
Formalism in Safety Cases

John Rushby

Computer Science Laboratory, SRI International

Menlo Park, California, USA

Abstract Suitable formalisms could allow the arguments of a safety case to be
checked mechanically. We examine some of the issues in doing so.

1 Introduction

A safety case provides an argument that a system is safe to deploy; the notion of
‘safe’ is made precise in suitable claims about the system and its context of dep-
loyment, and the argument is intended to substantiate these claims, based on evi-
dence concerning the system and its design and construction. The approach can be
applied recursively, so that substantiated claims about a subsystem can be used as
evidence in a parent case. Evaluators examine the case and may certify the system
if they are persuaded that the claims are appropriate, the evidence is valid, and the
argument is correct.

The safety case approach to safety certification may be contrasted with the
standards-based approach, where the applicant is recommended or required to fol-
low certain guidelines and standards. These generally specify the development and
assurance processes that should be used, the intermediate artifacts to be produced
(requirements, specifications, test plans etc.), the kinds of reviews, tests, and ana-
lyses that should be performed, and the documentation that should record all of
these.

The intellectual foundations for the two approaches are fundamentally very
similar: we can think of the social process that generates guidelines and standards
as constructing a generic safety case; documentation of the required processes and
products for a particular system then constitutes the evidence for an instantiation
of this case. The main difference is that the argument (and often the claims, too)
are implicit in the standards-based approach: they presumably inform the internal
debate that decides what evidence the standard should require, but are not formu-
lated explicitly, nor recorded.

Although fundamentally similar, the two approaches do have their own advan-
tages and disadvantages. Standards-based approaches generally incorporate much
accumulated experience and community wisdom, and they establish a solid ‘floor’

C. Dale, T. Anderson (eds.), Making Systems Safer, DOI 10.1007/978-1-84996-086-1_1,
© Springer-Verlag London Limited 2010

4 John Rushby

so that systems developed and assured according to their prescriptions are very
likely to be adequately safe. On the other hand, standards tend to be slow-moving
and conservative, and can be a barrier to innovation in both system design and in
methods for assurance. Furthermore, a generic standard may not be well-tuned to
the specifics of any given system – so that its application may be excessively
onerous in some areas, yet provide insufficient scrutiny in others.

An explicit safety case can be customized very precisely for the specific cha-
racteristics of the system concerned, and therefore has the potential to provide
stronger assurance for safety than a standards-based approach, and at lower cost
(by eliminating unnecessary effort). Safety cases can also be more agile, allowing
greater innovation than standards-based methods.

However, some observers express concern over the reliability of judgements
about the quality of a safety case, particularly if some of its elements are novel.
One experienced practitioner told me that he feared that regimes lacking a strong
safety culture would accept almost any safety case, after demonstrating diligence
by probing minor details. Of course, true diligence and competence and a strong
safety ethic are required in the performance and evaluation of standards-based ap-
proaches as well as safety cases, but the social process that generates standards,
and the infrastructure and skill base that develops around them, may provide a
stronger support base than is available for a solitary safety case. On the other
hand, the motivation for introducing safety cases in the first place came from in-
vestigations into a number of disasters where traditional approaches were deemed
to have failed (Kelly 1998). Perusal of recent aircraft accident and incident reports
(e.g., ATSB 2007, AAIB 2007) certainly erodes complacency about the standards-
based approach employed for airborne software (RTCA 1992).

We may conclude that safety cases seem to be the better approach in principle,
but that it could be worthwhile to enquire if there might be some systematic
processes that could help increase confidence in the soundness of a given case.
Now, a safety case is an argument, and the branch of intellectual inquiry that fo-
cuses on arguments is logic, with formal logic allowing the checking – or genera-
tion – of certain kinds of arguments to be reduced to calculation, and thereby au-
tomated. So, this paper will explore some of the opportunities and challenges in
applying formalism to safety cases. It is written from my personal perspective –
which is as a practitioner of formal methods – and may not coincide with the
views of those with more experience in safety cases. My hope is that it will help
develop a dialogue between these two bodies of knowledge and experience.

The next section considers the top-level argument of a safety case; this is fol-
lowed by consideration of lower-level arguments, and then probabilistic argu-
ments. The paper concludes with a summary and suggestions for further research.

