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Bayesian Single Channel Blind Dereverberation
of Speech from a Moving Talker
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Abstract This chapter discusses a model-based framework for single-channel blind
dereverberation of speech, in which parametric models are used to represent both
the unknown source and the unknown acoustic channel. The parameters of the en-
tire model are estimated using the Bayesian paradigm, and an estimate of the source
signal is found by either inverse filtering of the observed signal with the estimated
channel coefficients, or directly within a sequential framework. Model-based ap-
proaches fundamentally rely on the availability of realistic and tractable models that
reflect the underlying speech process and acoustic systems. The choice of these
models is extremely important and is discussed in detail, with a focus on spatially
varying room impulse responses. The mathematical framework and methodology
for parameter estimation and dereverberation is also discussed. Some examples of
the proposed approaches are presented with results.

8.1 Introduction and Overview

Acoustic dereverberation arises when an audio signal is radiated in a confined acous-
tic space. Blind dereverberation is an important and challenging signal processing
problem, which is required when this audio signal is acquired by a sensor placed
away from the source by a distance greater than the reverberation distance [25].
This problem differs from Acoustic Echo Cancellation (AEC) found in, for ex-
ample, teleconferencing applications, where a known source signal emitted from
a loudspeaker is distorted by acoustic reflections (or system echoes), and results in
a feedback path to the microphone sensor. AEC is generally a non-blind deconvolu-
tion problem and is typically solved using well-known adaptive filtering algorithms.
In blind dereverberation, however, the source signal,1 the source location, and con-
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1 The source is necessarily unknown since, if it were known, there would be no need for signal
enhancement.
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sequently the Room Impulse Response (RIR) between the source and sensor, are
all assumed unknown. If an estimate of the RIR were available, the effect of rever-
beration could be removed by filtering the observed signal with the inverse of the
RIR. However, in practice, the RIR is unknown since it is not possible to measure
the specific source-sensor Room Transfer Function (RTF) between any two arbitrary
positions using a fixed measurement geometry. Although it might be possible to esti-
mate the common-acoustic component of the response from a measurement between
two other positions in the room, this is only useful with additional geometry-specific
information.2

With only the observations available, the blind deconvolution problem is under-
determined, i.e., more unknowns than observations must be estimated from a single
realisation of the measurement process at each time instance. Prior knowledge of the
statistical properties of the source and channel is essential for solving this problem,
and can be incorporated through a model-based approach to blind dereverberation.
The rest of this section is organised as follows: an overview of a model-based ap-
proach to blind dereverberation and the numerical methods involved is presented
in Sect. 8.1.1; a discussion of practical issues that occur in blind dereverberation is
given in Sect. 8.1.2; the organisation of the remainder of the chapter is outlined in
Sect. 8.1.3.

8.1.1 Model-based Framework

In a model-based approach to blind dereverberation, the source and acoustics are
represented by parametric models. The parameters of this system model are es-
timated from the observed data, and subsequently used to reconstruct the source
signal. The problem of blind dereverberation is thus transformed into an exercise in
parameter estimation and inference. If all the parameters and observable variables
in the source and channel models are regarded as unknown stochastic quantities,
the system model can be rephrased in a statistical context using Probability Density
Functions (PDFs). There is a plethora of statistical parameter estimation techniques
available, including maximum likelihood methods such as the Expectation Maxi-
mization (EM) algorithm. However, a robust and consistent way of exploiting and
manipulating these PDFs is by using Bayes’s theorem to infer a degree of belief
of an unknown hypothesis. More specifically, the Bayesian framework provides a
learning procedure where knowledge of the system is inferred from prior belief and
updated through the availability of new data.

In this chapter, Bayesian inference and associated numerical optimisation meth-
ods are used for parameter estimation. Monte Carlo approaches are used to obtain
empirical estimates of the resulting target distributions by drawing a large number of
samples from a (potentially different) hypothesis or sampling distribution. Parame-

2 Such a measurement of such a common-acoustical component could, for example, be incorpo-
rated in self-calibrating teleconferencing applications.
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ter estimates are then obtained from averaging the drawn variates. These algorithms
are generally divided into offline batch methods and online sequential approaches.

8.1.1.1 Online vs. Offline Numerical Methods

Online methods assume the signal is presented in a stream and can be processed
sequentially and immediately as each sample is observed. Batch methods, on the
other hand, assume that the observed signal samples become available only as soon
as all the data has been measured. Based on this collective information, batch meth-
ods explore the system using the knowledge inferred from all observations. In con-
trast, online methods are adaptive approaches that track a system model with each
processed sample. Online methods thus facilitate real-time processing and can be
used where data sets are not fixed, i.e., where new data constantly becomes avail-
able. However, in order to build a realistic hypothesis from one sample only, online
methods often require more complex approaches than batch methods and can hence
be more computationally expensive and complicated to implement. Implementa-
tions of online methods are based on Sequential Monte Carlo (SMC) techniques in
the Bayesian framework, whereas batch methods are frequently implemented using
Markov Chain Monte Carlo (MCMC) techniques, for example the Gibbs sampler.

The choice of whether an application operates sequentially or in a batch mode
not only depends on the nature of the availability of data, but is closely tied to
the choice of methodologies and models that can actually facilitate either online
or offline estimation. Each methodology and model carries its own advantages and
drawbacks that need to be weighed carefully in order to decide between sequential
and batch processing. This is discussed further below, while a comparison of the
numerical methods for online and offline approaches is given in Sect. 8.2.3, and
a comparison of results for dereverberation of speech from a stationary talker is
presented in Sect. 8.7.3.

8.1.1.2 Parametric Estimation and Optimal Filtering methods

In addition to the choice of using either batch or sequential processing, there is the
choice of two distinct approaches to the inference problem:

1. Estimate the room impulse response and obtain an estimate of the source signal
by inverse filtering the observed signal with the estimated channel coefficients.
In general, a static parametric model is used for the RIR, so this is an exercise
in offline parameter estimation using batch methods.

2. Estimate the source signal directly as though it were an unknown parameter –
this is an exercise in optimal filtering, and therefore is solved in a sequential
manner using online methods.

Each of these approaches fundamentally rely on the availability of realistic and
tractable models that reflect the underlying speech processes and acoustic systems:
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model selection is therefore extremely important. Generation of speech through the
vocal tract as well as the effect of the reverberation process on audio signals should
motivate the choice of a particular model. The nature of room acoustics is investi-
gated in Sect. 8.3. Based on these findings, two different channel models are pro-
posed in Sects. 8.4.6 and 8.4.7. The time-varying nature of speech signals and the
rationale for the proposed speech production models are discussed in Sect. 8.6.

8.1.2 Practical Blind Dereverberation Scenarios

Blind dereverberation has recently received much attention in the literature, but of-
ten a number of key assumptions about the application setup are made. The first is in
the use of multi-microphone techniques, and the second is in solutions that assume
time-invariance of the acoustic channel. Neither of these assumptions is always ap-
propriate in practice as outlined below.

8.1.2.1 Single-sensor Applications

Spatial diversity of acoustic channels can be constructively exploited by multiple
sensor blind dereverberation techniques [28] in order to obtain an estimate of the re-
mote speech signal. Nevertheless, despite the usefulness and power of spatial diver-
sity, there are numerous applications where only a single measurement of the rever-
berant signal is available. Single-sensor blind dereverberation is utilised in applica-
tions where numerous microphones prove infeasible or ineffectual due to the phys-
ical size of arrays. Examples of applications with commercial appeal include hear-
ing aids, hands-free telephony, and automatic speech recognition. For these reasons,
this chapter considers the single-sensor problem of blind dereverberation, although
Bayesian approaches to the multi-sensor case have been considered in [10, 15, 17].

8.1.2.2 Time-varying Acoustic Channels

Signal processing in acoustic environments is often approached with the assumption
that the room impulse response is time-invariant. This is appropriate in scenarios
where the source-sensor geometry is not rapidly varying, for example, a hands-free
kit in a car cabin, in which the driver and the microphone are approximately fixed
relative to one another, or in a work environment where a user is seated in front
of a computer terminal. However, there are many applications where the source-
sensor geometry is subject to change; the wearer of a hearing-aid typically wishes to
move around a room, as might users of hands-free conference telephony equipment.
A talker moving in a room at 1 m/s covers a distance of 50 mm in 50 ms. This
distance might be enough for the room impulse response to vary sufficiently that any
assumption of a time-invariant acoustic channel is no longer valid (see Sect. 8.4.5).
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An implicit assumption often made is that the physical properties giving rise to the
acoustics of the room are time-invariant; thus, it is assumed that it is the variable
source-sensor geometry that leads to the changing RIR. However, it is not beyond
possibility that the room acoustics may vary: the changing state of doors, windows,
or items being moved in the room will influence the room dynamics.

Although there is some limited recent work dealing with time-varying acoustic
channels [4, 31], generally the problem of single-channel blind dereverberation of
speech from a moving talker has to date received little attention from the signal
processing community. This is in part because the case of a stationary talker has not
yet been solved satisfactorily. Nevertheless, the problem is of growing interest, and
in itself can give insight to the simpler Linear Time-Invariant (LTI) problem. This
chapter specifically attempts to bridge this gap by considering Linear Time-Variant
(LTV) channels for blind dereverberation of speech from moving talkers.

8.1.3 Chapter Organisation

The remainder of this chapter is organised as follows: Section 8.2 introduces a math-
ematical formulation of the blind dereverberation problem including model ambi-
guities. Sect. 8.2.1 revises the Bayesian framework used for blind dereverberation.
The nature of room acoustics is considered in Sect. 8.3, which provides motivation
for the parametric channel models in Sect. 8.4. Noise and source models are out-
lined in Sects. 8.5 and 8.6, respectively. Details of several offline and online blind
dereverberation algorithms are then given in Sect. 8.7, while some brief conclusions
are found in Sect. 8.8.

8.2 Mathematical Problem Formulation

Typically, in single-channel blind deconvolution, the degraded observation, x(n),3 is
modelled as the linear convolution of the unknown source signal, s(n), and a room
impulse response, h(qsrc,qmic)(n), in additive noise, ν(n), as indicated in Fig. 8.1. This
model assumes the noise within an acoustic environment is an additive common
signal unaffected by the acoustics of a room. Moreover, as discussed in Sects. 8.3
and 8.4, the RIR is dependent on the source and observer positions, qsrc and qmic,
respectively. If the source and sensor positions vary with time, such that qsrc =
qsrc(n) and qmic = qmic(n) are functions of time, then the spatially varying nature
of the RIR corresponds to a time-varying impulse response function. This response
is denoted by h(qsrc(�),qmic(�))(n) = h(n, �), and represents the RIR at time index n to
an impulse applied to the system at time index �. Consequently, the discrete-time

3 All signals are assumed to be defined over the range n ∈N = {0, . . . ,N−1},N ∈Z
+ is a positive

integer. In all other cases, unless stated otherwise, the following set notation is used for simplicity:
U = {1, . . . ,U} ⊂ Z

+U .
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model is written as:4

x(n) = ∑
�∈L

h(n, �)s(�)+ν(n). (8.1)

The characteristics of the noise term, ν(n), are discussed in depth in Sect. 8.5. Of-
ten, however, this observation error is used to encompass all other background noise
sources in the acoustic environment; application of the central limit theorem is used
to argue that the sum of all background noise is Gaussian and unaffected by the
acoustics of the room. Additionally, some noise sources might lead to a diffuse
sound field and, since they have unknown statistics, again it is reasonable to model
their superposition as Gaussian. Thus, ν(n), is typically assumed to be White Gaus-
sian Noise (WGN) with variance σ2

ν , uncorrelated with both the RIR and the source
signal, such that:

ν(n) ∼N
(
0, σ2

ν
)
. (8.2)

The convolution in (8.1) may be written in matrix-vector form by defining the
vectors [x]i = x(i), [s]i = s(i), [ν]i = ν(i), i ∈ N , and the matrix [H]i, j = h(i, j),
{i, j} ∈ N ×N , such that:

x = Hs+ν. (8.3)

If the source and observer have a fixed spatial geometry, such that qsrc and qmic
are time-invariant, then the RIR is also time-invariant due to its dependency on the
fixed values of qsrc and qmic. By writing h(qsrc(�),qmic(�))(n, �) ≡ h(qsrc,qmic)(n− �) �
h(n− �), (8.1) reduces to the standard LTI convolution:

x(n) = ∑
�∈L

h(n− �)s(�)+ν(n)≡ h(n)∗ s(n)+ν(n), (8.4)

and the matrix H of (8.3) becomes Toeplitz. The general objective of blind derever-
beration is to estimate the source signal, s, or the matrix of room impulse responses,
H, based on prior knowledge about s, the noise ν , and H. An inference framework is
required to estimate the unknowns s and H. As outlined in Sect. 8.1.1, the approach
presented in this chapter is to parametrically model these unknowns and estimate

4 Thus, if s(n) = δ (n− �) represents an impulse applied at time �, the convolution of (8.1) gives
the output x(n) = h(n, �) as required.
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the model parameters using the Bayesian paradigm, as described in the following
section.

