we generalize the WFT in the framework of Clifford
geometric algebra.

In the present paper we study the two-dimensional Clifford windowed Fourier
transform (CWFT). A complementary motivation for studying this topic comes from
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the understanding that the 2D CWFT is in fact intimately related with Clifford–
Gabor filters [1] and quaternionic Gabor filters [2, 3]. This generalization also en-
ables us to establish the two-dimensional Clifford–Gabor filters.

2 Real Clifford Algebra G2

Let us consider an orthonormal vector basis {e1, e2} of the real 2D Euclidean vector
space R

2 =R
2,0. The geometric algebra over R

2 denoted by G2 then has the graded
four-dimensional basis

{1, e1, e2, e12}, (1)

where 1 is the real scalar identity element (grade 0), e1, e2 ∈ R
2 are vectors

(grade 1), and e12 = e1e2 = i2 defines the unit oriented pseudoscalar1 (grade 2),
i.e., the highest grade blade element in G2.

The associative geometric multiplication of the basis vectors obeys the following
basic rules:

e2
1 = e2

2 = 1, e1e2 =−e2e1. (2)

The general elements of a geometric algebra are called multivectors. Every mul-
tivector f ∈ G2 can be expressed as

f = α0︸︷︷︸
scalar part

+α1e1 + α2e2︸ ︷︷ ︸
vector part

+ α12e12︸ ︷︷ ︸
bivector part

∀α0, α1, α2, α12 ∈R. (3)

The grade selector is defined as 〈f 〉k for the k-vector part of f . We often write
〈. . .〉 = 〈. . .〉0. Then (3) can be expressed as2

f = 〈f 〉 + 〈f 〉1 + 〈f 〉2. (4)

The multivector f is called a parabivector if the vector part of (4) is zero, i.e.,

f = α0 + α12e12. (5)

The reverse f̃ of a multivector f ∈ G2 is an anti-automorphism given by

f̃ = 〈f 〉 + 〈f 〉1 − 〈f 〉2, (6)

which fulfills f̃g = g̃f̃ for every f,g ∈ G2. In particular, ĩ2 =−i2.
The scalar product of two multivectors f, g̃ is defined as the scalar part of the

geometric product f g̃,

f ∗ g̃ = 〈f g̃〉 = α0β0 + α1β1 + α2β2 + α12β12, (7)

1Other names in use are bivector or oriented area element.
2Note that (4) and (6) show grade selection and not component selection.
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which leads to the cyclic product symmetry

〈pqr〉 = 〈qrp〉 ∀p,q, r ∈ G2. (8)

For f = g in (7), we obtain the modulus (or magnitude) |f | of a multivector f ∈ G2
defined as

|f |2 = f ∗ f̃ = α2
0 + α2

1 + α2
2 + α2

12. (9)

It is convenient to introduce an inner product for two multivector-valued func-
tions f,g :R2→ G2 as follows:

(f, g)L2(R2;G2)
=
∫

R2
f (x)g̃(x) d2x. (10)

One can check that this inner product satisfies the following rules:

(f, g + h)L2(R2;G2)
= (f, g)L2(R2;G2)

+ (f,h)L2(R2;G2)
,

(f,λg)L2(R2;G2)
= (f, g)L2(R2;G2)

λ̃,

(f λ,g)L2(R2;G2)
= (f, gλ̃)L2(R2;G2)

,

(f, g)L2(R2;G2)
= (̃g, f )L2(R2;G2)

,

(11)

where f,g ∈ L2(R2;G2), and λ ∈ G2 is a multivector constant. The scalar part of
the inner product gives the L2-norm

‖f ‖2
L2(R2;G2)

= 〈(f,f )L2(R2;G2)

〉
. (12)

Definition 1 (Clifford module) Let G2 be the real Clifford algebra of 2D Euclidean
space R

2. The Clifford algebra module L2(R2;G2) is defined by

L2(
R

2;G2
)= {f :R2 −→ G2 | ‖f ‖L2(R2;G2)

<∞}. (13)

3 Clifford Fourier Transform (CFT)

It is natural to extend the FT to the Clifford algebra G2. This extension is often called
the Clifford–Fourier transform (CFT). For detailed discussions on the properties of
the CFT and their proofs, see, e.g., [1, 5]. In the following we briefly review the 2D
CFT.

Definition 2 The CFT of f ∈ L2(R2;G2) ∩ L1(R2;G2) is the function F {f }:
R

2→ G2 given by

F {f }(ω)=
∫

R2
f (x)e−i2ω·x d2x, (14)
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where we can write ω= ω1e1 +ω2e2 and x= x1e1 + x2e2. Note that

d2x= dx1 ∧ dx2

i2
(15)

is scalar valued (dxk = dxkek , k = 1,2, no summation). Notice that the Clifford–
Fourier kernel e−i2ω·x does not commute with every element of the Clifford alge-
bra G2. Furthermore, the product has to be performed in a fixed order.

Theorem 1 Suppose that f ∈ L2(R2;G2) and F {f } ∈ L1(R2;G2). Then the CFT
is an invertible transform, and its inverse is calculated by

F −1[F {f }(ω)
]
(x)= f (x)= 1

(2π)2

∫

R2
F {f }(ω) ei2ω·x d2ω. (16)

4 2D Clifford Windowed Fourier Transform

In [1, 5] the 2D CFT has been introduced. This enables us to establish the 2D CWFT.
We will see that several properties of the WFT can be established in the new con-
struction with some modifications. We begin with the definition of the 2D CWFT.

4.1 Definition of the CWFT

Definition 3 A Clifford window function is a function φ ∈ L2(R2;G2) \ {0} such
that |x|1/2φ(x) ∈ L2(R2;G2).

φω,b(x)= ei2ω·xφ(x− b)
(2π)2

(17)

denote the so-called Clifford window daughter functions.

Definition 4 (Clifford windowed Fourier transform) The Clifford windowed
Fourier transform (CWFT) Gφf of f ∈ L2(R2;G2) is defined by

f (x) −→Gφf (ω,b)= (f,φω,b)L2(R2;G2)

= 1

(2π)2

∫

R2
f (x)

{
ei2ω·xφ(x− b)

}∼
d2x

= 1

(2π)2

∫

R2
f (x) ˜φ(x− b) e−i2ω·x d2x. (18)

This shows that the CWFT can be regarded as the CFT of the product of a
Clifford-valued function f and a shifted and reversed Clifford window function φ,
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or as an inner product (10) of a Clifford-valued function f and the Clifford window
daughter functions φω,b.

Taking the Gaussian function as the window function of (17) with fixed ω =
ω0 = ω0,1e1 +ω0,2e2, we obtain Clifford Gabor filters, i.e.,

gc(x, σ1, σ2)= 1

(2π)2
ei2ω0·xe−[(x1/σ1)

2+(x2/σ2)
2]/2, (19)

where σ1 and σ2 are standard deviations of the Gaussian functions, and the transla-
tion parameters are b1 = b2 = 0.

In terms of the G2 Clifford–Fourier transform, (19) can be expressed as

F {gc}(ω)= 1

πσ1σ2
e−

1
2 [(σ 2

1 (ω1−ω0,1)
2+σ 2

2 (ω2−ω0,2)
2]. (20)

From (19) and (20) we see that Clifford–Gabor filters are well localized in the spatial
and Clifford–Fourier domains.

The energy density is defined as the square modulus of the CWFT (18) given by

∣∣Gφf (ω,b)
∣∣2 = 1

(2π)4

∣∣∣∣

∫

R2
f (x) ˜φ(x− b)e−i2ω·x d2x

∣∣∣∣

2

. (21)

Equation (21) is often called a spectrogram which measures the energy of a Clifford-
valued function f in the position–frequency neighborhood of (b,ω).

In particular, when the Gaussian function (19) is chosen as the Clifford window
function, the CWFT (18) is called the Clifford–Gabor transform.

4.2 Properties of the CWFT

We will discuss the properties of the CWFT. We find that many of the properties of
the WFT are still valid for the CWFT, however, with certain modifications.

Theorem 2 (Left linearity) Let φ ∈ L2(R2;G2) be a Clifford window function. The
CWFT of f,g ∈ L2(R2;G2) is a left linear operator,3 which means that

[
Gφ(λf +μg)

]
(ω,b)= λGφf (ω,b)+μGφg(ω,b) (22)

with Clifford constants λ,μ ∈ G2.

Proof Using the definition of the CWFT, the proof is obvious. �

Remark 1 Since the geometric multiplication is noncommutative, the right-linearity
property of the CWFT does not hold in general.

3The CWFT of f is a linear operator for real constants μ,λ ∈R.
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Theorem 3 (Reversion) Let f ∈ L2(R2;G+2 ) be a parabivector-valued function.
For a parabivector-valued window function φ, we have

Gφ̃f̃ (ω,b)= {Gφf (−ω,b)
}∼

. (23)

Proof Application of Definition 4 to the left-hand side of (23) gives

Gφ̃f̃ (ω,b) = 1

(2π)2

∫

R2
f̃ (x)φ(x− b) e−i2ω·x d2x

= 1

(2π)2

{∫

R2
ei2ω·x ˜φ(x− b)f (x) d2x

}∼

= 1

(2π)2

{∫

R2
f (x) ˜φ(x− b) ei2ω·x d2x

}∼
. (24)

This finishes the proof of the theorem. �

Theorem 4 (Switching) If |x|1/2f (x) ∈ L2(R2;G2) and |x|1/2φ(x) ∈ L2(R2;G2)

are parabivector-valued functions, then we obtain

Gφf (ω,b)= e−i2ω·b
{
Gf φ(−ω,−b)

}∼
. (25)

Proof We have, by the CWFT definition,

Gφf (ω,b) = 1

(2π)2

∫

R2
f (x) ˜φ(x− b) e−i2ω·x d2x

= 1

(2π)2

{∫

R2
φ(x− b)f̃ (x) ei2ω·x d2x

}∼
. (26)

The substitution y= x− b into the above expression gives

Gφf (ω,b) = 1

(2π)2

{∫

R2
φ(y) ˜f (y+ b) ei2ω·(y+b) d2y

}∼

= 1

(2π)2
e−i2ω·b

{∫

R2
φ(y) ˜f (y+ b) ei2ω·y d2y

}∼

= 1

(2π)2
e−i2ω·b

{∫

R2
φ(y) ˜f

(
y− (−b)

)
e−i2(−ω)·y d2y

}∼
, (27)

which proves the theorem. �

Theorem 5 (Parity) Let φ ∈ L2(R2;G2) be a Clifford window function. If P is the
parity operator defined as Pφ(x)= φ(−x), then we have

GPφ{Pf }(ω,b)=Gφf (−ω,−b). (28)
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Proof Direct calculations give, for every f ∈ L2(R2;G2),

GPφ{Pf }(ω,b) = 1

(2π)2

∫

R2
f (−x)

{
φ(−x+ b)

}∼
e−i2(−ω)·(−x) d2x

= 1

(2π)2

∫

R2
f (−x)

{
φ
(−x− (−b)

)}∼
e−i2(−ω)·(−x) d2x

= 1

(2π)2

∫

R2
f (x)

{
φ
(
x− (−b)

)}∼
e−i2(−ω)·x d2x, (29)

which completes the proof. �

Theorem 6 (Shift in space domain, delay) Let φ be a Clifford window function.
Introducing the translation operator Tx0f (x)= f (x− x0), we obtain

Gφ{Tx0f }(ω,b)= (Gφf (ω,b− x0)
)
e−i2ω·x0 . (30)

Proof We have by using (18)

Gφ{Tx0f }(ω,b)= 1

(2π)2

∫

R2
f (x− x0) ˜φ(x− b) e−i2ω·x d2x. (31)

We substitute t= x− x0 into the above expression and get, with d2x= d2t,

Gφ{Tx0f }(ω,b) = 1

(2π)2

∫

R2
f (t)

{
φ
(
t− (b− x0)

)}∼
e−i2ω·(t+x0) d2t

= 1

(2π)2

∫

R2

[
f (t)

{
φ
(
t− (b− x0)

)}∼
e−i2ω·t

]
d2t e−i2ω·x0 .

(32)

This ends the proof of (30). �

Theorem 7 (Shift in frequency domain, modulation) Let φ be a parabivector-
valued Clifford window function. If ω0 ∈R

2 and f0(x)= f (x)ei2ω0·x, then

Gφf0(ω,b)=Gφf (ω−ω0,b). (33)

Proof Using Definition 4 and simplifying it, we get

Gφf0(ω,b) = 1

(2π)2

∫

R2
f (x)ei2ω0·x ˜φ(x− b) e−i2ω·x d2x

= 1

(2π)2

∫

R2
f (x) ˜φ(x− b) e−i2(ω−ω0)·x d2x, (34)

which proves the theorem. �
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Theorem 8 (Reconstruction formula) Let φ be a Clifford window function. Then
every 2D Clifford signal f ∈ L2(R2;G2) can be fully reconstructed by

f (x)= (2π)2
∫

R2

∫

R2
Gφf (ω,b)φω,b(x)

(
φ̃, φ̃

)−1
L2(R2;G2)

d2bd2ω. (35)

Proof It follows from the CWFT defined by (18) that

Gφf (ω,b)= 1

(2π)2
F
{
f (x) ˜φ(x− b)

}
(ω). (36)

Taking the inverse CFT of both sides of (36), we obtain

f (x) ˜φ(x− b) = (2π)2F −1{Gφf (ω,b)
}
(x)

= (2π)2

(2π)2

∫

R2
Gφf (ω,b) ei2ω·x d2ω. (37)

Multiplying both sides of (37) by φ(x−b) and then integrating with respect to d2b,
we get

f (x)
∫

R2

˜φ(x− b)φ(x− b) d2b=
∫

R2

∫

R2
Gφf (ω,b) ei2ω·xφ(x− b) d2ω d2b

(38)
or, equivalently,

f (x)
(
φ̃, φ̃

)
L2(R2;G2)

= (2π)2
∫

R2

∫

R2
Gφf (ω,b)φω,b(x) d2ω d2b, (39)

which gives (35). �

It is worth noting here that if the Clifford window function is a parabivector-
valued function, then the reconstruction formula (35) can be written in the form

f (x)= (2π)2

‖φ‖2
L2(R2;G2)

∫

R2

∫

R2
Gφf (ω,b)φω,b(x) d2bd2ω. (40)

Theorem 9 (Orthogonality relation) Assume that the Clifford window function φ

is a parabivector-valued function. If two Clifford functions f,g ∈ L2(R2;G2), then
we have

∫

R2

∫

R2
(f,φω,b)L2(R2;G2)

˜(g,φω,b)L2(R2;G2)
d2ω d2b

=
‖φ‖2

L2(R2;G2)

(2π)2
(f, g)L2(R2;G2)

. (41)
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Proof By inserting (18) into the left side of (41), we obtain
∫

R2

∫

R2
(f,φω,b)L2(R2;G2)

˜(g,φω,b)L2(R2;G2)
d2ω d2b

=
∫

R2

∫

R2
(f,φω,b)L2(R2;G2)

(∫

R2

1

(2π)2
ei2ω·xφ(x− b)g̃(x) d2x

)
d2ω d2b

=
∫

R2

∫

R2

(∫

R2

∫

R2

1

(2π)4
f (x′) ˜φ(x′ − b) ei2ω·(x−x′)d2ω d2x′

)

× φ(x− b)g̃(x) d2xd2b

= 1

(2π)2

∫

R2

∫

R2

(∫

R2
f (x′) ˜φ(x′ − b)δ(x− x′)φ(x− b) d2x′

)
g̃(x) d2bd2x

= 1

(2π)2

∫

R2
f (x)

∫

R2

˜φ(x− b)φ(x− b)︸ ︷︷ ︸
φ parabiv. funct.

d2b g̃(x) d2x

= 1

(2π)2
‖φ‖2

L2(R2;G2)

∫

R2
f (x)g̃(x) d2x, (42)

which completes the proof of (41). �

Theorem 10 (Reproducing kernel) For a parabivector-valued Clifford window
function |x|1/2φ ∈ L2(R2;G2), if

Kφ

(
ω,b;ω′,b′

)= (2π)2

‖φ‖2
L2(R2;G2)

(φω,b, φω′,b′)L2(R2;G2)
, (43)

then Kφ(ω,b;ω′,b′) is a reproducing kernel, i.e.,

Gφf
(
ω′,b′

)=
∫

R2

∫

R2
Gφf (ω,b)Kφ

(
ω,b;ω′,b′

)
d2ω d2b. (44)

Proof By inserting the inverse CWFT (40) into the definition of the CWFT (18) we
easily obtain

Gφf
(
ω′,b′

)

=
∫

R2
f (x) ˜φω′,b′(x) d

2x

=
∫

R2

(
(2π)2

‖φ‖2
L2(R2;G2)

∫

R2

∫

R2
Gφf (ω,b)φω,b(x) d2bd2ω

)
˜φω′,b′(x) d

2x
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=
∫

R2

∫

R2
Gφf (ω,b)

(2π)2

‖φ‖2
L2(R2;G2)

(∫

R2
φω,b(x) ˜φω′,b′(x) d

2x
)
d2bd2ω

=
∫

R2

∫

R2
Gφf (ω,b)Kφ

(
ω,b;ω′,b′

)
d2bd2ω, (45)

which finishes the proof. �

Remark 2 Formulas (40), (41), and (43) also hold if the Clifford window function
is a vector-valued function, i.e., φ(x)= φ1(x)e1 + φ2(x)e2.

The above properties of the CWFT are summarized in Table 1.

Table 1 Properties of the CWFT of f,g ∈ L2(R2;G2), L2 = L2(R2;G2), where λ,μ ∈ G2 are
constants, ω0 = ω0,1e1 +ω0,2e2 ∈R

2, and x0 = x0e1 + y0e2 ∈R
2

Property Clifford-valued function 2D CWFT

Left linearity λf (x)+μg(x) λGφf (ω,b)+μGφg(ω,b)

Delay f (x− x0) (Gφf (ω,b− x0)) e
−i2ω·x0

Modulation f (x)ei2ω0·x Gφf (ω−ω0,b) if φ is a
parabivector-valued function

Formulas

Reversion Gφ̃f̃ (ω,b)= {Gφf (−ω,b)}∼
if f and φ are parabivector-valued functions

Switching Gφf (ω,b)= e−i2ω·b {Gf φ(−ω,−b)}∼
if f and φ are parabivector-valued functions

Parity GPφ{Pf }(ω,b)= Gφf (−ω,−b)

Orthogonality 1
(2π)2 ‖φ‖2L2 (f, g)L2 = ∫

R2

∫
R2 (f,φω,b)L2(R2;G2)

× ˜(g,φω,b)L2(R2;G2)
d2ω d2b

if φ is a parabivector-valued function

Reconstruction f (x)= (2π)2
∫

R2

∫
R2 Gφf (ω,b)φω,b(x)

×(φ̃, φ̃)−1
L2(R2;G2)

d2bd2ω,

(2π)2

‖φ‖2
L2(R2;G2)

∫
R2

∫
R2 Gφf (ω,b)

× φω,b(x) d2bd2ω,

if φ is a parabivector-valued function

Reproducing kernel Gφf (ω′,b′)= ∫
R2

∫
R2 Gφf (ω,b)Kφ(ω,b;ω′,b′) d2ω d2b,

Kφ(ω,b;ω′,b′)
= (2π)2

‖φ‖2
L2(R2;G2)

(φω,b, φω′,b′ )L2(R2;G2)
,

if φ is a parabivector-valued function
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4.3 Examples of the CWFT

For illustrative purposes, we shall discuss examples of the CWFT. We then compute
their energy densities.

Example 1 Consider the Clifford–Gabor filters (see Fig. 1) defined by (σ1 =
σ2 = 1/

√
2)

f (x)= 1

(2π)2
e−x2+i2ω0·x. (46)

Obtain the CWFT of f with respect to the Gaussian window function φ(x)= e−x2
.

By the definition of the CWFT (18), we have

Gφf (ω,b)= 1

(2π)4

∫

R2
e−x2+i2ω0·xe−(x−b)2

e−i2ω·x d2x. (47)

Substituting x= y+ b/2, we can rewrite (47) as

Gφf (ω,b) = 1

(2π)4

∫

R2
e−(y+b/2)2+i2ω0·(y+b/2)e−(y−b/2)2

e−i2ω·(y+b/2) d2y

= e−b2/2

(2π)4

∫

R2
e−2y2

e−i2ω·y ei2ω0·y d2y e−i2(ω−ω0)·b/2

= e−b2/2

(2π)4

∫

R2
e−2y2

e−i2(ω−ω0)·y d2y e−i2(ω−ω0)·b/2

= e−b2/2

(2π)4

π

2
e−(ω−ω0)

2/8 e−i2(ω−ω0)·b/2

= e−b2/2

32π3
e−(ω−ω0)

2/8 e−i2(ω−ω0)·b/2. (48)

The energy density is given by

∣∣Gφf (ω,b)
∣∣2 = e−b2

(32π3)2
e−(ω−ω0)

2/4. (49)

Example 2 Consider the first-order two-dimensional B-spline window function de-
fined by

φ(x)=
{

1 if 0≤ x1 ≤ 1 and 0≤ x2 ≤ 1,
0 otherwise.

(50)

Obtain the CWFT of the function defined as follows:

f (x)=
{

x if 0≤ x1 ≤ 1 and 0≤ x2 ≤ 1,
0 otherwise.

(51)
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Fig. 1 The scalar part (left) and bivector part (right) of Clifford–Gabor filter for the parameters
ω0,1 = ω0,2 = 1, b1 = b2 = 0, σ1 = σ2 = 1/

√
2 in the spatial domain using Mathematica 6.0

Fig. 2 Plot of the CWFT of
Clifford–Gabor filter of
Example 1 using
Mathematica 6.0. Note that it
is scalar valued for the
parameters b1 = b2 = 0

Applying Definition 4 and simplifying it, we obtain

Gφf (ω,b)

= 1

(2π)2

∫ 1+b1

b1

∫ 1+b2

b2

x e−i2ω·x dx1 dx2

= 1

(2π)2

∫ 1+b1

b1

∫ 1+b2

b2

(x1e1 + x2e2)
(
e−i2ω1x1e−i2ω2x2

)
dx1 dx2

= 1

(2π)2
e1

∫ 1+b1

b1

x1e
−i2ω1x1 dx1

∫ 1+b2

b2

e−i2ω2x2 dx2

+ 1

(2π)2
e2

∫ 1+b1

b1

e−i2ω1x1dx1

∫ 1+b2

b2

x2e
−i2ω2x2 dx2

= {e2ω2
[
(1+ i2ω1b1)

(
e−i2ω1 − 1

)+ i2ω1e
−i2ω1

](
e−i2ω2 − 1

)

− e1ω1
[
(1+ i2ω2b2)

(
e−i2ω2 − 1

)+ i2ω2e
−i2ω2

](
e−i2ω1 − 1

)}

× e−i2ω·b

(2πω1ω2)2
(52)

with

b= b1e1 + b2e2.
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Fig. 3 Representation of the CFT basis for ω1 = ω2 = 1 with scalar part (left) and bivector part
(right) using Mathematica 6.0

Fig. 4 Representation of the CWFT basis of a Gaussian window function for the parameters
ω0,1 = ω0,2 = 1, b1 = b2 = 0.2 with scalar part (left) and bivector part (right) using Mathemat-
ica 6.0

5 Comparison of CFT and CWFT

Since the Clifford–Fourier kernel e−i2ω·x is a global function, the CFT basis has
an infinite spatial extension as shown in Fig. 3. In contrast, the CWFT basis
φ(x− b) e−i2ω·x has a limited spatial extension due to the local Clifford window
function φ(x − b) (see Fig. 4). This means that the CFT analysis cannot provide
information about the signal with respect to position and frequency, so that we need
the CWFT to fully describe the characteristics of the signal simultaneously in both
spatial and frequency domains.

6 Conclusion

Using the basic concepts of Clifford geometric algebra and the CFT, we introduced
the CWFT. Important properties of the CWFT were demonstrated. This general-
ization enables us to work with 2D Clifford–Gabor filters, which can extend the
applications of the 2D complex Gabor filters.

Because the CWFT represents a signal in a joint space–frequency domain, it
can be applied in many fields of science and engineering, such as image analysis
and image compression, object and pattern recognition, computer vision, optics and
filter banks.
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The Cylindrical Fourier Transform

Fred Brackx, Nele De Schepper,
and Frank Sommen

Abstract The aim of this paper is to show the application potential of the cylin-
drical Fourier transform, which was recently devised as a new integral transform
within the context of Clifford analysis. Next to the approximation approach where,
using density arguments, the spectrum of various types of functions and distribu-
tions may be calculated starting from the cylindrical Fourier images of the L2-basis
functions in R

m, direct computation methods are introduced for specific distribu-
tions supported on the unit sphere, and an illustrative example is worked out.

1 Introduction

The Fourier transform is by far the most important integral transform. Since its
introduction by Fourier in the early 1800s, it has remained an indispensable and
stimulating mathematical concept that is at the core of the highly evolved branch of
mathematics called Fourier analysis.

The second subject of great relevance for the paper is Clifford analysis, an elegant
and powerful higher-dimensional generalization of the theory of holomorphic func-
tions, which is moreover closely related but complementary to harmonic analysis.
Clifford analysis also offers the possibility to generalize one-dimensional mathe-
matical analysis to higher dimension in a rather natural way by encompassing all
dimensions at once, as opposed to the usual tensorial approaches.

It is precisely this last qualification which has been exploited in [2] and [3] to con-
struct a genuine multidimensional Fourier transform within the context of Clifford
analysis. This so-called Clifford–Fourier transform is briefly discussed in Sect. 3.

In [4] and [5] we devised and thoroughly studied the so-called cylindrical Fourier
transform within the Clifford analysis setting. The idea is the following: for a fixed
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vector in the image space, the level surfaces of the traditional Fourier kernel are
planes perpendicular to that fixed vector. For this Fourier kernel, we now substitute
a new Clifford–Fourier kernel such that, again for a fixed vector in the image space,
its phase is constant on co-axial cylinders w.r.t. that fixed vector. The point is that,
when restricting to dimension two, this new cylindrical Fourier transform coincides
with the earlier introduced Clifford–Fourier transform. We are now faced with the
following situation: in dimension greater than two we have a first Clifford–Fourier
transform with elegant properties but no kernel in closed form, and a second cylin-
drical one with a kernel in closed form but more complicated calculation formulae.
In dimension two both transforms coincide.

The aim of this paper is to show the application potential of the cylindrical
Fourier transform.

To make the paper self-contained, we have also included an introductory section
(Sect. 2) on Clifford analysis.

2 The Clifford Analysis Toolkit

Clifford analysis (see, e.g., [1]) offers a function theory which is a higher-
dimensional analogue of the theory of the holomorphic functions of one complex
variable.

The functions considered are defined in R
m (m > 1) and take their values in the

Clifford algebra R0,m or its complexification Cm = R0,m ⊗C. If (e1, . . . , em) is an
orthonormal basis of R

m, then a basis for the Clifford algebra R0,m or Cm is given
by all possible products of basis vectors (eA : A ⊂ {1, . . . ,m}), where e∅ = 1 is
the identity element. The noncommutative multiplication in the Clifford algebra is
governed by the rules ej ek + ekej =−2δj,k (j, k = 1, . . . ,m).

Conjugation is defined as the anti-involution for which ej =−ej (j = 1, . . . ,m).
In case of Cm, the Hermitian conjugate of an element λ =∑A λAeA (λA ∈ C) is
defined by λ† =∑A λc

A eA, where λc
A denotes the complex conjugate of λA. This

Hermitian conjugation leads to a Hermitian inner product and its associated norm
on Cm given respectively by

(λ,μ)= [λ†μ
]

0 and |λ|2 = [λ†λ
]

0 =
∑

A

|λA|2,

where [λ]0 denotes the scalar part of the Clifford element λ.
The Euclidean space R

m is embedded in the Clifford algebras R0,m and Cm

by identifying the point (x1, . . . , xm) with the vector variable x given by x =∑m
j=1 ej xj . The product of two vectors splits up into a scalar part (the inner product

up to a minus sign) and a so-called bivector part (the wedge product):

x y = x.y + x ∧ y,
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where

x.y =−〈x, y〉 = −
m∑

j=1

xjyj and x ∧ y =
m∑

i=1

m∑

j=i+1

eiej (xiyj − xjyi).

Note that the square of a vector variable x is scalar-valued and equals the norm
squared up to a minus sign: x2 =−〈x, x〉 = −|x|2.

The central notion in Clifford analysis is the notion of monogenicity, a notion
which is the multidimensional counterpart to that of holomorphy in the complex
plane. A function F(x1, . . . , xm) defined and continuously differentiable in an open
region of R

m and taking values in R0,m or Cm is called left monogenic in that re-
gion if ∂x[F ] = 0. Here ∂x is the Dirac operator in R

m: ∂x =∑m
j=1 ej ∂xj , an elliptic,

rotation-invariant, vector differential operator of the first order, which may be looked
upon as the “square root” of the Laplace operator in R

m: Δm = −∂2
x . This factor-

ization of the Laplace operator establishes a special relationship between Clifford
analysis and harmonic analysis in that monogenic functions refine the properties of
harmonic functions.

In the sequel the monogenic homogeneous polynomials will play an important
role. A left-monogenic homogeneous polynomial Pk of degree k (k ≥ 0) in R

m is
called a left solid inner spherical monogenic of order k. The set of all left solid
inner spherical monogenics of order k will be denoted by M+� (k). The dimension of
M+� (k) is given by

dim
(
M+� (k)

)=
(
m+ k − 2

m− 2

)
= (m+ k− 2)!

(m− 2)!k! .

The set

φs,k,j (x)= 2m/4

(γs,k)1/2
Hs,k

(√
2x
)
P

(j)
k

(√
2x
)
e(−|x|2/2), (1)

s, k ∈ N, j ≤ dim(M+� (k)), constitutes an orthonormal basis for the space L2(R
m)

of square-integrable functions. Here {P (j)
k (x); j ≤ dim(M+� (k))} denotes an or-

thonormal basis of M+� (k), and γs,k a real constant depending on the parity of s.
The polynomials Hs,k(x) are the so-called generalized Clifford–Hermite polynomi-
als introduced by Sommen; they are a multidimensional generalization to Clifford
analysis of the classical Hermite polynomials on the real line. Note that Hs,k(x) is
a polynomial of degree s in the variable x with real coefficients depending on k.
Furthermore, H2s,k(x) only contains even powers of x and is hence scalar valued,
while H2s+1,k(x) only contains odd ones and is thus vector valued.

A result, which will be frequently used in Sect. 4.3, is the following generaliza-
tion of the classical Funk–Hecke theorem.

Theorem 1 (Funk–Hecke theorem in space) Let Sk be a spherical harmonic of
degree k, and η a fixed point on the unit sphere Sm−1 in R

m. Denote 〈ω,η〉 =
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cos (ω̂, η)= tη for ω ∈ Sm−1. Then

∫

Rm

g(r)f (tη)Sk(ω)dV (x)

=Am−1

(∫ +∞

0
g(r)rm−1 dr

)(∫ 1

−1
f (t)

(
1− t2)(m−3)/2

Pk,m(t) dt

)
Sk(η),

where dV (x) denotes the Lebesgue measure on R
m, Pk,m(t) the Legendre polyno-

mial of degree k in the m-dimensional Euclidean space, and Am−1 = 2π(m−1)/2

Γ (m−1
2 )

the

surface area of the unit sphere Sm−2 in R
m−1.

As the Legendre polynomials are even or odd according to the parity of k, we
can also state the following corollary.

Corollary 1 Let Sk be a spherical harmonic of degree k, and η a fixed point on the

unit sphere Sm−1. Denote 〈ω,η〉 = tη for ω ∈ Sm−1. Then the 3D-integral

∫

Rm

g(r)f (tη)Sk(ω)dV (x)

is zero whenever

• f is an odd function, and k is even;
• f is an even function, and k is odd.

3 The Clifford–Fourier Transform

In [2] a new multidimensional Fourier transform in the framework of Clifford anal-
ysis, the so-called Clifford–Fourier transform, is introduced. The idea behind its
definition originates from an alternative representation for the standard tensorial
multidimensional Fourier transform given by

F [f ](ξ)= 1

(2π)m/2

∫

Rm

e(−i〈x,ξ 〉)f (x) dV (x).

It is indeed so that this classical Fourier transform can be seen as the operator expo-
nential

F = e(−iπ/2H) =
∞∑

k=0

1

k!
(
−i π

2

)k

Hk,

where H is the scalar-valued differential operator H = 1
2 (−Δm + r2 − m). Note

that, due to the scalar character of the standard Fourier kernel, the Fourier spectrum
inherits its Clifford algebra character from the original signal, without any interac-
tion with the Fourier kernel. So in order to genuinely introduce the Clifford analysis
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character in the Fourier transform, the idea occurred to us to replace the scalar-
valued operator H in the operator exponential by a Clifford algebra-valued one. To
that end, we aimed at factorizing the operator H, making use of the factorization
of the Laplace operator by the Dirac operator. Splitting H into a sum of Clifford
algebra-valued second-order operators leads in a natural way to a pair of transforms
F H± , the harmonic average of which is precisely the standard Fourier transform F ,
i.e., F 2 =F H+F H− .

The two-dimensional case of this Clifford–Fourier transform is special in that we
are able to find a closed form for the kernel of the integral representation. Indeed,
the two-dimensional Clifford–Fourier transform takes the form

F H±[f ](ξ)= 1

2π

∫

R2
e(±(ξ∧x))f (x) dV (x).

This closed form enables us to generalize the well-known results for the standard
Fourier transform both in the L1- and L2-contexts (see [3]). Note that we have
not succeeded yet in obtaining such a closed form in arbitrary dimension. For a
detailed account of the Clifford–Fourier transform, we refer the reader to the survey
paper [5].

4 The Cylindrical Fourier Transform

4.1 Definition

The cylindrical Fourier transform is obtained by taking the multidimensional gener-
alization of the two-dimensional Clifford–Fourier kernel.

Definition 1 The cylindrical Fourier transform of a function f is given by

Fcyl[f ](ξ)= 1

(2π)m/2

∫

Rm

e(x∧ξ)f (x) dV (x)

with e(x∧ξ) =∑∞r=0
(x∧ξ)r

r! .

The integral kernel of this cylindrical Fourier transform can be rewritten in terms
of the cosine and the sinc function, which also reveals its form of a scalar plus a
bivector, i.e., a so-called parabivector.

Proposition 1 The kernel of the cylindrical Fourier transform can be rewritten as

e(x∧ξ) = cos
(|x ∧ ξ |)+ (x ∧ ξ)sinc

(|x ∧ ξ |)

where sinc(x) := sin (x)
x

is the unnormalized sinc function.
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Fig. 1 In case of the
cylindrical Fourier transform,
for fixed ξ , the phase |x ∧ ξ |
is constant on coaxial
cylinders

Proof Splitting the defining series expansion of e(x∧ξ) into its even and odd part
and taking into account that (x ∧ ξ)2 =−|x ∧ ξ |2 yields

e(x∧ξ) =
∞∑

�=0

(−1)�
|x ∧ ξ |2�
(2�)! + (x ∧ ξ)

∞∑

�=0

(−1)�
|x ∧ ξ |2�
(2�+ 1)!

= cos
(|x ∧ ξ |)+ (x ∧ ξ) sinc

(|x ∧ ξ |). �

Let us now explain why we have chosen the name “cylindrical” for our new
Fourier transform. From

|x ∧ ξ |2 = |x|2|ξ |2 − (〈x, ξ 〉)2 = |x|2|ξ |2(1− cos(x̂, ξ)2)= |x|2|ξ |2 sin (x̂, ξ)
2

it is clear that for ξ fixed, the “phase” |x ∧ ξ | is constant if and only if |x| sin(x̂, ξ)
is constant. In other words, for a fixed vector ξ in the image space, the phase |x ∧ ξ |
is constant on co-axial cylinders w.r.t. that fixed vector (see Fig. 1). For comparison,
for a fixed vector ξ in the image space, the level surfaces of the traditional Fourier
kernel are planes perpendicular to that fixed vector, since 〈x, ξ〉 = |x||ξ | cos (x̂, ξ)
(see Fig. 2).

4.2 Properties

The cylindrical Fourier transform is well defined for each integrable function.

Theorem 2 Let f ∈ L1(R
m). Then Fcyl[f ] ∈ L∞(Rm)∩C0(R

m), and, moreover,

∥∥Fcyl[f ]
∥∥∞ ≤ 2

(
2

π

)m/2

‖f ‖1.
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Fig. 2 In case of the classical
Fourier transform, for fixed ξ ,
the phase 〈x, ξ 〉 is constant on
planes perpendicular to ξ

Proof Taking into account Proposition 1, we have that

∣∣e(x∧ξ)
∣∣ =
∣∣∣∣cos

(|x ∧ ξ |)+ (x ∧ ξ)

|x ∧ ξ | sin
(|x ∧ ξ |)

∣∣∣∣

≤ ∣∣cos
(|x ∧ ξ |)∣∣+ ∣∣sin

(|x ∧ ξ |)∣∣≤ 2,

which leads to the desired result. �

Although the cylindrical Fourier transform has a “simple” integral kernel, it sat-
isfies calculation formulae that are more complicated than those of the multidimen-
sional Clifford–Fourier transform (see [5]). For example, we state the differentiation
and multiplication rules that nicely show that the two-dimensional case, in which
the cylindrical Fourier transform and the Clifford–Fourier transform coincide, is
special.

Proposition 2 (Differentiation and multiplication rule) Let f,g ∈ L1(Rm). The
cylindrical Fourier transform satisfies:

(i) the differentiation rule

Fcyl
[
∂x
[
f (x)

]]
(ξ) = −ξ Fcyl

[
f (x)

]
(−ξ)+ (2−m)

(2π)m/2
ξ

×
∫

Rm

sinc
(|x ∧ ξ |)f (x)dV (x)

with sinc(x) := sin (x)
x

the unnormalized sinc function;
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(ii) the multiplication rule

Fcyl
[
xf (x)

]
(ξ) = −∂ξ

[
Fcyl

[
f (x)

]
(−ξ)]+ (2−m)

(2π)m/2

×
∫

Rm

sinc
(|x ∧ ξ |)xf (x)dV (x).

4.3 Spectrum of the L2-Basis Consisting of Generalized
Clifford–Hermite Functions

Let us now calculate the cylindrical Fourier spectrum of the L2-basis (1). As
these basis elements belong to the space of rapidly decreasing functions S(Rm) ⊂
L1(R

m), their cylindrical Fourier image should be a bounded and continuous func-
tion. The calculation method is based on the Funk–Hecke theorem in space (see
Theorem 1) and the following cylindrical Fourier kernel decomposition (see Propo-
sition 1):

e(x∧ξ) = cos
(
rρ
√

1− t2
η

)
−rρtη sinc

(
rρ
√

1− t2
η

)
−rρηωsinc

(
rρ
√

1− t2
η

)
, (2)

where we have introduced the spherical coordinates

x = rω, ξ = ρη, r = |x|, ρ = |ξ |, ω,η ∈ Sm−1

and the notation tη = 〈ω,η〉. For convenience, we denote the three terms in the
decomposition (2) by A, B , and C.

As a first example, let us now calculate the cylindrical Fourier transform of the
basis function φ0,k,j (x) which is given, up to constants, by Pk(x)e

(−|x|2/2) with Pk

a left solid inner spherical monogenic of order k. By Corollary 1 it is obvious that
we must make a distinction between k even and odd.

(A) k even

In the case where k is even, as a consequence of Corollary 1, the integrals containing
the B- and C-terms of the kernel decomposition (2) reduce to zero. Furthermore,
applying the Funk–Hecke theorem in space (see Theorem 1), we have that

Fcyl
[
e(−|x|2/2) Pk(x)

]
(ξ) = 1

(2π)m/2

∫

Rm

e(−r2/2)rk cos
(
rρ
√

1− t2
η

)
Pk(ω)dV (x)

= Am−1

(2π)m/2
Pk(η)

(∫ +∞

0
e(−r2/2)rk+m−1 dr

)

×
(∫ 1

−1
cos
(
rρ
√

1− t2
)(

1− t2)(m−3)/2
Pk,m(t) dt

)
.
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Taking into account the series expansion of the cosine function, this result becomes

Fcyl
[
e(−|x|2/2)Pk(x)

]
(ξ) = k!(m− 3)!

(k +m− 3)!
Am−1

(2π)m/2
Pk(η)

∞∑

�=0

(−1)�

(2�)! ρ
2�

×
(∫ +∞

0
e(−r2/2)r2�+k+m−1 dr

)

×
(∫ 1

−1

(
1− t2)(2�+m−3)/2

C
(m−2)/2
k (t) dt

)
, (3)

where we have also used the expression

Pk,m(t)= k!(m− 3)!
(k +m− 3)!C

(m−2)/2
k (t)

of the Legendre polynomials in R
m in terms of the Gegenbauer polynomials Cλ

k (t).
As these Gegenbauer polynomials Cλ

k are orthogonal on ]−1,1[ w.r.t. the weight
function (1− t2)λ−1/2 (λ >− 1

2 ), it is easily seen that, for �≤ k
2 − 1,

∫ 1

−1

(
1− t2)�(1− t2)(m−3)/2

C
(m−2)/2
k (t) dt = 0.

Moreover, combining the integral formula (see [7], p. 826, formula (4) with α = β)

∫ 1

−1

(
1− t2)αCλ

k (t) dt

= 22α+1(Γ (α + 1))2Γ (k + 2λ)

k!Γ (2λ)Γ (2α + 2)
3F2

(
−k, k+ 2λ,α+ 1;λ+ 1

2
,2α + 2;1

)
,

where Re(α) >−1, and 3F2(a, b, c;d, e; z) denotes the generalized hypergeometric
series, with Watson’s theorem (see, e.g., [6])

3F2

(
a, b, c; a + b+ 1

2
,2c;1

)
=
√
πΓ (c+ 1

2 )Γ (a+b+1
2 )Γ ( 1−a−b+2c

2 )

Γ (a+1
2 )Γ (b+1

2 )Γ ( 1−a+2c
2 ) Γ ( 1−b+2c

2 )

results into
∫ 1

−1
(1− t2)α Cλ

k (t) dt

=
√
π22α+1(Γ (α + 1))2Γ (k + 2λ)Γ (α + 3

2 )Γ (λ+ 1
2 )Γ ( 2α−2λ+3

2 )

k!Γ (2λ)Γ (2α + 2)Γ (−k+1
2 )Γ ( k+2λ+1

2 )Γ ( 2α+3+k
2 )Γ ( 2α−2λ+3−k

2 )
. (4)

Applying the above result and taking into account that Γ (2z) = π−1/222z−1×
Γ (z)Γ (z+ 1/2), (3) can be simplified to
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Fcyl
[
e(−|x|2/2)Pk(x)

]
(ξ)

= 2k/2√π

Γ (−k+1
2 )Γ ( k+m−1

2 )
Pk(ξ)

∞∑

�=k/2

(−1)�2��!Γ ( 2�+m−1
2 )

(2�)! Γ ( 2�+2−k
2 )

|ξ |2�−k

= 1F1

(
1− m

2
; k + 1

2
; |ξ |

2

2

)
e(−|ξ |

2/2)Pk(ξ)

with 1F1(a; c; z) Kummer’s function, also called confluent hypergeometric func-
tion.

(B) k odd

For k odd, the integral containing the A-term of the kernel decomposition is zero,
again as a consequence of Corollary 1. By means of the Funk–Hecke theorem in
space we obtain

Fcyl
[
e(−|x|2/2)Pk(x)

]
(ξ)

= ρ
Am−1

(2π)m/2
Pk(η)

(∫ +∞

0
e(−r2/2)rk+m dr

)

×
(∫ 1

−1
sinc

(
rρ
√

1− t2
)(

1− t2)(m−3)/2(
Pk+1,m(t)− tPk,m(t)

)
dt

)
.

Now, taking into account the Gegenbauer recurrence relation

(k + 2λ)tCλ
k (t)− (k + 1)Cλ

k+1(t)= 2λ
(
1− t2)Cλ+1

k−1 (t),

we have that

Pk+1,m(t)− tPk,m(t)=− k!(m− 2)!
(k +m− 2)!

(
1− t2)Cm/2

k−1(t),

which in turn yields

Fcyl
[
e(−|x|2/2)Pk(x)

]
(ξ) = − k!(m− 2)!

(k +m− 2)!
Am−1

(2π)m/2
ρPk(η)

×
(∫ +∞

0
e(−r2/2)rk+m dr

)

×
(∫ 1

−1
sinc

(
rρ
√

1− t2
)(

1− t2)(m−1)/2
C

m/2
k−1(t) dt

)
.

Next, applying consecutively the series expansion of the sinc function, the orthogo-
nality of the Gegenbauer polynomials and expression (4), we find

Fcyl
[
e(−|x|2/2)Pk(x)

]
(ξ)=−1F1

(
1− m

2
; k + 2

2
; |ξ |

2

2

)
e(−|ξ |

2/2)Pk(ξ).
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So note that the cylindrical Fourier transform reproduces the Gaussian times the
spherical monogenic up to a Kummer’s function factor.

A second example is provided by the cylindrical Fourier transform of the basis
function φ1,k,j given, up to constants, by e(−|x|2/2)xPk(x). Its calculation runs along
similar lines. Making again a distinction between k even and k odd, we find:

(A) for k even,

Fcyl
[
e(−|x|2/2) x Pk(x)

]
(ξ)

= (k +m− 1)

(k + 1)
1F1

(
1− m

2
; k + 3

2
; |ξ |

2

2

)
e(−|ξ |

2/2)ξ Pk(ξ);

(B) for k odd,

Fcyl
[
e(−|x|2/2) x Pk(x)

]
(ξ)= 1F1

(
1− m

2
; k + 2

2
; |ξ |

2

2

)
e(−|ξ |

2/2)ξ Pk(ξ),

showing again the reproducing property up to a Kummer’s function factor.
For the calculation of the cylindrical Fourier spectrum of a general basis element

φs,k,j , we refer the reader to [4] and the survey paper [5].

5 Application Potential of the Cylindrical Fourier Transform

In the foregoing section we established the image under the cylindrical Fourier
transform of an L2-basis for the space of all L2-functions in R

m. Using density
arguments, these results may be used to approximate the cylindrical Fourier image
of various types of functions and distributions in R

m. However, for certain types
of functions or distributions, direct calculation methods are available on top of this
approximation approach. A typical example is provided by the case of distributions
concentrated on the unit sphere, which are of the form

F(x)= δ(r − 1)f (ω), x = rω, r = |x| ∈ [0,∞[ , ω ∈ Sm−1.

The corresponding cylindrical Fourier transform is given by

Fcyl[F ](ξ)=Fcyl[f ](ξ)= 1

(2π)m/2

∫

Sm−1
exp (ω ∧ ξ)f (ω)dS(ω).

Hereby ξ still belongs to the whole space R
m, while the data f (ω) are defined on

the unit sphere, a codimension one surface of R
m. It is hence expected that the data

f (ω) are already determined by the cylindrical Fourier image restricted to a suitable
codimension one surface as well, typical examples being:
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Fig. 3 The real part of the
cylindrical Fourier spectrum
of the characteristic function
of a geodesic triangle on S2

Fig. 4 The e1e2-component
of the cylindrical Fourier
spectrum of the characteristic
function of a geodesic
triangle on S2

(i) ξ = η ∈ Sm−1, leading to an integral transform from Sm−1 to Sm−1,
(ii) ξ = ξ1e1 + · · · + ξm−1em−1, i.e., ξ belongs to the affine subspace given by

ξm = 0.

To evaluate the cylindrical Fourier transform explicitly, it suffices in both cases to
express the function f (ω) as a series of spherical monogenics and to apply a Funk–
Hecke argument on the spherical monogenics. This may lead to correspondences
between function spaces on Sm−1 and isomorphisms between them including inver-
sion methods. The establishment of direct inversion formulae remains an indepen-
dent and interesting problem for future research.

As an example (see Figs. 3, 4, 5, and 6 ), we have computed directly the cylin-
drical Fourier image of the characteristic function of a geodesic triangle on the two
sphere S2 that may be expressed in spherical coordinates by the integral

1

(2π)3/2

∫ π/2

0

∫ π/2

0
exp (ω ∧ ξ) sin (θ) dθ dφ

with ω= sin (θ) cos (φ)e1 + sin (θ) sin (φ)e2 + cos (θ)e3 and ξ = ae1 + be2.

6 Conclusion

There is a recent increasing interest in integral transforms and in particular Fourier
transforms which take advantage of the algebraic structure inherent in hypercom-
plex function theories, especially quaternionic and Clifford analysis. In this pa-
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Fig. 5 The e1e3-component
of the cylindrical Fourier
spectrum of the characteristic
function of a geodesic
triangle on S2

Fig. 6 The e2e3-component
of the cylindrical Fourier
spectrum of the characteristic
function of a geodesic
triangle on S2

per we have shown that the recently developed cylindrical Fourier transform of
Clifford analysis in Euclidean space of arbitrary dimension is a promising higher-
dimensional integral transform with application potential. We have introduced a few
methods for the practical computation of the corresponding spectra and illustrated
one of these methods by working out an explicit example. For the theory underlying
the cylindrical Fourier transform and similar integral transforms in Clifford analy-
sis, we refer the reader to, e.g., [2–4] and in particular to the survey paper [5], and
the references contained therein.
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Analyzing Real Vector Fields with Clifford
Convolution and Clifford–Fourier Transform

Wieland Reich and Gerik Scheuermann

Abstract Postprocessing in computational fluid dynamics and processing of fluid
flow measurements need robust methods that can deal with scalar and vector fields.
While image processing of scalar data is a well-established discipline, there is a
lack of similar methods for vector data. This paper surveys a particular approach
defining convolution operators on vector fields using geometric algebra. This in-
cludes a corresponding Clifford–Fourier transform including a convolution theo-
rem. Finally, a comparison is tried with related approaches for a Fourier transform
of spatial vector or multivector data. In particular, we analyze the Fourier series
based on quaternion holomorphic functions of Gürlebeck et al. (Funktionentheorie
in der Ebene und im Raum, Birkhäuser, Basel, 2006), the quaternion Fourier trans-
form of Hitzer (Proceedings of Function Theories in Higher Dimensions, 2006) and
the biquaternion Fourier transform of Sangwine et al. (IEEE Trans. Signal Process.
56(4),1522–1531, 2007).

1 Fluid Flow Analysis

Fluid flow, especially of air and water, is usually modeled by the Navier–Stokes
equations or simplifications like the Euler equations [1]. The physical fields in this
model include pressure, density, velocity, and internal energy [22]. These variables
depend on space and often also on time. While there are mainly scalar fields, veloc-
ity is a vector field and of high importance for any analysis of numerical or physical
experiments. Some numerical simulations use a discretization of the spatial domain
and calculate the variables at a finite number of positions on a regular lattice (finite
difference methods). Other methods split space into volume elements and assume
a polynomial solution of a certain degree in each volume element (finite element
methods or finite volume methods). These numerical methods create a large amount
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of data and its analysis, i.e., postprocessing, usually uses computer graphics to cre-
ate images. Research about this process is an important part of scientific visualiza-
tion [21].

Besides numerical simulations, modern measurement techniques like particle im-
age velocimetry (PIV) [16] create velocity vector field measurements on a regular
lattice using laser sheets and image processing. Therefore, simulations and experi-
ments in fluid mechanics create discretized vector fields as part of their output. The
analysis of these fields is an important postprocessing task. In the following, we will
assume that there is a way to continuously integrate the data to simplify the notation.
Of course, one can also discretize the integrals conversely.

Flow visualization knows a lot of direct methods like hedgehogs, streamlines,
or streamsurfaces [21] and also techniques based on mathematical data analysis
like topology or feature detection methods [10, 17, 20]. Since these methods are
often not very robust, a transfer of image processing to vector data is an attractive
approach. A look into any image processing book, e.g., by Jähne [15], reveals the
importance of shift-invariant linear filters based on convolution. Of course, there
is vector data processing in image processing, but the usual techniques for optical
flow, which is the velocity field warping one image into another, do not really help
as they concentrate mainly on noncontinuities in the field which is not a typical
event in fluid flow velocity fields.

2 Geometric Algebra

In classical linear algebra, there are several multiplications involving vectors. Some
multiplications have led to approaches for a convolution on vector fields. Scalar mul-
tiplication can be easily applied and can be seen as a special case of component-wise
multiplication of two vectors which has been used by Granlund and Knutsson [8].
The scalar product has been used by Heiberg et al. [11] as a convolution operator.
Obviously, one would like a unified convolution operator that incorporates these ap-
proaches and can be applied several times, in contrast to the scalar product version
that creates a scalar field using two vector fields. Furthermore, one looks for all the
nice theorems like convolution theorem with a suitable generalized Fourier trans-
form, derivation theorem, shift theorem, and Parseval’s theorem. Geometric algebra
allows such a convolution [5, 6].

Let R
d, d = 2,3, be the Euclidean space with the orthonormal basis

{e1, e2} resp. {e1, e2, e3}. (1)

We use the 2d -dimensional real geometric algebras Gd,d = 2,3, which have a as-
sociative, bilinear geometric product satisfying

1ej = ej , j = 1, . . . , d, (2)

e2
j = 1, j = 1, . . . , d, (3)

ej ek = −ekej , j, k = 1, . . . , d, j �= k. (4)



Analyzing Real Vector Fields 123

Their basis is given by

{1, e1, e2, i2 := e1e2} resp. {1, e1, e2, e3, e1e2, e2e3, e3e1, i3 := e1e2e3}. (5)

It can be verified quickly that the squares of i2, i3 and those of the bivectors
e1e2, e2e3, and e3e1 are −1. General elements in Gd are called multivectors, while
elements of the form

v =
d∑

j=1

αjej (6)

are called vectors, i.e., v ∈ R
d ⊂Gd . The geometric product of two vectors a, b ∈

R
d results in

ab= a · b+ a ∧ b, (7)

where · is the inner product, and ∧ is the outer product. We have

a · b = |a||b| cos(α), (8)

|a ∧ b| = |a||b| sin(α) (9)

with the usual norm for vectors and the angle α from a to b.
Let F be a multivector-valued function (field) of a vector variable x defined on

some region G of the Euclidean space R
d ; compare (19) for d = 3 and (23) for

d = 2. We define the Riemann integral of F by

∫

G

F(x)|dx| = lim|Δx|→0,n→∞

n∑

j=1

F(xj )|Δxj |. (10)

We define Δx = dx1 ∧ dx2i
−1
2 (d = 2) resp. Δx = dx1 ∧ dx2 ∧ dx3i

−1
3 (d = 3)

as the dual oriented scalar magnitude. The quantity |Δx| is used here to make the
integral grade preserving since dx is a vector within geometric algebra in general.

The directional derivative of F in direction r is

Fr(x)= lim
h→0

F(x + hr)− F(x)

h
(11)

with r ∈R
3, h ∈R. With the vector derivative

∇ =
d∑

j=1

ej
∂

∂ej
(12)

(vector valued), the complete (left) derivative of F is defined as

∇F(x)=
d∑

j=1

ejFej (x). (13)
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Similarly, we define the complete right derivative as

F(x)∇ =
d∑

j=1

Fej (x)ej . (14)

The curl and divergence of a vector field f can be computed as scalar and bivector
parts of (12):

curlf =∇ ∧ f = 1

2
(∇f − f∇), divf =∇ · f = 1

2
(∇f + f∇). (15)

The readers interested in the basics and more applications of geometric algebra are
also referred to [12] and [4]. That fluid flow dynamics is accessible by geometric
algebra methods and is also discussed in [3].

3 Clifford Convolution

Let V,H : Rd →Gd be two multivector fields. We define the Clifford convolution
as

(H ∗ V )(r) :=
∫

Rd

H(ξ)V (r − ξ)|dξ |. (16)

If both fields are scalar fields, this is the usual convolution in image processing. If
H is a scalar field, e.g., a Gaussian kernel, and V is a vector field, we get a scalar
multiplication and can model smoothing of a vector field. If H is a vector field, and
V a is multivector field, the simple relation

H(ξ)V (r − ξ)=H(ξ) · V (r − ξ)+H(ξ)∧ V (r − ξ) (17)

shows that the scalar part of the result is Heiberg’s convolution, while the bivector
part contains additional information. General multivector fields allow a closed op-
eration in Gd , so that several convolutions can be combined. We have shown [5, 7]
that this convolution can be used for the analysis of velocity vector fields from com-
putational fluid dynamics (CFD) simulations and PIV measurements.

4 Clifford–Fourier Transform

Our group has found a generalization of the Fourier transform of complex signals to
multivector fields [6] that allows the generalization of the well-known theorems like
the convolution theorem for the convolution defined in the previous section. There
are different approaches of transforming multivector valued data, e.g., in [2, 14],
and [18]. In Sect. 5 we discuss the relation to ours.
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Let F :Rd→G3 be a multivector field. We define

F{F }(u) :=
∫

Rd

F (x) exp(−2πidx · u)|dx| (18)

as the Clifford–Fourier transform (CFT) with the inverse

F−1{F }(x) :=
∫

Rd

F (u) exp(2πidx · u)|du|. (19)

In three dimensions, the CFT is a linear combination of four classical complex
Fourier transforms as can be seen by looking at the real components. Since

F(x) = F0(x)+ F1(x)e1 + F2(x)e2 + F3(x)e3

+ F12(x)e1e2 + F23(x)e2e3 + F31(x)e3e1 + F123(x)e1e2e3 (20)

= F0(x)+ F1(x)e1 + F2(x)e2 + F3(x)e3 + F12(x)i3e3

+ F23(x)i3e1 + F31(x)i3e2 + F123(x)i3 (21)

= (F0(x)+ F123(x)i3
)
1+ (F1(x)+ F23(x)i3

)
e1

+ (F2(x)+ F31(x)i3
)
e2 +

(
F3(x)+ F12(x)i3

)
e3, (22)

we get

F{F }(u) = [F{F0 + F123i3}(u)
]
1+ [F{F1 + F23i3}(u)

]
e1

+ [F{F2 + F31i3}(u)
]
e2 +

[
F{F3 + F12i3}(u)

]
e3. (23)

We have proven earlier [6] that the convolution, derivative, shift, and Parseval the-
orem hold. For vector fields, we can see that the CFT treats each component as a
real signal that is transformed independently from the other components. Various
examples of 3D patterns and their CFT are shown in Fig. 1.

In two dimensions, the CFT is a linear combination of two classical complex
Fourier transforms. We have

F(x) = F0(x)+ F1(x)e1 + F2(x)e2 + F12(x)e1e2 (24)

= F0(x)+ F1(x)e1 + F2(x)e1i2 + F12(x)i2 (25)

= 1
[
F0(x)+ F12(x)i2

]+ e1
[
F1(x)+ F2(x)i2

]
(26)

and obtain

F{F }(u)= 1
[

F{F0 + F12i2}(u)
]+ e1

[
F{F1 + F2i2}(u)

]
. (27)

Regarding the convolution theorem, one has to separate the vector and spinor parts
since i2 does not commute with all algebra elements. With this restriction, the the-
orem holds again [6]. Figure 2 shows a turbulent fluid in 2D, in Figs. 3 and 4 its
discrete CFT is visualized.
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Fig. 1 Top: Various 3D patterns. Middle: The vector part of their DCFT. Bottom: The bivector part
of their DCFT, displayed as normal vector of the plane. Left: 3× 3× 3 rotation in one coordinate
plane. Middle: 3× 3× 3 convergence. Right: 3× 3× 3 saddle line. The mean value of the discrete
Clifford–Fourier transform (DCFT) is situated in the center of the field. In 3D, the waves forming
the patterns can be easily seen in the frequency domain. The magnitude of the bivectors of the
DCFT is only half the magnitude of the corresponding vectors, though both are displayed with
same length

5 Relation to Other Fourier Transforms

In recent years, other definitions of a Fourier transform have appeared in the liter-
ature that can be applied to vector fields. In this section, we compare our approach
with the Fourier series based on quaternion analysis by Gürlebeck, Habetha, and
Sprößig [9], the biquaternion Fourier transform by Sangwine et al. [19], and the
quaternion Fourier transform by Hitzer in [13]. Therefore we use three important
isomorphisms. First of all, quaternions are isomorphic to the even subalgebra G+3
of G3 by

i �→ e1e2, j �→ e2e3, k �→ e1e3, (28)

biquaternions are isomorphic to G3 by additionally

I �→ e1e2e3 = i3. (29)
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Fig. 2 A 2D slice of a turbulent swirling jet entering a fluid at rest. The image shows color coding
of the absolute magnitude of the vectors. The colors are scaled from zero (blue) to the maximal
magnitude (red)

Fig. 3 This image shows a (fast) discrete Clifford–Fourier transform of the data set. Zero fre-
quency is located in the middle of the image. Vectors are treated as rotors when using Clifford
algebra in the frequency domain, thus color coding is based on the magnitude of the transformed
rotor. The scaling of the colors is the same as the last image. We zoomed in to get more information
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Fig. 4 In that image we zoom in further and take a look at the direction of the “vectors” in a
neighborhood of zero frequency

Further the quaternions are isomorphic to the Clifford Algebra Cl0,2 of the Anti-
Euclidean Space R

0,2 by

i �→ e1, i �→ e2, k �→ e1e2, (30)

which we will only use in for the definition of holomorphicity in Sect. 5.1.

5.1 H-Holomorphic Functions and Fourier Series

We follow the definitions by Gürlebeck et al. [9] and identify the quaternions as
in (29). Let f : H→ H be a function with real partial derivatives ∂k := ∂

∂qk
. We

define the complete real differential as

df =
3∑

k=0

∂kf dqk (31)

and set

dq = dq0 +
3∑

k=1

ek dqk, dq̄ = dq0 −
3∑

k=1

ek dqk. (32)
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This leads to

df = 1

2

(
3∑

k=0

∂kf ek

)

dq̄ + 1

2

(

∂0f dq −
3∑

k=1

∂kf dq ek

)

. (33)

A real C1-function f is right H-holomorphic in G ⊂ H if, for every q ∈ G and
h→ 0, there exist ak(q) ∈H with

f (q + h)= f (q)+
3∑

k=1

ak(q) (hk − h0ek)+ o(h) (34)

and left H-holomorphic if

f (q + h)= f (q)+
3∑

k=1

(hk − h0ek)ak(q)+ o(h) (35)

with Landau symbol o(h). The h0, hk are the 4D coordinates of h ∈ H. With the
operator

∂̄ := ∂

∂q0
+

3∑

k=1

∂

∂qk
ek, (36)

we have

f is left H-holomorphic ⇐⇒ ∂̄f = 0, (37)

f is right H-holomorphic ⇐⇒ f ∂̄ = 0. (38)

Let B3 := {q ∈H||q| = 1} be the unit sphere in H. Let L2(B3) be the functions on
B3 with existing integral of the squared function. Then one can write

L2(B3)∩ ker ∂̄ =
∞⊕

k=0

H+k , (39)

where H+k are homogenous H-holomorphic polynomials. There is an orthogonal
basis for this space that allows a Fourier series approximation [9].

If we look at a vector field

v :R3→R
3 ⊂G3, (40)

we have to find a related H-holomorphic function f : B3→ H ⊂ G3 to apply the
construction above. We tried

v(x)= f (x)e1f (x) (41)

and

v(x)= f (x)e1, v(x)= e1f (x), (42)
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as well as

f (x)= v1(x)e1e2 + v2(x)e2e3 + v3(x)e1e3 (43)

with ei ∈G3.
In all examined cases, general linear vector fields v do not generate a H-

holomorphic function f , which makes applying the Fourier series expansion to our
purpose inconvenient.

5.2 Biquaternion Fourier Transform

Let HC be the biquaternions, i.e.,

HC = {q0 + q1i + q2j + q3k | qk ='(qk)+ I((qk) ∈C} (44)

with the algebra isomorphism HC → G3 as in (28)–(29). Sangwine et al. [19]
choose a μ ∈ G3 with μ2 = −1 and define the right biquaternion Fourier trans-
form (BiQFT) for a signal F :R3→G3 by

F μ
r {F }(u)=

∫

R3
F(x) exp(−2πμx · u)|dx| (45)

and the left biquaternion Fourier transform by

F μ
l {F }(u)=

∫

R3
exp(−2πμx · u)F (x)|dx|. (46)

For μ= i3, this is the 3D-CFT. But for a pure bi-quarternion, i.e., a bivector, one can
choose an orthogonal basis μ,ν, ξ = μν, with {μ,ν, ξ} being quaternionic roots of
−1 such that any q ∈G3 can be written as

q = q0 + q1e1e2 + q2e2e3 + q3e1e3

= q0 + q̃1μ+ q̃2ν + q̃3ξ

= (q0 + q̃1μ)+ (q̃2 + q̃3μ)ν

= Simp(q)+ Perp(q)ν (47)

with Simp(q) and Perp(q) denoting the so-called simplex and perplex of q . For a
pure bi-quarternion μ, the corresponding BiQFT fulfills

F e1e2 = T −1 F μT (48)

with the linear operator T (1) = 1, T (e1e2) = μ,T (e2e3) = ν,T (e1e3) = ξ , so any
two BiQFTs with pure bi-quarternion μ differ just by an orthogonal transforma-
tion. The BiQFT splits like the CFT in four independent classical complex Fourier
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transforms:

F μ
r {F }(u) =

∫

R3
F(x) exp(−2πμx · u)|dx|

=
∫

R3

(
f0(x)+ f̃1(x)μ

)
exp
(−2πμx · u)|dx|

+
∫

R3

(
f̃2(x)+ f̃3(x)μ

)
ν exp(−2πμx · u)|dx|

=
∫

R3

('(f0(x)
)+'(f̃1(x)

)
μ
)

exp
(−2πμx · u)|dx|

+
∫

R3

(((f0(x)
)+((f̃1(x)

)
μ
)

exp
(−2πμx · u)|dx|i3

+
∫

R3

('(f̃2(x)
)+'(f̃3(x)

)
μ
)
ν exp

(−2πμx · u)|dx|

+
∫

R3

(((f̃2(x)
)+((f̃3(x)

)
μ
)
ν exp

(−2πμx · u)|dx|i3. (49)

For a real vector field

v :R3→R
3 ⊂G3, x �→

3∑

k=1

vk(x)ek, (50)

we have

v(x) = (−v3(x)e1e2 − v1(x)e2e3 + v2(x)e1e3
)
i3 (51)

= ((−v3(x)e1e2
)+ (−v1(x)+ v2(x)e1e2

)
e2e3

)
i3. (52)

We get for μ= e1e2:

F i
r {v}(u) =

∫

R3

(−v3(x)e1e2
)

exp
(−2πe1e2x · u

)|dx|i3

+
∫

R3

(−v1(x)+ v2(x)e1e2
)

exp(−2πe1e2x · u)|dx|i3, (53)

which means that the vector field is split in a purely complex signal, −v3(x)e1e2

and a complex signal −v1(x)+ v2(x)e1e2, which are transformed independently by
two classical Fourier transforms.

In essence, the BiQFT means choosing a planar direction μ in R
3, transforming

the planar part of the vector field with a 2D-CFT in each plane parallel to μ, and
transforming the scalar part orthogonal to μ as an independent real signal. One can
say that the BiQFT is the direct generalization of the 2D-CFT to three dimensions,
while the 3D-CFT looks at a vector field as three independent real signals.
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5.3 Two-Sided Quaternion Fourier Transform

Another approach for transforming a function F including the main QFT Theorems
can be found in [2], and its generalization in [13]. Hitzer also stated a Plancherel
Theorem for the QFT and, together with Mawardi, extended the theory to higher-
dimensional Clifford algebras in [14]. Let F : R2→G+3 ; then the QFT is defined
as

F{F }(u)=
∫

R2
e−2πe1e2x1u1F(x1, x2)e

−2πe2e3x2u2 |dx|. (54)

The inverse QFT is given by

F−1{F }(x)=
∫

R2
e2πe1e2x1u1F(u1, u2)e

2πe2e3x2u2 |du|. (55)

Though the usual decomposition of F into four real-valued resp. two complex-
valued signals is possible via

F = F0 + e1e2F1 + (F2 + e1e2F3)e2e3, (56)

and there are several options to embed two real variables in a quaternion for applying
the transform to a real vector field, the Two-Sided QFT is different from the 2D-
CFT. Not only the multiplication from two sides and using two distinct axes of
transformation at once lead to different numerical results; even if the Fourier kernel
is all right-sided, we cannot merge the two exponentials, because the functional
equation does not hold for arbitrary quaternions.

Investigating the precise relationship of both transforms is left for future work.

6 Conclusion

It has been shown that a convolution of vector fields is a nice asset for the analysis
of fluid flow simulations or physical velocity measurements. Geometric algebra al-
lows a formulation of a suitable convolution as closed operation. Furthermore, one
can define a Clifford–Fourier transform in two- and three- dimensional Euclidean
spaces that allows the well-known theorems like convolution theorem, derivative
theorem, and Parseval’s theorem. Looking into the two CFT transforms reveals that
they look at the vector field in a totally different manner, i.e., the 2D-CFT transforms
the vector field as one complex signal, while the 3D-CFT transforms the vector field
as three independent real signals. This mismatch can be interpreted by the BiQFT of
Sangwine et al. which needs an element μ ∈G3 with μ2 =−1. For a pure bivector,
this means choosing a planar direction in which the vector field is transformed as
complex signal. The perpendicular part of the vector field is independently trans-
formed as real signal. For μ = i3, one gets the 3D-CFT. We have also shown that
several constructions do not allow a use of the Fourier series approach based on [9].
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Clifford–Fourier Transform for Color Image
Processing

Thomas Batard, Michel Berthier,
and Christophe Saint-Jean

Abstract The aim of this paper is to define a Clifford–Fourier transform that is
suitable for color image spectral analysis. There have been many attempts to define
such a transformation using quaternions or Clifford algebras. We focus here on a
geometric approach using group actions. The idea is to generalize the usual defi-
nition based on the characters of abelian groups by considering group morphisms
from R

2 to spinor groups Spin(3) and Spin(4). The transformation we propose is
parameterized by a bivector and a quadratic form, the choice of which is related to
the application to be treated. A general definition for 4D signal defined on the plane
is also given; for particular choices of spinors, it coincides with the definitions of
S. Sangwine and T. Bülow.

1 Introduction

During the last years several attempts have been made to generalize the classical ap-
proach of scalar signal processing with the Fourier transform to higher-dimensional
signals. The reader will find a detailed overview of the related works at the beginning
of [1]. We only mention in this introduction some of the approaches investigated by
several authors.

Motivated by the spectral analysis of color images, S. Sangwine and T. Ell have
proposed in [13] and [5] a generalization based on the use of quaternions: a color
corresponds to an imaginary quaternion, and the imaginary complex i is replaced by
the unit quaternion μ coding the grey axis. A quaternionic definition is also given
by T. Bülow and G. Sommer in the context of analytic signals, for signals defined on
the plane and with values in the algebra H of quaternions [3]. Concerning analytic
signals, M. Felsberg makes use of the Clifford algebras R2,0 and R3,0 to define an
appropriate Clifford–Fourier transform [6].
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A generalization in the Clifford algebras context appears also in J. Ebling and
G. Scheuermann [4]. The authors mainly use their transformation to analyze fre-
quencies of vector fields. Using the same Fourier kernel, B. Mawardi and E. Hitzer
obtain an uncertainty principle for R3,0 multivector functions [11]. The reader may
find in [1] definitions of Clifford–Fourier transform and Clifford–Gabor filters based
on the Dirac operator and Clifford analysis.

One could ask the reason why to propose a new generalization. An important
thing when dealing with Fourier transform is its link with group representations.
We then recall in Sect. 2 the usual definition of the Fourier transform of a function
defined on an abelian Lie group by means of the characters of the group. The defini-
tion we propose in Sect. 3 relies mainly on the generalization of the notion of char-
acters; that is why we study the group morphisms from R

2 to Spin(3) and Spin(4).
These morphisms help to understand the behavior of the Fourier transform with re-
spect to well chosen spinors. We treat in Sect. 4 three applications corresponding to
specific bivectors of R4,0. They consist in filtering frequencies according to color,
hue, and chrominance part of a given color. In Sect. 5, we show that for particular
choices of group morphisms and under well-chosen identification with quaternions,
the Clifford–Fourier transform we propose coincides with the definitions of S. Sang-
wine [5] and T. Bülow [2].

2 Fourier Transform and Group Actions

Let us recall briefly some basic ideas related to the group approach of the definition
of the Fourier transform. Details can be found in the Appendix; see also [15] for
examples of applications to Fourier descriptors.

Let G be a Lie group. The Pontryagin dual of G, denoted Ĝ, is the set of equiv-
alence classes of unitary irreducible representations of G. It appears that if G is
abelian, every irreducible unitary representation of G is of dimension 1, i.e., is a
continuous group morphism from G to S1. This is precisely the definition of a char-
acter. It is well known that the characters of R

m are given by

(x1, . . . , xm) �−→ ei(u1x1+···+umxm)

with real u1, u2, . . . , um. This shows that R̂m =R
m. The characters of SO(2) are the

group morphisms

θ �−→ einθ

for n ∈ Z, and the corresponding Pontryagin dual is Z. The characters of Z/nZ are
the group morphisms

u �−→ ei
2πku
n

for k ∈ Z/nZ, from which we deduce that Z/nZ is its own Pontryagin dual.
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In the general case (provided that G is unimodular), the Fourier transform of a
function f ∈ L2(G;C) is defined on Ĝ by

f̂ (ϕ)=
∫

G

f (x)ϕ
(
x−1)dν(x)

(for ν a well-chosen invariant measure on G). Applying this formula to the case G=
R

m, resp. G =SO(2), resp. G = Z/nZ leads to the usual definition of the Fourier
transform, resp. Fourier coefficients, resp. discrete Fourier transform.

Traditionally, the Fourier transform in L2(Rm, (Rn,‖‖2)) is defined by n stan-
dard Fourier transforms in L2(Rm,R) on each one of the components, embedding R

into C. Using group representations theory, we are able to define Fourier transforms
that treat jointly the different components.

From now on, we deal with the abelian group G = (R2,+) since this paper is
devoted to image processing applications.

Let us make some crucial remarks about the case n= 2.
Let f be a real- or complex-valued function defined on R

2. Its Fourier transform
is given by

f̂ (a, b)=
∫

R2
f (x, y)e−i(ax+by) dx dy.

Identifying C with (R2,‖‖2), we have S1 = SO(2), and the action of S1 on C,
given by the complex multiplication, corresponds to the action of the group SO(2)
on (R2,‖‖2). Hence, we can define a Fourier transform in L2(R2, (R2,‖‖2)) using
the action of group morphisms from R

2 to SO(2) on (R2,‖‖2). These ones are real
unitary representations of the group R

2 of dimension 2.
The Fourier transform of f ∈ L2(R2, (R2,‖‖2)) defined above can be written in

the Clifford algebra language. Indeed, from the embedding of (R2,‖‖2) into R2,0,
f may be viewed as an R

1
2,0-valued function

f (x, y)= f1(x, y)e1 + f2(x, y)e2,

where e2
1 = e2

2 = 1 and e1e2 =−e2e1. From this point of view, the Fourier transform
of f is given by

f̂ (a, b) =
∫

R2

[
cos
(
(ax + by)/2

)
1+ sin

(
(ax + by)/2

)
e1e2

]

× (f1(x, y)e1 + f2(x, y)e2
)

× [cos
(−(ax + by)/2

)
1+ sin

(−(ax + by)/2
)
e1e2

]
dx dy

using the fact that the action of Spin(2) on R
1
2,0 corresponds to the action of SO(2)

on (R2,‖‖2) (see Appendix). We can write this last formula in the following form:

f̂ (a, b)=
∫

R2

(
f1(x, y)e1 + f2(x, y)e2

)⊥ϕa,b(−x,−y)dx dy,
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where ϕa,b is the morphism from R
2 to Spin(2) that sends (x, y) to

exp[((ax + by)/2)(e1e2)], and ⊥ denotes the action v⊥s = s−1vs of Spin(2) on
R

1
2,0 and, more generally, the action of Spin(n) on R

1
n,0.

Note that group morphisms from R
2 to Spin(2) followed by the action on R

1
2,0

correspond to the action of group morphisms from R
2 to SO(2) on (R2,‖‖2). In

other words, they are real unitary representations of R
2 of dimension 2 too.

Remark 1 As in the standard case, where the Fourier transform of a real-valued
function is defined by embedding R into C, we define here the Fourier transform of
a real-valued function by embedding R into R

2.

Starting from these elementary observations, we now proceed to generalize this
construction for R

n-valued functions defined in R
2. In other words, we are looking

for a generalization of the action of group morphisms to SO(2) on the values of an
(R2,‖‖2)-valued function.

3 Clifford–Fourier Transform in L2(R2, (Rn,Q))

Let f ∈ L2(R2, (Rn,Q)) where Q is a positive definite quadratic form. We pro-
pose to associate the Fourier transform of f with the action of the following group
morphisms on the values of f , depending on the parity of n.

If n is even, then we consider the morphisms

ϕ :R2 −→ SO(Q).

If n is odd, then we embed (Rn,Q) into (Rn+1,Q⊕1) and consider the morphisms

ϕ :R2 −→ SO(Q⊕ 1).

Thus the generalization we propose is based on the computation of real unitary
representations of dimension n or n+1 of the abelian group R

2. The main fact is that
we no more consider equivalent classes of representations. This means in particular
that the Fourier transform we define depends on the positive definite quadratic form
of R

n.

Remark 2 Recall that up to a change of the basis, a positive definite quadratic form
is given by the identity matrix. Thus, f may always be viewed as an (Rp,‖‖2)-
valued function (p denotes n if n is even and n+ 1 if n is odd). As a consequence
of the change of the basis, SO(Q) become SO(p) and group morphisms from R

2 to
SO(Q) become group morphisms from R

2 to SO(p).

As for the case of R
2-valued functions, we can rewrite the Fourier transform

in the Clifford algebra language, using the fact that the action of Spin(p) on R
1
p,0

corresponds to the action of SO(p) on R
p . Moreover, it appears to be much more
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easier to compute group morphisms to Spin(p) rather than group morphisms to the
matrix group SO(p).

If n is even, then from the embedding of R
n into Rn,0, f may be viewed as an

R
1
n,0-valued function:

f (x, y)= f1(x, y)e1 + f2(x, y)e2 + · · · + fn(x, y)en,

where e2
i = 1 and eiej = −ej ei . Denoting by ϕ a group morphism from R

2 to
Spin(n), we define the Clifford–Fourier transform of f by

f̂ (ϕ)=
∫

R2
ϕ(x, y)f (x, y)ϕ(−x,−y)dx dy =

∫

R2
f (x, y)⊥ϕ(−x,−y)dx dy.

If n is odd, we first embed R
n into R

n+1. Then, from the embedding of R
n+1 into

Rn+1,0, f may be viewed as an R
1
n+1,0-valued function:

f (x, y)= f1(x, y)e1 + f2(x, y)e2 + · · · + fn(x, y)en + 0en+1,

where e2
i = 1 and eiej = −ej ei . Denoting by ϕ a group morphism from R

2 to
Spin(n+ 1), we define the Clifford–Fourier transform of f by

f̂ (ϕ)=
∫

R2
ϕ(x, y)f (x, y)ϕ(−x,−y)dx dy =

∫

R2
f (x, y)⊥ϕ(−x,−y)dx dy.

Remark 3 If n is even, the Clifford–Fourier transform of f is an R
1
n,0-valued func-

tion. If n is odd, the Clifford–Fourier transform of f is an R
1
n+1,0-valued function.

Remark 4 For Q = 1 on R, the Fourier transforms we define correspond to the
standard Fourier transforms of R-valued functions.

From now on, we deal with the case n = 3 since this paper is devoted to color
image processing. However, we have seen above that we treat the cases n= 3 and
n= 4 in the same manner, by computing group morphisms from R

2 to Spin(4).

3.1 The Cases n = 3,4: Group Morphisms from R
2 to Spin(4)

This part is devoted to the computation of group morphisms from R
2 to Spin(4).

Using the fact that the group Spin(4) is isomorphic to the group Spin(3) ×
Spin(3), we first compute group morphisms from R

2 to Spin(3).
One can verify that Spin(3) is the group

Spin(3)= {a1+ be1e2 + ce2e3 + de3e1, a2 + b2 + c2 + d2 = 1
}

and is isomorphic to the group of unit quaternions.
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Proposition 1 The group morphisms from R
2 to Spin(3) are given by

(x, y) �−→ e
1
2 (ux+vy)B,

where B belongs to S
2
3,0 , the set of unit bivectors in R3,0 (see Appendix), and u and

v are real.

Proof We have to determine the abelian subalgebras of the Lie algebra spin(3) =
R

2
3,0 of the Lie group Spin(3). More precisely, as the exponential map of R

2 is onto,

group morphisms from R
2 to Spin(3) are given by Lie algebra morphisms from the

abelian Lie algebra R2 of R
2 to spin(3). Taking two generators (f1, f2) of R2, any

morphism ϕ from R2 to spin(3) satisfies

ϕ(f1)× ϕ(f2)= 0.

We deduce that Im(ϕ) is an abelian subalgebra of R
2
3,0 whose dimension is inferior

or equal to 2. If a = a1e1e2 + a2e3e1 + a3e2e3 and b = b1e1e2 + b2e3e1 + b3e2e3

satisfy a × b= 0, then the structure relations of R
2
3,0, i.e.,

e1e2 × e3e1 = e2e3, e3e1 × e2e3 = e1e2, e2e3 × e1e2 = e3e1,

imply

(a1b2 − a2b1)e2e3 − (a1b3 − a3b1)e3e1 + (a2b3 − a3b2)e1e2 = 0.

This shows that two commuting elements of R
2
3,0 are colinear and that the abelian

subalgebras of R
2
3,0 are of dimension 1. If we write ϕ(f1)= 1

2uB and ϕ(f2)= 1
2vB

for some u,v ∈ R and B ∈ S
2
3,0, we see that the morphisms from R2 to R

2
3,0 are

parameterized by two real numbers and one unit bivector and are given by

ϕu,v,B : (x, y) �→ 1

2
(ux + vy)B.

Consequently, the group morphisms from R
2 to Spin(3) are the morphisms ϕ̃u,v,B

with

ϕ̃u,v,B : (x, y) �→ e
1
2 (ux+vy)B . �

Let us recall what group is Spin(4). Every τ in Spin(4) is of the form

τ = u+ Iv

= (a1+ be1e2 + ce2e3 + de3e1)+ I
(
a′1+ b′e1e2 + c′e2e3 + d ′e3e1

)
,

where I denotes the pseudoscalar of R4,0, and the following relations hold:

uu+ vv = 1, uv+ vu= 0.
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The morphism χ : Spin(4)−→ Spin(3)× Spin(3) with

χ(u+ Iv)= (u+ v,u− v)

is an isomorphism. An alternative description of Spin(4) relies on the following fact:
the morphism ψ :H1 ×H1 −→ SO(4) defined by

(τ, ρ) �−→ (v �−→ τvρ)

(where v is a vector of R
4 considered as a quaternion) is a universal covering of

SO(4) (see [12]). This means that Spin(4) is isomorphic to H1 ×H1. We will use
this remark later on to compare our transform to Sangwine’s and Bülow’s ones.

Proposition 2 The group morphisms from R
2 to Spin(4) are the morphisms

φ̃u,v,B,w,z,C that send (x, y) to

e
1
8 [x(u+w)+y(v+z)][B+C+I (B−C)] e

1
8 [x(u−w)+y(v−z)][B−C+I (B+C)]

with u, v, w, z real and B , C two elements of S
2
3,0.

Proof The group law of Spin(3)× Spin(3) being

(
(a, b), (c, d)

)→ (ac, bd),

the group morphisms from R
2 to Spin(3)× Spin(3) are the morphisms ϕ̃u,v,B,w,z,C

defined by

ϕ̃u,v,B,w,z,C : (x, y) �→
(
e

1
2 (ux+vy)B, e

1
2 (wx+zy)C)

with u, v, w, z real and B , C two elements of S
2
3,0.

By χ−1, the group morphisms from R
2 to Spin(4) are the φ̃u,v,B,w,z,C that send

(x, y) to

e
1
2 (ux+vy)B + e

1
2 (wx+zy)C

2
+ I

e
1
2 (ux+vy)B − e

1
2 (wx+zy)C

2
.

However, this writing is not convenient to determine group morphisms to SO(4)
since it does not provide explicitly the rotations in R

4 that φ̃u,v,B,w,z,C generates
by its action on R

1
4,0. The solution comes from an “orthogonalization” of the corre-

sponding Lie algebras morphism from R2 to R
2
4,0, namely the linear map

φu,v,B,w,z,C(X,Y )= T(0,0) φ̃u,v,B,w,z,C(X,Y ),

where T denotes the linear tangent map. By definition,

φu,v,B,w,z,C(X,Y )= d

dt

(
φ̃u,v,B,w,z,C

(
exp
(
t (X,Y )

)))∣∣
t=0.
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The exponential map of R
2 being the identity map, we get

φu,v,B,w,z,C(X,Y ) = d

dt

(
φ̃u,v,B,w,z,C

(
t (X,Y )

))∣∣
t=0

= d

dt

(
e

1
2 t (uX+vY )B + e

1
2 t (wX+zY )C

2

+ I
e

1
2 t (uX+vY )B − e

1
2 t (wX+zY )C

2

)∣∣∣∣
t=0

= (uX+ vY )B + (wX+ zY )C

4

+ I
(uX+ vY )B − (wX+ zY )C

4
.

The orthogonalization of the morphism φu,v,B,w,z,C consists in decomposing the
bivector φu,v,B,w,z,C(X,Y ) for each X,Y into commuting bivectors whose squares
are real. The corresponding spinor is written as a product of commuting spinors
of the form eFi with F 2

i < 0. These ones represent rotations of angle −F 2
i in the

oriented planes given by the Fi ’s. In our case, the bivector φu,v,B,w,z,C(X,Y ) is
decomposed into F1 + F2 where

F1 = 1

8

[(
X(u+w)+ Y(v + z)

)(
B +C + I (B −C)

)]
,

F2 = 1

8

[(
X(u−w)+ Y(v − z)

)(
B −C + I (B +C)

)]

(see the Appendix for details). The group morphisms φ̃u,v,B,w,z,C from R
2 to

Spin(4) can then be written as

φ̃u,v,B,w,z,C(x, y) = e[
(ux+vy)B+(wx+zy)C

4 +I (ux+vy)B−(wx+zy)C
4 ]

= e
1
8 [(x(u+w)+y(v+z))(B+C+I (B−C))]

× e
1
8 [(x(u−w)+y(v−z))(B−C+I (B+C))]. �

This is a convenient form to describe group morphisms from R
2 to SO(4).

To conclude this part, let us remark that the expression of the morphisms
φ̃u,v,B,w,z,C may be simplified. Indeed, when B and C describe S

2
3,0 ⊂ R4,0, the

unit bivectors

D = 1

4

(
B +C + I (B −C)

)
and ID = 1

4

(
B −C + I (B +C)

)

describe S
2
4,0, the set of unit bivectors in R4,0.
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Therefore, the morphisms φ̃u,v,B,w,z,C are parameterized by four real numbers
and one unit bivector D ∈ S

2
4,0 and may be written

Φ̃u,v,w,z,D(x, y)= e
1
2 [(x(u+w)+y(v+z))D] e

1
2 [(x(u−w)+y(v−z))ID].

3.2 The Cases n = 3,4: The Clifford–Fourier Transform

From the computation of group morphisms from R
2 to Spin(4), we give an ex-

plicit formula of the Clifford–Fourier transform f̂ of f ∈ L2(R2, (R3,Q)) or
L2(R2, (R4,Q)).