Formalism in Safety Cases 5

2 The Top-Level Argument

The concepts, notations, and tools that have been developed for representing,
managing, and inspecting safety cases (e.g., Kelly and Weaver 2004, Bishop et al.
2004) provide strong support for structuring the argument of a safety case. None-
theless, the safety case for a real system is a very large object and one wonders
how reliably a human reviewer can evaluate such an argument: consider the
thought experiment of slightly perturbing a sound case so that it becomes unsound
and ask how confident can we be that a human reviewer would detect the flaws in
the perturbed case. These concerns are not merely speculative: Greenwell and col-
leagues found flaws in several cases that they examined (Greenwell et al. 2006).

Although a safety case is an argument, it will generally contain elements that
are not simple logical deductions: some elements of the argument will be probabil-
istic, some will enumerate over a set that is imperfectly known (e.g., ‘all hazards
are adequately handled’), and others will appeal to expert judgement or historical
experience. All of these are likely to require human review. While suggesting that
there may be benefits in formalizing elements of a safety case, I do not propose
that we should eliminate or replace those elements that may be difficult to formal-
ize. Rather, my proposal is that by formalizing the elements that do lend them-
selves to this process, we may be able to reduce some of the analysis to mecha-
nized calculation, thereby preserving the precious resource of expert human
review for those elements that truly do require it. Furthermore, formalization of
some elements may allow the context for human reviews (e.g., assumptions) to be
more precisely articulated and checked.

By formalization and calculation, I mean representing elements of the argument
in a formal notation that is supported by strong and automated methods of deduc-
tion – that is, theorem proving. I do not see good prospects for adoption of forma-
lization in safety cases, nor much value in doing so, unless it is supported by
pushbutton automation. Fortunately, I believe the prospects for achieving this are
good: the arguments in a safety case are not intricate ones that tax a theorem prov-
er – they are large, but simple.

An important choice is the logical system in which to formalize safety case ar-
guments. Experiments and experience will be needed to make a well-informed de-
cision, but I can suggest some considerations. On the one hand, we should choose
a logic and theories that are supported by pushbutton automation, and on the other,
we need a choice that is able to express the kinds of arguments used in a safety
case. To make this concrete, here is the top level of an argument examined by
Holloway (Holloway 2008):

‘The control system is acceptably safe, given a definition of acceptably safe, because all
identified hazards have been eliminated or sufficiently mitigated and the software has
been developed to the integrity levels appropriate to the hazards involved.’

We can decompose and slightly restructure this into the following elements.

6 John Rushby

1. We have a system in an environment, and a safety claim about these,
and the claim is appropriate for that system in that environment.

2. There is a set hset of hazards, and the members of this set are all the hazards
relevant to the claim for the system in its environment.

3. The system handles all members of the set hset of hazards.
Note: I have restructured the prose argument here: my notion of ‘handles’ in-
cludes either elimination or mitigation of each hazard and, for the latter, assur-
ance that the software has been developed to a suitable integrity level. The de-
composition into elimination and mitigation-plus-integrity will be performed at
a later stage of the argument.

4. Satisfaction of the preceding items is sufficient to ensure that the system is safe
in its environment.

We can formalize item 1 as

appropriate(claim, system, env)

where claim, system, and env are uninterpreted constants, and appropri-
ate is an uninterpreted predicate. Uninterpreted means that no properties are
known about these entities (other than that they are distinct from each other), apart
from what we might introduce through axioms; this is in contrast to interpreted
types and predicates (such as integer, or iszero) whose meaning is built-in
to the theories of the logical system concerned. We can informally attach interpre-
tations to the symbols (e.g., system means ‘the system under consideration’), or
we can do so formally by supplying axioms or formal theory interpretations. If the
formal elaborations are done correctly (and part of what a theorem prover does is
check that we do do it correctly), then anything we can prove about the uninter-
preted constants remains true of their interpretations.

Here, the justification that the particular claim is appropriate presumably rests
on precedent, legislation, experience, and judgement, and will be documented
suitably. We can introduce an uninterpreted constant approp_claim_doc to
represent existence of this documentation, and the documentation itself can be at-
tached to the constant. Attachments are used quite widely in AI and in formal veri-
fication (e.g., Crow et al. 2001), usually to provide a computational interpretation
to some term, in which case they are called ‘semantic attachments’. Here, we have
‘documentation attachments’ and a theorem prover could easily be augmented to
assemble or cite the documentation that supports a particular chain of deduction.
Mere existence of documentation is insufficient, however: the developers, review-
ers, or evaluators of the safety case need to record their judgement that it is ade-
quate. We can allow for this by an uninterpreted predicate good_doc and the fol-
lowing axiom.

good_doc(approp_claim_doc)
 IMPLIES appropriate(claim, system, env)

Formalism in Safety Cases 7

The reviewers can indicate their assent by adding
good_doc(approp_claim_doc) as an axiom; the theorem prover will then
derive appropriate(claim, system, env) by forward chaining. The
triviality of the deduction here does not negate its value: it provides a computa-
tionally effective way to record the existence of documentation, the evidence that
it supports, and a judgement about its adequacy. By introducing variants to
good_doc, we can distinguish the developers’ judgement from those of the re-
viewers or evaluators.