8.2.1 Bayesian Framework for Blind Dereverberation

Bayesian methods use probability density functions to quantify degrees of belief in
an uncertain hypothesis, and utilise the rules of probability as the calculus for oper-
ating on those degrees of belief. Thus, a fundamental principle of the Bayesian phi-
losophy is to regard all parameters and observable variables as unknown stochastic
quantities. Two key characteristics of the Bayesian framework include the consis-
tency of its inductive inference, and the utilisation of the marginalisation operator.
Bayesian approaches are consistent since the calculus of probability is consistent:
any valid use of the rules of probability will lead to a unique conclusion. Marginal-
isation is a powerful inferential tool that facilitates the reduction of the number of
parameters appearing in the PDFs by the so-called elimination of nuisance parame-
ters. Consider a data model, M, with unknown parameters, θM, for the N samples
of observed data, x = {x(n), n ∈ N}. The posterior probability, p(θM | x,M), for
the unknown parameters is defined by Bayes’s theorem as

p(θM | x,M) =
p(x | θM,M) p(θM | M)

p(x |M)
, (8.5)

where p(x | θM,M) is the likelihood, p(θM |M) is the prior PDF on θM. The
term p(x |M) is called the evidence, and is usually regarded as a normalising con-
stant. Given the likelihood and the prior distributions, Bayesian methods aim to
estimate the unknown parameters from the posterior distribution.

In the most general case of single-channel blind dereverberation, the system is
expressed by (8.3) where the original source signal, s, the room impulse response,
H, and the noise, ν , are all considered as random vectors or matrices. Each of these
random quantities possesses a corresponding PDF that models knowledge of the
speech production process, the nature of reverberation, and the nature of any ob-
servation noise, respectively. Moreover, each of s, H, and ν , depends on a set of
parameters denoted by θ = {θ s, θ h, θν}, respectively. Thus, a direct application of
Bayes’s theorem in (8.5) yields the joint PDF of all the unknown parameters given
the observations x:

p( s,H,ν,θ | x)=
p(x | s,H,ν ,θ ) pS ( s | θ s) pH (H | θ h) pν (ν | θν) pΘ (θ )

pX (x)
, (8.6)

where it is assumed that s, H and ν are a priori conditionally independent given
the system parameters θ .5 The denominator pX (x) is independent of the unknown
vectors and can therefore be considered as a normalising constant, except in the case

5 The subscripts denoting the variable which defines a PDF are omitted from the terms
p( s,H,ν,θ | x) and p( x | s,H,ν,θ), in (8.6) and onwards, for clarity.
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of model selection. The term pΘ (θ ) contains all a priori knowledge, i.e., it reflects
knowledge about the parameters before the data is observed. By means of prior
densities, the posterior, p( s,H,ν ,θ | x), can therefore be manipulated by inferring
any required statistic, leading to a fully interpretable PDF. If no prior knowledge
is available, the prior PDF should be broad and flat compared to the likelihood.
Such priors are known as non-informative and convey ignorance of the values of the
parameters before observing the data.

If s, H, ν , and θ , are all known then the value of the observation vector x = Hs+ν
is unique. Therefore, it directly follows that:

p(x | s, H, ν, θ) = δ (x− [Hs+ν]) .

Consequently, since the observations x are known, when any two of the three ran-
dom vectors, {s, H, ν}, in (8.6) are known, the solution of the third is trivial. Since
the noise model in Fig. 8.1 is additive, ν is commonly considered as the determined
random vector, and (8.6) simplifies to:

p( s, H, θ | x)∝ pS ( s | θ s) pH (H | θ h) pν (x−Hs | θν ) pΘ (θ ) , (8.7)

where pν ( · | θν) is the noise PDF. As mentioned in Sect. 8.2, the objective is to esti-
mate the source signal, s, or the room impulse responses, H. These are obtained from
(8.7) using the marginalisation operator. By marginalising the RIRs, the source sig-
nal can be expressed directly, thus bypassing the estimation of the system response.
The PDF of s is thus found by:

p( s | x) =
∫∫

p( s, H, θ | x) dHdθ , (8.8a)

where the integrals are over all the elements of H and θ . If it is desired to obtain a
source signal estimate by inverse-filtering the observations with the RIR, the source
signal should be marginalised. The PDF of the room impulse response is thus found
as:

p(H | x) =
∫∫

p( s, H, θ | x) dsdθ . (8.8b)

In practice, the calculations involved in the marginalisation of either the source sig-
nal in (8.8a) or the channel response in (8.8b) are typically implicitly performed
with appropriate dereverberation algorithms; there is little difference in the imple-
mentation of these marginalisation calculations. Moreover, the marginalisations are
often performed numerically, as discussed in Sect. 8.2.3, so frequently the joint PDF,
p( s, H, θ | x), of (8.7) is estimated.
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8.2.2 Classification of Blind Dereverberation Formulations

The joint PDF in (8.7) of the source, channel, and model parameters, completely en-
capsulates the full system model shown in (8.1) and (8.3). Unfortunately, the length
of the impulse responses and source are typically very long. Therefore, if the source
signal, s, and the channel, H, are simply considered as unknown parameters, the
dimension of the joint PDF will be extremely high. This will make estimation of
the full parameter set difficult. However, some special cases and simplifications are
considered, as follows:

Stochastic channel model The term pH (H | θ h) in (8.7) allows for a stochastic chan-
nel model, inasmuch as the impulse response functions are still random processes
given knowledge of the channel parameters, θ h. While H is stochastic in nature
given the parameters θ h, often pH (H | θ h) takes on a standard distribution, such
as Gaussian, such that H is frequently amenable to the marginalisation in (8.8a).
Some examples of stochastic channel models are discussed in Sect. 8.4.7.

Static parametric channel model If a static parametric model is used for the RIR, the
channel model parameters, θ h, completely determine H. Hence, if H = G(θ h)
for some matrix G of functions, the channel PDF simplifies to pH (H | θ h) =
δ (H−G(θh)). Therefore, Bayes’s theorem in (8.7) reduces to:

p( s, θ | x)∝ pS ( s | θ s) pν (x−G(θh)s | θν ) pΘ (θ ) , (8.9)

where θ = {θh, θ s} is the reduced parameter set. The observation likelihood
in this expression, pν (x−G(θh)s | θν ), is still determined by the observation
noise PDF. However, since pν ( · | θν ) and pS ( s | θ s) are often Gaussian, it is
straightforward to marginalise s in (8.8b):

p(θ s,θ h | x) =
∫

p( s, θ | x) ds. (8.10)

Unfortunately, such a marginalisation can then make removal of the nuisance
parameters, θ s, difficult. Static parametric channel models are discussed in detail
in Sect. 8.4.6.

Zero observation noise with stochastic channel model In the case of no observation
noise:

pν (x−G(θh)s | θν) = δ (x−G(θh)s) ,

and so assuming a stochastic channel model, (8.7) simplifies to:

p(H, θ | x) ∝ pS ( s | θ s)|x=G(θh)s pH (H | θ h) pΘ (θ) , (8.11)

where the PDF p( s | θ s)|x=G(θh)s requires an appropriate probability transfor-
mation from x to s given θ h to correctly determine its form.

Zero observation noise with static channel model Similarly, in the case of a static
channel model and no observation noise, (8.9) simplifies to:
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p(θ s, θ h | x)∝ pS ( s | θ s)|x=G(θh)s pΘ (θ s, θ h) . (8.12)

Note that, in this context, the likelihood is pX (x | θ ) = pS ( s | θ s)|x=G(θh)s. The
interesting form of the simplified Bayes’s expression in (8.12) is that the joint
PDF is now just in terms of the model parameters. Therefore, assuming that the
number of model parameters is substantially fewer than the length of the source
signal and RIRs, this reduced parameter space should be simpler to estimate.
Moreover, unlike the case in (8.10), the source model parameters, θ s, can usually
be marginalised, to leave the marginal PDF for the channel parameters:

p(θ h | x) =
∫

p(θ s, θ h | x) dθ s. (8.13)

The optimal channel parameter, θ̂ h, estimates can then be used to recover the
source signal from the reverberant observations using the relation s = G−1(θ̂ h)x.
Figure 8.2 shows a graphical representation of the general parametric system
model with zero observation noise.

8.2.3 Numerical Bayesian Methods

As discussed in Sect. 8.1.1, blind dereverberation can be approached either as an
offline batch parameter estimation, or as an online optimal filtering problem. Of-
fline estimation generally uses batch approaches such as MCMC methods, whereas
online approaches use SMC methods.

8.2.3.1 Markov Chain Monte Carlo

In the batch approach, a Maximum Marginal a Posteriori (MMAP) estimate of the
channel parameters is found by solving, for example, (8.13):

θ̂ h,MMAP = argmax
θh

p(θ h | x) = argmax
θh

∫
p(θ s, θ h | x) dθ s, (8.14)

where x denotes all available data. The MMAP estimate, θ̂ h,MMAP, is then used to
inverse-filter the noise-free observed signal in (8.3) with the room transfer function
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Algorithm 8.1 Generic two-component Gibbs sampler
for i = 1, . . . , I −1 do

Sample θ (i+1)
s ∼ p

(
θ s | θ (i)

h , x
)

.

Sample θ (i+1)
h ∼ p

(
θ h | θ (i+1)

s , x
)

.
end for
Discard samples {θ (i)

s , θ (i)
h } for i = {0, . . . , Iburnin −1}.

–
Note that the conditionals take the form:

p(θ s | θh, x) ∝ p( x | θ s, θ h) p(θ s) , (8.16a)

p(θ h | θ s, x) ∝ p( x | θ s, θ h) p(θ h) , (8.16b)

where the measurement likelihood is given from (8.12) as:

p( x | θ s, θ h) = pS ( s | θ s)|x=G(θh)s . (8.16c)

in order to reconstruct the speech signal:

sMMAP = G−1 (θ̂ h,MMAP
)

x. (8.15)

Although deterministic optimisation methods could be used for directly determining
the MMAP estimate, θ̂ h,MMAP, in practice it is difficult to find since the a posteriori
PDF in (8.13) and (8.14) is usually multi-modal and subject to rapid fluctuation with
variations in the parameter space. Instead, iterative stochastic sampling schemes
can be used: MCMC methods can be utilised to sample from the joint PDF of the
channel and source parameters, θ h and θ s, respectively. MCMC methods are based
on constructing a Markov chain that has the desired distribution as its invariant
distribution. Gibbs sampling [6, 9] is a MCMC method that approximates the joint
PDF of the unknown model parameters by iteratively drawing random variates from
the conditional densities in order to sample from their joint PDF. A generic form of
a simple two-component Gibbs sampler is given in Algorithm 8.1. Independent of
the initial distribution, the probabilities of the chain are guaranteed to converge to
the invariant distribution, i.e., the joint PDF, after a sufficiently long burn-in period.
A Minimum Mean Square Error (MMSE) estimate of the channel parameters is
then obtained through numerical marginalisation of the nuisance parameters, which
is achieved simply by computing the expected value of only the variates of interest:

θ̂ h,MMSE =
1

I − Iburnin

I−1

∑
i=Iburnin

θ (i)
h , (8.17)

where θ (i)
h are the samples drawn at iteration i, I is the total number of iterations and

Iburnin is the number of samples discarded in the burn-in period. Often, it is assumed
that the MMSE estimate of the channel parameters approximately corresponds to
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Algorithm 8.2 Generic particle filter using importance sampling
for n = 1, . . . , number of samples do

for i = 1, . . . , number of particles do
Sample θ (i)

n ∼ π
(
θ (i)

n

∣∣∣ x1:n, θ
(i)
0:n−1

)
.

Evaluate w(i)
n ∝

p
(

x(n) | x1:n−1, θ
(i)
n

)
p
(
θ (i)

n

∣∣∣ θ (i)
0:n−1

)

π
(
θ (i)

n

∣∣∣ x1:n, θ
(i)
0:n−1

) .

end for
Normalisation of importance weights w(i)

n → w(i)
n

∑i w(i)
n

.

Resampling step (see, e.g., [40]).
end for

the MMAP channel estimate, θ̂ h,MMSE ≈ θ̂ h,MMAP [7]. An estimate of the source
signal is then obtained by the inverse-filtering operation in (8.15).

8.2.3.2 Sequential Monte Carlo

SMC methods or Particle Filter (PF)s [40] facilitate direct estimation of the source
signal, thus avoiding issues caused by inversion of non-minimum phase channels
(see Sect. 8.3.3). It is desired to find the PDFs for the unknown signal states and
parameters, p( s, θ | x), for example, as given by (8.9), in a sequential online man-
ner. Thus, the objective is to actually estimate, at time index n, p( s0:n, θ0:n | x0:n),6

where θ � {θn} is now assumed to consist of a sequence of parameters, and there-
fore θ 0:n is the sequence of parameters until time n. This posterior PDF is approx-
imated at each time instance by a cloud of random variates, also called particles.
Since the posterior PDF is usually difficult to sample from directly, these particles
are drawn from an importance distribution, π (θ n | x1:n, θ 0:n−1), which is straight-
forward to sample from. The resulting random variates are assigned weights to ap-
portion their contribution to the empirical PDF appropriately. The posterior can then
be updated on a per-sample basis by recursively updating the locations of the parti-
cles, and rejuvenating the particle cloud by resampling those particles that contribute
most to the empirical PDF. The generic form of a particle filter is summarized in
Algorithm 8.2. MMSE parameter estimates can be obtained from a sample mean of
the particles, similar to (8.17). The aim is to obtain a direct estimate of the joint PDF
of the source signal, and ideally as a byproduct, the model parameters.