Definition 1 Let f ∈ L2(R2, (R3,Q)) resp. L2(R2, (R4,Q)) and denote by f the
embedding of f into the Clifford algebra Cl(R4,Q ⊕ 1) resp. Cl(R4,Q). The
Clifford–Fourier transform of f is given by

f̂ (u, v,w, z,D) =
∫

R2
f (x, y)⊥Φ̃u,v,w,z,D(−x,−y)dx dy

=
∫

R2
e

1
2 [(x(u+w)+y(v+z))D]e

1
2 [(x(u−w)+y(v−z))ID]f (x, y)

× e−
1
2 [(x(u+w)+y(v+z))D]e−

1
2 [(x(u−w)+y(v−z))ID] dx dy.

Decomposing f as f|| + f⊥ with respect to the plane generated by the bivector
D, we get

f̂ (u, v,w, z,D) =
∫

R2
f||(x, y)e[−(x(u+w)+y(v+z))D] dx dy

+
∫

R2
f⊥(x, y)e[−(x(u−w)+y(v−z))ID] dx dy.

Indeed, the plane generated by ID represents the orthogonal of the plane generated
by D in R

4.

Proposition 3 The Clifford–Fourier transform is left-invertible. Its inverse is the
map ˇ given by

ǧ(a, b)=
∫

R4×S
2
4,0

g(u, v,w, z,D)⊥Φ̃u,v,w,z,D(a, b) dudv dw dzdν,

where ν is a unit measure on S
2
4,0.
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Proof We have to verify that ˇ ◦ (̂f )(λ,μ)= f (λ,μ) for all (λ,μ) ∈R
2.

ˇ ◦ (̂f )(λ,μ) =
∫

R4×S
2
4,0

[∫

R2
f||(x, y)e[−(x(u+w)+y(v+z))D] dx dy

]

× e[(λ(u+w)+μ(v+z))D] dudv dwdzdν (1)

+
∫

R4×S
2
4,0

[∫

R2
f⊥(x, y)e[−(x(u−w)+y(v−z))ID] dx dy

]

× e[(λ(u−w)+μ(v−z))ID] dudv dwdzdν. (2)

It is sufficient to prove that (1) = f||(λ,μ).

(1) =
∫

R4×S
2
4,0

∫

R2
f||(x, y)e[(λ−x)(u+w)+(μ−y)(v+z)]D dx dy dudv dwdzdν

=
∫

R4×S
2
4,0

∫

R2
f||(x, y)eu(λ−x)Dew(λ−x)Dev(μ−y)D

× ez(μ−y)D dx dy dudv dwdzdν

=
∫

R2

∫

R3×S
2
4,0

f||(x, y)
(∫

R

eu(λ−x)D du

)
ew(λ−x)Dev(μ−y)D

× ez(μ−y)D dw dv dzdν dx dy

=
∫

R2

∫

R2×S
2
4,0

f||(x, y)δλ,x
(∫

R

ew(λ−x)D dw

)
ev(μ−y)D

× ez(μ−y)D dv dz dν dx dy

=
∫

R2

∫

R×S
2
4,0

f||(x, y)δλ,xδλ,x
(∫

R

ev(μ−y)Ddv

)
dzdν dx dy

=
∫

R2

∫

S
2
4,0

f||(x, y)δλ,xδλ,xδμ,y

(∫

R

ez(μ−y)D dz

)
dν dx dy

=
∫

R2

∫

S
2
4,0

f||(x, y)δλ,xδλ,xδμ,yδμ,y dν dx dy

=
∫

R2
f||(x, y)δλ,xδλ,xδμ,yδμ,y dx dy = f||(λ,μ). �



Clifford–Fourier Transform for Color Image Processing 145

4 Application to Color Image Filtering

4.1 Clifford–Fourier Transform of Color Images

For the applications we have in mind to color image filtering, we define a partial
Clifford–Fourier transform, i.e., we deal with a subset of the set of unitary group
representations of R

2 of dimension 4. The subset we consider will depend of the
colors we aim at filtering.

More precisely, we restrict Definition 1 to the set of group morphisms Φ̃u,v,0,0,D
where the bivector D is fixed.

Definition 2 (Clifford–Fourier transform with respect to a bivector) Let f ∈
L2(R2, (R3,Q)) resp. L2(R2, (R4,Q)) and denote by f the embedding of f into
the Clifford algebra Cl(R4,Q⊕1) resp. Cl(R4,Q). The Clifford–Fourier transform
of f with respect to the bivector D is defined by

f̂D(u, v) =
∫

R2
f (x, y)⊥ Φ̃u,v,0,0,D(−x,−y)dx dy

=
∫

R2
e

1
2 (xu+yv)IDe

1
2 (xu+yv)Df (x, y)e−

1
2 (xu+yv)De−

1
2 (xu+yv)ID dx dy.

It follows the definition of the Clifford–Fourier transform of a color image.

Definition 3 (Clifford–Fourier transform of a color image) Let I be a color image.
We associate to I a function f ∈ L2(R2, (R3,Q)) defined by

f (x, y)= r(x, y)e1 + g(x, y)e2 + b(x, y)e3 + 0e4,

where r , g, and b correspond to the red, green, and blue levels.
The Clifford–Fourier transform of I with respect to Q and D is the

Cl(R4,Q⊕ 1)-valued function ÎQ,D defined by

ÎQ,D(u, v)= f̂D(u, v)=
∫

R2
f (x, y)⊥Φ̃u,v,0,0,D(−x,−y)dx dy.

Thus, given a color image, we define a set of associated Clifford–Fourier trans-
forms parameterized by the set of positive definite quadratic forms on R

3 and unit
bivectors in R4,0.

As the Clifford–Fourier transform in L2(R3,Q) and L2(R4,Q), we can show
that the Clifford–Fourier transform of a color image is invertible.

Proposition 4 Let f ∈ L2(R2, (R3,Q)), and D be a unit bivector in Cl(R4,Q⊕1).
Then, the Clifford–Fourier transform of f with respect to D is invertible. Its inverse
is the map ˇ defined by

ǧ(x, y)=
∫

R2
g(u, v)⊥ Φ̃u,v,0,0,D(x, y) dudv.
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Proof Decomposing f with respect to the plane generated by D as f = f|| + f⊥,
we have

f̂D(u, v)=
∫

R2

(
f||(x, y)+ f⊥(x, y)

)⊥ Φ̃u,v,0,0,D(−x,−y)dx dy.

This can be written

f̂D(u, v)= f̂D‖(u, v)+ f̂D⊥(u, v),

where

f̂D‖(u, v) =
∫

R2
f||(x, y)⊥Φ̃u,v,0,0,D(−x,−y)dx dy

=
∫

R2
f||(x, y)e−(ux+vy)D dx dy

and

f̂D⊥(u, v) =
∫

R2
f⊥(x, y)⊥ Φ̃u,v,0,0,D(−x,−y)dx dy

=
∫

R2
f⊥(x, y)e−(ux+vy)ID dx dy.

Let us remark that each of the two integrals may be identified with the Fourier
transform of a function from R

2 to C. Then, we deduce that there exists an inversion
formula (left and right) for the Clifford–Fourier transform f̂D given by

f (x, y)=
∫

R2
f̂D(u, v)⊥Φ̃u,v,0,0,D(x, y) dudv.

Indeed, the right term equals
∫

R2

(
f̂D||(u, v)+ f̂D⊥(u, v)

)⊥Φ̃u,v,0,0,D(x, y) dudv

=
∫

R2
f̂D||(u, v)e

(ux+vy)D dudv+
∫

R2
f̂D⊥(u, v)e

(ux+vy)ID dudv. (3)

Each of these integrals may be identified with the inversion formula of the Fourier
transform of a function from R

2 to C; hence,

(3)= f||(x, y)+ f⊥(x, y)= f (x, y). �

The following proposition is useful for applications and in particular for appli-
cations to the frequencies filtering developed in the next section. It gives an integral
representation of any 3D-valued signal defined on the plane by 3D-valued cosinu-
soidal signals. This representation is obtained from the Clifford–Fourier transform
with respect to some bivector. In this proposition we show that the representation is
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invariant with respect to the choice of the bivector. In the discrete case, we obtain a
decomposition of the signal as a sum of cosinusoidal signals.

Proposition 5 Using the previous notation, if B and D are elements of S
2
4,0, we

have

f̂B(u, v)⊥ Φ̃u,v,0,0,B(x, y)+ f̂B(−u,−v)⊥ Φ̃−u,−v,0,0,B(x, y)

= f̂D(u, v)⊥ Φ̃u,v,0,0,D(x, y)+ f̂D(−u,−v)⊥ Φ̃−u,−v,0,0,D(x, y).

Moreover, the e4 component of this expression is null.

Proof Simple computations show that

f̂B(u, v)⊥ Φ̃u,v,0,0,B(x, y)+ f̂B(−u,−v)⊥ Φ̃−u,−v,0,0,B(x, y)

=
∫

R2
e−

xu+yv
2 (B+IB)e

λu+μv
2 (B+IB)f (λ,μ) e−

λu+μv
2 (B+IB)e

xu+yv
2 (B+IB) dλdμ

+
∫

R2
e

xu+yv
2 (B+IB)e−

λu+μv
2 (B+IB)f (λ,μ) e

λu+μv
2 (B+IB)e−

xu+yv
2 (B+IB) dλdμ

=
∫

R2
2 cos

(
u(x − λ)+ v(y −μ)

)
f||(λ,μ)dλdμ

+
∫

R2
2 cos

(
u(x − λ)+ v(y −μ)

)
f⊥(λ,μ)dλdμ. (4)

Hence,

(4)=
∫

R2
2 cos

(
u(x − λ)+ v(y −μ)

)
f (λ,μ)dλdμ. �

This proposition justifies the fact that these filters are symmetric with respect to
the transformation (u, v) �→ (−u,−v).

4.2 Color Image Filtering

We now present applications to color image filtering. The use of the Fourier trans-
form is motivated by the well-known fact that nontrivial filters in the spatial do-
main may be implemented efficiently with masks in the Fourier domain. Although
it seems natural to believe that the results on grey level images may be generalized,
there are not so many works dedicated to the specific case of color images. Let us
mention [14], where an attempt is made through the use of an ad hoc quaternionic
transform. The mathematical construction we propose appears to be well founded
since it explains the fundamental role of bivectors and scalar products in terms of
group actions. As explained before, the possibility to choose the bivector D and the
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quadratic form Q is an asset allowing a wider range of applications. Indeed, Sang-
wine et al. proposal can be written in our formalism by considering appropriate D

and Q.
The applications proposed in this paper are based on the following fact:

(f̂D)|| = (̂f||)D and (f̂D)⊥ = (̂f⊥)D.

In other words, the part of the Clifford–Fourier transform of f that is parallel to D

corresponds to the standard Fourier transform of the part of f that is parallel to D.
The same principle holds for the orthogonal part.

We use low pass, high pass, and directional filters on the D-parallel part resp.
D-orthogonal part, leaving the D-parallel part resp. D-orthogonal unmodified.
The choice of the bivector D and the quadratic form Q (that determines the D-
orthogonal part) will depend on the colors we aim at filtering. Then, we show the
action of such filters using the inversion formula of the Clifford–Fourier transform.

There is another way to decompose a color α = (r, g, b), that is, with respect to
its luminance and chrominance parts, respectively denoted by lα and vα . Embedding
the color space RGB into the Clifford algebra R4,0 by

iα = r e1 + g e2 + b e3 + 0 e4,

the former corresponds to the projection of iα on the axis generated by the unit vec-
tor (e1 + e2 + e3)/

√
3; the latter its projection on the orthogonal plane in e1e2e3,

called the chrominance plane, represented by the unit bivector (e1e2 − e1e3 +
e2e3)/3. In what follows we make use of the following fact too: every hue can be
represented as an equivalence class of bivectors of R4,0. More precisely, we have
the following result.

Proposition 6 Let T be the set of bivectors

T = {(e1 + e2 + e3)∧ iα, α ∈ RGB
}

with the following equivalence relation:

B � C ⇐⇒ B = λC for λ > 0.

Then, there is a bijection between T/� and the set of hues.

Proof We have

(e1 + e2 + e3)∧ iα = (e1 + e2 + e3)vα.

Then, there is a bijection between T/� and the set (e1+e2+e3) v for v a unit vector
in the chrominance plane. This latter being in bijection with the set of different hues,
we conclude that there exists a bijection between T/� and the set of hues. �
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Fig. 1 Original images

Fig. 2 The Clifford–Fourier transform ĤQ1,e1e4

Figure 1 shows the original images used for these experiments.1 Figure 1(a) H is
a modified color version of the Fourier house containing red, desatured red, green,
cyan stripes in various directions, a uniform red circle and a red square with lower
luminance. Figure 1(b) F is a natural image taken from the Berkeley image seg-
mentation database [10].

Figure 2(a) is the centered log-modulus of the D-parallel part of ĤQ1,D , where
Q1 is the quadratic form such that Q1 ⊕ 1 is given by the identity matrix I4 in
the basis (e1, e2, e3, e4), and D is the bivector e1e4. Figure 2(b) is the result of a
directional cut filter around π/2 which removes of vertical frequencies. Let us point

1Available at http://mia.univ-larochelle.fr/→ Production→ Démos.

http://mia.univ-larochelle.fr/
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Fig. 3 Low pass filtering

out that horizontal green stripes are not altered since green color 255 e2 belongs to
ID = e2e3.

Figure 3 shows the difference between a low pass filter in the D-parallel part of
ĤQ1,e1e4 (Fig. 3(a)) and the D-parallel part Ĥ

Q1,
1√
2
(e2+e3)e1

(Fig. 3(b)). The first one

consists in removing high frequencies of the red components of the image, whereas
the second one consists in removing high frequencies of the red hue part of the
image.

In Fig. 3(a), we can see that both green and cyan stripes are not modified. As
in the previous case, this comes from the fact that both green color and cyan color
255 e2 + 255 e3 belong to ID. The result is different in Fig. 3(b). The unit bivector

1√
2
(e2 + e3)e1 = 1√

2
(e1 + e2 + e3) ∧ e1 represents the red hue, involving that the

cyan stripes are blurred. Indeed, unit bivectors representing cyan and red hues are
opposite, and therefore they generate the same plane. Green stripes are no more
invariant to the low pass filter since the green axis e2 is not orthogonal to the bivector

1√
2
(e2 + e3)e1.
In Fig. 4, the color α has been chosen to match with the color of the background

green leaves. As the low pass filter (Fig. 4(a)) removes green high frequencies, the
center of flowers containing yellow high frequencies turns red. In Fig. 4(b), back-
ground pixels corresponding to green low frequencies appear almost grey.

To conclude this part, we propose to compare the results of two low pass filters on
the D-orthogonal part with respect to the same bivector D = e1e4 but changing the
quadratic form. As a consequence, the bivector ID differs in the two cases. For the
first one (Fig. 5(a)), we take Q1, whereas for the second one (Fig. 5(b)), we construct
the quadratic form Q2 such that Q2 is given by I4 in the basis (e1,

1√
2
(e1 + e2),

iα‖iα‖ , e4). In other words, we orthogonalize the red, the yellow, and the color of
leaves which are the main colors in the image.

In Fig. 5(a), the unit bivector ID is e2e3. Hence, the low pass filter removes
green and blue high frequencies but preserves red high frequencies. This explains
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Fig. 4 The Clifford–Fourier transform F̂
Q1,

vα∧e4‖vα∧e4‖
with α = (96,109,65)

Fig. 5 Low pass filters in the ID part

why the image turns red. In Fig. 5(b), the unit bivector ID is (e1+e2)√
2

iα‖iα‖ ; it contains
the colors of the background and inside the flowers. Therefore, the low pass filter
removes all the high frequencies in the image except the ones of the red petals.

For some specific applications, a fine tuning of the quadratic form Q should give
better results.

5 Related Works

To conclude this paper, we show how to recover the hypercomplex Fourier transform
of S. Sangwine and the quaternionic Fourier transform of T. Bülow in the Clifford
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algebras context, using the appropriate morphism from R
2 to Spin(4). First of all,

let us recall the definitions of these Fourier transforms.

5.1 The Hypercomplex Fourier Transform of Sangwine et al.

In [5], the authors define the discrete hypercomplex Fourier transform. It can be ex-
tended to R

2 as follows. Let f :R2→H; then its hypercomplex Fourier transform
is given by

F(u, v)=
∫

R2
e−μ(xu+yv)f (x, y) dx dy,

where μ ∈H0 ∩H1.
There is a freedom in the choice of μ in the hypercomplex Fourier transform as

we have a freedom in the choice of the bivector D in the Clifford–Fourier trans-
form for color images. In fact, they have the same role, i.e., they decompose the
four-dimensional space R

4 into two orthogonal two-dimensional subspaces and de-
compose the Fourier transform into two standard Fourier transforms.

This is shown in the following proposition.

Proposition 7 Let μ = μ1i + μ2j + μ3k be a unit quaternion. Let f ∈ L2(R2,

(R4,Q)) where Q is the quadratic form represented by I4 in the basis (e1, e2, e3, e4),
and let C be the unit bivector e4 ∧ (μ1e1 +μ2e2 +μ3e3). Then, f̂C given by

f̂C(u, v) =
∫

R2
f (x, y)⊥ Φ̃u,v,0,0,C(−x,−y)dx dy

=
∫

R2
e

1
2 (xu+yv)ICe

1
2 (xu+yv)Cf (x, y)e−

1
2 (xu+yv)Ce−

1
2 (xu+yv)IC dx dy

corresponds to the hypercomplex Fourier transform of f seen as an H-valued func-
tion under the identification2

e1↔ i, e2↔ j, e3↔ k, e4↔ 1.

Proof We have to determine the four-dimensional rotation that is generated by the
action of the unit quaternion eμφ on H given by

q �−→ eμφq.

It is explained in [5] that this rotation may be decomposed as the sum of two two-
dimensional rotations of angle −φ in the planes generated by (1,μ) and its orthog-
onal (with respect to the euclidean quadratic form).

2The product law needs not to be respected since we just use an isomorphism of vector spaces.
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Therefore, we can identify this rotation with the action of the spinor

e−
φ
2 (C+IC)

on the four-dimensional space R
1
4,0. As a consequence, the action of group mor-

phisms (x, y) �−→ eμ(xu+yv) from R
2 to H1 on H corresponds to the action of group

morphisms (x, y) �−→ e− 1
2 (xu+yv)(C+IC) from R

2 to Spin(4) on R
1
4,0. �

Remark 5 To the best of our knowledge, the authors restrict for their applications to
μ taken as the grey axis, i.e.,

μ= 1√
3
(i + j + k).

In other words, the Fourier transform they propose is decomposed as a standard
Fourier transform of the luminance part and a standard Fourier transform of the
chrominance part.

5.2 The Quaternionic Fourier Transform of Bülow

The quaternionic Fourier transform [2] of a function f :R2→R is the quaternion-
valued function F (f ) defined by

F (f )(y1, y2)=
∫

R2
exp(−2πiy1x1)f (x1, x2) exp(−2πjy2x2) dx1 dx2.

The link between this Fourier transform and the one proposed here is given by the
next result.

Proposition 8 Let f ∈ L2(R2;Re4) where (e1, e2, e3, e4) is the basis of R
4 that

generates R4,0. The Clifford–Fourier transform of f defined by

f̂C(2πy1,0,0,2πy2)

=
∫

R2
f (x1, x2)⊥ Φ̃2πy1,0,0,2πy2,C(−x1,−x2) dx1 dx2,

where C is the bivector

−1

4
(e1 + e2)(e3 − e4),

corresponds to the quaternionic Fourier transform of f seen as an H-valued func-
tion under the following identification:3

e1↔ i, e2↔ j, e3↔ k, e4↔ 1.

3The product law needs not to be respected since we just use an isomorphism of vector spaces.
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Proof We have to determine one of the two elements of Spin(3) × Spin(3) that
generate the following rotation in H:

f (x1, x2) �→ exp(−2πiy1x1)f (x1, x2) exp(−2πjy2x2).

Simple computations show that the rotation

f (x1, x2) �→ exp(−2πiy1x1)f (x1, x2)

can be written in R
1
4,0 as

f (x1, x2) �→ e−πx1y1(e4e1+e2e3)f (x1, x2)e
πx1y1(e4e1+e2e3).

In the same way,

f (x1, x2) �→ f (x1, x2) exp(−2πjy2x2)

corresponds to

f (x1, x2) �→ e−πx2y2(e4e2+e1e3)f (x1, x2) e
πx2y2(e4e2+e1e3).

By associativity, this shows that

exp(−2πiy1x1) f (x1, x2) exp(−2πjy2x2)= e−τ e−ρf (x1, x2)e
ρeτ ,

where

τ = πx2y2(e4e2 + e1e3)

and

ρ = πx1y1(e4e1 + e2e3).

By definition,

χ
(
eρeτ

)= χ
(
eπx1y1 e4e1

)
χ
(
eπx1y1 e2e3

)
χ
(
eπx2y2 e4e2

)
χ
(
eπx2y2 e1e3

)
.

By simple computations we get

χ
(
eρeτ

)= (e2πx1y1 e2e3, e2πx2y2 e1e3
)

and conclude therefore that

(x1, x2) �→
(
e2πx1y1 e2e3, e2πx2y2 e1e3

)

is the morphism φ̃2πy1,0,e2e3,0,2πy2,e1e3 .

From Sect. 3, this latter may be rewritten Φ̃2πy1,0,0,2πy2,
1
4 (e1+e2)(e3−e4)

.
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Indeed, we have

1

4

(
e2e3 + e1e3 + I (e2e3 − e1e3)

) = 1

4
(e2e3 + e1e3 − e1e4 − e2e4)

= 1

4

(
e1(e3 − e4)+ e2(e3 − e4)

)

= 1

4

(
(e1 + e2)(e3 − e4)

)
. �

6 Conclusion

We proposed in this paper a definition of Clifford–Fourier transform that is mo-
tivated by group actions considerations. We defined a Clifford–Fourier transform
that is associated with the action of all the group morphisms Φ̃u,v,w,z,D from R

2

to Spin(4), parameterized by four real numbers and one unit bivector. This trans-
form has the property of being left invertible. For the particular case of a color
image, we associate the Clifford–Fourier transform with the action of group mor-
phisms Φ̃u,v,0,0,D , specified by only two real numbers (the frequencies) and where
the bivector D is fixed. This transform is parameterized by a quadratic form on R

4

and a unit bivector in the corresponding Clifford algebra. Some previous Fourier
transforms based on quaternions are proved to be particular settings of ours. We
have treated in this context an application to color image filtering. Future works will
be devoted to find applications of the general transform that should easily deal with
relations between colors in the image. Applications to multispectral images such as
color/infrared images will be also investigated.

Acknowledgement This work is partially supported by the “Communauté d’agglomération de
La Rochelle.”

Appendix

A.1 Lie Groups Representations and Fourier Transforms

From the group theory approach, the basic structure we need to define Fourier trans-
forms is locally compact unimodular groups. Let us start by the definition of the dual
of a topological group G, that is, the set of the equivalence classes of its unitary ir-
reducible representations, denoted by Ĝ. We refer to [16] for details.

Definition 4 (Group representation) Let G be a topological group, and V be a topo-
logical vector space over R or C.

A continuous linear representation (ϕ,V ) from G to V is a group morphism

ϕ : g �→ ϕ(g)
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from G to GL(V ) such that the map

(a, g) �→ ϕ(g)(a)

from V ×G to V is continuous.

In general, V is a Hilbert space. If V is finite-dimensional, then the representation
is said to be finite, and the dimension of V is called the degree of the representation.

Definition 5 (Irreducible representation) A subspace W of V is said to be invariant
by ϕ if ϕ(g)(W)⊂W ∀g ∈G.

Then, the representation ϕ is said to be irreducible if W , and {0} are the only
subspaces of V that are invariant by ϕ.

Definition 6 (Equivalent representations) Let (ϕ1,V1) and (ϕ2,V2) be two linear
representations of the same group G. We say that they are equivalent if there exists
an isomorphism γ : V1→ V2 such that

γ ◦ ϕ1(g)= ϕ2(g) ◦ γ ∀g ∈G.

From now on, V is a C-vector space equipped with a hermitian form 〈 , 〉.

Definition 7 (Unitary representation) The representation ϕ is unitary with respect
to 〈 , 〉 if

〈
ϕ(g)(a),ϕ(g)(b)

〉= 〈a, b〉 ∀a, b ∈ V, ∀g ∈G.

We now restrict to locally compact unimodular groups. On such groups, we can
construct a measure that is invariant with respect to both left and right translations.
It a called a Haar measure. From a Haar measure a Haar integral of the group is
defined.

Proposition 9 Let G be a locally compact unimodular group, and let ν denote a
Haar measure. Then, for f ∈ L2(G;C) and h ∈G, we have

∫

G

f (g)dν(g)=
∫

G

f (gh)dν(g)=
∫

G

f (hg)dν(g).

Remark 6 Locally compact abelian groups and compact groups are unimodular.

Definition 8 (Fourier transform on locally compact unimodular groups) Let G be a
locally compact unimodular group with Haar measure ν. The Fourier transform of
f ∈ L2(G;C) is the map f̂ defined on Ĝ by

f̂ (ϕ)=
∫

G

f (g)ϕ
(
g−1)dν(g).
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Theorem 1 (Inversion formula of the Fourier transform) f̂ (ϕ) is a Hilbert–Schmidt
operator over the space of the representation ϕ. There is a measure over Ĝ denoted
by ν̂ such that f̂ ∈ L2(Ĝ;C) and f �→ f̂ is an isometry. Moreover, the following
inverse formula holds:

f (g)=
∫

Ĝ

Trace
(
f̂ (ϕ)ϕ(g)

)
d ν̂(ϕ).

Let us now have a closer look on Lie groups. We refer to [7] for an introduction
to differential geometry.

Definition 9 (Lie group and Lie algebra) A real C∞ Lie group is a topological
group endowed with a structure of real C∞-manifold. The Lie algebra of G is (iso-
morphic to) the tangent space of G at the neutral element e: TeG. It is usually de-
noted by g. It can be made into an algebra over R by considering the Lie bracket [ , ]
that satisfies: (X,Y ) �→ [X,Y ] from g× g to g is R-bilinear. Moreover, it satisfies

[X,X] = 0 ∀X ∈ g

and
[
X, [Y,Z]]+ [Y, [Z,X]]+ [Z, [X,Y ]]= 0 ∀X,Y,Z ∈ g.

Definition 10 (Exponential map) Let G be a C∞ Lie group. The exponential map
of G is the map from g to G

exp :X �−→ f (1),

where f :R→G satisfies

f (t + s)= f (t)f (s) ∀t, s ∈R

and

f ′(0)=X.

f is called a one-parameter subgroup.

To compute group morphisms from R
2 to Spin(3) and Spin(4), we use the fol-

lowing result on Lie groups morphisms.

Proposition 10 Let G and H be two C∞ Lie groups, and expG, expH be the cor-
responding exponential maps. Let φ :G→H be a Lie group morphism. The linear
tangent map of φ at g, denoted by Tgφ, is the linear map from TgG to Tφ(g)H given
by

Tgφ(X)= d

dt
φ
(
g expG(tX)

)|t=0.
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Then, if we note e the neutral element of G, we have

φ
(
expG(X)

)= expH

(
Teφ(X)

)
. (5)

The map Teφ is a Lie algebra morphism, i.e., it satisfies

Teφ
([X,Y ])= [Teφ(X),Teφ(Y )

] ∀X,Y ∈ g.

From (5) we deduce that if the group G is connected and the exponential map of G
is onto, then the Lie group morphisms from G to H are determined by Lie algebras
morphisms from g to h.

A.2 Clifford Algebras

Let V be a vector space of finite dimension n over R equipped with a quadratic
form Q. Formally speaking, the Clifford algebra Cl(V ,Q) is the solution of the
following universal problem. We search a couple (Cl(V ,Q), iQ) where Cl(V ,Q) is
an R-algebra and iQ : V −→ Cl(V ,Q) is R-linear satisfying

(
iQ(v)

)2 =Q(v).1

for all v in V (1 denotes the unit of Cl(V ,Q)) such that, for each R-algebra A and
each R-linear map f : V −→A with

(
f (v)

)2 =Q(v).1

for all v in V (1 denotes the unit of A), then there exists a unique morphism

g : Cl(V ,Q)−→A

of R-algebras such that f = g ◦ iQ.
The solution is unique up to isomorphisms and is given as the (noncommutative)

quotient

T (V )/
(
v⊗ v−Q(v).1

)

of the tensor algebra of V by the ideal generated by v⊗v−Q(v).1, where v belongs
to V (see [12] for a proof).

It is well known that there exists a unique anti-automorphism t on Cl(V ,Q) such
that

t
(
iQ(v)

)= iQ(v)

for all v in V . It is called reversion and usually denoted by x �−→ x†, x in Cl(V ,Q).
In the same way there exists a unique automorphism α on Cl(V ,Q) such that

α
(
iQ(v)

)=−iQ(v)
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for all v in V . In this paper we write v for iQ(v) (according to the fact that iQ
embeds V in Cl(V ,Q)).

As a vector space, Cl(V ,Q) is of dimension 2n on R and a basis is given by the
set

{
ei1ei2 · · · eik , i1 < i2 < · · ·< ik, k ∈ {1, . . . , n}}

and the unit 1. An element of degree k

∑

i1<···<ik

αi1...ik ei1ei2 · · · eik

is called a k-vector. A 0-vector is a scalar, and e1e2 · · · en is called the pseudoscalar.
We denote 〈x〉k the component of degree k of an element x of Cl(V ,Q).

The inner product of xr of degree r and ys of degree s is defined by

xr · ys = 〈xrys〉|r−s|
if r and s are positive and by

xr · ys = 0

otherwise.
The outer product of xr of degree r and ys of degree s is defined by

xr ∧ ys = 〈xrys〉r+s .
These products extend by linearity on Cl(V ,Q). Clearly, if a and b are vectors of
V , then the inner product of a and b coincides with the scalar product defined by Q.
When it is defined (for example, when x is a versor and Q is positive), we denote

‖x‖ =
√
xx†

and say that x is a unit if xx† =±1.
In this paper, we deal in particular with the Clifford algebra of the Euclidean R

n

denoted by Rn,0. R
k
n,0 is the subspace of elements of degree k, and R

∗
n,0 is the group

of elements that admit an inverse in Rn,0. We denote by S
2
n,0 the set of elements of

R
2
n,0 of norm 1.
Let a be a vector in Rn,0, and B be the k-vector a1 ∧ a2 ∧ · · · ∧ ak . Then the

orthogonal projection of a on the k-plane generated by the ai ’s is the vector

PB(a)= (a ·B)B−1.

The vector

a − (a ·B)B−1 = (a ∧B)B−1

is called the rejection of a on B .
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A.3 The Spinor Group Spin(n)

It is defined by

Spin(n)=
{

2k∏

i=1

ai, ai ∈R
1
n,0, ‖ai‖ = 1

}

or equivalently

Spin(n)= {x ∈Rn,0, α(x)= x, xx† = 1, xvx−1 ∈R
1
n,0 ∀v ∈R

1
n,0

}
.

It is well known that Spin(n) is a connected compact Lie group that universally
covers SO(n) (n≥ 3). One can verify that Spin(3) is the group

{
a1+ be1e2 + ce2e3 + de3e1, a2 + b2 + c2 + d2 = 1

}

and is isomorphic to the group H
1 of unit quaternions. It is also a classical result

that Spin(4) is isomorphic to Spin(3) × Spin(3) (see [9] for more information on
spinors in R

3 and R
4).

The Lie algebra of Spin(n) is R
2
n,0 with Lie bracket

A×B =AB −BA.

As the exponential map from its Lie algebra to Spin(n) is onto (see [7] for a proof),
every spinor can be written as

S =
∞∑

i=0

1

i!A
i

for some bivector A.
From Hestenes and Sobczyk [8] we know that every A in R

2
n,0 can be written as

A=A1 +A2 + · · · +Am,

where m≤ n/2, and

Aj = ‖Aj‖ajbj , j ∈ {1, . . . ,m}
with

{a1, . . . , am, b1, . . . , bm}
a set of orthonormal vectors. Thus,

AjAk =AkAj =Ak ∧Aj

whenever j �= k and

A2
k =−‖Ak‖2 < 0.
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This means that the planes encoded by Ak and Aj are orthogonal and implies that

eA1+A2+···+Am = eAσ(1) eAσ(2) . . . eAσ(m)

for all σ in the permutation group S(m). Actually, as A2
k is negative, we have

eAi = cos
(‖Ai‖

)+ sin
(‖Ai‖

) Ai

‖Ai‖ .

The corresponding rotation

Ri : x �−→ e−Ai xeAi

acts in the oriented plane defined by Ai as a plane rotation of angle 2‖Ai‖. The
vectors orthogonal to Ai are invariant under Ri .

It then appears that any element R of SO(n) is a composition of commuting
simple rotations, in the sense that they have only one invariant plane. The vectors
left invariant by R are those of the orthogonal subspace to A. If m= n/2, this latter
is trivial. The previous decomposition is not unique if ‖Ak‖ = ‖Aj‖ for some j and
k with j �= k. In this case infinitely many planes are left invariant by R.
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Hilbert Transforms in Clifford Analysis

Fred Brackx, Bram De Knock,
and Hennie De Schepper

Abstract The Hilbert transform on the real line has applications in many fields.
In particular in one-dimensional signal processing, the Hilbert operator is used to
extract global and instantaneous characteristics, such as frequency, amplitude, and
phase, from real signals. The multidimensional approach to the Hilbert transform
usually is a tensorial one, considering the so-called Riesz transforms in each of
the cartesian variables separately. In this paper we give an overview of generalized
Hilbert transforms in Euclidean space developed within the framework of Clifford
analysis. Roughly speaking, this is a function theory of higher-dimensional holo-
morphic functions particularly suited for a treatment of multidimensional phenom-
ena since all dimensions are encompassed at once as an intrinsic feature.

1 Introduction: The Hilbert Transform on the Real Line

The Hilbert transform is named after D. Hilbert, who, in his studies of integral equa-
tions, was the first to observe what is nowadays known as the Hilbert transform pair.
However, the Hilbert transform theory was developed mainly by E.C. Titchmarsh
and G.H. Hardy. It was Hardy who named it after Hilbert. The Hilbert transform
is applied in the theoretical description of many devices and has become an indis-
pensable tool for both global and local descriptions of a signal. It has been directly
implemented in the form of Hilbert analogue or digital filters which allow one to
distinguish different frequency components and therefore locally refine the struc-
ture analysis. Those filters are essentially based on the notion of analytic signal,
which consists of the linear combination of a bandpass filter, selecting a small part
of the spectral information and its Hilbert transform, the latter basically being the
result of a phase shift by π

2 on the original filter (see, e.g., [33]).
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For a real one-dimensional finite energy signal f , i.e., f ∈ L2(R), its Hilbert
transform on the real line is given by

S[f ](x)= 1

π
Pv
∫ +∞

−∞
f (t)

x − t
dt, (1)

where Pv denotes the Cauchy principal value, meaning that in the integral the sin-
gularity at t = x is approached in a symmetrical way. Infinite energy signals, such
as (piecewise) constant functions and sines and cosines, should be interpreted as
tempered distributions for which the Hilbert transform is defined as the convolution

S[f ](x)= 1

π

(
Pv

1

t
∗ f (t)

)
(x), (2)

where Pv 1
t

is the Principal Value distribution satisfying, in the distributional sense,

d

dt
ln |t | = Pv

1

t
and t Pv

1

t
= 1.

In order to recall the fundamental properties of the Hilbert transform on the real
line, we introduce the Cauchy integral of a function f ∈ L2(R):

C[f ](x, y)=− 1

2πi

∫ +∞

−∞
f (t)

(x − t)+ iy
dt, y �= 0. (3)

This Cauchy integral is, as a function of the complex variable z = x + iy, holo-
morphic in the upper and lower halves of the complex plane and decays to zero for
y→±∞. In other words, for f ∈ L2(R), its Cauchy integral C[f ](x, y) belongs
to the Hardy spaces H2(C

±), respectively defined by

H2
(
C
±)=

{
F holomorphic in C

± such that sup
y≷0

∫ +∞

−∞
∣∣F(z)

∣∣2dx <+∞
}
. (4)

Proposition 1 The Hilbert operator S : L2(R)→ L2(R), (1), enjoys the following
properties:

P(1) S is translation invariant, i.e.,

τa
[
S[f ]]= S

[
τa[f ]

]

with τa[f ](t)= f (t − a).
P(2) S is dilation invariant, i.e.,

da
[
S[f ]]= sgn(a)S

[
da[f ]

]

with da[f ](t)= f (t/a)/
√|a|.

P(3) S is a linear, bounded, and norm-preserving operator.
P(4) S is invertible with S−1 =−S, and thus S2 =−1.



Hilbert Transforms in Clifford Analysis 165

P(5) S is unitary, i.e., S∗S = SS∗ = 1.
P(6) S commutes with differentiation, i.e.,

d

dt

(
S[f ](t))= S

[
d

dt
f (t)

]
.

P(7) S arises in a natural way by considering the nontangential boundary limits
(in L2 sense) of the Cauchy integral (3), i.e.,

C±[f ](x)= lim
y→

NT
0±C[f ](x, y)=±1

2
f (x)+ 1

2
i S[f ](x), x ∈R. (5)

The operators C± are usually called the Cauchy transforms, and formulae (5) and
P(7) are the Plemelj–Sokhotzki formulae in Clifford analysis.

Thus putting H = iS we obtain an involutive, norm-preserving, and bounded
linear operator H : L2(R)→ L2(R), which may be used to define the Hardy
space H2(R) as the closed subspace of L2(R) consisting of functions g for which
H [g] = g. We call those functions g ∈ H2(R) analytic signals, inspired by the
fact that the nontangential boundary limit C+[f ] of the holomorphic (or analytic)
Cauchy integral C[f ], (3), indeed belongs to the Hardy space H2(R). The real and
imaginary parts u=Re[g] and v = Im[g] of an analytic signal g satisfy the Hilbert
formulae

H [u] = iv and H [iv] = u. (6)

It follows that

g = (1+H)[u] and g = (1+H)[iv], (7)

showing that an analytic signal contains redundant information since it can be re-
covered from its real (or its imaginary) part solely. Note that the Hardy spaces
H2(R) and H2(C

+), (4), are isomorphic, since the nontangential boundary limit
for y→ 0+ of F(z) ∈ H2(C

+) exists a.e. and belongs to H2(R), and the Cauchy
integral in C

+ of F(x + i0) precisely is F(z).
In the frequency space the Hilbert transform, which is convolutional in nature,

takes the form of a multiplication operator. Denoting by F the usual Fourier trans-
form, for a function f ∈ L2(R), we have

F
[
H [f ]](ω)= sgnωF [f ](ω) and

H
[
F [f ]](ω)=−F

[
sgn tf (t)

]
(ω).

(8)

In particular the Fourier spectrum of an analytic signal g ∈H2(R) is a causal func-
tion with only positive frequencies, and conversely; more explicitly, it reads:

F [g](ω) = F (1+H)[u](ω)= (1+ sgnω)F [u](ω)

=
{

2F [u](ω), ω > 0,

0, ω < 0.
(9)
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2 Hilbert Transforms in Euclidean Space

The Hilbert transform was first generalized to m-dimensional Euclidean space by
means of the Riesz transforms Rj in each of the cartesian coordinates xj , j =
1, . . . ,m, given by

Rj [f ](x)= lim
ε→0+

2

am+1

∫

Rm\B(x,ε)

xj − yj

|x − y|m+1
f (y)dV (y), (10)

where am+1 = 2π(m+1)/2

Γ ((m+1)/2) denotes the area of the unit sphere Sm in R
m+1. It was

Horváth who, already in his 1953 paper [29], introduced the Clifford vector-valued
Hilbert operator

S =
m∑

j=1

ejRj . (11)

The multidimensional Hilbert transform was taken up again in the 1980s and further
studied in, e.g., [21, 22, 27, 32, 36] in the Clifford analysis setting.

Clifford analysis is a function theory which offers an elegant and powerful gener-
alization to higher dimension of the theory of holomorphic functions in the complex
plane. In its most simple but still useful setting, flat m-dimensional Euclidean space,
Clifford analysis focusses on so-called monogenic functions, i.e., null solutions of
the Clifford vector-valued Dirac operator

∂x =
m∑

j=1

ej ∂xj , (12)

where (e1, . . . , em) forms an orthonormal basis for the quadratic space R
m underly-

ing the construction of the Clifford algebra R0,m, and where the basis vectors satisfy
the multiplication rules

ej ek + ek ej =−2 δj,k, j, k = 1, . . . ,m. (13)

Monogenic functions have a special relationship with harmonic functions of sev-
eral variables: they are refining their properties, since the Dirac operator factorizes
the m-dimensional Laplacian ∂2

x = −Δm. Euclidean space R
m is embedded in the

Clifford algebra R0,m by identifying the point (x1, . . . , xm) ∈ R
m with the vector

variable

x =
m∑

j=1

ej xj . (14)

For more details on Clifford analysis and its applications, we refer to, e.g.,
[2, 20, 23].
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2.1 Definition and Properties

In the framework of Euclidean Clifford analysis, the (Clifford–)Hilbert transform
for a suitable function or distribution f is given by

H [f ](x) = 2

am+1
e0 Pv

∫

Rm

x − y

|x − y|m+1
f (y)dV (y)

= 2

am+1
e0 lim

ε→0+

∫

|x−y|>ε

x − y

|x − y|m+1
f (y)dV (y). (15)

In the above expression, e0 is an additional basis vector for which also

e2
0 =−1 and e0 ej + ej e0 =−2 δ0,j , j = 1, . . . ,m. (16)

Furthermore, · stands for the usual conjugation in the Clifford algebra R0,m+1,
i.e., the main anti-involution for which ej = −ej , j = 0, . . . ,m. As in the one-
dimensional case, there is a strong relationship between the Hilbert transform and
the Cauchy integral of a function f ∈ L2(R

m). The functions considered here take
their values in the Clifford algebra R0,m+1. The space L2(R

m) is equipped with the
R0,m+1-valued inner product and corresponding squared norm:

〈f,g〉 =
∫

Rm

f (x) g(x) dV (x), ‖f ‖2 = [〈f,f 〉]0, (17)

where [λ]0 denotes the scalar part of the Clifford number λ. The Cauchy integral of
f ∈ L2(R

m) is defined by

C[f ](x)= C[f ](x0, x)= 1

am+1

∫

Rm

x0 + e0(x − y)

|x0 + x − y|m+1
f (y)dV (y), x0 �= 0.

(18)
Observe the formal similarity with the Cauchy integral (3) of f ∈ L2(R), x0 taking
the role of y, and the vector y taking the role of t . It is a (left-)monogenic function in

the upper and lower half spaces R
m+1± = {x0e0 + x : x ∈ R

m, x0 ≷ 0}. By a mono-
genic function in R

m+1 is meant a function annihilated by the Cauchy–Riemann
operator,

Dx = e0 ∂x = e0(e0∂x0 + ∂x)= ∂x0 + e0 ∂x, (19)

which decomposes the Laplace operator in R
m+1, DxDx =Δm+1.

Moreover the Cauchy integral decays to zero as x0→±∞. Summarizing, for a
function f ∈ L2(R

m), its Cauchy integral C[f ](x0, x), (18), belongs to the Hardy
spaces H2(R

m+1± ), respectively defined by

H2
(
R

m+1±
)=

{
DxF = 0 in R

m+1± such that sup
x0≷0

∫ +∞

−∞
∣∣F(x0 + x)

∣∣2 dx <+∞
}
.

(20)
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The properties of the multidimensional Hilbert transform are summarized in the
following proposition; they show a remarkable similarity with those of the one-
dimensional Hilbert transform listed in Proposition 1.

Proposition 2 The Hilbert transform H : L2(R
m)→ L2(R

m) enjoys the following
properties:

P(1) H is translation invariant, i.e.,

τb
[
H [f ]]=H

[
τb[f ]

]

with τb[f ](x)= f (x − b), b ∈R
m.

P(2) H is dilation invariant, i.e.,

da
[
H [f ]]=H

[
da[f ]

]

with da[f ](x)= 1
am/2 f (x/a), a > 0.

P(3) H is a norm-preserving, bounded, and linear operator.
P(4) H is an involution and thus invertible with H−1 =H .
P(5) H is unitary with H∗ =H .
P(6) H anticommutes with the Dirac operator (12).
P(7) H arises in a natural way by considering the nontangential boundary limits

in L2 sense of the Cauchy integral (18):

C±[f ](x)= lim
x0→

NT
0±C[f ](x0, x)=±1

2
f (x)+ 1

2
H [f ](x), x ∈R

m. (21)

In the distributional sense, this boundary behavior is explicited by

E(0±, x)= lim
x0→0±E(x0, x)=±1

2
δ(x)+ 1

2
K(x), (22)

where E(x0, x) is the fundamental solution of the Cauchy–Riemann operator
Dx , (19):

DxE(x0, x)=Dx

(
1

am+1

x0 − e0x

|x0 + e0x|m+1

)
= δ(x0, x), (23)

and K is the Hilbert convolution kernel:

H [f ] =K ∗ f = 2

am+1
e0 Pv

x

|x|m+1
∗ f. (24)

As each function in the Hardy space H2(R
m+1± ), (20), possesses a nontangential

L2 boundary limit as x0→ 0±, one is lead to the introduction of the Hardy space
H2(R

m) as the closure in L2(R
m) of the nontangential boundary limits F(x + 0)

as x0→ 0+ of the functions F(x0, x) in H2(R
m+1+ ). As moreover the Cauchy in-

tegral of F(x + 0) is precisely F(x0, x), we may conclude that the Hardy spaces
H2(R

m+1+ ) and H2(R
m) are isomorphic.
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As the Hardy space H2(R
m) is, by definition, a closed subspace of the space

L2(R
m), the latter space may be decomposed as the orthogonal direct sum

L2
(
R

m
)=H2

(
R

m
)⊕H2

(
R

m
)⊥

. (25)

The corresponding projection operators are precisely the Cauchy transforms ±C±
since it can be directly verified that

f = C+[f ] −C−[f ];
C+
[
C+[f ]] = C+[f ];

(−C−
)[−C−[f ]] = (−C−

)[f ];
C+
[
C−[f ]] = C−

[
C+[f ]]= 0;

〈
C+[f ],C−[f ]〉

L2
= 0.

The analytic signal C+[f ] ∈ H2(R
m) and the anti-analytic signal (−C−[f ]) ∈

H2(R
m)⊥ thus possess a monogenic extension to H2(R

m+1± ), respectively. Note that
the Hardy space H2(R

m) and its orthogonal complement H2(R
m)⊥ are nicely char-

acterized by means of the Hilbert and Cauchy transforms:

Lemma 1 A function g ∈ L2(R
m) belongs to H2(R

m) if and only if H [g] = g, or
C+[g] = g, or C−[g] = 0.

Lemma 2 A function h ∈ L2(R
m) belongs to H2(R

m)⊥ if and only if H [g] = −g,
or C+[h] = 0, or C−[h] = −h.

2.2 Analytic Signals

Because of the properties mentioned in the preceding subsection, the functions in
H2(R

m) already deserve to be called analytic signals in R
m. But then their fre-

quency contents should show a property similar to one-dimensional causality (9),
thus involving a multidimensional analogue of the Heaviside step function. As in
the one-dimensional case, the Hilbert transform (15) in frequency space takes the
form of a multiplication operator; for a function f ∈ L2(R

m), there holds

F
[
H [f ]](y)= e0iξF [f ](y) and H

[
F [f ]](y)= e0 F

[
i ωf (x)

]
(y), (26)

where F denotes the standard Fourier transform in R
m given by

F
[
f (x)

]
(y)=

∫

Rm

f (x) exp
(−i〈x, y〉)dV (x), (27)

and ω= x/|x| and ξ = y/|y| may be interpreted as the multidimensional analogues
of the signum-function sgn(x)= x/|x| on the real line. As an aside, these formulae
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allow the practical computation of the Hilbert transform by means of the Fourier
transform:

H [f ](x)=F −1[e0 i ξF [f ](y)]. (28)

The Fourier spectrum of the Cauchy transforms C±[f ] (21) of a function f ∈
L2(R

m) then read

F
[
C±[f ]] = ± 1

2
F [f ] + 1

2
e0 i ξ F [f ]

= ± ψ± F [f ], (29)

where we have introduced the mutually annihilating idempotents

ψ+ = 1

2
(1+ e0 i ω) and ψ− = 1

2
(1− e0 i ω) (30)

satisfying the following properties:

(i) ψ2± =ψ±
(ii) ψ+ψ− =ψ−ψ+ = 0

(iii) ψ+ +ψ− = 1
(iv) ψ+ −ψ− = e0 i ω

(v) ie0ωψ± =±ψ±
The functions ψ±, (30), thus are the Clifford algebra-valued multidimensional

analogues to the Heaviside step function. They were introduced independently by
Sommen [35] and McIntosh [32]. They allow for the practical computation of the
Cauchy transforms of a function f ∈ L2(R

m) through

C±[f ] =F −1[± ψ± F [f ]], (31)

which will be used in the next subsection. Now take an analytic signal g ∈H2(R
m);

then, in accordance with Lemma 1, g =H [g] or g = 1
2 (g +H [g]) = C+[g] and

C−[g] = 0, from which it follows that

F [g] =F
[
C+[g]]=ψ+F [g], (32)

whereas, trivially,

F
[
C−[g]]=−ψ−F [g] = 0, (33)

which is the multidimensional counterpart to the “vanishing negative frequencies”
in one dimension.

We now show that, similarly to the splitting of a complex signal into its real
and imaginary parts, see (6), a Clifford algebra-valued analytic signal can be split
into two components satisfying multidimensional Hilbert formulae. To that end,
we observe that, by the introduction of the additional basis vector e0, the Clifford
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algebra R0,m+1 may be decomposed, using two copies of the Clifford algebra R0,m,
as follows:

R0,m+1 =R0,m ⊕ e0 R0,m. (34)

Thus, if g is an R0,m+1-valued analytic signal, it can be written as g = u + e0 v,
where u and v are R0,m-valued functions satisfying, in view of Lemma 1,

H [u] = e0 v and H [e0 v] = u. (35)

This means that an analytic signal g is completely determined by one of its compo-
nents u or v:

g = (1+H)[u] = (1+H)[e0 v], (36)

and moreover shows a Fourier spectrum only containing ψ+-frequencies and dou-
bling those of u or v:

F [g] = (1+ e0 i ξ) F [u] = (1+ e0 i ξ) F [e0 v]
= 2ψ+F [u] = 2ψ+F [e0 v]. (37)

Similar considerations hold for anti-analytic signals in H2(R
m)⊥.

2.3 Monogenic Extensions of Analytic Signals

For any f ∈ L2(R
m), the Cauchy transforms ±C±[f ], (21), are (anti-)analytic sig-

nals, thus showing monogenic extensions to R
m±. A first possibility to construct these

monogenic extensions is by using the Cauchy integral, leading to the monogenic
functions

C
[
C+[f ]] =

{
C[f ] in R

m+,
0 in R

m−,
(38)

C
[−C−[f ]] =

{
0 in R

m+,
−C[f ] in R

m−,
(39)

which moreover tend to zero as x0 → ±∞. However there is also another way
to construct monogenic extensions to R

m+1 of functions in R
m, albeit that they

have to be real-analytic. This method, the so-called Cauchy–Kowalewska extension
principle, is a typical construct of Clifford analysis; for a given real-analytic function
φ in R

m, a monogenic extension in an open neighborhood in R
m+1 of R

m is given
by

CK[φ] = exp (−x0e0∂x)[φ] =
+∞∑

j=0

(−1)j

j ! x
j

0 (e0∂x)
j [φ]. (40)
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In particular the scalar-valued and real-analytic Fourier kernel exp (i〈x, y〉) in R
m

is monogenically extended to the whole of R
m+1 by

CK
[
exp
(
i〈x, y〉)] =

+∞∑

j=0

(−1)j

j ! x
j

0 (e0iy)
j
[
exp
(
i〈x, y〉)]

= exp(−ix0e0y) exp
(
i〈x, y〉), (41)

which takes its values in spanC(e0e1, . . . , e0em).
In view of (31), i.e.,

C+[f ] =F −1[ψ+ F [f ]], (42)

we thus obtain, following an idea of [34] and [30], as a monogenic extension of
C+[f ]:

CK
[
C+[f ]](x0, x)

= (2π)−m
∫

Rm

exp
(
i〈x, y〉) exp

(−ix0e0y
)
ψ+F [f ](y) dV (y). (43)

A direct computation yields

CK
[
C+[f ]](x0, x)

= (2π)−m
∫

Rm

exp
(
i〈x, y〉) exp(−x0ρ)ψ+F [f ](y) dV (y)

= (2π)−m
∫

Sm−1
ψ+ dS(ξ)

∫ +∞

0
exp
((
i〈x, ξ〉 − x0

)
ρ
)
ρm−1F [f ](ρξ) dρ,

(44)

since

exp (−ix0e0y)ψ+ = exp (−x0ρ)ψ+, (45)

where we have once more used spherical coordinates with y = ρξ . This further
leads to

CK
[
C+[f ]](x0, x)

= (2π)−m
∫

Sm−1
ψ+ dS(ξ)L

[
ρm−1F [f ](ρξ)](x0 − i〈x, ξ 〉), (46)

where L denotes the Laplace transform. It is clear that this monogenic extension
tends to zero only as x0→+∞. Thus, with restriction to R

m+, we obtain

C[f ](x0, x) = (2π)−m
∫

Sm−1
ψ+ dS(ξ) L

[
ρm−1 F [f ](ρξ)]

× (x0 − i〈x, ξ〉), x0 > 0. (47)
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In a similar way, we obtain in R
m−

C[f ](x0, x) = (2π)−m
∫

Sm−1
ψ− dS(ξ) L

[
ρm−1 F [f ](ρξ)]

× (−x0 − i〈x, ξ 〉), x0 < 0. (48)

2.4 Example 1

The direct sum decomposition of finite-energy signals goes through for tempered
distributions and even more so for compactly supported distributions. Let us illus-
trate this by the case of the delta- or Dirac-distribution δ(x) in R

m. Its Cauchy
integral is given by

C[δ](x0, x)=E(x0, x) ∗ δ(x)=E(x0, x)= 1

am+1

x0 − e0 x

|x0e0 + x|m+1
, (49)

which is monogenic in R
m+1± and even in R

m+1\{0} w.r.t. the Cauchy–Riemann
operator Dx (19). This implies that as long as x �= 0, there is a continuous transition
of this Cauchy integral over R

m as the common boundary of R
m+1+ and R

m+1− . Thus
the “jump” over R

m of C[δ](x0, x) will occur at x = 0, and indeed

C±[δ](x)=± 1

2
δ(x)+ 1

2
K(x) (50)

with K the Hilbert kernel (24), since

H [δ](x)=K ∗ δ(x)=K(x)= 2

am+1
e0 Pv

x

|x|m+1
. (51)

The direct sum decomposition of the Dirac-distribution δ(x) now follows readily:

δ(x)=
(

1

2
δ(x)+ 1

2
K(x)

)
+
(

1

2
δ(x)− 1

2
K(x)

)
. (52)

The Cauchy integral of the first component is given by

C
[
C+[δ]]=

{
C[δ] =E(x0, x) in R

m+1+ ,

0 in R
m+1− ,

(53)

while the Cauchy integral of the second component is given by

C
[−C−[δ]]=

{
0 in R

m+1+ ,

−C[δ] = −E(x0, x) in R
m+1− .

(54)
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As the Hilbert transform is involutive, we obtain for the transform of the Hilbert
kernel itself:

H [K](x)=H2[δ](x)= δ(x), (55)

which is confirmed by the convolution

H [K] =K ∗K = 4

a2
m+1

Pv
x

|x|m+1
∗ Pv

x

|x|m+1
= δ(x). (56)

This leads to the direct sum decomposition of the Hilbert kernel K(x):

K(x)=
(

1

2
K(x)+ 1

2
δ(x)

)
+
(

1

2
K(x)− 1

2
δ(x)

)
, (57)

where both components may be monogenically extended through their Cauchy inte-
gral to respectively R

m+1± by the functions ±E(x0, x). Note in this connection that
(±C±)[δ] = C±[K].

As the delta-distribution δ(x) is R0,m valued—in fact real valued—and its Hilbert
transform K(x) is e0 R0,m valued, they sum up to an R0,m+1-valued analytic signal
δ(x) +K(x) which has its frequencies supported by ψ+ and doubling those of
δ(x). This is confirmed by the following results in frequency space. For the standard
Fourier transform (27), we have F [δ] = 1; thus,

F [K] =F

[
2

am+1
Pv

x

|x|m+1

]
= e0 i ξ , (58)

and thus also

F
[
δ(x)+K(x)

]= 1+ e0 i ξ = 2ψ+. (59)

As already mentioned, the (anti-)analytic signals ±C±[δ](x)= 1
2 δ(x)± 1

2 K(x)=
C±[K](x) may be monogenically extended to R

m+1± by the functions ±E(x0, x) ∈
H2(R

m+1± ), respectively, defined in (23). Alternatively the Cauchy–Kowalewska
technique (40) leads to

CK
[
C+[δ]]= (2π)−m

∫

Sm−1
ψ+ dS(ξ)L

[
ρm−1](x0 − i〈x, ξ 〉), x0 > 0, (60)

and

CK
[−C−[δ]]= (2π)−m

∫

Sm−1
ψ− dS(ξ)L

[
ρm−1](−x0 − i〈x, ξ 〉), x0 < 0.

(61)
As L[ρm−1] = Γ (m)

zm
for Re(z) > 0, we arrive at

CK
[
C+[δ]]= (m− 1)!

(2π)m

∫

Sm−1

ψ+
(x0 − i〈x, ξ〉)m dS(ξ), x0 > 0, (62)



Hilbert Transforms in Clifford Analysis 175

and

CK
[−C−[δ]]= (m− 1)!

(2π)m

∫

Sm−1

ψ−
(−x0 − i〈x, ξ 〉)m dS(ξ), x0 < 0. (63)

But iψ+ =−e0ξψ+ and iψ− = e0ξψ−, from which it follows that

ψ+
(x0 − i〈x, ξ 〉)m =

ψ+
(x0 + 〈x, ξ 〉ole0ξ)m

(64)

and

ψ−
(x0 + i〈x, ξ 〉)m =

ψ−
(x0 + 〈x, ξ〉e0ξ)m

. (65)

Moreover the CK-extensions under consideration CK[C+[δ]] = E(x0, x), x0 > 0,
and CK[−C−[δ]] = −E(x0, x), x0 < 0, both are R0,m+1 valued, so their complex-
imaginary parts should vanish, which implies that

∫

Sm−1

ξ

(x0 + 〈x, ξ 〉e0ξ)m
dS(ξ)= 0, (66)

finally leading to

E(x0, x)= 1

2

(m− 1)!
(2π)m

∫

Sm−1

1

(x0 + 〈x, ξ 〉e0ξ)m
dS(ξ), x0 > 0, (67)

and

E(x0, x)= (−1)m−1

2

(m− 1)!
(2π)m

∫

Sm−1

1

(x0 + 〈x, ξ〉e0ξ)m
dS(ξ), x0 < 0. (68)

2.5 Example 2

Again we start with a scalar-valued tempered distribution

u(x)= exp
(
i〈a, x〉)= cos 〈a, x〉 + i sin 〈a, x〉, (69)

with a nonzero constant Clifford vector a, for which we put α = a/|a|.
From one-dimensional theory it is known that the Hilbert transform H = iS acts

as a rotator, mapping cosax and sinax to i sgn(a) sinax and −i sgn(a) cosax, re-
spectively. It is now shown that the Clifford–Hilbert transform (15) enjoys a similar
property in higher dimension. We have successively

F
[
u(x)

]
(y)= (2π)mδ(y − a), (70)
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and thus

F
[
H
[
u(x)

]]
(y) = e0iξF

[
u(x)

]
(y)= (2π)me0iξδ(y − a)

= (2π)mie0αδ(y − a), (71)

from which it follows that

H [u](x)= i e0 α exp
(
i 〈a, x〉)= e0 α

(− sin〈a, x〉 + i cos〈a, x〉), (72)

and thus

H
[
cos〈a, x〉]=−(e0 α) sin〈a, x〉 (73)

and

H
[
sin〈a, x〉]= (e0 α) cos〈a, x〉. (74)

Note that α = a/|a| is the multidimensional counterpart to the one-dimensional
sgn(a) and that (e0α)

2 =−1.
We also obtain the following analytic signals:

(i) cos〈a, x〉 − (e0 α) sin〈a, x〉 = exp(−(e0 α)〈a, x〉)
(ii) sin〈a, x〉 + (e0α) cos〈a, x〉 = (e0α) exp(−(e0α)〈a, x〉)

(iii) (1+ i(e0 α)) exp(i〈a, x〉)= (1+ i(e0 α)) exp(−(e0α)〈a, x〉)

3 Generalized Hilbert Transforms in Euclidean Space

In the early 2000s, four broad families Tλ,p , Uλ,p , Vλ,p , and Wλ,p , with λ ∈C and
p ∈ N0, of specific distributions in Clifford analysis were introduced and studied
by Brackx, Delanghe, and Sommen (see [3, 5]), and it was shown that the Hilbert
kernel K , introduced in the preceding section, is one of those distributions acting as
a convolution operator (see, e.g., [1]). Later on, those distributions were normalized
and thoroughly discussed in a series of papers [4, 6, 7, 9–11, 14]. We recall the
definitions of those normalized distributions, where l ∈N0:

⎧
⎨

⎩

T ∗λ,p = π
λ+m

2 +p Tλ,p

Γ ( λ+m2 +p)
, λ �= −m− 2p− 2l,

T ∗−m−2p−2l,p = (−1)pl!π m
2 −l

22p+2l (p+l)!Γ (m2 +p+l)
Pp(x)∂x

2p+2lδ(x),
(75)

⎧
⎨

⎩

U∗λ,p = π
λ+m+1

2 +p Uλ,p

Γ ( λ+m+1
2 +p)

, λ �= −m− 2p− 2l − 1,

U∗−m−2p−2l−1,p = (−1)p+1l!π m
2 −l

22p+2l+1(p+l)!Γ (m2 +p+l+1)

(
∂x

2p+2l+1δ(x)
)
Pp(x),

(76)

⎧
⎨

⎩

V ∗λ,p = π
λ+m+1

2 +p Vλ,p

Γ ( λ+m+1
2 +p)

, λ �= −m− 2p− 2l − 1,

V ∗−m−2p−2l−1,p = (−1)p+1l!π m
2 −l

22p+2l+1(p+l)!Γ (m2 +p+l+1)
Pp(x)

(
∂x

2p+2l+1δ(x)
)
,

(77)
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⎧
⎨

⎩

W ∗λ,p = π
λ+m

2 +p Wλ,p

Γ ( λ+m2 +p)
, λ �= −m− 2p− 2l,

W ∗−m−2p−2l,p = (−1)p+1l!π m
2 −l

22p+2l+2(p+l+1)!Γ (m2 +p+l+1)
xPp(x)x ∂x

2p+2l+2δ(x),
(78)

the action of the original distributions Tλ,p , Uλ,p , Vλ,p , and Wλ,p on a testing func-
tion φ being given by

〈Tλ,p,φ〉 = am
〈
Fp r

μ+pe+ ,Σ(0)
p [φ]

〉
, (79)

〈Uλ,p,φ 〉 = am
〈
Fp r

μ+pe+ ,Σ(1)
p [φ]

〉
, (80)

〈Vλ,p,φ 〉 = am
〈
Fp r

μ+pe+ ,Σ(3)
p [φ]

〉
, (81)

〈Wλ,p,φ〉 = am
〈
Fp r

μ+pe+ ,Σ(2)
p [φ]

〉
. (82)

We explain the notation in the above expressions. First, the symbol Fp stands for the
well-known distribution “finite parts” on the real line; furthermore, μ= λ+m− 1,
and pe denotes the “even part of p,” defined by pe = p if p is even and pe = p− 1
if p is odd. Finally, Σ(0)

p , Σ(1)
p , Σ(2)

p , and Σ
(3)
p are the generalized spherical mean

operators defined on scalar-valued testing functions φ by

Σ(0)
p [φ] = rp−peΣ(0)[Pp(ω)φ(x)

]= rp−pe

am

∫

Sm−1
Pp(ω)φ(x)dS(ω), (83)

Σ(1)
p [φ] = rp−pe Σ(0)[ωPp(ω)φ(x)

]= rp−pe

am

∫

Sm−1
ωPp(ω)φ(x)dS(ω), (84)

Σ(2)
p [φ] = rp−pe Σ(0)[ωPp(ω)ωφ(x)

]

= rp−pe

am

∫

Sm−1
ωPp(ω)ωφ(x)dS(ω), (85)

Σ(3)
p [φ] = rp−pe Σ(0)[Pp(ω)ωφ(x)

]= rp−pe

am

∫

Sm−1
Pp(ω)ωφ(x)dS(ω), (86)

where Pp(ω) is an inner spherical monogenic of degree p, i.e., a restriction to the
unit sphere Sm−1 of a monogenic homogeneous polynomial in R

m.
Making use of those Clifford distributions, we have then constructed two pos-

sible generalizations of the Hilbert transform (15), aiming at preserving as much
as possible of its traditional properties P(1)–P(7) listed in Proposition 2 (see also
[6, 9]). It is shown that in each case some of the properties—different ones—are
inevitably lost. Nevertheless we will obtain in Sect. 3.1 a bounded singular inte-
gral operator on L2(R

m) and in Sect. 3.2 a bounded singular integral operator on
appropriate Sobolev spaces.
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3.1 First generalization

In the first approach the Hilbert transform is generalized by using other kernels for
the convolution, stemming from the families of distributions mentioned above. They
constitute a refinement of the generalized Hilbert kernels introduced by Horváth in
[28], who considered convolution kernels, homogeneous of degree (−m), of the
form

Pv
S(ω)

rm
, x = rω, r = |x|, ω ∈ Sm−1, (87)

where S(ω) is a surface spherical harmonic. We investigate generalized Hilbert con-
volution kernels which are homogeneous of degree (−m) as well, however involv-
ing inner and outer spherical monogenics. We already have mentioned that an inner
spherical monogenic is the restriction to the unit sphere Sm−1 of a monogenic ho-
mogeneous polynomial in R

m. An outer spherical monogenic is the restriction to
the unit sphere Sm−1 of a monogenic homogeneous function in the complement of
the origin; an example of an outer spherical monogenic is the “signum” function ω

since it is the restriction to Sm−1 of the function x/|x|m+1, which is monogenic in
R

m\{0}.
We consider the following specific distributions:

T−m−p,p = Fp
1

rm
Pp(ω)= Pv

Pp(ω)

rm
,

U−m−p,p = Fp
1

rm
ωPp(ω)= Pv

ωPp(ω)

rm
,

V−m−p,p = Fp
1

rm
Pp(ω)ω= Pv

Pp(ω)ω

rm
,

W−m−p,p = Fp
1

rm
ωPp(ω)ω= Pv

ωPp(ω)ω

rm
,

Pv
Sp+1(ω)

rm
=− 1

2(p+ 1)
(U−m−p,p + V−m−p,p),

Pv
ωSp+1(ω)

rm
=− 1

2(p+ 1)
(W−m−p,p − T−m−p,p),

(88)

where Pp(x)= ∂xSp+1(x), Sp+1(x) being a scalar-valued solid spherical harmonic
and hence Pp(x) being a vector-valued solid spherical monogenic. These distribu-
tions are homogeneous of degree (−m), and the functions occurring in the numera-
tor satisfy the cancellation condition

∫

Sm−1
Ω(ω)dω= 0, (89)

Ω(ω) being either of Pp(ω), ωPp(ω), Pp(ω)ω, or ωPp(ω)ω.
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Their Fourier symbols, given by (see [14])

F [T−m−p] = i−pπ
m
2

Γ (
p
2 )

Γ (
m+p

2 )
Pp(ω), (90)

F [U−m−p] = i−p−1π
m
2

Γ (
p+1

2 )

Γ (
m+p+1

2 )
ω Pp(ω), (91)

F [V−m−p] = i−p−1π
m
2

Γ (
p+1

2 )

Γ (
m+p+1

2 )
Pp(ω)ω, (92)

F [W−m−p] = i−p−2π
m
2

pΓ (
p
2 )

(m+ p)Γ (
m+p

2 )

(
ωPp(ω)ω− m− 2

p
Pp(ω)

)
, (93)

are homogeneous of degree 0 and moreover are bounded functions, whence

T−m−p,p ∗ f, U−m−p,p ∗ f, V−m−p,p ∗ f, W−m−p,p ∗ f (94)

are bounded Singular Integral Operators on L2(R
m), which are direct generaliza-

tions of the Hilbert transform H (15), preserving (properly adapted analogues of
the) properties P(1)–P(3).

We now investigate whether the new operators (94) will fulfil some appropriate
analogues of the remaining properties P(4)–P(7) as well. To this end, we closely
examine the kernel T−m−p,p . First, we observe that

T−m−p,p ∗ T−m−p,p = (−1)p

2p
π

m
2
Γ (m2 )

Γ (p)

[
Γ (

p
2 )

Γ (
m+p

2 )

]2

T−m,pPp(∂x), (95)

which directly implies that the generalized Hilbert transform T−m−p,p ∗ f does
not satisfy an analogue of property P(4). Next, as it can easily be shown that the
considered operator coincides with its adjoint—up to a minus sign when p is even—
we may also conclude, in view of (95), that it will not be unitary, neither does it
commute with the Dirac operator.

Finally, the most important drawback of this first generalization is undoubtedly
the fact that we cannot establish an analogue of property P(7), since it turned out
impossible to find a generalized Cauchy kernel in R

m+1 \ {0}, for which a part of
the boundary values is precisely the generalized Hilbert kernel T−m−p,p . Similar
conclusions hold for the other generalized kernels used in (88).

3.2 Second Generalization

Subsequent to the observations made in the previous subsection, we now want to
find a type of generalized Hilbert kernel which actually preserves property P(7). To
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that end, we define the function

Ep(x) = Ep(x0, x)= 1

am+1,p

x̄e0

|x|m+1+2p
Pp(x)

= 1

am+1,p

x0 + e0x

|x0e0 + x|m+1+2p
Pp(x), (96)

where

am+1,p = (−1)p

2p

2π
m+1

2

Γ (m+1
2 + p)

, (97)

involving a homogeneous polynomial Pp(x) of degree p which we take once more
to be vector valued and monogenic. It is stated in the next proposition that these
functions Ep are good candidates for generalized Cauchy kernels. Note that for p =
1 and taking P0(x)= 1, the standard Cauchy kernel, i.e., the fundamental solution
of the Cauchy–Riemann operator Dx in R

m+1 is reobtained.
For the proofs of all results mentioned in the remainder of this section, we refer

the reader to [9].

Proposition 3 The function Ep , (96), satisfies the following properties:

(i) Ep ∈ Lloc
1 (Rm+1) and lim|x|→∞Ep(x)= 0 ∀p ∈N

(ii) Dx Ep(x)= Pp(∂x)δ(x) in distributional sense ∀p ∈N

Here, Lloc
1 (Rm+1) stands for the locally integrable functions on R

m+1.

Next, we calculate their nontangential distributional boundary values as x0→0±.
To that end, we first formulate an interesting auxiliary result in the following lemma.

Lemma 3 For p ∈N0, one has

lim
x0→0+

x0

|x0 + x|m+1+2p
= 1

2p+1p! am+1,p ∂
2p
x δ(x), (98)

am+1,p being given by (97).

Proposition 4 For each p ∈N0, one has

Ep(0+, x)= lim
x0→0+Ep(x0, x) = 1

2
Pp(∂x)δ(x)+ 1

2
Kp(x), (99)

Ep(0−, x)= lim
x0→0−Ep(x0, x) = −1

2
Pp(∂x)δ(x)+ 1

2
Kp(x), (100)

where

Kp(x) = 2

am+1,p
e0 Fp

ω̄Pp(ω)

rm+p
=− 2

am+1,p
e0U

∗−m−2p,p. (101)
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The distribution Kp (101) arising in the previous proposition allows for the def-
inition of a generalized Hilbert transform Hp given by

Hp[f ] =Kp ∗ f. (102)

Because the Fourier symbol

F [Kp] = − 2

am+1,p
e0i
−p−1U∗0,p (103)

of the kernel Kp is not a bounded function, the operator Hp , (102), will also not be
bounded on L2(R

m). However, the Fourier symbol (103) is a polynomial of degree
p, implying that Hp is a bounded operator between the Sobolev spaces Wn

2 (Rm)→
W

n−p
2 (Rm) for n≥ p. It can indeed be proved that:

Proposition 5 The generalized Cauchy integral Cp given by Cp[f ] =Ep ∗f maps
the Sobolev space Wn

2 (Rm) into the Hardy space H 2(Rm+1+ ) for each natural num-
ber n≥ p.

Corollary 1 The generalized Hilbert transform Hp , (102), is a bounded linear op-
erator between the Sobolev spaces Wn

2 (Rm) and W
n−p
2 (Rm) for each natural num-

ber n≥ p.

Comparing further the properties of Hp with those of the standard Hilbert trans-
form H in Clifford analysis shows that the main objective for this second gener-
alization is fulfilled on account of Proposition 4: the kernel Kp arises as a part of
the boundary values of a generalized Cauchy kernel Ep , which constitutes an ana-
logue of the “classical” property P(7). However, the kernel Kp is a homogeneous
distribution of degree (−m− p), meaning that Hp is not dilation invariant.

4 The Anisotropic Hilbert Transform

The (generalized) multidimensional Hilbert transforms on R
m considered in Sects. 2

and 3 might be characterized as isotropic, since the metric in the underlying space is
the standard Euclidean one. In this section we adopt the idea of an anisotropic (also
called metric-dependent or metrodynamical) Clifford setting, which offers the pos-
sibility of adjusting the coordinate system to preferential, not necessarily mutually
orthogonal, directions intrinsically present in the m-dimensional structures or sig-
nals to be analyzed. In this new area of Clifford analysis (see, e.g., [13, 19]), we have
constructed the so-called anisotropic (Clifford–)Hilbert transform (see [15, 17]),
a special case of which was already introduced and used for two-dimensional image
processing in [26].
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4.1 Definition of the Anisotropic Hilbert Transform

For the basic language of anisotropic Clifford analysis, we first present the no-
tion of metric tensor, namely a real, symmetric, and positive definite tensor G̃ =
(gkl)k,l=0,...,m of order (m+ 1), which gives rise to two bases in R

m+1: a covari-
ant basis (e0, . . . , em) and a contravariant basis (e0, . . . , em) corresponding to each
other through the metric tensor, viz

ek =
m∑

l=0

gkle
l and el =

m∑

k=0

glkek with G̃−1 = (gkl
)
k,l=0,...,m. (104)

Then, a Clifford algebra is constructed, depending on the metric tensor involved,
and all necessary definitions and results of Euclidean Clifford analysis are adapted
to this metric-dependent setting. We mention, e.g., that the classical scalar product
is replaced by the symmetric bilinear form

〈x, y〉G̃ =
m∑

k=0

m∑

l=0

gklx
kyl. (105)

The anisotropic Dirac and Cauchy–Riemann operators in R
m+1 take the forms

∂G̃ =
m∑

k=0

ek ∂xk (106)

and

DG̃ = e0∂G̃ = ∂x0 + e0∂G, (107)

where G = (gkl)k,l=1,...,m in R
m×m is the subtensor of the metric tensor G̃ in

R
(m+1)×(m+1). The fundamental solution of the latter operator,

EG̃(x)= 1

am+1

xe0

(〈x, x〉G̃)(m+1)/2
, (108)

is now used as the kernel in the definition of the metrodynamical Cauchy integral
given, for a function f ∈ L2(R

m) or a tempered distribution, by

CG̃[f ] =EG̃ ∗ f, (109)

which is monogenic in R
m+1+ (and in R

m+1− ). Taking limits in L2 or distributional
sense as x0→ 0+ gives, through careful calculation (see [15]),

lim
x0→0+

CG̃[f ] =
1

√
det G̃

(
1

2
f + 1

2
e0Hani ∗ f

)
(110)
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with

Hani(x)=
√

det G̃

(
2

am+1
Pv

x

(〈x, x〉G)(m+1)/2

)
. (111)

Similarly, as x0→ 0−, we obtain

lim
x0→0−

CG̃[f ] =
1

√
det G̃

(
−1

2
f + 1

2
e0Hani ∗ f

)
. (112)

The above results are the anisotropic Plemelj–Sokhotzki formulae, and they give
rise to the definition of the anisotropic Hilbert transform:

Hani[f ] = e0Hani ∗ f. (113)

As already mentioned in the introduction of this section, for m = 2, such an
anisotropic Hilbert transform was considered in [26], however, for the special case
where the e0-direction in R

3 is chosen perpendicular to the R
2-plane spanned by

(e1, e2). This corresponds to a G̃-matrix of order 3 in which g01 = g02 = 0.

4.2 Properties of the Anisotropic Hilbert Transform

In order to study the properties of the linear operator Hani, (113), we will also
have to pass to frequency space, so we need to introduce a proper definition for
the anisotropic Fourier transform on R

m in the present metric-dependent setting:

FG[f ](x) =
∫

Rm

exp
(−2πi〈x, y〉G

)
f (y)dV (y)

=
∫

Rm

exp
(−2πixT Gy

)
f (y)dV (y). (114)

Due to the assumed symmetric character of the tensor G, it is found that

FG[f ](x)=F [f ](Gx). (115)

The following properties of Hani may then be proved (see [15]):

(P1) Hani is translation invariant.
(P2) Hani is dilation invariant, which is equivalent to its kernel Hani, (111), being a

homogeneous distribution of degree −m.
(P3) Hani is a bounded operator on L2(R

m), which is equivalent to its Fourier sym-
bol

FG[Hani](x)=
√

det G̃

detG
i

x

〈x, x〉G (116)

being a bounded function.
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(P4) Up to a metric related constant, Hani squares to unity or, more explicitly,

(Hani)
2 = det G̃

detG
1. (117)

(P5) Hani is selfadjoint.
(P6) Hani arises in a natural way by considering nontangential boundary values of

the Cauchy integral CG̃, (109), in R
m+1.

Note that the anisotropic Hilbert transform shows the influence of the underlying
metric in two different ways: (1) the determinant of the “mother” metric G̃ on R

m+1

arises as an explicit factor in the expression for the kernel, and (2) the induced metric
G on R

m comes into play explicitly through the denominator of the kernel and also
implicitly through its numerator since the vector x contains the (skew) basis vectors
(ek)

m
k=1.

The particularity of this metric dependence may also be seen in frequency space,
where the metric G not only arises in the Fourier symbol (116) of Hani but is
also hidden in the definition of the anisotropic Fourier transform itself, while the
“mother” metric G̃ again only is seen to arise through its determinant.

The above observations do raise the question whether there exists a one-to-one
correspondence between a given Hilbert transform on (Rm,G) and the associated
Cauchy integral on (Rm+1, G̃) from which it originates, or in other words: does the
Hilbert transform contain enough geometrical information to completely determine
the “mother” metric G̃? The answer is negative. It turns out that, given a Hilbert
kernel

Hani = c

(
2

am+1
Pv

x

(〈x, x〉)(m+1)/2

)
(118)

being dependent on the m-dimensional metric G and on the strictly positive constant
c, it is part of the boundary value of a Cauchy kernel in (Rm+1, G̃) with

G̃=
(
g00 uT

u G

)
, (119)

where (g00, u
T ) are characterized, but not uniquely determined, by the equation

g00 − uT G−1 u= c

detG
. (120)

4.3 Example

It is interesting to demonstrate the difference between the Clifford–Hilbert transform
of Sect. 2 and its anisotropic counterpart. So consider in R

m again the scalar-valued
tempered distribution f (x)= exp(i〈a, x〉), where a is a constant, nonzero Clifford
vector.
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In the isotropic case we find (see Sect. 2.4)

H [f ](x)= ie0
a

|a| exp
(
i〈a, x〉). (121)

In the anisotropic case we successively obtain

FG[f ](y)=F [f ](Gy)= δ(Gy − a), (122)

and thus

FG

[
HG,c[f ]

]
(y)= e0 i

√
det(G̃)

det(G)

G−1a

|G−1a|G δ(Gy − a) (123)

with
∣∣G−1a

∣∣
G
= [(G−1a

)T
G
(
G−1a

)] 1
2 = [aT G−1a

] 1
2 . (124)

Subsequent calculations reveal that

F −1
G

[
δ(Gy − a)

]
(x) =

∫

Rm

exp
(
i xT Gy

)
δ(Gy − a)dV (y)

= 1

det(G)

∫

Rm

exp
(
ixT y′

)
δ
(
y′ − a

)
dV
(
y′
)

= 1

det(G)
exp
(
i〈a, x〉). (125)

Hence,

Hani[f ](x)= ie0

√
det(G̃)

(det(G))3

G−1a

|G−1a| exp
(
i〈a, x 〉). (126)

5 Conclusion

The concept of analytic signal on the real time axis is fundamental in signal pro-
cessing. It contains the original signal and its Hilbert transform and allows for the
decomposition of a finite-energy signal into its analytic and anti-analytic compo-
nents. In mathematical terms, this is rephrased as the direct sum decomposition of
L2(R) into the Hardy space H2(R) and its orthogonal complement, and the analytic
signals are precisely the functions in H2(R). In this paper we have presented several
generalizations of the Hilbert transform and the corresponding analytic signal to
Euclidean space of arbitrary dimension, and we have indicated the properties which
are characteristic in the one-dimensional case and persist in each of those general-
izations. It becomes apparent, also from the given examples, that the Clifford analy-
sis framework is most appropriate to develop these multidimensional Hilbert trans-
forms. That Clifford analysis could be a powerful tool in multidimensional signal
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analysis became already clear during the last decade from the several constructions
of multidimensional Fourier transforms with quaternionic or Clifford algebra-valued
kernels with direct applications in signal analysis and pattern recognition, see [8, 12,
18, 24–26, 31] and also the review paper [16], wherein the relations between the dif-
ferent approaches are established. In view of the fact that in the underlying paper the
interaction of the Clifford–Hilbert transforms with only the standard Fourier trans-
form was considered, their interplay with the various Clifford–Fourier transforms
remains an intriguing and promising topic for further research.
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23. Delanghe, R., Sommen, F., Souček, V.: Clifford algebra and spinor-valued functions, a func-

tion theory for the Dirac operator. Mathematics and its Applications, vol. 53. Kluwer Aca-
demic, Dordrecht (1992)

24. Ebling, J., Scheuermann, G.: Clifford convolution and pattern matching on vector fields. In:
Proceedings of IEEE Visualization’03, pp. 193–200. Comput. Soc., Los Alamitos (2003)

25. Ebling, J., Scheuermann, G.: Clifford Fourier transform on vector fields. IEEE Trans. Vis.
Comput. Graph. 11(4), 469–479 (2005)

26. Felsberg, M.: Low-level image processing with the structure multivector. Ph.D. thesis.
Christian-Albrechts-Universität, Kiel (2002)

27. Gilbert, J.E., Murray, M.A.M.: Clifford Algebra and Dirac Operators in Harmonic Analysis.
Cambridge Studies in Advanced Mathematics, vol. 26. Cambridge University Press, Cam-
bridge (1991)

28. Horváth, J.: Singular integral operators and spherical harmonics. Trans. Am. Math. Soc. 82,
52–63 (1950)

29. Horváth, J.: Sur les fonctions conjuguées à plusieurs variables. Nederl. Akad. Wetensch. Proc.
Ser. A 56. Indag. Math. 15, 17–29 (1953) (in French)

30. Li, C., McIntosh, A., Qian, T.: Clifford algebras, Fourier transforms, and singular convolution
operators on Lipschitz surfaces. Rev. Math. Iberoam. 10, 665–721 (1994)

31. Mawardi, B., Hitzer, E.: Clifford fourier transformation and uncertainty principle for the clif-
ford geometric algebra Cl3,0. Adv. Appl. Clifford Algebr. 16(1), 41–61 (2006)

32. McIntosh, A.: Clifford algebras, Fourier theory, singular integrals and harmonic functions
on Lipschitz domains. In: Ryan, J. (ed.) Clifford Algebras in Analysis and Related Topics,
Fayetteville, 1993. Studies in Advanced Mathematics. pp. 33–87. CRC Press, Boca Raton
(1996)

33. Poularikas, A.D. (ed.): The Transforms and Applications Handbook. CRC Press, Boca Raton
(1996)

34. Ryan, J.: Clifford analysis. In: Ablamowicz, R., Sobczyk, G. (eds.) Lectures on Clifford (Ge-
ometric) Algebras and Applications, pp. 53–89. Birkhäuser, Basel (2004)

35. Sommen, F.: Some connections between Clifford analysis and complex analysis. Complex
Var. Theory Appl. 1(1), 97–118 (1982)

36. Sommen, F.: Hypercomplex Fourier and Laplace transforms II. Complex Var. Theory Appl.
1(2–3), 209–238 (1982/1983)



Part III
Image Processing, Wavelets and

Neurocomputing



Geometric Neural Computing for 2D Contour
and 3D Surface Reconstruction

Jorge Rivera-Rovelo,
Eduardo Bayro-Corrochano,
and Ruediger Dillmann

Abstract In this work we present an algorithm to approximate the surface of 2D
or 3D objects combining concepts from geometric algebra and artificial neural net-
works. Our approach is based on the self-organized neural network called Grow-
ing Neural Gas (GNG), incorporating versors of the geometric algebra in its neural
units; such versors are the transformations that will be determined during the train-
ing stage and then applied to a point to approximate the surface of the object. We
also incorporate the information given by the generalized gradient vector flow to
select automatically the input patterns, and also in the learning stage in order to im-
prove the performance of the net. Several examples using medical images are pre-
sented, as well as images of automatic visual inspection. We compared the results
obtained using snakes against the GSOM incorporating the gradient information
and using versors. Such results confirm that our approach is very promising. As a
second application, a kind of morphing or registration procedure is shown; namely
the algorithm can be used when transforming one model at time t1 into another at
time t2. We include also examples applying the same procedure, now extended to
models based on spheres.

1 Introduction

To approximate the contour or surface of an object is a task that can be carried
out by different methods. If we want to preserve the topology of the data, a good
choice is the use of self-organizing neural networks [1]. In this work we propose a
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very advanced algorithm using early vision preprocessing and self-organizing neural
computing in terms of geometric algebra techniques. Other similar approaches can
be found in [3, 7]. We believe that the early vision preprocessing, together with
self-organizing neurocomputing, resembles in certain manner the geometric visual
processing in biological creatures.

The proposed approach uses the Generalized Gradient Vector Flow (GGVF) [10]
to guide the automatic selection of the input patterns and to guide the learning pro-
cess of the self-organized neural network GNG [4], to obtain a set of transforma-
tions M expressed in the conformal geometric algebra framework. In this framework
rigid body transformations of geometric entities (like points, lines, planes, circles,
spheres) are expressed in compact form as operators called versors that are applied
in a multiplicative way to any entity of the conformal geometric algebra. Thus, train-
ing the network, we obtain the transformation that can be applied to entities resulting
in the definition of the object contour or shape. The experimental results show ap-
plications in medical image processing and visual inspection tasks, confirming that
our approach is very promising.

2 Geometric Algebra

The Geometric Algebra [2, 6, 9] Gp,q,r is constructed over the vector space Vp,q,r ,
where p,q, r denote the signature of the algebra; if p �= 0 and q = r = 0, the metric
is Euclidean; if only r = 0, the metric is pseudo-Euclidean; if p �= 0, q �= 0, and
r �= 0, the metric is degenerate. In this algebra, we have the geometric product which
is defined as in (1) for two vectors a, b and has two parts: the inner product a · b is
the symmetric part, while the wedge product a ∧ b is the antisymmetric part:

ab= a · b+ a ∧ b. (1)

The dimension of Gn=p,q,r is 2n, and Gn is constructed by the application of the
geometric product over the vector basis ei ,

eiej =

⎧
⎪⎨

⎪⎩

1 for i = j ∈ 1, . . . , p,
−1 for i = j ∈ p+ 1, . . . , p+ q,
0 for i = j ∈ p+ q + 1, . . . , p+ q + r ,
ei ∧ ej for i �= j .