We can formalize item 2 in a similar way as

hset = allhazards(claim, system, env)

where allhazards is an uninterpreted function whose informal interpretation is
that its value is the set of all hazards to the claim about the system in its environ-
ment.

Then item 3 becomes

FORALL h IN hset: handles(system, h)

where handles is an uninterpreted predicate whose informal interpretation is
that the system successfully eliminates or mitigates the hazard h, and
FORALL...IN... is universal quantification (a concept from logic).

Item 4 can be expressed as

safe(claim, env, system)

where safe is an uninterpreted predicate whose informal interpretation is that the
system is acceptably safe.

The structure of the top-level argument is then expressed in the following
axiom.

LET hset = allhazards(claim, system, env) IN
 appropriate(claim, system, env)
 AND FORALL h IN hset: handles(system, h)
 IMPLIES safe(claim, env, system)

where AND and IMPLIES are the logical symbols for conjunction and material
implication, respectively, and are written in upper case simply to distinguish them
from what logicians call the ‘nonlogical’ symbols. The LET...IN construction is
syntactic sugar that can be eliminated by simply replacing all instances of the left
hand side by the right.

This axiom actually expresses one of several general tactics for constructing a
safety case: namely, enumerating the hazards and showing that each is handled ef-
fectively. This general tactic could be expressed by replacing the constants

8 John Rushby

claim, system, and env by variables (free variables are assumed to be univer-
sally quantified). The axiom shown above would then be an instantiation of the
general tactic.

The next step in this example is to record the process of hazard identification.
This is one of the most important elements of a safety case, and one that depends
crucially on human judgement. Although formalization cannot and should not aim
to replace this judgement and its supporting processes, it should record them, and
lend calculational assistance where feasible. Human judgement in identification of
hazards is usually supported by systematic but manual processes such as check-
lists, HAZOP/guidewords, or functional hazard analysis (FHA). Evidence that all
hazards have been identified is generally by reference to documentation describing
conformance with an accepted process or standard for performing hazard analysis.

In our example, we could express this in the following axiom.

good_doc(hazard_doc) IMPLIES
 allhazards(goal, system, env) = {: H1, H2, H3 :}

where H1, H2, and H3, are the (otherwise undescribed) hazards named by Hollo-
way, {: ... :} is the extensional set constructor, and hazard_doc is an un-
interpreted constant associated with the documentation of the hazard analysis per-
formed. As before, the predicate good_doc is used to indicate that human
review, and other processes that might be required, concur that the documentation
attached to hazard_doc does indeed establish that the hazards are just the three
identified. We indicate that this ‘signoff’ has been achieved by asserting
good_doc(hazard doc) as an axiom.

Observe that we have chosen to use the function allhazards, which returns
the set of hazards. An alternative would be to quantify over all possible hazards
and have a predicate ishazard that identifies those that are true hazards. These
seem almost equivalent from a logical point of view, but reflect a different balance
between formalism and judgement. As mentioned previously, identification of ha-
zards is one of the most delicate and important judgements required in a safety
case, and formalization should be done in a way that respects that judgement.
Quantifying over all potential hazards and picking those that are true hazards car-
ries the implication that there is some objective, external set of potential hazards –
which is not so. In the formalization used here, the ‘mystery’ of hazard identifica-
tion is hidden inside the allhazards function, where it will be described and
justified – as it should be – as the application of human judgement, aided by a sys-
tematic, but informal process.

We will take this example just one step further. Holloway's description states
that hazard analysis determines that hazard H2 has potentially catastrophic conse-
quences, and that the acceptable probability of such hazards is 1 × 10-6 per year.
These can be recorded in the following axioms.

Formalism in Safety Cases 9

good_doc(hazard_doc) IMPLIES
 severity(H2) = catastrophic

max_prob(catastrophic) = 1/1000000

We can then state that a general tactic for mitigating hazards is to use fault tree
analysis to show that their maximum probability of occurrence does not exceed
that established for their severity level, and that the integrity level of the system
software is at least that required for the given severity level. We can state this as a
generalized axiom (with variables) as follows.

mitigate(s, h) =
 fta(s, h) <= max_prob(severity(h))
 AND integrity(s, h) >= sil(severity(h))

mitigate(s, h) IMPLIES handles(s, h)

Here, s and h are variables representing a system and a hazard; fta is an uninter-
preted function whose value is informally understood to be the probability of ha-
zard h in system s, integrity is an uninterpreted function whose value is the
integrity level of the software in s with respect to hazard h, and max_prob and
sil give the required maximum probability and minimum integrity level for the
severity level of h. Furthermore, we assert that mitigation is an acceptable
way to handle a hazard.