8.2.3.3 General Comments

A comparison of online and offline methods is summarized in Table 8.1. One partic-
ular difference involves the inverse channel filtering implicitly used in the MCMC

6 Note that in a sequential framework, the following notation is used to represent a sequence:
ua:b � {u(a), u(a+1), . . . , u(b)}.
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Table 8.1 Comparison of online and offline methods

Online Offline

Method: SMC MCMC
Exploration by: tracking/updating estimates searching parameter space
Enhancement via: direct source signal estimation channel inversion
Results: available in real-time delayed

System model: stochastic static
Noise model: flexible noise model WGN or no noise
Estimated signal and model parameters model parameters (usually)
posterior PDF: p( s0:n, θ0:n | x1:n) p(θ | x)

Model advantages: flexible system models requires model selection

method [7], but avoided in the SMC approach since the latter estimates the source
signal directly. As discussed in Sect. 8.3.3, channel inversion introduces several
difficulties that can potentially increase the distortion in the enhanced signal. The
discussion thus far has assumed that there is some optimal estimate of either the
source signal, or model parameters. Since blind dereverberation is an inherently un-
derdetermined problem, in that there are more unknowns than observations, this is a
strong assumption. The choice of parametric models in, for example, Fig. 8.2, might
lead to multiple modes in the joint PDF of (8.11) and (8.12), and therefore multiple
optimal solutions. To ensure a unique solution, it is required to consider the system
identifiability.

8.2.4 Identifiability

Single-channel blind dereverberation is an inherently under-determined problem.
A characteristic of blind deconvolution is that the source signal and RIR must be
irreducible for unambiguous deconvolution [24]. An irreducible signal is one in
which the z-transform polynomial representation cannot be expressed as a product
of at least two non-trivial factors over a given set.7 This corresponds to saying that
an irreducible signal is one that cannot be expressed as a time-invariant convolution
of two or more signal components. Thus, a reducible signal, h(n), is one which can
be expressed as h(n) = h1(n)∗ h2(n).

In the noiseless linear time-invariant case, as given by (8.4) with ν(n) = 0,
the observed signal may be expressed as x(n) = h(n) ∗ s(n). Hence, if h(n) is re-
ducible such that h(n) = h1(n) ∗ h2(n), the observed signal is given by s(n) =
h1(n) ∗ h2(n) ∗ s(n). Consequently, there are multiple solutions to the deconvolu-
tion problem, {ĥ(n), ŝ(n)}, as shown in Table 8.2. It is impossible to decide which
of the solutions in Table 8.2 is the correct solution without additional knowledge.

7 This is on the understanding that the delta function corresponds to a trivial factor, and is therefore
not a signal component.
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Table 8.2 Possible solutions, {ĥ(n), ŝ(n)}, to blind dereverberation of a stationary talker when the
LTI channel, h(t) = h1(n)∗h2(n), is reducible

ĥ(n) ŝ(n)

1 h1(n)∗h2(n)∗ s(n)
h1(n) h2(n)∗ s(n)
h2(n) h1(n)∗ s(n)
s(n) h1(n)∗h2(n)

h1(n)∗h2(n) s(n)
h1(n)∗ s(n) h2(n)
h2(n)∗ s(n) h1(n)

h1(n)∗h2(n)∗ s(n) 1

By realising that many linear systems are reducible when the signals are consid-
ered stationary and the system time-invariant, it is clear that blind deconvolution is
impossible in such cases. If, however, s(n) and h(n) are quasi-stationary and quasi-
time-invariant, respectively, then while the system is locally reducible, s(n) and h(n)
are not globally reducible. This is provided that s(n) and h(n) possess different rates
of global time-variation. In such a case, therefore, blind deconvolution is possible.

Several examples shall reiterate this point:

1. If, for example, the source is modelled as a stationary Autoregressive (AR) pro-
cess and the channel as an LTI all-pole filter (see Sect. 8.4.3), the observed
signal is also a stationary AR process. Consequently, it is not possible to at-
tribute a particular pole estimated from the observed signal to either the source
or channel; there is an identifiability ambiguity and the system is reducible.
This source-channel ambiguity can be avoided by, for example, modelling the
acoustic source as a Time-Varying AR (TVAR) process (see Sect. 8.6.2), and the
channel by an LTI Finite Impulse Response (FIR) filter. The observed signal is
then a Time-Varying ARMA (TVARMA) process, in which the poles belong to
the source model and zeros to the channel; in this case, the system is irreducible
given prior knowledge that the source has poles only, and the channel has zeros
only. There appears to be no ambiguity in distinguishing between the parame-
ters associated with each, and this model is used in [4] for the case of separating
and recovering convolutively mixed signals. However, this TVAR-FIR source-
channel model is of course not always realistic, as it cannot be ascertained that
the source only has poles and no zeros, and the channel only has zeros and no
poles.

2. In an alternative approach to single-channel blind dereverberation focusing on
stationary talkers [21], the locally-stationary nature of the source and the as-
sumed time-invariance of the channel are utilised to provide sufficient informa-
tion to distinguish between the two models. In this approach it is argued that
the statistics of speech signals remain quasi-stationary for around 20–50 ms.
The source signal is modelled by a Block Stationary AR (BSAR) process (see
Sect. 8.6.3), while the Acoustic Impulse Response (AIR) is modelled by an LTI
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all-pole filter.8 These models allow the AIR to be uniquely identified up to a
scaling ambiguity, since essentially any common poles estimated from different
blocks of the observed data must belong to the channel.

The issue of system identifiability is clearly determined by assumptions regarding
the characteristics of the source signal and the acoustic impulse response. These
characteristics must be appropriately reflected in the parametric models used, and it
must be determined whether the proposed system model is identifiable. This, how-
ever, does not address the question of whether the underlying physical system is
identifiable only from the observations. In blind dereverberation, this is an open
question and readily in need of more investigation [34]. With these identifiability
issues in mind, the following sections discuss appropriate channel (Sect. 8.4) and
source models (Sect. 8.6).

8.3 Nature of Room Acoustics

The Bayesian paradigm suggests the use of either stochastic or static parametric
channel models. This section considers the nature of room acoustics from a per-
spective relevant to the justification of commonly used models in blind derever-
beration. The most general form of a room impulse response in continuous time,
h(qsrc(τ),qmic(τ))(t), resulting from an impulse applied at time τ between a sound
source and observer at positions qsrc(τ) and qmic(τ), respectively (see (8.1)), re-
sults from solving the acoustic wave equation. For clarity, the dependence on τ will
subsequently be dropped, since τ is essentially characterised by the source-sensor
geometry (qsrc,qmic). The solution is expressed in continuous-time as a linear com-
bination of damped harmonics:

h(qsrc,qmic)(t) =

{
0 for t < 0,

∑k Ãke−δ̃k t cos
(
ω̃kt + θ̃k

)
for t ≥ 0.

(8.18)

The amplitude coefficients, Ãk, implicitly contain the locations of the source and
sensor, qsrc and qmic. On the other hand, the damping factors, δ̃k, corresponding
to the quality-factor (Q-factor), the undamped natural frequencies, ω̃k, and phase
terms, θ̃k, are independent of the source and receiver positions. Their values are
determined by the room size, wall reflection coefficient, and room shape. While
the general parametric model in (8.18) completely characterises the room impulse
response, it is intractable for many estimation problems in signal processing and
does not easily lead to an analytical solution in the Bayesian framework for blind

8 In this chapter, the terms RIR and RTF specifically refer to any impulse response or transfer
function, respectively, associated with room reverberation, whereas the terms acoustic impulse
response and acoustic transfer function are used to refer to the response of an acoustic environment
other than a room. In [21] and later in this chapter, results are presented for an acoustic gramophone
horn, and therefore it is referred to by an acoustic rather than room response.
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dereverberation. Even though numerical Bayesian methods (see Sect. 8.2.3) can be
used to circumvent the lack of closed form solutions, (8.18) does not necessarily
lead to a parsimonious representation, and therefore alternative models should be
considered.

Moreover, while there are many other techniques for modelling an RIR, not all
lend themselves to algorithms for straightforward parameter estimation. In general,
each model applies to a different frequency range of the audible spectrum and, from
a signal processing perspective, there is no single practical generative model for the
entire audible frequency range [25].

8.3.1 Regions of the Audible Spectrum

Generally, the audible spectrum can be divided into four distinct regions, as sum-
marised in Fig. 8.3. In the following, consider a typical shoebox shaped office envi-
ronment with dimensions 2.78×4.68×3.2m, volume V = 41.6m3, and reverbera-
tion time of T60 = 0.23 seconds. This room is denoted by R. A single-tone source of
frequency f is assumed in the discussion, with the argument extending to wideband
sources by using linear superposition.

Very Low Frequencies and Wave Acoustics At very low frequencies, f < fw = c
2L ,

where c is the speed of sound, and L is the largest dimension of the acoustic envi-
ronment, there is no resonant support. Typically, fw is around 35 Hz for room R.
The so called wave-acoustics region corresponds to frequencies where the source
wavelength is comparable to the room dimensions. It spans the lowest resonant
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mode, approximately given by fw, to the Schroeder frequency fg ≈ 2000
√

T60/V
(Hz). Distinct resonants occur in which the Q-factor is sufficiently large that the
average spacing of resonant frequencies is substantially larger than the average
half-width of the resonant mode. For this room, distinct resonances occur be-
tween fw = 35 Hz and fg = 149 Hz.

In practice, however, the very low frequency and wave acoustic regions are generally
irrelevant for speech dereverberation since electro-acoustic systems have a limited
bandwidth at low frequencies. Analytical tools are thus utilised only for the high
sound frequency and geometric acoustic regions.

High Sound Frequencies and Geometric Acoustics Above fg, there is such a strong
model overlap that the concept of a resonant mode becomes meaningless. How-
ever, below a frequency of around 4 fg, the wavelengths are too long for the appli-
cation of geometric acoustics. Thus, in this transition region, a statistical treat-
ment is generally employed. For the room above, statistical theory is relevant
from fg = 149 Hz to 4 fg = 595 Hz.
Above 4 fg, geometrical room acoustics applies and assumes the limiting case
of vanishingly small wavelengths. This assumption is valid if the dimensions of
the room and its walls are large compared with the wavelength of sound: this
condition is met for a wide-range of audio frequencies in standard rooms. In
this frequency range, specular reflections and the sound ray approach to acous-
tics prevail. Geometrical acoustics usually neglect wave related effects such as
diffraction and interference. The image method [1] for simulated AIRs is valid
only in this frequency range.

8.3.2 The Room Transfer Function

Parametric modelling is often justified by considering the Room Transfer Function
(RTF) between a sound source in an enclosed space and a receiver, rather than the
time-domain representation in (8.18). The RTF is derived directly from (8.18) by
taking Laplace transforms as:

H(qsrc,qmic)(s) = ∑
k∈K

αk +βk s

ω̃2
k +(δ̃k + s)2

≡ ∏
k∈K

D(qsrc,qmic)(s)
(s− sk)(s+ sk)

, (8.19)

where ω is angular frequency, sk = −δ̃k + jω̃k, the constants {αk,βk} and the poly-
nomial D(qsrc,qmic)(s) are functions of {Ãk, δ̃k, θ̃k} and consequently dependent on
the source-sensor geometry.9 Thus, the frequency response is:

H(qsrc,qmic)( jω) = ∑
k∈K

αk + jβkω
ω̃2

k + δ̃ 2
k −2 jδ̃kω−ω2

. (8.20)

9 It is easily shown that αk = Ãk

(
δ̃k cos θ̃k − ω̃k sin θ̃k

)
and βk = Ãkω̃k cos θ̃k.
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When ω ≈ ω̃k, the associated term in (8.20) assumes a high absolute value. As such,
ω̃k is sometimes called an eigenfrequency of the room [25], or a resonant frequency
due to the resonances occurring in the vicinity of ω̃k.

8.3.3 Issues with Modelling Room Transfer Functions

Audio signal processing in acoustic environments is a notoriously difficult and chal-
lenging field, and blind dereverberation is no exception. The difficulty arises due to
the complexity of the room acoustics. There are a number of problems encoun-
tered in this application when dealing with AIRs, such as in (8.18), and RTFs of
(8.19) [34].

Long and Non-minimum Phase AIRs

In general, RIRs are long and, for instance, a Finite Impulse Response (FIR) imple-
mentation would typically require ns = T60 fs coefficients, where fs is the sampling
frequency. For example, if T60 = 0.5 s and fs = 10 kHz, the length of the RIR is
around ns = 5000 coefficients. This can render modelling and parameter estima-
tion difficult. Moreover, RIRs are often non-minimum phase, leading to difficulties
with channel modelling and inversion. The non-minimum phase contribution to the
perception of reverberation is significant [22, 33].