This leads to a basis for the entire algebra: {1}, {ei}, {ei∧ej }, {ei∧ej ∧ek}, . . . , {e1∧
e2 ∧ · · · ∧ en}. Any multivector can be expressed in terms of this basis. In the nD
space there are multivectors of grade 0 (scalars), grade 1 (vectors), grade 2 (bivec-
tors), grade 3 (trivectors), . . . , up to grade n. This results in a basis for Gn con-
taining elements of different grade called blades (e.g., scalars, vectors, bivectors,
trivectors, etc.): 1, e1, . . . , e12, . . . , e123, . . . , I , which are called basis blades, where
the element of maximum grade is the pseudoscalar I = e1 ∧ e2 · · · ∧ en. A linear
combination of basis blades, all of the same grade k, is called k-vector. The linear
combination of such k-vectors is called multivector, and multivectors with certain
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characteristics represent different geometric objects (as points, lines, planes, circles,
spheres, etc.), depending on the GA where we are working on. Given a multivec-
tor M , if we are interested in extracting only the blades of a given grade, we write
〈M〉r , where r is the grade of the blades we want to extract (obtaining a homoge-
neous multivector M ′ or an r-vector).

The reverse of a multivector is given by

〈
M†〉

i
= (−1)

i(i−1)
2 〈M〉i . (2)

That is, the reversion is a linear mapping that inverts the geometric product’s order
and stays in the same space.

2.1 The OPNS and IPNS

In Geometric Algebra, the blades have geometric meaning based on their interpre-
tation as linear subspaces. For example, suppose that you have a vector a ∈R

n; we
define the function Oa as

Oa : x ∈R
n→ x ∧ a ∈Gn,

where Gn is the Clifford Algebra over the space R
n. The kernel of this function

is the set of vectors in R
n such that Oa maps to zero. This kernel is named Outer

Product Null Space (OPNS) of a and is denoted by N O(a). From the wedge product
definition we know that x ∧ a = 0 given that x and a are linearly dependent. Thus,
N O(a) can be expressed in terms of a as

N O(a)= {αa : α ∈R}.
In general, the OPNS of a k-blade 〈A〉k ∈ Gn is a k-dimensional linear subspace

of R
n,

N O
(〈A〉k

) := {x ∈R
n : x ∧ 〈A〉k = 0

}
. (3)

The Inner Product Null Space (IPNS) of a blade 〈A〉k ∈Gn, denoted as N I(〈A〉k),
is the kernel of the function I〈A〉k defined as

I〈A〉k : x ∈R
n→ x · I〈A〉k ∈Gn. (4)

Thus, the kernel is

N I
(〈A〉k

) := {x ∈R
n : I〈A〉k (x)= 0 ∈Gn

}
. (5)

For example, consider a vector a ∈R
3; then N I(a) is given by

N I(a) := {x ∈R
3 : x · a = 0

}
.
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That is, all vectors that are perpendicular to the vector a belong to its IPNS. The
representation of an entity expressed in the IPNS can be obtained from its corre-
sponding OPNS representation by multiplying the latter by the pseudo-scalar of the
GA we are working on. Sometimes the OPNS representation is called dual repre-
sentation.

2.2 Conformal Geometric Algebra

To work in Conformal Geometric Algebra (CGA) G4,1,0 means to embed the Eu-
clidean space in a higher-dimensional space with two extra basis vectors which have
particular meaning; in this way, we represent particular objects of the Euclidean
space with subspaces of the conformal space. The vectors we add are e+ and e−,
which square to 1 and −1, respectively. With these two vectors, we define the null
vectors

e0 = 1

2
(e− − e+), e∞ = (e− + e+), (6)

interpreted as the origin and the point at infinity, respectively. From now and in the
rest of the paper, points in the 3D-Euclidean space will be denoted in lowercase
letters, while conformal points in uppercase letters; also the conformal entities will
be expressed in the Inner Product Null Space (IPNS, Sect. 2.1) and not in the Outer
Product Null Space (OPNS, Sect. 2.1) unless it is specified explicitly. To map a point
x ∈V3 to the conformal space in G4,1, we use

X = x + 1

2
x2e∞ + e0. (7)

As mentioned before, we can use CGA to represent particular objects of the 3D-
Euclidean space; the spheres are specially interesting because they are the basic
entities in CGA from which other entities are derived. Spheres with center c and
radius ρ are represented as

S = c+ 1

2

(
c2 − ρ2)e∞ + e0. (8)

In fact, we can think in conformal points X as degenerated spheres of radius ρ = 0.
Let X1, X2 be two conformal points. If we subtract X2 from X1, we obtain

X1 −X2 = (x1 − x2)+ 1

2

(
x2

1 − x2
2

)
e∞ + e0, (9)

and if we square this result, we obtain

(X1 −X2)
2 = (x1 − x2)

2. (10)
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So, if we want a measure of the Euclidean distance between the two points, we
can apply (10). To obtain the 3D magnitude of a vector, we simply multiply its
conformal representation X as follows:

|x| =√−2(X · e0). (11)

The dot product between two conformal vectors X1 and X2 results in X1 · X2 =
(x1 · x2)− 1

2x
2
1 − 1

2x
2
2 ; therefore,

x1 · x2 =X1 ·X2 + 1

2
x2

1 +
1

2
x2

2 . (12)

Then, the angle θ between two vectors X1 and X2 in their conformal representation
can be computed using (12) and (11):

θ = arccos

(
X1 ·X2 + 1

2x
2
1 + 1

2x
2
2

|x1||x2|
)
. (13)

On the other hand, to compute the perpendicular vector x3 ∈ E3 to the vectors X1
and X2, we first compute the wedge product A = X1 ∧ X2, and then we take the
coefficients of the components e12, e23, e31, represented as 〈A〉e12 , 〈A〉e23 , 〈A〉e31 ,
which define the plane b dual to the vector, to finally obtain the perpendicular vector
multiplying by IE = e1 ∧ e2 ∧ e3:

x3= IE(b)= IE
(〈A〉e12 ∧ e12 + 〈A〉e23 ∧ e23 + 〈A〉e31 ∧ e31

)
. (14)

Note that the bivector b= 〈A〉e12 ∧ e12+ 〈A〉e23 ∧ e23+ 〈A〉e31 ∧ e31 can be used to
build a rotor as explained further. Reader is encouraged to see the CGA representa-
tion of other entities consulting [9]. All such entities and its transformations can be
managed easily using the rigid body motion operators described further.

2.3 Rigid Body Motion

In GA there exist specific operators named versors to model rotations, translations,
and dilations and are called rotors, translators, and dilators, respectively. In general,
a versor G is a multivector which can be expressed as the geometric product of
nonsingular vectors,

G=±a1a2 . . . ak. (15)

In CGA, such operators are defined by (16), (17), and (18), R being the rotor, T the
translator, and Dλ the dilator:

R = e
1
2 θb, (16)

T = e−
te∞

2 , (17)

Dλ = e
− log(λ)∧E

2 , (18)
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where b is the bivector dual to the rotation axis, θ is the rotation angle, t ∈ E3 is the
translation vector, λ is the factor of dilation, and E = e∞ ∧ e0.

Such operators are applied to any entity of any dimension by multiplying the
entity by the operator from the left and by the reverse of the operator (Sect. 2) from
the right. Let Xi be any entity in CGA; then to rotate it, we do X′1 = RX1R̃, while
to translate it, we do X′2 = TX2T̃ , and to dilate it, we use X′3 =DλX3D̃λ.

3 Determining the Shape of an Object

To determine the shape of an object, we can use a topographic mapping which uses
selected points of interest along the contour of the object to fit a low-dimensional
map to the high-dimensional manifold of such contour. This mapping is commonly
achieved by using self-organized neural networks as Kohonen’s Maps (SOM) or
Neural Gas (NG) [5]; however, if we desire a better topology preservation, we
should not specify the number of neurons of the network a priori (as specified for
neurons in SOM or NG, together with its neighborhood relations) but allow the net-
work to grow using an incremental training algorithm, as in the case of the Growing
Neural Gas (GNG) [4]. In this work we follow the idea of growing neural networks
and present an approach based on the GNG algorithm to determine the shape of ob-
jects by means of applying versors of the CGA, resulting in a model easy to handle
in post processing stages; a scheme of our approach is shown in Fig. 1. The neural
network has versors associated to its neurons, and its learning algorithm determines
their parameters that best fit the input patterns, allowing us to get every point on the
contour by interpolation of such versors.

Additionally, we modify the acquisition of input patterns by adding a prepro-
cessing stage which determines the inputs to the net; this is done by computing the
Generalized Gradient Vector Flow (GGVF) and analyzing the streamlines followed
by particles (points) placed on the vertices of small squares defined by dividing
the 2D/3D space in such squares/cubes. The streamline or the path followed by a
particle that is placed on x = (x, y, z) coordinates will be denoted as S(x). The

Fig. 1 A block diagram of our approach
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information obtained with GGVF is also used in the learning stage as explained
further.

3.1 Automatic Samples Selection Using GGVF

In order to select automatically the input patterns, we use the GGVF [10], which is a
dense vector field derived from the volumetric data by minimizing a certain energy
functional in a variational framework. The minimization is achieved by solving lin-
ear partial differential equations, which diffuses the gradient vectors computed from
the volumetric data. To define the GGVF, the edge map is defined at first as

f (x) :Ω→R. (19)

For the 2D image, it is defined as f (x, y) = −|∇G(x,y) ∗ I (x, y)|2, where
I (x, y) is the gray level of the image on pixel (x, y), G(x,y) is a 2D Gaussian
function (for robustness in presence of noise), and ∇ is the gradient operator.
With this edge map, the GGVF is defined as to be the vector field v(x, y, z) =
[u(x, y, z), v(x, y, z),w(x, y, z)] that minimizes the energy functional

E =
∫ ∫

g
(|∇f |)∇2v− h

(|∇f |)(v−∇f ), (20)

where

g
(|∇f |)= e

− |∇f |
μ and h

(|∇f |)= 1− g
(|∇f |), (21)

and μ is a coefficient. An example of such dense vector field obtained in a 2D image
is shown in Fig. 2(a), while an example of the vector field for a volumetric data is
shown in Fig. 2(b). Observe the large range of capture of the forces in the image. Due
to this large capture range, if we put particles (points) on any place over the image,
they can be guided to the contour of the object. The automatic selection of input
patterns is done by analyzing the streamlines of points on a 3D grid topology defined
over the volumetric data. This means that the algorithm follows the streamlines of
each point of the grid, which will guide the point to the more evident contour of
the object; then the algorithm selects the point where the streamline finds a peak in
the edge map and gets its conformal representation X as in (7) to make the input
pattern set. Additionally to the X (conformal position of the point), the inputs have
the vector vζ = [u, v, w] which is the value of the GGVF in such pixel and will be
used in the training stage as a parameter determining the amount of energy the input
has to attract neurons. This information will be used in the training stage together
with the position x for learning the topology of the data. Summarizing, the input set
I will be

I= {ζk =Xζk ,vζk |xζ ∈ S
(
x′
)

and f (xζ )= 1
}
, (22)

where Xζ is the conformal representation of xζ ; xζ ∈ S(x′) means that xζ is on the
path followed by a particle placed in x′, and f (xζ ) is the value of the edge map
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Fig. 2 Example of the dense vector field called GGVF (not the whole vector field is shown, but
only representative samples of a grid). (a) Samples of the vector field for a 2D image; (b) Samples
of the vector field for volumetric data; (c) Example of streamlines for particles arranged in a 32×32
grid according to the vector field shown in (a); (d) Points selected as input patterns according
to (22)

in position xζ (assuming that it is binarized). As some streamlines can carry to the
same point or very close points, we can add constraints to avoid very close samples;
one very simple restriction is that the candidate to be included in the input set must
be at least at a fixed distance dthresh of any other input.

Figure 2(c) shows the streamlines according to the vector field shown in Fig. 2(a)
and the input patterns selected as described before are shown in Fig. 2.

3.2 Learning the Shape Using Versors

It is important to note that although we will explain the algorithm using points, the
versors can be applied to any entity in GA that we had selected to model the object.
The network starts with a minimum number of versors (neural units), and new units
are inserted successively. The network is specified by

• A set of units (neurons) named N , where each nl ∈ N has its associated versor
Mnl

; each versor is the transformation that must be applied to a point to place it
in the contour of the object. The set of transformations will ultimately describe
the shape of the object.



Geometric Neural Computing for 2D Contour and 3D Surface Reconstruction 199

• A set of connections between neurons defining the topological structure.

Also, take into account that

• There are two learning parameters, ew and en, for the winner neuron and for the
direct neighbors of it; such parameters remain constant during all the process.
• Each neuron nl will be composed by its versor Mnl

, the signal counter scl , and
the relative signal frequency rsf l . The signal counter scl is incremented for the
neuron nl every time it is the winner neuron. The relative signal frequency rsf l is
defined as

rsf l =
scl∑
∀nj

scj
. (23)

This parameter will act as an indicator to insert new neural units.

With these elements, we define the learning algorithm of the GNG to find the
versors that will define the contour as follows:

1. Let P0 be a fixed initial point over which the transformations will be applied.
This point corresponds to the conformal representation of p0, which can be a
random point or the centroid defined by the inputs. The initial transformations
will be expressed as M = e− t

2 e∞ in the conformal geometric algebra. The vector
t initially is a random displacement.

2. Start with the minimal number of neurons, which have associated random motors
M and a vector vl = [ul, vl, wl], whose magnitude is interpreted as the capacity
of learning for such neuron.

3. Select one input ζ from the inputs set I and find the winner neuron; this means
finding the neuron nl having the versor Ml which moves the point P0 closer to
such input:

Mwin =min∀M

√(
Xζ −MP0M̃

)2
. (24)

4. Modify Mwin and all others versors of neighboring neurons Ml in such a way that
the modified M will represent a transformation moving the point P0 nearer the
input. Note that each motor is composed by a rotation ΔR and a translation ΔT .
The rotation is computed as in (16), θ being the angle between the actual position
a and a′ = a+ v (v is the GGVF vector value in such position); the bivector dual
to the rotation axis is computed as in (14); the rotors and translators are defined
as

ΔRwin = e
ewη(vζ ,vwin)

2 θb, (25)

ΔT = e−
Δtwin

2 e∞, (26)

Δtwin = ewη(vζ ,vwin)(xζ − p0) (27)

for the winner neuron, and

ΔRn = e
enη(vζ ,vn)

2 θb, (28)
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ΔT = e−
Δtn

2 e∞, (29)

Δtn = enη(vζ ,vn)(xζ − p0) (30)

for its direct neighbors, to obtain ΔM =ΔTΔR. Finally, the new motor is

Mlnew =ΔMMlold , (31)

φ is a function defining the amount a neuron can learn according to its distance
to the winner one (defined as in (32)), and η(vζ ,vl ) is defined as in (33).

φ = e−
(MwinP0M̃win−MlP0M̃l )

2

2σ , (32)

η(vζ ,vl) = ‖vζ − vl‖2, (33)

which is a function defining a quantity of learning depending on the strength to
teach of the input ζ and the capacity to learn of the neuron, given in vζ and vl ,
respectively. Also update

vnew
win = vwin + ewvwin, (34)

vnew
n = vn + envn. (35)

5. Every certain number λ of iterations, determine the neuron with the rsf l with
highest value. Then, if any of the direct neighbors of that neuron is at a distance
larger than cmax, do

• Determine neighboring neurons ni and nj .
• Create a new neuron nnew between ni and nj whose associated M and vl will

be

Mnnew =
Mi +Mj

2
, vl_new = vi + vj

2
; (36)

the new units will have the values scnew = 0 and rsf new = 0.
• Delete the old edge connecting ni and nj and create two new edges connecting

nnew with ni and nj .

6. Repeat Steps 3 to 5 if the stopping criterion is not achieved. The stop criterion is
when a maximum number of neurons is reached or when the learning capacity
of neurons approaches to zero (is less than a threshold cmin), and the first that
happens stops the learning process.

Training the network, we find the set of M defining positions on a trajectory; such
positions minimize the error measured as the average distance between Xζ and the
result of MζP0M̃ζ :

χ =
∑
∀ζ
√
(MζP0M̃ζ −Xζ )2

N
, (37)

where Mζ moves P0 closer to input Xζ , and N is the number of inputs.
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4 Experiments

Figure 3 shows the result when the algorithm is applied to a magnetic resonance
image (MRI); the goal is to obtain the shape of the ventricle. Figure 3(a) shows the
original brain image and the region of interest (ROI); Fig. 3(b) shows the computed
vector field for the ROI; Fig. 3(c) shows the streamlines in the ROI defined for
particles placed on the vertices of a 32×32 grid; Fig. 3(d) shows the initial shape as
defined for the two initial random motors Ma,Mb; Fig. 3(e) shows the final shape
obtained; and finally Fig. 3(f) shows the original image with the segmented object.

Figure 4 presents an image showing that our approach can also be used for au-
tomated visual inspection tasks; reader can observe that such image contains a very
blurred object. That image is for the inspection of hard disk head sliders. Figure 4(a)
shows the original image and the region of interest (ROI); Fig. 4(b) shows the com-
puted vector field of the ROI; Fig. 4(c) shows the streamlines defined for particles
placed on the vertices of a 32 × 32 grid; Fig. 4(d) shows the inputs selected ac-
cording the streamlines and the initial shape as defined for the two initial random
motors Ma and Mb; and Fig. 4(e) shows the final shape obtained overlapped with
the original image, showing that the algorithm gives good results if it is used for
segmentation.

Fig. 3 (a) Original image and region of interest (ROI); (b) Zoom of the dense vector field of the
ROI; (c) Zoom of the streamlines in ROI; (d) Inputs and initial shape; (e) Final shape defined
according the 54 estimated motors; (f) Image segmented according the results
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Fig. 4 Application in visual inspection tasks: (a) Original image and the region of interest (ROI);
(b) Zoom of the dense vector field of the ROI; (c) Zoom of the streamlines in ROI; (d) Inputs and
initial shape according the two initial random transformations Ma and Mb ; (e) Final shape defined
according the 15 estimated motors (original image with the segmented object)

Figure 5 shows the application of the ggvf-snakes algorithm in the same problem.
It is important to note that although the approaches of Figs. 4 and 5 use GGVF
information to find the shape of an object, the estimated final shape using the neural
approach is better than the one using active contours; the second approach (see
Fig. 5) fails to segment the object no matter if the initialization of the snake is given
inside, outside, or over the contour we are interested in. Additionally, the fact of
expressing such shape as a set of motors allows us to have a model best suited to
be used in further applications which can require the deformation of the model,
especially if such model is not based on points but on the other GA entities, because
we do not need to change the motors (recall that they are applied in the same way to
any other entity).

The proposed algorithm was applied to different sets of medical images. Figure 6
shows some images of such sets. The first row of each figure shows the original im-
age and the region of interest, while the second row shows the result of the proposed
approach. Table 1 shows the errors obtained with our approach using and not using
the GGVF information. We can observe that the inclusion of GGVF information
improves the approximation of the surface.

To compare our algorithm, we use the GNG with and without GGVF information,
as well as a growing version of SOM, also using and not using the GGVF informa-
tion. These algorithms were applied to a set of 2D medical images (some obtained
with computer tomography (CT) and some with magnetic resonance (MR)). Figure
7(a) shows the average errors when GSOM stops for different examples: segment-
ing a ventricle, a blurred object, a free form curve, and a column disk. Note that
using the GGVF information the error is reduced. This means that using the GGVF
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Fig. 5 Result obtained when using the active contour approach to segment the object in the same
image as in Fig. 4. (a) Initialization of snake inside the object; (b) Final result obtained with initial-
ization showed in (a); (c) Initialization of snake outside the object; (d) Final result obtained with
initialization showed in (c); (e) Initialization of snake over the contour; (f) Final result obtained
with initialization showed in (e)

Fig. 6 First row (upper row): original image and the region of interest. Second row: Result of
segmentation

information, as we propose, a better approximation of the object shape can be ob-
tained. Figure 7(b) shows the average errors obtained for several examples but using
the GNG with and without the GGVF information. Note that again, the GGVF con-
tributes to obtain a better approximation to the object surface. Also note that the
average errors obtained with the GNG algorithm are smaller than the errors ob-
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Table 1 Errors obtained by
the algorithm with and
without the GGVF
information. ε1: error without
GGVF; ε2: error with GGVF

Example ε1 ε2 Example ε1 ε2

Ventricle 1 3.29 2.51 Eye 1 7.63 6.8

Eye 2 3.43 2.98 Column disk 1 4.65 4.1

Tumor 1 3.41 2.85 Tumor 2 2.95 2.41

Free form curve 2.84 1.97 Column disk 2 2.9 2.5

Fig. 7 (a) Average errors for different examples using the GSOM algorithm with and without
GGVF information; (b) Average errors for different examples using the GNG algorithm with and
without GGVF information; (c) Comparison between the errors obtained with GSOM and GNG
using and without using GGVF information. Note that both are improved with GGVF information,
although GNG gives better results

tained with the GSOM, as can be seen in Fig. 7(c) and that both are improved with
GGVF information, although GNG gives better results.

It is necessary to mention that the whole process is quick enough; in fact, the
computational time required for all the images showed in this work took only few
seconds. The computation of the GGVF is the most time-consuming task in the
algorithm, but it only takes about 3 seconds for 64 × 64 images, 20 seconds for
256× 256 images, and 110 seconds for 512× 512 images. This is the reason why
we decide not to compute it for the whole image but only for selected region of
interest. The same criterion was applied to 3D examples.
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Fig. 7 (Continued)
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Fig. 8 The algorithm for 3D object’s shape determination. (a) 3D model of the patient’s head
containing a tumor in the marked region; (b) Vectors of the dense GGVF on a 3D grid arrangement
of 32× 32× 16; (c) Inputs determined by GGVF and edge map and the initialization of the net
GNG; (d)–(e) Two stages during the learning; (f) Final shape after training has finished with a total
of 170 versors M (associated with 170 neural units)

Figure 8(a) shows the patient head with the tumor which surface we need to
approximate; Fig. 8(b) shows the vectors of the dense GGVF on a 3D grid arrange-
ment of size 32 × 32 × 16; Fig. 8(c) shows the inputs determined by GGVF and
edge map and also shows the initialization of the net GNG; and Figs. 8(d)–(f) show
some stages of the adaptation process, while the net is determining the set of trans-
formations M (Fig. 8(f) is the final shape after training has finished with a total of
170 versors M (associated with 170 neural units)).

Figure 9 shows another 3D example, corresponding to a pear, and the surface
is well approximated. Figure 9(b) shows the inputs and the initialization of the net
with nine neural units (the topology of the net is defined as a sort of pyramid around
the centroid of input points); while Fig. 9(c) shows the result after the net has been
reached the maximum number of neurons, which was fixed to 300; finally, Fig. 9(d)
shows the minimization of the error according to (37).

Another useful application of the algorithm using the gradient information of the
GGVF during the training of the GNG neural net in the geometric algebra frame-
work is the transformation of one model obtained at time t1 into another obtained at
time t2 (a kind of morphing of 3D surfaces).

Figure 10(a) shows the initial shape which will be transformed into the one
showed in Fig. 10(b); Figs. 10(c)–(f) show some stages during the process. Note
that Fig. 10(f) looks like Fig. 10(b), as expected.
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Fig. 9 3D object shape definition for the case of a pear. (a) Inputs to the net selected using GGVF
and streamlines; (b) Inputs and the initialization of the net with nine neural units; (c) Result after
the net has been reached the maximum number of neurons (300 neurons); (d) Error measurement
using (37)

Fig. 10 The 3D surface shown in (a) is transformed into the one shown in (b). Different stages
during the evolution are shown in (c) to (f), where (f) is the final shape (that is, the final shape of
(a)) after finishing the evolution of the net, which should look like (b)

In the case shown in Fig. 11, we have one 3D model with an irregular shape
which will be transformed to take a shape similar to a pear; Fig. 11(a) shows the
initial shape which will be transformed into the one showed in Fig. 11(b); Figs.
11(c)–(f) show some stages during the process. Again, the resulting volume looks
like the one expected (Fig. 11(b)).

To illustrate the application of the presented algorithm in cases having mod-
els based on entities different to the points, we show in Fig. 12 models based on
spheres [8]. The goal is the same: morphing the model shown in Figs. 12(a) and
12(d) to the one showed in Figs. 12(b) and 12(e), respectively. The results are shown
in Figs. 12(c) and 12(f).
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Fig. 11 The 3D surface shown in (a) is transformed into the one shown in (b). Different stages
during the evolution are shown in (c) to (f), where (f) is the final shape (that is, the final shape of
(a)) after finishing the evolution of the net, which should look like (b)

Fig. 12 The 3D models based on spheres shown in (a) and (d) are transformed into the one shown
in (b) and (e), respectively, resulting in the models showed in (c) and (f), respectively

5 Conclusion

In this work the authors show how to incorporate geometric algebra techniques in
an artificial neural network approach to approximate 2D contours or 3D surfaces. In
addition, they show the use of the dense vector field named Generalized Gradient
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Vector Flow (GGVF) not only to select the inputs to the neural network GNG but
also as a parameter guiding its learning process. This network was used to find a set
of transformations expressed in the conformal geometric algebra framework, which
move a point by means of a versor along the contour of an object, defining by this
way the shape of the object. This has the advantage that versors of the conformal
geometric algebra can be used to transform any entity exactly in the same way:
multiplying the entity from the left by M and from the right by M̃ .

There were presented some experiments showing the application of the proposed
method in medical image processing and for visual inspection tasks. The results ob-
tained show that by incorporating the GGVF information we can get automatically
the set of inputs to the net, and also we improve its performance. Some comparisons
between the results obtained with this algorithm, against the results obtained by a
modified version of the GSOM net and also against the ggvf-snakes, showed that
our proposal is better. When dealing with the 3D case, we presented two different
applications: surface approximation and the transformation of a model at time t1
into another at time t2, obtaining good results even using models based on spheres.
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Geometric Associative Memories and Their
Applications to Pattern Classification

Benjamin Cruz, Ricardo Barron,
and Humberto Sossa

Abstract Associative memories (AMs) were proposed as tools usually used in the
restoration and classification of distorted patterns. Many interesting models have
emerged in the last years with this aim. In this chapter a novel associative mem-
ory model (Geometric Associative Memory, GAM) based on Conformal Geomet-
ric Algebra (CGA) principles is described. At a low level, CGA provides a new
coordinate-free framework for numeric processing in problem solving. The pro-
posed model makes use of CGA and quadratic programming to store associations
among patterns and their respective class. To classify an unknown pattern, an inner
product is applied between it and the obtained GAM. Numerical and real examples
to test the proposal are given. Formal conditions are also provided that assure the
correct functioning of the proposal.

1 Introduction

Two main problems in pattern recognition are pattern classification and pattern
restoration. One approach usually used to restore or classify desired patterns is
by means of an associative memory. Lots of models of associative memories have
emerged in the last 40 years, starting with the Lernmatrix of Steinbouch [25], then
the Linear Associator of Anderson [1] and Kohonen [19], and the well-known model
proposed by Hopfield, the Hopfield Memory [18]. For their operation, all of these
models use the same kind of algebraic operations. Later there appeared the so-called
Morphological Associative Memories (MAMs) [23] that are based on the mathemat-
ical morphology paradigm.

An associative memory M is a device whose main function is associating input
patterns with output patterns. The notation for a pattern association between two
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vectors x and y can be seen as an ordered pair (x, y). The whole set of all associa-
tions that form the associative memory is called fundamental patterns set or simply
fundamental set (FS). Patterns belonging to the FS are called fundamental patterns.

Associations are completely stored in a weighted matrix. This matrix can be used
to generate output patterns using the associated input patterns. This weighted matrix
is the associative memory M. The process by which M is built is called learning or
training phase, and the process through which an output pattern is generated using
an input pattern is called restoration or classification phase.

When by means of an associative memory M a specific fundamental pattern is
correctly classified, then M presents a perfect recall for that pattern [5]. An associa-
tive memory that presents perfect recall for all patterns of the FS is called a perfect
recalling memory. When an associative memory M recovers or classifies patterns
affected with noise correctly, it is said that M presents a robust recall or robust
classification.

1.1 Classic Associative Memory Models

In 1961, a first work of associative memories was developed by Karl Steinbouch,
the so-called Die Lernmatrix. This memory was proposed in 1961 and is capable
of both pattern classification and pattern association [25]. In 1972, two papers by
James A. Anderson [1] and Teuvo Kohonen [19] proposed the same model of asso-
ciative memory, the so-called Linear Associator model for associative memories.

In the same year, a new associative memory device was presented by Kaouru
Nakano, the Associatron [22]. This device was able to store entities represented by
bit-patterns in a distributed form. It was able to restore complete patterns using a
portion of them. Ten years later, John J. Hopfield introduced the so-called Hopfield
Memory [18]. Hopfield considers this model as a physical system described by x

that has locally stable points.
Almost 20 years after the Hopfield Memory, a new set of lattice algebra-

based associative memories appeared, the Morphological Associative Memories
(MAMs) [23]. Minima or maxima of sums are used for their operation, in contrast
to the sums of products used in previous models. A variant of these MAMs are the
Alpha–Beta Associative Memories (αβ) [27]. For these memories, two new opera-
tors are defined: α (alpha) and β (beta). These are detailed and discussed in [5].

There are two types of MAMs and αβ , the min memories that can cope with
patterns altered with subtractive noise and the max memories that can cope with
patterns altered with additive noise. However, contrary to what one might think, the
performance of these models in the presence of patterns altered with mixed noise
(most common in real situations) is too deficient [26].

In the literature, three ways to face the problem of mixed noise by means of
an associative memory can be highlighted. In [26], a way to solve this problem by
means of the so-called kernels is given. A kernel is a reduced version of an original
pattern; the basic idea is to use two associative memories, one for recalling the kernel
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using the distorted pattern and the other one for recalling the original pattern using
the obtained kernel. Kernels for MAMs are however difficult to find, and if new
patterns have to be added to the fundamental set, the kernels need to be computed
again [11].

Another approximation is by means of the so-called median memories [24].
These memories use the well-known median operator widely used in signal pro-
cessing instead of the maximum or minimum operators. Due the characteristics of
the median operator, these memories can cope with mixed noise directly. However,
the conditions for obtaining a perfect recall are difficult to achieve.

Finally in [11], it is shown how to solve the problem of the mixed noise by
decomposing a pattern into parts (sub-patterns). This method is feasible due to the
locality of the noise. Some parts of the pattern are less affected by noise than the
other ones. However this method can consume a lot of computing time.

2 Basics of Conformal Geometric Algebra

In the XIX century many scientists worked on the development of algebraic sys-
tems. Among these, William K. Clifford (1845–1879) introduced Geometric Al-
gebras (GA) called Clifford Algebras by mathematicians. They were completely
described in his paper Applications of Grassmann’s Extensive Algebra [10].

A geometric algebra is a priori coordinate-free [14]. In GA, geometric objects
and operators over these objects are treated in a single algebra [13]. A special char-
acteristic of GA is its geometric intuition. Another important feature is that the ex-
pressions in GA usually have low symbolic complexity [17].

The Conformal Geometric Algebra (CGA) is a (3,2)-dimensional coordinate-free
theory and provides a conformal representation for 3D objects. Spheres and circles
are both algebraic objects with a geometric meaning. In CGA, points, spheres, and
planes are easily represented as multivectors [15]. A multivector is the outer product
of various vectors [20].

CGA provides a great variety of basic geometric entities to compute with [17].
Intersections between lines, circles, planes, and spheres are directly generated. The
creation of such elementary geometric objects simply occurs by algebraically join-
ing a minimal number of points in the object subspace. The resulting multivec-
tor expressions completely encode in their components positions, orientations, and
radii [13].

The main products of Geometric Algebra are the geometric or Clifford product,
the outer product and the inner product. The inner product is used for the computa-
tion of angles and distances.

For notation purposes, Euclidean vectors will be noted by lowercase italic letters
(p,q, s, . . .), with the exception of the letters i, j, k, l,m,n that will be used to refer
to indices. The corresponding conformal points will be noted by italic capital letters
(P,Q,S, . . .). A Euclidean matrix will be noted by bold capital letters (M). To de-
note that an element belongs to an object (vector), a subscript will be used. To refer
that an object belongs to a set of objects of the same type, a superscript will be used.
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For example, if S is a sphere, then Sk is the kth component of it, and Sk is the kth
sphere of a set of spheres. To denote scalars Greek letters will be used.

In particular, an original Euclidean point p ∈ R
n is extended to an (n + 2)-

dimensional conformal space [16] as

P = p+ 1

2
(p)2e∞ + e0, (1)

where p is a linear combination of the Euclidean base vectors. e0 and e∞ represent
the Euclidean origin and the point at infinity, respectively, such that e2

0 = e∞ = 0
and e0 · e∞ =−1 [13].

Equation (1) expresses a homogeneous relationship between both Euclidean and
conformal domains since, given a scalar α and a conformal point P , αP and P both
represent the same Euclidean point p. When the coefficient of e0 is equal to 1, then
P has a canonic representation. In this section, the algebra works in the conformal
domain, while the geometric semantics lies in the Euclidean domain. In the same
way, the sphere has the canonical form

S = C − 1

2
(γ )2e∞ = c+ 1

2

(
(c)2 − (γ )2)e∞ + e0, (2)

where C is the central point in conformal form as defined in (2), where γ is the
radius of the sphere. Also, a sphere can be easily obtained by four points that lie on
it [13], as follows:

S = P 1 ∧ P 2 ∧ P 3 ∧ P 4. (3)

In this case, it is said that (3) is a dual representation of (2). In the same way, a
plane can be defined by three points that lie on it and the point at infinity [13] as
follows:

T = P 1 ∧ P 2 ∧ P 3 ∧ e∞. (4)

From (3) and (4) we can see that a plane is a sphere that passes through the point
at infinity [15].

A distance measure between two conformal points P and Q can be defined with
the help of the inner product [16] as follows:

P ·Q= p · q − 1

2
(p)2 − 1

2
(q)2 =−1

2
(p− q)2 ⇐⇒ (p− q)2 =−2(P ·Q),

(5)
resulting in the square of the Euclidean distance. In the same way, a distance mea-
sure between one conformal point P and a sphere S can be defined with the help of
the inner product [16] as

P · S = p · s − 1

2

(
(s)2 − 1

2
(γ )2

)
− 1

2
(p)2 = 1

2

(
(γ )2 − (s − p)2) (6)

or in a simplified form as

2(P · S)= (γ )2 − (s − p)2. (7)
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Based on (7), if P · S > 0, then p is inside of the sphere; if P · S < 0, then
p is outside of the sphere; and if P · S = 0, then p is on the sphere. In pattern
classification, therefore, if a CGA spherical neighborhood is used, the inner product
makes it possible to know when a pattern is inside or outside of the neighborhood.

3 Geometric Algebra Classification Models

While classic models all use the same kind of algebraic operations, MAMs make
use of the mathematical morphological paradigm (min and max operations). Next,
a description of how geometric algebra operations can be used to store the associ-
ation among a subset of patterns and their corresponding index classes is shown. It
is worth mentioning that the idea of using geometric algebra in classification is not
new.

In [2], a Quaternionic Multilayer Perceptron (QMLP) in Quaternion Algebra is
developed. A QMLP is a Multilayer Perceptron (MLP) in which both the weights
of connections and the biases are quaternions, as well as input and output signals.
With the help of the QMLP, the number of parameters of an MLP needed to perform
a multidimensional series prediction decreases [2].

A new set of Geometric Algebra Neural Networks was introduced in [7]. Real,
complex, and quaternionic neural networks can be further generalized in the geo-
metric algebra framework [7]. The weights, the activation functions, and the outputs
are represented by multivectors. The geometric product is used to operate these mul-
tivectors.

Bayro and Vallejo extended the McCulloch–Pitts neuron [21] to the geometric
neuron by substituting the scalar product with the Clifford or geometric product.
A feed-forward geometric neural network is then built, where the inner vector prod-
uct is extended to the geometric product, and the activation functions are a general-
ization of the function proposed in [2].

In [7], a new approach is also proposed, the Support Multivector Machines. The
basic idea is generating neural networks using Support Vector Machines (SVM) for
the processing of multivectors in geometric algebra. The use of geometric algebra in
SVMs offers both new tools and new understanding of SVMs for multidimensional
learning [7].

In [4], a special higher-order neuron, the so-called Hyper-sphere neuron was in-
troduced. A hypersphere neuron may be implemented as a perceptron with two bias
inputs. In that work, a perceptron based on conformal geometric algebra principles
was described. An iterative hypersphere neuron was also proposed. The decision
surface of the perceptron presented is not a hyperplane but a hypersphere. An ad-
vantage of this representation is that only a standard scalar product needs to be
evaluated in order to decide whether an input vector is inside or outside a hyper-
sphere.

So-called Clifford Neurons are introduced in [8], the weights and the threshold
of a classical neuron are replaced by multivectors, and the real multiplication is
replaced by the Clifford product. Two types of Clifford Neurons are described, the
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Basic Clifford Neuron, which can be viewed as a Linear Associator, and the Spinnor
Clifford Neuron. Both types of neurons can be the starting point to fast second-order
training methods for Clifford and Spinnor MLPs in the future [9].

In the following section, a new idea that has never been used before to develop
an associative memory model based on the conformal geometric algebra principles
will be explained.

4 Geometric Associative Memories

Definition 1 When two sets of points in R
n can be completely separated by a hyper-

plane, they are said to be linearly separable.

Linear separation is important for pattern classification; that hyperplane works
as a decision surface; it can be used for deciding to which class an unclassified will
be assigned by finding which side of the hyperplane the pattern is located. Many
classification models (i.e., neural networks) have better results when the patterns
are linearly separable.

In the same way, the next definition can be enunciated.

Definition 2 When two sets of points in R
n can be completely separated by a hy-

persphere, they are said to be spherically separable.

In this case the decision is made by finding if the pattern is located inside or
outside of the sphere. Thus, the following theorem can be established:

Theorem 1 Any two sets of linearly separable points in R
n are spherically separa-

ble too.

Proof Consider any two sets of linearly separable points in R
n. From (3) and (4) the

hyper-plane that separate them is a sphere that passes through the point at infinity.
Then, there is a sphere that separates them. Therefore, the two sets are spherically
separable. �

It is worth mentioning that Theorem 1 does not guarantee that two sets of spher-
ically separable points are linearly separable.

Spherical neighborhoods are usually difficult to handle, but in the context of
geometric algebra, this is not a problem. In [4], a method for building a hypersphere
neuron in an iterative way is described. In the following, three one-shot methods to
build a sphere are explained.

4.1 Creating Spheres

The goal of a Geometric Associative Memory (GAM) is to classify a pattern as
belonging to a specific class if and only if the pattern is inside of the support region
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(hypersphere) of that class. Building spherical neighborhoods implies to find the
center of each sphere and then a suitable radius. Some procedures to achieve this
with CGA have been reported in the literature. Three of them are described in the
following.

In [12], a one-shot method is described, where given a set of points {pi, i =
1, . . . ,m}, a spherical neighborhood is constructed. The center is computed as

c=
n∑

i=1

pi/m. (8)

In other words, the center is the average among all the patterns of each class. To
compute the radius, the following expression is used:

γ =min
[(
C · P i

)
, i = 1, . . . ,m

]
, (9)

where C and P i are the conformal representations of c and pi , respectively. This
procedure guarantees that all the patterns in the respective class will be inside of a
sphere of class. A disadvantage of this procedure is its high computational cost.

In [17], a second approach is presented: planes or spheres are fitted into point
sets by using a least squares approach. The algorithm uses the distance measure
between points and spheres with the help of the inner product. It performs a least
squares approach to minimize the square of the distances between a point and a
sphere.

With the help of this approach, spherical neighborhoods that fit a set of patterns
can be created. In this case, the spheres work as attractors with their corresponding
class patterns as centers. The drawback for this method is that generally some points
might appear located outside the resulting sphere.

In [17], bounding a sphere of cloud points is presented. The case for one and two
points is described, and the case of expanding an existing bounding sphere when
adding more points (or spheres) is presented. Using both cases, bounding a sphere
of a set of points can be easily performed.

In [6], a method to construct a smallest enclosing hypersphere using quadratic
programming and conformal geometric algebra was presented. The method com-
bines characteristics of the first two methods, i.e., fit an optimal sphere that contains
all the points.

The above methods can be used to build spherical neighborhoods for a specific
class by using the points (patterns) of that class. But they do not take into account
the patterns of other classes or the separation between classes.

In the following a new approach will be presented. It is inspired by ideas
from [12]. The proposal can be used to find an optimal spherical neighborhood
taking into account the patterns of the class that the sphere covers and the patterns
of the other classes.

Let P = {P i ∪ P j | i = 1, . . . , l, j = l + 1, . . . ,m} be a set of spherically sepa-
rable points in R

n, where {P i | i = 1, . . . , l} are points belonging to one class, and
{P j | j = l + 1, . . . ,m}, are points belong to the other class. The problem is to find
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an optimal sphere S with the least square error, such that P i are inside S and P j are
outside of it or, in other words, to solve

min
S

m∑

i=1

(
P i · S), (10)

subject to (11) for points inside of the sphere and (12) for points outside of it

P i · S ≥ 0, i = 1, . . . , l, (11)

P j · S < 0, j = l + 1, . . . , l. (12)

In order to find an optimal solution, a quadratic programming algorithm must
be applied. Therefore this problem must be changed into a Euclidean problem of
optimization, starting from (10) and considering that all the spheres are in canonical
form such that the term Sn+2 of them can be omitted:

m∑

i=1

(
P i · S)2 =

m∑

i=1

(
pi · s − Sn+1 − 1

2

(
pi
)2
)2

=
m∑

i=1

([
pi · s − Sn+1

]− 1

2

(
pi
)2
)2

=
m∑

i=1

([
pi · s − Sn+1

]2 − [pi · s − Sn+1
](
pi
)2 + 1

4

(
pi
)4
)
, (13)

where Sn+1 = 1
2 (p

i − s)2. Thus,

m∑

i=1

(
P i ·S)2 =

m∑

i=1

(
pi · s−Sn+1

)2+
m∑

i=1

(−pi · s+Sn+1
)(
pi
)2+ 1

4

m∑

i=1

(
pi
)4
. (14)

Here, the third term is irrelevant because it does not depend on parameter S, and
thus it can be omitted. Without losing generality it can be rewritten in Euclidean
notation as in (15), where W and F are matrices whose components are (16) and
(17) respectively, and x = [S1, . . . , Sn+1].

m∑

i=1

(
P i · S)2 =

m∑

i=1

(
n+1∑

k=1

Wi,kxk

)

+
m∑

i=1

(
n+1∑

k=1

Fi,kxk

)

, (15)

Wi,k =
{
pi
k for k = 1, . . . , n,

−1 otherwise,
(16)
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Fi,k =
{
−(pi

k)(p
i)2 for k = 1, . . . , n,

(pi)2 otherwise.
(17)

Let wi = [Wi,1, . . . ,Wi,n+1]; then for the first term of the right side of expression
(15) and considering that wt

i is the transpose of the vector wi , we have

m∑

i=1

(
n+1∑

k=1

Wt
iSk

)2

=
m∑

i=1

(
wt

ix
)2

= (wt
1x + · · · +wt

mx
)2

= wt
1xw

t
1x + · · · +wt

mxwt
mx

= (wt
1xw

t
1 + · · · +wt

mxwt
m

)
x

= ([xtw1 + · · · + xtwm

]
W
)
x

= xtWtWx. (18)

By considering that H=WtW we have

m∑

i=1

(
n+1∑

k=1

Wt
iSk

)2

= xtHx. (19)

For the second term of the right side of the expression (15), let yk =∑m
i=1 Fi,k :

m∑

i=1

(
n+1∑

k=1

Fi,kxk

)

=
n+1∑

k=1

(
m∑

i=1

Fi,kxk

)

=
n+1∑

k=1

(ykxk). (20)

Let y = [y1, . . . , yn+1]; then

m∑

i=1

(
n+1∑

k=1

Fi,kSk

)

= ytx. (21)

With the help of (19) and (21), expression (10) can be converted into Euclidean
matrix notation as follows:

xtHx + ytx. (22)
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The constraint (11) for points inside of the sphere will change into

P i · S ≥ 0,

pi · s − Sn+1 − 1

2

(
pi
)2 ≥ 0,

pi · s − Sn+1 ≥ 1

2

(
pi
)2
,

n+1∑

k=1

(−Wk,i )Sk ≤−1

2

(
pi
)2
,

(23)

where Wi,k was defined in (16). Equation (23) can be rewritten as

−Wx ≤−1

2
p2
i , (24)

where x = [S1, . . . , Sn+1], and the constraint (12) for points outside of the sphere
will be

P i · S < 0,

pi · s − Sn+1 − 1

2

(
pi
)2

< 0,

pi · s − Sn+1 <
1

2

(
pi
)2
,

n+1∑

k=1

(−Wi,k)Sk <
1

2

(
pi
)2
, (25)

Wx <
1

2
p2
i . (26)

Let A= [−W,W], and b be a vector whose ith component is − 1
2 (p

i)2 for i =
1, . . . , l and 1

2 (p
i)2 − ε for i = l +m, . . . ,m. The ε is a smallest positive quantity

used to change the “<” of (26) to be the “≤”. Then the constraints (11) and (12) can
be converted to a Euclidean matrix notation,

Ax ≤ b. (27)

Finally, the problem of solving (10) has changed to a classical optimization prob-
lem with constraints

min
x

(
xtWx + ytx

)
,

s.t. Ax ≤ b.

(28)

Thus, the optimal sphere S is given by solving (28), where Sk = xk for k =
1, . . . , n + 1 and Sn+2 = 1. It is clear that by including in the restrictions all the



Geometric Associative Memories and Their Applications to Pattern Classification 221

points that stay out of the sphere, the solution S results in a separation surface that
allows differentiating between two classes (i.e., inner and outer points).

The procedure works perfectly for two spherically separable classes. In a mul-
ticlass situation, the procedure is similar. In this case, the subset {P i, i = 1, . . . , l}
will be all patterns for class k, and {P j , j = l+1, . . . ,m} will be all patterns for the
other classes. The kth sphere Sk is then found by solving (28). The same procedure
must be applied for all the other classes.

4.2 Pattern Learning and Classification

The learning phase of an associative memory consists on storing associations among
input patterns and output patterns. In the case of Geometric Associative Memories
(GAMs), the learning phase consists on creating the spherical neighborhoods for
each class. A GAM M is thus a matrix of size m × (n + 2) (m is the number of
classes, and n is the dimension of the space). The kth row are the components of the
kth sphere, as it can be seen in (29). Ck and γ k are the center and radius of the kth
sphere, respectively.

M=

⎡

⎢⎢⎢
⎣

S1

S2

...

Sm

⎤

⎥⎥⎥
⎦

. (29)

Classification of a pattern can be performed by using the idea from [4], an inner
product between the conformal notation of an unclassified pattern x ∈ R

n and M
must be applied to getting, as a result, a vector u. This vector will contain all the
inner products between the unclassified pattern and the spheres of class. This vector
is given as

uk =Mk ·X = Sk ·X. (30)

When X is inside a sphere, (30) returns a positive number (or zero) and a negative
number otherwise. Note that the classification phase is independent of the training
phase.

In some cases (mainly noisy patterns), X could be inside two or more spheres or
could be outside of all spheres. To decide to which sphere a given pattern belongs,
the following remapping must be used:

vk =
{
−∞ if uk < 0,

uk − (rk)2 otherwise.
(31)

This must be done for k = 1, . . . ,m. The class identifier j can be obtained as
follows:

j = arg max
k
[vk | k = 1, . . . ,m]. (32)



222 B. Cruz et al.

As it can be seen, when x is outside of the k-sphere, expression (31) returns−∞,
and when x is inside of the k-sphere, the same expression returns the distance (with
minus sign) between x and ck . By doing this, x will be classified by a class sphere
covering its conformal representation; with the help of expression (32), x will be
classified by the sphere with center closest to it.

Note that, in some cases, vk =−∞ for k = 1, . . . ,m, that is, x is outside of all
the spheres. Then, when expression (32) is applied, it cannot return a value. At this
point, two choices can be taken. First, x does not belong to any class. Second, using
expression (32) directly on uk − (rk)2. In this case, the GAM works as a minimum
distance classifier, but the use of neighborhoods is relegated.

The classification phase is independent of the training phase. The proposed
method works perfectly when the classes are spherically separable.

4.3 Conditions for Perfect Classification

In associative memories, when an associative memory M recovers or classifies the
fundamental set correctly, it is said that M presents perfect recall or perfect classifi-
cation. Let M be a trained GAM, as it was presented in the previous section.

Theorem 2 Assume m sets of spherically separable classes in R
n, and let M be a

trained GAM for those classes. Then M presents perfect classification.

Proof Let k be an index class whose sphere Sk is the kth component in M, and let
p be a fundamental pattern of class k, and let j be an index j = 1, . . . ,m such that
j �= k, Sk having being obtained using expression (10). Then according to condition
(11), P · Sk ≥ 0 because it is a pattern of class k and P · Sj ≥ 0 for some j �= k.

When (31) is applied to P , v has a positive number or zero in position k and
−∞ in the other positions. Therefore, (32) returns k. This covers all patterns in all
classes. �

4.4 Conditions for Robust Classification

In associative memories, when an associative memory M recovers or classifies cor-
rectly patterns affected with noise, it is said that M presents robust recall or robust
classification. The robustness in a GAM depends on the size of its radius; the GAM
can classify any noise pattern as belonging to its class when that pattern is located
inside of it. Patterns located outside of a specific sphere (i.e., some noise patterns)
will not be classified as belonging to that class sphere.

The quantity of noise that can admit a fundamental pattern depends on the posi-
tion of it with respect to the center and the border of the sphere. Patterns nearest to
the center can admit more quantity of noise than patterns located near of the border.
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Fig. 1 Example 1, sets of
patterns. Square, pentagon,
triangle, and circle shapes are
patterns belonging to classes
1, 2, 3, and 4, respectively

5 Numerical Examples

In this section, two illustrative examples for the problem of classifying sets of pat-
terns are presented. For simplicity, in order to clarify the results, a 2D and 3D Eu-
clidean space for the geometric problem are used.

In both cases, a function of the Optimization Toolbox of MatLab was used to
solve the minimization problem. Function quadprog solves quadratic programming
problems. It finds an initial feasible solution by first solving a linear programming
problem.

Example 1 The following are linearly separable patterns set in R
n:

Class 1 x1 = [1 1
]
, x2 = [2 1

]
, x3 = [3 2

]
, x4 = [2 2

]
,

Class 2 x5 = [2 −1
]
, x6 = [1 −3

]
, x7 = [3 −1

]
,

x8 = [2 −2
]
,

Class 3 x9 = [−1 3
]
, x10 = [−3

]
, x11 = [−2 2

]
,

x12 = [−4 1
]
,

Class 4 x13 = [−2 −2
]
, x14 = [−1 −3

]
, x15 = [−1 −1

]
,

x16 = [−3 −1
]
.

(33)

Figure 1 shows a graphical representation of these patterns. By using (10), the
corresponding spheres (in this case, circles) are obtained. Their respective centers
and radii are

c1 = [0.65 1.11
]
, γ 1 = 2.51,

c2 = [1 −1
]
, γ 2 = 2,

c3 = [−1.5 1.5
]
, γ 3 = 2.55,

c4 = [−0.8 −0.6
]
, γ 4 = 2.41.

(34)
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Fig. 2 Circles obtained using
the method of Sect. 4.2. They
function as separation
surfaces

The value used for ε in this example was 0.0001. Finally, the GAM M is

M =

⎡

⎢⎢
⎢
⎣

S1 = C1 − ( 1
2 )(γ

1)2e∞
S2 = C2 − ( 1

2 )(γ
1)2e∞

S3 = C3 − ( 1
2 )(γ

1)3e∞
S4 = C4 − ( 1

2 )(γ
1)4e∞

⎤

⎥⎥
⎥
⎦

=

⎡

⎢⎢
⎣

S1 = 0.65e1 + 1.11e2 − 2.31e∞ + e0

S2 = e1 − e2 − e∞ + e0

S3 =−1.5e1 + 1.5e2 − e∞ + e0

S4 =−0.8e1 − 0.6e2 − 2.4e∞ + e0

⎤

⎥⎥
⎦ . (35)

In Fig. 2, the corresponding circles are presented. Note that the circle of class 1
is optimal, because if it grows a bit more, then X11 could fall inside of it, and if it
decreases a bit more, X3 could fall outside of it. The same happens with the other
circles. Now, let the following set of noisy patterns to be classified:

x̃1 = x1 + [0 2
]= [1 3

]
,

x̃8 = x8 + [−2 0
]= [0 −2

]
,

x̃9 = x9 + [−1 1
]= [−2 4

]
,

x̃15 = x15 + [0 −1
]= [−1 −2

] ;

(36)
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they have been affected with noise. If (30) is applied, the result is

u1 =

⎡

⎢⎢
⎣

1.31
−6
−1
−5.2

⎤

⎥⎥
⎦ , u8 =

⎡

⎢⎢
⎣

−1.92
1
−4
1.6

⎤

⎥⎥
⎦ ,

u9 =

⎡

⎢⎢
⎣

−4.53
−15

0
−8.4

⎤

⎥⎥
⎦ , u15 =

⎡

⎢⎢
⎣

1.31
−6
−1
−5.2

⎤

⎥⎥
⎦ .

(37)

The next step is to apply expression (31). By doing this, the following expressions
are obtained:

v1 =

⎡

⎢⎢
⎣

−1.83
−∞
−∞
−∞

⎤

⎥⎥
⎦ , v8 =

⎡

⎢⎢
⎣

−∞
−1
−∞
−∞

⎤

⎥⎥
⎦ ,

v9 =

⎡

⎢⎢
⎣

−∞
−∞
−3.25
−∞

⎤

⎥⎥
⎦ , v15 =

⎡

⎢⎢
⎣

−∞
−∞
−∞
−1

⎤

⎥⎥
⎦ .

(38)

The class index is then obtained by means of (32) for x̃1, x̃8, x̃9, and x̃15, j =
1,2,3,4, respectively. Note that in these cases, classification is correct even when
they are affected with noise and although x̃8 falls inside of two spheres. However,
consider the following pattern:

x̃3 = x3 + [0.05 0
]= [3.05 2

]
. (39)

Note that, in this case, the noise is minimum, but when expressions (30) and (31)
are applied,

u3 =

⎡

⎢⎢
⎣

−0.12
−4.6
−7.23
−7.89

⎤

⎥⎥
⎦ , v3 =

⎡

⎢⎢
⎣

−∞
−∞
−∞
−∞

⎤

⎥⎥
⎦ , (40)

and in this case, expression (32) cannot classify it, due to that it is located outside
of all spheres.
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Fig. 3 Example 2, sets of
patterns in 3D. Square, circle,
and triangle shapes are
patterns belonging to classes
1, 2, and 3 respectively

Example 2 Consider the following set of nonlinearly separable patterns in R
3:

Class 1 x1 = [0.5 0.5 0.5
]
, x2 = [−0.5 2.5 −1

]
,

x3 = [2.5 2 −1
]
, x4 = [1 3 0

]
,

Class 2 x5 = [2 0 −0.5
]
, x6 = [0.5 −2 0

]
,

x7 = [2 −1.5 0.5
]
, x8 = [1 −1 −0.5

]
,

Class 3 x9 = [−0.5 0.5 0
]
, x10 = [−1 −1 −0.5

]
,

x11 = [−1 0 −0.5
]
, x12 = [0 −0.5 0

]
.

(41)

Figure 3 shows a graphical representation of these patterns.
By using (10), the corresponding class spheres were obtained. Their respective

centers and radii are

c1 = [1.19 1.60 0.61
]
, γ 1 = 2.11,

c2 = [1.75 −0.75 1.72
]
, γ 2 = 2.47, (42)

c3 = [−0.29 −0.20 0.05
]
, γ 3 = 1.06;

the value used for ε in this example was 0.0001. Finally, the GAM M is

M=
⎡

⎣
S1 = 1.19e1 + 1.6e2 + 0.61e3 − 0.04e∞ + e0

S2 = 1.75e1 − 0.75e2 + 1.72e3 + 0.25e∞ + e0

S3 =−0.29e1 − 0.2e2 + 0.05e3 − 0.5e∞ + e0

⎤

⎦ . (43)

In Fig. 4, the corresponding spheres are presented. As in the previous example,
the spheres are optimal.

Now, let the following set of noisy patterns to be classified:

x̃1 = x1 + [0.5 −0.5 −1
]= [0.5 0.5 0

]
,

x̃7 = x7 + [−1 0.5 −0.5
]= [1 −1 0

]
, (44)
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Fig. 4 Spheres obtained
using the method of Sect. 4.2.
They function as separation
surfaces

x̃10 = x10 + [1 1 0
]= [0 0 0

]
.

If (30) is applied, the result is

u1 =
⎡

⎣
1.25
−0.27
−0.65

⎤

⎦ , u7 =
⎡

⎣
−1.36
1.25
−0.59

⎤

⎦ , u10 =
⎡

⎣
0.04
−0.25

0.5

⎤

⎦ . (45)

The next step is to apply expression (31). By doing this, the following expressions
are obtained:

v1 =
⎡

⎣
−0.97
−∞
−∞

⎤

⎦ , v7 =
⎡

⎣
−∞
−1.79
−∞

⎤

⎦ , v10 =
⎡

⎣
−2.19
−∞
−0.06

⎤

⎦ . (46)

The class index is then obtained by means of (32) for x̃1, x̃7, and x̃10, j = 1,2,3,
respectively. As in Example 1, the classification is correct for some patterns altered
with noise.

As can be observed, although GAMs can classify some patterns altered with
noise, they are very sensitive in some other cases, mainly in the case of patterns
located at the border of the sphere. This problem might be fixed by adding a positive
value to restriction (24) and a negative value to restriction (26).

6 Real Examples

To test the potential of the proposal, two trials with real data were performed. In
the first trial, the best known database used by the pattern recognition community
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Table 1 Results of the classification phase

Data Set Patterns used in FS Classification of FS Classification of TS

Iris Plant 15 100% 90%

Iris Plant 25 100% 93.3%

Iris Plant 30 100% 94.6%

Wines 15 90.6% 71.9%

Wines 25 91.1% 80.9%

Wines 30 97.7% 84.8%

was adopted, the Iris Plant Data Base. This data set contains three classes of 50
instances each, where each class refers to a type of iris plant. One class is linearly
separable from the other two; the latter two classes are NOT linearly separable from
each other. Each instance has four numeric, predictive attributes (sepal length, sepal
width, petal length, and petal width).

For the second trial, the Wine Recognition Data Base was used. These data are
the results of a chemical analysis of wines grown in the same region in Italy but
derived from three different cultivations. The analysis determined the quantities of
13 constituents found in each of the three types of wines. This data set contains three
classes of 59, 48, and 71 instances, respectively, where each class refers to a type of
wine. Each instance has 13 continuous attributes.

Both data bases were obtained from [3]. As in the previous section, the func-
tion quadprog of the optimization toolbox of Matlab was used in order to solve the
quadratic programming problem.

15, 25, and 30 instances, respectively, were used to form the Fundamental Set
(FS) for each type of problem. All of the instances were used to form the Test Set
(TS). In the training phase, patterns of each FS were used to build the GAMs. In
the classification phase, patterns of the TS were classified; the results are shown in
Table 1. The first column shows the number of patterns used for the learning phase,
and the second and third columns show the percentages of the patterns correctly
classified using the FS and the TS, respectively. In the case of the GAM from Iris
Plant data set, perfect recall was obtained because the patterns used for the FS are
spherically separable. In the case of the GAM from the Wine data set, perfect re-
call is not obtained because the patterns are not spherically separable. Thus some
patterns of a specific class may fall outside their respective class sphere.

It can be observed that classification rate of the patterns of the TS (for both data
sets) increases when the number of patterns used in the FS increases. When the FS
has more patterns, the corresponding spheres grow, and then more patterns of the
TS could fall inside of the class spheres.

7 Conclusions and Future Work

Geometric Algebra allows one to model situations and to formulate problems in
terms of high-level symbolic expressions. Nevertheless, it is possible to achieve an
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implementation working in an elementary coordinate system. Of course, in some
cases, it is possible to find a solution by purely handling symbolic expressions, but
this is rare for realistic problems.

In this work, a new associative memory model based on Conformal Geometric
Algebra has been described, the Geometric Associative Memory (GAM). The train-
ing phase is done by finding an optimal sphere with quadratic programming. GAMs
can perfectly operate when the classes are spherically separable.

For classification purposes, an inner product between the unclassified pattern and
the GAM was applied. Then a minimum function is used to obtain the index class.

Numerical and real examples were given to show the potential of the proposal. As
shown, the method can operate both with linearly and nonlinearly separable patterns.
The proposed model can also cope with distorted patterns.

Patterns located on the border of the sphere might not be well classified. At this
moment, a way to extend the radius of the sphere is been developing. The basic idea
is to change the restrictions of the optimization problem.

Formal conditions under which the proposed model can work were also given
and proven. In particular, the case of the perfect classification was presented. A brief
explanation about the functioning of the GAMs against the noise was presented; the
GAMs can cope with noise patterns when the noise version falls inside of the class
sphere.

Nowadays, we are also interested to test our method in more realistic situations
and in comparison (in computing time and performance) between the proposed
model and other geometric classification models. We are working too in GAMs
that work with separation surfaces other than spheres, like ellipses, squares, or other
irregular shapes; then, the GAMs can work with nonspherically separable classes.
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Classification and Clustering of Spatial Patterns
with Geometric Algebra

Minh Tuan Pham, Kanta Tachibana,
Eckhard M.S. Hitzer, Tomohiro Yoshikawa,
and Takeshi Furuhashi

Abstract In fields of classification and clustering of patterns most conventional
methods of feature extraction do not pay much attention to the geometric properties
of data, even in cases where the data have spatial features. This paper proposes to
use geometric algebra to systematically extract geometric features from data given
in a vector space. We show the results of classification of handwritten digits and
those of clustering of consumers’ impression with the proposed method.

1 Introduction

Nowadays classification and clustering of patterns are of central importance for dis-
covery of information from enormous amounts of data available in various practical
fields. An appropriate method to extract features from patterns is needed for good
classification and clustering. But so far most conventional methods of feature ex-
traction ignore the geometric properties of data even in the case where the data have
spatial features. For example, when m vectors are measured from an object in three-
dimensional space, conventional methods represent the object by x ∈R3m which is
the vector made by arranging m groups of three coordinates of each vector in a row.
However, using only these coordinate values fails to capture geometric relationships
among m vectors, e.g., the coordinate values depend on the definition of the coordi-
nate system, and inference or classification becomes remarkably bad when objects
are measured in a coordinate system different from the one used for learning. Some
conventional methods may extract coordinate-free features, but whether such fea-
tures arise and are adopted depends on experience of the model builder. For example,
some image recognition methods used moment vectors [1, 2] as feature vectors for
learning. The moment vectors are the generalization moments of inertia of each spa-
tial vector, and it is expressed by a linear sum of {xa

i,1x
b
i,2 | i = 1, . . . ,m;a, b ∈N},
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where (xi,1, xi,2) is the coordinate of vector i. However, the relations between dif-
ferent spatial vectors are not considered in the moment, i.e., the components of
{xa

i,1x
b
j,2 | i �= j} are not considered at all. So, it is hard to classify data that contain

relations between spatial vectors.
In this study, we use geometric algebra (GA) [3–5] to systematically undertake

various kinds of feature extractions and to improve precision and robustness in clas-
sification and clustering problems. There are already many successful examples of
its use in, e.g., colored image processing or multidimensional time-series signal pro-
cessing with low-dimensional GAs [6–12]. In addition, GA-valued neural network
learning methods for learning input–output relationships [13] are well studied. In
our proposed method, geometric features extracted with GA can also be used for
learning a distribution and for semi-supervised clustering.

We use geometric features to learn a Gaussian mixture model (GMM) with the
expectation maximization (EM) algorithm [14]. Because each feature extraction de-
rived by the proposed method has its own advantages and disadvantages, we apply
a plural mixture of GMMs for a classification problem. As an example of multiclass
classification of geometric data, we use a handwritten digit dataset. When classify-
ing new handwritten digits in practice with the learning model, it is natural to expect
that the coordinate system in a real new environment differs from the one used for
obtaining the learning dataset. Therefore, in this paper, we evaluate the classification
performance for randomly rotated test data.

As a second application, we analyze a dataset of questionnaire for a newly devel-
oped product. Characteristics of this dataset are:

1. The same m questions are asked for n different objects (usage scenes of the
product).

2. Each respondent answers his/her willingness to buy for either of three different
prices and does not answer for the other prices.

Considering the first characteristic, we regard a pattern of answering to the ques-
tions by a respondent as a tuple of m points in an n-dimensional space. This aims
to extract features of n-dimensional shape formed by the m vectors with GA. For
the second characteristic, we utilize harmonic functions [17] for the semi-supervised
learning. In our proposed method, geometric features extracted with GA can be used
for defining a weighted graph over unlabeled and labeled data where the weights
are given in terms of a similarity between respondents. To evaluate the effect of fea-
tures extracted with GA, we examine kernel matrices induced from the geometric
features using kernel alignment [18] between them. This paper reports a result of
semi-supervised clustering of respondents taking geometric properties of question-
naire into consideration.

2 Method

This section describes our proposal to extract geometric features from spatial pat-
terns for classification and clustering. Our general scheme is based on a description
of shape formed by m-tuple of n-dimensional vectors by GA.
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2.1 Feature Extraction for Geometric Data

An orthonormal basis {e1, e2, . . . , en} can be chosen for a real vector space Rn. The
GA of Rn, denoted by Gn, is constructed by an associative and bilinear product of
vectors, the geometric product, which is defined by

eiej =
{

1 (i = j),
−ejei (i �= j). (1)

GAs are also defined for negative squares e2
i =−1 of some or all basis vectors. Such

GAs have many applications in computer graphics, robotics, virtual reality, etc. [5].
However, for our purposes, definition (1) will be sufficient.

The geometric product of linearly independent vectors a1, . . . ,ak (k ≤ n) has its
maximum grade term as the k-blade a1 ∧ · · · ∧ ak . Linear combinations of k-blades
are called k-vectors, represented by

∑
I∈Ik

wI eI , where Ik = {i1 . . . ik | 1 ≤ i1 <

· · ·< ik ≤ n}. For Gn,
∧k Rn denotes the set of all k-blades, and Gk

n denotes set of
k-vectors. The geometric product of k vectors yields

a1 . . .ak ∈
{

G1
n ⊕ · · · ⊕ Gk−2

n ⊕∧k Rn (odd k),
G0
n ⊕ · · · ⊕ Gk−2

n ⊕∧k Rn (even k).
(2)

Now we propose a systematic derivation of feature extractions from a series or a
set of spatial vectors ξ = {pl ∈Rn, l = 1, . . . ,m}. Our method is to extract the scalar
part of products of k-vector data that encode the different features.

First, assuming that ξ is a series of n-dimensional vectors, n′ + 1 feature extrac-
tions are derived, where n′ =min{n,m}. For k = 1, . . . , n′,

fk(ξ)=
{〈

pl . . .pl+k−1e−1
I

〉
, I ∈ Ik, l = 1, . . . ,m− k + 1

} ∈R(m−k+1)|Ik |, (3)

where 〈·〉 denotes the operator that selects the scalar part, |Ik| is the number of
combinations of k elements from n elements, and e−1

I is the inverse of eI . For I =
i1 . . . ik , e−1

I = eik . . . ei2ei1 . When k > n′, this means that ∀l ∈ {1, . . . ,m− k + 1},
〈pl . . .pl+k−1e−1

I 〉 = 0. This feature is not possible in the case of classification prob-
lem or clustering. We further define

f0(ξ)=
{〈plpl+1〉, l = 1, . . . ,m− 1

} ∈Rm−1. (4)

Next, assuming that ξ is a set of vectors, n′ + 1 feature extractions can also be
derived in the same way:

fk(ξ) =
{〈

pl1 · · ·plke−1
I

〉
, I ∈ Ik

} ∈R(mCk)|Ik |, (5)

f0(ξ) =
{〈pl1pl2〉

} ∈R(mC2+m). (6)

The dimension of the feature space becomes different from the case where ξ is a
series.
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Fig. 1 Examples of handwritten digit “7”

We denote by fk a feature vector extracted by a feature extraction fk . f0 is the
scalar part in the geometric product of two vectors chosen from n vectors. fk con-
sists of the coefficient of k-blade in the geometric product of k vectors chosen from
n vectors. f0 and fn do not depend on the measurement coordinate system.

Below we show several feature extractions for the case of handwritten digit data
of the UCI Machine Learning Repository [15] and the case of questionnaire data.

Each of the digit data is given by eight points ξ = {p1, . . . ,p8}, measured by
dividing the handwritten curves in equally long curve segments. A two-dimensional
point is given by pl = xle1 + yle2 with

∑8
l=1 xl =

∑8
l=1 yl = 0. Using GA, various

kinds of feature extraction can be undertaken systematically. Figure 1 shows some
examples of the handwritten digit “7”. They are shown with straight line segments,
different from the real curved trajectories of a pen.

The simplest feature extraction f1, which is also used in conventional methods,
is

f1(ξ) =
[〈

p1e−1
1

〉
,
〈
p1e−1

2

〉
, . . . ,

〈
p8e−1

1

〉
,
〈
p8e−1

2

〉]

= [p1 · e1,p1 · e2, . . . ,p8 · e1,p8 · e2]
= [x1, y1, . . . , x8, y8] ∈R16. (7)

A second feature extraction f2 uses the directed magnitudes of outer products of
consecutive points:

f2(ξ) =
[〈

p1p2e−1
12

〉
, . . . ,

〈
p7p8e−1

12

〉]

= [x1y2 − x2y1, . . . , x7y8 − x8y7] ∈R7. (8)

A third feature extraction f0 uses the inner product of consecutive points:

f0(ξ) =
[〈p1p2〉, . . . , 〈p7p8〉

]

= [x1x2 + y1y2, . . . , x7x8 + y7y8] ∈R7. (9)

Each respondent gave evaluation values to the same ten questions for six ob-
jects. We therefore regard a filled out questionnaire as m(= 10) points in an n(= 6)-
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dimensional space: ξ = {p1, . . . ,p10}, pl =∑6
i xl,iei with xl,i ∈ {−2,−1,0,1,2}.

Using GA, various kinds of feature extractions can be undertaken systematically. In
this paper, we use three kinds of features extracted from ξ with GA.

The simplest feature extraction f1, which is coordinate value, also used in con-
ventional methods, is

f1(ξ) =
[〈

p1e−1
1

〉
, . . . ,

〈
p1e−1

6

〉
, . . . ,

〈
p10e−1

1

〉
, . . . ,

〈
p10e−1

6

〉]

= [x1,1, x1,2, . . . , x10,5, x10,6] ∈R60. (10)

A second feature extraction f0 uses the inner product of two points:

f0(ξ)=
[〈p1p1〉, 〈p1p2〉, . . . , 〈p10p10〉

] ∈R55. (11)

If two questions are correlated for six objects, then the corresponding element of f0

becomes large.
Finally, a third feature extraction f2 uses outer product of two points:

f2(ξ) =
[〈

p1p2e−1
12

〉
, . . . ,

〈
p1p2e−1

56

〉
, . . . ,

〈
p9p10e−1

12

〉
, . . . ,

〈
p9p10e−1

56

〉] ∈R675. (12)

Each |I2| elements of f2 express independence of two questions and the direction
of hyper-plane spanned by the two questions in the six-dimensional space. If two
questions are uncorrelated, then the corresponding element becomes large.

2.2 Distribution Learning and Its Mixture for Classification

A GMM is useful to approximate a data distribution in a data space. A GMM is
characterized by parameters Θ = {βj ,μj ,Σj }, where βj , μj , and Σj are the mix-
ture ratio, the mean vector, and the variance covariance matrix of the j th Gaussian,
respectively. The output is

p(ξ |Θ)=
M∑

j=1

βjNd

(
f (ξ)−μj ;Σj

)
, (13)

where Nd(·; ·) is the d-dimensional Gaussian distribution function with center fixed
at the origin.

To train M Gaussians with given incomplete data X = {xi = f (ξi) | 1≤ i ≤N},
the EM algorithm [14] is often utilized. The algorithm identifies both parameters Θ

and latent variables Z = {zij ∈ {0,1} | 1 ≤ j ≤M}. The zij are random variables
with zij = 1 indicating that the individual datum xi belongs to the j th of M Gaus-
sian distributions. Thus

∑M
j=1 P(zij )= 1. The EM algorithm repeats the E-step and
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Fig. 2 Flow of multiclass classification. The top diagram shows the training of the GMM for class
C ∈ {‘0’, . . . , ‘9’}. The D1C denotes a subset of training samples with label C. The f : ξ �→ x

shows feature extraction. Either of {f1, f2, f0} is chosen as f . The bottom diagram shows esti-
mation by the learned GMMs. The same f chosen for training is used here. The GMMC outputs
p(ξ | C). The final estimation is C∗ = arg maxC p(ξ | C)P (C), where P (C) = 1

10 is the prior
distribution. The set D3 consists of independent test data

the M-step until P(Z) and Θ converge. The E-step updates the probabilities of Z ac-
cording to Bayes’ theorem P(Z |X,Θ)∝ p(X | Z,Θ). The M-step updates the pa-
rameters Θ of the Gaussians to maximize the likelihood l(Θ,X,Z)= p(X | Z,Θ).

A major drawback of the GMM is its large number of free parameters whose
order is O(Md2). Moreover, when the correlation between any pair of features is
close to 1, the calculation of the inverse matrix is numerically unstable. So, the
GMM becomes unable to compute the correct probability distribution. To remedy
this, Tipping and Bishop [16] proposed to use only the eigencomponents with the
largest q eigenvalues, where q is a preset value of a Gaussian distribution. For fur-
ther better approximation of a probability distribution, Meinicke and Ritter [19]
proposed to use only the eigencomponents of Gaussian distributions that are larger
than a certain cutoff. The cutoff eigenvalue is set at λ− = αλmax, where α ∈ (0,1]
is a hyperparameter, and λmax is the largest eigenvalue of the variance covariance
matrix of incomplete data X. This means that we develop (13) as follows:

p(x |Θ) =
M∑

j=1

βj

d∏

k=1

N1
(
(x −μj ) · vk;λk

)

≈
M∑

j=1

βj

{ qj∏

k=1

N1
(
(x −μj ) · vk;λk

)
}

N1
(
(x −μj )−;λ−

)d−qj , (14)

where λk is the kth largest eigenvalue of the j th Gaussian distribution, and vk is
the corresponding eigenvector. Because k ≤ qj is equivalent to λk > λ−, the bracket
(x − μj )− = (x − μj ) · vqj is the length of the component which is perpendicular
to all of the qj eigenvectors with the largest eigenvalues.
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Fig. 3 Mixture of GMMs. Three GMMs via different feature extractions are mixed to yield output
p(ξ | C)

The flow of training and estimation of handwritten digit classification, as an ex-
ample of multiclass classification, is shown in Fig. 2. The M and α for each GMM
are decided by validation with dataset D2.

Each feature extraction derived with GA has advantages and disadvantages. A
big merit of adopting learning of distributions rather than learning of input–output
relations is that the learned distributions allow us to obtain reliable inference by
mixing plural weak learners. In this study, we therefore use a mixture of GMMs.
Inferences are mixed as

p(ξ | C)=
2∏

k=0

p
(
fk(ξ) | C

)
. (15)

Figure 3 shows the mixture of different GMMs. Inferences via different feature
extractions are mixed to produce the output p(ξ | C).

2.3 GA Kernel and Alignment and Semi-Supervised Learning
for Clustering

For feature extractions fk, k = 0,1,2, with GA, we define a similarity between two
instances i, j ∈ {1, . . . , p} as

wij ;k = exp

(
−‖fk(ξi)− fk(ξj )‖2

σ 2
k

)
, (16)

where ‖ · ‖ is the Euclidean distance in the feature space, and a parameter σk is
decided by Zhu et al. [17] as described below. The kernel matrix Wk = [wij ;k] is a
symmetric matrix with p rows and p columns.

In this study, we combine three kinds of feature extractions to cluster instances.
The effect of combining two feature extractions becomes small if their kernel ma-
trices are aligned. The alignment [18] between two kernel matrices is defined as

A(Wk,Wl)=
∑

i,j

w̃ij ;kw̃ij ;l ∈ (0,1], (17)
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where, w̃ij ;k = wij ;k(
∑

ĩ,j̃
w2

ĩ j̃ ;k)
− 1

2 is the element of the matrix W̃k which is the

matrix Wk normalized so that the squared sum of all its elements becomes 1.
In addition, cluster structure embedded in the data distribution is evaluated as

alignment with identity matrix E,

A(Wk,E)= 1√
p

∑

i

w̃ii;k ∈ (0,1]. (18)

The alignment with E becomes 1 when similarity between any two different in-
stances is 0, i.e., no cluster structure is embedded.

On the other hand, when binary label yi ∈ {−1,1} is given for each instance, if
instances with the same label are allocated near and those with the different label
are allocated far, then the clustering result of this feature agrees with the labels. This
is evaluated by the alignment between Wk and Y = [Yij = yiyj ],

A(Wk,Y )= 1

p

( ∑

i,j |yi=yj
w̃ij ;k −

∑

i,j |yi �=yj
w̃ij ;k

)
∈ [−1,1]. (19)

A good combination of two feature extractions has a low A(Wk,Wl) value. And,
if A(Wk,E) is low and A(Wk,Y ) is high, fk induces a feature space with rich cluster
structure and agreement with the given labels.

Semi-supervised learning is a problem to infer labels for unlabeled data U =
{l + 1, . . . , l + u= p} or unknown unlabeled data when the label yi ∈ {−1,1} of a
part L= {1, . . . , l} of the instance set is known. In this paper, we solve a problem in
the case of labeling U . The goal is to find a binary function γ : U → {−1,1} such
that similar points have the same label.

Referring Zhu et al. [17], we decide a parameter σ of the kernel as follows. Dur-
ing making a minimum spanning tree over all data points with Kruskal’s Algorithm,
we label temporarily an unlabeled data a ∈U to the same label as the labeled datum
which connects with a for the first time. Then we find the median distance of tree
edges that connect two instances with different labels. We regard this distance do as
a heuristic to the median distance between class regions. We arbitrarily set σ = d0

3
following the 3σ rule of Normal distribution, so that the weight of this edge is close
to 0.

Then, we construct a p × p symmetric weight matrix W = [wij ]. The weight
matrix can be separated as

W =
[
WLL WLU

WUL WUU

]
(20)

at the lth row and lth column. For this purpose, Zhu et al. proposed to first compute
a real-valued function g:U→[0,1] which minimizes the energy

E(g)=
∑

i,j

wij

(
g(i)− g(j)

)2
. (21)
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Fig. 4 Algorithm to find
latent willingness to buy.
From questionnaire data ξi ,
f ∈ {f0, f1, f2} extracts
geometric features xi . Label
y∗i is initially set to yi . After
calculating γ ϕ(i), labels of
contradicted respondents are
excluded from {y∗i }. The
algorithm ends when no more
contradictions occur

Restricting

g(i)= gL(i)≡
{

0 (yi =−1),
1 (yi = 1)

(22)

for the labeled data, g for the unlabeled data can be calculated by

gU = (DUU −WUU)−1WUL gL, (23)

where DUU = diag(di) is the diagonal matrix with entries di =∑j wij for the un-
labeled data. Then γ (i) is decided using the class mass normalization proposed by
Zhu et al.:

γ (i)=
{

1 (|{j | yj = 1}| gU (i)∑
i gU (i)

> |{j | yj =−1}| 1−gU (i)∑
i (1−gU (i))

),

−1 (otherwise).
(24)

Because either of three prices {ϕ1, ϕ2, ϕ3 | ϕ1 < ϕ2 < ϕ3} is indicated to a re-
spondent when he/she indicates willingness to buy, we subdivide the respondents
into three groups according to the indicated price. Then, we calculate γ ϕk for each
k ∈ {1,2,3} regarding one group of respondents as labeled and the other groups as
unlabeled. After that, we check the consistency of respondent i, i.e., whether the
willingness decreases weakly monotonously with the price.

γ ϕ1(i)≥ γ ϕ2(i)≥ γ ϕ3(i). (25)

If respondent i contradicts to this condition then we clear the label yi and repeat the
semi-supervised learning regarding such respondents as unlabeled from this time
on. As shown in Fig. 4, we repeat this procedure until contradictions do not occur
any more.

3 Experimental Results and Discussion

This section shows experimental results of the proposed methods. Sects. 3.1 and 3.2
show applications of the multiclass classification method proposed in Sect. 2.2 and
the semi-supervised learning method proposed in Sect. 2.3.
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3.1 Classification of Handwritten Digits

3.1.1 Handwritten Digits

We used the Pen-Based Recognition of Handwritten Digits dataset of the UCI
Repository [15] as an example application for multiclass classification because dig-
its have two-dimensional spatial features. The dataset consists of 10992 samples
written by 44 people. Among these samples, 7494 samples were written by 30 peo-
ple divided into learning data D1 and validation data D2. The 3498 remaining sam-
ples were written by 14 other people and are used as test data D3. Eight points {rl}
dividing the orbit of the pen point into seven equally long segments were chosen. In
this study, we carry out the feature extraction with GA, after computing pl = rl − r̄,
i.e., setting the origin r̄ at the center of the digit.

3.1.2 Classification Result

For each feature extraction f ∈ {f1, f2, f0}, the GMM learned from D1 with four
values of α ∈ {0.1,0.01,0.001,0.0001}, and we then evaluated the correct classi-
fication rate for D2. Table 1 shows the results. In Table 1, the maximal classifica-
tion rate is underlined. α = 0.01 was therefore chosen for all feature extractions
{f1, f2, f0}.

Table 2 shows the results of the identified models M with q̄ =∑j qj /M . The
numbers of misclassifications via coordinates f1, via outer products f2, and via
inner products f0 were 100, 201, and 494, respectively. The correct classification
rates were 97.14%, 94.25%, and 85.88%, respectively.

Tables 2 clearly show the differences in the misclassifications by different feature
extractions. Because the feature extraction f1 keeps the coordinate information of
each point, it results in a smaller number of misclassifications. However, it has other
disadvantages. For example, because the first point p1 of most learning data of ‘0’
is in the top left area, some test data whose p1 is in the top right area are misclas-
sified. The feature extractions f2 and f0, on the other hand, loose the coordinate
information of each point. However, they extract partial shape features not affected
by the position of the part of the digit under concern. Therefore, f2 and f0 correctly
classified the ‘0’ data with curves beginning in the top right area. Therefore, a mix-
ture of different f1, f2, f0 expert feature extractions works best. The total number

Table 1 Correct
classification rate for D2 for
various α

α f1 f2 f0

0.1 93.22% 95.09% 84.08%

0.01 99.36% 96.53% 90.13%

0.001 99.28% 96.43% 89.44%

0.0001 98.88% 96.45% 89.78%
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Table 2 Identified models
for different features
f1, f2, f0

‘0’ ‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘6’ ‘7’ ‘8’ ‘9’

M f1 6 7 5 5 5 8 7 6 8 9

f2 2 7 3 3 3 4 3 6 7 8

f0 2 8 9 4 4 8 6 6 5 5

q̄ f1 6 6.1 8.4 9.4 8.4 3 6.4 7.8 7.5 8.7

f2 7 4.2 5.3 6 7 4.7 5.3 5.5 5.1 5.5

f0 6.5 4.9 4.8 6.3 6 5.1 5.3 4.8 6.6 6.8

Fig. 5 Correct classification rate with f1 and mixture of experts

of misclassifications using a mixture of experts was 75, and the correct classification
rate was 97.86%, better than the result of only using f1, f2, or f0.

We assumed cases of different measurement environments from the one in which
both D1 and D2 have been measured. We generated a dataset D′3 = {R(ξ,ϕ), ξ ∈
D3, ϕ ∼ U(ε)} that randomly rotated each digit of the test data D3. U(ε) is the
uniform distribution on [−ε, ε], and ϕ is a random variable. We generated 20 differ-
ent sets D′3 from the test dataset D3 for each ε ∈ {π/40,π/20,π/10} and classified
them. R(ξ, θ) rotates all the points of ξ by θ . Figure 5 shows the average and the
standard deviation of the correct classification rate when using the feature extraction
f1 and the mixture of experts.

The classification precision using only feature extraction f1 decreased remark-
ably with increasing ε. On the other hand, the classification precision using the
mixture of expert did not decrease that much. The rotations had no influence in
the cases of f2 and f0. Their classification success rates were 94.25% and 85.88%,
respectively.
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3.2 Kernel Alignment and Web Questionnaire Analysis Results

3.2.1 Web Questionnaire Data

We analyzed a web questionnaire data for a new product by extracting features with
GA and finding the latent willingness to buy. Subjects answered ten questions about
each of six objects, i.e., scenes in which the product was used. Subjects were asked
to give an evaluation value to each question in five levels {1,2,3,4,5}, where “5”
means “I agree very much” and “1” means “I disagree very much.” Subjects an-
swered willingness to buy the product for a price randomly selected from three
prices.

We carried out the feature extractions with GA after subtracting 3 from all evalu-
ation values so that xl,i = {−2,−1,0,1,2}. For simplicity, the five level willingness
values were binarized: “5”, “4” �→ 1 and “3”, “2”, “1” �→ −1.

3.2.2 Analysis Results

We calculated alignment of kernel matrix Wk derived by feature fk, k = 0,1,2,
which extracted with GA. Table 3 shows kernel alignment with other feature kernels,
identity matrix E, and the latent willingness matrix Y . The binary label yi = 1
when the respondent had latent willingness as a result of three analyses via different
feature and yi = −1 otherwise, i.e., when the respondent was judged not having
latent willingness at least one analysis.

With kernel matrix W1, the kernel matrix W2 had a smaller alignment (0.51) than
W0 had (0.92). Therefore, the effect of combination with feature extraction f2 was
better than with f0. Also, the result showed that because both feature extractions
f0 and f2 had alignment with E lower than f1, they have more abundant struc-
ture of cluster between respondents, and they contribute the total inference because
alignment with Y is higher than f1.

Table 4 shows the result without introducing GA to find latent willingness to buy.
In the table, “C” shows the percentage of respondents whose γ contradicted to con-
dition (25) after the algorithm ended, and thus we ignore those respondents. “F–F”
shows the percentage of respondents whose yi =−1, where, for simplicity, we do
not mind what price was indicated to the respondent, and γ ϕ1(i)=−1, i.e., the re-
spondent did not have either apparent or latent willingness even if the price was the

Table 3 Kernel alignment
evaluation W0 W1 W2

W0 1 0.92 0.63

W1 0.92 1 0.51

W2 0.63 0.51 1

E 0.71 0.82 0.36

Y 0.048 0.036 0.103
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Table 4 Result without GA
C 0.1%

f1

F–F 39.9%

F–T 22.0%

T–F 6.7%

T–T 31.3%

lowest. “F–T” shows the percentage of respondents whose yi =−1 but γ ϕ1(i)= 1,
i.e., the respondent answered not to have willingness, but he/she had latent willing-
ness at least for the lowest price. “T–F” shows the percentage of respondents whose
yi = 1 but γ ϕ1(i)=−1, i.e., the respondent showed apparent willingness, but from
the similarity of answering patterns he/she was not willing to buy. “T–T” shows the
percentage of respondents whose yi = 1 and γ ϕ1(i) = 1, i.e., the respondent had
both apparent and latent willingnesses. The analysis made the following clear:

• Out of 38.0% of respondents (“T–F” or “T–T”) who answered positively to the
direct question of willingness, 31.3% of all respondents were detected as “truly”
willing to buy (“T–T”).
• Out of 61.9% of respondents (“F–F” or “F–T”) who answered negatively to the

direct willingness question, 22.0% of all respondents were detected as latently
willing to buy (“F–T”).

As a conclusion, 53.3% of respondents had a latent willingness to buy (“F–T” or
“T–T”), and the other 46.7% respondents did not.