We will then instantiate these general axioms for the case of our system and
hazard H2, and assert axioms such as the following.

sil(catastrophic) = 5

good_doc(H2_fta_doc) IMPLIES
 fta(system, H2) <= 1/1000000

good_doc(H2_integrity_doc) IMPLIES
 integrity(system, H2) = 5

Here, H2_fta_doc is documentation that describes the fault tree analysis per-
formed and justifies the claim that this establishes the given probability; similarly,
H2_integrity_doc is documentation that justifies the claim that the software
satisfies the requirements for integrity level 5 (in some scale).

My purpose in sketching this formalization is simply to identify suitable logics
and theories in which to frame it. What is used in this example so far is first order
logic (with set theory), which is undecidable and so cannot be automated in its full
generality. However, various fragments of this logic are decidable and have been
found to be pragmatically adequate for most purposes. In particular, the unquanti-

10 John Rushby

fied fragment with uninterpreted symbols and equality is decidable. The example
does use quantification, but only in elementary ways that are easily automated.

Thus, my conclusion is that to describe safety case arguments, we need a for-
malism that includes quantification, uninterpreted predicates and constants, set
theory, and arithmetic – but the theorem proving needs pushbutton automation on-
ly for the unquantified case. These capabilities are (a subset of) the capabilities of
formalisms built on, or employing, SMT solvers (i.e., solvers for the problem of
Satisfiability Modulo Theories) (Rushby 2006). Modern SMT solvers are very ef-
fective, often able to solve problems with hundreds of variables and thousands of
constraints in seconds. They are the subject of an annual competition, and this has
driven very rapid improvement in both their performance and the range of theories
over which they operate.

Many specification and modeling formalisms are able to use SMT solvers to
provide pushbutton automation. One example is the PVS verification system,
which uses the Yices SMT solver (both of these are from my institution (SRI
2009)). The formalization of the example safety case shown above can be typed
into PVS almost verbatim and checked in seconds. PVS is actually a higher order
logic, and this allows a particularly straightforward mechanization of the simple
set theory used in the example (sets are predicates). PVS is able to report the
axioms actually used in the construction of a proof: for a fuller version of Hollo-
way’s example, PVS reports that it uses the top-level tactic of enumeration over
hazards (shown above), and the lower-level tactics of eliminating and mitigating
hazards (the latter also shown above), plus the axioms associating probabilities
and integrity levels with hazard severities (also shown above). PVS also enume-
rates the good_doc axioms required to discharge the claims made in the case:
these must justify the appropriateness of the claim, the identification of hazards
and their severity, the elimination of the hazard H1 (by formal verification), the
probability of occurrence (by fault tree analysis) of hazards H2 and H3, and the in-
tegrity level of associated software.

3 Lower-Level Arguments

Our formalization of Holloway’s example safety case involves only the most ab-
stract treatment of the system itself. Lower levels of the case, however, will be
very much concerned with details of its design and implementation, and the as-
sumptions underlying these. Formal verification is a very well-understood applica-
tion of formal methods to those concerns. In formal verification, we develop de-
tailed formal models of algorithms, designs, or programs, and use theorem
proving, model checking, or other methods of automated deduction to show that
these have desired properties. Verification systems such as PVS have been used to
verify important properties of significant designs (e.g., Miner et al. 2004). Howev-
er, PVS and its like are general purpose – that is why they can model abstract safe-
ty cases – and greater automation in verification of software systems and their de-

Formalism in Safety Cases 11

signs can be achieved using notations and techniques specialized to these tasks.
Tools employing these are generally referred to as ‘model checkers’, even though
most are not model checkers in the strict sense used by logicians. A particularly
interesting type of tool in this class is an ‘infinite bounded model checker’, such as
the one in the SAL suite developed in my institution (SRI 2009). Infinite bounded
model checkers make very effective use of SMT solvers and thereby provide very
powerful automation.

The models verified by model checkers are usually very detailed and explicit –
equivalent to executable programs. However, and this is not widely understood,
infinite bounded model checkers can be applied to rather abstract descriptions that
use uninterpreted functions to hide detail. This is feasible because the underlying
SMT solvers provide effective automation for this theory. Properties can be at-
tached to the uninterpreted functions by means of axioms supplied directly to the
SMT solver or, indirectly, by synchronous observers attached to the model sup-
plied to the model checker (Rushby 2009a).