Robustness to Estimation Error and Variation of Inverse of the AIR

Any small error in an RIR estimate leads to a significant error in the inverse of
the RIR. Thus, inversion can increase distortion in the enhanced signal compared
to the reverberant signal. Any deviation from the true RIR means that attempts to
equalise high-Q resonances can still leave high-Q resonances in the equalised re-
sponse degrading the intelligibility of the restored signal. Similarly, a small change
in source-sensor geometry might give rise to a small change in the RIR, so again the
corresponding changes in the inverse of an RIR can sometimes be large.

Subband and Frequency-zooming Solutions

Since the proposed channel estimation techniques and source recovery methods dis-
cussed in this chapter implicitly use inverse-filtering methods, these issues are par-
ticularly pertinent. Some of these problems cannot be alleviated by either attempt-
ing to process the full frequency range of the source, nor by attempting to invert
the full-band RTF using a single filter. In problems with long channels, it is better
to utilise subband methods that attempt to enhance the reverberant signal by invert-
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ing the channel response over a number of separate frequency ranges. Modelling
each frequency band independently can lead to a parsimonious approximation of
the RTF, lower model orders, and an overall reduction in the total number of pa-
rameters needed to approximate the acoustic channel. Moreover, there may be only
a few bands that have high-Q resonances, which need careful equalisation, whereas
other frequency bands have lower-Q factors, so less care is required.

An additional advantage of using subband models is that subbands possess-
ing minimum phase characteristics can be inverted, despite the AIRs being non-
minimum phase over the full frequency range. Hence, in the case of a non-minimum
phase response, where a causal inverse does not exist, methods for detecting and
equalising the minimum phase subbands should be developed: this follows the ap-
proaches in [45, 46]. Details of a subband all-pole model and methodology are dis-
cussed in Sect. 8.4.4.

8.4 Parametric Channel Models

This section discusses a variety of parametric models, both static and stochastic,
that can be used tractably within a Bayesian framework. Rational parametric models
are introduced, but it is important to note that it is the characteristic of the model
parameters that determines whether the model is static or stochastic; this is discussed
in Sect. 8.4.5.

8.4.1 Pole-zero and All-zero Models

The RTF in (8.19) is rational and can therefore, in principle, be modelled by a con-
ventional pole-zero model [30]. From a physical point of view, poles represent reso-
nances, and zeros represent time delays and anti-resonances. Two common simplifi-
cations of (8.19) are the all-zero and all-pole models, each with their own advantages
and disadvantages.

There are several main limitations imposed by the nature of room acoustics of
the resulting FIR filters given by all-zero models [29, 30]. Firstly, as discussed in
Sect. 8.3.3, RIRs are, in general, very long and an all-zero filter typically requires
as many taps as the length of the RIR. Secondly, the resulting FIR filter may be
effective only for a limited spatial combination of source and receiver positions,
(qsrc,qmic), as all-zero models lead to large variations in the RTF for small changes
in source-observer positions [29, 30]. A further disadvantage of the pole-zero and
all-zero models for the single channel case is that estimation of the zeros requires
solving a set of non-linear equations.
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Fig. 8.4 Resonant standing waves for a 1-D room can be observed at any point except node points,
such as point C. Since this standing wave occurs independently of the source location and can be
observed at all observation points, the acoustical poles that reflect the information of the resonant
frequencies are independent of source-sensor locations

8.4.2 The Common-acoustical Pole and Zero Model

The poles of the room transfer function on the right-hand side of (8.19) are func-
tions of the damping factors, δ̃k, and undamped natural frequencies, ω̃k, and are,
therefore, approximately independent of the source and sensor positions (qsrc,qmic).
Consequently, the poles encapsulate all the information pertaining to the resonants
of a room; standing waves occur independently of the source location and can be
observed at any point in the room, except at node points, as depicted in the 1-D case
shown in Fig. 8.4. Naturally, the amplitude of the standing wave varies depending
on the sensor positions, as seen in Fig. 8.4, and this variation is reflected in the ze-
ros of the RTF [14]. This leads to the Common-Acoustical Pole and Zero (CAPZ)
model of an RTF, which was first introduced by Haneda et al. [13, 14]. It should be
noted the acoustical argument used above for the justification of the CAPZ model
is simplistic, and other investigations on the fluctuations of AIRs within reverberant
environments suggest that this assumption may not be strictly true [34].

Nevertheless, the CAPZ model is particularly useful in applications where mul-
tiple room transfer functions from different source-observer positions are modelled,
which could have applications in, for example, multi-channel blind source separa-
tion [10], or blind dereverberation from a moving talker. Like the general pole-zero
model, the CAPZ model still suffers from the problem that it is not possible to write
an input–output equation that is Linear-In-The-Parameters (LITP), which thereby
complicates parameter estimation.

8.4.3 The All-pole Model

An LITP model that lends itself to straightforward parameter estimation is the all-
pole model, which is widely used in many fields to approximate rational transfer
functions. In discrete-time, its transfer function is given by:
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Hq(z) = Gq ∏
k∈P

1
1− pq,k z−1 ≡ Gq

1 + ∑
k∈P

aq,k z−k , (8.21)

where q = (qsrc,qmic) is the set of source and sensor positions, Gq is a gain term,
{pq,k}P

k=1 denote the P poles, and {aq,k}P
k=1 denote the P all-pole parameters. It

is claimed that typical all-pole model orders required for approximating RIRs with
reverberation times T60 ≈ 0.5 s are in the range 50 ≤ P ≤ 500 [30], although this
depends on the frequency range of the acoustic spectrum considered. In fact, practi-
cal experience seems to indicate this is a relatively conservative estimate, although
it obviously depends on how much data is available for model order estimation.
Mourjopoulos and Paraskevas [30] conclude that in many signal processing appli-
cations dealing with room acoustics, it may be both sufficient and more efficient to
manipulate all-pole model coefficients rather than high order all-zero models. All-
pole models are particularly useful for modelling resonances in the wave acoustics
and high sound frequency regions.

Despite the dependence of the model parameters on the source-sensor positions,
q = (qsrc,qmic), a purported advantage of the all-pole over the all-zero model is its
lower sensitivity to changes in q [30]. While the CAPZ model contributes to this
argument, it is still the case that a subset of poles in the all-pole model must account
for the variations in the RTF with source-sensor geometry, even if it is less sensitive
than the all-zero model.

In the time-domain, suppose a signal, s(n), is filtered through a room impulse
response between a source position that varies as a function of time, qsrc(n), and a
fixed observation position qmic. As the source-sensor geometry varies as a function
of time, the parameters that define the RIR also vary as a function of time. If the
acoustic channel is modelled by an all-pole filter of order P, the observed signal,
x(n), received at the sensor, is expressed as

x(n) = −
P

∑
k=1

ak(n)x(n− k)+ s(n), (8.22)

where the all-pole coefficients, {aq,k}P
k=1, are now considered as functions of time

and are denoted by {ak(n)}P
k=1. The nature of the parameter variations is discussed

in Sect. 8.4.5.

8.4.4 Subband All-pole Modelling

The all-pole model in Sect. 8.4.3 will be referred to as the full-band all-pole model,
since it essentially attempts to fit the entire frequency range simultaneously. The
full-band all-pole model can result in a high number of parameters, the estima-
tion of which will require a large computational load that can be unacceptable in
computationally intensive algorithms such as blind dereverberation. The modelling
of complicated room transfer functions requires a highly flexible and scalable para-
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Fig. 8.5 (a) Transfer function of an acoustic gramophone horn [41] with the corresponding AR
model and (b) poles corresponding to response in (a). The unit semi-circle maps to frequency
range 0 → 10 kHz

metric model. As discussed in Sect. 8.3.3, a subband approach can resolve a number
of modelling issues.

An intuitive rationale for why high model orders result in the full-band all-pole
model is as follows: consider a transfer function that is highly resonant in a low
frequency band, and much less resonant in a higher band, as shown in Fig. 8.5(a).
Spencer [41] shows that this response can be accurately modelled by an all-pole
model with 68 parameters. As shown in Fig. 8.5(b), these poles seem uniformly dis-
tributed around the edge of the unit circle. In the low frequency band, up to approxi-
mately 2 kHz, there are a number of closely spaced high-Q resonances; these can be
modelled using approximately 12 poles. The response due to each pole-pair rolls-
off at 40 dB per decade. Since the low-frequency poles are closely spaced with high
spectral peaks, a large number of poles are needed at high-frequencies to counteract
the roll-off effect of having a large number of low-frequency high-Q poles, while si-
multaneously attempting to model a relatively smooth frequency response. Thus, in
essence, the full-band channel model requires many parameters because it attempts
to fit the entire frequency range simultaneously, even though it may fit some regions
in the frequency space better than others. Consequently, it is preferable to simply
model a particular frequency band of the acoustic channel’s spectrum by an all-pole
filter, leading to lower model orders. Subband linear prediction was first considered
in [27] and developed in [16–20, 38, 43]. The so-called unconstrained subband all-
pole model is discussed, which attempts to fit different frequency bands indepen-
dently, leading to a parsimonious approximation of the rational transfer functions
and lower model orders. It is shown in [20] that the response in Fig. 8.5 (a), when
using three subbands, can be modelled using just 51 parameters: a 25% reduction in
parameters.

The subband all-pole model is more flexible for channel modelling than a sin-
gle full-band. Makhoul [27] suggests a similar model when analysing speech using
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(a) (b)

Fig. 8.6 Subband modelling – (a) continuous spectrum, (b) discrete spectrum and indices mapping

linear prediction. Consider a discrete-time representation of the system with B sub-
bands; in subband b ∈ B the frequency response of the RTF, Hq

(
e jω), is modelled

by an all-pole spectrum in the region [ωb, ωb+1) obtained from (8.21) through the
mapping graphically shown in Fig. 8.6(a):

ω → π
ω−ωb

ωb+1 −ωb
. (8.23)

Thus, in the bth subband, the mapped frequency response is given by:

H(b)
q
(
e jω)=

Gb

1 + ∑
k∈Pb

ab,k e− jωk , ω ∈ [−π , π),

where ab = {ab,k}Pb
k=1 and Gb ∈ R

+ denote model parameters in subband b. These
parameters are implicitly conditional on q = (qsrc,qmic), although this dependence
has been dropped for clarity. The gain term, Gb, allows a further degree of freedom
in the model, although to avoid scaling ambiguities, G0 � 1. Hence, the total RTF is
modelled for ω ∈ [−π , π) as:10

10 Since the energy in subband b must be equivalent to the energy in the mapped frequency re-
sponse, the scaling term γb in (8.24) is required:

∫ ωb+1

ωb

∣∣Hq
(
e jω)∣∣2 dω =

ωb+1 −ωb

π

∫ π

0

∣∣∣∣Hq

(
e

jπ ω−ωb
ωb+1−ωb

)∣∣∣∣
2

dω.
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Hq
(
e jω)=

B

∑
b=1

(
ωb+1 −ωb

π

) 1
2

︸ ︷︷ ︸
γb

H(b)
q

(
e

jπ ω−ωb
ωb+1−ωb

)
I[ωb,ωb+1) (ω) , (8.24)

where the indicator function is defined as IA (a) = 1 if a ∈ A and zero otherwise.
When the spectrum is sampled, the mapping in (8.23) is adjusted accordingly as
indicated graphically in Fig. 8.6(b). Thus, each subband b ∈ B covers a total of
Kb = 2(kb+1 − kb) frequency bins, namely k ∈ {kb, . . . , kb+1 − 1} and the corre-
sponding complementary frequency bins (see Fig. 8.6(b)). The subband boundaries
are defined by {kb, b ∈ B}, with k0 � 0 and kB � K, where K is the total number of
frequency bins. The frequency bin closest to the half sampling frequency is given
by k fs/2 = �K/2�. The transfer function in a particular subband is obtained using the

mapping k → k−kb
Kb

for k K ≤ 2. This results in a sampled transfer function that is
essentially identical to (8.24) with ωb replaced by kb.

A significant problem with this subband model as presented, however, is that the
transfer function being modelled in each subband is no longer smooth, as indicated
in the magnitude responses shown in Fig. 8.6(a). Moreover, due to the asymmetry
of the phases, the subband phase response will be discontinuous and non-zero at the
boundaries. Yet, the phase response of the subband all-pole model at the subband
boundaries is zero. Techniques for dealing with this phase modelling problem are
discussed in [19]. Despite this, the subband model is assumed throughout the rest of
this chapter in order to reduce the complexity of the channel model.

8.4.5 The Nature of Time-varying All-pole Models

As argued in Sect. 8.4.3, a time-varying source-sensor geometry leads to a Time-
Varying All-Pole (TVAP) model, as defined by (8.22). The subband all-pole model
discussed in Sect. 8.4.4 is used in practice to model the complete RTF, and therefore
discussions henceforth apply to a limited spectral region.