Next, we conducted a more detailed analysis introducing GA to define two more
feature spaces which are based on f0, f2, respectively. Respondents were subdi-
vided into the five groups of “C”, “F–F”, “F–T”, “T–F”, and “T–T” for each fea-
ture aspect. Thus Table 5 shows four subtables each of which further divides the
corresponding respondents divided by f1 to a matrix of judgements based on f0
and f2. Though 52.1% of respondents had the same result by all analyses based
on f0, f1, f2 (total of diagonal cells), the other 47.9% of respondents had different
result. Especially,

• The second table shows that out of 22.0% of respondents who did not have ap-
parent but had latent willingness according to analysis based on f1 alone, only
1.3% of all respondents were judged as so according both to analyses based on
f0 and f2.
• The bottom table shows that out of 31.3% of respondents who were judged as

“truly” willing to buy in the analysis based on f1 alone, 17.6% of all respondents
were judged differently in at least one aspect of his/her answering pattern. On the
other hand, the remaining 13.7% of all respondents can be judged as willing to
buy with more confidence supported by the judgements based on f0 and f2.

As a conclusion, 15.0% of respondents were found to have latent willingness to buy
(“F–T” or “T–T” by all analyses) with more confidence than in analysis without
introducing GA.
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Table 5 Detailed labeling
result f1 (F–F) f2

39.9% F–F F–T

f0 F–F 32.6% 0.2%

F–T 7.0% 0.1%

f1 (F–T) f2

22.0% F–F F–T

f0 F–F 6.0% 0.3%

F–T 14.4% 1.3%

f1 (T -F) f2

6.7% T–F T–T

f0 T–F 5.5% 0.1%

T–T 0.9% 0.2%

f1 (T–T) f2

31.3% T–F T–T

f0 T–F 3.0% 0.9%

T–T 13.7% 13.7%

Finally, we utilize principal component analysis (PCA) to visualize the data given
by f1. Figure 6 shows apparent and latent willingnesses.

The top figure shows apparent willingness to buy. In top figure, blue ‘×’ shows a
respondent who did not have willingness even price ϕ1, and red ‘◦’ shows a willing
respondent in the case of price ϕ1. The gray marks show apparent willingness in
other case of prices.

The bottom figure show latent willingness to buy. In the bottom figure, blue ‘×’
and red ‘◦’ show the result with feature extractions f1. Green ‘/’ show respondents
who were judged as willing to buy with all feature extractions f0, f1, f2. From Fig. 6
we can find that green ‘/’ in the bottom figure resembles distribution of blue ‘×’ in
the top figure. This means that the proposed method can find respondents who have
strong latent willingness.

4 Conclusions

In this study, we proposed systematic feature extraction methods by using GA.
Based on the extracted features, we solved two machine learning problems, i.e.,
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Fig. 6 The visualization of latent willingness to buy the product by PCA. The top figure shows
apparent willingness, and the bottom figure shows latent willingness to buy. A respondent who
did not have willingness is shown by ‘×’. A willing respondent is shown by ‘◦’. Green ‘/’ in the
bottom figure show respondents who were judged as willing to buy with all feature extractions
f0, f1, f2
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the classification of the handwritten digits by using GMMs and the discovery of
latent willingness to buy using semi-supervised learning.

We applied the proposed method to two-dimensional objects of handwritten dig-
its deriving three ways of feature extraction, via coordinates, outer products, and
inner products. When we assumed cases of different measurement environments,
the classification success rate by pure coordinate value feature extraction dropped
substantially for rotated test data. In contrast to this, with the mixture of experts, the
classification success rate was not only higher in the case of a constant measurement
environment; it was also much more stable in the case of large rotations of the test
data. Therefore, we can confirm that the strategy to mix different GA feature extrac-
tions is superior in both classification precision and robustness when compared with
pure coordinate value features, which is the most often used conventional method.

We also applied the proposed method of feature extraction to clustering of an-
swering patterns for a web questionnaire. We proposed the clustering algorithm by
using the result based on the similarity in each feature space. Then, we applied
the proposed method to the clustering of answering patterns for a web question-
naire, deriving three kinds of feature extraction i.e., coordinates, outer products,
and inner products. The result showed that feature extractions based on outer prod-
uct and inner product, respectively, had more abundant structure of cluster between
respondents and higher alignment with latent willingness to buy than in (m × n)-
dimensional vector space. Based on the extracted features, we found latent willing-
ness to buy from the questionnaire data. The results showed that semi-supervised
learning based on coordinates may detect respondents who had latent willingness to
buy and that introducing GA to the analysis may further find respondents who have
strong latent willingness.
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QWT: Retrospective and New Applications

Yi Xu, Xiaokang Yang, Li Song,
Leonardo Traversoni, and Wei Lu

Abstract Quaternion wavelet transform (QWT) achieves much attention in recent
years as a new image analysis tool. In most cases, it is an extension of the real
wavelet transform and complex wavelet transform (CWT) by using the quaternion
algebra and the 2D Hilbert transform of filter theory, where analytic signal rep-
resentation is desirable to retrieve phase-magnitude description of intrinsically 2D
geometric structures in a grayscale image. In the context of color image process-
ing, however, it is adapted to analyze the image pattern and color information as
a whole unit by mapping sequential color pixels to a quaternion-valued vector sig-
nal. This paper provides a retrospective of QWT and investigates its potential use
in the domain of image registration, image fusion, and color image recognition.
It is indicated that it is important for QWT to induce the mechanism of adaptive
scale representation of geometric features, which is further clarified through two
application instances of uncalibrated stereo matching and optical flow estimation.
Moreover, quaternionic phase congruency model is defined based on analytic signal
representation so as to operate as an invariant feature detector for image registra-
tion. To achieve better localization of edges and textures in image fusion task, we
incorporate directional filter bank (DFB) into the quaternion wavelet decomposition
scheme to greatly enhance the direction selectivity and anisotropy of QWT. Finally,
the strong potential use of QWT in color image recognition is materialized in a
chromatic face recognition system by establishing invariant color features. Exten-
sive experimental results are presented to highlight the exciting properties of QWT.

1 Introduction

Quaternion wavelet transform (QWT) attracts increasing research interests recently
as a new analysis tool for various image processing tasks. It is usually formulated as
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an extension of the real wavelet transform and complex wavelet transform (CWT) by
using the quaternion algebra and the 2D Hilbert transform of filter theory. Typically,
analytic signal representation is desirable to retrieve phase-magnitude description
of intrinsically 2D geometric structures in a scalar image. The amplitude compo-
nent reveals the energy of the filter response and therefore serves for the detection
of events, while the phase component uncovers the type of the detected event and
encodes the relative location of image structures [1]. In the applications involved
in comparison of series of images, such as optical flow [1, 2] and stereo matching
[3, 4], the phases of quaternion wavelet transformed image are very important to
provide essential features and inherent 2D shift clues at corresponding points. In
addition, the confidence map of the movement measurement can be built according
to the complementary amplitude spectrum [4].

Meanwhile, some preliminary research works provide an insight of the use of
QWT in vector signal representation, such as the spectrum analysis for quaternion-
valued color image [5] and color pattern estimation [6, 7]. Compared with the tra-
ditional color image filtering techniques, which are commonly based on separate
processing of the color components, quaternion filters can depict a color pixel as a
whole unit, namely pure quaternion, and naturally compute transformation in three-
dimensional color/vector space. This operation would make full use of inter-channel
color information and efficiently suppress the artifacts. The pioneer work of Ell uti-
lized quaternion Fourier transform (QFT) to treat color as a single entity and achieve
higher color information accuracy [5]. To improve the strength of local quaternion
filtering in color space, some face recognition systems defined a family of quater-
nion Gabors to extract local color features for high face recognition accuracy [6, 7].
Philippe Carré and Patrice Denis built a color quaternionic filter bank called the
color Shannon wavelet based on a windowing process in the quaternionic Fourier
space and established joint spatio-frequential representation of color images [8].

Aforementioned discussion demonstrates that QWT is a very useful image analy-
sis tool and could be applied in extensive scalar/vector image processing tasks. This
paper is motivated to give a suggestive reference for the use of QWT. It attempts
to summarize the lessons from the QWT development experience and explores the
potential applications of QWT. The remainder parts of this paper are structured as
follows. Section 2 surveys the evolution of QWT and presents the basic principles of
quaternion wavelet construction for analytic signal analysis. Section 3 indicates that
the mechanism of adaptive scale representation of geometric features is important
for image analysis, which is testified in two application instances of uncalibrated
stereo matching and optical flow estimation. Sections 4 and 5 switch the focus to the
potential use of QWT in two new applications, namely image registration and im-
age fusion. As for image registration application, the quaternionic phase congruency
model is defined to give an invariant feature detector in scale space. The accordingly
extracted features are matched to robustly estimate the image affine transformation
in registration task. With regard to image fusion application, we incorporate direc-
tional filter bank (DFB) into the quaternion wavelet decomposition scheme to en-
hance the direction selectivity and anisotropy of QWT. Consequently, the modified
QWT scheme could provide a better representation of edges and textures. Section 6
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materializes the strong potential use of QWT in color image recognition by estab-
lishing invariant color features in a chromatic face recognition system. Section 7 is
devoted to conclusions and future work.

2 Evolution of Qwt and Principles of Quaternion Wavelet
Construction

The notion of quaternion was introduced by Hamilton in 1843 [9]. Recently, a new
research branch called quaternion Fourier transform (QFT) has been developed
based on quaternion algebra and is important for quaternion linear time-invariant
system analysis [10, 11]. In analogue to complex Fourier space, the earliest defini-
tion of QFT is the two-side form as follows [1]:

Fq(u, v)=
∫ ∞

−∞

∫ ∞

−∞
e−iuxf (x, y)e−jvy dx dy. (1)

In fact, there are many variants of QFT, e.g., the right-side QFT

Fq(u, v)=
∫ ∞

−∞

∫ ∞

−∞
f (x, y)e−μ(ux+vy) dx dy (2)

where μ is a unit pure quaternion. Similar to 1D wavelets, the existing quaternion
wavelets have been constructed as a family of functions based on windowing process
in the quaternionic Fourier space [1–4, 8].

2.1 Evolution of QWT

Unlike Fourier basis functions, the locality of quaternion wavelet basis leads to
sparse representation of singularity-rich signals by compacting the signal energy
into a small number of coefficients. The generated spatial features associated with a
given scale and spatial support form the foundation for the analysis of linear time-
varying system, commonly the various procedures of local image analysis and esti-
mation.

One of the first applications of quaternion wavelet is Bülow’s work [1]. He de-
fined the concept of quaternion Gabor, i.e., a Gaussian windowed basis function of
the QFT, for use with scalar images. Nowadays, quaternion Gabors are the most
commonly used quaternion wavelets and can be obtained from tensor product ex-
tension of complex Gabors in quaternion domain:

Quaternion Gabor:

Gq(x,u,m)= uv

2πm2σ 2
f

e
−0.5( xu

mσf
)2

e
−0.5( yv

mσf
)2

e−i2πuxe−j2πvy, (3)
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Fig. 1 Two complex Gabors (bottom) contained in a quaternion Gabor (top)

Complex Gabor:

G(x,u,m)= uv

2πm2σ 2
f

e
−0.5( xu

mσf
)2

e
−0.5( yv

mσf
)2

e−i2π(ux+vy) (4)

where u= (u, v)T is the radial center frequency of the filter, and the Gaussian enve-
lope is truncated by the window x ∈ [− m

2u ,
m
2u ], y ∈ [− m

2v ,
m
2v ]. Parameter m is the

number of wavelength included in the window, and σf denotes the fraction of the
window size that corresponds to one standard deviation of the Gaussian envelope
along x, y directions. Since 99.7% of the envelope is located within three standard
deviations from the origin, usually we select σf = 1/6. Fixing parameter and vary-
ing radial center frequency u, we get a family of constant-octave quaternion Gabors.
From (3) and (4) it is noted that two quaternion bases i and j (i2 = j2 = k2 =−1
and i ·j = k) replace the single complex root i in the complex Gabor filter. Therefore
the quaternion Gabor in (3) contains the complex Gabor in (4) and can generate an-
other complex Gabor, which is the complementary part to represent a real 2D signal
in the complex Fourier frequency domain, as shown in Fig. 1. The use of quaternion
Gabors in biometrics is justified since the profiles of cortical receptive were found
to strongly resemble the impulse responses of complex Gabors. Meanwhile, one can
deduce that quaternion Gabors share with their complex counterparts the property
of being jointly optimally localized in the spatial and frequency domains [1].

Similar to complex Gabor, a quaternion Gabor has side-slopes in negative fre-
quency quadrants. In addition, a typical quaternion Gabor image analysis is nonin-
vertible and expensive to compute due to the Fourier kernel. Some researchers built
quaternion wavelets from tensor products of Kinsbury’s q-shift Dual-Tree complex
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Fig. 2 Three quaternion wavelets built from Dual-Tree complex wavelet [12], capturing horizon-
tal, vertical, and diagonal subbands respectively from row (a) to row (c) [3]. (From left to right at
each row: the real part, three imaginary parts, and the quaternion magnitude)

Fig. 3 Three quaternion wavelets built from biorthogonal wavelet basis [13] based on quaternion
algebra and Hilbert transform, capturing horizontal, vertical, and diagonal subbands respectively
from row (a) to row (c). (From left to right at each row: the real part, three imaginary parts, and
the quaternion magnitude) [4]

wavelets [3] or from biorthogonal wavelet basis based on the quaternion algebra and
2D Hilbert transform [4]. These quaternion wavelets have been constructed through
finite impulse response (FIR) filter banks and thus have a fast invertible implementa-
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tion.1 Moreover, these quaternion wavelets have the general formulation as a Hilbert
quadruple:

Ψ
q

1 (x, y) = φ(x)ψ(y)+ iφH (x)ψ(y)+ jφ(x)ψH (y)+ kφH (x)ψH (y), (5)

Ψ
q

2 (x, y) = ψ(x)φ(y)+ iψH (x)φ(y)+ jψ(x)φH (y)+ kψH (x)φH (y), (6)

Ψ
q

3 (x, y) = ψ(x)ψ(y)+ iψH (x)ψ(y)+ jψ(x)ψH (y)+ kψH (x)ψH (y). (7)

In (5)–(7), φ and ψ represent the low-pass and high-pass filter pair. Subscript H

denotes the 1D Hilbert transform along the given axis. Therefore the quaternion
wavelets Ψ q

1 ,Ψ
q

2 ,Ψ
q

3 respectively capture the horizontal, vertical, and diagonal sub-
bands of the input 2D scalar signal.

In terms of analytic signal construction, QWT is an extension of the real wavelet
transform and complex wavelet transform (CWT) by using the quaternion alge-
bra and the 2D Hilbert transform of filter theory. The concept of the analytic sig-
nal is important in signal theory and introduced in 1946 by Gabor [14]. It makes
the instantaneous amplitude and phase of local signal directly accessible. As the
strengthening extension of CWT, QWT preserves the properties of CWT and adds
new features by extending local signal phase from 1D complex phase to 2D quater-
nionic phase. QWT can realize the analysis of intrinsically 2D features (corner-like).
In contrast, CWT provides a powerful tool in intrinsically 1D features (edge-like)
analysis, while real wavelet transform cannot be exactly analytic. There were four
fundamental local structures which could be distinguished from the 1D local phase,
while we can find sixteen such structures using the 2D local phase, as compared in
Figs. 4 and 5, where the phase value is determined by the signal and the filter.2

2.2 Principles of Quaternion Wavelet Construction

In the existing works, researchers have paid much attention to the particular use of
quaternion wavelets and the comparison of QWT with DWT and CWT [2, 3]. The
principles of quaternion wavelet construction are somewhat fragmentary to present
in these works. To seek for such a guideline, we would investigate the desirable
properties of the quaternion wavelets in this section.

Linear-Phase and Shift-Invariance Property

It is noted that the linear-phase property of quaternion wavelets is important for
analytic signal representation, and thus no phase compensation is needed in multi-
scale signal decomposition. Besides the most common quaternion Gabors, the tensor

1Invertible quaternion wavelet transform (QWT) for quaternion-valued color images is still an open
problem. Section 2 discusses the invertible QWT for scalar images.
2The filter’s shape should match the local variation of the image structures.
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Fig. 4 Four fundamental 1D local structures and the local complex phases φ evaluated at the
central points

products of linear-phase complex wavelets are usually exploited to build quaternion
wavelets [3, 4]. To capture geometric image features nonoscillatorily, one impor-
tant property of the filter is that a shift in the time domain should cause no change
in the magnitude spectrum. As an instance to demonstrate the importance of shift-
invariance property, Fig. 6 shows two examples of 1D shifted step responses. It is
noted in (b) that the magnitude of DWT varies significantly across time-scale do-
main. The smoothly varied response in (a) indicates the near shift-invariance of
Dual-tree CWT. Similarly, this is also a fundamental assumption for supporting
QWT to resolve those problems involved in comparison of time-variant signals.

Hilbert Quadruple with no DC Response

Four real 2D functions fη, η ∈ {1,2,3,4}, are called a Hilbert quadruple if

I
[
(fk)

q
A

]= fλ, J
[
(fk)

q
A

]= fμ, K
[
(fk)

q
A

]= fν, (8)
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Fig. 5 Sixteen fundamental 2D structures and the local quaternionic phases (φ, θ,ψ)T evaluated
at the central points

Fig. 6 (a) Magnitude of 1D shifted step response of Dual-Tree CWT at three successive scales.
(b) Magnitude of 1D shifted step response of the real part of Dual-Tree CWT at three successive
scales

for some permutation of pairwise different k,λ,μ, v ∈ {1,2,3,4}, where

f
q
A = f + ifHix + jfHiy + kfHixy . (9)
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Operators I (·), J (·), K(·) in (8) respectively extract the three imaginary parts of
the quaternion analytic signal (fk)

q
A that are in turn related to quaternion units i, j, k.

Subscripts Hix,Hiy in (9) respectively represent the partial Hilbert transform along
x-axis and y-axis, while Hixy denotes the total Hilbert transform in x–y coordinates.
To constitute a bandpass analytic signal, we could use the following configuration:

f
q
A = Ψ

q
A ⊗ f = (Ψ + iΨHix + jΨHiy + kΨHixy )⊗ f. (10)

Due to the commutability of convolution operation⊗ and Hilbert transform, we can
first build a quaternion wavelet from real-valued filters through Hilbert transform
and then construct an analytic signal using convolution operator. The resultant ana-
lytic signal is supported only on the upper right quadrant (u≥ 0, v ≥ 0). In addition,
no DC response is expected in the filtering output. Because of the substantial power
in natural signals at low frequencies, this DC sensitivity often introduces a positive
bias in the real part of the response. This is the main reason why most of authors
select the Gabors with small bandwidth (usually less than one octave) in 1D analytic
signal construction.

Short-Length Filters with Good Localization in Space–Frequency Domain

It is generally accepted that the measurement of geometric image structures should
require only local support in time–frequency domain. Quaternion Gabor filters are
appropriate when one is interested in local spectral properties of a signal since they
fulfill the uncertainty relation as an equality [1]. However, they are irreversible and
usually require heavy computations, especially for the calculation of the quaternion
Fourier transform. As a substitute for the quaternion Gabors, the methods in [3, 4]
formed pixel-wise quaternion wavelets by imposing Hilbert transform respectively
on q-shift orthonormal wavelets and biorthogonal wavelets. These relatively short
filters would accelerate the measurement of geometric image structures. In the fol-
lowing experiments, this kind of quaternion wavelets is used to extract multiscale
2D phase structures.

3 The Mechanism of Adaptive Scale Representation in QWT

Current works have proved that the local quaternion phase is equivariant with the 2D
spatial position in the scalar image [1, 2]. Thus it is possible to estimate the 2D dis-
parity or optical flow field based on the local quaternionic phases [3, 4]. Usually, the
phase-difference model is utilized to implement such tasks [1–3]. The main merit
of the phase use is that the measurement is insensitive to illumination variations and
geometric distortions [15]. However, most of existing phase-based matching meth-
ods have not dealt well with the issue of the inherent phase singularity. At the points
where the amplitude falls to zero, phases are undefined, and thus disparity/optical
flow estimation is unreliable. In the following content, we would point out that the
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mechanism of adaptive scale representation of geometric features is important to
alleviate the phase singularity problem.

It is known that objects in the world appear in different ways depending on the
scale of observation [16]. Here we use a set of quaternion Gabor filters as kernel
functions to give the complete scale representation of the original signal. During the
adaptation of the local scales of quaternion Gabor filtering, as shown in Fig. 7, the
response at the given pattern reaches the maximum value at its characteristic scale
and descends at neighboring scales. When the scale of filtering is rather far from
the characteristic scale of the local pattern, the amplitude is expected to be very
small, and thus the singularity problem arises. Therefore it is important to select
local appropriate scales for further analysis of unknown image pattern.

To robustly model the correspondence of point sets in an image pair, which are
captured at different time or views, our previous work proposed a phase-based data
measure for assignment a = (p, q) using adaptive-scale quaternion wavelet kernel
representation as below [4]:

M
(
a = (p, q)

) =
∑

σ∈S

∑

p′∈Ωp,q ′∈Ωq

ρ1
(
p′;σ )ρ2

(
q ′;σ )(∣∣[φ1

(
p′;σ )− φ2

(
q ′;σ )]2π

∣∣

+ ∣∣[θ1
(
p′;σ )− θ2

(
q ′;σ )]

π

∣∣

+ ∣∣[ψ1
(
p′;σ )−ψ2

(
q ′;σ )]

π/2

∣∣), (11)

where S is the scale-space of the given quaternion filter set, Ωp and Ωq are the
neighborhoods of the points p and q , respectively, ρ1 and ρ2 are the output ampli-
tude spectrums of two images, which either are the left and right views in the stereo
matching problem or the sample images captured at different time in the optical flow
problem. The operator [Φ]A extracts the principal value of Φ within the range of
[−A/2,A/2). It is noted that the phase pattern (φ, θ,ψ)T in a local neighborhood
is directly used to set up the data measure and the absolute distance metric of two
phase patterns is weighted by the amplitude. As a result, only the phase values ex-
tracted by the quaternion wavelet kernels that well match the characteristic scale of
the given pattern with strong responses contribute to the data measure. Therefore the
mechanism of adaptive-scale kernel representation efficiently alleviates the negative
effects of phase singularity.

To further emphasize the importance of the mechanism of the adaptive scale
kernel representation, we give two comparison experiments to demonstrate the im-
provements introduced by this mechanism. As shown in Figs. 8 and 9, we compare
our computational model with Chan’s phase-difference model [3] for 2D shift esti-
mation between images, where the latter one is typical of the existing phase-based
method [1, 2].

Chan [3] used the phase-difference model to compute the disparity/optical flow
field. The phase singularities are detected and removed by threshold constraints of
magnitude and local frequency. Then the shift estimation would be given up if the
local structure cannot be captured under the given scale of the filtering. In his pyra-
mid decomposition structure, these holes would outspread from coarse scales to fine
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Fig. 7 Characteristic scales of two image patterns at the circle centers. (a), (c) Two images taken
with different zoom. (b), (d) The responses of the quaternion Gabors in scale space at two circle
centers

scales. In our model, we introduce the mechanism of the adaptive-scale kernel rep-
resentation and select two multiscale decomposition schemes to testify its validity.
For the disparity estimation, the pyramid decomposition structure is used to get the
multiscale phase structures. The phase singularities have chances to revival once
the disparity computation reaches their characteristic scales. In addition, the active
points with high amplitude serve an important role of propagating disparities within
their neighborhood Ω . Thus the singularities are still assigned a good match with
high probability as long as enough active points are distributed around. From coarse
scales to fine scales, the inactive points/singularities and the active points might
exchange their roles according to the approximation of the current scale to their
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Fig. 8 The transit of active points under the adaptive-scale kernel representation

characteristic scales (as shown in Fig. 8(a)). For the optical flow computation, we
select a set of quaternion Gabors to successively cover the characteristic scales of
image structures. At each point, the phase structures are extracted by adaptive-scale
kernels, resulting in low density of phase singularities (as shown in Fig. 8(b)).

As shown in Fig. 9, the correct depth clues are obtained in our model, while it is
difficult to distinguish objects of varied depth in Chan’s results under large disparity
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Fig. 9 Comparison of two computational models for disparity estimation

range. Less depth clues can be observed from vertical disparity map due to the
uniform distribution. According to the movement distribution in ground truth image
shown in Fig. 10, distinct improvement can also be observed in our optical flow field
as a comparison with Chan’s results in the “Yosemite” sequence. We only use two
Gabors in the optical flow estimation to demonstrate the improvement introduced
by the adaptive-scale kernel representation. Better performance can be gained when
more successive-scale Gabors are used.

4 The Potential Use of QWT in Image Registration

It has been shown in Sect. 3 that quaternionic phases were a reliable tool to settle
the correspondence problem. Similar to most of existing matching methods, there is
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Fig. 10 Comparison of two computational models for optical flow estimation

an implicit assumption of weak foreshortening between the images. Thus the phase
structures can be compared at the similar scale in two views. However, this assump-
tion would be violated in wide baseline stereo, 3D model alignment, and creation
of panoramic views due to the two cameras far apart or with a large vergence angle.
The issue of image registration should be considered as one of these problems. Cur-
rently, the concept of affine invariant features is proposed to deal with the distinct
affine deformations under changing viewpoint [17]. In this section, we establish the
quaternionic phase congruency model to detect affine-invariant features. Combin-
ing it with the scale invariant descriptor, it provides encouraging matching results in
image registration task.

The measurement of significance is important for feature detectors. We always
expect only those highly distinguished features to be used in image registration.
Phase congruency model in complex wavelet domain has already been proved as a
dimensionless measure of feature significance and demonstrates its superior behav-
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ior in noise and illumination invariance [18]. We extend this model to quaternion
wavelet domain and reveal the tighter constraint implied in the quaternionic phase
congruency model.

Here we first analyze the phase congruency model in the quaternionic Fourier
domain; then the conclusions can be directly extended to the quaternion wavelet
domain since it can be considered as the windowed version of the former one. Trac-
ing back to (1), we give the definition of phase congruency function in quaternionic
Fourier domain as the extension of Morrone and Owens’s work [19]

Fq(u, v)=
∫ ∞

−∞

∫ ∞

−∞
e−iuxf (x, y)e−jvy dx dy. (1)

As for the real 2D signal f (x, y), (1) can be written as

Fq(u, v)=
∫ ∞

−∞

∫ ∞

−∞
f (x, y)e−iφ(x,y)e−jθ(x,y) dx dy, (12)

where φ(x, y)= 2πux and θ(x, y)= 2πvy. We denote Φ as (φ, θ)T ; then the def-
inition of quaternionic phase congruency function at point x = (x, y)T is based on
the function Φ:

PC(x)=
∑

n An cos((Φn(x)− Φ̄(x)))
∑

n An

, (13)

where An and Φn respectively represent the amplitude and the phase vector of the
nth scale component in the quaternion space. The function Φ̄(x) denotes the phase
vector of the composite vector formed from all the scale components. As follows, we
reveal the tighter constraint implied in the quaternionic phase congruency model as
compared with the one in CWT domain. An arbitrary 2D signal can be decomposed
into its symmetrical components as

fee(x, y)= 1

4

(
f (x, y)+ f (−x, y)+ f (x,−y)+ f (−x,−y)),

foe(x, y)= 1

4

(
f (x, y)− f (−x, y)+ f (x,−y)− f (−x,−y)),

feo(x, y)= 1

4

(
f (x, y)+ f (−x, y)− f (x,−y)− f (−x,−y)),

foo(x, y)= 1

4

(
f (x, y)− f (−x, y)− f (x,−y)+ f (−x,−y)).

(14)

As we know, the complex Fourier transform of a real 2D signal is formulated as

F(u, v)=
∫ ∞

−∞

∫ ∞

−∞
f (x, y)e−i(ux+vy) dx dy. (15)

According to the symmetry components in QFT and CFT, it is noted that the
quaternion Fourier kernel can be expanded into four individual oscillation terms:
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Fig. 11 The comparison of quaternionic phase congruency image and complex phase congruency
image

cosφ cos θ ,− sinφ cos θ ,− cosφ sin θ , and sin θ sinφ, which are combined into two
terms cos(φ + θ) and sin(φ + θ) in the complex Fourier kernel. As a result, we can
get four symmetrical components from QFT while two symmetrical components
from CFT of a 2D real signal. Therefore our quaternionic phase congruency func-
tion is defined based on four symmetrical components, where the extreme value is
acquired only when both φ and θ are congruent across scales. However, complex
phase congruency is defined based on two symmetry components which are com-
bined from the former four components, where the extreme value is acquired as
long as φ + θ are congruent across scales. So a tighter constraint is contained in
the quaternionic phase congruency model in contrast to the complex phase congru-
ency model. For good localization, we introduce the model of quaternionic phase
congruency to QWT, and, as an example, we compute the quaternionic phase con-
gruency image using a set of quaternion Gabors which are tuned to four scales and
six orientations. As shown in Fig. 11, only the features with higher local energy are
emphasized in the quaternionic phase congruency. By the way, we adopt Kovesi’s
idea [18] to impress the ill-effects of noises in quaternion domain.

Based on the quaternionic phase congruency model shown in (13), we propose a
wide-baseline stereo matching method as depicted in Fig. 12. In terms of the existing
affine-invariant feature matching methods [17], the performance is affected domi-
nantly by the robustness of the extreme point/region detectors in the joint time–scale
space. Fortunately, the quaternionic phase congruency provides important clues for
such points/regions. According to Morron’s work, the extreme points of complex
phase congruency are consistent with the extreme points of local energy [19]. This
conclusion can be directly extended to quaternion Fourier domain due to the simi-
lar formulations in (12) and (15). The congruency of the quaternion phase vectors
also imply the reliability of the local structure in current successive scales. Hence,
we select the extreme points in the congruency image as the candidate features.
To capture more features at varied scales, we subsample the original image pair into
pyramidal structures. On each layer of the pyramid, we employ a set of quaternion
Gabors to obtain the phase congruency image, where the extreme-valued points are
assigned with the median scale of the given Gabor filter set as their characteristic
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Fig. 12 The wide-baseline matching scheme of invariant features obtained from quaternionic
phase congruency model

scales. The ratio of the maximum scale to the minimum scale is fixed at 2 for each
Gabor set. Referring to the state-of-the-art of wide-baseline stereo matching meth-
ods, we use the best ranked SIFT descriptor [20] to match these features. In the
matching experiments, we even select the minimum scale of the given Gabor group
as the characteristic scales of the extreme congruency-valued points and find that
the matching results are still encouraging under distinct affine distortions, as shown
in Fig. 13(a). Here we only show nine point pairs for visual evaluation. In fact,
much more good matches can be obtained. To further testify our matching scheme,
we compute the fundamental matrix using the robust estimator in [21] based on the
matching results and demonstrate three corresponding epipolar lines, as shown in
Fig. 13(b).

A further issue which has to be considered is the affine invariance of these feature
matching results. Since it is impossible to completely avoid outliers, here we exploit
the popular LMeds method [21] to remove them and reliably estimate the homogra-
phy matrix between the corresponding points. Then we construct the mosaic images
based on homography matrices to do a visual inspection. Two image mosaicing tests
have been performed, and the related homography matrices are listed in Fig. 14. It
can be noticed that these homography matrices take into account projective distor-
tions (the nonzero values in the last entry).

5 The Potential Use of QWT in Image Fusion

As the tensor product of two separable shift-invariant CWTs, the quaternion wavelet
transform constructed in Sect. 2 is nearly shift-invariant. However, the separability
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Fig. 13 The related matching results obtained by SIFT descriptor of the extreme phase-congruen-
cy-valued points in QWT domain

of QWT leads to bad directionality as shown in Figs. 1–3. In this section, we in-
troduce the directional filter bank (DFB) into QWT to get a better representation of
edges and textures.

It is known that contourlet transform (CT) provides features with high direction-
ality and anisotropy [22]. The architecture of CT is shown in Fig. 15, where the main
components are a Laplacian pyramid (LP) and a directional filter bank (DFB). The
LP decomposition at each step generates a sampled lowpass version of the original
and the difference between the original and the prediction, resulting in a bandpass
image. The process can be iterated on the coarse version. The DFB is designed
to capture the high-frequency components (representing directionality) of images.
Those bandpass images obtained in LP can be fed into DFB so that directional in-
formation can be captured efficiently. The architecture of CT allows for a different
number of directions at each scale. Thus, we can obtain a better representation of
edges and textures.

Since edges and textures are an intrinsic information in image representation, it
is important for QWT to enhance its directionality and anisotropy. Since QWT is
able to get multiscale bandpass images, we only introduce DFB in CT scheme into
QWT and observe what would happen then. To testify whether the hybrid transfor-
mation scheme “QWT+DFB” better localizes the high-frequency components, we
propose a new fusion method based on this hybrid transformation scheme, as shown
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Fig. 14 Two image mosaicing tests and corresponding homography matrices

Fig. 15 The architecture of CT

in Fig. 16, where IDFB and IQWT respectively denote the inverse DFB scheme and
the inverse QWT scheme.

A simple energy-based fusion method is adopted in the fusion tests, where the
larger coefficients are preferred for generating the fusion result across scales except
that at the coarsest scale the coefficients are averaged. The test images consist of
parts with different resolutions. The corresponding fusion results are illustrated in
Fig. 17. Due to the invertibility and near shift-invariance of QWT and DFB, the
proposed hybrid transformation scheme runs well in the image fusion task. It is dis-
tinct that the fusion results of “QWT + DFB” scheme represent the high-frequency
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Fig. 16 The scheme of the proposed image fusion method

Fig. 17 Comparison of image fusion results

components of image pairs much better in contrast to those of QWT scheme. The
potential of QWT might be further enhanced by selecting proper fusion methods.
Here we mainly focus on the practicability of QWT in image fusion task.

6 The Potential Use of QWT in Color Image Recognition

A major motivation for the study of quaternion Fourier transforms (QFT) is that they
handle color image pixels as vectors and thus offer scope to process color images
holistically, rather than by separating luminance and chrominance or color space
components. Nowadays QFT finds its extensive use in color image processing, such
as hypercomplex spectrum filtering [5], color image registration [23], and color wa-
termarking [24]. Similar to complex Fourier transform, QFT looses the notion of
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chronology in the frequency domain. The researchers hold high hopes on develop-
ing QWT into a useful tool for local color image analysis. Until now the invertible
QWT for multiscale vector-valued color image analysis is still an open issue [8]. The
most commonly used quaternion wavelets in color image processing are quaternion
Gabors, which can achieve joint spatial-frequency representation along a given di-
rection in color space [6, 7]. In this section, we show how to use quaternion Gabors
to establish invariant color features, which have been successfully applied in our
color face recognition system [7].

There are many variants for the definition of quaternionic Gabors. In Jones’s
work [6], it is formulated as

Fh

(0x)= μ
‖0kh‖2
σ 2

e
−‖0kh‖2 0x2

2σ2
[
cos
(0kh0x

)− e−
σ2
2

]
(16)

so that it maps to pure quaternionic values, conceptually pointing in a particular
direction in three-channel color space. In (16), 0x is the 2D spatial location vector,
0kh indicates the direction of the sinusoidal oscillation of the filter, and μ is a unit
pure quaternion which represents a specific direction in RGB color space. To ex-
tract multiscale and multioriented features, we define a quaternion Gabor set with
constant octave band,

Fu,v(x, y)= μ
f 2
m

2uσ 2
e
− f 2

m

2u+1σ2 (x2+y2)
[
e

fm√
2u

(x cos v
8+y sin v

8 ) − e−
σ2
2

]
, (17)

where parameters σ and fm respectively denote the standard deviation of the
Gaussian envelope and the center frequency at the finest scale. Here we select
u = 0,1, . . . ,4 and v = 0,1, . . . ,7 to uniformly partition the scale and the orien-
tation scope, whereby it results in image decomposition at five scales and eight
orientations. Because of the substantial power in natural signals at low frequencies,
this DC sensitivity is eliminated by the term in the square bracket to avoid a positive
bias of the response. In order to find an adaptive selection of μ and thus realize ho-
mogeneous projection in the color vector space, the computation of μ depends on
quaternion principal component analysis (QPCA) and is summarized as follows:

Step 1. Provide the covariance matrix S for the three color planes in the original
image,

S = 1

M

∑

m

[
P r

P g

P b

][
P r

P g

P b

]r

− 1

M2

[∑
m P r∑
m P g∑
m P b

][∑
m P r∑
m P g∑
m P b

]r

, (18)

where M is the number of color pixels; P r , P g , and P b are respectively the nor-
malized pixel value matrix of red, green, and blue channel.

Step 2. Impose QPCA on the covariance matrix S and determine the pure quater-
nion μ as the principal eigenvector of S. Once the color axis μ is determined, quater-
nion Gabor Features are extracted by the convolution of the original color image
I q(x, y) and the given quaternionic Gabor kernel Fu,v(x, y). Here color pixel val-
ues are represented as pure quaternion I q(x, y)= Ir (x, y)i+ Ig(x, y)j + Ib(x, y)k,
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Fig. 18 Quaternion Gabor Feature images: (a) magnitude; (b) argument

where the r , g, and b subscripts denote the red, green, and blue color channels,
respectively. No matter what transformation happens in the RGB vector space be-
tween two corresponding color face images, we always depict the convolution out-
put Oq(x, y)= Iq(x, y)⊗Fu,v(x, y)= a+b · i+ c · j +d · k as one scalar part and
one vector part, i.e., the real part ‖Oq

‖μ(x, y)‖ and the imaginary part ‖Oq
⊥μ(x, y)‖,

where the former one is the negative projection of Oq(x, y) to the principal color
component μ of the original image, while the latter one is orthogonal to color axis μ.

Two kinds of quaternion Gabor feature images are established according to the
convolution result. The magnitude color image is the one-to-one mapping from
imaginary coefficients b, c, and d to red, green, and blue channels. Another color
image is set up from the arguments between the imaginary parts and the real part,
that is,

ϕ1 = arctan(b/a), (19)

ϕ2 = arctan(c/a), (20)

ϕ3 = arctan(d/a), (21)

where arctan(·) ∈ [−π,π). One example of quaternion Gabor feature images is il-
lustrated in Fig. 18. There are eight orientations along each row and five scales along
each column for two kinds of images.

It can be deduced that argument image is robust to the illumination contrast
variations. Since nonparametric histogram method could enhance the robustness of
features against variations of pose, illumination, and expressions in face dataset,
we use Local Binary Pattern (LBP) histogram [25] to establish local invariant de-
scriptors for quaternion Gabor features. These descriptors are named here as local
quaternionic Gabor binary pattern (LQGBP) descriptors that encode the relation-
ship between the quaternion Gabor features. We unfold the construction procedure
of LQGBP descriptors as follows:

Step 1. Generate quaternion Gabor feature images at five scales and eight orien-
tations, as shown in Fig. 18.
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Fig. 19 The configuration of LQGBP-based color face recognition system

Step 2. Each quaternion Gabor feature image f (c) is further mapped to f ′(c),
where f ′(c) is obtained by the following rule:

A(c1) =
{

1 if f (c1)≥ f (c) and c1 ⊂Ωc,
0 otherwise,

(22)

f ′(c) =
∑

A(c1)× 2i , (23)

where c indicates the position of image pixel, and Ω denotes a neighborhood sys-
tem.

Step 3. The output quaternion Gabor feature images after local binary mapping
are divided into 8× 8 blocks and represented by the stacks of the local histograms
of these subregions. These local histograms contribute to a global invariant descrip-
tor of quaternion Gabor features. For two magnitude/argument quaternion Gabor
feature images, the similarity measure E is defined as follows:

E =
∑

s,o,c

(H1 ∩H2)/N, (24)

N = 6Np ×Ns ×No, (25)

where the subscript of H is used to indicate the local histogram from different face
images; symbols s, o, and c further point out at which scale, orientation, and po-
sition histogram H is computed; Np is the number of pixels in the original image;
Ns and No respectively compute the number of scales and orientations; the oper-
ator ∩ retains the smaller individual of the two matrices. The flowchart shown in
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Fig. 20 Color face recognition results

Fig. 19 delineates the proposed face recognition method, which is formulated as an
automatic face feature extraction module and a feature matching procedure. It makes
full use of the interrelationship among different color channels and achieves promis-
ing performance against noises, variations of lighting, and expressions in the open
face dataset downloaded from http://cswww.wssex.ac.uk/mv/allfaces/index.html, as
shown in Fig. 20. Detailed quantitative analysis can be referred to [7].

7 Conclusion

In this paper, we give an overview of the development of QWT and investigate
its potential applications in scalar image processing and vector image processing.
QWT is natural to deal with the operation in color/vector space, but nowadays the
construction of invertible multiscale QWT for vector-valued color images is still a
far-reaching issue. Several important problems remain open: constraints of quater-
nion wavelet needed to reconstruct a color signal, the definition of sparse quaternion
wavelet transform in color space, the selection of color space, and so on.
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Image Sensor Model Using Geometric Algebra:
From Calibration to Motion Estimation

Thibaud Debaecker, Ryad Benosman,
and Sio H. Ieng

Abstract In computer vision image sensors have universally been defined as the
nonparametric association of projection rays in the 3D world to pixels in the im-
ages. If the pixels’ physical topology can be often neglected in the case of per-
spective cameras, this approximation is no longer valid in the case of variant scale
sensors, which are now widely used in robotics. Neglecting the nonnull pixel area
and then the pixel volumic field of view implies that geometric reconstruction prob-
lems are solved by minimizing a cost function that combines the reprojection errors
in the 2D images. This paper provides a complete and realistic cone-pixel camera
model that equally fits constant or variant scale resolution together with a protocol
to calibrate such a sensor. The proposed model involves a new characterization of
pixel correspondences with 3D-cone intersections computed using convex hull and
twists in Conformal Geometric Algebra. Simulated experiments show that standard
methods and especially Bundle Adjustment are sometimes unable to reach the cor-
rect motion, because of their ray-pixel approach and the choice of reprojection error
as a cost function which does not particularly fit the physical reality. This problem
can be solved using a nonprojective cone intersection cost function as introduced
below.

1 Introduction

A large amount of work has been carried out on perspective cameras introducing the
pinhole model and the use of projective geometry. This model turns out to be very
efficient in most cases, and it is still widely used within the computer vision com-
munity. Several computation improvements have been introduced [5]; nevertheless,
this model has limitations, notably that it can only be applied to projective sensors.
The pixel sampling and slight fluctuations in the calibration process lead to the fact
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Fig. 1 Pixel-cones in the case of perspective cameras and variant scale sensors (here a central
catadioptric sensor). All cones are almost the same in (a), whereas in (b) the pixel-cones vary
drastically according to the position of the pixel within the perspective camera observing the mirror

that two rays of view of pixels representing the same point in the scene never exactly
intersect across the same 3D point they should represent. Finally, this model fails to
introduce the reality of the sensor, since the approximation of the field of view of
the pixel is restricted to a ray instead of a small surface in the image plane.

The limitations pointed out become drastically problematic with the appearance
of new kinds of nonlinear visual sensors like foveolar retinas [3] or panoramic sen-
sors (see [2] for an overview). As shown in Fig. 1(a), in the case of perspective
cameras, all pixels produce a similar cone of view. Cones being barely the same, it
is easily understandable why cones can be approximated using lines in this case, but
as an illustration of the consequences on a pinhole case, let us consider two identical
640× 480 cameras with a 30-centimeter space between each of them, and watching
a scene from a five-meter distance. Following the formulation we will describe in
the following sections, for a pair of matched points, it is possible to compute in 3D
space the real volume which represents the solution set of the triangulation prob-
lem. It appears that the mere pixel sampling leads to a 12-cm3 volume of solutions.
It becomes obvious that this approximation using rays will lead to significant impre-
cision for a catadioptric sensor (combination of a perspective camera and a hyper-
boloid mirror), especially in the computation of intersections, as shown in Fig. 1(b).
Cones then become an absolute necessity.

Different methods have been developed to address the motion estimation problem
despite the issue of nonperfect intersection of rays. It is important to notice two
particular points in these methods. First, a cost function is chosen to evaluate the
accuracy of a solution, and then a seeking strategy is chosen to reach the optimal
solution according to this cost function. If the panel of seeking strategies is wide
(Branch and Bound Algorithm [11], Levenberg-Marquardt and other least-squared
minimization used in the classic Bundle Adjustment (BA) [18], Second Order Cone
Programming [10]), the cost function is in most cases the reprojection error. Because
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of the 5 DOF resolution of the motion estimation problem, this cost function is
logically chosen instead of distances of rays in 3D space.

The aim of this paper is to show that introducing cones gives an opportunity to be
closer to the real physics of pixel correspondences and thus generates more accurate
situations. Euclidean spaces do not allow an easy-manipulating cone expression, es-
pecially if intersections of such cones have to be computed. Conformal Geometric
Algebra is introduced to enable a simple formulation of cones using twists [17].
A simple line is used as the twist axis to rotate a second line used as the cone
directrix. A wide variety of shapes can be generated with twists combination, con-
structing cones with different kinds of basis. Motion estimation has been chosen
here as an application of this cone-pixel camera model to show its reliability. The
use of this model enables us to introduce a new cost function as the intersection of
cones in space. We show here through experiments that BA is unable to estimate
the correct motion because the solution does not correspond to a minimum of its
cost function. However it can be found with the cone intersection criterion using a
stochastic optimization method like Simulated Annealing [12].

Recently, cones have been introduced to modelize the uncertainties of ray direc-
tions rather than the pixel field of view. The most related work have been done by
Perwass et al. [14] by showing how the uncertainty of all elements of the Geometric
Algebra of conformal space can be appropriately described by covariance matri-
ces. Giving an uncertain expression of the projection point, this approach can mod-
elize noncentral sensors. In [11], cone aperture is set as an arbitrary error parameter
of matched points. Other approaches which do not use non-least-square minimiza-
tion methods have been used to correct these problems in multiple view geometry
problematics. All these methods still remain mathematical instead of physical ap-
proaches [8, 9] and consider that nonintersections reflect necessarily an imprecise
calibration result despite that it corresponds to the real geometry.

This chapter is structured as follows. After introducing the basis element of Con-
formal Geometric Algebra in Sect. 2, we describe in Sect. 3 the mathematical formu-
lation of the general pixel-cones model using twists [17]. An experimental protocol
to find the pixel cones of light is presented in Sect. 4, and results obtained from this
protocol are applied on a pinhole camera and a catadioptric sensor. In Sect. 5, we
introduce a cone intersection score function to address the motion estimation prob-
lem and present results in simulation experiments. Conclusions and future works
are included in Sect. 6.

2 Introduction to Conformal Geometric Algebra

This section has been widely inspired by [15], which presents a good understanding
and more detailed introduction to Geometric Algebra. The reader unfamiliar with
CGA should refer to [6, 7] for an overview, and examples of its use in computer
vision can be found in [13, 16].
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2.1 Geometric Algebras

Geometric Algebra can be seen as a Clifford Algebra with its focus on a suited geo-
metric interpretation. A Geometric Algebra Gp,q,r is a nonlinear space of dimension
2n, n= p+q+ r , with a space structure, called blades, to represent so-called multi-
vectors as higher-grade algebraic entities in comparison to vectors of a vector space
as first grade entities. A geometric Algebra Gp,q,r is constructed from a vector space
R

p,q,r , endowed with the signature (p, q, r), by application of a geometric product.
This means that the generating vector space is always an element of its generated
geometric algebra, and therefore the vectors of the vector space can be found as
elements in each geometric algebra.

The product defining a geometric algebra is called geometric product and is de-
noted by juxtaposition, e.g., AB for two algebraic elements A and B called multi-
vectors. The geometric product of vectors consists of an outer (∧) product and an
inner (.) product. Their effect is to increase or to decrease the grade of the algebraic
entities, respectively. Let ei , ej ∈ R

p,q,r be two orthonormal basis vectors of the
vector space. Then the geometric product for these vectors of the geometric algebra
Gp,q,r is defined as

eiej :=

⎧
⎪⎨

⎪⎩

1 for i = j ∈ {1, . . . , p},
−1 for i = j ∈ {p+ 1, . . . , p+ q},
0 for i = j ∈ {p+ q + 1, . . . , n},
eij = ei ∧ ej =−ej ∧ ei for i �= j .

The geometric product of the same two basis vectors leads to a scalar, whereas
the geometric product of two different basis vectors leads to a new entity, which
is called a bivector. Geometric algebras can be expressed on the basis of graded
elements. Scalars are of grade zero, vectors of grade one, bivectors of grade two,
etc. A linear combination of elements of different grades is called a multivector M,
which can be expressed as

M=
n∑

i=0

〈M〉i ,

where the operator 〈.〉 denotes the projection of a general mutlivector to the entities
of grade s. A multivector A of grade i can be written as A〈i〉.

The inner (.) and outer (∧) products of two vectors u,v ∈R
4,1 are defined as

u.v := 1

2
(uv+ vu), (1)

u∧ v := 1

2
(uv− vu). (2)

Two blades of highest grade are called pseudoscalars and noted as ±I. The dual
X∗ of a blade X is defined by

X∗ :=XI−1.
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It follows that the dual of an r-blade is an (n − r)-blade. The reverse Ã〈S〉 of an
s-blade A〈S〉 = a1∧ · · ·∧ as is defined as the reverse outer product of the vectors ai ,

Ã〈S〉 = (a1 ∧ a2 ∧ · · · ∧ as−1 ∧ as)
˜,

Ã〈S〉 = (as ∧ as−1 ∧ · · · ∧ a2 ∧ a1).

The join A∧̇B is the pseudoscalar of the space given by the sum of spaces
spanned by A and B. For blades A and B, the dual shuffle product A ∨ B is de-
fined by the DeMorgan rule

(A∨B)∗ :=A∗∧̇B∗.

For blades A and B, it is possible to use the join to express meet operations:

A∨B := (AJ−1 ∧BJ−1)J (3)

with J =A∧̇B.

2.2 Conformal Geometric Algebra (CGA)

A Minkowski plane is used to introduce CGA. Its vector space R
1,1 has the orthonor-

mal basis {e+, e−} defined by the properties

e2+ = 1, e2− =−1, e+.e− = 0.

In addition, a null basis can now be introduced by the vectors

e0 = 1

2
(e− − e+) and e= e− + e+.

These vectors can be interpreted as the origin e0 of the coordinate system and the
point at infinity e, respectively. Furthermore, E is defined as E := e∧ e0 = e+ ∧ e−.

The role of the Minkowski plane is to generate null vectors, and so to extend
an Euclidean vector space R

n to R
n+1,1 = R

n ⊕R
1,1. The conformal vector space

derived from R
3 is thus denoted as R

4,1, and a basis is given by {e1, e2, e3, e+, e−}.
The conformal unit pseudoscalar is denoted as

IC = e+−123 = EIE,

where IE is the unit pseudoscalar in the Euclidean Geometric Algebra, i.e.,
IE = e123. The points in CGA are related to those of Euclidean space by

x= x+ 1

2
x2e+ e0.
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In CGA, spheres can be interpreted as the basis entities from which the other entities
are derived. A sphere with center p ∈ G3 and radius ρ ∈R

3 can be written as

(x− p)2 = ρ2. (4)

It turns out that a point x is nothing more than a degenerate sphere with radius ρ = 0.
Equation (4) can therefore be represented more compactly as

(x− p)2 = ρ2 ⇐⇒ x.s= 0.

A sphere can be defined with its dual form which can be calculated directly from
at least four points on it,

s∗ = a∧ b∧ c∧ d,

and a point x is on this sphere if and only if

x.s= 0 ⇐⇒ x∧ s∗ = 0.

Geometrically, a circle z can be described by the intersection z = s1 ∧ s2 of two
linearly independent spheres s1 and s1. This means that

x ∈ z ⇐⇒ x.z= 0.

In the same way, the dual form of a circle is geometrically defined by three points
on it,

z∗ = a∧ b∧ c,

and a line is a degenerate case of a circle passing through a point at infinity:

L∗ = e∧ a∧ b.

The bivectors of the geometric algebra can be used to represent rotations of points
in the 3D space. A rotor R is an even grade element of the algebra which satisfies
RR̃= 1. By using the Euler representation of a rotor, we have

R= exp

(
−θ

2
n

)
.

The rotation of a point represented by its vector x can be carried out by multiplying
the rotor R from the left and its reverse from the right to the point such as

x′ =RxR̃.

CGA enables one a multiplicative expression of translation t as a special rotation
acting at infinity by using the null vector e:

x′ = TxT̃ with T= exp

(
−et

2

)
.
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It is possible in GA to generate kinematic shapes which result from the orbit
effect of points under the action of a set of coupled operators. The nice idea is that
the operators are what describes the curve (or shape). To model a rotation of a point
X around an arbitrary line L in the space, the general idea is to translate the point X
with the distance vector between the line L and the origin, to perform a rotation and
to translate the transformed point back. So a motor M describing a general rotation
has the form

M = TRT̃.

Screw motions can be used to describe rigid motions by combining a rotation
around an axis with a translation parallel to that axis Tdn. The resulting motor is

M= TdnTRT̃.

As introduced in [17], these operators are the motors which are the representation
of SE(3) in R4,1. The use of twists gives a compact representation of cones and
brings the heavy computation of the intersection of two general cones to a simple
intersection of lines.

3 General Model of a Cone-Pixels Camera

This section will present a general model of a camera using cone-pixels. There are
several possible ways to write the equation of a cone. A single-sided cone with
vertex V , axis ray with origin at V , unit-length direction A, and cone angle α ∈
(0,π/2) is defined by the set of points X such that vector X− V forms an angle α

with A. The algebraic condition is A · (X − V ) = |X − V | cos(α). The solid cone
is the cone plus the region it bounds, specified as A · (X− V )≥ |X− V | cos(α). It
is somewhat painful to compute the intersection of two cones, and this can become
even more complicated integrating rigid motion parameters between cones. CGA is
used to enable us a simple formulation of cones using twists, as introduced in Sect. 2.

3.1 Geometric Settings

As shown in Fig. 3 in the case of a perspective camera, the image plane here repre-
sented by I contains several rectangular pixels p(i, j), where i, j corresponds to the
position of the pixel. Considering p(i, j), its surface is represented by a rectangle
defined by points A0 . . .A8, with A0 corresponding to the center of the rectangle.

Given a line l (with unit direction) in space, the corresponding motor describing
a general rotation around this line is given by M(θ, l) = exp(− θ

2 l). The general
rotation of a point x around any arbitrary line l is

x′ =M(θ, l)xM̃(θ, l). (5)
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Fig. 2 Generating an ellipse with a 2twist combination

The general form of the 2twist generated curve is the set of points x′ defined as

x′ =M(λ2θ, l2)M(λ1θ, l1)xM̃(λ1θ, l1)M̃(λ2θ, l2). (6)

In the following, we are interested in generating ellipses to approximate the form
of the pixel rather than squares. Ellipses are indeed expressible mathematically in
such compact form as it will be shown in what follows, while using square instead
will involve discontinuities in the expression of the cones. In the previous equation,
an ellipse corresponds to the values λ1 = −2 and λ2 = 1. l1 and l2 are the two
rotation axes needed to define the ellipses [17]. An ellipse generated with twists is
illustrated in Fig. 2.

Considering a single pixel pi,j (see Fig. 3), its surface can be approximated by
the ellipse generated by a point A that rotates around point A0 with a rotation axis
corresponding to e3 normal to the plane I . The ellipse E i,j generated corresponding
to the pixel pi,j is the set of all the positions of A(θ):

∀θ ∈ [0, . . . ,2π],
E i,j = {A(θ)=M(θ, l2)M(−2θ, l1)AinitM̃(−2θ, l1)M̃(θ, l2) |

}
.

The initial position of A is Ainit. The elliptic curve is generated by setting the two
connected twists in order to obtain an ellipse with principal axes (A8A0,A6A0) in
order to fit the rectangular surface of the projection of the pixel as shown in Fig. 3. It
is now possible to generate the cone corresponding to the field of view of the pixel.
To set the different lines, we use the dual expression of geometric objects in CGA.
We set the line l∗0i,j , the cone axis corresponding to pi,j , as

l∗0i,j = e ∧O∧A0.

The generatrix of the cone is the line joining O to A. Since the position of A depends
on the cone aperture α, the generatrix is noted as lOA(α)

i,j .
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Fig. 3 Cones Geometric settings

A priori, one can think that the pixel-cone of view of pi,j is the cone Ci,j (α)

defined by the projection point and the surface of the pixel,

Ci,j (α)=M(θ, l0i,j )lOA(α)
i,jM̃(θ, l0i,j ), (7)

with M(θ, l0i,j )= exp(− θ
2 l0i,j ), but it will appear that this first intuition is not true

because of the optical refraction combined with proper camera design. However,
this cone has to be computed and used as a preliminary guess to find the real cone
of view which can only be wider. In the following, this overlapping will be pointed
out experimentally, and overlapping cones of view of neighboring pixels are shown
in Fig. 9. Two criterions will be introduced taking into account an eventual overlap-
ping.

Note the equivalent expression of the cone using the outer product generating a
line after having generated an ellipse from the point A(α):

Ci,j (α)= e ∧O∧ (M(θ, l0i,j )A(α)i,jM̃(θ, l0i,j )
)
. (8)

The same process is to be applied again after translating the pixel pi,j using t1 and
t2, which corresponds to the translation to switch from one pixel to the other. The
projection pi,j of a pixel is moved to a next pixel:

pi+1,j+1 = T 2(t2)T
1(t1)pi,j T̃

1(t1)T̃
2(t2),

where T (t) corresponds to a translation operator in CGA.
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Fig. 4 Different configurations of pixel-cones in the case of linear and variant scale sensors. In
red the principal cone according which every other is located

3.2 The General Model of a Central Cone-Pixel Camera

The general form of a central sensor, whether it has linear resolution (cones vary
slightly) or variant resolution, is the expression of a bundle of cones. All cones Ci,j

will be located using spherical coordinates and located according to an origin set as
the cone C0,0(α) that has e3 as a principal axis. The general form of a central linear
scale camera (Fig. 4(a)) is then simply given by

C
i,j
φ,ψ(α)=M(ψ, e23)M(φ, e13)C

0,0
0,0 (α)M̃(φ, e13)M̃(ψ, e23), (9)

where ψ , φ denote the spherical coordinates of the cone, and α is the constant
aperture for an uniform resolution.

The general form of a central variant scale sensor is slightly different. Each cone
having a different aperture α, cones need to be defined according to their position.
The general form becomes

C
i,j
φ,ψ(αi,j )=M(ψ, e23)M(φ, e13)C

0,0
0,0 (αi,j )M̃(φ, e13)M̃(ψ, e23). (10)

3.3 Intersection of Cones

The previous formulation of cones established in (7) is a parameterized line bundle
and cannot be considered as a GA entity and cannot be used as easier with all GA
tools. Then to express the intersection of two cones C

im,jm
φm,ψm

and C
in,jn
φn,ψn

, we used the
usual ∩ operator instead of using a GA meet operator defined in (3) which should
have been the correct expression of the intersection of classic objects in GA.
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The result is a set of points of intersection Pm,n between the generatrix lines of
the cones,

Pm,n =
{
C

im,jm
φm,ψm

∩C
in,jn
φn,ψn

}
. (11)

If the intersection exists, Pm,n is not empty, and the set of points then forms a convex
hull the volume of which can be computed using [1].

4 General Cone-Pixel Camera Calibration

4.1 Experimental Protocol

Cones being at the heart of the model, we will now give an experimental setup of
the calibration procedure to provide an estimation of the cone of view of each pixel
of a camera. The method is not restricted to a specific camera geometry; it relies
on the use of multiple planes calibration [4, 20]. As shown in Fig. 5, the camera to
be calibrated is observing a calibration plane (in our case, a computer screen), the
aim is to estimate the cone of view of a pixel pi,j by computing for each position
of the screen its projection surface SPk(i, j), k being the index of the calibration
plane. The metric is provided using a reference high-resolution calibrated camera
(RC)1 observing the calibration planes, whose positions and metrics can then be
known in the RC coordinates. The impact surfaces SPk(i, j), once determined on
each screen, normally lead (as shown in Fig. 5) to the determination of all pixel-
cones parameters.

Figure 6 shows the experimental setup carried out for the experiments. The key-
point of the calibration protocol therefore relies on the determination of pixels’ im-
pact SPk(i, j).

Fig. 5 Experimental protocol: Cone construction and determination of the sensor projection center
The Ri , Ti represent the rigid motion between the reference camera and the calibration planes
coordinate systems

16 Megapixel digital single-lens Nikon D70 reflex camera fitted with 18–70-mm Nikkor micro
lens. The micro lens and the focus are fixed during the whole experiment.
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Fig. 6 Experimental protocol for two kinds of unknown image sensor

Fig. 7 Intersection surface SPk(i, j) between the calibration plane k and the cone C(i, j)

The activity of each pixel p(i, j) is then tracked while RC observes the screen
calibration planes (see Fig. 7). At each position the screen displays a white bar
scrolling on a uniform black background (see Fig. 6). The bar will cause a change
in the grey level values of pixels when it is in their cone of vision. The pixels’
gray level increases from a minimum value (when the bar is outside SPk(i, j)) to a
maximum value (when the bar is completely inside SPk(i, j)) and decreases down
to zero when the bar is again outside SPk(i, j). Figure 8 gives a visual explanation
of the process.

A sensitivity threshold can be chosen to determine pixels’ activation. Using the
reference camera calibration results, it is then possible, once SPk(i, j) is determined,
to compute its edges as the positions of yin and yout in the RC coordinate system.
The bar is scrolled in two orthogonal directions producing two other edges xin and
xout (Fig. 7). At this stage, the edges of SPk(i, j) are then completely known. The
location and size of pixel-cones can then in a second stage be estimated once all
SPk(i, j) are known. Cones are computed using the center of SPk(i, j) providing
the rotation axis, the cone envelope is given by computing rays that pass through all
the intersection points of the vertex of each SPk(i, j) corresponding to each pixel
(Fig. 5).
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Fig. 8 Pixel response according to the scroll bar position

Fig. 9 Experimental results:
Cones of view in the case of a
pinhole camera

4.2 Calibration Experimental Results

The following experiments were carried out using PointGrey DragonFly®2, with a
640×480 resolution, and a parabolic catadioptric sensor with a telecentric lens; both
are central sensors (Fig. 6(a)). Figure 9 shows cones reconstruction on SP1(i, j) and
SP2(i, j) in the case of a pinhole camera. For clarity, only two cones were drawn.
As expected, the results show repetitive pattern as corresponding pixel’s impact.
We can see few bad measurements, especially in Pose 1. Therefore, we use four
planes to avoid this problem, using the redundancy of the information. This figure
shows that the spatial sensitivity of pixels overlaps and does not correspond to the
dimension of the pixels as the informed reader could imagine.

With a catadioptric camera, it is a geometric truth that the aperture angle of each
cone increases as pixels are set off the optical axis of the camera. This phenomenon
is experimentally shown in Fig. 10, which represents the evolution of the solid angle
of pixel-cones. In principle, the solid angle should not vary according to the position
of the calibration plane that was used to compute it. The curves are logically very
close even if a small bias appears for very large cone-pixels at the periphery of the
mirror (where the uncertainties of the measure on the surface due to the nonlinearity
of the mirror are the highest).
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Fig. 10 Solid angle of view according to the mirror radius

Table 1 Central projection point estimation coordinates: case of a pinhole camera

Ground truth Axis estimation Error Apex estimation Error

x −78.33 −78.97 0.65 −78.97 0.65

y 45.36 44.08 1.28 44.07 1.29

z 45.74 57.89 12.15 57.90 12.16

The method allows us the estimation of the central point position of the calibrated
sensor. In the case of a pinhole camera the calibration screens were located between
800–1050 mm from the reference camera, whilst the camera to be calibrated was
set a few centimeters away (see Fig. 6). In order to obtain a ground truth data, the
pinhole camera was calibrated using the classic ray method [19]. Three positions of
the optic center are then computed for comparison. The first is given by the classic
calibration, the second by the intersection of the rotation axis of estimated cones,
and the last by the intersection of all rays (traced as shown in Fig. 9) representing
estimated cones. The results are shown in Table 1.

A different single viewpoint is found in each case. There are slight variations
in the position of the center in the third coordinate. This can be explained by
the fact that the calibrated portion of the sensor used to estimate cones is lim-
ited (55× 60 pixels located around the center of the image). In this configuration,
the depth estimation is obviously less accurate. Concerning the catadioptric sen-
sor, the results show that the cones intersect at a single point. The combination of
a parabola and a telecentric lens can only produce a central sensor, which proves
the method to be efficient. The estimation of the position of the viewpoint using
the principal axis of the estimated cones and all the rays that form the estimated
cones produce similar results (in mm: x = −23.38, y = 147.55, z = 384.79 and
x = −23.32, y = 147.33, z = 385.57). The mean distance between the rotation
axis and their estimated single point is 3.71 mm. The mean distance between the
apex and their estimated single point is 2.97 mm.
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5 Motion Estimation

5.1 Problem Formulation

Estimating relative camera motion from two calibrated views is a classic problem
in computer vision. Till now, this problem has been expressed as minimizing the
geometric distances between the measured image features and the reprojected ones
with the new motion parameters [10, 11, 18]. In this paper we would like to pro-
pose a new geometrical criteria defined with cone intersections which better fits the
physical reality while providing more accurate results.

Consider two views I1 and I2 of a scene acquired by the same full calibrated
projective camera moved from a first to a second location. We assume that this
calibration step has provided the intrinsic parameters in the two following ways:
Cone-Pixel model for the test presented here and pinhole camera model to ensure
a reliable comparison with existing techniques like Bundle Adjustment. We assume
that the camera is successively located at [I|0] and [R|t], where R is the rotation,
and t is the translation of the motion. Let now X be a set of N 3D feature points and
x1 ↔ x2 the sets of image points observed respectively in the first and the second
image. The problem statement is therefore the following: knowing the measurement
x1 and x2, how to retrieve the motion [R|t].

From a physical point of view and as described above, both rays never strongly
intersect (see Fig. 11(a)). The cone defined by the surface of the pixel encompasses
all the rays of view of the pixel (Fig. 11(b)), and each ray of view corresponds to
the directrix of each cone. A reliable pixel correspondence involves that these two
pixel cones of view have a nonnull intersection Fig. 11(c). Noise measurement is
not required to encounter this problem, since due to the pixel sampling, it arises in
every case of numerical cameras. However, noise will be taken into account in the
following section.

Fig. 11 Difference between rays and cones of light intersections
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Fig. 12 Motion estimated
with cones intersections
criterion

Fig. 13 Motion estimated
with reprojection error
criterion

It comes then that finding a discrete motion minimizing these quantities for all
points could lead to a solution [Rr |tr ] which does not provide nonnull cone inter-
sections for all reliable correspondences. An illustration of this major drawback of
reprojection error minimization is illustrated in Figs. 12 and 13.

Figure 12 shows an example of four 3D point projections assuming the exact
motion [Re, te] (for clarity purposes, only a few cones of view are drawn). In this
example, most of projected points are located on the pixels’ periphery. It follows
that using a minimization of the reprojection error as a cost function to estimate a
new motion [Rr , tr ] could involve the set out of Fig. 13, where the reprojection error
is lower (see the black stars representing the reprojected points) even if it eliminates
a correspondence of cones which no longer intersect.

5.2 Cone Intersection Score Functions

We introduce here an initial score function S1 computed according to the following
steps: we first compute, for each correspondence, the minimal cone aperture α such
that the intersection

Px1,x2 =
{
Cx1(α)∨Cx2(α)

}
(12)

exists (see the (7) in Sect. 3.3 and Fig. 14).
A binary score s1 (Fig. 15(a)) is provided for each match according to α by the

expression

s1(α)= u(α)− u(α − ρ), (13)

where u(α) is the classic Heaviside step function (u(α)= 0 if α < 0 and u(α)= 1
otherwise), and ρ is the nominal pixel aperture, which is known from the full cone-
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Fig. 14 Case of nonintersecting nominal cones

Fig. 15 Score functions expressions

pixel calibration step. The total score corresponding to the motion estimation is
given by

S1(R, t)=
N∑

n=1

s1(αk). (14)

This score function statement is the number of correspondences with strongly inter-
secting cones, given a motion estimation. It comes from this expression that

0≤ S1(R, t)≤N and S1(R, t) ∈N. (15)

Assuming that there is no error in the pixel matching, a solution can be found
such that S1(R, t)=N .

This constraint fits physical reality better than classic reprojection error but is
difficult to use because of its discrete formulation. To ease its use in seeking strate-
gies, a second continuous criterion inspired by S1 is introduced. A score for each
correspondence is computed (see Fig. 15(b)) according to

s2(α)= s1(α)+
(

2− α

ρ

)2(
u(α − ρ)− u(α − 2ρ)

); (16)
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the global score function S2 is then defined as

S2(R, t)=
N∑

n=1

s2(αk). (17)

In addition to being very close to the physical reality (it modelizes the small blurring
between neighboring pixels pointed out in the calibration experiments, see Fig. 8),
this score function provides good results, as will be shown in the following section.

Because of the convex hull computation, this cost function is not analytic. It
will not be possible to use classic minimization (gradient descent, nonlinear pro-
gramming, SOCP) as seeking strategies. The optimal motion solution according to
the cone intersection cost function will be found using stochastic optimization. The
method chosen here is Simulated Annealing (SA) [12] because of its simplicity and
its convergence properties.

5.3 Simulation Experiments for Motion Estimation Using Cone
Intersection Criterion

The validation of this method has been carried out in simulation to control the whole
parameter set. It did not depend on possible error measurement or any noise. Let X
be a set of N = 592 3D points generated randomly in the field of view of two iden-
tical full calibrated (intrinsic and extrinsic parameters) 640× 480 views I1 and I2.
The optimal solution is then exactly known and will be noted as [Re, |te] (index e is
chosen for “exact”). Many motion estimation algorithms for this problem have been
developed. In this section we will review two of these according to cone intersection
score functions. A first motion estimation is provided from the fundamental matrix
[5] and is then used as the initial step for a BA [18]. Results provided by BA are
finally modified with Simulated Annealing. This sequential protocol enables a step-
by-step study of each method with the different cost and score functions discussed
here. Results are shown in Table 2. It can be noticed that the score functions S1 and
S2 can be computed to evaluate and compare the different guesses (R,T). There-
fore, the corresponding columns are not empty even for the Bundle Adjustment and
for the Fundamental Matrix. Two particular facts can be drawn from these results:

(i) The reprojection error is greater for the perfect motion than for the BA solution,
entailing that in this case BA is not able to reach the correct motion, since it
does not correspond to the minimum of the cost function.

(ii) We considered two images of the same scene and 592 pixel correspondences
between both images. There is a set of motion (R,T ) between both frame cap-
ture such that every couple of cones intersect. Then we can be sure that the
correct motion is in this set, and consequently, every motion which does not
verify this property cannot be a correct motion. Both columns S1 and S2 show
consequently that BA provides a nonrealistic solution.
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Table 2 Motion estimation results: case of a simple pixel sampling

Method Rep. error S1 S2 Translation
error (%)

Rotation
error (%)

Iterations

Fundamental matrix 1.4× 104 538 577.95 0.073 0.13 –

Bundle adjustment 13.80 587 588.57 0.17 0.054 304

Cone approach with SA 28.59 592 592 0.04 0.068 421

Exact motion [Re, te] 13.84 592 592 0 0 –

Table 3 Motion estimation results: case of a Gaussian noise (σ = 0.5)

Method Rep. error S1 S2 Translation
error (%)

Rotation
error (%)

Iterations

Fundamental matrix 1.32× 104 309 388.9 0.426 0.58 –

Bundle adjustment 27.97 471 516.52 0.428 0.084 288

Cone approach with SA 41.27 491 584.3 0.64 0.086 506

Exact motion [Re, te] 28.05 490 534.92 0 0 –

Algorithm 1 Motion Estimation using cone intersection criterion
Require: Initial estimation [Ri , ti], nominal aperture ρn, S

1: while S ≤ Sok do
2: Generate a Guess [R, t]: R=Ri + λR , t= ti + λt

3: for n= 1,n≤N do
4: find α such as Px1,x2 exists (12)
5: sn = s2(α) (16)
6: end for
7: S2=∑(sn) (17)
8: if S2 > S then
9: S = S2

10: Ri =R and ti = t
11: λR = λR

2 and λt = λt

2
12: end if
13: end while

Rotations provided by both BA and Simulated Annealing are very close (difference
less than 1× 10−4). However, a significant accuracy have been gained in translation
estimation.

A second test is carried out by applying an additive Gaussian noise (standard
deviation σ = 0.5) to the same data x1 and x2. Similarly, results provided by the
different methods are shown in Table 3. It can be noticed that the results provided
by BA are a little closer to the exact motion, compared to those provided by the cone
intersection criterion and simulated annealing, even if they remain very similar. The
notion of “better results” could not be used strictly speaking, because precisely of
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the noisy aspect. The reader should keep in mind that the Gaussian noise model used
there can obviously be easier handled by a quadratic error minimization instead of a
cone intersection criterion. Moreover, the score obtained by this presented method
exceed those obtained for the exact motion. We can consider that this solution is
satisfying and physically more reliable.

6 Conclusion and Future Works

This paper presented a general method to modelize cameras introducing the use of
cones to give a better approximation of the pixels’ field of view (rather than the
usual use of lines). We also introduced an experimental protocol to estimate cones
that is not restricted to any geometry of cameras. The model used Conformal Ge-
ometric Algebra that allowed us to handle cones in a simple manner using twists.
This formulation enabled the introduction of a new pixel matching characterization
as a nonnull intersection of cones of view. On this basis, it was possible to success-
fully address the motion estimation problem using this characterization as a new
score function, with better results than classic ray approach. Simulated Annealing
was chosen as a seeking strategy. A large panel of others methods could be used
instead. The aim of this paper was not to discuss these strategies but to prove that
cone intersection score criterion is closer to the physics and better to address com-
puter vision problems such as motion estimation. Current work is focusing on these
seeking strategies and the computation of a direct Cone Adjustment algorithm.
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Model-Based Visual Self-localization Using
Gaussian Spheres

David Gonzalez-Aguirre, Tamim Asfour,
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and Ruediger Dillmann

Abstract A novel model-based approach for global self-localization using active
stereo vision and density Gaussian spheres is presented. The proposed object recog-
nition components deliver noisy percept subgraphs, which are filtered and fused into
an ego-centered reference frame. In subsequent stages, the required vision-to-model
associations are extracted by selecting ego-percept subsets in order to prune and
match the corresponding world-model subgraph. Ideally, these coupled subgraphs
hold necessary information to obtain the model-to-world transformation, i.e., the
pose of the robot. However, the estimation of the pose is not robust due to the un-
certainties introduced when recovering Euclidean metric from images and during
the mapping from the camera to the ego-center. The approach models the uncer-
tainty of the percepts with a radial normal distribution. This formulation allows a
closed-form solution which not only derives the maximal density position depicting
the optimal ego-center but also ensures the solution even in situations where pure
geometric spheres might not intersect.

1 Motivation

Autonomous systems require the fundamental capability of self-localization in or-
der to properly process, associate, and interpret the incoming environmental sensor
signals and properly act in the environment. Remarkable examples of such systems
are humanoid robots operating in human-centered environments [1], see Fig. 1(a).

A formal representation of the elements composing the surroundings and their
interrelationships is needed to enable the robot to perform complex tasks through the
composition of multimodal skills accomplished through a perception–action cycle.
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Fig. 1 (a) The humanoid robot ARMAR-IIIa and its kitchen environment, see [2]. (b) The active
vision Karlsruhe humanoid head, equipped with seven DoF and two cameras per eye, see [3]. The
wide-angle lens are used for peripheral vision, while the narrow-angle lens are applied for foveated
vision

An effective mechanism to achieve the self-localization in these environments
ought to profit from the intrinsic topological and geometric structure of the world
by either constraining the search within a tailored feature space or by extracting in-
variant properties of the world elements. This mechanism has to sagaciously face
many diminishing factors that complicate the self-localizing task, i.e., the granular-
ity of the model, the nature of the sensors, and the uncertainty of the perception–
recognition cycle.

This chapter presents a novel geometric and statistical approach for model-
based global self-localization using an active-vision sensing paradigm for humanoid
robots. The global localization concerns about the position and orientation (6D-
pose) of the robot during the initialization.

The natural and inherent usage of conformal geometric algebra [5] arises from
the fundamental key idea of using conjuncted restriction subspaces in order to con-
straint and find the location of the robot. In this manner, the formulation prof-
its from those interesting features of this powerful mathematical framework [6].
For instance, the generalized intersection operator of geometric entities such as
planes, lines, spheres, circles, point pairs, and points is an ideal instrument to
attain the generation and validation of the ego-center location candidates of the
robot.

This proper treatment of subspaces helps to reduce the complexity of the percept-
to-model matching by a computationally efficient, conceptually clear, and consistent
apparatus for expressing the intersection among the geometric primitives.

In contrast to standard methods in linear algebra, where usually a case-based pro-
cedure is applied to determine the intersection subspaces, the conformal geometric
algebra provides a generalized mechanism, the meet operator [5, 6].
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2 Outline of Visual Self-localization

The upper bar of the Fig. 2 shows the three strata comprising the self-localization.
First, the physical space encloses the real world where the robot is located. The
visual space refers to the stratum where the image information from the world is
contained.

Finally, the world-model space is a graph-based representation of the surround-
ings consisting of two sublayers, the geometric-level with the 3D vertices and their
composition information and the topological-level describing the interrelation of
object components.

Fig. 2 Model-based visual self-localization approach (see [9]). (1) Appearance-based object
recognition components. (2) Extracted percepts mapped into the ego-frame. (3) Multitrial per-
cepts fusion. (4) Fused ego-percepts with their corresponding world-model associations. (5) Prox-
imity filtering for pruning purposes upon world model. (6) Orientation filtering. (7) Hypotheses
generation. (8) Hypotheses validation. (9) Geometric and statistical pose-estimation optimization.
(10) Resulting pose
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Fig. 3 Results of the class specific object recognition algorithms for door and door-handle, for a
detailed description, see [9]

Due to the model-based nature of the problem, the global localization can be
split into three sequential phases: visual acquisition of landmarks, data association
for model matching, and optimization of pose estimation.

2.1 Visual Acquisition of Landmarks

The active-vision perception and recognition components1 are responsible for deliv-
ering the 3D position and orientation (6D-pose) of the instances of those elements
described in the world model, see Fig. 2.

In contrast to previous approaches, the perception layer is not based on image
saliences or singularities such as Harris corners [7] or SIFT features [8] because
these partially significant landmarks not only imply a burden during data associa-
tion, but at a certain point the humanoid robot utterly needs to visually recognize
the environmental elements in order to perform tasks.

In this way, the visually recognized instances (from now on Percepts) of those
environmental objects provide not only useful information to perform actions, but
they also partially solve2 the data association between the visual and model spaces.
In a concrete context, percepts are doors and door-handles in a building, see Fig. 3.
The advantage of using class-based object recognition schema has been previously
exploited, see [10]. In this way, faster and more robust methods can be applied.

In contrast to general feature approaches, like in [11], they lack of feature model
association, besides offering poor reliability compared to those approaches designed

1These are class-specific object recognition modules that were implemented as stated in the au-
thors’ previous publication [9].
2Up to the class instance association level.
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Fig. 4 (a) Door-handle percepts recognized during scanning. (b) Multiple percepts corresponding
to the same element in the world. (c) Percepts fused percepts into a stationary point X{αi ,ς0(t),ς1(t)}
of the underlying multimodal density function ∂̂α(x), delineation set, and its bounding box

for specific domains. In this implementation, doors and door-handles were robustly
recognized by means of Gaussian classification over characteristic feature spaces ex-
tracted from class specific descriptors3 of the eigenvectors4 from color-segmented
regions in stereo images, i.e., 2D recognition. For a detailed description of the meth-
ods, the reader is referred to [9]. Many specific recognition components may be
added to improve the performance of the system at graph filtering by increasing the
partition of the graph, i.e., reinforcing constraints and increasing pruning.

2.2 Data Association for Model Matching

There are two fundamental questions to be answered in order to properly solve the
data association:

• How to fuse multiple percepts corresponding to the same world element arising
from multiple vantage points, see Fig. 4(b).
• How to match these fused percepts against the world model in order to compose

the kinematic chain linking the selected perceptions to the world model, i.e., the
backwards transformation from the world to the robot, see (5).

Percepts Fusion

Initially, a reference ego-space frame is defined; it is attached to a references el-
ement of the humanoid robot, i.e., a kinematic frame of the robot which remains
stationary during the visual scanning phase. Then, the time-varying kinematic chain
of transformations coupling the stereo vision system with the ego-frame is taken
into account for the registration of the percepts. Subsequently, the percepts acquired

3Specific tailored feature vector.
4From the covariance matrix of the clustered binary regions.
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during discrete steps of the scanning trajectory are mapped into the reference ego-
frame, see Fig. 4.

The underlying multimodal spatial density function

∂̂α(x) :R3 �→R

of the α-type percepts implies that stationary points

X{αi ,ς0(t),ς1(t)}

are the high-density locations (α-modes) of elements of α type, i.e., door, window,
etc. These points describe the fused locations of the α-elements.5 Percepts converg-
ing to X{αi ,ς0(t),ς1(t)} constitute the fusion set, i.e., the cluster delineation in [13].
This is the key to properly fuse the multiple view percepts, see Fig. 2(3).

These ideas are commonly used in the nonparametric density estimation tech-
niques as Parzen Windows [12] and Mean Shift [13]. The problem of estimating the
bandwidth matrix and kernel type is coherently solved by using the geometric class-
description of the percept, i.e., the inverse covariance matrix obtained from the 3D
vertices of the geometric model.

The Epanechnikov [13] kernel was chosen over the Gaussian kernel because of its
faster convergence producing only negligible differences in the resulting delineation
set compared with the results when using the Gaussian kernel. By exploiting these
ideas, the multiple view perceptions are efficiently fused into a common reference
space constituting the fused percepts set Hf , see Fig. 2(4).

Fused Percepts Matching

Previously merged landmarks are matched with the model by simultaneously
trimming and coupling the elements of the world and those fused percepts, see
Fig. 2(5–6).

In order to achieve this mechanism, a graph-based representation of the world
was implemented, whereas the fused percepts are arranged into a set of subgraphs
according to their spatial distribution.

This coupling process requires to adequately incorporate the previous noisy
fused-percept subgraphs as proper constraints to trim the model graph. In this way,
the elements in the model which correspond to the selected acquired percepts re-
main active in the model space. The elements that cannot satisfy the constraints are
dismissed.

A selected percept subset could be partially matched against the model by using
relative distances and orientations among them, i.e., removing elements which have
no relative incidence within the perceived range of relative distances and orienta-
tions. These are the key ideas of the proximity and orientation filtering.

5In Figs. 2–3 the α elements are the door-handles acquired in multiple views; in this case the α

label refers to the class door-handle.
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For these purposes, the world has been computationally modeled with two levels
of abstraction. The first one describes the geometric composition of the elements and
their relative pose. This is basically a CAD6 structure. On this level the entities are
data arrangements with information concerning 3D vertices and their composition
describing geometric primitives. In the second level, the latter structures compose
instances of object-model7 Om

i with attributes, e.g., identifier, type, size, and pose.
The collection of object-model instances constitutes the node set ν, whereas the

link set

Λ⊂ {Om
i ×Om

j :Om
i ,Om

j ∈ ν, i > j, ‖Xi −Xj‖< ζ
}

depicts the connections λi,j formed by all object model instances with the relative
distance8 falling below ζ ∈R.

Proximity Filtering

When filtering links in the world-model graph, noise is taken into account in the
form of deviation parameter εi of the distance between the perceived-recognized
objects9 O

pf

i :

εi = 1

ζ

(∥∥Xf
i −CL

∥∥)2 (1)

with location X
f
i and center of the left camera CL [15]. The result of the proximity

filter is the set of links

ψ{α,β,φ,τ } ⊂Λ

connecting nodes of type α to nodes of type β , e.g., door to door-handle, which are
separated by a distance φ with error-tolerance

τ =max
k∈Θ (εk),

where Θ denotes the subset of recognized objects of both types:

ψ{α,β,φ,τ } ⊂
{
Om

(i,α) ×Om
(j,β) :

∣∣(φ − ‖Xi −Xj‖)∣∣< τ
}
.

The active link set ψact consists of nodes from the intersection of those q prox-
imity filtering partial results

ψact :=
q⋂

i=1

ψ{αi ,βi ,φi ,τi }.

6Coin3D: www.coin3d.org.
7Note that the superscript “m” emphasizes the model object instance.
8The magnitude of the threshold ζ corresponds to the maximal length of the 3D-FOV, see [14].
9Note that the superscript “f ” emphasizes the fused-percept instance.

http://www.coin3d.org
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Each filtering stage performs a strong reduction of the cardinality of the active
link set, because those remaining nodes are tightly constrained, i.e., nodes should
have neighbors with restricted types at constrained distance ranges. Fast perfor-
mance was achieved by using a distance lookup table and filtering only previously
selected nodes.

Orientation Filtering

A more powerful, but computationally expensive, technique to reduce the nodes
within active link set is attained by accepting only the nodes with incidences having
a certain relative pose. In this sense, the definition of the frame transformation has
to be consistent while considering the noisy nature of the percept as follows:

First, three noncollinear elements are selected,

O
pf

i , O
pf

j , and O
pf

k ∈Hf ;
then a frame is specified

S
i,j,k
Percept =

[
R

i,j,k
Percept,X

f
i

]

relative to the ego-perception frame10

δ̂1 =
X

f
j −X

f
i

‖Xf
j −X

f
i ‖

, δ̂2 = [δ̂1 ∧ (X
f
k −X

f
i )]∗

‖[δ̂1 ∧ (X
f
k −X

f
i )]∗‖

, and δ̂3 = [δ̂1 ∧ δ̂2]∗
‖[δ̂1 ∧ δ̂2]∗‖ ,

which leads to

R
i,j,k
Percept =

[
δ̂n · ên

]
n=1...3.

Note that these computations take place in G(3,0), and thus the dual of the wedge
product of two vectors corresponds to the cross product in vector calculus.

Next, the relative displacement from O
pf

j to O
pf

k expressed on the frame of
perception is computed:

V
pf

i,jk = S
i,j,k
Percept

(
X

pf

j −X
pf

k

)
.

Such a vector merges the relative orientations of the three percepts in a signature-
like consistent manner. Therefore, it is possible to reject nodes which do not have a
“similar” displacement vector among two of the neighbors with corresponding type
and proximity. This noisy similarity is quantified by the length and angle discrepan-
cies μ and κ between the perception signature V

p

i,jk and the model signature Vm
u,uw

vectors, expressed on the world model Su,w,v
model .

10With orthonormal basis vectors {ê1, ê2, ê3}.
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Fig. 5 World-model graph at pruning by means of proximity and orientation filtering. Example
of accepted node Om

5 with vector Vm
5,8,2 inside Σ . Notice that the subspace Σ corresponds to the

boolean subtraction of two spherical cones [4]. The aperture of the implicit cone depicts the noise
parametric tolerance of the orientation filtering, see (3). The radii of both implicit spheres differ by
μmax, i.e., the proximity filtering noise parametrical tolerance, see (2)

Figure 5 shows the subspace Σ bounded by
∥∥V p

i,jk − Vm
u,vw

∥∥ < μmax, (2)

arccos(V̂ p

i,jk · V̂ m
u,vw) < κmax. (3)

When filtering a node, the combinational explosion is avoided by computing only
the subgraphs with link lengths falling into the range

(∥∥V p

i,jk

∥∥−μmax
)
<
∥∥[Opf

j ,O
pf

k

]∥∥<
(∥∥V p

i,jk

∥∥+μmax
)
.

2.3 Pose-Estimation Optimization

Previously extracted model subgraphs that simultaneously match the typed inci-
dences and relative pose of those acquired percepts subgraphs, embody the associ-
ation coupling the visual space, world model, and physical world.