The value in applying formal verification to very abstract designs is that this
can be used to automate, or provide automated assistance for, some kinds of safety
analyses traditionally performed informally. Many of these analyses can be
thought of as informal ways to examine all the possible states of a system, to see if
any are unsafe or otherwise undesirable. The reachable states of any interesting
system are vast, if not infinite, in number. To examine the reachable states in rea-
sonable time using unaided informal reasoning, we group many similar states to-
gether (that is abstraction), and consider only those states encountered on paths
that are considered likely to throw up interesting cases. For example, Failure
Modes and Effects Analysis (FMEA) explores only those paths that start from a
state in which some component has failed; Fault Tree Analysis (FTA) explores
paths backwards from an undesired state to see if there is some combination of
events (usually failures) that render it reachable. These analyses are typically ap-
plied to very abstract models; this is because they are often performed early in de-
sign exploration, before detailed designs have been developed, and because ab-
straction reduces the search space. The benefit in applying automation to these
activities is that, unlike informal analyses, they can examine all possible states and
scenarios. Infinite bounded model checkers are particularly suitable for this pur-
pose because they can operate on abstract models (using uninterpreted functions);
however, because of the power of the automation available, they may be able to
operate on more realistic abstractions than those used informally. Furthermore,
like all model checkers, they not only verify true properties, but also provide ex-
plicit counterexamples to false ones (cf. a cut set in FTA). The counterexample
capability can be exploited for other purposes, such as the generation of test cases
(Hamon et al. 2004).

Holloway's example states that hazard H1 is eliminated by formal verification,
and that the probabilities of hazards H2 and H3 are established by FTA. The for-
malized top-level safety case simply makes reference to the documentation for
these, but we can imagine that they could themselves be partially or fully forma-
lized and automated. For example, infinite bounded model checking on a detailed

12 John Rushby

formal model of the system design could verify that H1 is unreachable, and similar
model checking on more abstract models could identify the precipitating events
for H2 and H3; separate, informal analysis could then estimate their probability.
The following section considers probabilistic arguments in more detail.

4 Probabilistic Arguments

Probability plays an important part in safety cases, quite apart from its use in FTA.
Safety is about controlling risk, which is the product of the severity of an outcome
and its probability, so a good part of most safety cases is concerned with assess-
ment of probabilities. Estimating the probability of system failure given probabili-
ties for component failures is a well-understood task, with its own methods and
tools. The task is more challenging, however, where software is concerned. Soft-
ware contributes to system failures through faults in its requirements, design, or
implementation, and these, in the language of safety analysis, produce ‘systematic
failures’, meaning they are not random but are certain to occur whenever circums-
tances activate the fault concerned. But although the failure is certain, given cir-
cumstances that activate the fault, those circumstances have a probability of occur-
rence: some faults are activated by almost any input, others require very specific,
and unusual combinations of inputs. Hence, failure probabilities can be associated
with software and are determined by the likelihood of encountering circumstances
that activate its faults.

For modest values, say down to about 1 × 10-4 probability of failure on de-
mand, it is feasible to measure software failure probabilities by statistically valid
random testing (Butler and Finelli 1993), where ‘statistically valid’ means that the
test case selection probabilities are exactly the same as those that are encountered
in real operation. When the required probabilities are smaller than can be verified
by direct measurement, the general recourse is to show that the software has been
developed to some Software Integrity Level (SIL), as in Holloway's example.
However, the practices recommended for most high-level SILs (e.g., DO-178B
Level A), such as elaborate documentation of requirements, specifications, and
designs, traceability among these, and extensive reviews and testing, are really
about ensuring correctness, and there is no clear justification for determining a
correspondence between SILs and failure probabilities.

In contrast, Littlewood (Littlewood 2000) introduced the idea that software
may be possibly perfect and that we can contemplate its probability of perfection.
This is attractive because probability of perfection can be interpreted as a subjec-
tive assessment of confidence in the verification activities performed on the soft-
ware. Furthermore, a probability of perfection can be related to reliability, and this
has particularly great utility in fault-tolerant systems, where the possible perfec-
tion of one ‘channel’ can be shown to be conditionally independent of the relia-
bility of the other; hence, the probability of system failure is the product of these
individual probabilities (Littlewood and Rushby 2009).