Consider again the interpretation of (8.22). While the poles in the CAPZ model
discussed in Sect. 8.4.2 are invariant to changes in source-sensor positions, some of
the poles in the all-pole model of (8.22) are not. The problem of modelling the RIR
between a spatially varying source and sensor reduces to determining an appropri-
ate model for the time-varying all-pole parameters, {ak(n)}P

k=1. Determining such
a model is complicated, in part an open question, and is often constrained by the
availability of suitable and tractable parameter estimation techniques. Appropriate
models are discussed in Sects. 8.4.6 and 8.4.7. In the meantime, the spatially-varying
nature of RIRs and the variation of the all-pole model parameters with spatial po-
sition is investigated. Simulated and measured RIRs are obtained for the acoustic
set-up illustrated in Fig. 8.7 for a small office of size 2.78×4.68×3.2m (length ×
width × height); this room matches room R discussed in Sect. 8.3.1. An acoustic
source remains fixed while the microphone sensor is moved in 2 mm increments.
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Fig. 8.7 Source and sensor locations in experimental set-up; all measurements in millimeters.
Source and sensor elevation is 845 mm, room height of 3200 mm. The sensor is moved from its
initial position in 2 mm increments

This experimental set-up mimics the spatially-varying nature of the RIR for moving
sources.

The simulated RIRs are generated using the image method [1] with the reflec-
tion coefficient chosen to give a reverberation time of T60 = 0.23 s. This choice
corresponds to the measured reverberation time of the real office. As the image
model assumes geometric room acoustics, the simulated responses only apply above
four times the Schroeder frequency, fg, as discussed in Sect. 8.3.1, and in this case
4 fg = 595 Hz. Using the simulated RIRs, the RTF is modelled in the frequency
range between 600 to 1200 Hz by a 16th-order subband all-pole model as discussed
in Sect. 8.4.4. The variation of the resulting pole positions from the initial sensor po-
sition to a final offset of 400 mm is plotted in Fig. 8.8(a). The results indicate smooth
pole variation and, consequently, the TVAP parameters of the RIR vary relatively
smoothly with sensor spatial displacement. This can be confirmed by measures of
the changes in the RIR, e.g., normalised projection misalignment.

For verification of these results using real data, 910 RIRs were measured in a real
office by moving a 26-microphone linear array in small increments over a distance
of 70 mm. To obtain comparable results to the simulated data, the pole variations are
again acquired by modelling the RTF as a 16th-order subband Autoregressive (AR)
model in the range 600 to 1200 Hz. The poles for real RIRs are subject to larger
variation than those for the simulated RIRs; they cover a wider region within the unit
circle, and intersect the trajectories of neighbouring poles. To avoid cluttered pole
trajectory plots, only a subset of the pole variations from the microphone array for
several microphones (labelled mics. 7 and 8) are displayed in Figs. 8.8(c) and 8.8(d).
This corresponds to offsets from 432 to 502 mm for microphone 7 and from 504 to
574 mm for microphone 8. For comparison with equivalent results for simulated
data, see Fig. 8.8(b). The pole variations from the measured data clearly exhibit
reasonably smooth trajectories, validating the simulated results.
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Fig. 8.8 Simulated and experimental results for spatiotemporal variation of the poles in all-pole
modelling of RIRs; pole trajectories illustrated through colour map from black (starting point) to
light grey (ending point). Model order: 16. (a) Simulated: 0 → 400 mm. (b) Simulated: 432 →
574 mm. (c) Measured: 432 → 502 mm (d) Measured: 504 → 574 mm

An in-depth discussion of the variability of room acoustics is beyond the scope of
this chapter and requires considerably more investigation than the results presented
in this section. Nonetheless, the results presented in Fig. 8.8 give useful insight into
the possibilities for modelling the parameters {ak(n)}P

k=1 of the TVAP model in
(8.22).

8.4.6 Static Modelling of TVAP Parameters

The smooth variations of the poles with changing position in Fig. 8.8 suggests that a
suitable static model of the TVAP model parameters in (8.22) could be a determin-
istic function with unknown but fixed parameters. Such a function could be decom-
posed as a linear combination of basis functions. A similar decomposition will be
used for modelling speech and this is discussed in Sect. 8.6.3 (see also (8.29) and
(8.31)). Hence, the TVAP are modelled as:
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ap(n) = ∑
k∈G

ap,kgk(n− p), (8.25)

where {ap,k, p ∈ P ,k ∈ G} are the G unknown static time-invariant basis coeffi-
cients, {gk(n)}k∈G are the known time-varying basis functions. Note this model is
assumed to apply over the full length of the source signal.

As the basis functions span the vector space to which the underlying time-varying
all-pole parameters are mapped, they define the scope of their variation. Thus, their
choice is essential. Unfortunately, no general rules for choosing these functions ex-
ist. The choice of basis is therefore dependent on the prior belief of the variation
of the parameters. Amongst the wide range of basis functions that have been inves-
tigated [3, 11, 12, 39], standard choices include Fourier functions, Legendre poly-
nomials and discrete prolate spheroidal sequences. These classes tend to assume
smooth parameter behaviour and respond to abrupt changes as a low-pass filter [12].
Hence, for abrupt changes in the RIR with position (and therefore time), the param-
eters are not modelled correctly. A discontinuous basis like the step function can
capture abrupt changes well, but cannot handle smooth variations [12]. Modelling
rapid parameter variation is theoretically possible by utilising an infinite number
of basis functions. However, this leads to over-parameterised coefficients since the
model would have as many degrees of freedom as the RIR itself [12, 36].

8.4.7 Stochastic Modelling of Acoustic Channels

It might be argued that the variation of poles in Fig. 8.8, and therefore the corre-
sponding parameters, is more stochastic in nature than a smooth predictable deter-
ministic function. The simplest stochastic model for the TVAP parameters is the
random walk:

ap(n) = ap(n−1)+ wap(n), wap(n) ∼N
(

0, σ2
ap

)
,

where wap(n) is a WGN process. In actuality, the TVAP coefficients are likely to be
composed of a predictable deterministic variation or trend, which can be modelled
by a linear combination of basis functions, and an unpredictable stochastic element
that might be modelled by a random walk.

Alternatively, and inspired by models used for communication channels in the lit-
erature, it might be that the coefficients of the RIR in (8.1) are themselves modelled
as a random walk:

h(n, �) � hq(�)(n) = hq(�)(n−1)+ wh(n),

where again, q(�) = (qsrc(�),qmic(�)) denotes the source-sensor geometry, and
wh(n) is WGN with variance σ2

h . Perhaps a more structured approach is to model
the RIR, hq(n), as the product of a WGN process and a damping exponential de-
cay as described in (2.28) in Chap. 2. Despite the fact that the process in (2.28) is
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Fig. 8.9 Clean speech in a reverberant environment with remote noise signals

stochastic in nature given the variance of the WGN process and the damping factor,
it is amenable to marginalisation due to its simple structure and the small parameter
space (see the discussion in Sect. 8.2.2). These models are yet to receive substantial
attention in the research literature, but have good potential for online or sequential
algorithms (see Sect. 8.2.1). In the rest of this chapter, the static parametric model
of Sect. 8.4.6 is used.

8.5 Noise and System Model

In the general problem formulation of Sect. 8.2, the noise was modelled as an addi-
tive measurement error at the microphone, as shown in Fig. 8.1. This was based on
the argument that the observation noise is the superposition of all undesired sound
sources in the room and therefore, by a central limit theorem argument, it will be
WGN and unaffected by the room acoustics.

However, it is equally valid to argue that the underlying sources of noise arise
from distinct localised positions; for example, the humming of computer fans, air
conditioning units, or general distant traffic noise. Consider, then, the more general
model shown in Fig. 8.9 in which spatially separated noise sources are each ob-
served after they have propagated through the acoustic system; each noise source-
sensor path has a distinct room impulse response. The receiver thus observes a noise
contribution that is the linear combination of noise source signals filtered by sepa-
rate channels due to the different AIRs associated with each noise-sensor geometry.
Assuming that the noise sources are spatially-stationary, the model in (8.1) is written
as:

x(n) = h(qsrc,qmic)(n, �)∗ s(n)+
R

∑
r=1

h(qνr ,qmic)(n)∗νr(n)+ν(n), (8.26)
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Fig. 8.10 Clean speech with remote noise signals in a reverberant environment which can be de-
composed using the CAPZ model

where h(qsrc,qmic)(n, �) is the source-sensor RIR, h(qνr ,qmic)(n) is the RIR between
the rth noise source, νr(n), and the sensor, R denotes the number of noise sources,
and ∗ represents either LTV or LTI convolution depending on the context. Although
such a noise model is idealistic, it is also overly complicated, making it difficult to
estimate all the relevant system parameters. Moreover, due to the lack of knowl-
edge of the noise statistics, it might also be over-determined. Nevertheless, it is
interesting to note that the model in Fig. 8.9 can be simplified by using the notion
of common-acoustical poles as described in Sect. 8.4.2. Recall that each individ-
ual channel response can be decomposed into a combination of two components:
one that is dependent on the source-sensor geometry, and one that is acoustically
common to all source-sensor arrangements [14]. Using the CAPZ model, each RIR
can be decomposed into a path-independent all-pole model, hAP(n), and a path-
dependent pole-zero model, as shown in Fig. 8.10. Hence, (8.26) may be rewritten
as:

x(n) =

{
ĥ(qsrc,qmic)(n, �)∗ s(n)+

R

∑
r=1

ĥ(qνr ,qmic)(n)∗νr(n)

}
∗hAP(n)+ν(n), (8.27)

where hq(n, �) = ĥq(n, �)∗ hAP(n). The modified coloured noise term

νd(n) =
R

∑
r=1

ĥ(qνr ,qmic)(n)∗νr(n)

is extremely difficult to model, and it can be argued that since νr(n) has undergone
less filtering through ĥ(qνr ,qmic)(n) than through h(qνr ,qmic)(n), νd(n) will be more
Gaussian than ∑r h(qνr ,qmic)(n)∗νr(n). Hence, νd(n) is modelled as WGN such that
the overall model reduces to that shown in Fig. 8.11, and (8.27) reduces further to:



248 J.R. Hopgood et al.

Clean
speech, s

Source-sensor
channel h

Additive

noise, �

Observed
signal, x

��

�h�s

Common room
channel hAPRemote

noise, �d

� �
(q ,q )src mic

Fig. 8.11 Noise model simplification using CAPZ model

x(n) =
{

ĥ(qsrc,qmic)(n, �)∗ s(n)+νd(n)
}
∗ hAP(n)+ν(n), (8.28)

where νd(n) ∼ N
(
0, σ2

νd

)
is the distant or remote WGN source. Moreover, it is

possible to omit the observation or measurement noise term ν(n) by essentially
combining it with νd(n) to obtain an even more simplified model. In essence, the
model in (8.28) states that any remote noise sources that are affected by reverber-
ation should not be modelled as white, but rather as WGN filtered by a common
component of the room acoustics. It turns out that the shifting of the position of
this noise term can help simplify the methodology used for source estimation, as
described in Sect. 8.7.2.

8.6 Source Model

8.6.1 Speech Production

Speech sounds can be divided into three classes depending on the mode of excita-
tion [32]. Voiced sounds are produced by vibrating vocal cords producing a periodic
series of glottal pulses. The sound is quasi-periodic with a spectrum of rich harmon-
ics at multiples of the fundamental or pitch frequency, f0, as shown in Fig. 8.12.
Unvoiced sounds, on the other hand, do not have a vibrating source: they are pro-
duced by turbulent flow, leading to a wideband noise source. Plosive sounds, with
an impulsive source, also exist, but are transient and are considered less important
in this model.

These different modes of excitation can be combined into the binary source-filter
model of speech production, as shown in Fig. 8.12. One of two source excitations is
selected, then filtered by the vocal tract, which is assumed to include the filtering ef-
fect of the mouth. The binary source-filter model is, of course, an over-simplification
of the rather complicated speech production process. Although extended models do
exist, the simple source-filter model is commonly used in the speech processing lit-
erature and gives adequate model performance [32]. Generally, linear time-variant
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pole-zero filters and all-pole filters in particular are a popular approach for mod-
elling the vocal tract of a talker due to their ability to accurately model the con-
tinuous short-term spectrum of speech [32]. Physically, the resonances (formants)
of speech correspond to the poles of the vocal tract transfer function, while sounds
that are generated through a coupling between oral and nasal tracts, for example
French nasals, have anti-resonances and therefore are better modelled if the transfer
function includes zeros. Thus, nasal and fricative sounds must be represented by
pole-zero pairs but not by pole-only models. Nevertheless, pole-zero speech mod-
els generally require non-linear methods for estimating their parameters [27], and
all-pole models are normally used instead.

8.6.2 Time-varying AR Modelling of Unvoiced Speech

According to the source-filter model for speech, unvoiced sounds correspond to
a WGN excitation passing through a time-varying all-pole filter representing the
vocal tract, as shown in Fig. 8.12. Hence, unvoiced speech is modelled as a TVAR
process [11, 12, 27], which is defined as:

s(n) = −
Qn

∑
q=1

bq(n)s(n−q)+σe(n)e(n), e(n) ∼N (0, 1) , (8.29)

where e(n) is the time-varying zero-mean WGN with unit variance, σ2
e (n) repre-

sents the variance of the excitation sequence ê(n) = σe(n)e(n), s(n) is the source
signal, Qn is the time-varying model order at time n and {bq(n)}Qn

q=1 are the Time-
Varying AR (TVAR) coefficients. Non-coincidentally, the TVAR process in (8.29)
is of the same form as the TVAP channel model (8.22) in Sect. 8.4.3, except that
the input is white. Thus, as discussed in Sect. 8.4.5, the problem of modelling un-
voiced speech using this representation reduces to finding an appropriate model for
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the TVAR parameters, {bq(n)}. However, as discussed previously in Sect. 8.2.2, the
model for the parameters is often determined by the methodology used for their
estimation.