They simultaneously impose restraints which are the geometric-compelling keys
to deduct the pose of the robot. Each association

〈
O

pf

i ,Om
j

〉

constraints the position of the robot to the subspace of all points that are ‖Xpf

i ‖
units away from Xm

j . This subspace is actually the surface on a sphere, i.e.,

Ω
〈
O

pf

i ,Om
j

〉

︸ ︷︷ ︸
Restriction Subspace

:=Xm
j +

1

2

(∥∥Xm
j

∥∥− ∥∥Xpf

i

∥∥)

︸ ︷︷ ︸
Perception-Model Matching

e∞ + e0 ∈ PK3 (4)
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Fig. 6 (a) Constrained-sub-
space embodies the surface of
the sphere. (b) Cooccurring
constrained-subspaces
depicting a circle. (c) Three
constrained-subspaces acting
in conjunction yielding to a
point pair. (d) Four
constrained-subspaces
yielding to a simultaneity
point, i.e., the point within the
intersection of these four
constrained-subspaces

centered at Xm
j with radius ‖Xpf

i ‖, see Fig. 6(a).

Note that the sphere in (4) is an element of the conformal geometric space PK3,
which has the Clifford algebra signature G(4,1), see [5].

For a single percept, this idea provides no benefit, but on second thought, when
observing the same concept with two different percepts, it turns out to be a very
profitable formulation because the ego-center should reside in both constrained sub-
spaces, meaning that it has to be on the surface of both spheres at the same time.

Consider two restriction spheres simultaneously constraining the position of the
robot,

Ω1
〈
O

pf

i ,Om
j

〉
and Ω2

〈
O

pf

k ,Om
l

〉;
they implicate that the position of the robot belongs to both subspaces. Thus, the
restricted subspace is a circle, i.e., an intersection of spheres, see Fig. 6(b),

Z(1∧2) =Ω1
〈
O

pf

i ,Om
j

〉∧Ω2
〈
O

pf

k ,Om
l

〉
.

Following the same pattern, a third sphere Ω3 enforces the restriction to a point
pair

J(1∧2∧3) = Z(1∧2) ∧Ω3
〈
O

pf
r ,Om

s

〉
,

i.e., circle–sphere intersection, see Fig. 6(c). Finally, a fourth sphere Ω4 determines
the position of the robot, i.e., the intersection point from the latter point pair, see
Fig. 6(d),

P(1∧2∧3∧4) = J(1∧2∧3) ∧Ω4
〈
O

pf

t ,Om
h

〉
.

Latter concepts outline a technique which uses the previously partially matched
elements of the world model and process them by a geometric apparatus for generat-
ing the ego-center candidates. This apparatus uses the centers of the spheres within
the model space and the radii from the fused-percepts, see Fig. 2(6–9). The formu-
lation and treatment of the uncertainty acquired during perception is presented in
Sect. 3.
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Fig. 7 Location hypotheses
generation–validation
mechanism systematically
manages the location
hypotheses

The computational complexity of this location hypotheses management process
is upper bounded by O(n4), where n is the cardinality of the subset of percept-
spheres. The amount of spheres n is never greater than 6 while generating candi-
dates; besides, in rare cases the internal partial result is that the intersection stages
are densely populated. This could be easily seen when intersecting two spheres. The
resulting circle occupies a smaller subspace which in successive stages meets only
fewer remaining spheres. One important factor why there are less operations in this
combinational computation is because the child primitives that result from the in-
tersection of parent spheres should not be combined with their relatives avoiding
useless computation effort and memory usage.

Hypotheses Generation

Each percept subgraph is used to produce the zero-level set, composed of spheres,
see Fig. 7,

Φ0 =
{
Ωζ

〈
Om

i ,O
p
j

〉}
ζ=1...n.

These spheres are then intersected by means of the wedge operator ∧ in an upper
triangular fashion producing the first-level set Φ1 containing circles.

The second-level set Φ2 is computed by intersecting the circles with spheres
from Φ0 excluding those directly above. Then the latter resulting point-pairs are
intersected in the same way creating the highest possible level (third-level set) Φ3;
here the points resulting of the intersection of four spheres are contained.

Finally, elements of Φ2 that have no descendants in Φ3 and all elements on Φ3

represent the location hypotheses

Δ :=
∧

ξ

Ωξ

〈
Om

i ,O
p
j

〉
.
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Fig. 8 Kinematic frames
involved in the ideal visual
self-localization. Notice the
directions of the coupling
transformations in order to
reveal the frame Sego

Hypotheses Validation

Hypotheses are checked by selecting associations, see Figs. 2–8,
〈
O

pf

i ,Om
j

〉

that were not considered in the generation of the current validating hypothesis. In
case there is more than one prevailing hypothesis, which rarely happens in nonsym-
metric repetitive environments, an active validation needs to take place selecting
objects from the model and then localizing them in the visual space. The criterion
to select the discriminator percept Dm

i,j (priming instance) is the maximal pose dif-
ference between hypotheses pairs.

Ideal Pose Estimation

Once the location hypothesis has revealed, the position of the robot Xego (see Fig. 8)
and the orientation Sego are expressed as

Sego︸︷︷︸
Self-Localization

= S
u,w,v
model︸ ︷︷ ︸

Model-Matching

[
S
i,j,k
Percept

]−1

︸ ︷︷ ︸
Visual-Perception

, (5)

which is actually the transformation from the kinematic chain that couples the
world-model frame Smodel (forwards) and the perception frame [Si,j,k

Percept]−1 (back-
wards), see Fig. 8.

There are situations where a variety of diminishing effects alter the depth calcu-
lations of the percepts in a way that the ideal pose calculation may not be robust
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or could not be assessed. The subsequent sections describe the sources and nature
of the uncertainties, which are modeled and optimized by the proposed technique
to determine the optimal location of the robot, i.e., the maximal probabilistic posi-
tion.

3 Uncertainty

The critical role of the uncertainty cannot only strongly diminish the precision of
the estimated pose, but it can also prevent the existence of it by drawing away the
intersection of the restriction subspaces, i.e., the spheres might not intersect due to
numerical instability and errors introduced by the perception layer.

In order to sagaciously manage these conditions and other derived side effects,
it is crucial to reflect upon the nature of the acquired uncertainties regarding this
localization approach. There are two remarkable categorical sources of uncertainty,
image-to-space and space-to-ego uncertainties.

3.1 Image-to-Space Uncertainty

Image-to-space uncertainty is obtained from the appearance-based vision recogni-
tion process. It begins with the pixel precision limitations, e.g., noise, discretization,
quantization, etc., and ends with the error limitations of the camera model and its
calibration, e.g., radial–tangential distortion and intrinsic parameters [16]. This un-
certainty could be modeled, according to the central limit theorem [17], as a normal
distribution where the standard deviation σi is strongly related to the perception
depth ρi :

σi
∼= 1

ζ
ρ2
i , (6)

where ζ > 1 ∈ R is an empirical scalar factor depending on the resolution of the
images and the vergence angle of the stereo rig, whereas the perception depth

ρi = (xi −CL) · êd (7)

depicts the distance between camera center CL and point in space xi along the stereo
rig normal vector êd , see Fig. 9. This deviation model arises from the following
superposed facts: first, considering only the monocular influence in each camera of
the stereo rig.

The surface patch Ai on the plane perpendicular to the optical axis of the camera
imaged into a single pixel PA grows as function of the distance ρi :

Ai = ρ2
i tan

(
θh

h

)
tan

(
θv

v

)
,
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Fig. 9 The image-to-space uncertainty factors in a front-parallel configuration

where θh and θv are the horizontal and vertical angular apertures of the field of view,
whereas h and v depict the width and height resolutions of the image, see Fig. 9.

Consequently, the stereo triangulation has an additional effect during the estima-
tion of the 3D position Mstereo(Xi) of a matched point pair. The distance ρi affects
the magnitude of the disparity di . Therefore, the precision of the pixel computations
plays a decisive role, i.e., the 3D space points which are closer to the base line have
wider disparities along the epipolar lines, meanwhile the points located after dis-
tance ρT h > f b have a very narrow disparity, falling in the subpixel domain d < 1,
which results in inaccurate depth calculations.

This situation also produces a sparse distribution of the iso-disparity surfaces
[15], meaning that the subspace contained between this surface-strata grows as

di = f b

ρi

, (8)

where the focal distance f and the base line size b play relevant roles in the mea-
surement precision

b= ‖CL −CR‖.
Figure 9 shows the ideal front parallel case iso-disparity edges delineating the

subspaces contained between two discrete steps in the disparity relation of (8).
In this manner, points contained within one of these subspaces produce the same

discrete disparity when matching corresponding pixels. Hence, the location uncer-
tainty should be proportional to the distance contained between iso-disparity sur-
faces. These two applied factors produce an uncertainty growing in an attenuated
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Fig. 10 The space-to-ego uncertainty acquisition process produced by the mapping of percepts
from camera coordinates to the ego-frame. (a) The whole transformation X́i =Mt

ego(Mstereo(Xi)).

(b) The transformation Mt
ego = [T(t)N(t)HCL]−1

quadratic fashion, which is reflected in the model as a deviation spreading in the
same pattern reflected upon (7).

3.2 Space-to-Ego Uncertainty

The space-to-ego uncertainty is caused while relating the pose of the percepts from
the left camera frame to the ego-frame, i.e., head-base frame of the humanoid robot,
see Fig. 10(a).

It is caused by the physical and measurement inaccuracies, which are substan-
tially magnified by projective effects, i.e., the almost negligible errors in the en-
coders and mechanical joints of the active head of the humanoid robot are amplified
proportionally to the distance ρi between the ego-center and the location of the per-
cept.

Figure 10(b) shows the kinematic chain starting at xL
i , the left camera coordinates

of the space point Xi . Subsequently, the transformation from the left camera frame
CL to the shoulders base T (t) passing through the eyes base H and neck frame N(t)

is given by

X́i =Mt
ego(xi), (9)

Mt
ego = [T(t)N(t)HCL]−1, (10)
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where Mt
ego is the ego-mapping at time t . Here, the transformations T(t) and N(t)

are time-dependent because they are active during the execution of the scanning
strategy, see Fig. 10(b).

4 Geometry and Uncertainty Model

Once the visual recognition components have provided all classified percepts within
a discrete step of the scanning trajectory, these percepts are mapped into the refer-
ence ego-frame using (9). This ego-frame is fixed during the scanning phase. In this
fashion all percepts from different trials are located in a static common frame, see
Fig. 10(b).

The unification-blending process done by the fusion phase simultaneously allows
the rejection of the percepts that are far from being properly clustered and creates
the delineation set which is later melted into a fused percept.

Next, the geometric and statistical phase for determining the position of the robot
based on intersection of spheres is properly formulated by introducing the Gaussian
sphere and its apparatus for intersection-optimization.

4.1 Gaussian Spheres

The considered restriction spheres Ωi are endowed with a soft density function

f̂ (Ωi, x), Ωi ∈ PK3, x ∈R
3 �→ (0,1] ∈R.

The density value decreases exponentially as a function of the distance from an
arbitrary point x to the surface of the sphere Ωi :

S(x,Xi, ri) =
∣∣(‖x −Xi‖ − ri

)∣∣, (11)

f̂ (Ωi, x) = e

−S(x,Xi ,ri )
2

2σ2
i . (12)

The latter function depicts the nonnormalized11 radial normal distribution

Ň
(
μ := {x | ker

(
S(x,Xi, ri)

)}
, σ 2

i

)

for x to be in the surface of Ωi , i.e., the null space of S(x,Xi, ri). Note that here the
standard deviation σi refers to (6).

The density of a point x in relation with a sphere Ωi represents the nonnormal-
ized probability for the point x to belong to the surface of the sphere Ωi . Obviously
the maximal density is on the surface of the sphere itself.

11By the factor 1
σ
√

2π
.
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Fig. 11 Gaussian spheres meeting. (a) Two Gaussian spheres meeting Ω1 ∧ Ω2 describing a
density-subspace Δ(Ω1 ∧Ω2). (b) Three Gaussian spheres Ω i=1,2,3 meeting in two regions de-
picting a subspace Ω1 ∧Ω2 ∧Ω3. (c) Detailed view of one of the previous subspaces. (d) Dis-
crete approximation of the maximal density location xs . (e) Details of the implicit density-space
Δ(Ω1 ∧Ω2 ∧Ω3). (f) (Upper-right) Implicit radius rx when estimating the density at position x

It is necessary to propose an effective mechanism which applies intersections
of restriction spherical subspaces as the essential idea for determining the robot
position. The nature of the applied intersection has to consider the endowed spatial
density of the involved Gaussian spheres.

In the following sections, the restriction spheres and their conjuncted composi-
tion properly model both uncertainties, allowing the meeting of spheres by finding
the subspace where the maximal density is located, see Fig. 11.

This could be interpreted as an isotropic dilatation or contraction of each sphere
in order to meet at maximal density of the total density function, see Figs. 12
and 13.
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Fig. 12 Gaussian circles, i.e., 2D Gaussian spheres. (a) Three Gaussian circles setup. (b) The total
accumulative density f̂c(x)=∑n

i f̂ (Ωi, x) allows a better visualization of the composition of its
product counterpart f̂t (x), see also Fig. 13. (c) Density contours with seeds and their convergence
by means of gradient ascendant methods

Fig. 13 The Gaussian circles, i.e., 2D Gaussian spheres. (a) Three Gaussian circles setup. (b) The
total density f̂t (x) =∏n

i f̂ (Ωi, x). (c) Density contours and ego-center Xego; notice that the re-
sulting distribution is not Gaussian
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f̂t (x) −→ (0,1] ∈R, x ∈R
3, (13)

f̂t (x) =
n∏

i

f̂ (Ωi, x). (14)

Due to the geometric structure composed by n spheres, it is possible to foresee
the amount of peaks and the regions Ws where the density peaks are located, see
Fig. 12(c). Therefore, it is feasible to use state-of-the-art gradient ascendant methods
[18] to converge to the modes using multiple seeds. These should be strategically
located based on the spheres centers and intersection zones, see Fig. 12(b).

Finally, the seed with maximal density represents the solution position xs ,

xs = arg max f̂t (x). (15)

However, there are many issues of this shortcoming solution. The iterative solu-
tion has a precision limited by the parameter used to stop the shifting of the seeds. In
addition, the location and spreading of the seeds could have a tendency to produce
undesired oscillation phenomena, under- or oversampling and all other disadvan-
tages that iterative methods present.

The optimization expressed by (15) could be properly solved in a convenient
closed form. In order to address the solution xs , it is necessary to observe the con-
figuration within a more propitious space, which simultaneously allows an advanta-
geous representation of the geometrical constraint and empowers an efficient treat-
ment of the density, i.e., incorporating the measurements according to their uncer-
tainty and relevance while avoiding density decay.

4.2 Radial Space

The key to attain a suitable representation of the latter optimization resides in the
exponent of (12). There, the directed distance from a point x to the closest point on
the surface of the sphere is expressed by (11). When considering the total density
function, see (14), it unfolds the complexity by expressing the total density as a
tensor product.

The inherent nature of the problem lies in the radial domain, i.e., the expression
S(x,Xi, ri)

2 is actually the square magnitude of the difference between the radius ri
and the implicit defined radius rx between the center of the spheres Xi and the point
x, see Fig. 11(f). Hence, the optimization configuration can be better expressed in
radial terms, and the geometrical constraints restricting the relative positions of the
spheres are properly and naturally clarified in the following sections.

4.3 Restriction Lines

Consider the case of two spheres Ω1 and Ω2, see Fig. 14(a). Here, the radii of both
spheres and the distance between their centers
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Fig. 14 The spheres’s intersection restriction lines derivation in the radial space S2. (a) The line
Lχ is the first restriction for ensuring nonempty intersection of spheres. (b) The derivation of
reminding right side empty intersection restriction line Lβ . (c) The left side symmetric case, gen-
erating the third restriction Line Lα

δ1,2 = ‖X1 −X2‖ =
√−2(Ω1 ·Ω2)

allow the formulation of the geometric restrictions which ensure the intersection of
the spheres in at least a single point Pχ .

These restrictions are expressed by the inequality line Lχ which describes the
radial configuration subspace represented by pairs of the form

Pχ = [r1, r2]T ∈ S2,

the intersection of spheres Ω1 ∧ Ω2, i.e., a circle with zero radius, where the S2

refers to the radial configuration space of two spheres.
Note that in Fig. 14(d), the inequality line divides the configuration space into

two regions. The half space holding the restriction imposed by the inequality line
Lχ still contains configurations which produce no intersection of spheres, in fact
any configuration holding

r2 ≥ δ1,2 + r1.

In order to prevent these degenerated configurations two additional restriction
inequality lines arise, unveiled by following similar pattern.

In the same fashion, Fig. 14(b) shows the case where the minimal contact point
Pβ occurs, subject to

r1 ≥ δ1,2 + r2.
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In this configuration subspace, the sphere Ω1 fully contains the sphere Ω2, and
their surfaces intersect solely at Pβ . Once again, in order to ensure at least this
contact point, the fluctuation of the radii of both spheres is restricted by a linear
relation expressed by the inequality line Lβ . The latter restriction actually happens
in a symmetric manner by interchanging the roles of Ω1 and Ω2, resulting in a third
restriction, i.e., the inequality line Lα , see Fig. 14(c–d).

As a result, the space is divided in four regions Kα , Kβ , Kχ , and Kmeet, all
open except Kχ . Only those configurations within the subspace Kmeet represent
nonempty intersections of spheres, e.g., the point xconf in Fig. 14(d) with

xconf =
[
r ′1, r ′2

]T ∈Kmeet.

The edge surface separating Kmeet from the other regions depict single-point
intersections of spheres, whereas elements within Kmeet represent intersection de-
picting a circle with nonzero radius.

Latter conceptualization soundly compounds the distance among centers of the
spheres with their radii. It produces a robust and general criterion to establish inter-
section guarantee, see Fig. 14(d).

4.4 Restriction Hyperplanes

The previous derivation of the restriction lines was achieved by considering only the
case involving two spheres; however, it is possible to extend these restrictions to n

spheres.
Formally, this affirmation is theoretically supported by representing the n sphere

radial configuration space Sn as the Hilbert space Cn, where each dimension depicts
the radius of one sphere. An element xconf ∈ Sn of the n-dimensional radial configu-
ration space can be uniquely specified by its coordinates with respect to orthonormal
basis vectors

êi ∈ Sn | i ∈ {1, . . . , n} ⊂ Z,

which are, as expected in a Hilbert space, perpendicular to each other, because the
radius of each sphere is independent from the others. In this manner, the previous
restriction lines could be perpendicularly extruded in n− 2 dimensions creating the
restriction hyperplanes Φ

(i,j)
α .

Here again, each hyperplane divides the space in two subspaces. Configurations
within the region opposite to the normal vector VLα (back of the hyperplane) repre-
sent nonintersecting spheres, see Fig. 15.

Even more, the set of hyperplanes expressed in their Hesse normal form could be
used to compose a matrix inequality

Ax ≤ b, (16)
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Fig. 15 The radial density space Sb3 containing the open polytope which delineates the subspace
Kmeet. The transformation-optimization vector Vopt implies an isotropic variation in the underlying
density domain while creating a general dilatation within the implicit radial domain

where A is an m × n matrix with m bounding half-spaces (normal vectors of the
hyperplanes), and b represents an m × 1 column vector formed by stacking the
Hesse distances of the hyperplanes, i.e., an open polytope, see Fig. 15.

Consider the case where n = 3. Three spheres implying an open polyhedron,
within the radial space each line

L(i,j)
α , L

(i,j)
β , and L(i,j)

χ

could be extruded in the complementary dimension creating restriction planes given
by Φ

(i,j)
α . Next, the face cells, ridges, and vertices of the polytope are found using a

simple and fast implementation for vertex enumeration [19], see Fig. 15.
At this stage, it could be conveniently established whether the current configu-

ration is valid, in other words, determine if the point xconf belongs to the polytope.
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This assertion is formally given by

Axconf < b.

In case this assertion is held, there is no need to go through the following opti-
mization phase because of the spheres meeting on their surface, resulting the maxi-
mal density

f̂
(
xconf

)= 1.

The opposite situations represent the degenerated configurations resulting from
noisy measurements and previously discussed errors. For instance, the point xconf
represents an invalid configuration, outside of the polytope where no intersection of
spheres exists, see Fig. 15.

The target solution for the latter cases necessarily implies a decay in the density,
because at least one of the vector components has to be modified for the point xconf
in order to become a valid configuration xconf. This offset signifies a dilatation or
relative contraction of the sphere(s) depending on the magnitude and direction of
the displacement Vopt,

xconf = xconf + Vopt,

which transforms the degenerated configuration into a valid one, see Fig. 15. Here,
the optimal criterion to accomplish is to calculate the minimal-length offset vector
transformation Vopt,

Vopt := [vr1, . . . , vrn] ∈ Sn,

retaining as much density as possible by eluding degradation of the spheres, reduc-
ing the radial deviation within (12).

The geometric intuitive way of finding such a vector is to find the closest point
from xconf on the cells or ridges of the polytope that could be efficiently computed
by perpendicularly projecting the point xconf to each hyperplane,

x
(i,j)

conf
= xconf −

(
V (i,j)
α · xconf

)
V (i,j)
α , (17)

and selecting the closest one from those points holding the assertion given by (16).
Although this technique is computationally efficient and geometrically correct, the
outcoming solution is not optimal, because within this space only the absolute di-
rected distance is considered. No contribution effects of different deviations are as-
sessed, producing nonminimal density decay.

This limitation could be vanquished by considering a homothety transformation
H(Sn), i.e., a deviation normalization of the radial configuration space inspired by
the concept behind the Mahalanobis [4] distance.

The spatial density function of a Gaussian sphere Ωi given by (12) could be
conveniently reformulated in the radial domain as

f̂ (Ωi, x)= e
− 1

2 (
rx
σi
− ri

σi
)2

, (18)
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so that the deviation of the endowed normal distribution scales the implicitly defined
radius rx and the mean radius ri of the sphere Ωi by the factor σ−1

i . This normal-
ization mapping could be generalized for the whole radial configuration space Sn

as

H= diag
[
σ−1

1 , . . . , σ−1
n

]
. (19)

This matrix actually represents the inverse covariance matrix Σ−1 of the total
density function given by (20). This could be easily visualized by the alternative
expression12

f̂t (x)= e
− 1

2

∑n
i=1(

‖x−Xi‖
σi
− ri

σi
)2

. (20)

Based on (20) and taking into account the uncorrelated radial distributions, it
is clear that the underlying covariance matrix H−1 =Σ has zero elements outside
its trace. Because of this fact, the proposed normalization Sdn =H(Sn) could take
place by applying the matrix H as an operator over the orthonormal vector bases of
Sn as

éi =Hêi .

The Euclidean metric within this resulting space is uniformly isomorphic with
the density space. Displacements of the same length arising from the same position
imply equal density decay in all directions reflecting different dilatation or contrac-
tions of those involved Gaussian spheres. Note that this normalization takes place
before the vertex enumeration for the polytope extraction has been computed, re-
flecting the effects within the affine13 strata while computing the optimal points
in (17), see Fig. 15.

The application of the previous methods within the normalized radial configura-
tion space Sdn does not only ensure the optimal solution with minimal decay, but
it also benefits from the available certainty provided from the spheres with smaller
deviation (higher reliable percepts) by introducing smaller displacements in the cor-
responding dimension of the displacement vector V d

opt ∈ Sdn.
In other words, the spheres which have a wider deviation easily expand (or con-

tract) their surfaces than those with smaller ones in order to obtain the highest pos-
sible density at the meeting operation.

This method delivers the optimal trade-off fusion while performing the manage-
ment of the modeled uncertainty.

4.5 Duality and Uniqueness

In case the latter method has taken place in Sd3 (considering three spheres) obtain-
ing the optimal configuration xconf ∈ Sd3, there is still a duality to solve while back

12By rewriting the exponent as a vector column and arranging in a standard form xtΣ−1x.
13In the Hesse normal form of the hyperplanes.
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mapping this configuration into the physical Euclidean space. This issue is solved
straightforward by computing the point pair solution

J∧3
i=1
=

3∧

i=1

Ωi

(
σi(xconf · êi ),Xi

)
.

In case both solutions lie within the valid14 subspace, a simple cross-check
against the location of percepts not involved in previous calculations will robustly
disambiguate the solution. It is possible to obtain a unique solution by using four
spheres for the optimization task, i.e., to represent the setup within Sd4. In this way
xconf ∈ Sd4 could be again mapped back into the physical Euclidean space by means
of the meet operator unveiling the position of the robot as

P∧4
i=1
=

4∧

i=1

Ωi

(
σi(xconf · êi ),Xi

)
.

5 Conclusion

This approach solves the model-based visual self-localization using conformal geo-
metric algebra and Gaussian spheres. The proposed method translates the statistical
optimization problem of finding the maximal density location for the robot into a
radial normalized density space Sdn which allows a very convenient description
of the problem. Within this domain, it is not only possible to draw the geometric
restrictions which ensure the intersection of spheres, but it also attains the optimal
fusion and trade-off of the available information provided from the percepts by in-
corporating the available information of each landmark according to its uncertainty.

The considered world model of the kitchen consists of 611 rectangular prisms,
124 cylinders, and 18 general polyhedra with 846 faces, all arranged by 1,524 gen-
eral transformations (rotation, translation, and scaling) with a total of 13,853 ver-
tices and 25,628 normal vectors composed in the scene-graph from the CAD model
and verified against real furniture with laser devices, see Fig. 1(a).

The global self-localization of the humanoid robot ARMAR-III within the
modeled environment was successfully performed using this approach. The scan-
ning strategy takes 15–20 seconds processing 20 real stereo images. The graph
model pruning takes 100–150 ms. The hypotheses generation–validation takes 200–
500 ms. Finally, the vertex enumeration takes approximately 15–50 ms depending
on the configuration.

Acknowledgements The work described in this book chapter was partially conducted within
the German Humanoid Research project SFB588 funded by the German Research Foundation
(DFG: Deutsche Forschungsgemeinschaft) and the EU Cognitive Systems project PACO-PLUS
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14Above the floor and inside the modeled space.
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Part V
Conformal Mapping and Fluid Analysis



Geometric Characterization of M-Conformal
Mappings

K. Gürlebeck and J. Morais

Abstract In this paper we study the description of monogenic functions in R
3 by

their geometric mapping properties. The monogenic functions are considered at first
as general quasi-conformal mappings. We consider the local mapping properties of a
monogenic function and show that this class of functions can be defined as a special
subclass of quasiconformal mappings. It is proved that monogenic functions with
nonvanishing Jacobian determinant map infinitesimal balls onto special ellipsoids.
The condition on the semiaxes of these ellipsoids is explicitly given.

1 Introduction

The application of complex-analytic methods plays an important role in the theory
of partial differential equations in the plane. Because many practical problems lead
to models in the three- or four-dimensional spaces, there are different approaches
to generalize complex analysis to the higher-dimensional real Euclidean space (see,
e.g., [10, 11, 13, 14, 20]). An important issue in this paper is to study spatial gener-
alizations of holomorphic functions in the setting of quaternionic analysis. In the
complex case, these functions define, under certain conditions, two-dimensional
conformal mappings between geometrical objects and transform partial differential
equations to other differential equations. Therefore, in this paper we are interested
in the construction of spatial generalizations of holomorphic functions (they are
called monogenic in Quaternionic and Clifford analysis) and the description of their
geometric mapping properties. We have in mind to find out in which sense the well-
known properties of complex conformal mappings can be transferred to the higher-
dimensional case. The frequent use of quaternions in the study of three-dimensional
problems motivates the restriction to monogenic functions defined in domains of
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R
3 with values in the reduced quaternions. A serious study of the geometric prop-

erties of monogenic functions requires to consider at first the local behavior of such
mappings. This is the main goal of the paper.

The extension of theoretical and practical conformal mapping methods in com-
plex analysis to the higher-dimensional real Euclidean space, particularly in the set-
ting of quaternionic analysis, has originated many questions. Several attempts have
been made to study monogenic functions in R

n+1 by a corresponding differentia-
bility concept or by the existence of a well-defined hypercomplex derivative (see,
e.g., [6, 7, 12, 16, 20]). However, it is not commonly realized that monogenic func-
tions can be characterized via a generalized conformality concept. It is shown by
examples in [4] and later on in [3] that these functions can preserve some of the ge-
ometrical properties like length, distance, or special angles while mapping special
domains onto the ball. Both papers [3, 4] are mainly concerned with generaliza-
tions of the Bergman reproducing kernel approach to numerical mapping problems
analogously to the complex Bergman kernel method of constructing the conformal
mapping from a domain onto the disk.

At this point it is important to remark that, in contrast to the planar case, in spaces
R

n+1 of dimension n ≥ 2 the set of conformal mappings is restricted to the set of
Möbius tranformations only, at first shown by Liouville in 1850 [15] for the three-
dimensional case. We state the result:

Theorem 1 (Liouville’s theorem) Let Ω ⊂H. A C1-function f :Ω→H is a con-
formal mapping if and only if f is a Möbius transformation.

It is well known that the theory of monogenic functions does not cover the set of
Möbius tranformations in higher dimensions and that the Möbius transformations
are not monogenic. One can only expect that monogenic functions represent certain
quasiconformal mappings. On the other hand, the class of all quasiconformal map-
pings is much bigger than the class of monogenic functions. The question arises if
monogenic functions correspond to a special subclass of quasiconformal mappings.

In [17], Malonek introduced the concept of monogenic-conformal mappings real-
ized by Clifford-valued functions defined in R

n+1. The main tool in his paper is the
study of relations between special surface and volume differential forms. Together
with the geometric interpretation of the hypercomplex derivative [7], dilatations and
distortions of these mappings can be estimated. This includes the description of
the interplay between the Jacobian determinant and the hypercomplex derivative of
monogenic functions (see [5]).

In this contribution we will characterize monogenic functions by more visible
geometric mapping properties. It is clear that the local mapping properties of a
monogenic function or of a real analytic function are mainly determined by the
behavior of the linear part of their Taylor expansions. In this line of reasoning, we
start by presenting the geometric behavior of the linear part of a monogenic function
with values in the reduced quaternions. As a consequence, we show that monogenic
functions can be defined as mappings which map infinitesimal balls onto explicitly
characterized ellipsoids and vice versa.
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2 Preliminaries

Let {e0, e1, e2, e3} be an orthonormal basis of the Euclidean vector space R
4. We

introduce the (quaternionic-)product subject to the following multiplication rules:

e2
0 = e0; eie0 = e0ei = ei , i = 1,2,3;

e2
1 = e2

2 = e2
3 =−1; e1e2 =−e2e1 = e3.

This noncommutative product generates the algebra of real quaternions denoted
by H. The real vector space R

4 will be identified with H by means of

a := (a0, a1, a2, a3) ∈R
4 ←→ a := a0e0 + a1e1 + a2e2 + a3e3 ∈H,

where ai ∈R (i = 0,1,2,3).
We remark that the vector e0 is the multiplicative unit element of H. From now

on we will identify e0 with 1, and we simply write

a := a0 + a1e1 + a2e2 + a3e3.

We shall denote by Sc(a) := a0 the scalar part of a and by Vec(a) := a1e1 +
a2e2 + a3e3 its vector part. Analogously to the complex case, the (quaternionic-)
conjugate element of a is

a := Sc(a)−Vec(a)= a0 − a1e1 − a2e2 − a3e3.

The norm of a is given by |a| = √aa=
√
a2

0 + a2
1 + a2

2 + a2
3 and coincides with

its corresponding Euclidean norm as a vector in R
4.

Let us now consider the subset

A := spanR{1, e1, e2}

of the algebra H. Its elements are called reduced quaternions. The real vector space
R

3 is to be identified with A via

x := (x0, x1, x2) ∈R
3 ←→ x := x0 + x1e1 + x2e2 ∈A.

We emphasize that A is a real vectorial subspace, but not a subalgebra, of H.
Now, let us consider an open subset Ω of R

3 with a piecewise smooth boundary.
A quaternion-valued function or, briefly, an H-valued function is a mapping f :Ω→
H. From now on we will restrict the latter to functions with values in A, i.e., such
that

f(x)= [f(x)]0 +
2∑

i=1

[
f(x)

]
i
ei ,
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where the coordinate-functions [f]i (i = 0,1,2) are real-valued functions in Ω .
Properties such as continuity, differentiability, or integrability are ascribed co-
ordinate-wisely.

For continuously real-differentiable functions f :Ω→A, the operator D defined
by

Df= ∂f
∂x0
+ e1

∂f
∂x1
+ e2

∂f
∂x2

(1)

is called the generalized Cauchy–Riemann operator on R
3. It can be understood as

a three-dimensional extension of the classical Cauchy–Riemann operator ∂z. In the
same way, we define the conjugate quaternionic Cauchy–Riemann operator D by

Df= ∂f
∂x0
− e1

∂f
∂x1
− e2

∂f
∂x2

, (2)

which is a generalization of the operator ∂z.

Definition 1 A continuously real-differentiable A-valued function f is called mono-
genic (resp., antimonogenic) in Ω if Df= 0 (resp., Df= 0) in Ω .

Remark 1 It is not necessary to distinguish between left- and right-monogenic
(resp., antimonogenic) functions in the case of A-valued functions because Df= 0
(resp., Df= 0) implies that fD = 0 (resp., fD = 0) and vice versa.

Analogously as in the complex one-dimensional case, 1
2D defines a derivative

of monogenic functions. This was shown for arbitrary dimensions in [7], where
( 1

2D)f was called hypercomplex derivative of f. In the four-dimensional case we
find analogous results in [18] and [20].

The generalized Cauchy–Riemann operator (1) and its conjugate (2) factorize the
three-dimensional Laplace operator, that is,

Δ3f=DDf=DDf (3)

for f ∈ C2, which implies that any monogenic function is also a harmonic function.
This means that quaternionic analysis gives us a refinement of harmonic analysis.

For future use, we also need the connection between quaternionic analysis and
Clifford analysis. We restrict ourselves to the case of C�0,3, the universal real Clif-
ford algebra of signature (0,3), constructed over the canonical orthonormal basis
{ε0,ε1,ε2,ε3} of the Euclidean vector space R

4. The basis elements satisfy the
following multiplication rules:

εiεj + εjεi =−2δi,jε0, i, j = 1,2,3;
ε0εi = εiε0 = εi , i = 1,2,3,

where δi,j stands for the Kronecker symbol.
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The skew-field of the quaternions can be identified with the even subalgebra
C�+0,3 by setting

e1 ∼=−ε1ε2, e2 ∼=−ε1ε3, e3 ∼=+ε2ε3.

As a consequence, starting with the Dirac operator in C�+0,3,

D = ε1
∂

∂y0
+ ε2

∂

∂y1
+ ε3

∂

∂y2
,

we obtain the generalized Cauchy–Riemann operator via the identification

C�+0,3 1 y = y0ε1 + y1ε2 + y2ε3 ←→ x= y0 − y1e1 − y2e2 ∈A

and

−ε1D ∼=D.

Moreover, a vector-valued function f̃ in C�+0,3 is identified with the A-valued
function f by

f̃ = [f̃ ]0ε1 +
[
f̃
]

1ε2 +
[
f̃
]

2ε3 ←→ f= [f]0 − [f]1e1 − [f]2e2, (4)

where [f̃ (y)]i = [f(x)]i (i = 0,1,2).
These identifications define a link between null solutions of the Dirac equation

in C�+0,3 and of the Cauchy–Riemann equations in H. It is well known that the
solutions of the Dirac equations are invariant under rotations. These two facts allow
us, under certain conditions, to transpose some mapping properties of our original
A-valued functions under rotations. More precisely, we have:

Lemma 1 Let f be an A-valued monogenic function defined in a domain Ω of R
3.

Then,

D f̃ =D
(
Uf̃U−1),

where U is an orthogonal transformation in R
3, and f̃ = [f]0ε1 − [f]1ε2 − [f]2ε3.

3 Monogenic-Conformal Mappings and Their Relation
to Monogenic Functions

Nowadays the concept of conformal mappings is used in complex analysis, includ-
ing applications to elliptic partial differential equations, differential geometry, po-
tential theory, mathematical physics, and calculus of variations. Conformal map-
pings are closely related to the differentiability and analyticity of complex functions
in the way that every conformal mapping is holomorphic.
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The extension of conformal mapping methods in C to the higher-dimensional
real Euclidean space, particularly in the setting of quaternionic analysis, has orig-
inated many questions in the last decades. It is not commonly realized that mono-
genic functions can be characterized via a generalized conformality concept. In [17]
the concept of monogenic-conformal mappings described by paravector-valued real
differentiable functions in Ω ⊂ R

n+1 with values in the Clifford algebra C�0,n has
been introduced for the first time. These mappings are called in [17] M-conformal
mappings. The relation of this concept with the geometric interpretation of the hy-
percomplex derivative 1

2D allowed it to complete the theory of monogenic func-
tions by providing a still missing geometric characterization of those functions. It
was shown that monogenic-conformal mappings are generalizations of conformal
mappings in the plane. However, they are different from conformal mappings (in
the sense of Gauss) in higher dimensions.

In the following, we will use the notation of [17]. We consider in Ω ⊂ R
n+1 a

positively oriented differentiable n-dimensional hypersurface S with coherent ori-
ented boundary ∂S. Let z∗ ∈ S be a fixed point, and (Sm) a regular sequence of
subdomains which is shrinking to z∗ as m tends to infinity and whereby z∗ belongs
to all Sm.

From [17] we take the following theorem:

Theorem 2 Let f be a paravector-valued real differentiable function in Ω ⊂R
n+1.

This function realizes locally in the neighborhood of a fixed point z= z∗ a left M-
conformal mapping if and only if f is left monogenic, and its left hypercomplex
derivative is different from zero.

The proof of the previous theorem is based in the following integral representa-
tion of the hypercomplex derivative of a monogenic function f:

(
1

2
D

)
f= (−1)n lim

m→∞

[∫

Sm

dμ∧ dz

]−1 ∫

∂Sm

(dμf)

in case the limit exists for all possible regular sequences. To be more precise, this
integral is described by the limit of the “quotient” of a 2-form (surface area) and a
3-form (volume) (Sudbery [20]). For more details on this representation, we refer
the reader to [7] and [17].

However, the geometric properties of such a result are not directly visible. In the
next section we will show that the description of monogenic functions can be also
formulated by more accessible geometric mapping properties.

4 Influence of the Linear Part of a Monogenic Function

Due to the equivalence between hypercomplex differentiability and monogenicity,
the question arises if from this point of view A-valued monogenic functions in R

3

can also be defined by their geometric mapping properties.
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It is well known from complex analysis that conformal mappings (and also quasi-
conformal mappings, cf. Ahlfors [1]) in the plane are realized in the neighborhood
of a point by all complex functions for which the complex derivative exists and
is not equal to zero. This can be easily shown by looking to the differential of a
nonconstant real differentiable function f : Ω → C defined in a domain Ω ⊂ R

2

(see, e.g., [17]). This usual treatment includes the description of the connection
between the Jacobian determinant and the derivative of such functions.

On the other hand, it is also known that the Riemann mapping theorem allows one
to deform an (almost) arbitrary domain by a conformal mapping onto a disk (or vice
versa). In particular, it also allows one to prescribe the direction in which the real
axis should be mapped. This behavior is related to conformal (local) properties of
the complex derivative of a complex-valued function. For that, one usually requires
the knowledge of the argument of the derivative at the origin.

To be more precise, assume a general function f :Ω ⊂ R
2→ B ⊂ C. We sup-

pose also that the domain B denotes a ball centered at the origin. The first derivative
in the origin will give the first (linear) approximation of the mapping function f

in terms of a linear mapping represented in the form w = f (0) + zf ′(0) (z ∈ C),
valid in a neighborhood of z = 0. In other words, for a first approximation, we re-
quire nothing else than the identity function. Also, it implies that a small ball is
(locally) mapped onto a small ball. However, in the 3D-case the situation is com-
pletely different, since the class of conformal functions is now reduced to the class
of Möbius transformations. A particular important example is the case of f(z) = z
for z= x0+x1e1+x2e2 ∈A. This can be viewed as the counterpart of the monomial
z in C, but unfortunately it is not a monogenic function.

In this line of reasoning we discuss briefly some general aspects concerning a
general real analytic A-valued function f defined in R

3. Clearly, one has the decom-
position

f(x) := f(0)+ linf(x)+R(x), (5)

where linf is the linear part (of the Taylor expansion) of f, and R denotes the re-
maining part (degree k ≥ 2).

Under the above hypotheses, we claim that the linear part of f is also an A-
valued function naturally related to the hypercomplex derivative of f at the origin.
On the other hand, linf is a general linear function or, more explicitly, a general A-
valued linear function of three real variables and nine real parameters. Therefore, its
coordinates [linf]i (i = 0,1,2) are given by

[
linf(x)

]
0 = a0x0 + a1x1 + a2x2,

[
linf(x)

]
1 = b0x0 + b1x1 + b2x2, (6)

[
linf(x)

]
2 = c0x0 + c1x1 + c2x2,

where, as described, the coefficients ai, bi, ci (i = 0,1,2) are real valued.

Remark 2 From now on we will restrict ourselves only to mappings from the interior
of a ball into the interior of a special domain of R

3.
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Remark 3 If the function is vanishing at the origin, then each monogenic approx-
imation polynomial begins with the linear expression linf. It is clear then that the
invariance of the origin guarantees that the interior of the ball will be mapped to the
interior of the image domain.

We will show in this section that monogenic functions are closely related to spe-
cial ellipsoids in the neighborhood of a given point. As is well known, ellipsoids play
an important role in many disciplines as simple effective object models. Among their
applications which enjoy a great variety, there are the following two closely related
classes: ellipsoidal models are used both directly to capture shape and indirectly as
bounding approximations. Nowadays, in medical areas, ellipsoids are also used to
model the shape, volume, or area of anatomical parts, such as the heart, spine, and
blood vessels.

Ellipsoids can be represented by its center and the lengths of the semiaxes to-
gether with the orientation. An ellipsoid E∗ with semiaxes parallel to the coordinate
directions is then generated by the quadratic form

E∗ :=
{
(x0, x1, x2) : x

2
0

α2
+ x2

1

β2
+ x2

2

γ 2
= 1

}
, (7)

where α, β , and γ are the lengths of the semiaxes.
On the other hand, if the axes are rotated to a general position, then the equation

for an ellipsoid E can be written as

ax2
0 + bx2

1 + cx2
2 + dx0x1 + ex0x2 + f x1x2 = 1, (8)

where a, b, c, d, e, and f are new constants. Those six constants indicate the shape
and the size of the ellipsoid E and the directions of its axes. After a rotation it is
clear that the directions of the axes remain orthogonal.

Remark 4 The absence of linear terms in (8) means that we keep the origin at the
center of the ellipsoid. We use this simplification because the displacement of its
center will not add anything essential.

Later on we will also use the representation of an ellipsoid by a symmetric matrix.
Denoting by E the referred matrix, an equivalent definition of a general ellipsoid E
is given by

E := {X :XT EX = 1, X = (x0 x1 x2)
T
}
.

In this sense, the geometric properties of E are reflected in algebraic proper-
ties of the corresponding symmetric matrix E. If λi and νi are the eigenvalues and
eigenvectors of E, then the principal axes of the ellipsoid are parallel to νi , and the
corresponding lengths of the semiaxes are given by |λi |−1. For convenience, in what
follows, we will restrict ourselves to ellipsoids centered at the origin. There is no
loss of generality in this assumption because we are interested only in the shape of
our ellipsoids.
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After the above preparations, we are now ready to characterize the mapping prop-
erties of the linear part of an arbitrary A-valued monogenic function. In the fol-
lowing we consider the image of a ball under the mapping linf, being a positively
oriented differentiable surface with coherent oriented boundary.

Theorem 3 Let linf be an A-valued linear function defined in a domain Ω of R
3

with nonvanishing Jacobian determinant. Then, the function linf is monogenic if and
only if it maps a ball onto an ellipsoid with the property that the reciprocal of the
length of one semiaxis is equal to the sum of the reciprocals of the lengths of the
other two semiaxes.

Proof Taking into account identification (4), we start to write the linear function
linf in the form

linf(x)= [linf(x)
]

0 −
[
linf(x)

]
1e1 −

[
linf(x)

]
2e2, (9)

where the coordinates [linf]i (i = 0,1,2) are given as in (6). We begin to prove the
necessary condition. By the monogenicity of linf, it holds

⎧
⎪⎨

⎪⎩

a0 =−(b1 + c2),

b0 = a1,

c0 = a2,

c1 = b2.

(10)

For X = (x0 x1 x2)
T , let A be the matrix which represents linf, i.e., such that

(1, −e1, −e2)AX = linf(x).

The matrix A is symmetric and is given by

A=
(−(b1 + c2) a1 a2

a1 b1 b2
a2 b2 c2

)

.

Now, as is well known from Linear Algebra, there exists a real orthogonal matrix
C such that

CT AC =D = diag(λ1, λ2, λ3),

where λ1, λ2, and λ3 are the eigenvalues of A (real-valued and different from zero).
Furthermore, Newton’s identities (Vieta’s formulae) (see [21]) relate the eigenvalues
of A in the following way:

λ1 + λ2 + λ3 = tr(A)= 0,

λ1λ2λ3 = det(A).

Hereby tr(A) and det(A) denote the trace and determinant of the matrix A, re-
spectively.
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In the following, let us assume without loss of generality that det(A) > 0. For
det(A) < 0, the proof is similar. Hence, we have to consider two different cases:

1. If λ1 > 0, then from the previous conditions we have that λ2 and λ3 are both
negative numbers.

2. If λ1 < 0, one can easily see that λ1 and λ2 must have different signs.

Then, from the relations

λ1 = (−λ2)+ (−λ3) > 0,

or

λ2 = (−λ1)+ (−λ3) > 0,

or

λ3 = (−λ1)+ (−λ2) > 0,

respectively, we get the conditions for the lengths of the semiaxes α, β , and γ . This
means that one can express the reciprocal of the length of one semiaxis as the sum
of the reciprocals of the lengths of the other two semiaxes. To end with the proof
of the necessary condition, notice that the maximum of the eigenvalues gives the
minimum value of the lengths of the semiaxes.

For the sufficient condition, having in mind Lemma 1, the main idea is to rotate
an arbitrary ellipsoid (with the described property of the semiaxes) such that the
directions of its semiaxes y(0), y(1), y(2) coincide with the directions of the stan-
dard coordinate system (y0, y1, y2). Such an ellipsoid is given by (7). The referred
property of the semiaxes is invariant under rotations. It is a direct consequence that
Dlinf = 0 and that linf must be monogenic. For more details, we refer the reader
to [8]. �

Remark 5 The composition of a linear function with a translation allows one to
extend the result to an ellipsoid centered at an arbitrary point x̃. This composition
preserves the monogenicity.

The result of Theorem 3 allows us to describe monogenic functions as a special
class of quasiconformal mappings. If we visualize quasiconformal mappings in R

3

by points, given by the lengths of the semiaxes of the associated ellipsoids, then
the monogenic functions (with nonvanishing Jacobian determinant) can be seen as
a two-dimensional manifold in R

3. This manifold is defined by the relation between
the semiaxes as in Theorem 3 and visualized in Fig. 1.

Next, one has to show that Theorem 3 can be generalized to arbitrary real-analytic
functions which have the described local mapping properties. A monogenic function
with nonvanishing linear part will map in the small balls to the special class of
ellipsoids. Nonvanishing linear part means that all directional first derivatives of
the function are different from zero. Equivalently this can be characterized by the
Jacobian determinant and the hypercomplex derivative:
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Fig. 1 Geometric
characterization of
monogenic functions

Theorem 4 (See [5]) Let f be an H-valued monogenic function defined in a domain
Ω of R

4. Then we have

detJf(0)= 0 ⇐⇒ ∃p : |p| = 1∧Df
(
pz
)∣∣

z=0 = 0.

This theorem can be considered as a higher-dimensional analogue of the con-
dition in complex analysis, saying that f ′(z0) = 0 for a holomorphic function f .
For more details and further relations to the hypercomplex derivative and quasi-
conformal mappings, see the paper [5].

Theorem 5 Let f be an A-valued real-analytic function defined in a domain Ω

of R
3 with nonvanishing Jacobian determinant. Then, the function f is monogenic

if and only if it maps locally a ball onto an ellipsoid with the property that the
reciprocal of the length of one semiaxis is equal to the sum of the reciprocals of the
lengths of the other two semiaxes.

Proof The necessary condition can be found in [8]. For the sufficient condition, we
suppose that the real-analytic function f maps the unit ball to an ellipsoid with the
referred property. It is clear that the function f can be expanded in a real Taylor
series in a neighborhood of an arbitrary point a ∈Ω :

f(x) = f(a)+
+∞∑

n=1

∑

|α|=n
(x0 − a0)

α0(x1 − a1)
α1(x2 − a2)

α2
∂α0+α1+α2

∂x
α0
0 ∂x

α1
1 ∂x

α2
2

f(a)

= f(a)+ linf(x − a)+R(x − a).

For simplicity, we take a = (0,0,0). We then have

f(x)= f(0)+ linf(x)+R(x).

Now, we deal with the property of monogenicity of the mapping f. We discuss
this property only locally for a neighborhood of the point x = 0. Without loss of gen-
erality (removing higher-order terms from the Taylor expansion described above),
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we can consider

f(x)∼= f(0)+ linf(x),

where f(0) is to be understood as a translation of the ellipsoid generated by the linear
part. Since, by assumption, linf maps balls to our special ellipsoids, we can apply
Theorem 3, and for an arbitrary rotation R, its associated symmetric matrix has the
form

RÃRT ,

where Ã is a diagonal matrix, and its elements satisfy the following relation:

∂

∂x0
[linf ]0 + ∂

∂x1
[linf ]1 + ∂

∂x2
[linf ]2 = 0. (11)

On the other hand, having in mind identification (4), we write

linf(x) = x0
∂

∂x0
[f ]0(0)+ x1

∂

∂x1
[f ]0(0)+ x2

∂

∂x2
[f ]0(0)

− e1

(
x0

∂

∂x0
[f ]1(0)+ x1

∂

∂x1
[f ]1(0)+ x2

∂

∂x2
[f ]1(0)

)

− e2

(
x0

∂

∂x0
[f ]2(0)+ x1

∂

∂x1
[f ]2(0)+ x2

∂

∂x2
[f ]2(0)

)
.

Then, it comes directly from the structure of the matrix associated to linf together
with the relation (11) that the conditions of f at the origin satisfy the following
system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂
∂x0
[f ]0(0)+ ∂

∂x1
[f ]1(0)+ ∂

∂x2
[f ]2(0)= 0,

∂
∂x1
[f ]0(0)+ ∂

∂x0
[f ]1(0)= 0,

∂
∂x2
[f ]0(0)+ ∂

∂x0
[f ]2(0)= 0,

∂
∂x1
[f ]2(0)+ ∂

∂x2
[f ]1(0)= 0,

which means, in a compact form, that Df(0)= 0.
Extending this argument to an arbitrary point a ∈Ω by translation of our Taylor

series, we obtain that the function f satisfies at each point of the domain the Cauchy–
Riemann equation (i.e., Df(a)= 0). Hence, f is monogenic, and this completes our
proof. �

According to the fact that the function f has rank 3, it is natural to ask for the
properties of the inverse mapping. We first again restrict ourselves to linear functions
and work with ellipsoids having the property that the reciprocal of the length of
one semiaxis is equal to the sum of the reciprocals of the lengths of the other two
semiaxes.
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By the next corollary, we state that a linear map between special regions in R
3

has an inverse function that is monogenic.

Corollary 1 Let linf be an A-valued linear function defined in a domain Ω of
R

3 with nonvanishing Jacobian determinant. Then, linf maps an ellipsoid (with the
properties described above) onto a ball if and only if its inverse function linf−1 is
monogenic.

After this direct consequence of Theorem 3 we show now that the previous corol-
lary can be generalized to arbitrary real-analytic functions which have the described
local mapping properties. A function with nonvanishing linear part that maps (in
the small) the special class of ellipsoids onto balls has an inverse function that is
monogenic.

Corollary 2 Let f be an A-valued real-analytic function defined in a domain Ω of
R

3 with nonvanishing Jacobian determinant. Then, f maps locally an ellipsoid (with
the properties described above) onto a ball if and only if its inverse function f−1 is
monogenic.

The noncommutative nature of the quaternionic algebra raises new obstacles in
the study of inverses of M-conformal mappings. In general, the inverse of a mono-
genic function is not monogenic. In the following we will study at least some prop-
erties of the linear part of the inverse of an A-valued monogenic function.

Theorem 6 Let f be an A-valued real-analytic function defined in a domain Ω

of R
3 with nonvanishing Jacobian determinant and such that it maps locally an

ellipsoid (with the properties described above) onto a ball. Then, its linear part
satisfies the following properties:

1. curl(linf)= 0;

2. |div(linf(x))| =
{−α+ β + γ, α minimum,
α − β + γ, β minimum,
α + β − γ, γ minimum;

3. |div(linf(x))| ∈
{ [α,β + γ ], α minimum,
[β,α + γ ], β minimum,
[γ,α + β], γ minimum;

4. D linf= 0 if
a. γ = 1

2 (3±
√

5)β or β = 1
2 (3±

√
5)γ , α minimum;

b. γ = 1
2 (
√

5± 1)α, β minimum;

c. β = 1
2 (
√

5± 1)α, γ minimum.

Proof We have seen in Corollary 1 that the inverse of linf, which maps a ball onto
the special ellipsoid, is monogenic. Also, it is easily seen that the matrix associated
to linf−1, here denoted by A, is symmetric. From linear algebra it is well known



340 K. Gürlebeck and J. Morais

that the matrix that represents the original function linf, A−1, is also symmetric.
This means clearly that curl(linf)= 0.

Denoting by μ1,μ2,μ3 the eigenvalues of A−1, it is clear that

div
(
linf(x)

)= tr
(
A−1)= μ1 +μ2 +μ3 = 1

λ1
+ 1

λ2
+ 1

λ3
,

where λ1, λ2, λ3 stand for the eigenvalues of A.
Now, assume without loss of generality that div(linf(x)) is positive and the pa-

rameter α assumes the minimum value of the semiaxes, i.e.,

1

α
= 1

β
+ 1

γ
.

Then, Conditions 2 and 3 are immediate since

1

λ1
+ 1

λ2
+ 1

λ3
=−α+ β + γ = β2 + γ 2 + βγ

β + γ
. (12)

For Property 4, we assume again without loss of generality that α is the minimum
value. Then, from the previous equality it follows

D linf= λ2
2 + λ2

3 + 3λ2λ3

(λ2 + λ3)λ2λ3
. �

Remark 6 Taking into account the expression on the right-hand side of (12), it is
clear that div(linf(x)) cannot be zero, and consequently linf cannot be monogenic.

Remark 7 In Property 4 it is shown that for some special choices of the parameters
α, β , and γ , the linear part of the inverse of an A-valued monogenic function is
antimonogenic.

5 Observations and Perspectives

With the obtained results, we are able to characterize monogenic mappings com-
pletely by their local geometric properties. Having in mind the desired analogy to
conformal mappings in the plane, one can ask for more special properties. In the
here presented approach, we relate the shapes of 3D-objects in the domain of def-
inition and in the image of a mapping. In the paper [17] a certain ratio between
surfaces and volumes was the background for the definition of M-conformal map-
pings. Nothing has been said about the transformation of angles. We want to study
by examples here only the transformation of right angles under monogenic transfor-
mations. The idea behind is to map orthogonal grids from the sphere to the surface
of more general domains. Looking for the moment again only at local properties, we
study the problem for linear monogenic mappings. We have seen before that each
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Fig. 2 Images of curves on
the unit ball under the linear
monogenic transformation
f(x)= 2x0 + x1e1 + x2e2

Fig. 3 Images of curves on
the unit ball under the linear
monogenic transformation
f(x)= 4x0 + 5x1e1 − x2e2

monogenic linear function can be transformed by a rotation such that the represent-
ing matrix has diagonal form. All angles are invariant under this rotation. Studying
now the question under which conditions the images of meridians and latitude cir-
cles intersect orthogonally, we find the additional condition that b2

1 − c2
2 = 0. The

first solution b1 = c2 defines a special nondegenerate linear and monogenic func-
tion. For b1 = 1 and c2 = 1, Fig. 2 visualizes the images of a meridian and a circle
with latitude π/4. Indeed, we can see that the right angles are preserved.

To get an impression that this preservation is not automatically satisfied, we con-
sider a second example. Here we see that the angles are changing. The exact angle
in Fig. 3 is about 122◦.

Looking now at the second solution of the extra equation, we obtain b1 = −c2.
This implies immediately that a0 = 0 and our mapping degenerates because it
does not depend on x0. Such a mapping is a so-called hyperholomorphic constant
(see [7]). A hyperholomorphic constant is a monogenic function with identically
vanishing hypercomplex derivative. Moreover, taking into account that the set of
complex numbers is isomorphic to the (commutative) even subalgebra C�0,2, it is
easy to prove that such a hyperholomorphic constant is isomorphic to an antiholo-
morphic function in the (x1, x2)-plane (see [19], pp. 10–11). This means that such
a mapping will preserve all angles in the (x1, x2)-plane (not necessarily the orienta-
tion).

Analyzing the condition b1 = c2 again, we find that this is exactly the condition
for a linear monogenic function to be orthogonal to the subspace of hyperholo-
morphic constants in L2(B). Moreover, in [9] it was shown that each monogenic
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A-valued function f permits an orthogonal decomposition

f(x) := f(0)+ g(x)+ h(x), (13)

where h is a hyperholomorphic constant and g is the so-called principal part of f.
Collecting all these properties, we understand from the simple example that lo-

cally each monogenic function can be decomposed as an orthogonal sum of a prin-
cipal monogenic mapping, preserving right angles as described, and a hyperholo-
morphic constant, preserving all angles in a plane.

At the moment it is still an open problem how the described local mapping prop-
erties can be connected with the global mapping properties of M-conformal map-
pings. There is already one paper [2], where the authors study the global behavior
of a generalized Joukowski mapping in the three-dimensional space.
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nologia—FCT via the Ph.D./grant SFRH/BD/19174/2004.
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Fluid Flow Problems with Quaternionic
Analysis—An Alternative Conception

K. Gürlebeck and W. Sprößig

Abstract This article deals with some classes of fluid flow problems under given
initial-value and boundary-value conditions. Using a quaternionic operator calculus,
representations of solutions are constructed. For the case of a bounded velocity,
a numerically stable semi-discretization procedure for the solution of the problem
is presented.

1 Introduction

The study of hydrodynamic problems leads J. d’Alembert (1752) and L. Euler
(1777) to the notion of a holomorphic function in the plane, long before A. Cauchy
(1814) started with his comprehensive work. B. Riemann used in his papers the
connection between holomorphic functions and planar flows of fluids and heat. On
the other hand, complex analysis initiated new solution methods for boundary value
problems in several research areas of mathematical physics, in particular, in pla-
nar fluid- and aerodynamics (N.E. Joukowski 1911) and elasticity theory (G.W.
Kolossov 1909).

Although real quaternions were available since Sir W.R. Hamilton’s invention
in 1843, further 60 years should lapse until the first paper in quaternionic analysis
could appear. This paper by A.C. Dixon from the University of Belfast was enti-
tled On the Newtonian Potential. In the thirties of the last century, G.N. Moisil and
N. Teodorescu from the University of Cluj, on the one hand, and the group around
the Swiss mathematician R. Fueter, on the other hand, published a series of fun-
damental papers on quaternionic analysis. The first closed representation of real
Clifford analysis (= generalization of complex analysis in R

n), which can also be
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seen as a generalization of quaternionic analysis, was written by the Belgian group
around R. Delanghe in 1982 [2].

The solution of boundary-value problems of partial differential equations by
function theoretic methods needs a corresponding knowledge on the behavior of
Cauchy’s parameter integral near to the boundary. The Russian Y.V. Sokhotzki
(1873) and the Slovenian mathematician J. Plemelj (1908) found independently of
each other jump formulae for Cauchy’s integral. In 1912 D. Pompeiu proved the
formula

u(z)= 1

2πi

∫

∂G

u(ζ )

ζ − z
dζ − 1

π

∫

G

∂zf (ζ )
1

ζ − z
dξ dη, (1.1)

where G⊂R
3 is a bounded domain with piecewise smooth boundary ∂G, and ζ =

ξ + iη. This formula bears today the name formula of Borel–Pompeiu. G.C. Moisil
proved in 1930 a corresponding analogue in R3. The weakly singular integral oper-
ator in the second term of Borel–Pompeiu’s formula is called Teodorescu transform.
The Russian mathematician A.W. Bitzadse found in 1953 a quaternionic analogue
to Cauchy’s integral in the plane for compact Lyapunov surfaces and quaternionic
Hölder continuous functions. T.G. Gegelia proved in 1968 its Lp-boundedness. This
result was generalized in 1982 by R. Coifman, A. McIntosh, and Y. Meyer on Lips-
chitz surfaces in R

n.
Based on three operators: a Cauchy–Riemann-type operator, a Teodorescu trans-

form, and a generalized Cauchy-type integral operator in the books [7, 8], an opera-
tor calculus was developed, acting on quaternion-valued or Clifford algebra-valued
functions. A new alternative approach for the treatment of fluid flow problems in
the space could be established using Plemelj–Sokhotzki-type formulae and Borel–
Pompeiu’s formula by the help of the mentioned operators. Roughly speaking, a
calculus for the spatial fluid flow problems was developed which is analogous to
the known complex analytic approach in the plane, advantageously used for a long
time.

In this paper we will give a survey on the state of the art. For this reason we will
omit the most proofs and refer for that to special research papers. We describe the
basics of the applied operator calculus, construct first representation formulas for the
steady-state case, and generalize them to the time-dependent case. Finally, we dis-
cuss a semi-discretization method for the numerical solution of the initial-boundary-
value problems for the Navier–Stokes equations and certain coupled problems in-
volving the Navier–Stokes equations. Our discussion is based on the assumption that
a well-adapted numerical method for the remaining elliptic boundary-value prob-
lems is available. For a discussion of this problem, we refer to [6]. If the velocity is
bounded, then the presented semi-discretization is numerically stable.

2 Operator Calculus

In this section we introduce a general operator conception. By suitable examples we
intend to demonstrate the general ideas of this approach.
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2.1 Operator Triple

Let X,Y,Z be Banach spaces, and let T ,Tr, P be bounded linear operators such
that:

(i) T :X→ imT ⊂ Y is injective.
(ii) Tr : Y → Z is a generalized trace operator.

(iii) The operator P : im Tr→ Y satisfies P TrPu= Pu.

We assume:

(iv) im TrT ⊂ kerP .
(v) imT ∩ ker Tr= {0}.

It is easy to see that imT ∩ imP = {0}. The reader can find the proofs in [12].

Theorem 2.1 (Mean value formula [12]) Set imT ⊕ imP =: Y1 ⊂ Y. There is a
unique linear operator L with D(L)= Y1 and L :D(L)→X such that

u= P Tru+ T Lu. (2.1)

Corollary 2.2 [12] The following relations between the operators L, P , and T are
valid:

(i) The operator L is the left inverse to the operator T , i.e., LT = I .
(ii) Set R := T L. Then R is a projection onto Y1 with imR = imT .

(iii) kerL= imP Tr.

Definition 2.3 (L-Holomorphy) Elements u ∈ ker L∩ Y are called L-holomorphic.
L is called algebraic derivative. P Tr is called the initial projection, and T is denoted
as general Teodorescu transform.

Remark 2.4 From the point of view of a general operator theory T is also called
algebraic integral.

2.2 Plemelj-Type Projections

Set Pr := TrP : im Tr→ Z and Qr := I − Pr . Then the following properties are
valid:

(i) The operators Pr,Qr are idempotent, i.e., we have P 2
r = Pr and Q2

r =Qr and
furthermore QrPr = PrQr = 0.

(ii) An element ξ ∈ Z is the generalized trace of an element u from kerL if and
only if Prξ = ξ .

(iii) We have Qrξ = TrT Lu.
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The operators Pr,Qr are called general Plemelj projections.
The condition imT L ∩ ker Tr = {0} can be seen as a very general formulation

of a maximum principle. In the original papers this condition is called uniqueness
condition. We mention her only shortly that there is another approach to this kind of
operator calculus, based on the theory of right-invertible operators (see, e.g., [14, 16]
for the general theory and [20] for many applications).

2.3 Examples of L-Holomorphy

2.3.1 Fractional Calculus

We consider the absolutely continuous function

(
Iα
a+u

)
(t) := 1

Γ (α)

∫ t

a

1

(t − τ)1−α u(τ) dτ, (2.2)

which has almost everywhere a derivative in L1[a,1]. Take now for the operator Tr
the restriction of a function to the point t and define P by

P :=
n−1∑

k=0

(t − a)α−k−1

Γ (α − k)

dn−k−1

dtn−k−1
. (2.3)

Furthermore, we introduce

(Lu)(t) := 1

Γ (1− α)

d

dt

(
I 1−α
a+ u

)
(t), (T u)(t) := (Iα

a+u
)
(t), (2.4)

and with n= [α] + 1 we recognize

(P Tru)(t) :=
n−1∑

k=0

(t − a)α−k−1

Γ (α − k)

dn−k−1

dtn−k−1
In−α
a+ u(t). (2.5)

(Iα
a+u)(t) is called Riemann–Liouville fractional integral, and (Dα

a+u)(t) is denoted
by Riemann–Liouville fractional derivative.

2.4 Quaternionic Analysis

2.4.1 Real and Complex Quaternions

Let H be the algebra of real quaternions and a ∈H; then a =∑3
k=0 αkek . Further,

let e2
k = −e0 = −1, e1e2 = −e2e1 = e3, e2e3 = −e3e2 = e1, e3e1 = −e1e3 = e2.

The natural addition (defined as in R
4) and the above-defined multiplication turn H
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to a skew-field. A quaternionic conjugation, a norm, and a multiplicative inverse are
given by

e0 = e0, ek =−ek (k = 1,2,3), a = a0 −
3∑

k=1

αkek = a0 − a,

aa = a = |a|2
R4 =: |a|2H,

a−1 := 1

|a|2 a, ab= b a.

We denote by H(C) the set of quaternions with complex coefficients, i.e.,

a =
3∑

k=0

αkek (αk ∈C). (2.6)

For k = 0,1,2,3, we have the commutator relation iek = eki. Any complex quater-
nion a has the decomposition a = a1 + ia2 (aj ∈ H). Therefore, also the notation
CH is used. We have three possible conjugations:

1. aC := a1 − ia2,

2. aH := a1 + ia2,
3. aCH := a1 − ia2.

2.4.2 Da-Holomorphy

Let a := ia0 with a0 ∈R. Then

Da :=
3∑

k=1

ek∂k + a (2.7)

is called Dirac operator, where ek (k = 1,2,3) are the quaternionic units. Functions
u ∈ C1(G) are called Da -holomorphic iff Dau= 0.

2.4.3 Spaces of H (HC)-Valued Functions

We will say that u ∈X iff ui ∈X and u=∑3
i=0 uiei . Let G⊂R

3 be a bounded do-
main with sufficiently smooth boundary. Ck,λ(G) denotes the space of all k-times
continuously differentiable functions such that the kth derivatives are λ-Hölder-
continuous. A norm is given by

‖u‖k,λ = sup
|s|≤k,x∈G

∣∣Dsu(x)
∣∣+ sup
|s|=k,x∈G,x �=y

|Dsu(x)−Dsu(y)|
|x − y|λ . (2.8)
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Let k = 0,1, . . . and p ≥ 1; then the quaternionic (Clifford algebra-valued) Sobolev
space is defined by

Wk
p(G)= {u ∈ Lp(G) :Dsu ∈ Lp(G); |s| ≤ k

}
. (2.9)

A norm is given by ‖u‖p,k = (
∑
|s|≤k ‖Dsu‖pp)

1
p . Let

Iλ(u)=
∫

G×G
|u(x)− u(y)|p
|x − y|k+λp dx dy (2.10)

with k = [k] + λ;λ ∈ (0,1). Then we can define

Wk
p(G)= {u ∈ Lp(G) :Dsu ∈ Lp; |s| ≤ k; Iλ

(
Dsu

)
<∞}. (2.11)

A norm is given by

‖u‖p,k =
(
‖u‖pp,[k] +

∑

|s|=[k]
Iλ
(
Dsu

))
1
p

. (2.12)

Such spaces are called to be of quaternionic (Clifford algebra-valued) Sobolev–
Slobodetzkij type.

2.5 Bergman–Hodge Decomposition

Consider the real Clifford algebra C�0,n generated by e1, e2, . . . , en with basis

e0; e1, . . . , en; e1e2, . . . , en−1en; . . . ; e1 . . . en.

The operator D =∑n
i=1 ei∂i is called Dirac operator with zero mass. Functions of

the class

kerD(G)∩Cm,λ(G) (2.13)

are called D-holomorphic or simply holomorphic.

Theorem 2.5 [7] The sets kerD(G)∩Cm,λ(G) and kerD(G)∩Wk
p(G) are closed

subsets in Cm,λ(G), Wk
p(G), respectively, and are called Bergman spaces.

Proof Two facts are important: We need a mean value formula and Weierstrass’
theorem for sequences of holomorphic functions. �

A very important tool is a suitable decomposition of the quaternionic Hilbert
space. This can be obtained in the following way. We introduce in L2(G) the inner
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product

(u, v)2 =
∫

G

u(x)v(x) dx ∈H, (2.14)

which fulfils the relations

λ(u, v)2 = (λu, v)2, (u, v)2λ= (u, vλ)2 (λ ∈H). (2.15)

We then find the orthogonal decomposition

L2(G)= L2(G)∩ ker D⊕DW̊ 1
2 (G) (Bergman–Hodge decomposition).

(2.16)

The orthoprojection

P : L2(G)
onto→ kerD ∩L2(G) (2.17)

is called Bergman-type projection relative to the inner product (u, v)2. We denote by

Q := I − P : L2(G)
onto→ DW̊ 1

2 (G). (2.18)

It can be proved that

P := FΓ (trT FΓ )−1T .

Remark For sufficiently smooth H-holomorphic functions, the operator trT FΓ co-
incides with the single-layer potential VΓ u := 1

4π

∫
Γ

un
|y−x| dΓ .

Theorem 2.6 (Trace theorem) We have the following isomorphism:

trVΓ :Wk− 1
p

p (Γ )∩ imPΓ →W
k+1− 1

p
p (Γ )∩ imQΓ . (2.19)

This result can be found in [8]. Analogous results can be proved for the general-
ized Cauchy–Riemann operator ∂ = ∂0 +D.

2.6 Quaternionic Operator Calculus

Let X = Wk
p(G),Y = Wk+1

p (G),Z = W
k+1− 1

p
p (Γ ), k = 0,1,2, . . . ;1 < p <∞.

Further, let

L := D + iα (Dirac operator with mass), (2.20)

(T u)(x) := − 1

σ3

∫

G

eiα(x − y)u(y) dy (Teodorescu type transform), (2.21)
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(Pu)(x) := 1

σ3

∫

Γ

eiα(x − y)n(y)u(y) dΓy (CF-type operator), (2.22)

(Tru)(ξ) := n.-t.- lim
z→ξ∈Γ,z∈Gu(z). (2.23)

n.-t.-lim stands for the nontangential limit, and the abbreviation “CF” means
Cauchy–Fueter. The disturbed Cauchy–Fueter kernel is given by

eiα(x) := −
(

iα

2π

)(3/2)[|x|−1/2K3/2
(
α|x|)ω−K1/2

(
α|x|)], (2.24)

where ω ∈ S2, and Kμ(t) denotes Macdonald’s function.

2.7 Discrete Quaternionic Analysis

For an introduction of a discrete calculus, we have to define the following lattice
sets:

R
3
h :=

{
(ih, jh, kh) : i, j, k integer, h > 0

}
, Gh :=G∩R

3
h,

Γh :=
{
x ∈Gh : dist(x, coGh)≤

√
3h
}
.

Let V ±i,hx be the shift of x by ±h in the xi -direction. Then

Γh,�(r) :=
{
x ∈ Γh : ∃i : V ±i,hx /∈Gh

} (
left (right) side planes

)
,

Γh,�(r);i :=
{
x ∈ Γh : V ±i,hx /∈Gh

}
,

Γh,�(r);i,j := Γh,�(r);i ∩ Γh,�(r);j
(
left (right) edges

)
,

Γh,�(r);i,j,k := Γh,�(r);i,j ∩ Γh,�(r);k
(
left (right) corners

)
.

Let X =W 1
2,h(Gh), Y = L2,h(Gh), Z =W

1
2

2,h(Gh). Then

(Lu)(x) := (D±h u
)
(x)=

3∑

i=1

ei
[
u
(
V ±i,hx

)− u(x)
]1

h
, (2.25)

(T u)(x) := (T ±h u
)
(x)

=
( ∑

intGh∪Γh,�(r)

+
∑

left (right) corners

−
∑

left (right) edges

)

× e±h (x − y)u(y)h3, (2.26)

where e±h are the discrete fundamental solutions of D±h .



Fluid Flow Problems with Quaternionic Analysis—An Alternative Conception 353

We have

(P Tru)(x) := (F±h u
)
(x)=

3∑

i=1

(
−
∑

si

+
∑

sij

−
∑

sijk

)
e±h
(
x − V ∓i,hy

)
n(y)u(y)h2

+
3∑

i=1

∑

y∈Γh,�(r);m,j,k

m �=j �=k

h±(x − y)eiu(y)h
2,

where si = Γh,�;i ∪ Γh,r;i , sij := Γh,�;j − V +i,hΓh,�, sijk := Γh,�;j,k − V +i,hΓh,�;i,k.
In [7] the following mean value theorem is proved:

Theorem 2.7

u(x)= (F±h u
)
(x)+ T ±h D±h u(x). (2.27)

These formulae are also called (generalized or discrete) Borel–Pompeiu formulae.
To be constructive we need a representation for the fundamental solutions of

the discrete Dirac operators. Following [5] and [8], Eh(x) is the solution of the
difference equation

−ΔhEh(x)=−
3∑

i=1

D−i,hD
+
i,hEh(x)= δh(x)=

{
h−3, x = 0,

0, x ∈R
3
h \ {0}.

We get, with the Fourier transform F ,

Eh(x)= 1√
2π

3
RhF

(
1

d2

)
. (2.28)

The function d is defined by

d2 = 4

h2

(
sin2 hξ1

2
+ sin2 hξ2

2
+ sin2 hξ3

2

)
, (2.29)

and Rhu is the restriction of the continuous function u onto the lattice R
3
h. Due to

the factorization D±j,hD
∓
j,h =Δh, we get

e±h (x) :=D∓j,hEh(x). (2.30)

3 Fluid Flow Problems

3.1 A Brief History of Fluid Dynamics

In 1730 Daniel Bernoulli made the observation that the pressure p of a fluid de-
creases if its speed increases. Nowadays, this is called Bernoulli’s principle. Eleven
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years later, Leonard Euler, who was invited by Frederick the Great to Potsdam, was
charged by him with the construction of a water fountain. In 1755, after thorough
studies of the motion of the fluid, he formulated Newton’s law for the rate of change
of the momentum of a fluid element. This is a set of equations that exactly represents
the flow of a fluid as long as one can suppose that the fluid is inviscid:

∂tu+ (u · ∇)u=− 1

ρ
∇p (Euler’s equations). (3.1)

So he derived the equations of an ideal fluid (no viscous effects included). In 1822
Claude-Louis Navier derived an equation which also considers the inner friction of
a flowing fluid without understanding the character of a viscous fluid. His deriva-
tion was based on a molecular theory of attraction and repulsion between molecules.
J.D. Anderson wrote in his A History of Aerodynamics: The irony is that although
Navier had no conception of shear stress and did not set out to obtain equations that
would describe motion involving friction, he nevertheless arrived at the proper form
for such equations. Navier’s equations were several times rediscovered (Cauchy
1828, Denise Poisson 1828, and Barré de Saint-Venant 1843). Saint-Venant’s model
even includes the turbulence case. George Stokes published in 1845 a strong math-
ematical derivation and explained the equations in the sense that is currently un-
derstood. Therefore these equations are called nowadays Navier–Stokes equations
(NSE) given by

∂tu−Δu+ ρ

η
(u · ∇)u+ 1

η
∇p = f in G (3.2)

for some bounded domain in R
3.

3.2 Stationary Linear Stokes Problem

Let G⊂R
3 be a bounded domain with sufficiently smooth boundary Γ . The linear

Stokes system reads as follows:

−Δu+ 1

η
∇p = ρ

η
f in G, (3.3)

div u = f0 in G, (3.4)

u = g on Γ. (3.5)

Here η is the viscosity, and ρ the density of the fluid. We have to look for the velocity
u and the hydrostatical pressure p. Between f0 and g, we have to fulfil the relation

∫

G

f0 dx =
∫

Γ

ngdΓ. (3.6)
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For g = 0, the measure of the compressibility f0 satisfies the identity
∫

G

f0 dx = 0. (3.7)

For all such real functions f0, the unique solution (p is unique up to a real constant)
can be represented as follows:

Theorem 3.1 [7] Let f := f0 + f ∈Wk
p(G,H) (k ≥ 0,1 <p <∞). Then we have

u = ρ

η
TG VecTGf− ρ

η
TG VecFΓ (trΓ TG VecFΓ )−1 trΓ TG VecTGf− TGf0,

(3.8)

p = ρ ScTGf− ρ ScFΓ (trΓ TG VecFΓ )−1 trΓ TG VecTGf+ ηf0. (3.9)

In that way we strongly separate velocity and pressure!

3.3 Nonlinear Stokes Problem

If the compressibility depends on the velocity and the nonlinear outer forces, then
the equations read as follows:

−Δu+ 1

η
∇p = Λf (u) in G, (3.10)

div
(
η−1u

) = 0 in G, (3.11)

u = 0 on Γ. (3.12)

The viscosity η (η > 0) depends on the position. Suppose that f ∈ L2(G,H), p ∈
W 1

2 (G), η ∈ C∞(G).

Theorem 3.2 (Representation formula [7]) Every solution of the nonlinear Stokes
problem permits the representation

u = ΛRBf −RBDp,

0 = ScΛQTGBf − Sc QTGBDp.

Here the operator B stands for the multiplication by η−1, and R := TGQTG.

Theorem 3.3 (Iteration procedure [7]) Suppose that f (u), B , and Λ satisfy the
following estimates:

(i) ‖f (u)− f (v)‖2 ≤ L‖u− v‖2,1 for ‖u‖2,1,‖v‖2,1 ≤ 1,
(ii) ‖B‖2 ≤K for positive constants K,L,

(iii) Λ< {‖T ‖imQ∩L2,L2‖T ‖L2,L2KL}−1.
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Then the iteration procedure

un = ΛRBf (un−1)−RBDpn,

ΛScDBRf (un−1) = ScDBRDpn,

with ‖u0‖2,1 ≤ 1 (u0 ∈ W̊ 1
2 (G,H)), converges to the unique solution {u,p} ∈

W̊ 1
2 (G,H) ∩ ker(divB)× L2(G) of (3.10)–(3.12), where p is unique up to a real

constant.

3.4 Stationary Navier–Stokes Problem

As we have already seen, the stationary NSE are given by

−Δu+ ρ

η
(u · ∇)u+ 1

η
∇p = f in G, (3.13)

div u = 0 in G, (3.14)

u = 0 on Γ. (3.15)

In dependence on the special application, terms can be dropped out:

• νΔu≈ 0 . . . supersonic motion around an airfoil,
• ∂tu≈ 0 . . . geostrophic flow (steady-state case),
• (u · ∇)u≈ 0 . . . creeping flow in ground.

Theorem 3.4 [8] The main result is now the following:

1. Let f ∈ L2(G,H) and p ∈W 1
2 (G). Every solution permits the operator integral

representation

u = −ρ

η
RM(u)− 1

η
TGQp, (3.16)

0 = ρ

η
Sc QTGM(u)− 1

η
Sc Qp. (3.17)

2. The above system has a unique solution {u,p} ∈ W̊ 1
2 (G,H) ∩ ker(divB) ×

L2(G), where p is unique up to a real constant, if
(i) ‖f ‖p ≤ (18K2C1)

−1 with K := ρ
η
‖TG‖[L2∩im Q,W 1

2 ]‖T ‖[Lp,L2],
(ii) u0 ∈ W̊ 1

2 (G,H)∩ ker(divB) with ‖u0‖2,1 ≤min(V , 1
4KC1

+W) hold.

Corollary 3.5 Setting V := (2KC1)
−1, W := [(4KC1)

−2 − ρ‖f ‖p
ηC1
] 12 , and C1 =

9
1
p C, where C is the embedding constant from W 1

2 in L2, the iteration procedure
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(starting with u0)

un = ρ

η
RM(un−1)− 1

η
RDpn,

ρ

η
Sc QTGM(un−1) = −1

η
Sc Qpn, u0 ∈ W̊ 1

2 (G,H)∩ ker div

converges in W 1
2 (G,H)×L2(G).

3.5 Navier–Stokes Equations with Heat Conduction

We will now consider the flow of a viscous fluid under the influence of temperature.
The corresponding equations read as follows:

−Δu+ ρ

η
(u · ∇)u+ 1

η
∇p + γ

η
gw = f in G, (3.18)

−∇w+ m

κ
(u · ∇)w = 1

κ
h in G, (3.19)

div u = 0 in G, (3.20)

u,w = 0 on Γ. (3.21)

Here, γ is the Grashof number, κ the temperature conductivity, and m stands for
the Prandtl number. Applying the quaternionic operator calculus, we can rewrite the
previous system equivalently:

u = −R
[
M(u)− γ

η
e3w

]
− 1

η
TGQp, (3.22)

0 = ScDR

[
M(u)− γ

η
e3w

]
− 1

η
Qp, (3.23)

w = −m

κ
R Sc(uD)w+Rg, (3.24)

where M(u) := ρ
η
(u · grad)u+ f (u)− F .

Remark The Grashof number approximates the ratio of the buoyancy forces to the
viscous forces in a fluid,

γ =Gr= gαΔwL3

μ2
= buoyancy forces

viscous forces
, (3.25)

where g is the gravitational acceleration constant, α is the (thermal) volume expan-
sion coefficient of the fluid, Δw is the temperature difference between the fluid and
the wall, L is the characteristic length, and μ is the kinematic viscosity of the fluid.
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Remark The Prandtl number is a dimensionless parameter of a convecting system
that gives the regime of convection. It has the formula

m= Pr= μ

a
= viscous diffusion rate

thermal diffusion rate
,

where μ is again the kinematic viscosity, and a is the thermal diffusivity of the fluid.

Remark The Reynolds number is named after Osborne Reynolds, who proposed it
in 1883. It is the ratio of inertial forces to viscous forces in a fluid. The expression
for this dimensionless measure is

Re= uL

μ
= inertial forces

viscous forces
,

where L is the characteristic length, u is the average velocity of the flow, and μ is
the kinematic viscosity of the fluid. A fluid flow in a pipe is laminar for Reynolds
numbers less than 2000; for values greater than 4000, the flow is turbulent. The
Reynolds number is, roughly speaking, the product of Grashof number and Prandtl
number.

We consider the following iteration procedure:

un = −R
[
M(un−1)− γ

η
e3wn−1

]
− 1

η
TGQpn, (3.26)

0 = ScDR

[
M(un−1)− γ

η
e3wn−1

]
− 1

η
Qpn, (3.27)

wn = −m

κ
R Sc(unD)wn +Rg. (3.28)

The computation of wn will be done by the inner iteration

w
j
n = m

κ
R Sc(unD)w

j−1
n +Rg. (3.29)

The initial values of the iterations are u0 (u0 = 0 is possible) and w0
n (w0

n = 0 is
possible, w0

n =wn−1 is better).

Theorem 3.6 (Convergence result)

1. Let un ∈ W̊ 1
2 . Further, let m �= 4κ and ‖un‖< κ/mKC. The sequence {w{j}n }j∈N

converges in W 1
2 (G).

2. Let F ∈ L2(G,H), g ∈ L2(G),f :W 1
2 (G,H)→ L2(G,H) with ‖f (u)−f (v)‖2

≤ L‖u− v‖2,1, and f (0)= 0. Under the additional conditions

(i)
ρ

η
‖F‖2 + γ

η
K|d|−1‖g‖2 <

1

16K2C

(
d :=

(
4− m

κ

)
κ

)
, (3.30)
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(ii) ‖g‖2 <

(
1− 1√

2

)
ηd2
(

1

32K3Cm

)
, (3.31)

(iii) m < 4κ, (3.32)

the sequence {un,wn,pn}{n∈N} converges in W 1
2 ×W 1

2 × L2 to the unique so-
lution (u,w,p) ∈ W̊ 1

2 (G,H)× W̊ 1
2 (G,H)× L2(G) of the originally boundary-

value problem, where p is unique up to a real constant.

Remark We note that conditions (i) and (ii) can always be realized for fluids with
big enough viscosity number.

3.6 Continuous and Discrete Teodorescu Transforms

Let be Gh a lattice Gh with meshwidth h. We study the operators T ±h . All basic rela-
tions (Borel–Pompeiu formula, Hilbert-space decomposition) have a corresponding
discrete version, too. This enables us to find strong relations between both the con-
tinuous and discrete transforms under weak conditions.

The discrete Teodorescu transform is suitably chosen. One can estimate the “dis-
tance” between the continuous operator and the discrete operator.

Let f be a Riemann-integrable function that belongs to L∞(G). Then
∥
∥T +h f − Tf

∥
∥
Ch(G)

→ 0 as h→ 0.

If f ∈ C0,β(G), 0 < β ≤ 1, then we have

∥∥T +h f − Tf
∥∥
Ch(G)

≤ C
(
G,‖f ‖q,h,‖f ‖q

)
h
−2+ 3

p |lnh| (3.33)

+Kp,G|h|β‖f ‖Ch(G) (3.34)

for p < 3/2,1/p+ 1/q = 1, where ‖ · ‖q denotes the norm in Lq , and ‖ · ‖q,h is the
corresponding discrete norm. Restricting the range for p, we get for f ∈R∩L∞(G)

and p ∈ ( 6
5 ,

3
2 ),

∥∥T +h f − Tf
∥∥
p,G
→ 0 as h→ 0.

Under the assumptions that f ∈ C0,β(G), p ∈ ( 6
5 ,

3
2 ), 0 < β ≤ 1, we obtain

∥∥T +h f − Tf
∥∥
p,G
≤ C‖f ‖∞,Gh

−2+ 3
p

+C1
(‖f ‖q ′,h,G,‖f ‖q ′,G

)
h
−2+ 3

p′ | lnh| (3.35)

+Kp′,G‖f ‖C0,β (G)hβ. (3.36)

Here R describes the class of Riemann-integrable functions.
The proof of these properties requires some work, but there are just technical

difficulties. The proof can be found in [7].
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3.7 Discrete Version of Navier–Stokes Equations

A corresponding discrete version of Navier–Stokes problem on a lattice is given by

−Δhu+ 1

η
∇+h p+ ρ

η

(
u,∇−h

)
u = ρ

η
f in intGh, (3.37)

div−h u = 0 in intGh, (3.38)

u = 0 on ∂Gh, (3.39)

where ∇±h := (D±1,h,D
±
2,h,D

±
3,h), div−h v :=∑3

i=1 D
−
i,h, and

D±k,hui1...in := ±
1

h
(ui1...ik±1,...in − ui1...ik ...in ). (3.40)

It can be proved that

∥∥∥∥
ρ

η
M
∗,−
h (u)

∥∥∥∥

p

p,h

:=
∥∥∥∥
ρ

η

(
u,∇−h

)
u

∥∥∥∥

p

p,h

≤ 9Cp‖u‖2p2,1,h

(
q < 6, p = 2q/(2+ q)

)
. (3.41)

Applying the described discrete operator calculus as described in [7], we get the
equivalent system

u=−T −h Q+h T +h M−h (u)− 1

η
T −h Q+h p in Gh, (3.42)

Sc Q+h T +h M−h (u)= 1

η
Sc Q+h p in Gh. (3.43)

The operator Q+h denotes the orthoprojection onto the (discrete) Hilbert subspace
D−h (W̊ 1

2,h(Gh)), and M−h (u) :=M
∗,−
h (u)− ρ

η
f .