Formalism in Safety Cases 13

Using the idea of possible perfection has two ramifications on a safety case.
One is that the upper level assessment of the probability of system failure will em-
ploy probabilities of software perfection; the other is that the subcase concerned
with software must consider the possibility (and probabilities) of its own imper-
fections. These are likely to be smaller when parts of the case, particularly any ve-
rifications and analyses, are formalized and subject to mechanical checking. I sug-
gest considerations for the assessment of these probabilities in a recent paper
(Rushby 2009b).

Another area where formalization intersects with probability is in assurance for
fault-tolerant systems. Many system failures are due to flaws in fault tolerance: the
very mechanisms that are intended to prevent failure become the dominant source
of failure! Formal verification of these mechanisms produces two very valuable
results: first, it requires precise specification of assumed component failure modes,
the number of these to be tolerated, and their assumed probabilities; second, it
provides convincing evidence (i.e., a proof) that the mechanisms work, provided
the number and modes of component failure are consistent with those specified.
This bipartite division separates assurance for the correctness of the mechanisms
from calculation of system reliability.

The reason that many fault-tolerant systems fail is that their components fail in
ways different than assumed in the design of the mechanism for fault tolerance.
When the fault-tolerance aspects of the safety case are informal, the failure as-
sumptions may be imprecise, and their probabilities assessed optimistically (John-
son and Holloway 2006). Formal verification forces precision in the statement of
failure mode assumptions and, thereby, explicit recognition of the cases not tole-
rated – and realistic assessment of their probability. The latter should drive the de-
sign of fault-tolerant mechanisms toward those that make minimal assumptions
and are uniformly effective (e.g., Byzantine-resilient algorithms) and away from
the special-case treatments that are prevalent in homespun designs.

Even principled designs can benefit from this type of consideration; for exam-
ple, it is well-known that Byzantine-resilient algorithms that use ‘signed messag-
es’ can tolerate more faults than those that use ‘oral messages’; but if signatures
are flawed for some reason, the signed messages algorithms will fail. Given this
information, a developer or assessor can perform principled analysis of the tra-
deoff between a design that makes fewer assumptions vs one that tolerates more
faults at the cost of more assumptions – or they can be motivated to explore algo-
rithms that combine the best of both choices (Gong et al. 1995).

Analysis of fault-tolerant systems is one example where appropriate formaliza-
tion allows the case for correctness to be separated from the case for reliability:
formal verification provides assurance that the system does not fail, given assump-
tions about the failures of components; separately, we estimate the probability of
the assumptions, and thereby calculate the reliability of the system. There can be
other circumstances in a safety case where logic assures a conclusion, given cer-
tain premises, but we are not completely confident in the premises. Our (lack of)
confidence in the premises can be represented by attaching a probability to them.

14 John Rushby

For fault tolerance, calculation of the probability of the conclusion given the
probabilities of the premises is very straightforward, but the general case is more
difficult – largely because the probabilities on the premises may not be indepen-
dent. In its general form, this topic enters the domains of probabilistic logic and
methods for probabilistic and evidential reasoning, such as Bayesian Belief Nets
(BBNs) and Dempster-Shafer theory.

Since safety is about risk, which involves probability, it is quite likely that
some of the argument at or near the top level of a safety case will involve proba-
bilistic reasoning of these kinds. For example, we may have evidence for software
based on testing and on its integrity level, and we will wish to combine these two
‘legs’ to yield a ‘multi-legged’ case, perhaps using BBNs (Littlewood and Wright
2007). A question is whether these probabilistic calculations should be opaque to
the formalization, in the way that hazard analysis is, or at least partially,
represented in the formalization – e.g., by attaching probabilities to formal state-
ments representing uncertain evidence or deductions. There are techniques that
combine formal methods with probabilistic calculations, such as probabilistic
model checkers, and there are also techniques that use formal methods to estimate
probabilities, such as Monte Carlo model counting using SAT solvers. Experimen-
tation is needed to understand how best to meld the logical and probabilistic ele-
ments of a safety case, but my own belief is that no matter how it is done, both
kinds of analysis must be driven from the same representation of the structure of
the case.

5 Summary, and Suggestions for Future Work

I have adumbrated some of the issues in using formalization to represent argu-
ments in a safety case. One benefit of formalization is that it allows use of auto-
mated tools to check the logical soundness of the case. Whether this is worthwhile
or not depends on whether unsoundness is a significant hazard to real safety cases.
My own experience in formal verification is that I have repeatedly been humbled
as the theorem prover finds flaws in arguments that I considered either cast iron,
or obvious. And in reading even tutorial examples of safety cases, I have been un-
settled by the size and diverse tactics of the arguments. Other small examples have
been found to employ flawed reasoning (Greenwell et al. 2006), but I do not know
whether this is a threat in real cases.