The most general variation of the parameters, {bq(n)}, in (8.29) is when the pa-
rameters are completely uncorrelated at each sample. In this case, each sample of the
signal is represented by more than one unknown coefficient. This over-determined
parameterisation results in numerical problems as there is not enough data from a
single realisation of a process to allow accurate parameter estimation. Therefore,
it is necessary to introduce correlation into the parameter variations, and two dis-
tinct approaches are discussed in Sects. 8.6.3 and 8.6.4: namely static and stochastic
source models.

8.6.2.1 Statistical Nature of Speech Parameter Variation

As explained above, it is difficult to estimate all the parameters {bq(n)} from (8.29)
at each time step without access to the ensemble statistics. Hence, the precise sta-
tistical nature of the speech parameter variation for the TVAR model in (8.29) is
essentially hidden; any estimation method is limited by prior assumptions on the
statistical nature of the problem. Despite this, an illustration of the time-varying
characteristics of the parameter variation can be given by taking a sliding window of
block length M over a segment of speech; the window moves by one sample in each
of S steps. In each window, the AR coefficients are estimated assuming the model
within that block is stationary. The coefficients are computed by solving the stan-
dard Yule–Walker equations [23], and the corresponding poles are the roots of the
characteristic equation. For the two segments of speech shown in the grey regions
in Fig. 8.13, the corresponding pole variations introduced by the sliding window
are shown in Fig. 8.14(a) and Fig. 8.14(b). The poles exhibit smooth variation over
these segments of speech; this characteristic of pole movements is discussed, for
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Fig. 8.14 (a) Birth and death of true poles ( ) and LSE ( ) for left shaded area in Fig. 8.13; model
order: Q = 8. (b) True poles ( ) and LSE ( ) for speech segment in right shaded area of Fig. 8.13;
model order: Q = 6. (c) Smooth pole variation (Fig. 8.14 (b)) corresponds to relatively smooth
parameter variation, (d) Close-up of Fig. 8.14(b) showing LSE ( ) matching true poles ( )

example, in [12]. Smooth pole variation often leads to relatively smooth parameter
variation, as shown in Fig. 8.14(c).

8.6.3 Static Block-based Modelling of TVAR Parameters

Many statistical estimation methods impose stationarity on the model of the signal
primarily to constructively exploit ergodicity. Since within the speech production
process, the vocal tract is continually changing with time, sometimes slowly, some-
times rapidly as, for example, during plosive sounds and speech transitions, the
assumption of stationarity is a limitation that results in poor modelling [44]. In or-
der to reconcile partially the global non-stationarity while utilising the advantages
of local ergodicity in estimation methods, a compromise is to model speech as a
block-stationary process: the signal is divided into short segments or frames where
the statistics of the signal are assumed to be locally stationary within blocks, but
globally time-varying.
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Thus, the signal s(n) is partitioned into K contiguous disjoint blocks. Block k ∈K
begins at sample nk with length Nk = nk+1 − nk. In this block, the signal is repre-
sented by a stationary AR model of order Qk. Using (8.29), this is equivalent to set-
ting Qn = Qk, {bq(n) = bk,q, q ∈Qk}, σe(n) = σe,k, ∀n ∈Nk = {nk, . . . ,nk+1−1}⊂
Z

Nk , such that

s(n) = −
Qk

∑
q=1

bk,qs(n−q)+σe,k e(n), (8.30)

where {bk,q}Qk
q=1 are the Block Stationary AR (BSAR) coefficients in block k ∈ K

that are stationary within each block but vary over different blocks k. For continuous
sounds such as vowels, the TVAR parameters change slowly, such that the BSAR
model works well. With transient sounds such as plosives and stops, the BSAR
model is not as good but still adequate [32]. In general, however, it is clear that even
local stationarity prohibits the estimation of the full variation of the signal within
that block, which is essential for accurate modelling of a time series.

8.6.3.1 Basis Function Representation

As an alternative to the BSAR model, correlation can be introduced into the pa-
rameter variations of {bq(n)} in (8.29) by a transformation of the non-stationary
signal to a space where it can be analysed as an LTI process [3, 11, 12, 26, 35–37].
This corresponds to modelling the parameters, {bq(n)}, as a linear combination of
basis functions, and this is the same approach as used for modelling the channel
in Sect. 8.4.6. To ensure that the correct number of basis functions and AR model
orders are chosen, model order selection procedures should be implemented; [36]
proposes such an algorithm based on the discrete Karhunen–Loève transform.

Ideally, the pole locations rather than the parameter variation are represented as a
function of time by a parametric model. However, this is difficult as the relationship
between poles and parameters is non-linear and a closed-form expression for the
pole positions for high order models cannot be derived. If the TVAR coefficients can
be represented by a linear combination of basis functions, (8.29) can be formulated
as [11, 37]:

s(n) = −
Q

∑
q=1

{
F

∑
m=1

bq,m fm(n−q)

}

︸ ︷︷ ︸
bq(n)

s(n−q)+σe e(n), (8.31)

where F is the number of basis functions, b = {bq,m}Q M
q=1,m=1 are the unknown time-

invariant basis coefficients, and { fm(n)}F
m=1 are the known time-varying basis func-

tions. To demonstrate that the speech pole movements can be approximated by the
model in (8.31), a Least Squares Estimate (LSE) fit to the AR parameters corre-
sponding to the speech pole movements in Fig. 8.14(a) and Fig. 8.14(b) is performed
using the trigonometric Fourier basis set
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fm(n) =
{

sin
(

mω0
n
N

)
, cos

(
mω0

n
N

)}
for m ∈ {0,1,2}, (8.32)

with fundamental frequency ω0 = 2π 5
9 rad/s. Due to the linearity of the source

model in (8.31), the basis coefficients, b, are obtained as the linear least squares
estimate [23]. The full TVAR coefficients, {bq(n)}, are then estimated by multipli-
cation of the basis functions with the linear LSE estimate of the basis coefficients
using the decomposition in (8.31). The estimates of the TVAR parameters are de-
picted in Fig. 8.14(a) and Fig. 8.14(b) in black dots, and show a good match to the
actual poles (Fig. 8.14(d)). This and the results in [3, 11, 12, 26, 37] lead to the
conclusion that a model based on the transformation from an LTV process to an LTI
one through a set of basis functions can capture appropriately the time-variation of
short segments of speech.

8.6.3.2 Choice of Basis Functions

The difficulties of choosing the basis functions are the same as those discussed in
Sect. 8.4.6. A comparison of modelling speech signals using Fourier, Legendre and
other basis sets is detailed in Charbonnier et al. [3]. It is often assumed for sim-
plicity that the true speech parameters can be approximated by sinusoidal functions
(Fourier basis), since these are seen to be a good model of the source parameter
variations as depicted in Fig. 8.14(c).

The difficulty of abrupt parameter variations is seen in Fig. 8.14(a), where some
of the speech poles evolve towards the origin and then abruptly jump away from
it. Since the frequency response of poles approaching the origin becomes increas-
ingly flat, this pole behaviour corresponds to a birth–death process. This effect does
not occur for the same experiment using a lower order due to a more parsimonious
representation. In other words, the death and birth of poles is an artefact introduced
through the over-parameterisation of the model. Ideally, the system should have a
time-varying model order so as to capture poles that contribute to the frequency
response of the speech signal, and adjust the model order when poles become re-
dundant. Thus, the model order, Q, and the block-length, N (see (8.33) in the next
section) are in principle also random variables and could be allowed to vary with the
block index. While this would capture any births or deaths of poles, the estimation
techniques required, such as reversible-jump MCMC methods, greatly increase the
computational burden and implementation complexity.

8.6.3.3 Block-based Time-varying Approach

An alternative approach to address the issue of abrupt parameter variations while
using a limited set of basis functions is proposed, which relies on a block-based
time-varying model. Here, the signal is segmented into shorter blocks that are mod-
elled as locally time-varying, as well as globally time-varying. Instead of utilising
one set of parameters coping with rapid global variation, several sets of param-
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Fig. 8.15 Block-based time-varying AR speech production model

eters are introduced that capture the local variation within each block. For suffi-
ciently short blocks, the time variation of the signal will be smooth and parame-
ters can be estimated accurately using a standard choice of basis functions. This
model thus attempts to incorporate the time-varying nature of the signal both lo-
cally as well as globally. In the block-based TVAR model, the source signal is ex-
pressed for a block of data, indexed by k and of length Nk = nk+1 −nk, for samples
n ∈ Nk = {nk, . . . ,nn+1 −1} as:

s(n) = −
Q

∑
q=1

{
F

∑
m=1

bkqm fm(n−nk + Q−q)

}

︸ ︷︷ ︸
bq(n),n∈Nk

s(n−q)+σe,ke(n), (8.33)

where e(n) ∼ N (0, 1) and the block boundaries are specified by nk and nk+1 in
block k ∈ K. This model is illustrated in Fig. 8.15 and reduces to the TVAR model
(8.31) in the case of a single block. Note that this model implicitly assumes unvoiced
speech segments because it uses a white excitation. An issue for further research is
whether the model also works effectively for voiced speech.

8.6.4 Stochastic Modelling of TVAR Parameters

The parameter models of Sect. 8.6.3 are static in that once the parameters of the
model are known, the speech production process is determined. Furthermore, the
TVAR processes of (8.30) and (8.31) are singly stochastic, inasmuch as there is a
single stochastic excitation to the system. If the parameters {bq(n)} of the general
TVAR model of (8.29) are themselves allowed to evolve stochastically, then the
process becomes doubly stochastic. Such a speech production model is used by
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Vermaak et al. [44] who varied the parameters in (8.29) as a simple random walk
given by:

bq(n) = bq(n−1)+σbqwb(n)

φe(n) = φe(n−1)+σφewφe(n)

}
{wb(n), wφe(n)} ∼ N (0, 1) , (8.34)

where φe(n)= logσ2
e (n) and q∈Q.11 A fixed model order is assumed for simplicity.

Stability constraints can be enforced by only allowing the parameter set {bq(n)} to
take on values in the admissible region, BQ, which corresponds to the instantaneous
poles being inside the unit circle. Hence, defining the vector of TVAR coefficients
at time n as b(n) = [b1(n), . . . ,bQ(n)]T , the source parameter variation in (8.34) can
be written as the conditional PDFs 12

p(b(n) | b(n−1))∝N
(
b(n)

∣∣b(t −1), Δb
)
IBQ (b(n)) , (8.35a)

p(φe(n) | φe(n−1)) = N
(
φe(n)

∣∣φe(n−1), δ 2
e
)
, (8.35b)

where φe(n) = lnσ2
e (n) and IBQ (b(n)) is the indicator function defining the re-

gion of support, BQ, of b(n). The initial states are given defined by p(b(0)) ∝
N
(
b(0)

∣∣0Q×1, Δb,0
)
IBQ (b(0)) and p(φe(0)) � N

(
φe(0)

∣∣0, δ 2
e,0

)
.

Alternatively, the model can be reparameterised in terms of time-varying reflec-
tion coefficients or partial correlation coefficients [8]. If the reflection coefficients
all have a magnitude of less than 1, the system is guaranteed to be stable. The key to
utilising models in which the parameters {bq(n)} vary in a stochastic nature is to use
a numerical Bayesian methodology that provides a natural environment for dealing
with evolutionary or sequential problems. SMC (see Sect. 8.2.3) is particularly apt
at tracking the unknown signal, s(n), from the observations, x(n), given in (8.1).

Nevertheless, it is still important to ensure that the motivation for a particular
speech model does not become skewed by the desire to use a particular methodol-
ogy. What motivates the model of (8.34): the sequential online numerical Bayesian
methodology, or the “goodness” of the speech model? As discussed in Sect. 8.6.2,
if it is assumed that the parameters vary slowly, a BSAR process might be more
appropriate than the doubly stochastic model formed from (8.29) and (8.34). The
parameters of a BSAR process, since they are time-invariant, can be estimated us-
ing a batch method such as MCMC. Thus, what really motivates the use of a BSAR
model? It is apparent that the particular methodology utilised influences the choice
of model.

Using the channel models in Sect. 8.4, the noise model in Sect. 8.5 and the speech
models in this section, the Bayesian framework of Sect. 8.2.1 leads to Bayesian blind
dereverberation algorithms as discussed in the next section.

11 Variance terms are, by definition, positive, such that σ 2
e (n) ∈ R

+; allowing the log-variance to
vary as a random walk ensures this constraint is met.
12 The set of Markov parameters

{
Δb,Δb,0,δ 2

e ,δ 2
e,0

}
are usually assumed known.
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8.7 Bayesian Blind Dereverberation Algorithms

8.7.1 Offline Processing Using MCMC

In the offline approach to blind dereverberation, it is sought to find an analytical
expression for the marginal PDF in (8.8b):

p(H | x) =
∫∫

p( s, H, θ | x) dsdθ .