It can be proved that this discrete problem has a unique solution uh in Gh under
the same conditions as in the continuous case. If f ∈ C0,β(G) with 0 < β < 1, then
we have the estimate

‖u− uh‖2,1;h ≤ C
(
hβ + h|lnh|) for h < h0. (3.44)

3.8 Stationary Magneto-Hydromechanics

Magnetic fluids are very important from the technical point of view. These equations
read as follows:
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−Δu+ ρ

η
(u · ∇)u+ 1

η
∇p− 1

μη
B× rot B = ρ

η
f in G, (3.45)

ΔB+μσ rot(B× u) = g in G, (3.46)

div B = 0 in G, (3.47)

div u = 0 in G, (3.48)

B= u = 0 on Γ, (3.49)

where μ is the permeability, and σ is a measure of the electric charge. B describes
the field induction.

In quaternionic notation, we obtain

DDu+ 1

η
D p+M(u) = 1

μη
B× (D ×B) in G, (3.50)

DDB+μσ [u,B] = g in G, (3.51)

ScDu = 0 in G, (3.52)

ScDB = 0 in G, (3.53)

B= u = 0 on Γ. (3.54)

We add the following trivial problems:

Δu0 = 0, ΔB0 = 0 in G, (3.55)

u0 = 0, B0 = 0 on Γ. (3.56)

This allows us to formulate the equivalent problem for quaternion-valued functions
u= u0 + u and B = B0 + B instead of vector-valued functions u and B. The latter
class is not adapted to the structure of the algebra H. We introduce the abbreviations

M(u) := ρ

η

[
M∗(u)− f

]
,M∗(u) := (u ·D)u, (3.57)

[u,B] := D × (B× u)= (u ·D)B− (B ·D)u. (3.58)

Notice that [u,B] is just a Lie bracket, f = f, and g = g.
We get the following operator integral representation:

u = −ρ

η
TGQTG M(u)− 1

η
TGQp+ 1

μη
TGQTG

(
B× (D ×B)

)
, (3.59)

B = TGQTGg −μσTGQTG[u,B], (3.60)

0 = ScρQTGM(u)+ Sc Qp− 1

μ
ScQTG

(
B× (D ×B)

)
, (3.61)

0 = Sc QTGg −μσ Sc QTG[u,B]. (3.62)
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We know that any element Qu of im Q has the representation Qu = Dv with a
suitable v ∈ W̊ 1

2 (G,H). Then it follows that

trΓ TGQu= trΓ TGDv = trΓ v − trΓ FΓ trv = 0. (3.63)

Let g = 0. The solution {u,p,0} solves the corresponding Navier–Stokes equations.
We look for solutions with B �≡ 0 and consider the following iteration method. For
n= 0,1,2, . . . , we calculate

un = −TGQTG

[
ρ

η
M(un−1)− 1

μη
Bn−1 × (D ×Bn−1)

]

− 1

η
TGQpn, (3.64)

0 = Sc[ρQTGM(un−1)+Qpn − 1

μ
QTG

[
Bn−1 × (D ×Bn−1)

]
, (3.65)

B
(j)
n = −μσTGQTG

[
un,B

(j−1)
n

]+ TGQTGg (j = 1,2, . . .), (3.66)

0 = −μσ Sc QTG

[
un,B

(j−1)
n

]+ Sc QTGg. (3.67)

Here Bn will be computed by using again an “inner” iteration.
We underline that at each step of the iteration one has to solve only a linear Stokes

problem.

3.8.1 Estimations

Let u,B ∈ W̊ 1
2 (G,H) and 1 <p < 3/2. Then we obtain

∥∥[u,B]∥∥p
p
≤ 2

3∑

j,i=1

Cp‖ui‖p2,1, (3.68)

‖Bj‖p2,1 ≤ 18Cp‖u‖p2,1‖B‖p2,1. (3.69)

The embedding constant C can be calculated by the estimate

‖u‖q = ‖TGDu‖q ≤ ‖TG‖[L2,Lq ]‖Du‖2 ≤ ‖TG‖[L2,Lq ]‖u‖2,1, (3.70)

which leads to ‖TG‖[L2,Lq ] = C for q < 6,p = 2q/(2+ q). Set now C1 = 91/pC.
We get

∥∥[u,B]∥∥
p
≤ 2C1‖u‖1,2‖B‖2,1. (3.71)

Next, we consider the inner iteration
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B
(j)
n = μσTGQTG

[(
B

(j−1)
n ·D)un −B

(j−1)
n (un ·D)

]+ TGQTGg, (3.72)

B(0)
n = 0. (3.73)

We abbreviate:

K := ‖TG‖[L2∩im Q,W 1
2 ]‖TG‖[Lp,L2]. (3.74)

It follows that

∥∥B(j)
n

∥∥
2,1 ≤ μσK2C1‖un‖2,1‖B(j−1)

n ‖2,1 +K‖g‖p. (3.75)

Because of

‖un‖2,1 <
1

4C1μσK
, (3.76)

we have

∥∥B(j)
n

∥∥
2,1 ≤ 2K‖g‖p. (3.77)

3.8.2 Inner Iteration

Hence, (B(j)
n ) is bounded in W 1

2 (G,H), and there exists a weakly convergent sub-
sequence. On the other hand, we have

∥∥B(j)
n −B

(j−1)
n

∥∥
2,1 = 2C1μσ

∥∥TGQTG

[
un,B

(j−1)
n −B

(j−2)
n

]∥∥
2,1 (3.78)

≤ 2C1Kμσ‖un‖2,1
∥∥B(j−1)

n −B
(j−2)
n

∥∥
2,1

<
1

2

∥∥B(j−1)
n −B

(j−2)
n

∥∥
2,1. (3.79)

From these relations we get the strong convergence of (B
(j)
n ) in W 1

2 (G,H) to the
limit function Bn which satisfies the estimate

‖Bn‖2,1 ≤ 2K‖g‖p. (3.80)

3.8.3 A Priori Estimates

It is easy to see that

‖Du‖2 ≥ 1

‖TG‖[im Q∩L2,W
1
2 ]
‖u‖2,1. (3.81)
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Furthermore, one can obtain

1

‖TG‖[im Q,W 1
2 ]
‖u‖2,1 + 1

η
‖Qp‖2 ≤ 21/2‖TG‖[Lp,L2]

[
ρ

η

∥∥M∗(u)
∥∥
p

(3.82)

+ ρ

η
‖f ‖p + 2

μη
‖B‖22,1C1

]
, (3.83)

and so

1

‖TG‖[im Q,W 1
2 ]
‖u‖2,1 ≤ 2‖TG‖[Lp,L2]

×
[
ρ

η
C1‖u‖22,1 +

ρ

η
‖f ‖p + 2

μη
‖B‖22,1C1

]
, (3.84)

‖u‖2,1 ≤ 2K
ρ

η
C1‖u‖22,1 + 2K

ρ

η
‖f ‖p + 4K

μη
C1‖B‖22,1.

(3.85)

We have the following quadratic inequality for ‖u‖2,1:

2K
ρ

η
C1‖u‖22,1 − ‖u‖2,1 + 2K

ρ

η
‖f ‖p + 4K

μη
C1‖B‖22,1 ≥ 0, (3.86)

‖u‖22,1 −
η

2KρC1
‖u‖2,1 + 1

C1
‖f ‖p + 2

ρμC1
‖B‖22,1 = 0, (3.87)

so that

η

4KρC1
−
√

η2

16K2ρ2C2
1

− 1

C1
‖f ‖p − 2

ρμ
‖B‖22,1 (3.88)

≤ ‖u‖2,1 ≤ η

4KρC1
+
√

η2

16K2ρ2C2
1

− 1

C1
‖f ‖p − 2

ρμ
‖B‖22,1. (3.89)

There arises the necessary condition

1

C1
‖f ‖p + 2

ρμ
‖B‖22,1 <

η2

16K2ρ2C2
1

. (3.90)

On the other hand, we have to realize for any un the condition

‖un‖2,1 ≤ 1

4C1μσK
. (3.91)
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3.8.4 Convergence Results

Now we are able to estimate

‖un − un−1‖2,1 ≤
∥∥∥∥TGQTG

ρ

η

[
M(un−1)−M(un−2)

]
∥∥∥∥

2,1
(3.92)

+
∥∥∥∥TGQTG

1

μη

[
Bn−1 × (D ×Bn−1)−Bn−2

× (D ×Bn−2)
]
∥∥∥∥

2,1
(3.93)

+ 1

η

∥∥TGQ(pn − pn−1)
∥∥

2,1. (3.94)

From the a priori estimate we get

√
2‖TG‖[imQ,W 1

2 ]
∥∥TGN(u,B)

∥∥
2 ≥ ‖u‖2,1 +

1

η
‖TG‖[imQ,W 1

2 ]‖Qp‖ (3.95)

with

N(u,B)= 1

η

[
ρf + 1

μ
M∗(B)− ρM∗(u)− 1

2μ
D|B|2

]
. (3.96)

For vector fields B1 and B2, we have

B1 × (D ×B2)= (B1 ·D)B2 −D(B1 ·B2),

‖DB1 ·B2‖p ≤ C1‖B1‖1,2‖B2‖1,2.
(3.97)

Further, we obtain

‖un − un−1‖2,1 ≤ 3‖TGQTG‖
∥∥∥∥
ρ

η

[
M∗(un−1)−M∗(un−2)

]
∥∥∥∥

2,1
(3.98)

+ 2

∥∥
∥∥TGQTG

1

μη

[
Bn−1 ×

(
D × (Bn−2 +Bn−1)

)]
∥∥
∥∥

2,1
(3.99)

+ ∥∥(Bn−1 −Bn−2)× (D ×Bn−2)
∥∥

2,1 (3.100)

≤ 3KC1

η

{
ρ‖un−1 − un−2‖2,1

[‖un−1‖2,1 + ‖un−2‖2,1
]

(3.101)

+ 4

μ
‖Bn−1 −Bn−2‖2,1

[‖Bn−1‖2,1 + ‖Bn−2‖2,1
]}

.

(3.102)

On the other hand,

‖Bn −Bn−1‖2,1 ≤ 8μσKC1‖g‖p‖un − un−1‖2,1. (3.103)



366 K. Gürlebeck and W. Sprößig

Now we have

η

ρ
<

1

μσ
(3.104)

and

‖un‖ ≤ 1

12μσKC1
, (3.105)

‖un − un−1‖2,1 ≤
(

384K3C2
1‖g‖2p + 1

2

)
‖un−1 − un−2‖2,1. (3.106)

A sufficient condition should be

‖f ‖p + 8K2

ρμ
‖g‖2p <

63

64

η2

K2ρ2C1
. (3.107)

By straightforward calculation one will find that the sequence {‖un‖2,1} is decreas-
ing and separated from zero. We can now formulate the following theorem:

Theorem 3.7 Let f,g ∈ Lp(G,H). We assume that

(i) μση
ρ

< 1,

(ii) ‖f ‖p + 8K2

ρμ
‖g‖2p < 63

64
η2

K2ρ2C1
,

(iii) ‖g‖p <
η

768K3C2
1σ

with

K := ‖TG‖[L2∩im Q,W 1
2 ]‖TG‖[Lp,L2],

C1 := 9
1
p ‖T ‖[L2,Lq ]

(
q < 6, p = 2q

2+ q

)
.

Then the operator integral equation has the unique solution {u,B,p} ∈ W̊ 1
2 (G,H)×

W̊ 1
2 (G,H)× L2(G,R), where u,B are uniquely defined, and p is unique up to an

additive real constant. Our iteration method converges in W̊ 1
2 (G,H)× W̊ 1

2 (G,H)×
L2(G,R) to this solution if B0, u0 ∈ W̊ 1

2 (G,H)∩ ker div and are sufficiently small.

4 Time-Dependent Fluid Flow Problems

4.1 Characterization of Fluids

The so-called deviatoric stress tensor (τk�) determines the character of the fluid
flow. One has to distinguish the following fluids:
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Ideal fluids: Let τk� = 0, i.e., the stress only depends on the hydrostatical pres-
sure. Then we have

∂tu+ (u · ∇)u+ 1

ρ
∇p = 0 (Euler equations), (4.1)

∇ · u = 0 (incompressibility). (4.2)

Newtonian fluids: Let τk� = 2μγ̇k� with γ̇k� := 1
2 (∂ku� + ∂�uk); μ denotes the

dynamic viscosity, and γ̇k� is the so-called shear rate tensor. The incompressibility
condition reads now

div u=
3∑

�=1

γ̇k� = 0. (4.3)

Fluid flow is now governed by the Navier–Stokes equations

∂tu+ (u · ∇)u+ 1

ρ
∇p− νΔu= f

ρ
. (4.4)

The expression ν∇u with kinematic viscosity ν := μ/ρ is called viscous term,
which is responsible for the dissipation effect (loss of energy). The expression
(u · ∇)u is called convection term.

Newtonian compressible fluids: The deviatoric stress tensor is now more compli-
cated and given by

τk� = 2μγ̇k� + λγ̇k�δk�. (4.5)

λ,μ are called Lamé coefficients, which are not independent. Saint Venant found in
1843 that λ=− 2

3μ. The Navier–Stokes equations transmute to

ρ∂tu−μΔu− (μ+ λ)∇ div u+∇ρ = ρf − ρ(u · ∇)u, (4.6)

∇ · (ρu) = 0 (Stokes–Poisson equations), (4.7)

Φ(p,ρ) = 0. (4.8)

Now we assume the following nonlinear relation:

τk� = τk�(u)=:Mu. (4.9)

Further we assume that ∇ · u= 0. Then we have the so-called generalized Navier–
Stokes equations [10, 15]

ρ∂tu− div M(u)∇u+∇p+ ρ(u · ∇)u= ρf. (4.10)

Let Mu := ν(α + |γ̇k�(u)|p−2)γ̇k� (ν,α are constants) The case p = 2, να =: μ
describes a Newtonian fluid. For arbitrary p, these fluids are called non-Newtonian
fluids with p-structure.
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Fluids can be for a fixed time structure viscous (= convex curve in the shear-rate–
shear-stress system (sss)), Newtonian (= straight line in (sss)), or dilatant (concave
curve in (sss)). Structure viscous means shear-thinning. For instance, solid color
becomes liquid while stiring. Dilatant fluids mean shear-thickening. An example
would be walking in wet sands at the beach. The depth of sinking depends on the
velocity inverse proportionally.

In the case of a constant shear-rate we have a convex curve (increasing viscosity
in the time). Such fluids are called rheopex. Usually, for a fluid which has a decreas-
ing viscosity in the time, one uses the notation thixotrop. Thixotrop fluids correspond
with structure viscous fluids.

5 Rothe’s Method of Semi-Discretization

5.1 Time-Dependent Stokes Problem

The time-dependent Stokes’ problem reads as follows:

1

μ
∂tu−Δu+ 1

μ
∇p = 1

μ
f in (0, T )×G, (5.1)

div u = 0 in (0, T )×G, (5.2)

u(0, ·) = u0 in {0} ×G, (5.3)

u = g on (0, T )× Γ. (5.4)

Let now be

T = nτ, T > 0, τ meshwidth, and uk := u(kτ, ·), pk := p(kτ, ·). (5.5)

We approximate the partial derivative with respect to the time t by forward differ-
ences:

∂tu∼ uk+1 − uk

τ
. (5.6)

5.1.1 Semi-Discretization

We obtain from (5.1) the following discretized equation:

ρ

μτ
uk+1 +DDuk+1 + 1

μ
Dpk+1 = f

μ
+ ρ

μτ
uk (k = 0,1, . . . , n− 1). (5.7)

A suitable factorization leads to

(D + a)(D − a)uk+1 + 1/μD pk+1 = f/μ+ a2
0uk (k = 0,1, . . . , n− 1).

(5.8)
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This equation permits the operator integral representation

uk+1 =− 1

μ
T−aQaTaD pk+1 + T−aQaTa

(
f

μ
+ a2

0uk

)
+Hk. (5.9)

Hk is explicitly described. We have

Hk := T−aFΓ,a(trΓ Va)
−1QΓ,−ag + FΓ,−ag, (5.10)

uk+1 = − 1

μ
T−aQap̃k+1 + T−aQaT

(
f

μ
+ a2

0uk

)
+Hk, (5.11)

p̃k+1 = pk+1 − a Tapk+1. (5.12)

Moreover,

(Dap̃k+1 =Dpk+1!), (5.13)

which yields the well-known form.

5.2 Oseen’s Equation

f
μ
= 1/ν∂tu−Δu+ 1/ν(v · ∇u)+ 1/μ∇p
in (0, T ] ×G (Oseen equation), (5.14)

div u= 0 (Continuity condition), (5.15)

u= g (Boundary condition), (5.16)

u(0, ·)= u0 (Initial value condition), (5.17)

where v is a dominant flow vector (suitably chosen), ν is the kinematic viscosity, μ
is the dynamic viscosity, and n is the unit vector of the outer normal.

5.3 A Special Discretization Method

Let T > 0, T = nτ with meshwidth τ . We abbreviate uk := u(kτ, ·), pk :=
p(kτ, ·), fk = 1/τ

∫ (k+1)τ
kτ

f (t, x) dt . Using the forward differences

(∂tu)(kτ, ·)∼ uk+1 − uk

τ
(k = 0,1, . . . , n− 1), (5.18)
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we get

uk+1 − uk =−τ(v ·D)uk − τDpk+1 + τνΔuk+1 + τfk

ρ
(∗). (5.19)

Using the decomposition idea of Kalthoff/Schwarzer/Herrmann (Stuttgart), we in-
troduce the function u∗ by

(
uk+1 − u∗

)− (uk − u∗
) = −τ(v ·D)uk − τDpk+1

+ τ

ρ
fk +Δuk+1(ντ). (5.20)

It follows that

uk+1 − u∗ = −τDpk+1 + ντΔuk+1;
uk − u∗ = −τ(v ·D)uk − τ

ρ
fk.

(5.21)

We have now to consider the problem

divuk+1 = divu∗ − τΔpk+1 + ντΔdivuk+1 = 0 (5.22)

with u∗ = uk + τ(v ·D)uk + τ
ρ
fk .

It remains to deal with the following equations:

Δ(−ν divuk+1 + pk+1) = +divu∗

τ
, (5.23)

Δη = +divu∗

τ
. (5.24)

Borel–Pompeiu’s formula yields

Dpk+1 = T
divu∗

τ
+ φk+1, φk+1 ∈ kerD. (5.25)

Inserting this into (∗), we can conclude

uk+1 − ντΔuk+1 =−τ(v ·D)uk + T divu∗ + τ φk+1 + τ

ρ
fk + uk, (5.26)

and with a2
0 = 1

ντ
, we arrive at

(
a2

0 −Δ
)
uk+1 = −

(
1

ν
(v ·D)uk + a2

0uk

)

+
(
fk

μ
+ a2

0T divu∗
)
+ φk+1

ν
. (5.27)

Remark Each φ̃k+1 := φk+1
ν

defines another approximation!
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With S := a2
0(− 1

ν
(v ·D)+ I ) and Rk := fk

μ
+ a2

0T divu∗, we obtain

DiaD−iauk+1 = Suk +Rk + φ̃k+1. (5.28)

Borel–Pompeiu’s formula leads to

uk+1 = T−iaTia(Suk +Rk)+ T−iaTiaφ̃k+1

+ T−iaφ+ia,k+1 + φ−ia,k+1, (5.29)

where φ±ia,k+1 ∈ kerD±a .
It remains to determine φia,k+1 and φ−ia,k+1.

•FΓ,−iauk+1 = φ−ia,k+1 = FΓ,−iagk+1; gk+1 = g
(
(k + 1)τ, ·). (5.30)

5.4 (D + ia)-Holomorphic Functions

Let us now compute (D + ia)-holomorphic functions. As for trΓ uk+1 = gk+1, we
have

trΓ
[+T−iaTia(Suk +Rk)+ T−iaTiaφ̃k+1 + T−iaφia,k+1

]

=QΓ,−iagk+1. (5.31)

We know that

trΓ : (I − FΓ,−ia)gk+1→QΓ,−iagk+1. (5.32)

Therefore,

trΓ φia,k+1 = (trΓ T−iaFΓ,ia)
−1(−T−iaTia

(
Suk +

(
Rk − φ̃k+1

)))
(5.33)

+ (trΓ T−iaFΓ,ia)
−1QΓ,−iagk+1. (5.34)

Consequently, we get

φia,k+1 = FΓ,ia(trΓ T−iaFΓ,ia)
−1(−T−aTia

(
Suk + R̃k

))
(5.35)

+ FΓ,ia(trΓ T−iaFΓ,ia)
−1QΓ,−iagk+1. (5.36)

5.4.1 Final Representation Formula

After substitution and straight forward calculation it follows

uk+1 = T−ia
(
Tia

(
Suk + R̃k

)
(5.37)

− FΓ,ia(trΓ T−iaFΓ,ia)
−1T−iaTia

(
Suk + R̃k

))
(5.38)
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+ T−iaFΓ,ia(trΓ TiaFΓ,ia)
−1QΓ,−iagk+1 + FΓ,−iagk+1, (5.39)

uk+1 = T−iaQiaTia

(
Suk + R̃k

)+ T−iaFΓ,ia(trΓ T−iaFΓ,ia)
−1QΓ,−iagk+1

+ FΓ,−iagk+1,

with the Bergman projection Pia = FΓ,a(trΓ T−iaFΓ,ia)
−1T−ia and Qia = I − Pia .

5.4.2 Influence of the Boundary Condition Hk+1

We have

Hk+1 = FΓ,−iagk+1 + T−iaPiaD−iaHk+1 (k = 0, . . . , n− 1), (5.40)

where Hk+1 is a smooth continuation into the domain G. If H̃k+1 is another exten-
sion, then it follows

T−iaPiaD−ia
(
Hk+1 − H̃k+1

)= 0 (5.41)

and

D−iaW̊ 1
2 (G)= im Qia. (5.42)

Notice that trΓ Hk+1 = trΓ H̃k+1.

5.4.3 Boundary-Value Problem for Hk+1

Hk+1 solves the following boundary-value problem

(D + ia)(D − ia)vk+1 = 0 in G, (5.43)

vk+1 = gk+1 on Γ. (5.44)

Using Borel–Pompeiu’s formula and the formulae of Plemelj–Sokhotzkij type, we
obtain

trΓ T−iaQiaTia

(
Suk + R̃k

)= 0. (5.45)

5.4.4 Relation to the Initial-Value Condition

Let us abbreviate: T−iaQiaTia =:Xa . Then we obtain

uk+1 = XaSuk +Hk+1 +XaR̃k

= XaS
(
XaSuk−1 +Hk +XaR̃k−1

)+Hk+1 +XaR̃k

= (XaS)
2uk−1 +XaSHk +XaSXaR̃k−1 +Hk+1 +XaR̃k
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= (XaS)
2uk−1 + (XaS)

1(Hk +XaR̃k−1
)+ (XaS)

0(Hk+1 +XaR̃k

)

= (XaS)
k+1u0 +

k∑

l=1

(XaS)
l
(
XaR̃k−l +Hk−l+1

)+XaR̃k +Hk+1.

The boundary condition remains fulfilled, i.e.,

trΓ Xa . . .= 0. (5.46)

6 Approximation and Stability

6.1 Approximation Property

Lu := 1

ν
∂tu− 1

ν
(v ·D)u+ 1

ν
+DDu, t = kτ ;

Lτu := 1

ντ

(
u(t + τ)

)− u(t, ·)+DDu(t + τ, ·)

+ 1

ν
Dp(t + τ, ·)− 1

ν
(v ·D)u(t, ·);

|Lτuk −Luk| ≤
∣∣∣
∣

1

ντ
(uk+1 − uk)+DD uk+1 + 1

ν
Dpk+1 − 1

ν
(v ·D)uk

− 1

ν
∂tuk + 1

ν
(v ·D)uk − 1

ν
Dpk −DD uk

∣∣∣∣

= 1

ντ

(
uk + τ∂tuk + τ 2∂2

t u(kτ + θτ, ·))− 1

ντ
uk − 1

ν
∂tuk (6.1)

−
(

1

ν
∂tuk+1 − 1

ν
∂tuk

)
− 1

μ
(fk+1 − fk)

≤ max
G

∣∣∣∣
τ

2

1

ν
∂2
t t u(kτ + θτ, ·)

∣∣∣∣+max
G

∣∣∣∣
1

ν
∂ttu(kτ + θ1τ, ·)

∣∣∣∣

+max
G

∣∣∣∣
τ

μ
∂tu(kτ + θ2τ, ·)

∣∣∣∣

≤ 2
τ

ν
max
G

∣
∣∂2

t t u
((
k+ θ

)
τ, ·)∣∣+max

G

∣∣
∣∣
τ

μ
∂tu
(
(k + θ2)τ, ·

)
∣∣
∣∣

≤ Cτ→ 0.
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6.2 Stability

We follow now the results in [1], where the following estimates of the norm of the
operator Tia0 were obtained:

‖T±ia0‖L(C) ≤ c

a0
‖u‖C. (6.2)

It remains to understand that XaS is bounded in a suitable Sobolev space. First, we
have to state that Xa is smoothing, and therefore Xa(v ·D) has to be studied. Let
a = ia0. Then we have

D(v u) = −vDu+ (v ·D)u+ and D =Da − a + (Dv)u,

Ta(v ·D)u = TaDau− aTau+ TavDau+ Tav au− Ta(Dv)u

= (I − Fa − aTa + TavDa + Tava)u− Ta(Dv)u.

As for Scv = 0, it follows that

Ta(v ·D)u= (1+ v)(I − Fa)+ a(v − 1)Ta − Ta(Dv)u,

and this means that TaS = Ta(I + τ(v ·D)) is uniformly bounded with respect to τ .

6.3 Representation Formulae

From

uk+1 − τνΔuk+1 = −τ(v ·D)uk + τ

ρ
fk + uk − 1

ν
Dpk+1,

F (uk) =
(
I − τ(v ·D)

)
uka

2
0 +

fk

μ

it follows that

uk+1 =−1

ν
T−aQaTaDpk+1 + T−aQaT−aF (uk)+Hk

and

TaDpk+1 = Ta(D+ a)pk+1 − aTapk+1 = pk+1 − Fapk+1 − aTapk+1

= p̃k+1 − Fapk+1

QaTaDpk+1 = Qap̃k+1 (Fapk+1 ∈ im Pa).

Because of

p̃k+1 = pk+1 − aTapk+1,

Dap̃k+1 =Dpk+1,
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we obtain

uk+1 =−1

ν
T−aQap̃k+1 + T−aQaTaF (uk).

7 More Relevant Problems in Fluid Dynamics

7.1 Magnetic Benard’s Problem

Governing equations:

∂tu+ (u · ∇)u− 1

μρ
(B · ∇)B+ 1

2ρμ
∇(|B|2)+ 1

ρ
∇p− ηΔu = f, (7.1)

∂tB+ (u · ∇)B− (B · ∇)u = 1

μσ
ΔB.

(7.2)

Divergence free fields:

div u = 0, (7.3)

div B = 0. (7.4)

Boundary conditions:

u= 0 on Γ, (7.5)

B= 0 on Γ. (7.6)

7.1.1 Time-Discretization of the Magnetic Benard Problem

Let T > 0, T = nτ , and τ the meshwidth. We abbreviate again uk := u(kτ, ·),pk :=
p(kτ, ·),Bk = B(kτ, ·). Further we set fk = (1/τ)

∫ (k+1)τ
kτ

f(t, x) dt and gk =
(1/τ)

∫ (k+1)τ
kτ

g(t, x) dt and approximate

(∂tu)(kτ, ·)∼ uk+1 − uk

τ
(k = 0,1, . . . , n− 1). (7.7)

Then we obtain for (k = 0,1, . . . , n− 1):

uk+1 − uk = τ(uk ·D)uk + τ

μρ
(Bk ·D)Bk

− τ

2ρμ
D|Bk|2 − τ

ρ
Dpk+1 (7.8)

+ τηΔuk+1 + τfk, (7.9)
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Bk+1 −Bk = −τ(uk ·D)Bk +Bk ·D)uk

+ τ

μσ
ΔBk+1 + τgk, (7.10)

uk+1 − ητΔuk+1 + τ

ρ
Dpk+1 = −τ(uk ·D)uk − τ

μρ
(Bk ·D)Bk (7.11)

− τ

2ρμ
D|Bk|2 + τfk =: τF(uk,Bk)+ τfk, (7.12)

Bk+1 − τ

μσ
ΔBk+1 = Bk − τ(uk ·D)Bk

+ (Bk ·D)uk + τgk (7.13)

=: τG(uk,Bk)+ τgk. (7.14)

We introduce virtual functions u∗ and B∗. It then follows that
(
uk+1 − u∗

)+ (u∗ − uk

) = τF(uk,Bk)+ τfk − τ

ρ
Dpk+1

+ τηΔuk+1, (7.15)

(
Bk+1 −B∗

)+ (B∗ −Bk

) = τG(uk,Bk)+ τgk

τ

μσ
ΔBk+1. (7.16)

We work with the ansatz

Bk+1 −B∗ = τ

μσ
ΔBk+1, B∗ −Bk = τG(uk,Bk)+ τgk, (7.17)

uk+1 − u∗ = − τ

ρ
Dpk+1 + τηΔuk+1,

(7.18)
u∗ − uk = τF(uk,Bk)+ τfk.

Setting divuk+1 =:Uk+1 and divBk+1 =: bk+1, it then follows:

Uk+1 − divu∗ = Δ

(
− τ

ρ
pk+1 + τηUk+1

)
, (7.19)

bk+1 − divB∗ = − τ

μσ
Δbk+1. (7.20)

7.1.2 Divergence and Uniqueness

The Poisson equation

Δ

(
1

ρ
pk+1 + ηUk+1

)
= divu∗

τ
(7.21)
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is always solvable. If we take this result as the hydrostatical pressure multiplied by
(1/ρ), then the scalar function Uk+1 has to be 0. Uniqueness results are obtained
under the following growth and boundedness conditions:

∣
∣∇xu(x, t)

∣
∣,
∣
∣∇xB(x, t)

∣
∣≤ const, (7.22)

∣∣p(x, t)
∣∣≤ const

(
1+ |x|)−1/2

. (7.23)

Meanwhile several examples for nonuniqueness are known (cf. [11]) if the men-
tioned conditions are not satisfied.

7.1.3 Velocity Calculation

It is easy to see that

τ

ρ
Dpk+1 =−T divu∗ + φk+1, φk+1 ∈ kerD. (7.24)

This leads to

uk+1 − u∗ = −ητDDuk+1 − T divu ∗+φk+1. (7.25)

Thus we obtain with b2 = 1/(ητ)

DDuk+1 + b2uk+1 = F
(
u∗, φk+1

)=: Fk+1, (7.26)

and so

(D − ib)(D + ib)uk+1 = Fk+1. (7.27)

Factorization methods with an estimation of the truncation error and the approxima-
tion properties can be found under the assumption that the velocity is bounded at all
times (cf. [18] and [19]).

7.2 Boussinesq’s Formulation of Poisson–Stokes’ Problem

Let be the body-force f equal to the gravity acceleration g. Then we have

ρ0∂tu+ ρ0(u · ∇)u = −∇p+μΔu+ ρ0g
[
1− α(w−w0)

]
, (7.28)

ρ0c∂tw+ ρ0c(u · ∇)w = div(k∇w)+ ρ0β +Φ, (7.29)

div u = 0, (7.30)

where the last term in the first equation is the buoyancy force, β is the heat con-
sumption (loss) through chemical reactions, c is the difference between the two heat
capacities, i.e., c = cp − cv , and k is the coefficient of thermal conductivity. Φ is
the so-called dissipation function, which is, roughly speaking, connected with the
long-time average of entropy production, and α is the volume expansion coefficient.
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7.3 Shallow Water Equations

The French mathematician Barré de Saint-Vainant described the viscous, rotating
shallow water equations as follows:

∂tu+ (u · ∇S)u = −2a ∧ u+ νΔSu− g∇Sh, (7.31)

∂tH = −(u · ∇S)H +H∇S · u, (7.32)

H := h(t, x)− hB(t, x), (7.33)

u(0, x) = u0, (7.34)

h(0, x) = h0. (7.35)

Here H denotes the total depth of the fluid, hB(t, x) determines the bottom surface
topography, 2a∧u is the Coriolis force, g is the gravity acceleration, ν is the dynamic
viscosity, and u is the velocity. A good reference is the book [13].

7.3.1 Assumptions for the Formulation of St. Venant’s Equations

• The direction of the rotation axis coincides with the e3 axis.
• The angular velocity |ω| is induced by Coriolis.
• The external forces reduce here to the gravity.
• ∂τp =−ρg, i.e., the vertical pressure gradient equals the buoyancy forces.
• The scale of horizontal motion is much larger than the scale of vertical motion.
• The fluid is incompressible, homogeneous, has a constant density (here normal-

ized to 1).

A good reference is the dissertation by Fengler [4].

7.4 Forecasting Equations

Shallow water equations are similar to a model of forecasting equations restricted
on the sphere

∂tu+ (v · ∇S)u = νΔSu− 1

ρ
∇Sp− 2a ∧ u+ F in G, (7.36)

cv∂tT = −cv(u · ∇S)T +Q, (7.37)

∂tρ = −(u · ∇S)ρ, (7.38)

with the vector derivative (Günter’s gradient) ∇S , the Beltrami operator ΔS , the sur-
face gradient ∇Sp, the heating rate Q, and the surface divergence ∇S ·u. The vector
of outer forces F also contained the so-called apparent gravity that is gravity reduced
by the centrifugal force. Moreover, it is assumed that ∇S ·u= 0 with boundary con-
ditions on ∂G=: Γ .
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8 Numerical Examples

Our goal is now to show by a numerical example how good the performance of the
described methods is. For simplicity, we consider only a stationary Navier–Stokes
equation. As we have seen above, the solution of such problems is the “kernel” of
the iteration procedures. This means that it is of greatest importance to solve these
problems efficiently. This numerical example is taken from the paper [3], where
also Navier–Stokes equations in unbounded domains were studied. The calculations
were done by N. Faustino.

Table 1 Error estimates and convergence for Example 1

h Grid Number of iterations ‖un+1 − un‖ (last iteration)

1 5× 5× 5 3 4.6875× 10−7

2/3 7× 7× 7 3 1.8243× 10−7

1/2 9× 9× 9 3 1.0317× 10−7

1/3 13× 13× 13 3 4.2204× 10−8

1/4 17× 17× 17 3 2.7564× 10−8

Fig. 1 Error estimation for different mesh sizes during the iteration
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For the domains Ω = [−2,2]3, we use a cubic equidistant grid of (N + 1) ×
(N + 1)× (N + 1), N even, points with mesh size h= 4

N
corresponding to

Ωh =
{
mh= (m1h,m2h,m3h)

T : −N/2≤m1,m2,m3 ≤N/2
}
.

For the stopping criteria, we use the discrete Sobolev norm, ‖.‖ := ‖.‖w1
p+3/α

with

p = 4 and α = 1/2, and fix δ = 10−6 as error tolerance.

Example 1 Consider the stationary Navier–Stokes in Ω = [−2,2]3

f̂ (x)= (|x1|, |x2|, |x3|
)T

.

Note that the right-hand side is not differentiable.

Table 1 shows the error after the third iteration for different grids. Figure 1 illus-
trates the development of the error during the iteration process. We can see that the
error decreases quickly. This is in accordance to our theoretical results. The iteration
was based on a fixed-point principle. We can also observe in Example 1 that the lack
of regularity at the origin is not an obstacle for the method.

9 Conclusions

The presented methods were also applied to the solution theory of some Galpern–
Sobolev equations, an alternative model to the three-dimensional generalized
Korteweg–de Vries equations (we refer to [9]). Meanwhile, results are published
also on a three-dimensional analogue to Airy‘s equation for waves in rigid materi-
als [17].
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Interactive 3D Space Group Visualization
with CLUCalc and Crystallographic
Subperiodic Groups in Geometric Algebra

Eckhard M.S. Hitzer, Christian Perwass,
and Daisuke Ichikawa

Abstract The Space Group Visualizer (SGV) for all 230 3D space groups is a stan-
dalone PC application based on the visualization software CLUCalc. We first ex-
plain the unique geometric algebra structure behind the SGV. In the second part
we review the main features of the SGV: The GUI, group and symmetry selection,
mouse pointer interactivity, and visualization options. We further introduce the joint
use with Hahn (Space-group Symmetry, 5th edn., International Tables of Crystal-
lography, vol. A, Springer, Dordrecht, 2005). In the third part we explain how to
represent the 162 so-called subperiodic groups of crystallography in geometric al-
gebra. We construct a new compact geometric algebra group representation symbol,
which allows us to read off the complete set of geometric algebra generators. For
clarity, we moreover state explicitly which generators are chosen. The group sym-
bols are based on the representation of point groups in geometric algebra by versors.

1 Introduction

Crystals are fundamentally periodic geometric arrangements of molecules. The di-
rected distance between two such elements is a Euclidean vector in R

3. Intuitively
all symmetry properties of crystals depend on these vectors. Indeed, the geomet-
ric product of vectors [13], combined with the conformal model of 3D Euclidean
space [2, 15, 25–27, 38, 39, 42], yields an algebra fully expressing crystal point and
space groups [19, 22, 28–30, 33, 45]. Two successive reflections at (non)parallel
planes express (rotations) translations, etc. [8, 10]. This leads to a one-to-one corre-
spondence of geometric objects and symmetry operators [35] with vectors and their
products, ideal for creating a suite of interactive visualizations using CLUCalc [44]
and OpenGL [28, 29, 31, 45].
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For crystallographers, the subperiodic space groups [37] in 2D and 3D with only
one or two degrees of freedom for translations are also of great interest.

We begin in Sect. 2 by explaining the representation of point and space groups
in conformal geometric algebra. Next we explain the basic functions of the software
implementation, called Space Group Visualizer [46] in Sect. 3. Finally in Sect. 4
we show how to construct a new compact geometric algebra group representation
symbol for subperiodic space groups (Frieze groups, rod groups, and layer groups),
which allows us to read off the complete set of geometric algebra generators. For
clarity, we moreover state explicitly which generators are chosen.

2 Point Groups and Space Groups in Clifford Geometric
Algebra

2.1 Cartan–Dieudonné and Geometric Algebra

Clifford’s associative geometric product [13] of two vectors simply adds the inner
product to the outer product of Grassmann

ab= a · b+ a ∧ b. (1)

Under this product, parallel vectors commute, and perpendicular vectors anti-
commute:

ax‖ = x‖a, ax⊥ =−x⊥a. (2)

This allows us to write the reflection of a vector x at a hyperplane through the origin
with normal a as

x′ = −a−1xa, a−1 = a

a2
. (3)

The composition of two reflections at hyperplanes whose normal vectors a,b sub-
tend the angle α/2 yields a rotation around the intersection of the two hyperplanes
by α:

x′ = (ab)−1xab, (ab)−1 = b−1 a−1. (4)

Continuing with a third reflection at a hyperplane with normal c according to the
Cartan–Dieudonné theorem [4, 6, 12, 18] yields the rotary reflections and inversions

x′ = −(abc)−1xabc, x′′ = −i−1xi, i
.= a ∧ b ∧ c, (5)

where
.= means equality up to nonzero scalar factors (which cancel out in (6)). In

general the geometric product S of k normal vectors corresponds to the composition
of reflections to all symmetry transformations [22] of 2D and 3D crystal cell point
groups:

x′ = (−1)kS−1xS = Ŝ−1xS = S−1xŜ, (6)
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Fig. 1 Regular polygons (p = 1,2,3,4,6) and point group generating vectors a,b subtending
angles π/p shifted to center

Table 1 Geometric [22, 24] and international [20] notation for 2D point groups

Crystal Oblique Rectangular Trigonal Square Hexagonal

Geometric 1̄ 2̄ 1 2 3 3̄ 4 4̄ 6 6̄

International 1 2 m mm 3m 3 4m 4 6m 6

where Ŝ = (−1)kS is the grade involution or main involution in Clifford geometric
algebra. We call the product of invertible vectors S in (6) versor [14, 22, 24, 35, 38],
but the names Clifford monomial of invertible vectors, Clifford group element, or
Lipschitz group element are equally in use [38, 41].

2.2 Two-Dimensional Point Groups

2D point groups [22] are generated by multiplying vectors selected [28, 29, 45] as in
Fig. 1. The index p can be used to denote these groups as in Table 1. For example,
the hexagonal point group is given by multiplying its two generating vectors a,b:

6= {a,b,R = ab,R2,R3,R4,R5,R6 =−1,aR2,bR2,aR4,bR4}. (7)

The rotation subgroups are denoted with bars, e.g., 6̄. The identities a2 = b2 = 1
and R6 =−1 directly correspond to relations in the group presentation [47] of 6.

2.3 Three-Dimensional Point Groups

The selection of three vectors a,b, c from each crystal cell [22, 28, 29, 45] for
generating all 3D point groups is indicated in Fig. 2. Using ∠(a,b) and ∠(b, c), we
can denote all 32 3D point groups (alias crystal classes) as in Table 2. For example,
the monoclinic point groups are then (international symbols of Hermann–Maugin:
2/m, m, and 2, respectively)

22̄= {c,R = a ∧ b= ic, i = cR,1}, 1= {c,1}, 2̄= {ic,1}. (8)
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Fig. 2 7 crystal cells with vector generators a,b, c: triclinic, monoclinic, orthorhombic, tetrago-
nal, trigonal (rhombohedral), hexagonal, cubic

Table 2 Geometric 3D point group symbols [10, 22] and generators with θa,b = π/p, θb,c = π/q ,
θa,c = π/2, p,q ∈ {1,2,3,4,6}
Symbol p = 1 p �= 1 p̄ pq p̄q pq̄ p̄q̄ pq

Generators a a,b ab a,b, c ab, c a,bc ab,bc abc

2.4 Space Groups

The smooth composition with translations is best done in the conformal model
[1–3, 5, 7, 9, 11, 14, 15, 17, 21, 25–27, 42, 43] of Euclidean space (in the GA of
R

4,1), which adds two null-vector dimensions for the origin e0 and infinity e∞.

X = x + 1

2
x2e∞ + e0, e2

0 = e2∞ =X2 = 0, X · e∞ =−1. (9)

The +e0 term integrates projective geometry, and the + 1
2x2e∞ term ensures

X2 = 0. The inner product of two conformal points gives their Euclidean distance
and therefore a plane m equidistant from two points A,B as

X ·A=−1

2
(x−a)2 3⇒ X · (A−B)= 0, m=A−B ∝ p−de∞, (10)
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Table 3 Computing with
reflections and translations
The vectors a,b are pictured
in Fig. 1

∠(a,b) 180◦ 90◦ 60◦ 45◦ 30◦

Tab= bT−a bTa bTa−b bTa−b bTa−b

Tba = aT−b aTb aTb−a aTb−2a aTb−3a

Table 4 Monoclinic space group versor generators, T A = T
1/2
b+c , int. = international [20], geo. =

geometric, alt. = alternative, columns 3 and 4: [24]. Ta, Tb, Tc suppressed

Int.# Int. name Geo. name Geo. generators Int. generators Alt. generators

3 P 2 P 2̄ ic= a ∧ b

4 P 21 P 2̄1 icT
1/2
c

5 C2 A2̄ ic, T A

6 Pm P 1 c

7 Pc Pa1 cT
1/2
a

8 Cm A1 c, T A

9 Cc Aa1 cT
1/2
a , T A

10 P 2/m P 22̄ c, ic i, ic i, c

11 P 21/m P 22̄1 c, icT
1/2
c i, icT

1/2
c i, cT

1/2
c

12 C2/m A22̄ c, ic, T A iT A, icT A,T A i, c, T A

13 P 2/c Pa22̄ cT
1/2
a , ic i, icT

1/2
a i, cT

1/2
a

14 P 21/c Pa22̄1 cT
1/2
a , icT

1/2
c i, icT

1/2
a+c i, cT

1/2
a+c

15 C2/c Aa22̄ cT
1/2
a , ic, T A i, icT

1/2
a , T A i, cT

1/2
a , T A

where p is a unit normal to the plane, and d is its signed scalar distance from the
origin. Reflecting at two parallel planes m,m′ with distance t/2, we get the so-called
translator (translation operator by t)

X′ =m′mXmm′ = T −1
t XTt , Tt = 1+ 1

2
te∞. (11)

Reflection at two nonparallel planes m,m′ yields the rotation around the m,m′-
intersection by twice the angle subtended by m,m′.

Group-theoretically the conformal group C(3) is isomorphic to O(4,1), and the
Euclidean group E(3) is the subgroup of O(4,1) leaving infinity e∞ invariant [22,
24, 38]. Now general translations and rotations are represented by geometric prod-
ucts of vectors. To study combinations of versors, it is useful to know that (cf. Ta-
ble 3)

Tt a = aTt ′ , t ′ = −a−1ta. (12)

Applying these techniques, one can compactly tabulate geometric space group sym-
bols and generators [24]. Table 4 implements this for the 13 monoclinic space
groups. All this is interactively visualized by the Space Group Visualizer [46].
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Fig. 3 GUI of the Space Group Visualizer

3 Interactive Software Implementation

The realization in software relies on the visual multivector software CLUCalc [44].
The excellent graphics rendering is based on OpenGL graphics. The space group
symmetry definitions described in the previous sections are denoted for each space
group in the form of an XML input file. The XML files serve as input for a CLUCalc
script named Space Group Visualizer (SGV) [46].

3.1 The Space Group Visualizer GUI

Figure 3 shows the SGV GUI. The SGV toolbar is magnified and annotated in Fig. 4.
Depending on the displayed space group, basis vector lengths and (or) angles may
be fixed (i.e., they may not be changed by the user). This is indicated by toolbar
elements shaded in gray.

3.2 Space Group and Symmetry Selection

Figure 5 shows the interactive (hyperlink like) space group selection. Clicking blue
text elements in the browser panel on the left of the GUI allows us to access crystal
systems, crystal classes (point groups), and individual space groups.
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Fig. 4 Toolbar of the Space Group Visualizer

Fig. 5 Space group selection from the Space Group Visualizer browser panel

Figure 6 illustrates the selection of symmetries from the complete list of Sym-
metries (left SGV GUI browser panel), which are present in the currently selected
space group. Symmetries that are to be displayed can be selected according to their
properties (angle, orientation, location, translation component). Several properties
selected together will display only those symmetries that satisfy all properties. An-
other way is to open the generator product list of a certain type of symmetry and
select individual geometric algebra generator products to be displayed (or to be re-
moved from the display).

3.3 Mouse Pointer Interactivity

The mouse pointer allows a variety of visual interactions and animations, depending
over which part of the visualization it is placed. Moving the mouse pointer over a
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Fig. 6 Space group selection of individual symmetries or groups of symmetries to be displayed

symmetry element visualization both animates the symmetry and displays detailed
information about this symmetry group element in the lower right corner. Animation
means dynamic color and size changes and the motion of general elements along a
trajectory tracing the symmetry operation incrementally. Placement of the mouse
pointer over a general element (locus) selector activates it (blinking). The mouse
pointer over the rotation center (of view) selector allows us to change the rotation
center of the mouse activated view rotation (described below).

The mouse pointer can be placed anywhere inside the visualization window.
Holding down the left (right) mouse button and moving the mouse will rotate (trans-
late) the visualization. Alternative rotation axes (translation directions) are activated
by additionally holding the SHIFT key. With a 3D-mouse (3D connexion) one can
rotate and translate the view along all axes simultaneously.

First placing the mouse pointer over a general element (locus) selector permits
one to translate and rotate it (together with all its symmetric partners). This pro-
vides an excellent way to grasp how one general element and the 3D symmetry
represented in the space group determine the whole crystal structure.

A special feature of the SGV is the direct 3D graphics interaction. Simply placing
the mouse pointer over a symmetry activates it and allows one to:

• Select only the activated symmetry (left mouse button). All other symmetries
disappear from the view.
• Holding the CTRL key at the same time (while pressing the left mouse button)

shows all symmetries (and only these) of the same type.
• Clicking the right mouse button removes an activated symmetry from the view.
• Holding the CTRL key at the same time (while pressing the right mouse button)

removes all symmetries of the same type.
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3.4 Visualization Options in Detail

The visualization drop-down menu allows one to toggle (activate and deactivate) the
following visual functions

• Full screen mode.
• Orthographic view. The orthographic view allows the most direct comparison

with ITA orthographic projections [20].
• Animation of the origin locus when a symmetry is activated (animated).
• Rotation animation of the whole view when it is pushed with the (left) mouse

button.
• Reset the crystal view to visualizer default values.
• Reset general element (loci) positions.

The special visualization lighting menu provides a relative position light source.
It is positioned relative to the visualization coordinate frame and moves with the
visualization. Deselecting this option fixes the light source relative to the observer.
The light source can optionally be positioned at the center of the coordinate frame,
which is relative (or absolute) depending on the (de)selection of the relative posi-
tion option. The ambient light submenu allows one to adjust the brightness of the
ambient light, leading to more dramatic effects for darker settings.

The color scheme menu item allows one to select the current color scheme. For
example, a scheme with black background is more suitable for use in presentations,
while a white background is better for publications, etc. It is possible via an XML
file to individually define further color schemes. A color stereo option allows one to
specify cinema type stereo colors, which are best viewed with corresponding cinema
color glasses in order to perform the full spatial 3D effect akin to virtual reality.

The cell-type menu allows one to select between different cell choices in the IT,
vol. A [20], and (if different) a special geometric algebra type cell, which has the
generating vectors a,b, c as cell axis attached to the cell origin. Details are given
in [34].

3.5 Integration with the Online International Tables
of Crystallography

Through the window menu an additional window can be opened for displaying the
pages of a Space group from the online version of the International Tables of Crys-
tallography, vol. A (ITA) [20]. For this, the user must hold a valid user ID and
password. When the online ITA can be accessed, the SGV and the online ITA win-
dow will always show the same space group. The user can synchronously navigate
from space group to space group either in the SGV or in the online ITA window (cf.
Fig. 7).
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Fig. 7 Synchronous space group selection in the SGV window and the online ITA [20] space
group window

4 Subperiodic Groups Represented in Clifford Geometric
Algebra

Now we begin to explain the details of the new geometric algebra-based represen-
tation of so-called subperiodic space groups. These include the seven frieze groups
(in 2D space, 1 DOF for translation), the 75 rod groups (in 3D space, 1 DOF for
translation), and the 80 layer groups (in 3D space, 2 DOF for translations).

Compared to the geometric 2D and 3D space group symbols in [24], we have
introduced dots: If one or two dots occur between the Bravais symbol (p, p, c) and
index 1, the vector b or c, respectively, is present in the generator list. If one or two
dots appear between the Bravais symbol and the index 2 (without or with bar), then
the vectors b, c or a, c, respectively, are present in the generator list.

In agreement [24] the indices a, b, c, n (and g for frieze groups) in the first, sec-
ond, or third position after the Bravais symbol indicate that the reflections a, b, c

(in this order) become glide reflections. The index n indicates diagonal glides. The
dots also serve as symbolic a, b, c position indicators. For example, rod group 5:
pc1 has glide reflection aT

1/2
c , rod group 19: p.c2 has bT

1/2
c , and layer group 39:

pb2a2n has aT
1/2
b , bT 1/2

a , and cT
1/2
a+b .

The notation np indicates a right-handed screw rotation of 2π/n around the n-

axis, with pitch T
p/n
t , where t is the shortest lattice translation vector parallel to the
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axis, in the screw direction. For example, the layer group 21: p2̄2̄12̄1 has the screw
generators bcT

1/2
a and acT

1/2
b .

In the following we discuss specific issues for frieze groups, rod groups, and
layer groups. In the current publication we restrict ourselves to the new symbols
for triclinic and monoclinic rod and layer groups. The full tables will be published
elsewhere.

4.1 Frieze Groups

Figure 8 shows the generating vectors a, b of oblique and rectangular cells for 2D
frieze groups. The only translation direction is a. Table 5 lists the seven frieze groups
with new geometric symbols and generators. The abbreviations SG# and SGN mean
space group number and space group name (symbol), respectively.

Fig. 8 Generating vectors a, b of oblique and rectangular cells for 2D frieze groups

Table 5 Table of frieze groups. Group number (col. 1), international frieze group notation [37]
(col. 2), related international 3D space group numbers [20] (col. 3), and notation [20] (col. 4),
geometric 3D space group notation [24] (col. 5), related international 2D space group numbers
[20] (col. 6), and notation [20] (col. 7), related geometric 2D space group notation [24] (col. 8),
geometric frieze group notation (col. 9), geometric algebra frieze group versor generators (col. 10).
The pure translation generator Ta is omitted

Frieze Intern. 3D Intern. Geom. 2D Intern. Geom. Geom. Frieze group

group # notat. SG# 3D SGN 3D SGN SG# 2D SGN 2D SGN notat. generators

Oblique

F1 p1 1 P 1 P 1 1 p1 p1 p1

F2 p211 3 P 2 P 2 2 p2 p2 p2 a ∧ b

Rectangular

F3 p1m1 6 Pm P 1 3 pm(p1m1) p1 p1 a

F4 p11m 6 Pm P 1 3 pm(p11m) p1 p.1 b

F5 p11g 7 Pc Pa1 4 pg(p11g) pg1 p.g1 bT
1/2
a

F6 p2mm 25 Pmm2 P 2 6 p2mm p2 p2 a, b

F7 p2mg 28 Pma2 P 2a 7 p2mg p2g p2g a, bT
1/2
a
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Fig. 9 From left to right: Triclinic, monoclinic inclined, monoclinic orthogonal, orthorhombic,
and tetragonal cell vectors a, b, c for rod and layer groups

Fig. 10 Generating vectors
a, b, c of trigonal (left),
hexagonal (center), and
hexagonally centered (right,
Bravais symbol: H or h) cells
for 3D rod and layer groups

4.2 Rod Groups

Figure 9 shows the generating vectors a, b, c of triclinic, monoclinic, orthorhom-
bic, and tetragonal cells for 3D rod and layer groups. Figure 10 shows the same
for trigonal and hexagonal cells. For rod groups, the only translation direction is c.
There is a total of 75 rod groups in all 3D crystal systems. Table 6 lists the triclinic
and monoclinic rod groups with new geometric symbols and generators: Rod group
number (col. 1), international rod group notation [37] (col. 2), related international
3D space group numbers [20] (col. 3), and notation [20] (col. 4), related geomet-
ric 3D space group notation [24] (col. 5), geometric rod group notation (col. 6),
geometric algebra generators (col. 7).

4.3 Layer Groups

For layer groups, the two translation directions are a, b. There is a total of 80 layer
groups. Tables 7 list the triclinic and monoclinic 3D layer groups with new geo-
metric symbols and generators: Layer group number (col. 1), international layer
group notation [37] (col. 2), related international 3D space group numbers [20]
(col. 3), and notation [20] (col. 4), related geometric 3D space group notation
[24] (col. 5), geometric layer group notation (col. 6), geometric algebra generators
(col. 7). The layer groups are classified according to their 3D crystal system/2D Bra-
vais system. The monoclinic/oblique(rectangular) system corresponds to the mono-
clinic/orthogonal(inclined) system of Fig. 9. Figure 10 shows the hexagonally cen-
tered cell with Bravais symbols H (space group) and h (layer group).
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Table 6 Table of triclinic and monoclinic rod groups. The pure translator Tc is omitted

Rod Intern. 3D space Intern. Geom. Geom. Rod group

group # notat. group # 3D SGN 3D SGN notat. generators

Triclinic

R1 p1 1 P 1 P 1̄ p1̄

R2 p2 2 P 1̄ P 22 p22 a ∧ b ∧ c

Monoclinic/inclined

R3 p211 3 P 112 P 2̄ p..2̄ b ∧ c

R4 pm11 6 Pm P 1 p1 a

R5 pc11 7 Pc Pc1 pc1 aT
1/2
c

R6 p2/m11 10 P 2/m P 22̄ p22̄ a, b ∧ c

R7 p2/c11 13 P 2/c Pa22̄ pc22̄ aT
1/2
c , b ∧ c

Monoclinic/orthogonal

R8 p112 3 P 112 P 2̄ p2̄ a ∧ b

R9 p1121 4 P 21 P 2̄1 p2̄1 (a ∧ b)T
1/2
c

R10 p11m 6 Pm P 1 p..1 c

R11 p112/m 10 P 2/m P 2̄2 p2̄2 a ∧ b, c

R12 p1121/m 11 P 21/m P 2̄12 p2̄12 (a ∧ b)T
1/2
c , c

5 Conclusion

We have briefly reviewed the geometric algebra representation of three-dimensional
Euclidean space R

3 in the so-called conformal model in the GA of R
4,1, and its use

for the representation of 2D and 3D point groups and space groups. The key point
is to only use physical crystal lattice vectors for the group generation. The second
part introduced the interactive software visualization of 3D space group symmetries
based on the established geometric algebra representation. This implementation uses
the conformal model both for generating the graphics itself and for internally com-
puting with space group transformations.

Future options are the visualization of noncharacteristic space group orbits [16]
and magnetic space groups [36]. The latter seems particularly attractive as it may
nicely integrate the bivector representation of spin [23] in the real Dirac–Hestenes
equation of relativistic quantum physics. Based on CLUCalc [44], a first rudimen-
tary geometric algebra protein visualizer has been programmed recently for proteins
of several thousand (up to 10 000) atoms. A possible future molecule (or ion group)
toolbox may therefore be able to display complex biomolecule crystals as well.

We have further devised a new Clifford geometric algebra representation for the
162 subperiodic space groups using versors. In the future this may also be extended
to magnetic subperiodic space groups [40]. We expect that the present work forms
a suitable foundation for interactive visualization software of subperiodic space
groups similar to the SGV visualization of the 3D space groups of Sect. 3. Fig-
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Table 7 Table of triclinic and monoclinic layer groups. The pure translators Ta,Tb are omitted

Layer Intern. 3D space Intern. Geom. Geom. Layer group

group # notat. group # 3D SGN 3D SGN notat. generators

Triclinic/oblique

L1 p1 1 P 1 P 1̄ p1̄

L2 p1̄ 2 P 1̄ P 22 p22 a ∧ b ∧ c

Monoclinic/oblique

L3 p112 3 P 2 P 2̄ p2̄ a ∧ b

L4 p11m 6 Pm P 1 p..1 c

L5 p11a 7 Pc Pa1 p..a1 cT
1
2

a

L6 p112/m 10 P 2/m P 2̄2 p2̄2 a ∧ b, c

L7 p112/a 13 P 2/c Pa22̄ p2̄2a a ∧ b, cT
1
2

a

Monoclinic/rectangular

L8 p211 3 P 2 P 2̄ p.2̄ b ∧ c

L9 p2111 4 P 21 P 2̄1 p.2̄1 (b ∧ c)T
1
2

a

L10 c211 5 C2 A2̄ c.2̄ b ∧ c, T 1/2
a+b

L11 pm11 6 Pm P 1 p1 a

L12 pb11 7 Pc Pa1 pb1 aT
1
2

b

L13 cm11 8 Cm A1 c1 a, T 1/2
a+b

L14 p2/m11 10 P 2/m P 22̄ p22̄ a, b ∧ c

L15 p21/m11 11 P 21/m P 22̄1 p22̄1 a, (b ∧ c)T
1
2

a

L16 p2/b11 13 P 2/c Pa22̄ pb22̄ aT
1
2

b , b ∧ c

L17 p21/b11 14 P 21/c Pa22̄2 pb22̄1 aT
1
2

b , (b ∧ c)T
1
2

a

L18 c2/m11 12 C2/m A22̄ c22̄ a, b ∧ c, T 1/2
a+b

Fig. 11 How a future
subperiodic space group
viewer software might depict
rod groups 13: p2̄2̄2̄ and 14:
p2̄12̄2̄, and the layer group
11: p1, based on [32, 46]

ure 11 shows how the rod groups 13: p2̄2̄2̄ and 14: p2̄12̄2̄, and the layer group 11:
p1 might be visualized in the future, based on [32, 46].
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Geometric Algebra Model of Distributed
Representations

Agnieszka Patyk

Abstract Formalism based on GA is an alternative to distributed representation
models developed so far: Smolensky’s tensor product, Holographic Reduced Rep-
resentations (HRR), and Binary Spatter Code (BSC). Convolutions are replaced by
geometric products interpretable in terms of geometry, which seems to be the most
natural language for visualization of higher concepts. This paper recalls the main
ideas behind the GA model and investigates recognition test results using both inner
product and a clipped version of matrix representation. The influence of accidental
blade equality on recognition is also studied. Finally, the efficiency of the GA model
is compared to that of previously developed models.

1 Introduction

Since the early 1980s, a new idea of representing knowledge has emerged by the
name of distributed representation. It has been the answer to the problems of recog-
nition, reasoning, and language processing—people accomplish these everyday
tasks effortlessly, often with only noisy and partial information, while computational
resources required for these assignments are enormous. To this day many models
have been built, in which arbitrary variable bindings, short sequences of various
lengths, and predicates are all usually represented as fixed-width high-dimensional
vectors that encode information throughout the elements. In 1990 Smolensky [14]
described how tensor product algebra provides a framework for the distributed rep-
resentation of recursive structures. Unfortunately, Smolensky’s tensor product does
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not meet all criteria of reduced representations as the size of the tensor increases
with the size of the structure. Nevertheless, Smolensky and Dolan [15] have shown
that tensor product algebra can be used in some architectures as long as the size of
a tensor is restricted. In 1994 Plate [13] worked up his Holographic Reduced Rep-
resentation (HRR) that uses circular convolution and vector addition to combine
vectors representing elements of a domain in hierarchical structures. Elements are
represented by randomly chosen high-dimensional vectors. A vector representing
a structure is of the same size as the vectors representing the elements it contains.
In 1997 Pentti Kanerva [10, 11] introduced Binary Spatter Code (BSC) that is very
similar to HRR and is often referred to as a form of HRR. In BSC objects are rep-
resented by binary vectors, and the boolean exclusive OR is used instead of convo-
lution. The clean-up memory is an important part of any distributed representation
model as an auto-associative collection of all atomic objects and complex statements
produced by that system. Given a noisy extracted vector, such a structure must be
able to recall the most similar item stored or indicate that no matching object had
been found.

The geometric algebra (GA) model, which is the focus of this paper, is an alter-
native to models developed so far. It has been inspired by the well-known fact that
most people think in pictures, i.e., two- and three-dimensional shapes, not by using
sequences of ones and zeroes. As far as brain functions are concerned, geometric
computing has been applied thus far only in the context of primate visual system
[5, Chaps. 1 and 2].

In the GA model convolutions are replaced by geometric products, and su-
perposition is performed by ordinary addition. Sentences are represented by
multivectors—superpositions of blades. The concept of GA first appeared in the
19th century works of Grassmann and Clifford but was abandoned for almost a
century until Hestenes brought up the subject in [8] and [9]. The Hestenes system
has recently found applications in quantum computation (Czachor et al. [1–4, 6]),
which appears to be a promising leap from cognitive systems based on traditional
computing.

Section 2 of this paper recalls basic operations that can be performed on blades
and multivectors, using the example Kanerva [11] gave to illustrate BSC. For fur-
ther details on multivectors and interesting exercises, the reader may refer to [7, 12].
Section 3 gives rise to discussion about various ways of asking questions and inves-
tigates the percentage of correctly recognized items under two possible construc-
tions. Section 4 introduces measures of similarity based not on only the inner prod-
uct of a multivector but also on its matrix representation. Finally, Sect. 5 studies
the influence of accidental blade equality on recognition, and Sect. 6 compares the
performance of the GA model with HRR and BSC.

2 Geometric Algebra Model

Distributed representation models developed so far were based on long binary or
real vectors. However, most people tend to think by pictures, not by sequences of



Geometric Algebra Model of Distributed Representations 403

numbers. Therefore geometric algebra with its ability to describe shapes is the most
natural language to mimic human thought process and to represent atomic objects
and complex sentences. Furthermore, geometric product of two multivectors is ge-
ometrically meaningful, unlike the convolution or a binary exclusive OR operation
performed on two vectors.

In this paper we consider the C�n algebra generated by the orthonormal vectors
bi = {0, . . . ,0,1,0 . . . ,0} for i ∈ {1, . . . , n}. The inner product used throughout the
paper is an extension of the inner product 〈·|·〉 from the Euclidean space R

n. For
blades X〈k〉 = x1 ∧ · · · ∧ xk and Y〈l〉 = y1 ∧ · · · ∧ yl , the inner product · : C�n ×
C�n→R is defined as

〈X〈k〉|Y〈l〉〉 =

∣∣∣∣∣∣∣∣

〈x1|yl〉 〈x1|yl−1〉 · · · 〈x1|y1〉
〈x2|yl〉 〈x2|yl−1〉 · · · 〈x2|y1〉

...
. . .

...

〈xk|yl〉 〈xk|yl−1〉 · · · 〈xk|y1〉

∣∣∣∣∣∣∣∣

for k = l, (1)

〈X〈k〉|Y〈l〉〉 = 0 for k �= l (2)

and is extended by linearity to the entire algebra.
Originally, the GA model was developed as a geometric analogue of BSC and

HRR and was described by Czachor, Aerts, and De Moor in [1] and [4]. Be-
fore switching from geometric product to BSC and HRR, one has to realize that
geometric product is a projective representation of boolean exclusive OR. Let
x1 . . . xn and y1 . . . yn be binary representations of two n-bit numbers x and y, and
let cx = cx1...xn = b

x1
1 . . . b

xn
n and cy = cy1...yn = b

y1
1 . . . b

yn
n be their corresponding

blades, b0
i being equal to 1. The following examples show that the geometric prod-

uct of two blades cx and cy equals, up to a sign, cx⊕y :

b1b1 = c10...0c10...0 = 1= c0...0 = c(10...0)⊕(10...0), (3)

b1b12 = c10...0c110...0 = b1b1b2 = b2 = c010...0 = c(10...0)⊕(110...0), (4)

b12b1 = c110...0c10...0 = b1b2b1 =−b2b1b1 =−b2

= −c010...0 =−c(110...0)⊕(10...0) = (−1)Dc(110...0)⊕(10...0), (5)

the number D being calculated as

D = y1(x2 + · · · + xn)+ y2(x3 + · · · + xn)+ · · · + yn−1xn =
∑

k<l

ykxl. (6)

The original BSC is illustrated by an example taken from [4, 11]: atomic objects
are represented by randomly chosen strings of bits, “⊕” is a componentwise addi-
tion mod 2, and “�” represents a thresholded sum producing a binary vector—the
threshold is set at one half of sentence chunks, and a random string of bits is added
in case of an even number of sentence chunks to break the tie. The encoded record
is

PSmith= (name⊕ Pat) � (sex⊕male) � (age⊕ 66), (7)
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and the decoding of name uses the involutive nature of XOR:

Pat′ = name⊕ PSmith

= name⊕ [(name⊕ Pat) � (sex⊕male) � (age⊕ 66)
]

= Pat � (name⊕ sex⊕male) � (name⊕ age⊕ 66)

= Pat � noise→ Pat. (8)

In order to switch from BSC to HRR, the x �→ cx map described in [4] is used.
In the GA model, roles and fillers are represented by randomly chosen blades

PSmith = name ∗ Pat+ sex ∗male+ age ∗ 66. (9)

The “+” is an ordinary addition, and “∗” written between clean-up memory items
denotes the geometric product—this notation will be traditionally omitted when
writing down operations performed directly on blades and multivectors. The “+”
written in the superscript denotes the reversion of a blade or a multivector. The
whole record now corresponds to the multivector

PSmith = ca1...ancx1...xn + cb1...bncy1...yn + cc1...cncz1...zn , (10)

and the decoding operation “&” of name with respect to PSmith is defined as follows:

PSmith & name = name+ ∗ PSmith (11)

= c+a1...an
[ca1...ancx1...xn + cb1...bncy1...yn + cc1...cncz1...zn ]

= cx ± ca⊕b⊕y ± ca⊕c⊕z (12)

= Pat+ noise. (13)

It remains to employ the cleanup memory to find the element closest to Pat′—
similarity is computed by means of the inner (scalar) product. When using the de-
coding symbol “&”, we assume that the reader knows which model is used at the
time. Therefore, there will be no variations of the “&” symbol in BSC, HRR, or in
two possible GA models (depending on the way of asking a question).

For an actual example, let us choose the following representation for roles and
fillers of PSmith:

Pat = c00100,

male = c00111,

66 = c11000,

⎫
⎬

⎭
fillers (14)

name = c00010,

sex = c11100,

age = c10001.

⎫
⎬

⎭
roles (15)
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The whole record then reads

PSmith = name ∗ Pat+ sex ∗male+ age ∗ 66

= c00010c00100 + c11100c00111 + c10001c11000

= −c00110 + c11011 + c01001. (16)

The decoding of PSmith’s name will produce the following result:

name+ ∗ PSmith = c00100 + c11001 − c01011

= Pat+ noise= Pat′. (17)

At this point, inner products between Pat′ and the elements of the clean-up mem-
ory need to be compared. Item in the clean-up memory yielding the highest inner
product will be the most likely candidate for Pat:

〈
Pat|Pat′

〉 = c00100 · (c00100 + c11001 − c01011)= 1 �= 0, (18)
〈
male|Pat′

〉 = 0, (19)
〈
66|Pat′

〉 = 0, (20)
〈
name|Pat′

〉 = 0, (21)
〈
sex|Pat′

〉 = 0, (22)
〈
age|Pat′

〉 = 0, (23)
〈
PSmith|Pat′

〉 = 0. (24)

A question arises as to how to extract information from a multivector, should a
question be asked on the left-hand-side of a multivector

name ∗ PSmith (25)

or on the right-hand-side

PSmith ∗ name. (26)

Furthermore, should we use name or rather name+? Since we can ask about both
the role and the filler, we should be able to ask both right-hand-side and left-hand-
side questions according to the principles of geometric algebra. Such an approach,
however, would make the rules of decomposition unclear, which is against the phi-
losophy of distributed representations. The problem of asking reversed questions on
the appropriate side of a sentence is that we should be able to distinguish roles from
fillers. This implies that atomic objects should be partly hand-generated, which is
not a desirable property of a distributed representation model. If we decide that a
question should always be asked on one fixed side of a sentence, there is no point in
reversing the blade since there is no certainty that the fixed side is the appropriate
one. Independently of the hand-sidedness of questions, in test results the moduli of
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inner products are compared instead of their actual (possibly negative) values. For
right-hand-side questions, we can reformulate (11)–(13) in the following way:

PSmith&name = PSmith ∗ name (27)

= [ca1...ancx1...xn + cb1...bncy1...yn

+ cc1...cncz1...zn ]ca1...an (28)

= ±cx ± cb⊕y⊕a ± cc⊕z⊕a (29)

= ±Pat+ noise= Pat′. (30)

The decoding of PSmith’s name will then take the form

PSmith ∗ name=−c00100 − c11001 − c01011 = Pat′, (31)

resulting in |〈PSmith|Pat′〉| = | − 1| = 1. We will study the effects of asking ques-
tions in various ways in the next section.

3 Recognition

Before we investigate the percentage of correctly recognized items, we need
to introduce the following definitions. Let S and Q denote the sentence and
the question, respectively. Let A be the set of all clean-up memory items A

for which 〈S & Q|A〉 �= 0. We will call A a set of potential answers. Let m =
max{|〈S & Q|A〉| : A ∈A} and T = {A ∈A : |〈S & Q|A〉| =m}. A pseudo-answer
is an answer belonging to the set T but different from the correct answer to S & Q—
even if the difference is only in the meaning and not in the multivector. Of course,
the set T might also include the correct answer; therefore, it is called the set of
(pseudo-)correct answers and is actually the set of answers leading to the highest
modulus of the inner product. We assume that a noisy statement has been recognized
correctly if its counterpart in the clean-up memory is among the (pseudo-)correct
answers.

There are some doubts concerning how the sentences should be built—Plate [13]
adds an additional vector denoting action id (usually a verb) to a sentence, e.g.,

(eat+ eatagt � Mark+ eatobj � theFish)/
√

3, (32)

where “�” denotes circular convolution. We will distinguish between two types of
sentence constructions

• Plate construction, e.g., eat+ eatagt ∗Mark+ eatobj ∗ theFish,
• agent-object construction, e.g., eatagt ∗Mark+ eatobj ∗ theFish.

The agent–object construction will often be denoted as “A–O” for short, especially
in table headings. Preliminary tests conducted on the GA model were designed to
investigate which type of construction suits GA better. The vocabulary set and the
sentence set for these tests are included in Table 1. The sentence set is especially
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Table 1 Contents of the clean-up memory used in tests described throughout this paper

Number Contents

of blades

1 A total of 42 atomic objects: 19 fillers, 7 single-feature roles, and 8 double-feature roles

2 (1a) biteagt ∗ Fido+ biteobj ∗ Pat

(2a) fleeagt ∗ Pat+ fleeobj ∗ Fido

3 (3a) seeagt ∗ John+ seeobj ∗ (1a)

(PSmith) name ∗ Pat+ sex ∗male+ age ∗ 66

4 (1b) biteagt ∗ Fido+ biteobj ∗ PSmith

(2c) fleeagt ∗ PSmith+ fleeobj ∗ Fido

(4a) causeagt ∗ (1a)+ causeobj ∗ (2a)

5 (3b) seeagt ∗ John+ seeobj ∗ (1b)

(5a) seeagt ∗ John+ seeobj ∗ (4a)

6 (4c) causeagt ∗ (1b)+ causeobj ∗ (2a)

7 (DogFido) class ∗ animal+ type ∗ dog+ taste ∗ chickenlike

+ name ∗ Fido+ age ∗ 7+ sex ∗male+ occupation ∗ pet

8 (1c) biteagt ∗DogFido+ biteobj ∗ Pat

(2b) fleeagt ∗ Pat+ fleeobj ∗DogFido

(4b) causeagt ∗ (1b)+ causeobj ∗ (2c)

9 (3c) seeagt ∗ John+ seeobj ∗ (1c)

(5b) seeagt ∗ John+ seeobj ∗ (4b)

10 (1d) biteagt ∗DogFido+ biteobj ∗ PSmith

(2d) fleeagt ∗ PSmith+ fleeobj ∗DogFido

11 (3d) seeagt ∗ John+ seeobj ∗ (1d)

Each sentence carries a number (e.g., “(3a)”) to make further equations more readable

filled with similar sentences to test sensitivity of the GA model to confusing data.
Each sentence carries a number (e.g., “(3a)”) to make further equations more com-
pact and readable.

3.1 Right-Hand-Side Questions

In the previous section we commented on the use of reversions and the choice of
the side of a statement that a question should be asked on. The argument for right-
hand-side (generally: fixed-hand-side) questions without a reversion was that rules
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of decomposition of a statement should be clear and unchangeable. However, the
use of right-hand-side questions poses a problem best described by the following
example. Let the clean-up memory contain seven roles and fillers

seeagt = c00101, John= c00101,

seeobj = c01010, Pat= c10000,

biteagt = c10110, Fido= c10001,

biteobj = c00001,

(33)

and two sentences mentioned in Table 1,

(1a) biteagt ∗ Fido+ biteobj ∗ Pat= c00111 − c10001, (34)

(3a) seeagt ∗ John+ seeobj ∗ (1a)=−c00000 − c01101 − c11011. (35)

Let us now ask the question (3a) & seeobj = (3a) ∗ seeobj. The decoded answer

(3a) ∗ seeobj = (−c00000 − c01101 − c11011)c01010

= −c01010 + c00111 + c10001 (36)

= noise+ biteagt ∗ Fido− biteobj ∗ Pat (37)

results in one noisy chunk and two chunks resembling sentence (1a) but having a
partially different sign than the original (1a). Furthermore,

(1a) · ((3a) ∗ seeobj
) = (c00111 − c10001) · (−c01010 + c00111 + c10001)

= c00111 · c00111 − c10001 · c10001 (38)

= −1+ 1= 0. (39)

Such a situation would not have happened if we asked differently

see+obj ∗ (3a), (40)

since see+objseeobj = 1 for normalized atomic objects.
The similarity of (1a) and (3a) ∗ seeobj equals zero because the nonzero simi-

larities of blades (i.e., 1s) belonging to these statements cancelled each other out.
Cancellation could be most likely avoided if sentence (1a) had an odd number of
blades. This observation has been backed up by test results comparing the perfor-
mance of Plate construction and the agent–object construction.

As expected, the agent–object construction seems to work better for sentences
from which a rather simple information is to be derived, e.g., PSmith & name or
(5a) & seeobj (Figs. 1 and 2, respectively). However, when the information asked was
more complex, e.g., (5a) & seeobj, the Plate construction seemed more appropriate
(Fig. 3). This might be so for at least two reasons:



Geometric Algebra Model of Distributed Representations 409

Fig. 1 Recognition test results for PSmith & name

Fig. 2 Recognition test results for (5a) & seeagt

• Some of the blades belonging to the answer of (5a) & seeobj appear in numer-
ous entries in the cleanup memory listed in Table 1, causing the GA model to
misinterpret the answers it receives after the inner products have been computed.
• The number of blades in (5a) & seeobj is uneven when using Plate construction;

hence the possibility that blades’ similarities cancel each other out is smaller than
in case of the agent–object construction—such hypothesis would be backed up
by test results depicted in Fig. 4.
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Fig. 3 Recognition test results for (5a) & seeobj

Fig. 4 Recognition test results for (1b) & biteobj

These hypotheses led to a conclusion that perhaps a random blade should be added
to those sentences that have an even number of blades, similarly to BSC.

A correct answer might not be recognized for two reasons:

• The correct answer has an even number of blades, and their similarities cancelled
each other out completely because of having opposite signs; hence such an answer
does not even appear within the set of potential answers.
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• There are some pseudo-answers leading to a higher inner product because the
similarities of blades of a correct answer cancelled each other partially.

Adding random extra blades that make the number of blades in a multivector odd
(for short: odding blades) is a solution to the first reason why a correct answer is
not recognized. Further, an odding blade acts as a distinct marker belonging only to
one sentence (for sufficiently large data size) distinguishing it from other sentences,
unlike the extra blade representing action in Plate construction which may appear
in numerous sentences. Unfortunately, to address the second problem, we need to
employ some other measurement of similarity than the inner product. We will show
in Sect. 4 that Hamming and Euclidean measures perform very well in that case.

Observation of preliminary recognition test results led to a conclusion that sen-
tences with an even number of blades behave quite differently than sentences with
an odd number of blades. In the following tests we inspected the average number
of times that blades’ similarities cancelled each other out completely during the
computation of similarity via inner product.

The complete cancellation of similarities takes place only when exactly half of
blades of the correct answer carry a plus sign and the other half carry a minus sign. If
the correct answer has 2K ≥ 2 blades, then the probability of exactly half of blades
having the same sign is

(2K
K

)

22K
(41)

under the assumption that the sentence set is chosen completely at random without
the interference of the experimenter. Figures 5, 6, 7 show three examples of ques-
tions yielding an even-number blade answer and the average number of times their
blades’ similarities cancelled each other out completely.

Fig. 5 The average number of times a correct answer appears within the set of potential answers
((5a) & seeobj)
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Fig. 6 The average number of times a correct answer appears within the set of potential answers
((5b) & seeobj)

Fig. 7 The average number of times a correct answer appears within the set of potential answers
((3d) & seeobj)

3.2 Appropriate-Hand-Side Reversed Questions

Let us recall some roles and fillers,

seeagt = c00101, John= c00101,

seeobj = c01010, Pat= c10000,

biteagt = c10110, Fido= c10001,

biteobj = c00001,

(42)

and two sentences mentioned in Table 1,

(1a) biteagt ∗ Fido+ biteobj ∗ Pat= c00111 − c10001, (43)

(3a) seeagt ∗ John+ seeobj ∗ (1a)=−c00000 − c01101 − c11011. (44)
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The answers to questions (3a) & seeobj and (3a) & John should be computed in dif-
ferent ways:

(3a) & seeobj = see+obj ∗ (3a) ≈ (1a), (45)

(3a) & John = (3a) ∗ John+ ≈ seeagt. (46)

We will concentrate only on the first question

see+obj ∗ (3a) = c+01010(−c00000 − c01101 − c11011)

= c01010(c00000 + c01101 + c11011)

= c01010 + c00111 − c10001 (47)

= noise+ (1a)= (1a)′. (48)

Only two elements of the clean-up memory are similar to (1a)′,
∣∣〈seeobj|(1a)′

〉∣∣ = 1, (49)
∣∣〈(1a)|(1a)′

〉∣∣ = ∣∣(c00111 − c10001) · (c01010 + c00111 − c10001)
∣∣

= |c00111 · c00111 + c10001 · c10001|
= | − 1− 1| = 2, (50)

where seeobj is similar to the noise term only by accident.
Asking reversed questions on the appropriate side has one huge advantage over

fixed-hand-side questions: no similarities cancel each other out, neither completely
nor partially, while similarity is being computed, and hence there is no need for
adding odding vectors. For small data size, blades may cancel each other out at the
moment a sentence is created. Nevertheless, in all cases recognition will quickly
reach 100%, and the only problem that might appear is that several items of the
clean-up memory might be equally similar.

4 Other Measures of Similarity

The inner product is not the only way to measure the similarity of concepts stored
in the clean-up memory. This section comments on the use of matrix representa-
tion and its advantages in the unavoidable presence of similarity cancellation and
many equally probable answers. We will show that comparison by Hamming and
Euclidean measures gives promising results in such cases.

4.1 Matrix Representation

Matrix representations of GA, although not efficient, are useful for performing
cross-checks of various GA constructions and algorithms. An arbitrary n-bit record
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can be encoded into the matrix algebra known as Cartan representation of Clifford
algebras as follows:

b2k = σ1 ⊗ . . .⊗ σ1︸ ︷︷ ︸
n−k

⊗σ2 ⊗ 1⊗ . . .⊗ 1︸ ︷︷ ︸
k−1

, (51)

b2k−1 = σ1 ⊗ . . .⊗ σ1︸ ︷︷ ︸
n−k

⊗σ3 ⊗ 1⊗ . . .⊗ 1︸ ︷︷ ︸
k−1

, (52)

using Pauli’s matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (53)

Let us once again consider the roles and fillers of PSmith:

Pat = c00100,

male = c00111,

66 = c11000,

⎫
⎬

⎭
fillers (54)

name = c00010,

sex = c11100,

age = c10001,

⎫
⎬

⎭
roles (55)

as described in Sect. 2. Their explicit matrix representations are

Pat = c00100 = b3 = σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3 ⊗ 1, (56)

male = c00111 = b3b4b5

= (σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3 ⊗ 1)(σ1 ⊗ σ1 ⊗ σ1 ⊗ σ2 ⊗ 1)(σ1 ⊗ σ1 ⊗ σ3 ⊗ 1⊗ 1)

= σ1 ⊗ σ1 ⊗ σ3 ⊗ (−iσ1)⊗ 1, (57)

66 = c11000 = b1b2 = (σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3)(σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ2)

= 1⊗ 1⊗ 1⊗ 1⊗ (−iσ1), (58)

name = c00010 = b4 = σ1 ⊗ σ1 ⊗ σ1 ⊗ σ2 ⊗ 1, (59)

sex = c11100 = b1b2b3

= (σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3)(σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ2)

× (σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3 ⊗ 1)

= σ1 ⊗ σ1 ⊗ σ3 ⊗ 1⊗ (−iσ1), (60)

age = c10001 = b1b5 = (σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3)(σ1 ⊗ σ1 ⊗ σ3 ⊗ 1⊗ 1)

= 1⊗ 1⊗ (−iσ2)⊗ σ1 ⊗ σ3. (61)

Figure 8 shows six blades making up PSmith for n= 5, and Fig. 9 shows the matrix
representation of PSmith for n ∈ {6,7}; black dots indicate nonzero matrix entries.
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Fig. 8 PSmith and its blades for n= 5

Fig. 9 An example of matrix representation of PSmith for n ∈ {6,7}

The regularity of patterns placed along the diagonals is not accidental. Consider
Cartan representation of blades b2k and b2k−1—the shortest sequence of n − k

σ1’s will occur for k = 4n2 5 (in other words, in blade bn). Therefore, each blade
b1, . . . , bn has at least 6n2 � of σ1’s placed at the beginning of the formula describing

its representation. Hence, there are exactly 26 n2 � “boxes” of patterns placed along
one of the diagonals, each one of dimension 24 n2 5 × 24 n2 5. To extract a part individ-
ual for a given blade, one needs to consider only the last 4n2 5 + 1 of σ ’s or unit
matrices belonging to its representation—the extra σ1 bearing the number n− 4n2 5
is needed to preserve the direction of the diagonal—either “top left to bottom right”
or “top right to bottom left.” If c= bα1 . . . bαm is a blade representing an atomic ob-
ject in the clean-up memory, say Pat, then such an object has a “top left to bottom
right” orientation if and only if m≡ 0 (mod 2). Therefore, we can reformulate (51)
and (52) in the following way:

b2k = σ1 ⊗ . . .⊗ σ1︸ ︷︷ ︸
4 n2 5−k+1

⊗σ2 ⊗ 1⊗ . . .⊗ 1︸ ︷︷ ︸
k−1

, (62)

b2k−1 = σ1 ⊗ . . .⊗ σ1︸ ︷︷ ︸
4 n2 5−k+1

⊗σ3 ⊗ 1⊗ . . .⊗ 1︸ ︷︷ ︸
k−1

. (63)
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Consider once again the representation of PSmith depicted in Fig. 9b. To dis-
tinguish PSmith from other object, we only need to store two of its “boxes,” each
“box” lying along a different diagonal, Fig. 9b shows such two parts. We will call
the two different “boxes” left-hand-side signatures and right-hand-side signatures
depending on the corner the diagonal is anchored to at the top of the matrix. It is
worth noticing that signatures for n= 2k−1 and n= 2k are of the same size, which
causes some test results diagrams to resemble step functions.

Note that the use of tensor products in GA bears no resemblance to Smolensky’s
model, as the rank of a tensor does not increase with the growing complexity of a
sentence.

4.2 The Hamming Measure of Similarity

The first most obvious method of comparing two matrices or their signatures would
be to compute the number of entries they have in common and the number of en-
tries they differ by. Let X = [xij ] and Y = [yij ] be signatures of matrices, i.e.,
i ∈ {1, . . . ,24 n2 5+1}, j ∈ {1, . . . ,24 n2 5}. Let

c(xij , yij ) =
{

1 if xij �= 0 and yij �= 0,
0 otherwise,

(64)

u(xij , yij ) = 1− c(xij , yij ). (65)

Now let us count the numbers of common points and uncommon points

C(X,Y ) =
∑

i,j

c(xij , yij ), (66)

U(X,Y ) =
∑

i,j

u(xij , yij ). (67)

Finally, the Hamming measure for comparing the signatures of matrices computes
the ratio of common and uncommon points

H(X,Y )=
{

C(X,Y )
U(X,Y )

if U(X,Y ) �= 0,
∞ otherwise.

(68)

Such a measure of similarity is fairly fast to calculate since it does not involve
computing any mathematical operations except addition and the final division of
C(X,Y ) and U(X,Y ).

4.3 The Euclidean Measure of Similarity

The second most obvious method for computing matrix similarity is via Eu-
clidean distance. Again, let X = [xij ] and Y = [yij ] be signatures of matrices for
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i ∈ {1, . . . ,24 n2 5+1}, j ∈ {1, . . . ,24 n2 5}. Let

E(X,Y )=
{

1∑
i,j

√||xij |2−|yij |2| if
∑

i,j

√
||xij |2 − |yij |2| �= 0,

∞ otherwise.
(69)

This kind of measure uses more mathematical operations requiring greater time to
compute: the modulus of a complex number, multiplication, and the square root.
The Hamming measure involved calculating only addition and the ratio of common
and uncommon points. Calculating the ratio in both measures results in those mea-
sures taking on a role of “probability” that the matrices are alike rather than describ-
ing the distance between them; therefore, one should avoid calling those measures
“metrics.”