Formalization and automation bring another benefit: by assuring us that the
overall argument is sound, they allow us to focus on the evidence and assumptions
that support the argument. Being able to concentrate on each such item in isolation
seems a valuable benefit to me. In addition, some new opportunities become
available: for example, the validity of certain kinds of assumptions can be assured
by checking or monitoring them at runtime. If the assumptions are formalized,
then construction of monitors can be automated by methods developed in the field
of runtime verification (Rushby 2008). Reliability of monitored architectures with

Formalism in Safety Cases 15

formal (and possibly perfect) monitors is an interesting topic (Littlewood and
Rushby 2009).

Yet another benefit of formalization is that it could allow development of ca-
nonical representations for various tactics of argument, and of ‘metacases’ (cases
about cases). I think this could be of value in its own right, as it would allow a so-
cial process of community review and thereby reduce the vulnerability of intellec-
tually isolated ‘one-off’ cases. Current work at Adelard is exploring these topics.

Using a simple example (Holloway 2008), I illustrated one way to formalize
the top-level argument of a simple case in classical logic (I actually used the high-
er order logic PVS). Basir and colleagues (Basir et al. 2009) have undertaken a
similar exercise using pure first order logic. The example illustrates only one tac-
tic for safety argumentation: namely, enumeration over hazards. The work at Ade-
lard has identified eight different tactics and it remains to be seen whether each of
these can be formalized effectively.

Some proponents of safety cases look to Toulmin (Toulmin 2003) rather than
classical logic in framing cases (Bishop et al. 2004); Toulmin stresses justification
rather than inference. My opinion is that Toulmin's approach has merit in arguing
topics such as aesthetics or morality, where reasonable people can hold different
views; but a safety case should be based on agreed evidence about a designed arti-
fact, and here the expectation is that reasonable people must concur on the con-
cluding claim if the argument is sound. Thus, I remain of the opinion that classical
logic is adequate for formalizing safety cases, but I do agree that it is worth seek-
ing ways to represent Toulmin's ‘warrant’, ‘backing’, and ‘rebuttal’ within the
formalization. The predicate good_doc that I used in the example can be seen as
a way to link to an extralogical ‘warrant’ for certain steps in the argument.

At the upper levels of a safety case, the system is represented very abstractly,
or even indirectly (e.g., by its hazards); at lower levels, there is generally an expli-
cit model of the system and the reasoning is closer to traditional formal verifica-
tion, or its variants (such as mechanized FMEA). There is obvious benefit if the
formalization and reasoning at these levels can be connected in some way. Simi-
larly, we would like a connection between the logical and probabilistic modes of
formalization and reasoning. It is not at all clear how to do this, but a tool bus may
be one way forward, as it does not require all tools to share a common representa-
tion (Rushby 2006).

A tool bus or other integration for the different modes and kinds of formaliza-
tion and reasoning used in safety cases is a good topic for future investigation.
Another is the identification, formalization, and analysis of canonical tactics for
safety case argumentation. Techniques for developing safety cases in a modular or
compositional manner would be a breakthrough; the topic of emergent properties
is particularly interesting in that context (Black and Koopman 2008). The most
important tasks for the future, however, are experiments to determine whether
formalization does deliver benefit in the development and assessment of safety
cases.

16 John Rushby

Acknowledgments My research was supported by NASA cooperative agreements
NNX08AC64A and NNX08AY53A, and by National Science Foundation grant CNS-0720908. I
am grateful to Robin Bloomfield and his colleagues at Adelard and City University for exposing
me to some of these topics and sharing their own ongoing investigations. However, the views
expressed here are mine alone and do not represent those of my sponsors or collaborators.

References

AAIB (2007) Report on the incident to Airbus A340-642, registration G-VATL en-route from

Hong Kong to London Heathrow on 8 February 2005. UK Air Investigations Branch.
http://www.aaib.gov.uk/publications/formal_reports/4_2007_g_vatl.cfm. Accessed 19 Octo-
ber 2009

ATSB (2007) In-flight upset event, 240 km north-west of Perth, WA, Boeing Company 777200,
9M-MRG, 1 August 2005. Australian Transport Safety Bureau. Reference number
Mar2007/DOTARS 50165. http://www.atsb.gov.au/publications/investigation_reports/2005/
AAIR/aair200503722.aspx. Accessed 19 October 2009