An MMAP estimate can be found either through deterministic or stochastic optimi-
sation methods. The most straightforward situation in which an analytic solution to
(8.8b) is possible is when appropriate static parametric models for the source signal
and channel are used, and when it is assumed there is no observation noise. Thus,
the Bayesian formulation reduces to (8.12) and the channel can be estimated using
(8.13).

The static block-based TVAR model discussed in Sect. 8.6.3 is utilised for the
speech signal, and an LTI all-pole filter for the channel model, such that the ob-
served reverberant signal, x(n), is given by (8.22). Given an estimate of the channel
parameters, θ h, the source, s(n), can easily be recovered through a rearrangement
of (8.22), in what is essentially an inverse filtering operation. Although it is possible
to perform the marginalisation in (8.13) analytically, the resulting posterior PDF is
complicated to optimise, and in practice the Gibbs sampler described in Sect. 8.2.3
is utilised. The Gibbs sampler implementation requires conditional densities. As in-
dicated in (8.16) of Algorithm 8.1, these rely on the complete likelihood and the
priors. Thus, the likelihood term and the choice of priors are described below.

8.7.1.1 Likelihood for Source Signal

It can be shown that the likelihood for all the source data across K blocks, each of
size Nk = nk+1 −nk, is given by

pS ( s | θ s) = pS0 ( s0 | Ms)∏
k∈K

1(
2πσ2

e,k

)Nk/2 exp

{
−‖sk + Ukbk‖2

2

2σ2
e,k

}
, (8.36)

where the source parameter vector is defined by θ s = {b, σ e}, with σ e containing
the excitation variances and b = {bk, k ∈ K} containing the basis parameter coeffi-
cients. Thus, in block k:

• [σ e]k = σ2
e,k ∈ R

+ is the excitation variance, and bk � [bT
k,1 . . . bT

k,Q]T ∈ R
FQ×1,

with
[
bk,q

]
i = bkqi the basis function coefficients.

• The vector of source samples is sk = [s(nk) . . . s(nk+1 − 1)]T ∈ R
Nk×1, and

Sk,q = diag{s(nk −q) . . . s(nk+1 −1−q)} ∈ R
Nk×Nk is a diagonal matrix of

shifted source signal samples.
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• Fk,q ∈ R
Nk×F is a matrix whose columns contains the basis functions such that

the (i, j)th element of Fk,q is [Fk,q]i j = fi( j + Q−q).
• Uk � [Uk,1 . . . Uk,Q] ∈ R

Nk×FQ, where Uk,q = Sk,qFk,q.

The vector containing all the source data is denoted s = [sT
0 . . . sT

K ]T , s0 is the initial
data for the first block and Ms is the data model.

8.7.1.2 Complete Likelihood for Observations

The complete likelihood can be expressed by writing (8.22) as s = Ax, where the
vector of observation samples x = [x(0) . . . x(N − 1)]T ∈ R

N×1, the vector of the
source samples is s ∈ R

N−P×1 is as in (8.36) and A ∈R
N−P×N is the matrix contain-

ing the TVAP channel coefficients:

A =

⎡
⎢⎢⎢⎣

aP(P) · · · a1(P) 1 0 . . . 0
0 aP(P + 1) · · · a1(P+ 1) 1 . . . 0
...

. . .
. . .

. . .
0 · · · 0 aP(N −1) · · · a1(N −1) 1

⎤
⎥⎥⎥⎦ .

From (8.36), the likelihood of the observations given the source parameters, θ s, and
the channel coefficients, θ h = a, is given by (see (8.12)):

pX (x | θ) = pS ( s | θ s)|s=Ax

≈ ∏
k∈K

1
(

2πσ2
e,k

)Nk
2

exp

{
−‖sk + Ukbk‖2

2

2σ2
e,k

}∣∣∣∣∣∣∣∣
s=Ax

, (8.37)

where the vectors {sk} and matrices {Uk} are functions of the channel parame-
ters and observations via the relationship s = Ax, and it has been assumed that
pS0 ( s0 |Ms) � const. The TVAP parameters in A are evaluated from the channel
basis weighting coefficients, a, through (8.25).

8.7.1.3 Prior Distributions of Source, Channel and Error Residual

The prior in (8.12) can be factorised assuming that the source parameters are inde-
pendent between blocks and also independent of the channel parameters:

pΘ (θ | ψ) = pΘh (θh | ψh) pΘs (θ s | ψs)

= p
(

a | σ2
a
)

p
(
σ2

a
∣∣ αa,βa

)
∏
k∈K

p
(

bk | σ2
bk

)
p
(
σ2

bk

)
p
(
σ2

e,k
), (8.38)

where ψ = {ψs, ψh} are the hyper-parameters and hyper-hyperparameters. Note
that σ2

a and σ2
bk

are the channel and source hyperparameters and that all the hyper-
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Fig. 8.16 Equivalent frequency response variation of the LTV all-pole channel
.

hyperparameters are assumed known (and therefore not shown in (8.38)). The
terms in the likelihood for AR parameters usually take the form of a Gaussian [2].
Thus, to maintain analytical tractability, Gaussian priors are imposed on the chan-
nel and source parameters, i.e., p

(
a | σ2

a
)

= N
(
a
∣∣0, σ2

a IP
)

and p
(

bk | σ2
bk

)
=

N
(

bk
∣∣0, σ2

bk
IQ

)
.13 A standard prior for scale parameters, such as variances,

is the inverse-Gamma density.14 The prior distribution on the excitation vari-
ance, and the hyperparameters on the source and channel are therefore assigned
as: p

(
σ2

e,k

)
= IG

(
σ2

e,k

∣∣αe,k, βe,k

)
, p
(
σ2

bk

)
= IG

(
σ2

bk

∣∣αbk , βbk

)
and p

(
σ2

a
)

=

IG
(
σ2

a
∣∣αa, βa

)
; {α{a,bk,ek}, β{a,bk,ek}} are the known hyper-hyperparameters.

Thus, ψ � {σ2
{a,bk},α{a,bk,ek}, β{a,bk,ek}}.

8.7.1.4 Posterior Distribution of the Channel Parameters

The joint-posterior PDF is found using Bayes’s theorem in (8.13):

p(a,b,σ e | x,ψ)∝ p(x | a,b,σ e) p(a,b,σ e | ψ) . (8.39)

Using the relationships in (8.37) and (8.38), and the marginalisation of (8.13), the
nuisance parameters b and σ e can be marginalised out to form the marginal a pos-
teriori PDF. As shown in [7], this evaluates to:

p(a | x, ψ) ∝ exp
{
− aT a

2σ2
a

}
∏
k∈K

|Σk|−
1
2 E

−
(

Nk
2 +αe,k

)
k , (8.40a)

with E j = 2βe, j + sT
j s j − sT

j U j Σ−1
j UT

j s j (8.40b)

and Σ j = UT
j U j + δ−2

b j
IFQ, (8.40c)

13 p
(

x | μ ,σ 2
)

= N
(
x
∣∣μ , σ

)
denotes a Gaussian PDF whereas x ∼N (μ , σ ) denotes that x is a

Gaussian sample; IK is the identity matrix of size K ×K.
14 The inverse-Gamma PDF is IG

(
x
∣∣α , β

)
= βα

Γ (α) x−(α+1) exp
{
− β

x

}
.
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where j ∈ K, δb j is a hyperparameter defined for analytical tractability as σ2
b j

�
δ 2

b j
σ2

e, j . Similarly to (8.37), it is understood in (8.40) that s j and U j are functions of
the parameters a and the observed data x. The MMAP estimate is found by solving
âMMAP = argmaxa p(a | x, ψ). This MMAP estimate is most easily found using
Gibbs sampling (see Algorithm 8.1):

a(i+1) ∼ p
(

a | b(i),σ (i)
e ,σ2(i)

a ,σ (i)
b

)
,

b(i+1)
� ∼ p

(
b | a(i+1),{bk}(i+1)

k=1:�−1 ,{bk}(i)
k=�+1:L ,σ (i)

e ,σ2(i)
a ,σ (i)

b

)
,

σ2(i+1)
e,� ∼ p

(
σ2

e,�

∣∣ a(i+1),b(i+1),
{
σ2

e,k
}(i+1)

k=1:�−1 ,
{
σ2

e,k
}(i)

k=�+1:L ,σ2(i)
a ,σ (i)

b

)
,

σ2(i+1)
a ∼ p

(
σ2

a
∣∣ a(i+1),b(i+1),σ (i+1)

e ,σ (i)
b

)
,

σ2(i+1)
b�

∼ p
(
σ2

b�

∣∣ a(i+1),b(i+1),σ (i+1)
e ,σ2(i+1)

a ,
{
σ2

bk

}(i+1)
k=1:�−1 ,

{
σ2

bk

}(i)
k=�+1:L

)
,

where each of the conditional PDFs are also dependent on the observations, x, and
known hyper-hyperparameters. These conditionals take the form:

p(a | θ−a) ∝ p(x | θh,θ s) p
(

a | σ2
a
)
,

p
(

b� | θ−b�

)
∝ p(x | θh,θ s) p

(
b� | σ2

b�

)
,

p
(
σ2

e,�

∣∣ θ−σ2
e,�

)
∝ p(x | θh,θ s) p

(
σ2

e,�

∣∣ αe,�, βe,�
)
,

p
(
σ2

a
∣∣ θ−σ2

a

)
∝ p

(
a | σ2

a
)

p
(
σ2

a
∣∣ αa,βa

)
,

p
(
σ2

b�

∣∣ θ−σ2
b�

)
∝ p

(
b� | σ2

b�

)
p
(
σ2

b�

∣∣ αb�
,βb�

)
,

where θ = {θ s,θ h} = {a,b,σe,σ2
a ,σb} and θ−α denotes θ with element α re-

moved. Full details of the form of these conditions can be found in [7].

8.7.1.5 Experimental Results

Results demonstrating the performance of this offline Bayesian inference problem
are shown in Evers and Hopgood [7]. A single experimental result is presented
in this section to summarise the performance of the algorithm. An acoustic chan-
nel is based on perturbations of an actual acoustic gramophone horn response up
to a frequency of 1225 Hz [21]. This range matches that of the investigations in
Sect. 8.4.5. Full-band signal enhancement could be achieved using subband meth-
ods as discussed in Sect. 8.4.4. The magnitude frequency response of the original
time-invariant channel has four resonant modes which introduces a reasonable and
noticeable amount of acoustic distortion into a signal passed through the filter. A
time-varying response is obtained by perturbing each of the original channel poles
in a circle of small radius. Despite there being a highly non-linear relationship be-
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(a) (b)

Fig. 8.17 Actual poles ( ) vs. Gibbs estimates ( ) for (a) the source and (b) the channel

tween the poles and filter parameters, it is possible to model the parameter variation
accurately using the sinusoidal basis set:

{g�(n)} = {1, sin(2πn/N), cos(2πn/N), sin(2.5πn/N), cos(2.5πn/N)},

where N is the total number of samples. The variability of the channel is shown as
grey lines in Fig. 8.16. Here, the magnitude frequency response of the acoustic im-
pulse response is plotted at each time instance, assuming the parameters represent an
equivalent LTI system. The frequency response of the original unperturbed channel
corresponds to the black line; the actual pole variations are shown in Fig. 8.17(b).

The experiment presented considers globally modelling the source using a single-
block TVAR. A synthetic fourth-order TVAR process is presented to the input
of the eighth-order channel. The source is generated with time-varying parame-
ters that reflect the statistical nature and pole variations of real speech. The pa-
rameter variations are chosen to give the LSE approximations of the two left-
most pole trajectories shown in Fig. 8.14(b); these trajectories are reproduced in
Fig. 8.17(a). The basis set used for the source corresponds to the Fourier set
{ fm(n)} = {sin(mω0n/N), cos(mω0n/N)}2

m=0 with fundamental frequency ω0 =
2π 5

9 rad/s. The total number of source samples used is N = 2000, and is chosen to
give sufficient data that the channel estimates have low variance. With regards to
(8.33), K = 1, n1 = 4 and n2 = N, where nk are the change-points, i.e., n1 is the
index of the first sample in the block and n2 is the index of the last sample in the
block. The Gibbs sampler is executed for 5000 iterations with a burn-in period of
500 (10%) samples, although the estimates tend to converge within a few hundred
samples. A Monte Carlo experiment with 100 runs is executed to ensure that the
performance is consistent. The averaged estimated pole trajectories are shown in
Fig. 8.17(a) and Fig. 8.17(b); any individual run gives very similar results to the
averaged performance.

The single-block TVAR model will not adequately capture the full time-varying
nature of a real speech signal and therefore, as discussed in Sect. 8.6.3.3, a multi-
block-based model is more robust and flexible. Results demonstrating the perfor-
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Fig. 8.18 Simplified system model for online dereverberation algorithm

mance of the MCMC algorithm for the block-based TVAR for both synthetic and
real speech signals are presented in [7].