4.4 Performance of Hamming and Euclidean Measures

In this section we present some test results comparing the effectiveness of Hamming
and Euclidean measures against the computation of similarity by inner product.
These tests are conducted on the data set presented in Table 1. Once the inner prod-
uct test indicates more than one potential answer, Hamming and Euclidean mea-
sures are employed upon the subset of the potential answers—not upon the whole
clean-up memory. Figures 10, 11, 12 show test results for sentences with various
numbers of blades using two types of construction, agent–object construction and
agent–object construction with odding blades.

There was no significant difference between results obtained using the agent–
object construction with odding blades and those obtained with the help of Plate
construction; therefore, the results for Plate construction are not presented in the
diagrams. Nevertheless, it is more in the spirit of distributed representations to use
agent–object construction with odding blades since the additional blade is drawn at
random, whereas the use of Plate construction makes data more predictable. Poor
recognition in case of the agent–object construction without odding blades results
from complete or partial similarity cancellation.

It becomes apparent that the best types of construction of sentences for GA are
agent–object construction with odding blades and the Plate construction, as they en-
sure that sentences have an odd number of blades. Further, it is advisable to compute
similarity by the means of Hamming measure or the Euclidean measure instead of
the inner product. The Euclidean measure recognizes 100% of items much faster
(i.e., for smaller data size), but for large data size, both measures behave identically.
Therefore Hamming measure should be used to calculate similarity since its com-
putation requires less time. The success of those measures is due to the fact that
the differences between matrices or their signatures lessen the similarity, whereas
differences in blades did not lessen the value of the inner product considerably.
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Fig. 10 Recognition test via inner product, Hamming and Euclidean measure for (4a) & causeobj

5 The Average Number of Potential Answers

Our point of interest in this section will be analyzing the influence of accidental
blade equality on the number of potential answers under agent–object construc-
tion with appropriate-hand-side reversed questions. The following estimates assume
ideal conditions, i.e., no two chunks of a sentence are identical up to a constant at
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Fig. 11 Recognition test via inner product, Hamming and Euclidean measure for (3b) & seeobj

any time. Intuitively, such conditions could be met for sufficiently large lengths of
the input vectors, whereas vectors of short length will be linearly dependent with
high probability. We will estimate the average number of times that a nonzero inner
product comes up when a noisy output is compared with items stored in the clean-up
memory. We will deal with the following issues:
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Fig. 12 Recognition test via inner product, Hamming and Euclidean measure for (5b) & seeobj

• How often does the system produce identical blades representing atomic objects?
• How often does the system produce identical sentence chunks from different

blades?
• How do the two above problems affect the number of potential answers?
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Let V be the set of multivectors over R
N stored in the clean-up memory, and let

ω(V ) be the maximum number of blades stored in a multivector in V . The set of all
multivectors having the number of blades equal to k is denoted by Sk (S1 being the
set of atomic objects). Naturally, V = S1 ∪ · · · ∪ Sω(V ). Let ñ be a noisy answer to
some question. Under ideal conditions, for every c ∈ V ,

|〈ñ|c〉| �= 0 ⇐⇒ ñ and c share a common blade. (70)

We will begin with a simple example of a multivector with one meaningful blade
and L noisy blades. Let r0, . . . , rL be roles and f0, . . . , fL be fillers for some L> 0.
Consider the question

(r0 ∗ f0 + r1 ∗ f1 + · · · + rL ∗ fL) & r0 (71)

which results in the following noisy answer:

f0 + ñ1 + · · · + ñL, ñi = r+0 ∗ ri ∗ fi, 0 < i ≤ L. (72)

Surely, the original answer f0 belongs to S1. Let s ∈ V be an arbitrary element of
the clean-up memory.

Case 1. Let s ∈ S1 and s �= f0, in a sense that s might have the same blade as f0

but is remembered under a different meaning in the clean-up memory. Using basic
probability methods, we obtain

∣∣〈s|(f0 + ñ1 + · · · + ñL)
〉∣∣ �= 0 ⇐⇒ s = f0 or s = ñ1 or . . . or s = ñL,

(73)

P[s = f0 or s = ñ1 or . . . or s = ñL] = L+ 1

2N
. (74)

Since all blades in S1 are chosen independently, the following is true:

∑

s∈S1,s �=f0

P[s = f0 or s = ñ1 or . . . or s = ñL] = (|S1| − 1)(L+ 1)

2N
. (75)

Case 2. Let s ∈ Sk for some 1 < k ≤ ω(V ) be a multivector made of k blades,
s = s1 + · · · + sk . Since

P
[
s does not contain any of {f0, ñ1, . . . , ñl}

]=
(

1− L+ 1

2N

)k

, (76)

we receive the following formula:

∑

s∈Sk

P
[
s contains at least one of {f0, ñ1, . . . , ñl}

]= |Sk|
(

1−
(

1− L+ 1

2N

)k)
.

(77)
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Fig. 13 Average number of potential answers per 1000 trials with a 1:3 meaningful-to-noisy
blades ratio

Thus, when probing for an answer of f0 + ñ1 + · · · + ñL, L > 0, we are likely to
receive an average of

1+ (|S1| − 1)(L+ 1)

2N
+

ω(V )∑

k=2

|Sk|
(

1−
(

1− L+ 1

2N

)k)
(78)

potential answers.
Figure 13 shows test results compared with exact values given by (78) for noisy

answers containing one meaningful blade and three noisy blades. Note that (78) is
also valid for right-hand-side questions.

The situation becomes more complex when we are to deal with answers having
more than one blade. Although items in S1 are always chosen independently, we
cannot say the same about items belonging to Si, 1 < i ≤ ω(V ), since the sentence
set is chosen by the experimenter. Let us consider the question

(biteagt ∗ Fido+ biteobj ∗ PSmith) & biteobj (79)

yielding an answer of four blades,

name ∗ Pat+ sex ∗male+ age ∗ 66+ bite+obj ∗ biteagt ∗ Fido. (80)

Clearly, the correct answer (PSmith) belongs to S3, but there is one other element
of the clean-up memory listed in Table 1 that contains a portion of PSmith’s blades,
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Fig. 14 Average number of potential answers per 1000 trials with a 3:1 meaningful-to-noisy
blades ratio

DogFido:

class ∗ animal+ type ∗ dog+ taste ∗ chickenlike

+ name ∗ Fido+ age ∗ 7+ sex ∗male+ occupation ∗ pet, (81)

the common blade being sex ∗ male. We have two answers that, under ideal con-
ditions, will surely result in a nonzero inner product: the correct answer in S3 and
a potential answer in S7. By calculations analogous to those leading to (78), the
average number of answers giving a nonzero inner product for the above example is

2+ 4|S1|
2N
+
∑

k∈{3,7}

(|Sk| − 1
)(

1−
(

1− 4

2N

)k)

+
ω(V )∑

k=2,k /∈{3,7}
|Sk|
(

1−
(

1− 4

2N

)k)
. (82)

The number of meaningful blades in this example is odd, and therefore (82) is also
valid for right-hand-side questions. Figure 14 shows test results compared with exact
values computed by (82).

Let us consider another example. Now the question is

(4a) & causeobj, (83)
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Fig. 15 Average number of potential answers per 1000 trials with a 2:2 meaningful-to-noisy
blades ratio

and the answer has a 2:2 meaningful-to-noisy blades ratio,

fleeagt ∗ Pat+ fleeobj ∗ Fido+ cause+obj ∗ (biteagt ∗ Fido+ biteobj ∗ Pat). (84)

Apart from the correct answer in S2 (fleeagt ∗Pat+ fleeobj ∗Fido), there are also two
potential answers belonging to the clean-up memory listed in Table 1

• sentence (2b) in S8—the common blade is fleeagt ∗ Pat,
• sentence (2c) in S4—the common blade is fleeobj ∗ Fido.

Therefore, the equation for calculating the estimated number of potential answers
for this example takes the following form:

3+ 4|S1|
2N
+

∑

k∈{2,4,8}

(|Sk| − 1
)(

1−
(

1− 4

2N

)k)

+
ω(V )∑

k=3,k /∈{4,8}
|Sk|
(

1−
(

1− 4

2N

)k)
, (85)

which is illustrated by Fig. 15.
In this example test results for right-hand-side questions (see Fig. 16) will differ

from those obtained by formula (85) by about 0.5. This is because the scalar product
of (4a) & causeobj and the correct answer will produce two 1s that, with probability
0.5, will have opposite signs and will cancel each other out. Potential answers (2b)
and (2c) do not cause such problems, since the number of their blades is odd. In half
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Fig. 16 Average number of potential answers per 1000 trials with a 2:2 meaningful-to-noisy
blades ratio (right-hand-side questions)

the cases the number of potential answers will be 2 (sentences (2b) and (2c)), and
in half the cases it will be 3 (sentences (2a), (2b), and (2c)), achieving the average
of 2.5 potential answers.

We are now ready to work out a more general formula describing the average
number of potential answers for noisy statements with multiple meaningful blades.
Let S and Q denote the sentence and the question, respectively. Let pk be the num-
ber of potential answers to S & Q in the subset Sk of the clean-up memory V , denote
by L the number of blades in S & Q, and let p = p1 + · · · + pω(V ). The formula for
calculating the estimated number of potential answers to S & Q then reads

p+ (|S1| − p1)L

2N
+

ω(V )∑

k=2

(|Sk| − pk

)(
1−

(
1− L

2N

)k)
, (86)

provided that we use appropriate-hand-side reversed questions. As far as right-hand-
side questions are concerned, this equation may be regarded only as the upper bound
due to cancellation; for a closer estimate, one should investigate elements of the
clean-up memory that have an even number of blades.

6 Comparison with Previously Developed Models

The most important performance measure of any new distributed representation
model is the comparison of its efficiency in relation to previously developed models.
This section comments on test results performed on GA, BSC, and HRR.
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Fig. 17 Comparison of recognition for GA, BSC, and HRR—PSmith & name

Naturally, the question of data size arises as a GA clean-up memory item may
store information in more than one vector (blade), unlike in architectures known
so far. Further, the preferred way of recognition for GA requires the usage of ma-

trix signatures comprising up to 21+24N2 5 entries. However, since one only needs
blades to calculate the matrix signatures, it has been assumed that tests comparing
efficiency of various models should be conducted using the following sizes of data:
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Fig. 18 Comparison of recognition for GA, BSC, and HRR—(4a) & causeobj

• N bits for a single blade in GA,
• KN bits for a single vector in BSC and HRR,

where K is the maximum number of blades stored in a complex sentence belonging
to GA’s clean-up memory under agent–object construction with odding blades. For
the data set presented in Table 1, the maximum number of blades is stored in items
(3d) and (5b) and is equal to 13. Such an approach to the test data size will certainly



428 A. Patyk

Fig. 19 Comparison of recognition for GA, BSC, and HRR—(5a) & seeobj

prove redundant for GA sentences having a lesser number of blades; nevertheless, it
is only fair to provide relatively the same data size for all compared models.

Figures 17, 18, 19 show comparison of performance for GA, BSC, and HRR, and
tested sentences range in meaningful-to-noisy blades ratio from 1:2 to 7:2. Clearly,
GA with the use of Hamming and Euclidean measure ensures quite a remarkable
recognition percentage for sentences of great complexity and therefore great noise,
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whereas the HRR model works better for statements of low complexity. There is
no significant difference in performance of the BSC model as far as complexity of
tested sentences is concerned. BSC does remain the best model, provided that vector
lengths for BSC are sufficiently longer than that of GA. Under uniform length of
vectors and blades, GA recognizes sentences better than HRR or BSC, regardless of
their complexity.

7 Conclusion

We have presented a new model of distributed representation that is based on the
way humans think, while models developed so far were designed to use arrays of
numbers mainly in order to be easily simulated by computers.

After a brief recollection of the main ideas behind the GA model, we inves-
tigated three types of sentence constructions, namely the Plate construction, the
agent–object construction, and the agent–object construction with odding blades.
Two methods of asking questions were also investigated. As a result, in face of
shortcomings of recognition based solely on the inner product, matrix representa-
tion has been employed as a recognition tool for the GA model. Using test results
computed on a toy model, we have shown that Hamming and Euclidean measures
of similarity perform very well under the agent–object construction with odding
blades.

We also studied the ways in which the number of potential answers is affected by
situations in which the system draws at random identical blades denoting different
atomic objects or in which identical sentence chunks are produced from different
blades. A formula estimating the number of potential counterparts of a noisy piece
of information has been derived. Finally, the performance of the GA model has been
compared with that of BSC and HRR models using sentences of various complexity.
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Computational Complexity Reductions Using
Clifford Algebras

René Schott and G. Stacey Staples

Abstract Given a computing architecture based on Clifford algebras, a natural con-
text for determining an algorithm’s time complexity is in terms of the number of
geometric (Clifford) operations required. In this paper the existence of such a pro-
cessor is assumed, and a number of graph-theoretical problems are considered. This
paper is an extension of previous work, in which the authors defined the “nilpo-
tent adjacency matrix” associated with a finite graph and showed that a number of
graph problems of complexity class NP are polynomial in the number of Clifford
operations required. Previous results are recalled and illustrated with Mathematica
examples. New results are obtained, and old results are improved by the develop-
ment of new techniques. In particular, a matrix-free approach is developed to count
matchings, compute girth, and enumerate proper cycle covers of finite graphs. These
new results and techniques are also illustrated with Mathematica examples.

1 Introduction

This paper is an extension of earlier work (cf. [19]), in which the current au-
thors investigated complexity reductions for a number of combinatorial and graph-
theoretic problems. The graph-theoretic results of that paper were based primarily
on nilpotent adjacency matrix methods developed in a number of earlier publica-
tions [17, 18, 20–22].

Combinatorial properties of Clifford algebras provide the underlying context for
this work. All algebras used herein can be realized within Clifford algebras of ap-
propriate signature and grow with the size of the graph being considered. An ideal
architecture would be able to perform computations in Clifford algebras of arbitrary
dimension.
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The previous graph results are recalled in summary in Sect. 3, where additional
examples are computed using Mathematica. In Sect. 4, new results are obtained,
and some previous results are improved by eliminating adjacency matrices, thereby
removing the consideration of matrix multiplication in determining computational
complexity.

Moreover, results on graph and vertex coverings by disjoint “proper” cycles are
obtained by introducing the “three-nil algebra” constructed within a Clifford algebra
of appropriate signature. The generators {ξj }1≤i≤n of this algebra satisfy ξi ξj =
ξj ξi and ξ3

j = 0 for 1≤ i, j ≤ n.
Given a computing architecture based on Clifford algebras, the natural context

for determining an algorithm’s time complexity is in terms of the number of geo-
metric (Clifford) operations required. This paper assumes the existence of such a
processor and examines the number of Clifford operations needed for a number of
combinatorial problems known to be of NP time complexity.

While Clifford algebra computations can be performed on general purpose
processors through the use of software libraries like CLU [14], GluCat [11],
GAIGEN [7], and the Maple package CLIFFORD [1], direct hardware implementa-
tions of data types and operators is the best way to exploit the computational power
of Clifford algebras. To this end, a number of hardware implementations have been
developed.

To our knowledge, the first such hardware implementation was a Clifford copro-
cessor design developed by Perwass, Gebken, and Sommer [15]. Another was the
color edge detection hardware developed by Mishra and Wilson [12, 13], whose
work focused on the introduction of a hardware architecture for applications involv-
ing image processing.

More recently, Gentile, Segreto, Sorbello, Vassallo, Vitabile, and Vullo have de-
veloped a parallel embedded coprocessing core that directly supports Clifford alge-
bra operators (cf. [8–10]). The prototype was implemented on a Field Programmable
Gate Array, and initial tests showed a 4× speedup for Clifford products over the
analogous operations in GAIGEN.

Also of interest is the work of Aerts and Czachor [2], who have shown that
quantum-like computations can be performed within Clifford algebras without the
associated problem of noise and need for error correction.

2 Preliminaries

Definition 1 (Clifford algebra of signature (p, q)) For fixed n ≥ 1, the 2n-
dimensional algebra C�p,q (p+ q = n) is defined as the associative algebra gener-
ated by the collection {ei} (1 ≤ i ≤ n) along with the unit scalar e0 = e∅ = 1 ∈ R,
subject to the following multiplication rules:

ei ej = −ej ei for i �= j, (1)

e2
i =

{
1, 1≤ i ≤ p,
−1, p+ 1≤ i ≤ n.

(2)
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Products are multi-indexed by subsets of [n] = {1, . . . , n} (in canonical order)
according to

ei =
∏

ι∈i
eι, (3)

where i is an element of the power set 2[n].
Define fi = (ei + e2n+i ) ∈ C�2n,2n for each 1 ≤ i ≤ 2n. Then by defining ζj =

f2j−1 f2j for each 1≤ j ≤ n, the following useful algebra is obtained.

Definition 2 Let C�nil
n denote the real Abelian algebra generated by the collection

{ζi} (1≤ i ≤ n) along with the scalar 1= ζ0 subject to the following multiplication
rules:

ζi ζj = ζj ζi for i �= j, and (4)

ζi
2 = 0 for 1≤ i ≤ n. (5)

It is evident that a general element u ∈ C�nil
n can be expanded as

u=
∑

i∈2[n]
ui ζi, (6)

where i ∈ 2[n] is a subset of [n] = {1,2, . . . , n} used as a multi-index, ui ∈ R, and
ζi =∏ι∈i ζι.

Given u ∈ C�nil
n , define the grade-k part of u by

〈u〉k =
∑

|i|=k
ui ζi, (7)

where |i| denotes the cardinality of the multi-index i.
Recalling the Clifford algebra C�p,q,r defined by Porteous [16], in which ei2 = 0

for p+ q + 1≤ i ≤ p+ q + r , one could simply define ζi = e2i−1 e2i for 1≤ i ≤ n

in the Clifford algebra C�0,0,2n. Equivalently, one could use disjoint bivectors of the
Grassmann algebra.

Note that defining ξi = ζ2i−1+ ζ2i ∈ C�nil
2n for 1≤ i ≤ n gives ξi

3 = 0 and ξiξj =
ξj ξi . This construction leads to another useful commutative algebra.

Definition 3 Let n > 0 be an integer, and let the collection {ξ1, . . . , ξn} satisfy the
following: ξi

k = 0 if and only if k ≥ 3 for each 1 ≤ i ≤ n and ξiξj = ξj ξi for
1 ≤ i, j ≤ n. The three-nil algebra is the 3n-dimensional algebra generated by the
collection {ξi} along with the unit scalar and is denoted by C�3nil

n .
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Note that elements of the three-nil algebra have canonical expansion of the fol-
lowing form:

u=
∑

v∈Z3
n

αv ξ
v1
1 · · · ξvn

n . (8)

Given vector v ∈ Z
n
3, let diag(v) denote the n× n diagonal matrix whose main

diagonal is v. Given u ∈ C�3nil
n , define the grade-k part of u by

〈u〉k =
∑

v∈Zn
3

rank(diag(v))=k

αv ξ
v1
1 · · · ξvn

n . (9)

In other words, the grade-k part of u is the expansion over terms with k distinct
generators. This definition extends naturally to the grade-(j, k) part of an element
in C�3nil

n ⊗C�nil
n .

Remark 1 Letting εi = 1
2 (1 + eien+i ) ∈ C�n,n for each 1 ≤ i ≤ n gives another

useful commutative algebra whose generators are idempotent, i.e., elements of
{εi}1≤i≤n satisfy the following multiplication rules:

εi εj = εj εi for i �= j, and (10)

ε2
i = εi for 1≤ i ≤ n. (11)

Combinatorial properties of this algebra make it applicable to graph theory as
well [17, 19].

Letting u denote an arbitrary element of C�nil
n , the scalar sum of coefficients will

be denoted by

〈〈u〉〉 =
∑

i∈2[n]
〈u, ζi〉 =

∑

i∈2[n]
ui. (12)

The definitions of scalar sum and grade-k part extend naturally to C�3nil
n .

A number of norms can be defined on C�nil
n . One that will be used later is the

infinity norm defined by
∥∥∥∥
∑

i∈2[n]
ui ζi

∥∥∥∥∞
= max

i∈2[n]
|ui |. (13)

An algorithm’s time complexity is typically determined by counting the number
of operations required to process a data set of size n in worst-, average-, and best-
case scenarios. The operation of multiplying two integers is typical. Multiplying a
pair of integers in classical computing is assumed to require a constant interval of
time, independent of the integers. The architecture of a classical computer makes
this assumption natural.
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The existence of a processor whose registers accommodate storage and manipu-
lation of elements of C�♦n is assumed through the remainder of this paper.

The C� complexity of an algorithm will be determined by the required number
of C�♦n operations or C�ops required by the algorithm. In other words, multiplying
(or adding) a pair of elements u,v ∈ C�♦n will require one C�op in C�♦n , where ♦
can be replaced by either “nil” or “3nil”.

Evaluation of the infinity norm is another matter. In one possible model of such
an evaluation, the scalar coefficients in the expansion of u ∈ C�♦n are first paired
off, and all pairs are then compared in parallel. In this way, evaluation of the infinity
norm has complexity O(log 2n)=O(n) (cf. [19]).

2.1 Graph Preliminaries

The reader is referred to [24] for graph theory beyond the essential notation and
terminology found here. A graph G= (V ,E) is a collection of vertices V and a set
E of unordered pairs of vertices called edges. Two vertices vi, vj ∈ V are adjacent
if there exists an edge eij = {vi, vj } ∈E. In this case, the vertices vi and vj are said
to be incident with eij .

The number of edges incident with a vertex is referred to as the degree of the
vertex. A graph is said to be regular if all its vertices are of equal degree. A graph
is finite if V and E are finite sets, that is, if |V | and |E| are finite numbers.

A k-walk {v0, . . . , vk} in a graph G is a sequence of vertices in G with initial
vertex v0 and terminal vertex vk such that there exists an edge (vj , vj+1) ∈ E for
each 0 ≤ j ≤ k − 1. A k-walk contains k edges. A k-path is a k-walk in which no
vertex appears more than once. A closed k-walk is a k-walk whose initial vertex is
also its terminal vertex. A k-cycle is a closed k-path with v0 = vk .

For convenience, two-cycles (which have a repeated edge) will be allowed in the
current work. The term proper cycle will refer to any cycle of length three or greater.

A Hamiltonian cycle is an n-cycle in a graph on n vertices, i.e., it contains V.

Given a graph G, the circumference and girth of G are defined as the lengths of the
longest and shortest cycles in G, respectively.

Given a graph G = (V ,E) on n vertices, a cycle cover of G is a collection of
cycles {C1, . . . ,Ck} contained as subgraphs of G such that each vertex of G is con-
tained in exactly one of the cycles.

A graph G is said to be connected if for every pair of vertices vi , vj in G, there
exists a k-walk on G with initial vertex vi and terminal vertex vj for some positive
integer k.

A connected component of a graph G is a connected subgraph G′ of maximal
size. In other words, V (G′) ⊆ V (G), E(G′) ⊆ E(G), and there is no connected
subgraph G′′ with the property V (G′) � V (G′′).

A tree is a connected graph that contains no cycles.
Given a graph G = (V ,E), a matching of G is a subset E1 ⊂ E of the edges

of G having the property that no pair of edges in E1 shares a common vertex. The
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largest possible matching on a graph with n vertices consists of n/2 edges, and such
a matching is called a perfect matching.

The following graph-theoretic results will be useful in later sections.

Lemma 1 Let G be a connected graph on n ≥ 2 vertices. Then G is a tree if and
only if G contains n− 1 edges.

Proof Proof is by induction on the number of vertices n. When n = 2, the graph
G contains one edge and is a tree by definition. Assuming the lemma is true for
some positive integer n ≥ 2, let G be a connected graph on n vertices, and let the
graph H be constructed by appending one vertex v to G. In other words, V (H)=
V (G) ∪ {v}. In order to make H connected, one edge must be appended, joining v

to some existing vertex u of G. Now H is a connected graph on n+ 1 vertices and
is a tree, since v is incident with only one edge.

It remains to be seen that appending two edges incident with v prevents H from
being a tree. Suppose a second edge incident with v is appended to H . This edge
is incident with some vertex w �= u of G. Since G is connected, there exists a walk
in G having initial vertex u and terminal vertex w. Appending vertex v and its two
incident edges to G yields a cycle in H . Thus, H cannot be a tree.

Hence, at most one edge can be appended to G in constructing H . The (n+ 1)-
vertex connected graph H consists of n edges, and the proof is complete. �

Lemma 2 Let G be a connected graph on n≥ 3 vertices. Then G is a cycle if and
only if G is regular of degree 2.

Proof Proof is by induction on the number of vertices n. Note that when n = 3,
the only connected graph on three vertices of degree 2 is the 3-cycle. Assume that
the lemma is true for some n ≥ 3 and let G be a connected graph on n vertices
containing n edges.

Let H be a connected graph constructed from G by appending one vertex v and
an edge incident with v. The edge incident with v must also be incident with a
vertex u of G, which is now of degree 3. To correct this, one edge incident with u

and another vertex w must be removed, lowering the degree of w to 1. In order to
make H regular of degree 2, a new edge incident with v and w is appended. This
makes H a cycle on n+ 1 vertices. �

Lemma 3 (Handshaking Lemma) If G is any graph of e edges, then

∑

v∈VG

deg(v)= 2e. (14)

Proof Since each edge is incident with exactly two vertices, summing degrees over
all vertices counts each edge exactly twice. �
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3 Complexity Reduction for Graph Problems: Nilpotent
Adjacency Matrix Approach

In this section, methods and results of the initial work [19] are recalled, and a num-
ber of Mathematica examples are presented. In the subsequent section, new methods
are developed, some results are improved, and some new results are obtained.

Definition 4 Let G be a graph on n vertices, and let {ζi}, 1≤ i ≤ n denote the null-
square generators of C�nil

n . Define the nilpotent adjacency matrix associated with G

by

Λij =
{
ζj if (vi, vj ) ∈E(G),
0 otherwise.

(15)

Thus, Λ defined over C�nil
n implies that Λk is an n× n zero matrix for all k > n.

Theorem 1 Let Λ be the nilpotent adjacency matrix of an n-vertex graph G. For
any m > 1 and 1 ≤ i ≤ n, summing the coefficients of (Λm)ii yields the number of
m-cycles based at vi occurring in G.

Proof Proof is by induction on m. Entries of (Λm)ii are sums of products of ζj s,
with each product representing the vertices contained in a closed walk of length
m based at the ith vertex. Because ζj

2 = 0 for each j , terms involving revisited
vertices reduce to zero. �

Example 1 To count the 7-cycles in the 16-vertex graph of Fig. 1, the nilpotent ad-
jacency matrix is constructed over C�nil

16 . Computations are performed with Mathe-
matica procedures available online at http://www.siue.edu/~sstaple.

Fig. 1 Randomly generated
graph on 16 vertices

http://www.siue.edu/~sstaple
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Notation To simplify the notation, tr(Λm) is replaced by τm in the remainder of the
paper.

Using the Coppersmith–Winograd algorithm, multiplying two n × n matrices
can be done in O(n2.376) time [5]. It is not clear that the same asymptotic speedup
can be accomplished for the C� case. However, in the remainder of the paper, β

will represent the exponent associated with matrix multiplication. In the worst case,
multiplication of two n × n matrices with entries in C�nil

n requires n3 C�ops, so
β ≤ 3.

Corollary 1 Enumerating the k-cycles in a finite graph on n vertices requires
O(nβ logk) C�ops in C�nil

n .

Corollary 2 Enumerating the Hamiltonian cycles in a finite graph on n vertices
requires O(nβ logn) C�ops in C�nil

n .

Corollary 3 Let Λ be the nilpotent adjacency matrix of an n-vertex graph G. Let
Xm,� denote the number of �-tuples of pairwise disjoint m-cycles appearing in the
graph G, where m≥ 3 and 1≤ �≤ 6n/m�. Then

〈〈
(τm)�

〉〉= (2m)��!Xm,�. (16)
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The following proposition is an immediate corollary of Theorem 1.

Proposition 1 (Graph circumference) Let G be a graph on n vertices with nilpotent
adjacency matrix Λ. The length of the longest cycle in G is the largest integer k such
that

τk �= 0. (17)

Corollary 4 Computing the circumference of a graph on n vertices requires
O(nβ logn) C�ops in C�nil

n .

Proof Computing τn requires O(nβ logn) C�ops. �

Example 2 The circumference and girth of the graph in Fig. 2 are computed using
Mathematica.

Fig. 2 A randomly generated graph on 16 vertices
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Corollary 5 (Graph girth) Let G be a graph on n vertices with nilpotent adjacency
matrix Λ. The length of the shortest cycle in G is the smallest integer k such that

τk �= 0. (18)

The complexity of computing a graph’s girth can now be determined in the same
manner as the complexity of computing circumference.

Corollary 6 Computing the girth of a graph on n vertices requires O(nβ logn)

C�ops in C�nil
n .

In the next proposition, C denotes the diagonal matrix Diag(ζ1, . . . , ζn). It is used
to account for the initial vertices of paths in G.

Proposition 2 (Longest path) Let G be a graph on n vertices with nilpotent adja-
cency matrix Λ. The length of the longest path in G is the largest integer k such
that

CΛk �= 0. (19)

Here, 0 denotes the n× n zero matrix.

Corollary 7 Computing the length of the longest path in a graph on n vertices
requires O(nβ(logn)2) C�ops in C�nil

n .

Proof The maximum possible path length is n. For each 1≤ k ≤ n, computing CΛk

requires O(nβ logk + n2)=O(nβ logn) C�ops. Using binary search then requires
testing O(logn) values of k in Proposition 2. �

4 Matrix-Free Approach to Representing Graphs

Some of the complexity results recalled in the previous section can be improved
by eliminating the nilpotent adjacency matrix. Moreover, the matrix-free approach
facilitates additional results such as the enumeration of matchings.

Let G= (V ,E) be a graph on n vertices. The adjacency structure of G is repre-
sented uniquely within C�nil

n by

Γ =
∑

{vi ,vj }∈E(G)

ζ{vi ,vj }. (20)

In particular, note that Γ is a sum of bivectors representing edges of G by using
each edge’s incident vertices as indices.

Denote by C�nil
n ⊗ R[t] the ring of polynomials in the unknown t with C�nil

n

coefficients.



Computational Complexity Reductions Using Clifford Algebras 441

Proposition 3 Let G be a graph on n vertices with Γ ∈ C�nil
n as defined in (20).

Let M denote the number of edges in a maximal matching of G. Then, etΓ is a
polynomial in C�nil

n ⊗R[t], and

M = degt e
tΓ . (21)

Proof Note that each edge of G is uniquely identified by the pair of vertices with
which it is adjacent. Let k be a nonnegative integer such that k ≤ n

2 . From con-
struction of Γ it follows that Γ k is a sum of blades representing k-subsets of edges
of G. Moreover, by the null-square property of the vertex labels ζk , such k-subsets
of edges must represent k-matchings of G, since two edges incident with a common
vertex would result in a blade with a squared generator.

Let Vk denote the collection of subsets of V representing the vertices incident
with edges in a k-matching of G and note that |Vk| = 2k. For i ∈ Vk , let αi denote
the number of k-matchings on the vertex set i, observe that Γ � = 0 for all � > n

2 ,
and that Γ k = k!∑i∈Vk

αi ζi . Hence,

etΓ =
∞∑

k=0

(tΓ )k

k! =
n/2∑

k=0

(tΓ )k

k! =
n/2∑

k=0

tk
∑

i∈Vk

αi ζi . (22)

It follows immediately that degt e
tΓ = k if and only if k is the greatest integer

for which a k-matching of G exists. �

Example 3 Figure 3 shows Mathematica code used to generate the random bipartite
graph on 14 vertices pictured below and compute the size of a maximal matching.

Fig. 3 Mathematica code for matchings example
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The Mathematica package Combinatorica is used to corroborate the result of Propo-
sition 3.

Corollary 8 The problem of computing the size of a maximal matching in a graph
on n vertices is of complexity O(n) in C�nil

n .

Proof Evaluating etΓ is accomplished by computing t6n/2�Γ 6n/2�, which requires
O(log(n/2)) C�ops in C�nil

n when successive squaring is used. Computing all inter-
mediate powers, summing and multiplying scalars results in O(n) C�ops. �

Recalling that a perfect matching of a graph on an even number n of vertices is a
matching containing n/2 vertices, the following result is immediate.

Corollary 9 Counting the perfect matchings of a bipartite graph on n vertices is of
complexity O(logn) in C�nil

n .

In light of this result, an improvement on the matrix permanent is expected. It
is known that counting the perfect matchings of a bipartite graph is of the same
complexity as computing the permanent of its adjacency matrix.

The problem of computing the permanent of a matrix is known to be &P-
complete [3, 23]. Methods of approximating the permanent using Clifford algebras
have also been discussed [4].

Proposition 4 Let M = (mij )n×n denote an arbitrary n× n matrix. Let {ζi}1≤i≤n
denote commutative null-square generators of C�nil

n , and define ai =∑n
j=1 mij ζj

for each i = 1,2, . . . , n. Then,

n∏

i=1

ai = per(M)ζ[n]. (23)
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Proof Recall the definition of the matrix permanent:

per(M) :=
∑

σ∈Sn

n∏

i=1

miσ(i). (24)

Note that i �= j ⇒ σ(i) �= σ(j).
Now consider the product

n∏

i=1

ai =
n∏

i=1

(mi 1ζ1 + · · · +mi nζn)

=
∑

(k1,...,kn)∈[n]n
m1k1m2k2 · · ·mnkn ζk1ζk2 · · · ζkn . (25)

The null-square property of the collection {ζi} implies that the sum is over n-
tuples of distinct integers:

∑

(k1,...,kn)∈[n]n
m1k1m2k2 · · ·mnkn ζk1ζk2 · · · ζkn

=
∑

(k1,...,kn)∈[n]n
i �=j⇒ki �=kj

m1k1m2k2 · · ·mnkn ζk1ζk2 · · · ζkn

=
∑

σ∈Sn

m1σ(1)m2σ(2) · · ·mnσ(n) ζ[n] = per(M)ζ[n]. (26)

�

An immediate corollary gives the complexity of computing the permanent of an
n× n matrix.

Corollary 10 Computing the permanent of an arbitrary n×n matrix requires O(n)

C�ops in C�nil
n .

Example 4 A randomly generated binary matrix is generated, and its permanent is
computed in Fig. 4.

The corresponding elements of C�nil
16 appear in Fig. 5.

The product
∏16

i=1 bi is computed in Fig. 6. Note that the loop performs 15 =
n− 1 multiplications in C�nil

16 .

Allowing cycles of length two, the permanent of a graph’s adjacency matrix
counts the number of cycle covers of the graph. This is clear from the definition
of permanent (24) when one recalls that every permutation σ ∈ Sn can be written as
a product of disjoint cycles.
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Fig. 4 Random matrix and its permanent

Corollary 11 (Complexity of cycle covers) Counting the cycle covers of a finite
graph on n vertices requires O(n) C�ops in C�nil

n .

Example 5 The graph associated with the matrix appearing in Example 4 is shown
in Fig. 7. The number of cycle covers of this graph is 9.

We now introduce a method for computing the girth and counting the proper
cycle covers of a graph. The adjacency structure of a graph G on n vertices is rep-
resented within C�3nil

n ⊗C�nil|E| by

Ξ =
∑

{vi ,vj }∈E(G)

ξ{vi ,vj }ζvivj . (27)

Here, each edge {vi, vj } of G is associated with a single generator ζvivj of C�nil|E|,
while each vertex is associated with a generator of C�3nil

n .
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Fig. 5 Elements of C�nil
16 associated with random binary matrix of Fig. 4

Fig. 6 Product
∏1

i=1 6bi = per(A)ζ[16]

Fig. 7 Graph associated with
matrix A of Example 4

Observe that a path of length m in a connected graph consists of m edges and
m+ 1 vertices. Hence, any path is also a tree. However, in order for a tree to be a
path, each vertex must be incident with no more than two vertices. Labeling vertices
with elements ξi satisfying ξ3

i = 0 allows us to “sieve out” paths.
Recall that the term proper cycle refers to any cycle of length greater than two.
It is now possible to obtain an upper bound on the number of Hamiltonian

paths in a graph by considering the dimension of the smallest subspace containing
〈Ξn〉(2(n−1),n). For convenience, the following notation is defined.
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Definition 5 Let A be an algebra, and let u ∈A. Then the dimension of u is defined
as the dimension of the smallest linear subspace S of A such that u ∈ S. In other
words,

dim(u)= min{S:A⊇S1u}dim(S). (28)

Proposition 5 Let G be a graph on n vertices with Ξ ∈ C�3nil
n ⊗ C�nil|E| as defined

in (27). Let X denote the number of coverings of vertices of G by a Hamiltonian
path or exactly one path and one or more disjoint proper cycles. Then,

dim
(〈
Ξn
〉
(n,n−1)

)=X. (29)

Proof Each nonzero coefficient of the expansion of 〈Ξn〉(n,n−1) corresponds to a
unique subgraph G′ of G having n vertices and n− 1 edges. Moreover, each vertex
has maximum degree two. In light of Lemmas 1 and 2, it follows that either G′ is a
Hamiltonian path or G′ consists of exactly one path and one or more disjoint proper
cycles as connected components. �

An immediate consequence of Proposition 5 is the following result concerning
Hamiltonian paths.

Corollary 12 Let G be a graph on n vertices with Ξ ∈ C�3nil
n ⊗C�nil|E| as defined in

(27). Let H denote the number of Hamiltonian paths in G. Then,

dim
(〈
Ξn
〉
(n,n−1)

)= 0 3⇒ H = 0, (30)

and

H ≤ dim
(〈
Ξn
〉
(n,n−1)

)
. (31)

Proposition 6 Let G be a graph on n vertices with Ξ ∈ C�3nil
n ⊗ C�nil|E| as defined

in (27). Let k be a positive integer. Then each term in the expansion of 〈Ξk〉(k,k) rep-
resents a covering of G with proper cycles; that is, each term represents a subgraph
G′ whose connected components are disjoint cycles of minimum length 3.

Proof By properties of Ξ ∈ C�3nil
n ⊗ C�nil|E|, each term of 〈Ξk〉 corresponds to a

subgraph G′ of G having k vertices and k edges. Moreover, the degree of each
vertex is less than or equal to two. By Lemma 2, the connected components of G′
are cycles. Since edges are labeled with null-square generators of C�nil|E|, these cycles
contain no repeated edges and are therefore proper. �

An immediate consequence of Proposition 6 is the following result concerning
Hamiltonian cycles.
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Corollary 13 Let G be a graph on n vertices with Ξ ∈ C�3nil
n ⊗ C�nil|E| as defined

in (27). Let ZH denote the number of Hamiltonian cycles in G. Then,

dim
(〈
Ξn
〉
(n,n)

)= 0 3⇒ ZH = 0, (32)

and

ZH ≤ dim
(〈
Ξn
〉
(n,n)

)
. (33)

Example 6 For each k = 3,4, . . . ,8, the grade (k, k) part of Ξk is computed us-
ing Mathematica for a randomly generated graph on eight vertices. Each nonzero
term of 〈Ξk〉(k,k) corresponds to a covering of a k-vertex subgraph using disjoint
cycles of length j ≤ k. The fact that 〈Ξ8〉(8,8) = 0 implies that the graph contains
no Hamiltonian cycles.

In the Mathematica implementation of products of null-cubes, the multiindex is
defined by a vector in Z

8
3 according to

ξv =
8∏

j=1

ξ
vj
j . (34)
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Definition 6 Given ψ ∈ C�3nil
n ⊗ C�nil|E|, the grade-balanced exponential of ψ is

defined by

expgb(u)=
∞∑

k=0

〈
ψk

k!
〉

(k,k)

. (35)

Proposition 7 Let G be a graph on n vertices with Ξ ∈ C�3nil
n ⊗ C�nil|E| as defined

in (27). Let Girth(G) denote the length of the smallest nontrivial cycle in G. Then,
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as a polynomial in C�3nil
n ⊗C�nil|E| ⊗R[t],

degt

(
tn
(

expgb

(
Ξ

t

)
− 1

))
= n−Girth(G). (36)

Proof Note first that tn expgb(
Ξ
t
) is a polynomial in t of degree at most n. The de-

gree of the polynomial is equal to the smallest exponent k appearing among nonzero
terms in the expansion

expgb

(
Ξ

t

)
− 1=

n∑

k=1

〈
Ξk

k!tk
〉

(k,k)

. (37)

By Proposition 6, nonzero terms in the expansion of 〈Ξk〉(k,k) represent disjoint
cycle covers of k-vertex subgraphs in G. The smallest positive integer k0 for which
such a cover exists must correspond to k0-cycles in G, i.e., k0 = Girth(G). Then
tn

tk0
= tn−Girth(G), from which the result is obtained. �

Corollary 14 Computing the girth of a graph with n vertices and |E| edges requires
O(n logn) C�ops in C�3nil

n ⊗C�nil|E|.

Proof Computing expgb(
Ξ
t
) requires computing 〈 Ξk

k!tk 〉(k,k) for 0≤ k ≤ n. �

Proposition 8 Let G be a graph on n vertices with Ξ ∈ C�3nil
n ⊗ C�nil|E| as defined

in (27). Let Z denote the number of proper cycle covers of G. Then,

dim
(〈
Ξn
〉
(n,n)

)= Z. (38)

Proof Note that Ξn represents n-edge subsets taken from the graph G. Recalling
that any collection of n edges incident with n vertices in a connected graph is a cycle
if and only of every vertex has degree 2. By construction of the three-nil algebra,
the terms of Ξn represent subgraphs in which the maximum vertex degree is two
and the minimum vertex degree is one.

All that remains is to show no vertex of this subgraph can have degree one. By
the Handshaking Lemma (Lemma 3), since the subgraph G′ contains n vertices and
n edges, we have

∑

v∈VG′
deg(v)= 2n. (39)

Since the maximum vertex degree is two, this sum can be written in the form
∑

v∈VG′
deg(v) =

∑

v∈VG′
deg(v)=1

deg(v)+
∑

v∈VG′
deg(v)=2

deg(v)

= ∣∣{v ∈ VG′ : deg(v)= 1
}∣∣+ 2

∣
∣{v ∈ VG′ : deg(v)= 2

}∣∣
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= (n− ∣∣{v ∈ VG′ : deg(v)= 2
}∣∣)+ 2

∣∣{v ∈ VG′ : deg(v)= 2
}∣∣

= n+ ∣∣{v ∈ VG′ : deg(v)= 2
}∣∣= 2n. (40)

Hence, |{v ∈ VG′ : deg(v) = 2}| = n. It follows that G′ is a graph whose con-
nected components are nontrivial cycles. �

Corollary 15 Computing the number of proper cycle covers of a graph on n vertices
and |E| edges requires O(logn) C�ops in C�3nil

n ⊗C�nil|E|.

5 Conclusion

The advantages of a computer architecture capable of dealing naturally with geomet-
ric objects are numerous. If one assumes the existence of such a machine, a natural
measure of algorithmic complexity is the number of Clifford operations (C�ops)
required by the algorithm.

In terms of numbers of C�ops required, a number of problems of complexity
class NP are of polynomial complexity. We assert that a Clifford computer would
have natural advantages for solving an assortment of combinatorial and graph-
theoretic problems.

Using currently available technology and techniques, the computations per-
formed are not truly geometric operations. Multiplying two multivectors still re-
quires keeping track of nonzero coefficients of blades of all grades. In fact, handling
homogeneous grade-k multivectors requires keeping track of up to

(
n
k

)
coefficients

Fig. 8 Time (in secs) required for product of random multivectors in C�nil
n
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using the methods employed here. It is worth noting however that this might be dra-
matically improved by using a multiplicative representation of k-blades such as that
found in the work of Fontijne [6].

Examples were computed on a 2.4 GHz MacBook Pro with 4 GB of 667 MHz
DDR2 SDRAM running Mathematica 6 for MAC OS X with the packages Cliff-
math08 and CliffSymNil08 available online at www.siue.edu~sstaple. Multivector
products in C�nil

n are computed combinatorially. The times of computing products
of arbitrary randomly generated multivectors in C�nil

n appear in Fig. 8.
The true power of a geometric computing architecture is yet to be realized. In an

ideal architecture, multiplying two multivectors would require one operation and an
appropriate measurement (projection) to recover the relevant information. However,
an architecture in which the multivector product is of polynomial complexity would
be sufficient for dramatic reductions in complexity.

Acknowledgement The authors thank the referees for a number of helpful comments.
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Efficient Algorithms for Factorization and Join
of Blades

Daniel Fontijne and Leo Dorst

Abstract Subspaces are powerful tools for modeling geometry. In geometric al-
gebra, they are represented using blades and constructed using the outer product.
Producing the actual geometrical intersection (meet) and union (join) of subspaces,
rather than the simplified linearizations often used in Grassmann–Cayley algebra,
requires efficient algorithms when blades are represented as a sum of basis blades.
We present an efficient blade factorization algorithm and use it to produce imple-
mentations of the join that are approximately 10 times faster than earlier algorithms.

1 Introduction

Blades, defined as outer products of vectors, are used in geometric algebra to rep-
resent geometric objects such as directions, points, planes, and circles. In imple-
mentations of geometric algebra [9, 11, 12], blades are commonly represented as
weighted sums of orthogonal basis blades, which we call the additive representa-
tion [10]. A basis blade is the outer product of basis vectors. 2n basis blades are
required to form a basis for an n-dimensional geometric algebra (2n is the size of
the set of all combinations of up to n basis vectors). This basis of blades allows for
straightforward and efficient implementation of many bilinear products such as the
outer product, at least for n < 10.

However, the additive representation makes the implementation of the true sub-
space union (join) and intersection (meet) substantially more involved and expensive
than bilinear products, because they are nonlinear products [6]. To implement the
join of blades in additive representation, one of the input blades must be (partially)
factored in terms of the outer product.

Unfortunately, the terms meet and join have historically been used to denote sim-
plified linearizations of the true subspace intersection and union. For example, [8]
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defines the join as the outer (wedge) product (i.e., join(A,B)=A∧B) and the meet
as meet(A,B) = (A∗ ∧B∗)∗, where the dual ∗ is with respect to the whole vector
space. As a result, software packages based on these definitions (such as Bige-
bra/CLIFFORD [1]) require the dimension of the vector space to be set (dim_V
:= ...) before computing the meet. For example, in CLIFFORD:

> dim_V:=3: M3:=meet(e1we2,e2we3);
M3 := -e2

> dim_V:=4: M4:=meet(e1we2,e2we3);
M4 := 0

This shows that in CLIFFORD the meaning of intersection (meet) depends on the
dimension of the full space, which we find rather strange. So once again, we would
like to stress that this paper is about computing the join (and indirectly the meet) of
blades in any geometric (possibly degenerate) situation. That is, the join is the true
geometric subspace union, e.g., join(e1, e1)= e1 and not join(e1, e1)= 0.

In this paper, we present a new blade factorization algorithm for blades rep-
resented as a sum of based blades. We also use the new factorization algo-
rithm to construct a new algorithm to compute the join. Both new algorithms
are improvements of previous work [2, 3, 6]. Our main contributions are the
FastFactorization algorithm, which factors blades by simply rearranging coordi-
nates, and the StableFastJoin algorithm, which efficiently computes the join in a
numerically stable way.

Having a fast and stable join implementation is especially important because it
encourages people to make proper use of geometric algebra. One of the great ad-
vantages of geometric algebra is that many equations are universal and that the join
allows for universal subspace union. However, if it is perceived as slow in practice,
people will rewrite their equations to avoid the join and replace it with linear inner
and outer products. This will often break the universality of their equations, splitting
one join into many different cases (e.g., if the variable is a line, then do this; if the
variable is a plane, then do that; and so on).

We only briefly consider computing the meet (true subspace intersection) in
Sect. 5.3. Experimentation showed that adjusting our FastJoin algorithm to com-
pute the meet directly is somewhat slower than computing it from the join using [6]

meet(A,B)= (B�join(A,B)−1)�A (1)

and also leads to more generated code. This is why the topic is ignored in the main
text.

We assume a Euclidean metric in all computations, as both factorization and join
are metric-independent operations (i.e., we use the LIFT described in [4]). Through-
out the paper, n is the dimension of the vector space V n, and k is used to denote the
grade of the blade in the current context.
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2 Blade Factorization

The problem of factorizing a blade is the following. Given a k-blade B (in the addi-
tive representation), find k vectors bi such that

B= b1 ∧ b2 ∧ · · · ∧ bk,

where for reasons of numerical stability, we prefer the factors bi to be “sufficiently
nonparallel.”

Not all k-vectors (homogeneous multivectors of grade k) are blades, i.e., not all
k-vectors can be factored (for example, e1 ∧ e2 + e3 ∧ e4). Such nonfactorizable
k-vectors are invalid input to our factorization algorithm. However, the algorithm
will not attempt to detect such input, since feeding it a nonblade does not have
catastrophic consequences. If required, a separate bladedness test as described in
[6] can be employed to make sure that the input to the algorithm is a blade.

To find factors, one may project “probing vectors” pi onto the blade. In geometric
algebra, this is done by the projection operator [5, 6]

qi =
(
pi�B−1)�B. (2)

If qi is not zero, it is a factor of B. By finding k linearly independent vectors qi

a factorization of B has been found (up to scale). A straightforward choice for the
probing vectors pi are basis vectors ei . To obtain the factorization, one selects a total
of k independent projected vectors qi . This procedure is the essence of the outer
factorization algorithm presented in detail in [6], based on ideas in [3]. It works, but
the projection is computationally rather expensive.

2.1 New Algorithm for Blade Factorization

Figure 1 inspired our new factorization algorithm. The figure illustrates the steps
involved in the projection of a vector onto a 2-blade using geometric algebra by
means of the two contractions in (2). The first inner product (pi�B−1) computes the
orthogonal complement in B of the projected vector onto B (with a proportionality
factor of 1/‖B‖2). The second inner product in (pi�B−1)�B computes the orthog-
onal complement of the result within B, and this rotates the previous result in the
B-plane, to become the actual projection.

If we are only looking for factors, we are more interested in the fact that the final
result qi is in B than in it being the precise projection of the original probing vec-
tor pi . However. this “being in B” is already guaranteed by the second contraction
in the projection equation. Hence, in our fast outer factorization algorithm, we save
on the first contraction by using the orthogonal complement of the probing vector
pi with respect to the largest basis blade in B. The whole operation then becomes
merely the selection of appropriate coordinates. We turn this idea into an algorithm
as follows:
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Fig. 1 Orthogonal projection
of a vector onto a 2-blade,
displayed as the undoing of
the orthogonal-complement-
step of the inner product

Algorithm FastFactorization(B):

Let B be a k-blade with 1 < k < n (to exclude trivial cases). The algorithm computes
a factorization B= β b1 ∧ b2 ∧ · · · ∧ bk , where β is a scalar:

1. Find the basis blade F to which the absolute largest coordinate of B refers. Let fi
be the basis vectors in F (i.e., F= f1 ∧ f2 ∧ · · · ∧ fk), and let β be the coordinate
that refers to F.

2. Compute Bs = B/β .
3. For each fi , compute: bi = (fi�F−1)�Bs .

The independency of the vectors bi guarantees that they form a factorization
of Bs .

Theorem The factors bi as computed by the FastFactorization algorithm are lin-
early independent.

Proof Bs is represented as a sum of grade k basis blades Ej : Bs =∑(nk)
j=1

βj

β
Ej . By

distributivity, each bi =∑(nk)
j=1

βj

β
(fi�F−1)�Ej . Let us analyze the contribution of

each Ej to each bi :

• If Ej is equal to F, then (fi�F−1)�Ej = fi .
• Else if Ej is orthogonal to F, we find (fi�F−1)�Ej = 0.
• Else Ej = σj (fi�F−1) ∧ ej for some basis vector ej , where the sign σj = ±1

depends on the order of basis vectors in Ej . This ej cannot be equal to fi , for
then Ej is equal to F, and also ej cannot be any of the other basis vectors in F,
for then Ej would be 0 as it would contain the same basis vector twice. Thus, in
this case,

(
fi�F−1)�Ej =

(
fi�F−1)�(σj

(
fi�F−1)∧ ej

)= (fi�F−1)2 σj ej =±σj ej ,

where ej is not a factor of F.

Thus each bi equals

bi = fi +
∑

ej∧F�=0

(±σj )
βj

β
ej ,
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so that it does not contain any other factor of F than fi itself. Since the fi are linearly
independent, so are the bi . �

To illustrate the proof, let us compute the factors of the example B given above:

B=−0.8 e1 ∧ e2 ∧ e3 + 0.4 e1 ∧ e3 ∧ e4 − 0.2 e2 ∧ e3 ∧ e4 + 0.6 e1 ∧ e2 ∧ e4.

Then F= e1 ∧ e2 ∧ e3 and β =−0.8, and after scaling Bs becomes

Bs = e1 ∧ e2 ∧ e3 − 0.5 e1 ∧ e3 ∧ e4 + 0.25 e2 ∧ e3 ∧ e4 − 0.75 e1 ∧ e2 ∧ e4.

The factors are:

b1 =
(
e1�F−1)�Bs = e1 + 0.25 e4,

b2 =
(
e2�F−1)�Bs = e2 + 0.5 e4, (3)

b3 =
(
e3�F−1)�Bs = e3 − 0.75 e4.

The diagonal typesetting of e1, e2, e3 should make it obvious that the bi are linearly
independent, and because the bi are all contained in B, and there are grade(B) of
them, they must form a factorization of B.

Even though the factors are linearly independent, they are not orthogonal in gen-
eral. For an estimation of how nonorthogonal the factors can be in the worst case,
let us assume that the B is placed so skewly relative to the basis that it has an equal
weight for each basis blade (it is not guaranteed that such an element B is indeed a
blade). For a unit blade B, this gives, as the worst case,

B= 1
√(

n
k

)

(nk)∑

j=1

±Ej , so Bs =
(nk)∑

j=1

±Ej .

For such an element Bs , the largest possible absolute value of an inner product
between a pair of factors is the number of nonzero coordinates:

‖bi · bj‖ ≤ n− k,

and the largest absolute value of an inner product between a pair of normalized
factors is

∥∥unit(bi ) · unit(bj )
∥∥≤ n− k

n− k + 1
.

This last equation shows that the factorization method could be less usable in, for
example, 10-D space (e.g., if k = 5 and n= 10, then ‖unit(bi ) · unit(bj )‖ ≤ 5

6 ) than
it is in, for example, 3-D space, because the factors are potentially less and less
orthogonal as the dimension of space n increases. However, in such spaces a factor-
ized blade representation becomes more attractive than the additive representation
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[10], and issues of efficient factorization of blades in the additive representation are
then less crucial.

We still have to prove that the outer product of the computed factors bi actually
is equal to Bs , i.e., that the scale and orientation of the computed factors are correct.

Theorem The outer product of the factors bi as computed by the FastFactorization
algorithm is equal to Bs :

Bs = b1 ∧ b2 ∧ · · · ∧ bk.

Proof We know that the computed factors bi are actually in Bs and are linearly
independent. So the proof can be simplified to proving that the largest (unit) basis
blade F of Bs is correctly computed, because then the other basis blades will have
the right scale automatically . Now, F = f1 ∧ f2 ∧ · · · ∧ fk , and the contribution to
this basis blade of each computed factor bi is (fi�F−1)�F. Hence, if we can prove
that

(
fi�F−1)�F= fi ,

the full theorem holds. This is trivial because fi is contained in F, allowing us to
rewrite

(
fi�F−1)�F= (fi F−1)F= fi

(
F−1 F

)= fi . �

3 Algorithms for Computing the Join of Blades

Given the FastFactorization algorithm of the previous section, it is straightforward
to formulate fast algorithms for the join based on [2, 6].

3.1 Fast Join Algorithm

Given two blades A and B, the following algorithm computes the join J= join(A,B).
A small constant threshold value ε is required.

Algorithm FastJoin(A,B, ε):

1. Filter out trivial cases:

• If A and/or B is zero, return J= 0.
• Else if A is of grade 0, return J= unit(B).
• Else if B is of grade 0, return J= unit(A).
• Else if A and/or B is of grade n, return J= In.
• Otherwise continue with Step 2.
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2. If required, swap A and B so that grade(A) ≥ grade(B). If the swap is applied,

remember the “swapping-sign” σ = (−1)grade(A)grade(B), otherwise set σ = 1.
The swap is for reasons of efficiency.

3. Set J← unit(A).
4. Find the largest basis blade term F in B.
5. While grade(J) �= n and not all basis vectors fi in F have been tried:

a. Take any basis vector fi in F which has not been tried yet.
b. Compute bi = (fi�F−1)�B.
c. Compute H= J∧ unit(bi ).
d. If (‖H‖ ≥ ε), set J← unit(H).

6. Return σ J.

The implementation of this algorithm can be made very efficient by generating
optimized code for each combination of arguments in Steps 5b and 5c, see Sect. 4.

The algorithm constantly forces blades and vectors to unit size in Steps 5c and 5d.
In an optimized version of the algorithm, one may remove these normalizations and
only normalize the final outcome. To apply this optimization, modify the following
steps of the algorithm:

Step 5(c). Compute H= J∧ bi .
Step 5(d). If ( ‖H‖

‖J‖‖bi‖ ≥ ε), set J←H.
Step 6. Return σ unit(J).

However, if this optimization is employed, one should be careful that floating point
precision does not underflow, as J may be scaled by a factor of ε ‖bi‖ in each loop.

3.2 Computational Example

As an illustration, lets us compute the join(A,B) using the FastJoin algorithm using

A = e1 ∧ e2,

B = e2 ∧ (0.8e1 + 0.3e3 + 0.5e4)= 0.3e2 ∧ e3 − 0.8e1 ∧ e2 + 0.5e2 ∧ e4.

Note that in this example, values are rounded to two decimals.
Since the input is nontrivial and the grades of A and B are equal, Steps 1 and 2

of the algorithm have no effect. We continue with Step 3.

Step 3: J←A.
Step 4: F=−0.8e1 ∧ e2.

Step 5a, loop 1: f1 = e1.
Step 5b, loop 1: b1 = 1.00 ∗ e1 + 0.38 ∗ e3 + 0.63 ∗ e4.
Step 5c, loop 1: H← 0.51 ∗ e1 ∧ e2 ∧ e4 + 0.30 ∗ e1 ∧ e2 ∧ e3.
Step 5d, loop 1: J← 0.86 ∗ e1 ∧ e2 ∧ e4 + 0.51 ∗ e1 ∧ e2 ∧ e3.
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Step 5a, loop 2: f2 = e2.
Step 5b, loop 2: b2 = e2.
Step 5c, loop 2: H← 0.
Step 5d, loop 2: H < eps, so J is not overwritten.

Hence the returned result is the grade 3 blade 0.86∗e1∧e2∧e4+0.51∗e1∧e2∧e3.

3.3 Grade Stability of Fast Join Algorithm

The main loop of the above join algorithm tries to increase the grade of the current J
by taking the outer product with factors of B in Step 5c and accepts the result if its
norm is above some threshold value ε. This leads to a problem in stability of the
grade of result: the factorization of B is dependent on the basis, and hence so is the
grade of J as computed by the algorithm.

This is best illustrated using a simple example. Let A and B be the blades

A= e1 ∧ e2, B= e1 ∧ e2 + 0.2 e1 ∧ e3 + 0.2 e2 ∧ e3,

and compute the factors

b1 = e1 − 0.2 e3, b2 = e2 + 0.2 e3.

If we now compute Step 5c of the FastJoin algorithm for both b1 and b2, we find

H1 =A∧ unit(b1)=−0.196 e1 ∧ e2 ∧ e3,

H2 =A∧ unit(b2)= 0.196 e1 ∧ e2 ∧ e3.

Therefore, ‖H1‖ = ‖H2‖ = 0.196. If ε is taken as 0.2, the algorithm would accept
neither H1 nor H2, and hence return a join of grade 2.

Now suppose that we rotate the input over π/4 in the e1 ∧ e2-plane, producing

A′ = e1 ∧ e2, B′ = e1 ∧ e2 + 0.283 e2 ∧ e3.

This leads to a different factorization,

b′1 = e1 − 0.283 e3, b′2 = e2,

resulting in

H′1 =A′ ∧ unit
(
b′1
)≈−0.272 e1 ∧ e2 ∧ e3,

Hence, with ε = 0.2, the algorithm would now return a J of grade 3. Only the posi-
tion of the blades relative to the basis changed relative to the previous situation, not
their mutual position, so we would have expected the grade of their geometrical join
to have been the same in both cases.

In some application where speed is essential and precision matters less, this be-
havior may be acceptable, but in general one would prefer the grade of the computed
join to be independent of the choice of basis. Hence modifications to the FastJoin
algorithm are required.
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3.4 Improved Fast Join Algorithm

If the required grade of the join J could somehow be computed in advance, this
knowledge could be used to guide the FastJoin algorithm. For instance, we could
first run the FastJoin algorithm as is, and if the resulting J does not have the required
grade, we could “lower our standards” and selectively accept some bi that were
rejected earlier, until the grade of the join is correct. To compute the required grade
of the join, we use the following equation [6]:

grade
(
join(A,B)

)= grade(A)+ grade(B)+ grade(AΔB)

2
. (4)

The delta product Δ is the geometric symmetric difference [4]. It can be computed
as the highest-grade part of the geometric product A B which is nonzero. In prac-
tice, however, we have to deal with floating point round-off errors. To quantify this,
when selecting the top-grade part of the geometric product, we use a small thresh-
old δ and select as the value of AΔB the highest-grade part of (unit(A)unit(B))

which has a norm ≥δ. The grade of the delta product can be determined efficiently
using lazy evaluation; details follow in Sect. 4.4, for now we call this function
FastDeltaGrade(A,B, δ).

We use this function to improve our FastJoin algorithm as follows:

Algorithm StableFastJoin(A,B, ε, δ):

Start with Steps 1–5 of FastJoin(A,B, ε).

6. If (grade(J)= n) or (grade(J)= grade(A)+ grade(B)), return σJ. (σ was com-
puted in Step 2 of the FastJoin algorithm.) Otherwise:

7. Compute grade(join(A,B)) using (4) and threshold δ for the delta product.
8. While (grade(J) < grade(join(A,B)))

a. For all valid i, compute bi = (fi�F−1)�B.
Set bm to that bi which leads to the largest ‖J∧ bi‖.

b. Update J← J∧ bm.
9. Return σJ.

Note that one should set ε ≥ δ, or else in Step 7 blade J may already have a grade
which is larger than the grade required by FastDeltaGrade(A,B, δ). Also note that
in Step 8a it makes no sense to try any of the bi which were already accepted in
Step 5d or in an earlier iteration of Step 8a.

3.5 Numerical Stability of the Fast Join Algorithms

Another issue in the FastJoin algorithm is numerical stability due to the use of float-
ing point values which causes round off errors.
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The main thing we can do to improve numerical stability of both join algorithms
is to choose good factors bi in Step 5c of the algorithms. Each factor bi potentially
extending the current iteration value of the join J can be written as the sum

bi = b‖i + b⊥i ,

where b‖i is parallel to the current J, and b⊥i is orthogonal to it. The outer product

rejects b‖i and uses only b⊥i , i.e.,

H= J∧ bi = J∧ b⊥i .

However, when ‖b‖i ‖< ‖b⊥i ‖, it is likely that the floating point precision of J∧ bi

is low. Hence we would prefer to select those bi which result in the largest ‖J∧ bi‖
because that bi is most orthogonal to the current J.

One solution is trying every bi in each loop and use the one which results in the
largest norm, but this is inefficient.

Fortunately, it is trivial to adjust the StableFastJoin algorithm to be more pre-
cise, with only a minimal performance impact. By running Steps 1 through 5 (its
FastJoin part) using a relatively large threshold like ε = 10−2, we only accept fac-
tors in Step 5d which are reasonably orthogonal to J. When the input blades are
in a nondegenerate configuration, the computed J will have the required grade (as
verified by Step 6 or 7). Otherwise, we will find the best factors in Step 8. This step
is more expensive, but it rarely needs to execute.

It is important to realize that in the StableFastJoin algorithm, δ only affects the
correctness of the grade of result, while ε has an effect on the efficiency of com-
putation and the numerical precision of the result. That is, a larger ε will let the
algorithm run more slowly on average, but it will also increase numerical precision
of the outcome.

4 Implementation

Below we describe the interesting parts of the implementation of each algorithm.
First, we motivate why code generation was used to write the implementations. Then
we describe the implementation in some more detail, also showing a small piece of
code from the core of each, in order to convey the essence of each operation at the
level of coordinates. Because these functions are used internally in the implementa-
tion, coordinates are passed in the form of arrays of floating point values, instead of
being encapsulated in classes as is usual in Gaigen 2.

We also give a complexity order of the size of the generated code. This is relevant
because the amount of generated code is large enough to limit the practicality of the
code generation approach, especially for the join algorithms.
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4.1 Code Generation

After the FastFactorization algorithm has found the largest basis blade F, it only
has to scale, copy, and selectively negate certain coordinates from the input blade
to the output factors. Exactly what coordinates have to be copied where depends
on the grade of the input blade and which basis blade was the largest. This can be
implemented very efficiently by explicitly spelling out the code for each possible
case. However, writing that amount of code by hand is tedious and error-prone.

Thus, to implement the FastFactorization and the FastJoin algorithms, we have
written a code generator on top of the Gaigen 2 code generation framework [10].
The code generator generates a C++ implementation of the algorithms for a specific
n and for a specific order and orientation of the basis elements. It generates the code
of the factorization code without any conditionals (if, else, switch) for each
valid case. For the join, it also writes out the outer products. We have also written a
code generator for evaluation of the grade of the delta product.

4.2 Implementation of the Fast Factorization Algorithm

The generated implementation of the FastFactorization algorithm first filters out
trivial cases (0, scalars, vectors, pseudoscalars). These are handled separately.

If the input blade is not one of these trivial cases, the implementation finds the
absolute largest coordinate of the input blade and the respective basis blade F. The
proper scale β of the factorization is computed, and the coordinates are “normal-
ized,” so that the absolute largest coordinate is 1.

The implementation then calls an optimized factorization function which imple-
ments the actual factorization. One such generated function is available for each
possible largest basis blade F, and they are called via a lookup table. Figure 2 shows
an example of such a function. It is clearly visible that the function just copies (and
possibly negates) coordinates of the input blade to the coordinates of a factor. Also,
a number of coordinates of the factors are set to one or zero, as was already apparent
in (3).

The delightful computational simplicity of this way of factorization is the main
idea of this paper. It makes our factorization fast and, with it, the algorithms for the
join that employ it.

In the order of
∑

k

(
n
k

)= 2n of these functions are generated, each with code size
proportional to k n, for a total code size of O(

∑
k nk

(
n
k

)
)=O(n2 2n−1).

4.3 Implementation of the Fast Join Algorithm

The generated implementation of the FastJoin algorithm closely follows its descrip-
tion in Sect. 3.1.
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Fig. 2 Example of a generated factorization function which computes the factors bi of a nor-
malized blade B. This function implements the core of the FastFactorization algorithm for
n = 5, k = 3, and F = e2 ∧ e3 ∧ e4. The indices refer to a particular ordering of the basis
blades in this implementation. For instance, the first line b[2][0] = B[0] corresponds to
(e4�(e2 ∧ e3 ∧ e4)

−1)�(β123 e1 ∧ e2 ∧ e3)= β123 e1

Fig. 3 Example of a generated function which combines the extraction of a single factor of B
with computing the outer product of J with that factor. The function stores the outcome of the
outer product in H and returns the squared norm of the factor. This particular function computes
H= J∧ ((ei�F)�B) for (ei�F= e3 ∧ e5), grade(J)= 3, and n= 5

The most significant optimization is the main loop of the algorithm: the imple-
mentation combines the factorization of Step 5b with the outer product of Step 5c.
This allows it to take advantage of the zero coordinates which are in the factors due
to the FastFactorization algorithm. One factor-and-outer-product function is gener-
ated for each valid combination of ei�F and grade(J) in Steps 5b, c of the algorithm.
These functions are called via a lookup table. Figure 3 shows an example of such a
function.

There are in the order of O(
∑

j

∑
k

(
n
k

)
) = O(n2n) of these functions, each

with code size proportional to n
(
n
j

)
, for a total code size of O(

∑
j

∑
k

(
n
k

)
n
(
n
j

)
) =

O(n22n).
The functions do not normalize the factors; instead, they return the squared norm

of the factors. The main loop uses this norm to correct the threshold check (Step 5d).
This optimization was described in Sect. 3.1.

After the main loop of the algorithm has been completed, the function may com-
pute the grade of the delta product. This is only done if its outcome is required to
verify that J is of the correct grade, as was described in Sect. 3.4. The delta product
is implemented by an optimized function described next.



Efficient Algorithms for Factorization and Join of Blades 469

4.4 Implementation of the Delta Product

The delta product is the highest-nonzero-grade part of the geometric product. In the
context of the StableFastJoin algorithm, we are only interested in its grade, but we
need to compute (part of) the actual delta product to establish what this grade is.
Fortunately, it is possible to limit the candidate grades, so that we can avoid com-
puting the full geometric product. Our FastDeltaGrade(A,B, δ) algorithm evaluates
the grade of the delta product using the following optimizations:

• First of all, we compute the grade parts from high-to-low and abort early when we
find that the norm of the grade part is above the threshold δ. We implement this
early-abort strategy per coordinate. So only as many coordinates of the geometric
product are computed as are required to determine which grade part has a norm
exceeding δ.
• Secondly, no grade part of the geometric product A B above n needs to be com-

puted, as such grade parts do not exist in the geometric algebra of V n. Also, no
grade part above 2n− (grade(A)+ grade(B)) needs to be computed; these grade
parts cannot be nonzero for then (4) would have grade(join(A,B)) exceeding n,
which is obviously impossible.
• The lowest possible grade part that may be nonzero is (grade(A) − grade(B))

(recall that grade(A) ≥ grade(B) after Step 2 of the FastJoin algorithm). But
this grade part actually never has to be computed explicitly: if all grade parts
above it are zero, then B must be fully contained in A, and then grade(AΔB)=
grade(A)− grade(B).

To summarize, the grade parts k of the geometric product which must actually be
evaluated to implement the delta product for use with the FastJoin algorithm are

grade(A)− grade(B) < k ≤min
{
n,2n− grade(A)− grade(B)

}
.

The code for the implementation of the FastDeltaGrade(A,B, δ) algorithm is gen-
erated automatically. One function is generated for each valid combination of
grade(A) and grade(B). Figure 4 shows an example of such a function.

If a stands for the grade of A and b stands for the grade of B, then in the order
of O(

∑
b b

2) = O(n3) such functions are generated, each with a code size in the
order of O(

∑
b

∑
a≤b
(
n
b

)(
n
a

)
) < O(

∑
b

(
n
b

)
2n−1)=O(22n−1). The total code size is

O(
∑

b

∑
a≤b ba

(
n
b

)(
n
a

)
) < O((

∑
b b
(
n
b

)
)(
∑

a a
(
n
a

)
))=O(n222n−2).

4.5 Benchmarks

We performed our benchmarks on a 1.83 GHz Core2 Duo notebook, using a single
thread (i.e., one CPU). The programs were compiled with Visual C++ 2005, using
standard optimization settings. 32 bit floating point arithmetic was used.

We ran benchmarks for 3 ≤ n ≤ 6. Above 6-D, our particular implementation
starts to make less sense because the amount of generated code becomes too large
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Fig. 4 Example of a function that computes AΔB for grade(A) = 2, grade(B) = 2, and n = 3.
Note how the squared norm of the grade 2 part is built up, allowing for early-abort after the evalu-
ation of each coordinate

Fig. 5 Example of a generated outer product function from Gaigen 2. Our benchmarks are
relative to this type of functions. This particular example computes the outer product of a vector
and a 2-blade for n= 4

(one may then switch to a conventional hand-written implementation which will be
somewhat less efficient, see the discussion in Sect. 5). Besides giving absolute val-
ues, such as the number of factorizations that can be performed per second, we also
list benchmarks relative to the outer product of a vector and a 2-blade in the same
algebra. This gives a fair impression of how expensive a factorization or join is rel-
ative to a straightforward bilinear product. The efficiency of such bilinear products
as generated by Gaigen 2 is comparable to optimized hand-coded linear alge-
bra [10]. Figure 5 shows an example of an outer product.

4.5.1 Factorization Benchmarks

To benchmark the FastFactorization(A,B) algorithm, we generated a number of ran-
dom blades of random grades. The grades of the blades were uniformly distributed
over the range [0, n]. A random k-blade was generated by computing the outer prod-
uct of k random vectors. A random vector was generated by setting the n coordinates
of the vector to random values, uniformly distributed in the range [−1,1]. Table 1
shows the results for our implementation.
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Table 1 Benchmarks of our implementation of the FastFactorization algorithm. The first column
(“without orthogonalization”) lists the cost of a factorization relative to the outer product of a
vector and a 2-blade, without using Gram–Schmidt to orthogonalize resulting the factors. The
third column “with orthogonalization” lists those values for the case where the Gram–Schmidt
algorithm is applied after factorization. The columns “factorizations per second” lists absolute
values (in millions), with and without using orthogonalization

n Without Factorizations With Factorizations

orthogonalization per second (w/o) orthogonalization per second (with)

3 5.1× 15 M 8.5× 9.1 M

4 5.2× 9.2 M 9.9× 4.8 M

5 3.4× 5.2 M 6.5× 2.8 M

6 3.8× 2.8 M 7.1× 1.5 M

For reference, we also benchmarked the implementation of the factorization al-
gorithm as described in [6], which is the direct predecessor the FastFactorization al-
gorithm. This algorithm uses the regular projection operator to find factors, and the
implementation does not use code generation as extensively as the implementation
of our new algorithm. We measured 1.5 M factorizations per second in 3-D, 0.47 M
factorizations per second in 4-D, and 0.25 M factorizations per second in 5-D (a 6-D
implementation is not provided with the software of [6]). Thus we achieved a more
than tenfold improvement in performance with our new algorithm.

4.5.2 Join Benchmarks

To benchmark the FastJoin and StableFastJoin algorithms, we generated pairs of
random blades A and B using the same method as described for the factorization
benchmark. The grades of the blades A and B were uniformly distributed over the
range [0, n]. However, the pairs of random blades were generated such that they
shared a common factor. The grade of the common factor was uniformly distributed
over the range [0,min{grade(A),grade(B)}].

We measured the time it took to compute the join and the time it took to compute
the meet as well (i.e., the meet is computed from the join using (1)). We bench-
marked both the FastJoin algorithm (ε = 10−6) and the StableFastJoin algorithm
(ε = 10−2, δ = 10−6).

Table 2 shows the relative results, while Table 3 shows the absolute results.
In Table 2 also shows figures for computing the Gram–Schmidt orthogonalization

of the factors of each pair of random blades. For this, we retained the factors that
generated the blades, performed a standard Gram–Schmidt orthogonalization, and
discarded the dependent factors (using the same ε threshold as for the join). This
algorithm was implemented using the same principles (i.e., optimizing and unrolling
the inner loop of the algorithm, but without using code generation) as the FastJoin
algorithm. Hence, the last column allows us to compare the FastJoin algorithms to
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Table 2 Relative benchmarks of our implementation of the FastJoin algorithm. The values are
relative to the outer product of a vector and a grade 2 blade in the same algebra (i.e., lower values
are better)

n FastJoin FastJoin StableFastJoin StableFastJoin Gram–

+ meet + meet Schmidt

3 9.8× 12× 9.8× 12× 12×
4 8.7× 11× 9.1× 11× 12×
5 5.8× 7.7× 7.0× 8.8× 7.9×
6 6.4× 9.5× 6.8× 10× 8.0×

Table 3 Absolute benchmarks of our implementation of the FastJoin algorithm (millions of prod-
ucts per second). See Table 2 for relative benchmarks

n FastJoin FastJoin StableFastJoin StableFastJoin

+ meet + meet

3 7.4 M 6.0 M 7.4 M 6.0 M

4 5.4 M 4.1 M 5.2 M 4.0 M

5 3.1 M 2.4 M 2.6 M 2.1 M

6 1.8 M 1.2 M 1.6 M 1.1 M

a classical linear algebra approach for computing a minimal basis set which spans a
subspace union.

As with the factorization algorithm, we also performed a benchmark on the join
algorithm described in [6], which was the predecessor to our new algorithm. This
algorithm does not use fast factorization and uses less extensive code generation. It
also computes the join and meet simultaneously, a strategy which actually paid off
for that algorithm (as opposed to our new algorithm, see Sect. 5.3). We measured
0.58 M joins per second in 3-D, 0.46 M joins per second in 4-D, and 0.29 M joins
per second in 5-D. Thus we have achieved approximately a 10-times performance
improvement.

4.5.3 Code Size

Table 4 lists the size of the generated code for our factorization and join implemen-
tation. The code size grows in approximate agreement with the computed complex-
ities of O(n22n−1) and O(n22n), respectively. We state “approximate” because for
low-dimensional spaces, the constant code size of the algorithm (which is included
in the table) can be relatively large compared to the amount of generated code, es-
pecially for the factorization algorithm.
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Table 4 Source code size of
our FastFactorization and
StableFastJoin
implementations

n FastFactorization FastJoin

3 3.74 kB 14.7 kB

4 5.85 kB 26.4 kB

5 11.4 kB 75.9 kB

6 25.8 kB 321 kB

7 62.1 kB 1.47 MB

5 Discussion

5.1 Fast Factorization Algorithm

Our benchmarks show that the FastFactorization algorithm is in the order of 5 times
slower than a regular outer product in the same space. Adding a Gram–Schmidt
orthogonalization to orthogonalize the factors approximately doubles the cost of the
function.

The time complexity of the FastFactorization algorithm is O
((

n
n/2

))=O(n−1/22n)

(using the Stirling approximation of factorials) due to the step which finds the largest
coordinate of the input blade. The fact that this step uses conditional statements
makes it extra expensive on modern processors. The outer product of a vector and
a 2-blade relative to which we presented the benchmarks in Table 1 has a time
complexity of O(n3) and uses no conditional statements (an outer product of ar-
bitrary blades has a time complexity around O(2n)). As a result, FastFactorization
is about five times more expensive than such an outer product. The benchmarks
in Fig. 1 suggest that the FastFactorization algorithm becomes less expensive
compared to the outer product as n becomes larger, but if one plots

(
n

n/2

)
/n3 for

1≤ n≤ 20, it becomes clear that n= 6 is in fact the turning point beyond which the
FastFactorization should become exceedingly expensive relative to the outer prod-
uct. So our figure of five times slower is only valid for the limited range of n for
which we benchmarked.

Note that it is rather remarkable (but logical) that in general the FastFactorization
algorithm does not use all coordinates of the input blade once it has found which
coordinate is the largest one: the k factors of a k-blade have k n coordinates, which
in many cases is less than the

(
n
k

)
coordinates of the blade. For example, in Fig. 2,

the coordinates B[4], B[5], and B[7] are not used (B[3] is known to be 1, and
so it is not used either). This demonstrates the redundant encoding of blades in the
additive representation, and the implications of the Plücker relations [7].

The code size (Table 4) of the generated implementation is acceptable (less than
100 kB) up to 7-D, but extrapolation of the figures suggests that a 10-D implementa-
tion would about 1 MB in size. This is confirmed by the theoretical figure that code
size should be in the order of O(n2 2n−1). Thus, in high-dimensional spaces, we
recommend using a more conventional implementation approach. Our initial imple-
mentation of the FastFactorization algorithm was implemented without using code
generation and was about two times slower than the generated implementation.
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The FastFactorization algorithm is a useful building block for other algorithms.
In this paper we used it for computing the join. Another useful application may be a
fast “blade manifold projection” function which projects a nonblade onto the blade
manifold in Grassmann space (the elements satisfying the Plücker relations). This
may be implemented by naively “factoring” the nonblade and using the factors thus
obtained to compute a valid blade as their outer product. We have also used the
FastFactorization algorithm to factor conformal point pairs into individual points.

5.2 FastJoin Algorithms

The benchmarks show that our implementation of the FastJoin algorithms is slightly
faster than an implementation of Gram–Schmidt orthogonalization applied to the
factors of the input blades. This is quite remarkable, as it means that even if the only
geometry you need is computing the join, you may be better off using the basis-of-
blades representation rather than a factorized representation in terms of basis sets
(at least for such low-dimensional spaces).

To make sure the grade of the join which is computed by our FastJoin algorithm
is independent of the (arbitrary) basis, use of the delta product is required, invoking
additional computational cost. However, the delta product needs to be invoked only
when the algorithm cannot determine that it has computed a join of the right grade.
As a result, the cost of the StableFastJoin (which uses the delta product) is only
about 10% higher than that of the straightforward FastJoin algorithm.

The time complexity of the FastJoin algorithms is O(n2
(

n
n/2

)
) = O(n3/22n), as

we need to compute in the order of n the outer product of vectors with blades (in
Step 5c), and each of these outer products has a time complexity of order n

(
n

n/2

)
.

This means that the cost FastJoin algorithm relative to a vector-2-blade outer product
should increase right from n= 3. The fact that the benchmarks in Fig. 2 do not agree
with this is likely due to the decreasing relative cost of the overhead (filtering out
special cases, and such) of the algorithm.

We implemented our join algorithms using code generation. Starting around 7-D,
this is no longer tractable. The generated code for 6-D is 0.32 MB, while the code for
7-D is 1.47 MB in size; generating and compiling the 7-D code took several minutes.
The size of the code is in the order of n22n. Hence, for n≥ 7, we recommend using a
more conventional implementation which does not explicitly spell out the functions
used in the inner loop for all possible arguments.

5.3 Simultaneous Computation of Meet and Join Costs More

It is possible to compute the meet directly, instead of computing it from the join
using (1). In [6, 10], we factorize the dual of the delta product

(AΔB)∗ = s1 ∧ s2 ∧ · · · ∧ sk
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and project the factors si onto either A or B. If those projections are not zero, they
are factors of meet(A,B). This method is due to [2].

Using this approach, one may also compute both the join and the meet simulta-
neously. Since factors of the dual of the join may be obtained as the rejection of the
si from A or B (i.e., the operation (si ∧A)A−1, see [6]), such an algorithm is able
to compute the join and the meet simultaneously and terminate as soon as either is
fully known.

We implemented this idea using the same code generation techniques as used for
the FastJoin algorithms, expecting it to be somewhat faster than the StableFastJoin
algorithm. However, it turned out to be slightly slower (5% to 15%) and required
about 1.5 times as much code to be generated.

One of the reasons for it being slower is that a full evaluation of the (dual of the)
delta product is always required. By contrast, the StableFastJoin algorithm merely
computes the grade of the delta product (not its numerical value), and only when
“in doubt.” One of the reasons for the larger code size is that one needs both a
meet-from-join and a join-from-meet function.

Besides being slower, the implementation of the simultaneous meet and join al-
gorithm also takes more effort because the algorithm is more complex. For all these
reasons, we did not include a detailed description of it in this paper.

6 Conclusion

Using our FastFactorization algorithm, the outer factorization of a k-blade in V n

is a computationally trivial operation. It amounts to copying and possibly negating
selected coordinates of the input blade into the appropriate elements of the factors.
Implemented as such, factorization is only about five times slower than an outer
product in the same algebra, at least in the low-dimensional spaces (less than 7-D)
for which we benchmarked. The O(n−1/22n) time complexity of the algorithms
is determined by the number of coordinates of the input k-blade, which becomes
exceedingly large in high-dimensional spaces.

The join and meet of blades are relatively expensive products, due to their nonlin-
earity. However, when efficiently implemented through our FastJoin algorithm, their
cost is only in the order of 10 times that of an outer product in the same algebra,
compared to 100 times in previous research. Again, these figures are valid only for
low-dimensional spaces. The O(n3/22n) time complexity makes clear that in high-
dimensional spaces, one should use a multiplicative presentation of blades and use
classical linear algebra algorithms like QR (which has O(n3) time complexity) to
implement the join, as in [10]. Our StableFastJoin algorithm, which takes both grade
and numerical stability into account, is just 10% slower than the FastJoin algorithm.

These speeds are obtained at the expense of generating efficient code that spells
out the operations for certain combinations of the basis blades and grades in the
arguments. While efficient, this is only truly possible for rather low-dimensional
spaces, since the amount of code scales as O(n2 2n−1) for FastFactorization and
O(n22n) for the FastJoin algorithm.
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Gaalop—High Performance Parallel Computing
Based on Conformal Geometric Algebra

Dietmar Hildenbrand, Joachim Pitt,
and Andreas Koch

Abstract We present Gaalop (Geometric algebra algorithms optimizer), our tool for
high-performance computing based on conformal geometric algebra. The main goal
of Gaalop is to realize implementations that are most likely faster than conventional
solutions. In order to achieve this goal, our focus is on parallel target platforms like
FPGA (field-programmable gate arrays) or the CUDA technology from NVIDIA.
We describe the concepts, current status, and future perspectives of Gaalop dealing
with optimized software implementations, hardware implementations, and mixed
solutions. An inverse kinematics algorithm of a humanoid robot is described as an
example.

1 Introduction

In recent years, geometric algebra, and especially the 5D Conformal geometric al-
gebra, has proved to be a powerful tool for the development of geometrically in-
tuitive algorithms in a lot of engineering areas like robotics, computer vision, and
computer graphics. However, runtime performance of these algorithms was often
a problem. In this chapter, we present our approach for the automatic generation
of high-performance implementations with a focus on parallel target platforms like
FPGA or CUDA. In Sects. 2 and 3, we present some related work and the basics of
conformal geometric algebra. Our main goal with Gaalop is to realize implemen-
tations that are most likely faster than conventional solutions. The main concepts
combining both approaches for the optimization of software and of hardware im-
plementations are presented in Sect. 4. The corresponding architecture of Gaalop
is described in Sect. 5. An inverse kinematics algorithm for the leg of a humanoid
robot is presented in Sect. 6 as a complex example for the use of Gaalop. The current
status of Gaalop and its future perspectives can be found in Sect. 7.
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2 Related Work

Despite the tremendous expressive power of geometric algebra, it has only seen lim-
ited use in practical applications. One of the reasons for this might be that the ac-
tual processing of geometric algebra algorithms requires significant computational
effort. Related tools with the intention of optimizing geometric algebra implemen-
tations focus either on pure software or pure hardware solutions.

2.1 Software Implementations

The most advanced pure software solution is Gaigen developed at the university of
Amsterdam (see [2] and [3]). You can find some benchmarks comparing Gaigen
with other software implementations in [3].

2.2 Hardware Implementations

To resolve the above mentioned quandary, it is promising to look at dedicated hard-
ware architectures for the acceleration of geometric algebra algorithms. Current
integrated circuit technology offers a means to achieve this in the form of field-
programmable gate arrays (FPGAs). These reconfigurable devices allow the im-
plementation of a wide variety of digital logic circuits without the need for a very
expensive photochemical circuit fabrication. Furthermore, the same device is able
to realize different logic circuits by reconfiguring them onto the same silicon area.

2.2.1 Prior Attempts

The first serious approach is described by Perwass et al. [16]. That accelerator re-
alizes the geometric product implemented on a 20-MHz FPGA connected via the
PCI bus to the host computer. Due to the limited capacity of the FPGA employed,
techniques such as wide parallel or pipelined processing and the use of fast on-chip
memories were not exploited. Similarly, subspace coefficients consist only of 24-bit
integers, and other fixed or floating point formats are not supported. The architec-
ture is able to process multivectors of up to eight dimensions, with smaller vec-
tors being processed faster. While the resulting accelerator does achieve a speedup
over a conventional software programmable processor when counting clock cycles,
comparisons with actual clock cycles lead to a practical slow-down when using the
FPGA-based solution over simple software running on a conventional computer.

A different approach was presented by Gentile et al. [5]: This accelerator sup-
ports functions beyond the geometric product, namely, the outer product, contrac-
tions, etc., each being implemented on a dedicated hardware unit. The architecture
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is limited to multivectors of three to four dimensions. As before, the coefficients are
limited to integers, in this case 16-bit wide. The FPGA implementation requires a
lot of communication with the host computer over the PCI bus. Additionally, when
taking the different clock frequencies into account to compute the real-world ex-
ecution times, this approach does not lead to a speedup compared to a software
implementation.