Basir N, Denney E, Fischer B (2009) Deriving safety cases from automatically constructed
proofs. In: 4th IET International Conference on System Safety, London, UK. The Institutions
of Engineering and Technology

Bishop P, Bloomfield R, Guerra S (2004) The future of goal-based assurance cases. In DSN
Workshop on Assurance Cases: Best Practices, Possible Obstacles, and Future Opportunities,
Florence, Italy

Black J, Koopman P (2008) System safety as an emergent property in composite systems. In: In-
ternational Conference on Dependable Systems and Networks, Estoril, Portugal. IEEE Com-
puter Society

Butler RW, Finelli GB (1993) The infeasibility of experimental quantification of life-critical
software reliability. IEEE Trans Softw Eng 19:3−12

Crow J, Owre S, Rushby J et al (2001) Evaluating, testing, and animating PVS specifications.
Technical report, Computer Science Laboratory, SRI International, Menlo Park, CA. http://
www.csl.sri.com/users/rushby/abstracts/attachments. Accessed 19 October 2009

Gong L, Lincoln P, Rushby J (1995) Byzantine agreement with authentication: observations and
applications in tolerating hybrid and link faults. In: Iyer RK et el (eds) Dependable Compu-
ting for Critical Applications 5, Champaign, IL. Volume 10 of Dependable Computing and
Fault Tolerant Systems. IEEE Computer Society

Greenwell WS, Knight JC, Holloway CM, Pease JJ (2006) A taxonomy of fallacies in system
safety arguments. In Proc 24th International System Safety Conference, Albuquerque, NM

Hamon G, de Moura L, Rushby J (2004) Generating efficient test sets with a model checker. In:
2nd International Conference on Software Engineering and Formal Methods (SEFM), Bei-
jing, China. IEEE Computer Society

Holloway CM (2008) Safety case notations: alternatives for the non-graphically inclined? In 3rd
IET International Conference on System Safety, Birmingham, UK. The Institution of Engi-
neering and Technology

Johnson CW, Holloway CM (2006) Why system safety professionals should read accident re-
ports. In 1st IET International Conference on System Safety, London, UK. The Institutions of
Engineering and Technology

Kelly T (1998) Arguing safety – a systematic approach to safety case management. PhD thesis,
Department of Computer Science, University of York, UK

Kelly TP, Weaver RA (2004) The goal structuring notation – a safety argument notation. In:
DSN Workshop on Assurance Cases: Best Practices, Possible Obstacles, and Future Oppor-
tunities, Florence, Italy

Littlewood B (2000) The use of proof in diversity arguments. IEEE Trans Softw Eng
26:1022−1023

Formalism in Safety Cases 17

Littlewood B, Rushby J (2009) Reasoning about the reliability of fault-tolerant systems in which
one component is ‘possibly perfect’. City University UK and SRI International USA. In
preparation

Littlewood B, Wright D (2007) The use of multi-legged arguments to increase confidence in
safety claims for software-based systems: a study based on a BBN analysis of an idealised
example. IEEE Trans Softw Eng 33:347−365

Miner P, Geser A, Pike L, Maddalon J (2004) A unified fault-tolerance protocol. In: Formal
Techniques in Real-Time and Fault-Tolerant Systems, volume 3253 of Lecture Notes in
Computer Science, Grenoble, France. Springer-Verlag.

RTCA (1992) DO-178B: Software considerations in airborne systems and equipment certifica-
tion. Requirements and Technical Concepts for Aviation, Washington, DC. This document is
known as EUROCAE ED-12B in Europe.

Rushby J (2006) Harnessing disruptive innovation in formal verification. In: Hung DV, Pandya P
(eds) Fourth International Conference on Software Engineering and Formal Methods
(SEFM), Pune, India. IEEE Computer Society

Rushby J (2008) Runtime certification. In: Leucker, M (ed) Eighth Workshop on Runtime Veri-
fication: RV08, Budapest, Hungary. Volume 5289 of Lecture Notes in Computer Science.
Springer-Verlag

Rushby J (2009a) A safety-case approach for certifying adaptive systems. In: AIAA Info-
tech@Aerospace Conference, Seattle, WA. American Institute of Aeronautics and Astronau-
tics

Rushby J (2009b) Software verification and system assurance. In: Seventh International Confe-
rence on Software Engineering and Formal Methods (SEFM), Hanoi, Vietnam. IEEE Com-
puter Society

SRI (2009) SRI International Formal Methods Program, home page. http://fm.csl.sri.com/. Ac-
cessed 19 October 2009

Toulmin SE (2003) The uses of argument. Cambridge University Press. Updated edition (the
original is dated 1958)