An update of this work is given by Franchini et al. [4]: the operation-specific
hardware units have now been replaced by a variable number of so-called slices.
Each slice is able to compute all operations of the four-dimensional geometric al-
gebra. The coefficients have now been extended to 32 bit integers. In terms of hard-
ware, a slice consists of a 32-bit wide arithmetic logic unit capable of addition,
subtraction, multiplication, and logical computations. The geometric algebra oper-
ations are decomposed into these primitive calculations, with their execution being
orchestrated step-by-step by on-chip software (microcode). The FPGA implemen-
tation achieves a clock frequency of 45 MHz and runs by a factor 3× to 4× faster
than a software-programmable processor when counting cycles. When actually con-
sidering the 2 GHz clock frequency of the reference processor, the actual execution
time again slows down by a factor of 9× to 12× versus software.

The first coprocessor to lift the integer limitation on coefficients is the custom-
fabricated integrated circuit (ASIC) implementation introduced by Mishra and Wil-
son [12], which allows two-dimensional multivectors with double precision floating-
point coefficients. At its core, it consists of a floating point adder and multiplier each,
supported by smaller hardware units to compute the product of basis blades. While
pipeline-parallel execution is employed within these compute units, actual geomet-
ric algebra operations (geometric product, rotor, etc.) are again computed sequen-
tially by decomposing them into primitive calculations controlled by microcode.
The experimental evaluation of the system in [13] shows a real wall-clock speed-up
of 3× over a software programmable processor.

2.3 Our Proof-of-Concept Approach

In [9] we could show that an approach with symbolic simplification of geometric
algebra algorithms is able to lead to an implementation which is three times faster
than a conventional solution. In a second stage we implemented this inverse kine-
matics algorithm also on hardware and got an additional speedup of more than 100
times (see [10]).

When studying all of the prior hardware attempts, it is obvious that most of them
lead to an application slowdown instead of the hoped-for acceleration. The major
reason for this disappointing result is due to the architectural choices made. The
discrepancy in achievable clock frequencies of conventional processors (which are
now into multiple gigahertz), and that of FPGAs (which currently top out at 500–
600 MHz), implies the need for massive parallelism in the FPGA to achieve better
performance.
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As a proof-of-concept, we implemented an accelerator [10] for a specific geomet-
ric algebra algorithm, namely the inverse kinematics of the arm of a virtual human.
It is a completely different architectural approach compared to the approaches de-
scribed above. Instead of coarse granular computation units capable of handling en-
tire geometric algebra operators, we decomposed the geometric algebra description
into the underlying scalar equations. These equations are optimized symbolically
and employ only basic arithmetic operators. The resulting set of equations was then
implemented one arithmetic operator at a time. For each of these arithmetic oper-
ators, we carefully examined the range of values to be processed for the specific
problem. With this data, and external requirements on computational precision (in
this case, the positional accuracy of the hand), we determined for each operator the
optimal numerical representation (e.g., values in the range of 0 to 100 with 1/16 mm
of accuracy would be represented as 11-bit unsigned fixpoint numbers). The circuits
of the operators were then optimally matched to their representation and to one of
their operands being the constant.

The resulting accelerator, which exploits parallelism between multivector com-
ponents, between fine-grained arithmetic operators, and in a pipelined fashion over
the entire computation, achieves currently a real-world speedup in execution time
of 185× over a conventional processor with a 1.5-GHz clock frequency. The com-
pute pipeline consists of 363 stages with an average of 12 arithmetic operators per
stage. This extreme degree of parallelism allows the real-world acceleration even
though the FPGA device (which is by now two generations out of date) only runs at
100-MHz clock frequency.

One of the aims of the Gaalop project is to develop a tool flow for automatically
executing the optimization and hardware generation which we had to perform man-
ually for our reference design. Before giving an overview of the planned flow, we
will first give a brief introduction into geometric algebra.

3 Conformal Geometric Algebra

While points and vectors are normally used as basic geometric entities, in the 5D
conformal geometric algebra we have a wider variety of basic objects. For example,
spheres and circles are simply represented by algebraic objects. To represent a circle,
you only have to intersect two spheres, which can be done with a basic algebraic
operation. Alternatively, you can simply combine three points to obtain the circle
through these three points.

Table 1 lists the two representations of the geometric entities in conformal geo-
metric algebra. In this table, x and n are marked bold to indicate that they represent
3D entities as linear combination of the 3D base vectors e1, e2, and e3:

x= x1e1 + x2e2 + x3e3. (1)

The additional two base vectors are indicated by

• e0 representing the 3D origin
• e∞ representing the point at infinity
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Table 1 Representations of
the conformal geometric
entities

Entity Standard representation Direct representation

Point P = x+ 1
2 x2e∞ + e0

Sphere s = P − 1
2 r

2e∞ s∗ = x1 ∧ x2 ∧ x3 ∧ x4

Plane π = n+ de∞ π∗ = x1 ∧ x2 ∧ x3 ∧ e∞
Circle z= s1 ∧ s2 z∗ = x1 ∧ x2 ∧ x3

Line l = π1 ∧ π1 l∗ = x1 ∧ x2 ∧ e∞
Point Pair Pp = s1 ∧ s2 ∧ s3 P ∗p = x1 ∧ x2

The {si} represent different spheres, and the {πi} different planes.
The two representations are dual to each other. In order to switch between the

two representations, the dual operator which is indicated by ‘∗’, can be used. For
example, in the standard representation, a sphere is represented with the help of its
center point P and its radius r , while in the direct representation, it is constructed
by the outer product ‘∧’ of four points xi that lie on the surface of the sphere (x1 ∧
x2∧x3∧x4). In standard representation, the dual meaning of the outer product is the
intersection of geometric entities. For example, a circle is defined by the intersection
of two spheres (s1 ∧ s2).

Blades are the basic computational elements and the basic geometric entities of
geometric algebras. The 5D conformal geometric algebra consists of blades with
grades 0, 1, 2, 3, 4, and 5, whereby a scalar is a 0-blade (blade of grade 0). The
element of grade five is called the pseudoscalar. A linear combination of blades is
called a k-vector. So a bivector is a linear combination of blades with grade 2. Other
k-vectors are vectors (grade 1), trivectors (grade 3), and quadvectors (grade 4). Fur-
thermore, a linear combination of blades of different grades is called a multivector.
Multivectors are the general elements of a geometric algebra. Table 2 lists all the 32
blades of conformal geometric algebra. The indices indicate 1: scalar, 2 . . .6: vector,
7 . . .16: bivector, 17 . . .26: trivector, 27 . . .31: quadvector, 32: pseudoscalar.

A point P = x1e1 + x2e2 + x3e3 + 1
2 x2e∞ + e0 (see Table 1 and (1)), for in-

stance, can be written in terms of a multivector as the following linear combination
of blades:

P = x1 ∗blade[2]+x2 ∗blade[3]+x3 ∗blade[4]+ 1

2
x2 ∗blade[5]+blade[6]. (2)

For more details, refer, for instance, to the book [2] and to the tutorials [8] and [6].

4 Concepts

The main goal of Gaalop is the combination of the elegance of algorithms using ge-
ometric algebra with generation of implementations that are most likely faster than
conventional implementations. Depending on the application, these can be either
optimized software implementations, or optimized hardware implementations, or a
mixture between them.
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Table 2 The 32 blades of the 5D conformal geometric algebra

Index Blade Grade

1 1 0

2 e1 1

3 e2 1

4 e3 1

5 e∞ 1

6 e0 1

7 e1 ∧ e2 2

8 e1 ∧ e3 2

9 e1 ∧ e∞ 2

10 e1 ∧ e0 2

11 e2 ∧ e3 2

12 e2 ∧ e∞ 2

13 e2 ∧ e0 2

14 e3 ∧ e∞ 2

15 e3 ∧ e0 2

16 e∞ ∧ e0 2

Index Blade Grade

17 e1 ∧ e2 ∧ e3 3

18 e1 ∧ e2 ∧ e∞ 3

19 e1 ∧ e2 ∧ e0 3

20 e1 ∧ e3 ∧ e∞ 3

21 e1 ∧ e3 ∧ e0 3

22 e1 ∧ e∞ ∧ e0 3

23 e2 ∧ e3 ∧ e∞ 3

24 e2 ∧ e3 ∧ e0 3

25 e2 ∧ e∞ ∧ e0 3

26 e3 ∧ e∞ ∧ e0 3

27 e1 ∧ e2 ∧ e3 ∧ e∞ 4

28 e1 ∧ e2 ∧ e3 ∧ e0 4

29 e1 ∧ e2 ∧ e∞ ∧ e0 4

30 e1 ∧ e3 ∧ e∞ ∧ e0 4

31 e2 ∧ e3 ∧ e∞ ∧ e0 4

32 e1 ∧ e2 ∧ e3 ∧ e∞ ∧ e0 5

For that purpose, we propose a two-stage approach with

• symbolic optimization
• use of the inherent fine-grained parallel structure

of geometric algebra algorithms. Algorithms can vary from just a set of formulas to
complex control flows.

4.1 Symbolic Optimization

We use the symbolic computation functionality of Maple (together with a library
for geometric algebras [1]) in order to optimize the geometric algebra algorithm.
Algorithms can be developed visually with CLUCalc [15] and afterwards be opti-
mized with Gaalop. Gaalop parses and translates the CLUCalc code to Maple code.
A small Maple library provided with Gaalop implements the corresponding CLU-
Calc functions in Maple. Maple computes the coefficients of the desired variable
symbolically, returning an efficient implementation depending just on the input vari-
ables.

As an example, the following CLUCalc code computes the intersection circle C

of two spheres S1 and S2. While CLUCalc requires the definition of the variables
x1, x2, x3, y1, y2, y3, r1, and r2, we do not want to compute with fixed values for
these variables. So just the second part is needed for Gaalop.
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DefVarsN3();
:IPNS;

x1 = 0.2; x2 = 0.3; x3 = 0.5; r1 = 0.7;
y1 = 0.7; y2 = 1.1; y3 = 1.3; r2 = 0.9;

// Gaalop uses the code below

P1 = x1*e1 +x2*e2 +x3*e3 +1/2*(x1*x1+x2*x2+x3*x3)*einf +e_0;
P2 = y1*e1 +y2*e2 +y3*e3 +1/2*(y1*y1+y2*y2+y3*y3)*einf +e_0;

S1 = P1 - 1/2 * r1*r1 * einf;
S2 = P2 - 1/2 * r2*r2 * einf;

?C = S1 ^ S2;

A question mark in CLUCalc at the beginning of a line prints the result after
evaluation of the corresponding line in the output window. Gaalop interprets these
question marks almost the same, as it computes and prints out the coefficients of the
following variable symbolically, depending on the previous input.

The computation of the conformal points P1 and P2 and the spheres S1 and S2
correspond to Table 1.

The resulting C code generated by Gaalop for the intersection circle C is as
follows and only depends on the variables x1, x2, x3, y1, y2, y3, r1, and r2:

float C [32] = {0.0};

C[7] = x1*y2-x2*y1;
C[8] = x1*y3-x3*y1;

C[9] = -0.5*y1*x1*x1-0.5*y1*x2*x2-0.5*y1*x3*x3+0.5*y1*r1*r1
+0.5*x1*y1*y1+0.5*x1*y2*y2+0.5*x1*y3*y3-0.5*x1*r2*r2;

C[10] = -y1+x1;
C[11] = -x3*y2+x2*y3;

C[12] = -0.5*y2*x1*x1-0.5*y2*x2*x2-0.5*y2*x3*x3+0.5*y2*r1*r1
+0.5*x2*y1*y1+0.5*x2*y2*y2+0.5*x2*y3*y3-0.5*x2*r2*r2;

C[13] = -y2+x2;

C[14] = -0.5*y3*x1*x1-0.5*y3*x2*x2-0.5*y3*x3*x3+0.5*y3*r1*r1
+0.5*x3*y1*y1+0.5*x3*y2*y2+0.5*x3*y3*y3-0.5*x3*r2*r2;

C[15] = -y3+x3;

C[16] = -0.5*y3*y3+0.5*x3*x3+0.5*x2*x2+0.5*r2*r2
-0.5*y1*y1-0.5*y2*y2+0.5*x1*x1-0.5*r1*r1;

Gaalop always computes optimized 32-dimensional multivectors. Since a circle is
described with the help of a bivector, only the blades 7 to 16 (see Table 2) are used.
As you can see, all the corresponding coefficients of this multivector are very simple
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expressions with basic arithmetic operations. A more complex example is described
in Sect. 6.

4.2 Use of Inherent Fine-Grained Parallel Structure

With the help of symbolic optimization, the geometric algebra algorithm is trans-
formed into an algorithm computing the coefficients of 32D multivectors using only
basic arithmetical operations. This can be implemented very efficiently in digital
logic on silicon devices such as FPGAs using parallel computation of coefficients
of multivectors, deeply pipelined processing, and the exploitation of constant val-
ues by propagating them directly into the circuit. These techniques are described in
Sect. 2.3 and in more detail in [10] for an inverse kinematics example.

5 The Architecture of Gaalop

Figure 1 shows an overview over the architecture of Gaalop. Its input is a geometric
algebra algorithm written in CLUCalc (see [15]). Via symbolic simplification it is
transformed into a generic intermediate representation (IR) that can be used for
generation of different output formats. Gaalop supports sequential platforms, such
as C and Java, and parallel platforms, such as CUDA [14] or FPGA descriptions
(as a structural hardware description, currently written in the Verilog language).
CLUCalc can also be used as an output format in order to visualize the optimized
results (see [15]).

The basis of the mapping the IR, which is expressed on an abstract mathemat-
ical/behavioral level, to a hardware accelerator is the technology already used in
the COMRADE compiler [11]. COMRADE is designed to translate from ANSI
C (complete language, no additional user annotations required) into hybrid hard-
ware/software applications, with the hardware parts being executed on an FPGA.
Since geometric algebra algorithms are far more abstract than C (which contains,
e.g., pointers and gotos), they are considerably easier to optimize and translate effi-
ciently to an FPGA-based accelerator.

Fig. 1 Architecture of
Gaalop
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Fig. 2 The robot “Mr. DD
Junior 2” of the RoboCup
team, the Darmstadt
Dribbling Dackels (DDD)

6 Inverse Kinematics of the Leg of a Humanoid Robot

In this section we present an inverse kinematics algorithm for the leg of the hu-
manoid robot “Mr. DD Junior 2” (see Fig. 2). We use CLUCalc code as an example
for the input language of Gaalop. Parts of the generated C code are shown as an
example for a target implementation of Gaalop.

“Mr. DD Junior 2” is a humanoid robot of about 38-cm total height and was
used for the 2005 RoboCup competition [17] where robots play soccer completely
autonomously. Its legs have six degrees of freedom each: from hip to foot, the first
joint rotates about the forward oriented axis, the next three joints about the sidewards
oriented axis, and the last two joints about the forward and upward oriented axis.
This is different from the standard configuration of humanoid robot legs, where the
joint that rotates about the upward oriented axis usually is located in the hip. The
robot is equipped with a camera for vision, a pocket PC for computation and servo
motors for actuation. The robot must localize itself on the field which has color-
coded landmarks, identify other players, the location of the ball, and the goal. For
walking, “Mr. DD Junior 2” uses the following inverse kinematics approach: The
motion of the hips and feet are given by smooth trajectories that are described by
several parameters. and the joint angle trajectories of the legs are computed from
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Fig. 3 The leg of the robot “Mr. DD Junior 2” with the indication of the points P1 to P7

the hips and feet trajectories by inverse kinematics. This computation is done online
on the pocket PC, which also is used for image processing.

6.1 Solving the Inverse Kinematics Algorithm

The following inverse kinematics algorithm has been developed using conformal
geometric algebra to solve the 6-DOF kinematic chain for the leg of the humanoid
robot “Mr. DD Junior 2” (see Fig. 3). The leg consists of joints with one degree
of freedom each. The hip (P1) defines the first joint and lies in the origin, rotating
about the x-axis. Three joints rotating about the y-axis, one rotating about the x-axis
and a final one rotating about the z-axis follow, leading to the foot-point (P7). The
coordinates of the foot (Px,Py,Pz), the normal of the foot (n), and the lengths of
the links (l1, l2, l3, l4, l5, l6) are needed to solve the inverse kinematics chain. Refer
to Table 3 for a list of the input and output parameters of the algorithm.
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Table 3 Input/Output of the
inverse kinematics algorithm Input

Var Description

Px Foot x-value

Py Foot y-value

Pz Foot z-value

n Normal of foot x-value

Normal of foot y-value

Normal of foot z-value

l1 Length of 1st link

l2 Length of 2nd link

l3 Length of 3rd link

l4 Length of 4th link

l5 Length of 5th link

l6 Length of 6th link

Output

Var Description

ang1 angle at P1

ang2 angle at P2

ang3 angle at P3

ang4 angle at P4

ang5 angle at P5

ang6 angle at P6

6.1.1 Computation of the Positions of Link 5 and 6 in the Kinematics Chain

Since there is only a rotation about the z-axis in P6, links 5 and 6 (in P5 and in P6)
are on the normal (n) of the foot. The translator T1 is needed to translate P7 about
l6 in direction of n:

T1 = 1−
(

1

2
nl6

)
e∞,

P6 = T1P7T̃1.

(3)

Please notice that a translator is defined by the expression T = 1− 1
2 tvece∞ with tvec

being the 3D translation vector and that a translation is defined by a multiplication
of the translator from the left and of its reverse from the right. Another translator
(T2) is necessary to compute P5, where the distance to P7 is l5 + l6:

T2 = 1−
(

1

2
n(l5 + l6)

)
e∞,

P5 = T2P7T̃2.

(4)

See Fig. 4.

6.1.2 Computation of the Position of Link 4

By taking a closer look at the kinematic chain, one will notice that P1, P2, P3, P4,
P5 define a plane π3, which includes the x-axis. Since the joints in P2, P3, and P4 all
rotate about the y-axis, these and the joints directly connected to them (P1 and P5)
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Fig. 4 Step A. Translating
P7 by l6 and l5 in direction of
n to get P6 and P5

are all in one plane. Every plane can be defined by three points, which here are P1,
P5, and the auxiliary point PH2 on the x-axis. Another plane, defined by the points
P4, P5, P6, P7, is orthogonal to plane π3. So the projection of the line through P5

and P7 onto the plane π3 yields LProj, which intersects the sphere S5 (with center P5

and radius l4), resulting in a point pair. Function pp_get2nd selects link 4 (P4)
from it.

S5 = Sphere(P5, l4),

π3 = (PH2 ∧ P1 ∧ P5 ∧ e∞)∗,

π3 = π3

|π3| ,

LP5P7 = (P5 ∧ P7 ∧ e∞)∗,

LProj = (π3 ·LP5P7)

π3
,

P4 = pp_get2nd
(
(S5 ∧LProj)

∗).

(5)

See Fig. 5.
Sphere(x, r) generates a sphere around x with the radius r :

Sphere(x, r)= x − 1

2
r2e∞. (6)

The functions pp_get1st and pp_get2nd each pick one point out of a point pair:

pp_get1st(x) =
√|x · x| − x

e∞ · x , (7)

pp_get2nd(x) = −
√|x · x| + x

e∞ · x . (8)
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Fig. 5 Step B. Projection of the line through P7 and P5 onto the green plane defined by P1, P5,
and an auxiliary point on the x-axis. Intersection of the sphere around P5 with radius l4 and the
projected line returns P4

6.1.3 Computation of the Position of Link 2

Links 1 and 2 are located on the yz-plane π1, so the intersection of planes π1 and
π3 results in a line, with P1 and P2 on it. The distance between P2 and P1 is l1;
hence the intersection of the sphere S1 around P1 with radius l1 results in a point
pair, from which P2 can be selected

π1 = e1,

S1 = Sphere(P1, l1),

L1 = π1 ∧ π3,

P2 = pp_get1st
(
(L1 ∧ S1)

∗).

(9)

See Fig. 6.

6.1.4 Computation of the Position of Link 3

The intersection of the two spheres S2 and S4 results in a circle Z3. P3 must be
located on circle Z3 and on plane π3 as well; thus the intersection of Z3 and π3
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Fig. 6 Step C. Intersecting
the sphere around P1 with
radius l1 with the intersection
of the plane π3 and the
yz-plane returns P2

Fig. 7 Step D. The
intersection of the spheres
around P2 with radius l2 and
around P4 with radius l3
results in the red circle.
Intersecting the circle with
the plane π3 returns P3

results in a point pair again, from which P3 can be selected

S2 = Sphere(P2, l2),

S4 = Sphere(P4, l3),

Z3 = S2 ∧ S4,

P3 = pp_get1st
(
(Z3 ∧ π3)

∗).

(10)

See Fig. 7.
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6.1.5 Compute the Angles of the Links

Since a line is defined by two points, three points are necessary to generate two
intersecting lines and to compute the angle in between. To compute the angle of the
first link, a point above the origin (0,0,1) is used as a parameter.

angle(x, y, z)= π − arccos

(
(x ∧ y ∧ e∞) · (z∧ y ∧ e∞)

|x ∧ y ∧ e∞||z∧ y ∧ e∞|
)
. (11)

6.2 Symbolic Optimization of the Kinematic Chain

In this section, we present the CLUCalc code for the just described inverse kinemat-
ics algorithm as an example for the input language of Gaalop. Parts of the generated
C code are presented as an example for a target implementation of Gaalop.

CluCalc models the first part of the inverse kinematics algorithms as follows:

PH3 = VecN3(hx-1,hy,hz);
:P1 = VecN3(hx,hy,hz);
:P7 = VecN3(-px,py,pz);

norm1 = FNorm[1]*e1 - FNorm[2]*e2 - FNorm[3]*e3;
?norm2 = 1/abs(norm1);
norm3 = norm1 * norm2;

//generate translator and compute P6
tvec = (norm3*(len[6]))/2;
T1 = 1 - tvec * einf;
?P6 = T1 * P7 * ~T1;

tvec = (norm3*(len[5]+len[6]))/2;
T2 = 1 - tvec * einf;
?P5 = T2 * P7 * ~T2;

S5 = Sphere(P5,len[4]);
Pi3 = *(PH3 ^ e0 ^ P5 ^ einf);
?Pi3a = 1/abs(Pi3);
?Pi3b = Pi3 * Pi3a; // Pi3/abs(Pi3)

Gaalop optimizes the above CLUCalc code (see Sect. 4.1 for details about the opti-
mization approach) and generates the following C code:

float norm2_opt[32] = {0.0};
norm2_opt[1]=1/sqrt(FNorm[1]*FNorm[1]+FNorm[2]*FNorm[2]

+FNorm[3]*FNorm[3]);

float P6_opt[32] = {0.0};
P6_opt[2]=-px+FNorm[1]*norm2_opt[1]*len[6];
P6_opt[3]=py-FNorm[2]*norm2_opt[1]*len[6];
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P6_opt[4]=pz-FNorm[3]*norm2_opt[1]*len[6];
P6_opt[5]=0.5*FNorm[1]*FNorm[1]*norm2_opt[1]*norm2_opt[1]

*len[6]*len[6]+0.5*py*py+0.5*pz*pz-FNorm[1]
*norm2_opt[1]*len[6]*px+0.5*FNorm[3]*FNorm[3]
*norm2_opt[1]*norm2_opt[1]*len[6]*len[6]+0.5
*px*px+0.5*FNorm[2]*FNorm[2]*norm2_opt[1]
*norm2_opt[1]*len[6]*len[6]-FNorm[2]*norm2_opt[1]
*len[6]*py-FNorm[3]*norm2_opt[1]*len[6]*pz;

P6_opt[6]=1;

float P5_opt[32] = {0.0};
P5_opt[2]=-px+FNorm[1]*norm2_opt[1]*len[5]

+FNorm[1]*norm2_opt[1]*len[6];
P5_opt[3]=-FNorm[2]*norm2_opt[1]*len[5]

-FNorm[2]*norm2_opt[1]*len[6]+py;
P5_opt[4]=-FNorm[3]*norm2_opt[1]*len[5]

-FNorm[3]*norm2_opt[1]*len[6]+pz;
P5_opt[5]=0.5*FNorm[2]*FNorm[2]*norm2_opt[1]*norm2_opt[1]

*len[6]*len[6]+0.5*FNorm[3]*FNorm[3]*norm2_opt[1]
*norm2_opt[1]*len[6]*len[6]+0.5*FNorm[1]*FNorm[1]
*norm2_opt[1]*norm2_opt[1]*len[6]*len[6]-FNorm[3]
*norm2_opt[1]*pz*len[5]-FNorm[1]*norm2_opt[1]*px
*len[5]-FNorm[2]*norm2_opt[1]*py*len[5]+0.5*py*py
+0.5*pz*pz+FNorm[2]*FNorm[2]*norm2_opt[1]
*norm2_opt[1]*len[5]*len[6]+FNorm[1]*FNorm[1]
*norm2_opt[1]*norm2_opt[1]*len[5]*len[6]+FNorm[3]
*FNorm[3]*norm2_opt[1]*norm2_opt[1]*len[5]*len[6]
+0.5*px*px-FNorm[1]*norm2_opt[1]*len[6]*px
-FNorm[3]*norm2_opt[1]*len[6]*pz-FNorm[2]
*norm2_opt[1]*len[6]*py+0.5*FNorm[1]*FNorm[1]
*norm2_opt[1]*norm2_opt[1]*len[5]*len[5]
+0.5*FNorm[2]*FNorm[2]*norm2_opt[1]*norm2_opt[1]
*len[5]*len[5]+0.5*FNorm3*FNorm3*norm2_opt[1]
*norm2_opt[1]*len[5]*len[5];

P5_opt[6]=1;

float Pi3a_opt[32] = {0.0};
Pi3a_opt[1]=1/sqrt(hy*hy*P5_opt[4]*P5_opt[4]-2*hy*P5_opt[4]

*hz*P5_opt[3]+hz*hz*P5_opt[3]*P5_opt[3]
+P5_opt[4]*P5_opt[4]*hx*hx-2*P5_opt[4]*hx*hz
*P5_opt[2]-2*P5_opt[4]*P5_opt[4]*hx+hz*hz
*P5_opt[2]*P5_opt[2]+2*hz*P5_opt[2]*P5_opt[4]
+P5_opt[4]*P5_opt[4]+P5_opt[3]*P5_opt[3]*hx*hx
-2*P5_opt[3]*hx*hy*P5_opt[2]-2*P5_opt[3]
*P5_opt[3]*hx+hy*hy*P5_opt[2]*P5_opt[2]+2*hy
*P5_opt[2]*P5_opt[3]+P5_opt[3]*P5_opt[3]);

float Pi3b_opt[32] = {0.0};
Pi3b_opt[2]=-Pi3a_opt[1]*(-P5_opt[4]*hy+hz*P5_opt[3]);
Pi3b_opt[3]=Pi3a_opt[1]*(-P5_opt[4]*hx+hz*P5_opt[2]

+P5_opt[4]);
Pi3b_opt[4]=-Pi3a_opt[1]*(-P5_opt[3]*hx+hy*P5_opt[2]

+P5_opt[3]);
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As you can see, the optimized code is very complex in terms of length. Therefore
we only list the CLUCalc code for the second part of the algorithm below.

LP5P7 = *(P5 ^ P7 ^ einf);
LProj = (Pi3b.LP5P7)/Pi3b;
:P4 = pick2nd(*(S5 ^ LProj));

Pi1 = e1;
S1 = Sphere(P1,len(1));
L1 = Pi1 ^ Pi3:Red;
:P2 = pick1st(*(L1 ^ S1));

S2 = Sphere(P2,len(2));
S4 = Sphere(P4,len(3));
C3 = S2 ^ S4;
?P3 = pick1st(*(C3 ^ Pi3));

?angle(VecN3(0,1,0),P1,P2);
?angle(P1,P2,P3);
?angle(P2,P3,P4);
?angle(P3,P4,P5);
?angle(P4,P5,P6);

From the runtime performance point-of-view, our optimized C code achieved re-
sults comparable to the conventional algorithm. This is why the actual speedup that
Gaalop can provide for this inverse kinematics application will result from future
implementations on parallel platforms.

Because of the similarity of this inverse kinematics algorithms to our proof-of-
concept application (see Sect. 2.3 and [9]), we expect for an FPGA implementation
a comparable hardware speedup of about 100 times.

7 Current Status and Future Perspectives

Gaalop is currently able to handle sequential conformal geometric algebra algo-
rithms. The algorithm is currently transformed into C code, CLUCalc code, and
simple LATEX formulas. The latest news can be always found on the Gaalop home-
page [7].

We are just extending Gaalop in order to handle control flow with loops, condi-
tions, etc. We are also developing generators for additional output formats like Java
code, CUDA [14], and FPGA descriptions.

One focus will lie on mixed solutions handling reasonable combinations of soft-
ware and hardware implementations.
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8 Conclusion

Geometric algebra is applicable in many different engineering scenarios and pro-
vides a straightforward and intuitive problem solving approach. With the help of our
Gaalop tool, these algorithms can be automatically transformed into high runtime
performance implementations. With these results, we are convinced that conformal
geometric algebra will be able to become more and more fruitful in a great variety
of engineering applications.
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Some Applications of Gröbner Bases in Robotics
and Engineering

Rafał Abłamowicz

Abstract Gröbner bases in polynomial rings have numerous applications in geom-
etry, applied mathematics, and engineering. We show a few applications of Gröbner
bases in robotics, formulated in the language of Clifford algebras, and in engineer-
ing to the theory of curves, including Fermat and Bézier cubics, and interpolation
functions used in finite element theory.

1 Introduction

Gröbner bases were introduced in 1965 by Buchberger [5–8]. For an excellent ex-
position on their theory, see [10, 11, 17], while for a basic introduction with ap-
plications, see [9]. These bases gave rise to development of computer algebra sys-
tems like muMath, Maple, Mathematica, Reduce, AXIOM, CoCoCA, Macaulay,
etc. Buchberger’s Algorithm to compute Gröbner bases has been made more effi-
cient [5] or replaced with another approach [12]. Algorithms to compute Gröbner
bases have been implemented, for example, in Maple [26], Singular [15, 24], and
FGb [12]. For a multitude of applications of Gröbner bases, see [8, 14] and, in par-
ticular, an online repository [16]. For a recent new application in geodesy, see [4].

2 Gröbner Basis Theory in Polynomial Rings

We follow presentation and notation from [10]. Let k[x1, . . . , xn] be a polyno-
mial ring in n indeterminates over a field k. Let f1, . . . , fs be polynomials in
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k[x1, . . . , xn]. Then 〈f1, . . . , fs〉 denotes an ideal finitely generated by the cho-
sen polynomials. We say that the polynomials form a basis of the ideal. Then, by
V(f1, . . . , fs) we denote an affine variety defined by f1, . . . , fs, that is, a subset of
kn, possibly empty, consisting of all common zeros of f1, . . . , fs, namely

V(f1, . . . , fs)=
{
(a1, . . . , an) ∈ kn |fi(a1, . . . , an)= 0 for all 1≤ i ≤ s

}
.

In order to define Gröbner bases in the ideals of k[x1, . . . , xn], we first need a con-
cept of a monomial order.

Definition 1 A monomial order on k[x1, . . . , xn] is any relation > on Z
n
≥0 ={(α1, . . . , αn) |αi ∈ Z≥0}, or equivalently, any relation on the set of monomials

xα, α ∈ Z
n
≥0, satisfying: (i) > is a total ordering on Z

n
≥0 (for any α,β ∈ Z

n
≥0,

α > β, α = β , or β > α); (ii) If α > β and γ ∈ Z
n
≥0, then α + γ > β + γ ; (iii) >

is a well-ordering on Z
n
≥0 (every nonempty subset has smallest element). We will

say that xα > xβ when α > β. Let f =∑α aαx
α be a nonzero polynomial in

k[x1, . . . , xn]. Then, the multidegree of f is

multideg(f )=max
{
α ∈ Z

n
≥0 : aα �= 0

}
,

where the maximum is taken with respect to >. The leading coefficient of f is
LC(f )= amultideg(f ); the leading monomial of f is LM(f )= xmultideg(f ); and the
leading term of f is LT(f )= LC(f ) · LM(f ).

Some of the monomial orders are: (i) lexicographic (lex)1: α >lex β if, in the
vector difference α − β ∈ Z

n, the left-most nonzero entry is positive; (ii) graded
reverse lex: α >grevlex β if either |α| > |β|, or |α| = |β| and in α − β ∈ Z

n the
right-most nonzero entry is negative; (iii) graded inverse lex: α >ginvlex β if either
|α|> |β|, or |α| = |β| and in α − β ∈ Z

n the right-most nonzero entry is positive.
In order to divide any polynomial f by a list of polynomials f1, . . . , fs, we need

a generalized division algorithm.

Theorem 1 (General division algorithm) Fix a monomial order > on Z
n
≥0, and

let F = (f1, . . . , fs) be an ordered s-tuple of polynomials. Then every f ∈
k[x1, . . . , xn] can be written as

f = a1f1 + · · · + asfs + r, (1)

where ai, r ∈ k[x1, . . . , xn], and either r = 0 or r is a linear combination, with coef-
ficients in k, of monomials, none of which is divisible by any of LT(f1), . . . ,LT(fs).

We call r a remainder of f on division by F. Furthermore, if aifi �= 0, then we have
multideg(f )≥multideg(aifi).

1In the following, lex(x1, . . . , xn) will denote the lex order in which x1 > x2 > · · ·> xn.
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The remainder r in (1) is not unique as it depends on the order of polynomi-
als in F and on the monomial order. This shortcoming of the Division Algorithm
disappears when we divide polynomials by a Gröbner basis.

Definition 2 Let I ⊂ k[x1, . . . , xn] be a nonzero ideal. Then, LT(I ) is the set of
leading terms of elements of I , and 〈LT(I )〉 is the ideal generated by the elements
of LT(I ).

The ideal 〈LT(I )〉 is an example of a monomial ideal. Dickson’s Lemma states
that every monomial ideal I ⊂ k[x1, . . . , xn] has a finite basis [10]. Since the poly-
nomial ring k[x1, . . . , xn] is Noetherian, the famous theorem of Hilbert states that
every ideal I ⊂ k[x1, . . . , xn] is finitely generated.

Theorem 2 (Hilbert basis theorem) Every ideal I ⊂ k[x1, . . . , xn] has a finite gen-
erating set. That is, I = 〈g1, . . . , gs〉 for some g1, . . . , gs ∈ I.

Definition 3 Fix a monomial order. A finite subset G = {g1, . . . , gt } of an ideal I
is said to be a Gröbner basis if 〈LT(g1), . . . ,LT(gt )〉 = 〈LT(I )〉.

As a consequence of Hilbert’s theorem, every ideal I ⊂ k[x1, . . . , xn] other than
{0} has a Gröbner basis once a monomial order has been chosen.

When dividing f by a Gröbner basis, we denote the remainder as r = f
G
. Due

to the uniqueness of r, one gets unique coset representatives for elements in the
quotient ring k[x1, . . . , xn]/I : The coset representative of [f ] ∈ k[x1, . . . , xn]/I will

be f
G
.

Gröbner bases are computed using various algorithms. The most famous one is
the Buchberger’s algorithm that uses S-polynomials. One of its many modifications
is discussed in [10], whereas [12] implements a completely different approach.

Definition 4 The S-polynomial of f1, f2 ∈ k[x1, . . . , xn] is defined as S(f1, f2)=
xγ

LT(f1)
f1− xγ

LT(f2)
f2, where xγ = lcm(LM(f1),LM(f2)), and LM(fi) is the leading

monomial of fi w.r.t. some monomial order.2

Theorem 3 (Buchberger theorem) A basis {g1, . . . , gt } ⊂ I is a Gröbner basis of I

if and only if S(gi, gj )
G = 0 for all i < j.

Buchberger’s algorithm for finding a Gröbner basis implements the above crite-

rion: If F = {f1, . . . , fs} fails because S(fi, fj )
G �= 0 for some i < j, then add this

remainder to F and try again.
Gröbner bases computed with the Buchberger’s algorithm are usually too large:

A standard way to reduce them is to replace any polynomial fi with its remain-
der on division by {f1, . . . , fi−1, fi+1, . . . , ft }, removing zero remainders, and for

2Here, lcm(LM(f1),LM(f2)) denotes the least common multiple of the leading monomials
LM(f1) and LM(f2).
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polynomials that are left, making their leading coefficient equal to 1. This produces
a reduced Gröbner basis. For a fixed monomial order, it is well known that any
ideal in k[x1, . . . , xn] has a unique reduced Gröbner basis. See, for example, [10]
and references therein.

2.1 Examples of Using Gröbner Bases

There are many problems, in many different areas of mathematics and applied sci-
ences, that can be solved using Gröbner bases. Here we just list a few applied prob-
lems:

– Solving systems of polynomial equations, e.g., intersecting surfaces and curves,
finding closest point on a curve or on a surface to the given point, Lagrange mul-
tiplier problems (especially those with several multipliers), etc. Solutions to these
problems are based on the so-called Extension Theory [10].

– Finding equations for equidistant curves and surfaces to curves and surfaces de-
fined in terms of polynomial equations, such as conic sections, Bézier cubics;
finding syzygy relations among various sets of polynomials, for example, sym-
metric polynomials, finite group invariants, interpolating functions, etc. Solutions
to these problems are based on the so-called Elimination Theory [10].

– Finding equidistant curves and surfaces as envelopes to appropriate families of
curves and surfaces, respectively [2, 10].

– The implicitization problem, i.e., eliminating parameters and finding implicit
forms for curves and surfaces.

– The forward and the inverse kinematic problems in robotics [7, 10].
– Automatic geometric theorem proving [7, 8, 10].
– Expressing invariants of a finite group in terms of generating invariants [10].
– Finding relations between polynomial functions, e.g., interpolation functions

(syzygy relations).
– For recent applications in geodesy, see [4].
– See also bibliography on Gröbner bases at Johann Radon Institute for Computa-

tional and Applied Mathematics (RICAM) [16].

Our first example is an inverse kinematics problem consisting of finding an elbow
point of a robot arm on the circle of intersection between two spheres. This problem
is elegantly formulated in the language of conformal algebra CGA in [18, 19].

Example 1 (Elbow of a robot arm) We model CGA as a Clifford algebra of a five-
dimensional real vector space V which is an extension of 3D Euclidean space by an
origin-infinity plane. Let {e1, e2, e3, e4, e5} be basis vectors for V which satisfy the
following relations in CGA:

e2
i = 1, ei · ej = ej · ei = 0, ei · e4 = ei · e5 = 0,

e2
4 = e2

5 = 0, e4 · e5 =−1,
(2)
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for i, j = 1,2,3 and i �= j.3 Euclidean points, spheres, and planes are modeled,
respectively, in CGA by the following 5D vectors:

P = p+ 1

2
p2e∞ + e0, S = s+ 1

2

(
s2 − r2)e∞ + e0, π = n+ de∞, (3)

where p is the 3D point location, s is the 3D sphere center, and r is the sphere
radius,4 n is the 3D unit normal vector of the plane, and d is the distance of the
plane from the origin. In particular, for a sphere, we have S2 = r2.5 Two spheres
S1 and S2 intersect in a 3D circle (resp., a single point, or do not intersect) when
S1 · S2+ r1r2 > 0 (resp., S1 · S2+ r1r2 = 0, or otherwise). The circle is represented
in CGA by the element C = S1 ∧ S2.

It is shown in [18] that when two spheres intersect in a circle, the bivector C

equals the following quantity:

Z = c∧ nc − nc ∧ e0 − (c · nc)E +
[
(c · nc)c− 1

2

(
c2 − r2)nc

]
∧ e∞, (4)

where E = e∞ ∧ e0, c is the circle center, r is its radius, and vector nc is normal
to the plane π in 3D containing the circle. We will solve a system of polynomial
equations resulting from the condition Z = C for the components of c, nc and for
the radius r with a Gröbner basis. For example, let

f1 = 4(x1 − 1)2 + 4x2
2 + 4x2

3 − 9 and f2 = (x1 + 1)2 + x2
2 + x2

3 − 4 (5)

be in R[x1, x2, x3]. Then, V(f1) and V(f2) are the two spheres viewed as varieties.
These two spheres are represented in CGA as these 1-vectors:

S1 = e1 − 5

8
e∞ + e0, S2 =−e1 − 3

2
e∞ + e0. (6)

Since S1 · S2 + r1r2 = 33
8 > 0, the spheres intersect in a circle C given as

C = S1 ∧ S2 =−17

8
e1 ∧ e∞ + 2e1 ∧ e0 − 7

8
e0 ∧ e∞. (7)

By letting C = Z and nc = (n1, n2, n3), c= (c1, c2, c3), and by equating symbolic
coefficients at corresponding Grassmann basis monomials, we obtain the following
system of polynomial equations:

3We identify e4 with the origin vector e0 and e5 with the infinity vector e∞ from [18]. Thus, CGA
is isomorphic to the Clifford algebra C�4,1. The dot · denotes the inner product in V.

4Of course, we can recover the analytic equation of the sphere by setting (x− s)2 = S2 where x is
a vector in 3D from the origin to a surface point on the sphere S.

5To be precise, S2 = r21 where 1 is the identity element of CGA. When r = 0, the sphere becomes
a point.
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f1 = c1n3 − c3n1 = 0,

f2 =−c3n2 + c2n3 = 0,

f3 = c1n2 − c2n1 = 0,

f4 = 8c3n3 + 8c2n2 + 8c1n1 + 7= 0,

f5 =−n1 − 2= 0, (8)

f6 =−n2 = 0,

f7 =−n3 = 0,

f8 = 8c1c2n2 + 4c2
1n1 + 17+ 4n1r

2 − 4n1c
2
2 + 8c1c3n3 − 4n1c

2
3 = 0,

f9 = c2
2n2 + 2c2c1n1 − n2c

2
1 + 2c2c3n3 + n2r

2 − n2c
2
3 = 0,

f10 = 2c3c2n2 + c2
3n3 + 2c3c1n1 − n3c

2
1 − n3c

2
2 + n3r

2 = 0.

The reduced Gröbner basis for the ideal I generated by the above ten polynomials
in lex order with n1 > n2 > n3 > c1 > c2 > c3 > r is

{−495+ 256r2, c3, c2,−7+ 16c1, n3, n2, n1 + 2
}
, (9)

from which we get, as expected, that nc = (−2,0,0), c= (0,0,0), and r =
√

5
2 . In

the same way, one can handle the degenerate cases where the spheres just touch at a
single point, where one is included in the other, and where they do not intersect.

Our second example is related to the above and shows how to visualize the circle
of intersection of two spheres C = S1 ∩ S2 as an intersection of a cylinder and a
plane. Often such visualizations simplify the picture and especially when one con-
siders an additional constraint.

Example 2 Let S1 and S2 be the spheres defined by the polynomials f1 and f2 given
in (5), that is, S1 = V(f1) and S2 = V(f2). Then, a reduced Gröbner basis for the
ideal J generated by these two polynomials for the lex order x1 > x2 > x3 is

G= {256x2
2 + 256x2

3 − 495,16x1 − 7
}
, (10)

where the first polynomial c gives the cylinder V(c), and the second of course is the
plane V(π). Thus, the circle C = S1 ∩ S2 = V(c) ∩V(π) can be visualized in two
different ways: As the intersection of the two spheres Fig. 1 or as the intersection of
the cylinder and the plane Fig. 2. By adding an additional constraint consisting, for
example, of an additional plane V(π2) defined by the polynomial π2 = x3− x1− 1

4 ,

we can identify two points on the circle C and the plane π2. See Fig. 3. To find their
coordinates, it is enough to solve the system of polynomial equations f1 = 0, f2 =
0, π2 = 0. We can employ the Gröbner basis approach once more by computing a
reduced basis for the ideal J generated by f1, f2, π2 for the lex order x1 > x2 > x3,
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Fig. 1 Circle C as the
intersection of two spheres
V(S1)∩V(S2)

Fig. 2 Circle C as the
intersection of the cylinder
and the plane V(c)∩V(π1)

and we get

G= {16x3 − 11,128x2
2 − 187,16x1 − 7

}
, (11)

which gives the two points P1, P2 = (x1 = 7
16 , x2 =± 1

16

√
374, x3 = 11

16 ).

Our third example is a classical problem of finding equidistant curves (envelopes)
of various polynomial curves. Here we show how a general envelope of a parabola
can be computed in a general case. Such problems also appear in engineering in
designing cam mechanisms (cf. [22] and [25]).
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Fig. 3 Two points as the
intersection of the circle C

and the additional plane
V(π2)

Example 3 (Equidistant curves to a parabola) We compute equidistant curves to the
parabola defined by the polynomial

f1 = 4py0 − x2
0 = 0, (12)

where |p| denotes the distance between the focus F = (0,p) and the vertex
V = (0,0). Polynomial f2 defines the circle of radius (offset) r centered at a point
(x0, y0) on the parabola f1,

f2 = (y − y0)
2 + (x − x0)

2 − r2 = 0, (13)

while the polynomial f3,

f3 = 2xp− 2x0p+ x0y − x0y0 = 0 (14)

gives the condition that a point P(x, y) on the circle f2 lies on a line perpendicular
to the parabola f1 at the point (x0, y0). There are two such points for any given
point (x0, y0), one on each side of the parabola. All these points P belong to an
affine variety V=V(f1, f2, f3)—the envelope of the family of circles—and define
two equidistant curves at the distance r from the parabola. To find a single polyno-
mial equation for this envelope, we compute a reduced Gröbner basis for the ideal
I = 〈f1, f2, f3〉 ⊂R[x0, y0, x, y,p, r] for a suitable elimination order. Then, elim-
inating variables x0 and y0 gives a single polynomial g ∈ R[x, y,p, r] that defines
the envelope. Polynomial g provides a Gröbner basis for the second elimination
ideal I2 = I ∩R[x, y,p, r].

The reduced Gröbner basis G for the ideal I for lex(y0, x0, x, y, r,p) order con-
sists of fourteen homogeneous polynomials while I2 = 〈g〉 where g is as follows:

g = −2pr2yx2 + 8pr2y3 + 8p2r2y2 − 32yp3r2 + 16p4r2 − 16y4p2 + 32y3p3

− 16p4y2 + 3r2x4 + 8p2r4 + 20p2r2x2 − y2x4 + 10ypx4 − x6 − x4p2
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+ 8py3x2 − 32x2y2p2 + 8x2yp3 − 3r4x2 + 2r2x2y2

+ r6 − r4y2 − 8pr4y. (15)

It is possible now to analytically analyze singularities of the envelope by finding
points on V(g) where ∇g = 0. This gives a critical value rcrit = 2|p| of r that deter-
mines whether V(I2) has one or three singular points. For more details, as well as
for a complete treatment of other conics, see [2].

In a manner similar to Example 3, it is possible to analyze envelopes and their
singularities of other curves defined via polynomial equations like Fermat curves,
Bézier cubics, etc., and surfaces, like quadrics, Bézier surfaces. This aids in studying
the so-called caustics [3], shell structures through the finite element analysis [2], and
in designing machinery [22].

3 Fermat Curves and Bézier Cubics

In this section we briefly discuss other curves such as the Fermat curves and the
Bézier cubics. We begin with the Fermat curves.

3.1 Fermat Curves

The Fermat curves are defined as

f1 = xn
0 + yn

0 − cn, n ∈ Z
+, c > 0.

Define f2 to be the circle of radius r centered at (x0, y0) on f1, and let f3 give a
normal line to f1 at (x0, y0).

Let n= 3 and I = 〈f1, f2, f3〉 ⊂R[x0, y0, x, y, r, c], where

f1 = x3
0 + y3

0 − c3, f2 = (x − x0)
2 + (y − y0)

2 − r2,

f3 = xy2
0 − x0y

2
0 − x2

0y + x2
0y0.

For the elimination order lexdeg([x0, y0], [x, y, r, c]),6 the reduced Gröbner basis
for I consists of 129 polynomials of which only one g ∈ R[x, y, r, c]. Polynomial
g has 266 terms and is homogeneous of degree 18. The variety V(I ) contains our
offset curves shown in Fig. 4.

6In the degree lexicographic order lexdeg([x0, y0], [x, y, r, c]) monomials involving only x0 and
y0 are compared using the total degree tdeg(x0, y0) (tdeg is also known as the graded reverse
lexicographic order grevlex); monomials involving only x, y, r, c are compared using the term
order tdeg(x, y, r, c); a monomial involving x0 or y0 is higher than another monomial involving
only x, y, r, c. Such a term order is usually used to eliminate the indeterminates listed in the first
list, namely x0, y0 [10].
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Fig. 4 Fermat cubic n= 3
with equidistant curves and
growing singularities

Fig. 5 Fermat cubic n= 4
with equidistant curves and
growing singularities

Let n= 4 and I = 〈f1, f2, f3〉 ⊂R[x0, y0, x, y, r, c], where

f1 = x4
0 + y4

0 − c4, f2 = (x − x0)
2 + (y − y0)

2 − r2,

f3 = xy3
0 − x0y

3
0 − x3

0y + x3
0y0.

A reduced Gröbner basis for I for the same order consists of 391 polynomials of
which only one g ∈ R[x, y, r, c]. Polynomial g has 525 terms and is homogeneous
of degree 32. The variety V(I ) contains our offset curves shown in Fig. 5.

3.2 Bézier Cubics

A Bézier cubic is defined parametrically as

X = (1− t)3x1 + 3t (1− t)2x2 + 3t2(1− t)x3 + t3x4,

Y = (1− t)3y1 + 3t (1− t)2y2 + 3t2(1− t)y3 + t3y4,
(16)
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Fig. 6 Bézier cubic in
implicit form with control
points and points where
curvature is maximum or
minimum

where (xi, yi), i = 1, . . . ,4, are the coordinates of four control points, and
0≤ t ≤ 1.

3.2.1 First Application of Gröbner Bases to Bézier Cubics

In our first application of Gröbner basis we show how to eliminate the parameter t

from the defining polynomials (16) and find a single polynomial that defines the
cubic implicitly. We compute a reduced Gröbner basis G for the ideal

I = 〈x −X,y − Y 〉 ⊂R[x, y, xi, yi, t]
for the elimination order lexdeg([t], [x, y, xi, yi]). The basis G has 12 polynomials
of which only one g does not contain t , or g ∈ R[x, y, xi, yi]. Then, g is homoge-
neous of degree 6, and it contains 460 terms.

Let the control points be ( 3
2 ,0), (0, 1

4 ), (3,2), (2,0). Then, the Bézier cubic in
Fig. 6 has this implicit form:

g = −213948x + 66420y − 214164yx − 145656y2x + 89964x2y

+ 110079x2 + 135756+ 78608y3 − 18522x3 + 219456y2 = 0. (17)

3.2.2 Second Application of Gröbner Bases to Bézier Cubics

As our second application, we find a parameterization (x(t), y(t)) for a variety of
equidistant curves to a Bézier cubic by computing a reduced Gröbner basis G for a
suitable ideal I in elimination order lexdeg([y], [x, t]).

Let the control points be (2,0), (3,3), (4,1), (3,0); then

X = 2+ 3t − 2t3, Y = 9t − 15t2 + 6t3,
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Fig. 7 Graphs of gx1i and
gx2i for i = 1,2,3

and consider an ideal I = 〈x −X,y − Y,f3, f4〉 ∈ R[x, y, r, t], where f3 gives an
equation of the circle of radius r at (X(t), Y (t)) on the cubic

f3 = (y − Y)2 + (x −X)2 − r2, (18)

while f4 gives an equation of a normal at (X(t), Y (t)) to the cubic

f4 = 3x − 6xt2 − 6+ 417t2 − 90t − 642t3

− 120t5 + 9y − 30yt + 18yt2 + 450t4 (19)

for the offset values r = 2
25 ,

4
25 ,

6
25 . For each r, the basis G has four polynomials

I = 〈h1, h2, h3, h4〉: Polynomial h1 depends only on x, t and is quadratic in x, while
polynomials h2, h3, h4 depend on x, y, t. The discriminant of h1 is always positive
or zero when ts = for 0≤ t ≤ 1. This means that x can always be parameterized in
terms of t by solving h1 = 0 for x with radicals [10].

Let gx1i , gx2i be the solutions of h1 = 0 for x for three offset values of r , i =
1,2,3. Then each gx1i , gx2i is continuous but not smooth. Furthermore, the first
elimination ideal is I1 = 〈h1〉 = I ∩R[x, t]. Here, indices 1 (red) and 2 (blue) refer
to opposite sides of the Bézier cubic in Fig. 7. The graphs intersect at t = ts =
given above. Polynomials h2, h3 are linear in y, while h4 is quadratic in y, and
h2, h3, h4 ∈R[x, t][y]. Since one of their leading coefficients is a nonzero constant,
by the Extension Theorem [10], any partial solution of h1 = 0 in terms of x and t is
extendable to the y-solution.

To find a parameterization for y = y(t), substitute gx1i , gx2i into h3 for each
i = 1,2,3 and solve for y: We obtain discontinuous functions gy1i , gy2i that belong
to the variety V(h2, h3, h4). The single discontinuity appears at t = ts . See Fig. 8.

For the offset values r smaller than rcrit, the equidistant curves are smooth curves
in the Euclidean plane since, as shown later, they can be defined globally by an equa-
tion g(x, y)= 0 where g is a polynomial of two variables, and the partial derivatives
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Fig. 8 Graphs of gy1i and
gy2i for i = 1,2,3

gx and gy are not simultaneously equal to 0. That is, equidistant curves to the Bézier
cubic form a nonsingular variety when r < rcrit. See Fig. 9.

For the Bézier cubic, we conjecture that rcrit = 1
κmax
= ρmin. In this example we

chose the three values of r to satisfy this condition. Thus, we can parameterize the
equidistant curves for the Bézier cubic in our example as, for one side,

Gx1i (t)=
{
gx1i (t), t < ts,

gx2i (t), t ≥ ts ,
Gy1i (t)=

⎧
⎪⎨

⎪⎩

gy1i (t), t < ts,

y1i , t = ts ,

gy2i (t), t > ts,

(20)

where y1i = limt→t−s gy1i (t)= limt→t+s gy2i (t), i = 1,2,3. Likewise, for the other
side,

Gx2i (t)=
{
gx2i (t), t < ts,

gx1i (t), t ≥ ts ,
Gy2i (t)=

⎧
⎪⎨

⎪⎩

gy2i (t), t < ts,

y2i , t = ts ,

gy1i (t), t > ts,

(21)

where y2i = limt→t−s gy2i (t)= limt→t+s gy1i (t), i = 1,2,3.

3.2.3 Third Application of Gröbner Bases to Bézier Cubics

In this section we will find a general polynomial g ∈ R[x, y, r] so that the polyno-
mial equation g = 0 will give equidistant curves to a Bézier cubic at an arbitrary
offset r. We first find a reduced Gröbner basis for a suitable ideal in the elimination
order lexdeg([t,X,Y ], [x, y, r]).

Let the control points be (2,0), (3,3), (4,1), (3,0); then define

f1 =X− 2− 3t + 2t3, f2 = Y − 9t + 15t2 − 6t3, (22)

and consider an ideal I = 〈f1, f2, f3, f4〉 ⊂ R[t,X,Y, x, y, r] where f3 as in (18)
gives an equation of the circle of radius r at (X(t), Y (t)) on the cubic, while f4
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Fig. 9 Bézier cubic with
parametric equidistant curves,
nodes, points of max/min
curvature, and switch points
where t = ts

Fig. 10 Bézier cubic with
implicit equidistant curves
showing growing singularities
as the offset r increases

gives an equation of a normal at (X(t), Y (t)) to the cubic

f4 =−x + 2xt2 +X− 2Xt2 − 3y + 10yt − 6yt2 + 3Y (23)

for an arbitrary (nonnegative) offset r.
The reduced Gröbner basis for I contains twenty seven polynomials, of which

only one belongs to R[x, y, r]. That is,

I3 = I ∩R[x, y, r] = 〈g〉,
where g is of total degree ten in x, y, r , and it has 161 terms (but only 66 terms for
any specific value of r).

In Fig. 10 we plot a few equidistant curves for various offsets with growing sin-
gularities of which one is again of the dove-tail type and it appears across the point
of maximum curvature.

By analyzing solutions to ∇(g) = 0 on g = 0 for a general offset r, one can
search for singularities, if any, of equidistant curves to this specific Bézier cubic.
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Fig. 11 Bézier cubic with
implicit equidistant curves
showing growing singularities
as the offset r increases

As an another example, let us define an S-shaped Bézier cubic

X = 2− 6t + 21t2 − 29

2
t3, Y = 4− 21

2
t + 18t2 − 23

2
t3. (24)

Its graph along with a few equidistant offset curves is shown in Fig. 11.
Let us summarize advantages and disadvantages of this approach.

• Advantages:
– Equidistant curves to any Bézier cubic are given globally as one single poly-

nomial of total degree ten in x, y, r for any offset r.
– This permits their analytic analysis, including analysis of their singularities, if

any, as well as finding the critical value of the offset rcrit.

– Ease of graphing.
– Ease of finding nodes for finite elements (to any desired accuracy).
• Disadvantages:

– Computational complexity although computation of g for the given cubic, i.e.,
for the chosen control points, takes only a few seconds.

– Computation of g for a general Bézier cubic when

I = 〈f1, f2, f3, f4〉 ⊂R[X,Y,x, y, t, r, xi, yi], i = 1,2,3,4,

is beyond the computational ability of present-day PC.

Example 4 (Distance to ellipse) In this example we find a point (or points) on ellipse

f1 = x2

a2 + y2

b2 − 1 that minimizes distance from the ellipse to a given point P =
(x0, y0) not on the ellipse and such that x0 �= 0.7 Thus, one needs first to find points
Q on the ellipse such that a line T tangent to the ellipse at Q is orthogonal to the
vector

−→
QP. Let f2 = a2y(x−x0)−b2x(y−y0). Then, the condition f2 = 0 assures

7When x0 = 0, then the solution is obvious.
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that the vector
−→
QP⊥T . We will use values x0 = 4, y0 = 3

2 , a = 2, b= 1. Thus, we
must to solve the system of equations

f1 = 4y2 + x2 − 4= 0 and f2 = 6yx − 32y + 3x = 0 (25)

for x and y. We will find the reduced Gröbner basis for the ideal I = 〈f1, f2〉 that
defines V =V(f1, f2) for lex(x, y) order. The basis contains two polynomials

g1 =−18y3 + 9− 9y2 + 12x − 110y,

g2 =−9− 36y + 229y2 + 36y3 + 36y4.
(26)

Observe that g2 belongs to I2 = I ∩ R[y]. Observe also that the leading coeffi-
cient in g1 w.r.t. lex(x, y) is 12; hence by the Extension Theorem [10], every partial
solution to the system {g1 = 0, g2 = 0} on the variety V(g2) can be extended to
a complete solution of (25) on the variety V. Since polynomial g2 is of degree
4, its solutions are expressible in radicals. When approximated, two real values
of y are y1 = 0.2811025120 and y2 = −0.1354474035. Each of the exact val-
ues of y, when substituted into the equation g1 = 0 yields the exact value of x.

Thus, we have two points Q on the ellipse whose approximate coordinates are
Q1 = (1.919355494,0.2811025085) and Q2 = (−1.981569077,−0.1354473991).
Checking the distances, one finds ‖−−→Q1P ‖ = 2.411388118 <‖−−→Q2P ‖ = 6.201117385,
or, that the point Q1 is closest to the given point P.

Repeating this example in the purely symbolic case where a, b, x0, y0 remain
unassigned, returns again a two-polynomial reduced Gröbner basis for I :

G = [a4y4 − a4y2b2 + 2a2y2b4 − 2a2b2y4 + a2y2x2
0b

2 + 2a2b2y3y0

− 2a2yb4y0 − b6y2
0 − 2y3y0b

4 − y2b6 + 2yb6y0 + y4b4 + y2y2
0b

4,

a2b4y0 − b6y0 − a2b2y2y0 + b4y2y0 + a4yb2 − 2a2yb4 + yb6

− a2x2
0yb

2 − a4y3 + 2a2b2y3 − b4y3 + x0b
4xy0

]
, (27)

where the first polynomial is of degree 4 in y and is, in principle, solvable with
radicals. The second polynomial is again of degree 1 in the variable x. Thus, in
general, this problem is solvable in radicals.

In [4] a similar problem is studied: It consists of finding the distance between
a point P on the Earth’s topographic surface and the closest to it point p on the
international reference ellipsoid E

2
a,a,b. This is another example of a constrained

minimization problem which is set up with the help of a constrained Lagrangian,
while the resulting system of four polynomial equations is solved with Gröbner
basis.

Example 5 (Rodrigues matrix) Recall that the trigonometric form of a quaternion
a = a0+a ∈H is a = ‖a‖(cosα+u sinα), where u= a/|a|, |a|2 = a1

2+a2
2+a3

2,
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and α is determined by cosα = a0/‖a‖, sinα = |a|/‖a‖, 0 ≤ α < π. Then, any
quaternion can be written as

a = ‖a‖(cosα + |a|−1(a1i+ a2j+ a3k) sinα
)
. (28)

The following theorem can be found in [20, 21].

Theorem 4 Let a and r be quaternions with nonzero vector parts where ‖a‖ = 1,
so a = cosα+u sinα where u is a unit vector. Then, the norm and the scalar part of
the quaternion r ′ = ara−1 equal those of r, that is, ‖r ′‖ = ‖r‖ and Re(r ′)= Re(r).
The vector component r′ = Im(r ′) gives a vector r′ ∈ R

3 resulting from a finite
rotation of the vector r= Im(r) by the angle 2α counter-clockwise about the axis u
determined by a.

Let a = a0 + a, b = b0 + b ∈ H. Let va, vb, and vab be vectors in R
4 whose

coordinates equal those of a, b, ab ∈H.

Then, the vector representation of the product ab is

ab �→ vab =G1(a)vb =G2(b)va, (29)

where

G1(a)=
[
a0 −aT

a a0I +K(a)

]
, G2(b)=

[
b0 −bT

b a0I −K(b)

]
, (30)

and

K(a)=
⎡

⎣
0 −a3 a2
a3 0 −a1
−a2 a1 0

⎤

⎦ , K(b)=
⎡

⎣
0 −b3 b2
b3 0 −b1
−b2 b1 0

⎤

⎦ , (31)

are skew-symmetric matrices determined by the vector parts a and b of the quater-
nions a and b, respectively. For properties of matrices G1(a) and G2(b), see
[20, 21]. Theorem 4 implies that mapping r �→ r ′ = ara−1, ‖a‖ = 1, gives the ro-
tation r �→ r′ in R

3. Using 4× 4 matrices, it can be written as

vr �→ v′r =G1(a)G2
(
a−1)vr =G1(a)G

T
2 (a)vr , (32)

where

G1(a)G
T
2 (a)=

⎡

⎢
⎣

1 0
0 (2a2

0 − 1)I + 2aaT + 2a0K(a)
︸ ︷︷ ︸

R(a)

⎤

⎥
⎦ . (33)

The 3×3 matrix R(a) in the product G1(a)G
T
2 (a) is the well-known Rodrigues ma-

trix of rotation. [13] The Rodrigues matrix has this form in terms of the components
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of a:

R(a)=
⎡

⎣
a2

0 + a2
1 − a2

2 − a2
3 2a1a2 − 2a0a3 2a1a3 + 2a0a2

2a1a2 + 2a0a3 a2
0 − a2

1 + a2
2 − a2

3 2a2a3 − 2a0a1

2a1a3 − 2a0a2 2a2a3 + 2a0a1 a2
0 − a2

1 − a2
2 + a2

3

⎤

⎦ . (34)

Entries of R(a) are homogeneous polynomials of degree 2 in R[a0, a1, a2, a3]. Sep-
arating the scalar and the vector parts of the quaternion r in the 4D representation
(32), we get

Re
(
r ′
)= Re(r), Im

(
r ′
)= r′ =R(a)r =R(a) Im(r). (35)

The first relation shows that the scalar part of r remains unchanged, while the
vector part r′ of r ′ is a result of rotation of the vector part r of r about the
axis a = a1i + a2j + a3k, and the angle of counter-clockwise rotation is 2α. Ob-
serve that detR(a) = ‖a‖6 and R(a)T R(a) = ‖a‖4I. Since detR(a) = ‖a‖6 and
R(a)T R(a) = ‖a‖4I, the Rodrigues matrix R(a) gives a rotation if and only if
‖a‖ = 1. We intend to find the rotation axis a and the rotation angle 2α by express-
ing the quaternionic entries (a0, a1, a2, a3) in terms of the entries of an orthogonal
matrix M of determinant 1. For that purpose, we will use a technique of Gröbner
basis and the theory of elimination [10]. Let M = (mij ) be an orthogonal 3× 3 ma-
trix, that is, MT M = I. Since MT M is symmetric, this one constraint gives us six
polynomial constraints on the entries of M :

c1 = m2
11 +m2

21 +m2
31 − 1, c2 =m2

12 +m2
22 +m2

32 − 1,

c3 = m2
13 +m2

23 +m2
33 − 1, c4 =m11m12 +m21m22 +m31m32,

c5 = m11m13 +m21m23 +m31m33, c6 =m12m13 +m22m23 +m32m33.

We add one more constraint, namely, that detM = 1:

c7 = m11m22m33 −m11m23m32 −m21m12m33

+m21m13m32 +m31m12m23 −m31m13m22 − 1.

A Gröbner basis GJ for the syzygy ideal J = 〈c1, c2, . . . , c7〉 with respect to the
order lex(m11,m12, . . . ,m33) contains twenty polynomials including five polyno-
mials from the original set. This means that the seven constraint polynomials are
not algebraically independent. Define nine polynomials fk ∈R[a0, a1, a2, a3,mij ]:

[f1, f2, f3, f4, f5, f6, f7, f8, f9] =
[
mij −R(a)ij

]
. (36)

Our goal is to express the four parameters a0, a1, a2, a3 in terms of the nine matrix
entries mij that are subject to the seven constraint (syzygy) relations cs = 0, 1 ≤
s ≤ 7. This should be possible up to a sign since for any rotation in R

3 given by an
orthogonal matrix M, detM = 1, there are two unit quaternions a and −a such that
R(a)=R(−a)=M.
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We compute a Gröbner basis GI for the ideal I = 〈f1, . . . , f9, c1, . . . , c7〉
for lex(a0, a1, a2, a3,m11,m12, . . . ,m33) order. GI contains fifty polynomials of
which twenty polynomials are in R[mij ]: thus they provide a basis GJ for the
syzygy ideal J. We need to solve the remaining thirty polynomial equations for
a0, a1, a2, a3, so we divide them into a set Sl of twenty linear polynomials in
a0, a1, a2, a3, and a set Snl of ten nonlinear polynomials in a0, a1, a2, a3. The first
four polynomials in Snl are:

a2
0 =

1

4
(1+m11 +m22 +m33), a2

1 =
1

4
(1+m11 −m22 −m33),

a2
2 =

1

4
(1−m11 +m22 −m33), a2

3 =
1

4
(1−m11 −m22 +m33),

(37)

which easily shows that ‖a‖ = 1, the quaternion a defined by the orthogonal ma-
trix M is a unit quaternion.

The remaining six polynomials in Snl are:

a0a1 = 1

4
(m32 −m23), a0a2 = 1

4
(m13 −m31),

a1a2 = 1

4
(m12 +m21), a0a3 = 1

4
(m21 −m12),

a1a3 = 1

4
(m13 +m31), a2a3 = 1

4
(m23 +m32).

(38)

The remaining twenty polynomials from Sl are linear in a0, a1, a2, a3. Let A be the
coefficient matrix of that linear homogeneous system. Matrix A is 20 × 4, but it
can be easily reduced to 14× 4 by analyzing its submatrices and normal forms of
their determinants modulo the Gröbner basis GJ . It can be shown that this symbolic
matrix is of rank 3. That is, there is always a one-parameter family of solutions.
Once that one-parameter family of solutions is found, two unit quaternions±a such
that R(±a)=M can be found from remaining ten nonlinear equations.

For example, let

M =
⎡

⎣
1 0 0
0 0 −1
0 1 0

⎤

⎦ .

Then, the linear system A(a0, a1, a2, a3)
T = 0 has the one-parameter solution

a0 = a0, a1 = a0, a2 = 0, a3 = 0. The system of nonlinear equations reduces to just
4a0

2 = 2, which gives a0 =± 1
2

√
2, and one unit quaternion is: a = 1

2

√
2+ 1

2

√
2i=

a0+a, cosα = 1
2

√
2, sinα = |a| = 1

2

√
2. The Rodrigues matrix gives R(±a)=M,

α = 1
4π, so the rotation angle is 2α = 1

2π, and the rotation axis u is just i, as ex-
pected.
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For another example, consider the following orthogonal matrix:

M =

⎡

⎢⎢
⎣

0
√

210−5
√

14
35

−2
√

35−5
√

21
35√

210+5
√

14
35

11
35

−7
√

6+5
√

10
35

−2
√

35+5
√

21
35

−7
√

6−5
√

10
35

4
35

⎤

⎥⎥
⎦

with detM = 1. Then, solution to the linear system is a0 = a0, a1 = −
√

10
5 a0,

a2 = −
√

21
5 a0, a3 =

√
14
5 a0. Upon substitution into the nonlinear equations, we find

a0 = ±
√

70
14 , which eventually gives a =

√
70

14 + (−
√

7
7 i −

√
30

10 j +
√

5
5 k), cosα =√

70
14 , sinα = |a| = 3

√
14

14 . It can be verified again that R(±a) = M and α ≈
0.9302740142 rad.

For our last example, we need the following result from [10, Proposition 3,
p. 339] on the so-called ideal of relations IF for a set of polynomials F =
(f1, . . . , fm). It is usually used to derive the syzygy relations among homogeneous
invariants of finite groups. We will use it to show how one can systematically de-
rive relations among interpolation functions used in finite element theory. Although
these relations are well known [23], their systematic derivation with the help of
Gröbner basis is less known.

Consider the system of equations

y1 = f1(x1, . . . , xn), . . . , ym = fm(x1, . . . , xn).

Then, the syzygy relations among the polynomials f1, . . . , fm can be obtained by
eliminating x1, . . . , xn from these equations. Let k[x1, . . . , xn]G denote the ring of
invariants of a finite group G⊂GL(n, k). The following result is proven in [10].

Proposition 1 If k[x1, . . . , xn]G = k[f1, . . . , fm], consider the ideal

JF = 〈f1 − y1, . . . , fm − ym, 〉 ⊂ k[x1, . . . , xn, y1, . . . , ym].
(i) IF is the nth elimination ideal of JF . Thus, IF = JF ∩ k[y1, . . . , ym]. (ii) Fix a
monomial order in k[x1, . . . , xn, y1, . . . , ym], where any monomial involving one of
x1, . . . , xn is greater than all monomials in k[y1, . . . , ym] and let GB be a Gröbner
basis of JF . Then GB ∩ k[y1, . . . , ym] is a Gröbner basis for IF in the monomial
order induced on k[y1, . . . , ym].

The ideal IF is known to be a prime ideal of k[y1, . . . , ym].8 Furthermore, the
Gröbner basis for IF may not be minimal: This is because the original list F of
polynomials may contain polynomials which are algebraically dependent. Thus, in

8An ideal I ⊂ k[x1, . . . , xn] is prime if whenever f,g ∈ k[x1, . . . , xn] and fg ∈ k[x1, . . . , xn], then
either f ∈ I or g ∈ I.
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order to obtain a minimal Gröbner basis for IF or the smallest number of syzygy
relations, one needs to assure first that the list F is independent [10].

We will use this proposition encoded in a procedure SyzygyIdeal from the SP
package [1] to compute syzygy relations among interpolation functions for orders
k = 2 and k = 3 for triangular elements in finite element method. These elements
are referred to as quadratic and cubic as their interpolation functions are, respec-
tively, quadratic and cubic polynomials, and they contain, respectively, three and
four equally spaced nodes per side. For all definitions, see [23, Chap. 9].

Example 6 We derive relations between the interpolation functions for the higher-
order Lagrange family of triangular elements with the help of the so-called area
coordinates Li. For triangular elements, there are three nondimensional coordi-
nates Li, i = 1,2,3, such that

Li =Ai/A, A=A1 +A2 +A3, L1 +L2 +L3 = 1 (39)

(see [23, Fig. 9.3, p. 408]). Here, Ai is the area of a triangle formed by the nodes
j and k (i.e., i �= j, i �= k) and an arbitrary point P in the element, and A is the
total area of the element. Each Li is a function of the position of the point P. For
example, if point P is positioned on a line joining nodes 2 and 3 (or, at the nodes 2
or 3), then L1 = 0 and L1 = 1 when P is at the node 1. Thus, L1 is the interpolation
function ψ1 associated with the node 1 and likewise for L2 and L3, that is,

ψ1 = L1, ψ2 = L2, ψ3 = L3

for any triangular element. Functions (polynomials) Li are used to construct inter-
polation functions for higher-order triangular elements with k nodes per side.

For k = 3, we have three equally spaced nodes per side of a triangular element,
and the total number of nodes in the element is n= 1

2k(k+1)= 6. Then, the degree
d of the interpolation functions (polynomials) Li is d = k − 1= 2. The triangular
elements are then called quadratic.

We define six interpolation functions ψs, s = 1, . . . ,6, in terms of Li as in for-
mulas (9.16a), (9.16b), and (9.16c) in [23, p. 410]:

ψ1 = 2L2
1 −L1, ψ2 = 4L1L2, ψ3 = 2L2

2 −L2,

ψ4 =−4L1L2 − 4L2
2 + 4L2,

ψ5 = 2L2
1 + 4L1L2 − 3L1 + 2L2

2 − 3L2 + 1,

ψ6 =−4L2
1 − 4L1L2 + 4L1.

(40)
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The procedure SyzygyIdeal yields seven polynomial relations between the func-
tions ψs :

r1 =ψ2
4 + 4ψ4ψ5 + 4ψ2

5 + 2ψ4ψ6 + 4ψ5ψ6 +ψ2
6 −ψ4 − 4ψ5 −ψ6,

r2 = 2ψ2ψ5 +ψ2ψ6 + 2ψ3ψ6,

r3 = 4ψ3ψ5 + 4ψ4ψ5 + 4ψ2
5 −ψ2ψ6 − 2ψ3ψ6 +ψ4ψ6 + 4ψ5ψ6

+ψ2
6 − 4ψ5 −ψ6,

r4 =ψ1 − 1+ψ2 +ψ3 +ψ4 +ψ5 +ψ6,

r5 =ψ2ψ4 −ψ2ψ6 − 4ψ3ψ6 −ψ4ψ6,

r6 = 2ψ3ψ4 − 6ψ4ψ5 − 8ψ2
5 + 2ψ2ψ6 + 6ψ3ψ6 −ψ4ψ6 − 8ψ5ψ6

− 2ψ2
6 + 8ψ5 + 2ψ6,

r7 =ψ2
2 + 4ψ2ψ3 + 4ψ2

3 + 8ψ4ψ5 + 12ψ2
5 − 2ψ2ψ6 − 4ψ3ψ6

+ 2ψ4ψ6 + 12ψ5ψ6 + 3ψ2
6 −ψ2 − 4ψ3 − 12ψ5 − 3ψ6.

(41)

It can be verified by direct substitution of (40) into (41) that the latter well-known
relations [23] are satisfied.

When there are k = 4 equally spaced nodes per side of a triangular element, then
the total number of nodes per element is n= 10, and the degree d of the interpolation
functions (polynomials) is d = k − 1 = 3. In a similar manner as above one can
derive twenty nine relations among the ten interpolation polynomials.

4 Conclusions

Our goal was to show a few applications of Gröbner basis technique to engineering
problems extending from robotics through curve theory to finite-element method.
While applications to the inverse kinematics are well known, formulation of the
problem of finding the circle of two intersecting spheres, that is, the plane of the
circle, a normal to the plane, and then the radius and the center of the circle in
the language of Clifford (geometric) algebra, gave another opportunity to apply the
Gröbner basis technique. Since the method is fast and efficient, it can be employed
when solving the elbow problem of the robot arm also when formulated in that
language.
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cover, 435
enumerating, 437
Hamiltonian, 435, 438
proper, 435

Cylindrical
Fourier transform, 107, 108, 111–114,

117–119

D
Delta product, 465
Density

decay, 317
function, 304

Dickson’s Lemma, 497
Dilator, 195
Dirac operator, 109, 111, 166

anisotropic, 182
Dirac–Hestenes

equation, 397
Directional filter bank, 249, 266
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Distance
Euclidean, 388

Distance to ellipse, 509
Distributed representation, 401
Distributions, 176
Division algorithm

general, 496
Dual of a group, 136, 155
Dualization, 43

E
Ego-center, 300
Elbow

of a robot arm, 498
Elimination

ideal
second, 502

order, 502, 503
Elimination Theory, 498
Ellipse, 284
EM algorithm, 235
Energy density, 97
Entangled bivector, 86
Envelope, 498, 501

singularities of, 503
Equation

Dirac–Hestenes, 397
Oseen, 369

Equations
forecasting, 378
Navier–Stokes, 367
shallow water, 378

Equidistant
curve, 498
surface, 498

Euclidean
distance, 388
group, 389

Euclidean distance, 416
Euclidean geometry, 8, 38
Exponential map, 74
Exponential map of a Lie group, 157
Extension

Theorem, 510
Theory, 498

Exterior exponential, 75

F
Face recognition, 249–251, 269, 272
Factorization, 457
FastJoin, 462
Feature extraction, 233

Fermat
cubic, 495
curve, 503

Filter banks, 105
Filtering

orientation, 304
proximity, 304

Fluid dynamics, 353
Fluid flow analysis, 121
Forward kinematic problem, 498
Fourier analysis, 107
Fourier series

quaternion, 128
Fourier transform, 107, 110–112, 118, 137, 156

biquaternion, 130
Clifford, 95, 124
discrete Clifford, 125
quaternion, 126

FPGA, 66, 477
Frequencies filtering, 148
Frieze group, 394
Funk–Hecke theorem, 109, 114, 116

G
Gaalop, 66, 477
Gabor filters

Clifford, 94
quaternionic, 94

Gaigen software, 457, 466
Gaussian

window function, 103
Gaussian function, 97
Gaussian mixture model, 232
Gegenbauer polynomial, 115, 116
Generalized Cauchy–Riemann operator, 330
Generator

geometric, 395
geometric algebra, 391
product, 391
screw, 395
space group, 389

Geometric algebra, 93, 122, 192, 213, 232, 402
and neural networks, 191
classification, 215
conformal, 36, 194, 213

Geometric data, 233
Geometric feature, 232
Geometric product, 192
Geometry

Euclidean, 8, 38
GGNF

Generalized Gradient Vector Flow, 197
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GGVF
energy functional, 197
neural networks and, 198

Grade
of blade, 481

Grade involution, 387
Gram–Schmidt orthogonalization, 471, 473
Graph, 435

circumference, 435, 439
component, 435
finite, 435
girth, 440
matching, 436
regular, 435
representation, 301

Grassmann, 53, 386
algebra, 499
basis monomial, 499
outer product, 386

Grassmann–Cayley algebra, 72
Gröbner basis, 495, 515

reduced, 498
theory, 495

Group
cell point groups, 386
Clifford, 387
conformal, 389
crystallographic, 385
Euclidean, 389
frieze, 395
generator, 389
hexagonal point, 387
layer, 396

monoclinic, 398
monoclinic oblique, 398
monoclinic rectangular, 398
triclinic, 398
triclinic oblique, 398

layer group, 396
GA generator, 396
geometric notation, 396

Lipschitz, 387
monoclinic, 389
monoclinic point group, 387
orthogonal, 389
point group, 385, 387, 390, 397
presentation, 387
relation, 387
rod, 396
rod group

GA generator, 396
geometric notation, 396
monoclinic, 397
monoclinic inclined, 397

monoclinic orthogonal, 397
triclinic, 397

rotation subgroup, 387
selection, 390
space group, 385, 390, 397
subperiodic, 385, 386, 394

frieze, 394
layer, 394
rod, 394

symbol, 389
visualization, 385

Group morphism from R
2 to Spin(4), 141

Group representation, 155

H
Hamming distance, 416
Hand-written digit, 240
Handshaking Lemma, 436
Hardy space, 165, 167, 181
Hermann–Maugin, 387
Hermitean conjugation, 108
Hermitean inner product, 108
Hestenes, 53
Hilbert basis theorem, 497
Hilbert transform, 163, 166, 167, 181, 249, 250,

253, 254, 257
anisotropic, 181

Holomorphy
Da -, 349
L-, 347

Homothety transformation, 321
HRR, 402
Humanoid robot, 300
Hypercomplex derivative, 330
Hypercomplex Fourier transform, 152
Hyperholomorphic constant, 341
Hyperplane, 386

I
Ideal

finitely generated, 496
of relations, 514
prime, 514

Image analysis, 105
Image compression, 105
Image recognition, 249, 251, 268
Image registration, 249, 250, 261, 262, 268
Implicitization problem, 498
Inner product, 234, 403
Integral transform, 107, 118, 119
Interaction

visual, 391
International Tables of Crystallography, 393
Interpolation function, 514
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Intersection, 279, 283, 286, 288, 291
Invariant

generating, 498
Invariant feature, 249, 250, 262, 264, 265
Inverse Clifford–Fourier transform, 143, 145
Inverse Fourier transform, 157
Inverse kinematic problem, 498
Inverse kinematics, 485
Inversion, 386
Involution

grade, 387
main, 387

IPNS
Inner Product Null Space, 193

J
Join, 457

K
Kummer’s function, 116, 117

L
Laplace operator, 109, 111
Layer group, 394
Legendre polynomial, 110, 115
Lexicographic order, 503
Lie algebra morphism, 158
Lie algebra morphism from R2 to R

2
4,0, 141

LIFT, 458
Lipschitz

group, 387
Local geometric properties, 340
Localization, 97
Location

hypotheses, 309
Location information, 93

M
Main involution, 387
Matching, 441
Matrix representation, 413
Meet, 457, 474
Model

conformal, 388
Model-base

self-localization, 300
Monoclinic, 387, 389
Monogenic extension, 171
Monogenic function, 109, 166
Monogenic-conformal mappings, 328, 332
Monomial

Clifford, 387
ideal, 497

order, 496
graded inverse lex, 496
graded reverse lex, 496
lexicographic (lex), 496

Motion estimation, 278, 292, 295
Mouse

3D connexion, 392
three-dimensional, 392

Multi-dimensional, 232
Multivector, 192

N
Nil–Clifford algebra, 433
Nilpotent adjacency matrix, 437
Numerical analysis

approximation, 373
stability, 374

Numerical stability, 465

O
Offset, 507
Operator

Cauchy–Fueter, 352
Dirac, 351
generalized intersection, 300

OPNS
Outer Product Null Space, 193

Optical flow, 249, 250, 257, 258, 260–262
Optics, 105
Optimization, 218, 220
Orthogonal

group, 389
Orthographic

projection, 393
view, 393

Outer product, 234, 457

P
Path, 435
Pattern association, 211
Pattern classification, 211, 215, 221
Pattern matching, 125
Pattern recognition, 105
Perception–action, 299
Perception–recognition, 300
Percepts

fusion, 303
matching, 303

Phase congruency, 249, 250, 262–265
Pixel, 278, 283
Pixel gray-level, 287
Plemelj–Sokhotzki formulae

anisotropic, 165, 183
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Point group, 385
hexagonal, 387

Polygon
regular, 387

Polytope, 320
face cells, 320
ridges, 320
vertices, 320

Pose
6D, 300
estimation, 310

Problem
magnetic Benard, 375
nonlinear Stokes, 355
stationary Navier–Stokes, 356
stationary Stokes, 354

Product
inner, 44
outer, 42

Projection
Bergman, 351
orthogonal, 44
orthographic, 393

Projections
general Plemelj, 348

Q
Quasi-conformal mappings, 336
Quaternion algebra, 249–251, 253, 254
Quaternion phase, 257, 264
Quaternion wavelet, 249–252, 254, 255, 257,

258, 263, 265, 269, 272
Quaternionic analysis, 348

discrete structures, 352
quaternionic operator calculus, 351

Quaternionic Fourier transform, 153
Quaternionic Vahlen matrices, 78
Quaternions, 348

Gabor filters, 94
Questionnaire, 242

R
Reduced quaternions, 329
Reflection, 385, 386, 389

composition, 386
diagonal glide, 394
glide, 394
hyperplane, 386
rotary, 386

Reverse
multivector, 193

Rigid body motion, 55, 195

Ring of invariants
of a finite group, 514

Robotics, 31
Rod group, 394
Rodrigues matrix, 510, 511
Roles and fillers, 404
Rotation, 385, 386, 389

screw, 394
subgroup, 387

Rotation, translation, 282, 283
Rotor, 195

S
S-polynomial, 497
Scalar sum, 434
Score functions, 292
Screw

generator, 395
Screw motion, 74
Screw theory, 26
Semi-discretisation

Rothe method, 368
Semi-supervised learning, 237
Shell, 503
Signal representation, 93
Simulated annealing, 295
Software

ambient light, 393
animation, 391
cell choice, 393
cell type menu, 393
CLUCalc, 385
color scheme, 393
light source, 393
lighting menu, 393
multivector, 390
OpenGL, 385
rotation center, 392
SGV browser panel, 391
SGV general element selection, 392
SGV GUI, 390
SGV toolbar, 390, 391
three-dimensional graphics, 392
three-dimensional interaction, 392
virtual reality, 393
visual interaction, 391
XML input, 390

Space
ego reference frame, 303
physical, 301
radial, 317
radial normalized density, 323
visual, 301
world-model, 301
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Space group, 385, 390
frieze, 395
generator, 389
layer, 396
magnetic, 397
monoclinic, 389
orbit

noncharacteristic, 397
rod, 396
selection, 390
subperiodic, 386, 394, 397

magnetic, 397
symbol, 389
visualization, 385

Space Group Visualizer, 389
Spatial extension

limited, 105
Spatial vectors, 233
Spatial-frequency analysis, 93
Spectrogram, 97
Sphere

Gaussian, 314
restriction, 308

Spherical monogenic, 178
Spherical neighborhood, 215, 217

optimal, 217
Spherically separable, 221

patterns, 216
Spinor group, 139, 141, 160
Split

additive, 16
conformal, 15

Stereo
color, 393

Stereo matching, 249, 250, 258, 264, 265
Structure

topological and geometric, 300
Subperiodic

space group, 394
Subperiodic group

frieze, 395
layer, 396
layer group, 396
rod, 396

Subspace
configuration, 319
intersection, 300
restriction, 300

Subspace intersection, 457
Subspace union, 457
Subspaces, 457
Symbol

Bravais, 394, 396
geometric for group, 395

space group, 389
Symmetry, 385

active, 392
composition, 386
diagonal glide reflection, 394
glide reflection, 394
inversion, 386
operation, 392
operator, 385

translator, 389
reflection, 385, 386, 389
rotary reflection, 386
rotation, 385, 386, 389
screw rotation, 394
transformation, 386
translation, 385, 389

System
Bravais, 396

Syzygy
ideal, 512, 513
relation, 498

T
Tensor product, 416
Theorem

Cartan–Dieudonné, 7, 39, 386
Three-nil algebra, 433
Transform

Teodorescu, 352
Translation, 385, 389
Translator, 195, 389
Tree, 435
Triangular element, 515
Twist, 277, 283
Twisted Vahlen matrices, 78

V
Vahlen matrices, 78
Variety

affine, 496
Versor, 41, 387

as exponential, 49
combination, 389

Vertex
enumeration, 320

View
orthographic, 393

Virtual reality, 393
Visualization

ambient light, 393
cell choice, 393
cell type menu, 393
color scheme, 393
coordinate frame, 393
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interactive, 389
navigate, 393
protein, 397
space group, 385
view rotation, 392

W
Walk, 435

Window function
B-spline, 103

Windowed Fourier transform
Clifford, 93

X
XOR, 403
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