8.7.2 Online Processing Using Sequential Monte Carlo

Online or sequential estimation facilitates online processing of the signal, which is
of particular interest for applications such as security surveillance systems where
results should become available as soon as a signal sample is measured, i.e., where
offline batch methods are impractical. Particle filters (or SMC methods) represent a
target distribution by a large number of random variates from a hypothesis distribu-
tion. Incorporation of knowledge about the current and past measured samples al-
lows for correction and evolution of the particles in time. Particle filters were shown
to effectively enhance systems distorted by WGN [44] and for reverberant all-zero
channels [4]. This section describes an extension of this work to reverberant all-pole
channels (see Sect. 8.4.3) and spatially distinct noise sources (see Sect. 8.5).

8.7.2.1 Source and Channel Model

Various system and noise models were discussed in Sect. 8.5. The CAPZ channel
model simplified the full system model in Fig. 8.9 to that shown in Fig. 8.11. Al-
though the model in Fig. 8.11 is of great interest, the presence of the general RTFs
dependent on source-sensor geometries leads to difficulties in uniquely modelling
and blindly identifying the source signal. Additional identifiability results are re-
quired before it can be determined whether this model leads to unique solutions.
As a compromise, a more simple model is used to facilitate online estimation; this
model is shown in Fig. 8.18.15 In this model, the source signal, s(n), is distorted by
WGN, ν(n), with variance σ2

ν (n). This noisy speech signal is then filtered through
the channel, which is modelled as a Pth order time-varying all-pole filter. The obser-
vations are thus given by:

15 Although the noise and signal are assumed independent, a channel gain in Fig. 8.18 is unneces-
sary since there is an inherent scaling ambiguity.
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x(n) = −
P

∑
p=1

ap(n)x(n− p)+ s(n)+σν(n)ν(n), ν(n) ∼N (0, 1) . (8.41)

It is important to note that this model differs from simply adding noise to (8.22); in
other words, it differs from the model x̂(n) = x(n)+ s(n) with x(n) given by (8.22).
The source signal, s(n), results from (8.29), where the parameters vary stochasti-
cally as described in Sect. 8.6.4. In particular, the conditional PDFs for the param-
eter variation are given by (8.35). The measurement noise is assumed to have a
similar variation as the excitation noise in (8.35b). Thus, ν(n) has a log-variance
that follows a random walk:

p(φν (n) | φν(n−1)) � N
(
φν(n)

∣∣φν (n−1), δ 2
ν
)
, (8.42)

where φν (n) = lnσ2
ν (n). The initial state is p(φν(0)) � N

(
φν (0)

∣∣0, δ 2
ν0
)
. The hy-

perparameters {δ 2
ν , δ 2

ν0} are assumed known.

8.7.2.2 Conditionally Gaussian State Space

Assuming known source and channel parameters, θ s and θ h respectively, the source
model, (8.29) and measurement equation in (8.41) can be written in the linear state-
space form:

s(n) = B(n)s(n−1)+σe(n)ce(n), (8.43a)

x(n) = −aT (n)xn−1:n−P + cT s(n)+σν(n)ν(n), (8.43b)

for n > 0. The state vector, s(n), and state transition matrix, B(n), are:

s(n) = [s(n) . . . s(n−P+ 1)]T , B(n) �
[

b(n)T

IQ−1 0Q−1×1

]
.

Moreover, cT � [1 0 ×1Q−1], the TVAP channel parameters are contained in a(n)=
[a1(n) . . . aP(n)]T , while xn−1:n−P = [x(n−1) · · · x(t−P)]T contains the P previous
observations. The set of model parameters, θ0:n, defines the system parameters θn =
{b(n), a(n), σ2

e (n), σ2
ν (n)}. Assuming θ 0:n are known, since the source excitation,

e(n), and the measurement noise, ν(n), are both WGN, (8.43) is a Conditionally
Gaussian State Space (CGSS) system, and the optimal estimate of the state-vector,
s(n), can be found using the Kalman Filter (KF). The KF recursion relationships
[40] at time step n are shown in Algorithm 8.3.16 However, by the very nature of
blind deconvolution, the set of parameters, θ0:n, is unknown and therefore a direct
application of the KF is not possible. Instead, the KF can be incorporated within

16 Due to the presence of the linear combination of past observations, −aT (n)xn−1:n−P, in the ob-
servation equation, (8.43b), the standard KF equations are modified slightly; namely the predicted
observation, (8.44c), and as a result the corrected state estimate, (8.44d).
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Algorithm 8.3 Kalman filter recursion relationships

μ(n|n−1) = B(n)μ(n−1|n−1) (prediction) , (8.44a)

P(n|n−1) = σ 2
e (n)ccT +B(n)P(n−1|n−1)BT (n), (8.44b)

x(n|n−1) = −aT (n)xn−1:n−P + cTμ(n|n−1), (8.44c)

μ(n|n) = μ(n|n−1)+k(n)(x(n)− x(n|n−1)) (correction) , (8.44d)

P(n|n) =
(
Iq −k(n)cT )P(n|n−1). (8.44e)

The optimal Kalman gain, k(n), and measurement residual variance, σ 2
z (n), are:

k(n) =
1

σ 2
z (n)

P(n|n−1)c, with σ 2
z (n) = cT P(n|n−1)c+σ 2

ν (n). (8.45)

Two important distributions are the conditional likelihood of the current observation given past
observations, and the PDF of the state estimate:

p( x(n) | x1:n−1, θ 0:n) = N
(
x(n)

∣∣ x(n|n−1), σ 2
z (n)

)
, (8.46)

p( s(n) | θ(n), x1:n) = N
(
s0:n

∣∣μ(n|n), P(n|n)
)
. (8.47)

a sequential Monte Carlo framework where at each time step, (8.44) is evaluated
using an estimate of the parameters, θ 0:n.

8.7.2.3 Methodology

The aim is to directly reconstruct the source signal, s0:n = [s(0) . . . s(n)], and the
set of parameters, θ 0:n, given only the distorted signal, x1:n. This can be achieved by
sampling from the posterior distribution of the source signal and unknown parame-
ters. Since the source signal is dependent on the model parameters and observations,
the joint posterior can be written as

p( s0:n, θ 0:n | x1:n) = p( s0:n | θ 0:n, x1:n) p(θ0:n | x1:n) . (8.48)

The joint posterior often has a complicated functional form that cannot be sam-
pled from directly. Instead, estimates of the source signal and model parameters
can be obtained by drawing samples from the conditional densities in (8.48) sepa-
rately. Given θ 0:n, since the system in (8.43) is CGSS, the likelihood of the clean
signal, p( s0:n | θ0:n, x1:n), can be estimated using the KF equations (8.47) in Algo-
rithm 8.3 [4, 44]. Hence, estimation of the joint posterior in (8.48) reduces to the
estimation of p(θ 0:n | x1:n). In the simplest of particle filters, namely the Sequential
Importance Resampling (SIR) PF, the hypothesis (or proposal) distribution is the
prior density; thus, π (θ n | x1:n, θ 0:n−1) = p(θ n | θ0:n−1), and the weights are there-
fore given by wn ∝ p(x(n) | x1:n−1, θ n) (see Algorithm 8.2). The Kalman filter is
then bombarded with these particles and particle resampling is performed to ensure
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that only statistically significant particles are retained. The resampling method aims
to keep particles corresponding to regions of high likelihood, as given by (8.46). The
estimate of the source signal corresponds to the mean of the state estimates, μ(n|n),
over all particles. In the SIR PF in Algorithm 8.4, particles are drawn from the priors
in (8.35a), (8.35b) and (8.42), and the importance weights reduce to (8.46) [44]. The
sampling of the channel parameters, however, requires special attention.

8.7.2.4 Channel Estimation Using Bayesian Channel Updates

Various approaches for modelling the TVAP parameter variations are given in
Sects. 8.4.6 and 8.4.7. The static model describing {ap(n)} as a linear combination
of basis functions, as given by (8.25), allows for smooth parameter variation. The
model is also linear-in-the-parameters, so that (8.43b) can be written in the form:

x(n) = −aT x̃n−1:n−P + cT s(n)+σν(n)w(n), (8.49)

where x̃n−1:n−P is a function of past samples of the observations and the channel
basis functions, g�(n). The channel coefficients a are static parameters.

Particle filters implicitly assume that all unknown parameters are dynamic and,
therefore, work well with time-varying parameters. Thus, the models in Sect. 8.4.7
are particularly suited for the PF framework. However, these models perhaps need
more justification, and the static models are preferred. The static models also have
the advantage of being able to model linear time-invariant channels. However, with
static parameters, such as the channels in (8.25) and (8.49), the non-dynamics in the
particles makes them degenerate into a few different values [42]. Various approaches
for circumventing this problem exist, but a simple approach for linear Gaussian
systems is a straightforward Bayesian update. Using Bayes’s theorem, the channel
posterior is,17

p
(

a | x1:n,θ
(−a)
0:n

)
=

p
(

x(n),θ (−a)
n

∣∣∣ x1:n−1,θ
(−a)
0:n−1, a

)
p
(

a | x1:n−1,θ
(−a)
0:n−1

)

p
(

x(n), θ (−a)
n

∣∣∣ x1:n−1, θ
(−a)
0:n−1

) .

Using the basic probability factorisation

p
(

x(n),θ (−a)
n

∣∣∣ x1:n−1,θ
(−a)
0:n−1, a

)
= p(x(n) | x1:n−1,θ 0:n) p

(
θ (−a)

n

∣∣∣ θ (−a)
0:n−1

)
,

and ignoring any terms that are not functions of the unknown channel parameters,
a, a recursive update follows:

p
(

a | x1:n,θ
(−a)
0:n

)
∝ p(x(n) | x1:n−1,θ 0:n) p

(
a | x1:n−1,θ

(−a)
0:n−1

)
. (8.50)

17 θ (−a) denotes the parameter set θ with the channel parameters, a, removed.



8 Blind Dereverberation from a Moving Talker 265

Algorithm 8.4 SIR particle filter for reverberant systems
1: for n = 1, . . . , number of samples do
2: for i = 1, . . . , number of particles do
3: Sample a proposal of θ (−a)

n from (8.35a), (8.35b), (8.42).
4: Prediction step of KF: (8.44a), (8.44b), from Algorithm 8.3.
5: Evaluation of k(n), σ 2

z (n): (8.45), from Algorithm 8.3.
6: Bayesian update of channel parameters: (8.51b).
7: MMAP estimation of channel: aMMAP = μa,n
8: Evaluation of importance weights with aMMAP: (8.46).
9: Correction step of KF: (8.44d), (8.44e), from Algorithm 8.3.

10: end for
11: Normalisation of importance weights.
12: Resampling step (see, e.g., [5]).
13: end for

Table 8.3 Markov parameters for synthesis and estimation

δ 2
e0

δ 2
n0

δ 2
e δ 2

n Δa0 Δa

0.5 0.5 5 ·10−4 5 ·10−4 0.5IQ 5 ·10−4IQ

Assuming a Gaussian distribution on a at time n−1 with mean, μa,n−1, and covari-

ance, Pa,n−1, such that p
(

a | x1:n−1, θ
(−a)
0:n−1

)
� N

(
a
∣∣μa,n−1, Pa,n−1

)
, since (8.46)

is also Gaussian, from (8.50), so is:

p
(

a | x1:n,θ
(−a)
0:n

)
∝N

(
a
∣∣μa,n, Pa,n

)
, (8.51a)

with covariance and mean

Pa,n =
(

P−1
a,n−1 +

1
σ2

z (n)
xn−1:n−PxT

n−1:n−P

)−1

,

μa,n = Pa,n

(
xn−1:n−P

σ2
z (n)

[
x(n)− cTμ(n|n−1)

]
+ P−1

a,n−1μa,n−1

)
.

(8.51b)

The initial mean, μa,0, and variance, Pa,0 are assumed known. At time n, the MMAP
estimate of the channel is aMMAP = μa,n. This channel estimate is then used for the
Kalman filter correction step, (8.44d), and evaluation of the weights, (8.46). The
complete SIR PF is summarized in Algorithm 8.4.

8.7.2.5 Experimental Results

To demonstrate the performance of the online method, both synthetic sources and
real speech signals are estimated from a reverberant noisy signal. The synthetic
signal is used as a benchmark for the ground truth, since for real speech, the true
parameter variations in the source model, (8.29), are hidden.
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Fig. 8.19 (a) Synthetic data: estimate ( ), original ( ), observations ( ). (b) Estimated ( ) and
actual source parameter ( ), b2,n. (c) Convergence of estimated ( ) to actual channel poles ( ).
(d) Estimated ( ) and true ( ) channel parameters, a{1,6}

A fourth-order synthetic source signal is filtered through an eighth-order all-
pole channel according to Fig. 8.18. The channel is, for simplicity, assumed to
be stationary, and is identical to the initial channel parameter values used in
Sect. 8.7.1. The noise level is such that the Signal Based Measure (SBM)18 of
the distorted signal is −6.15 dB. The Markov parameters are set to the values in
Table 8.3 [44]. The particle filter is executed for 1000 samples and 800 particles,
and μa,0 = 0.5× 1P×1, Pa,0 = 0Q×1. Even though the source parameter estimates
appear inaccurate (Fig. 8.19(b)), the SBM of the enhanced signal is 4.42 dB, an im-
provement of 10.57 dB. The accuracy of the estimated signal compared to the clean
signal and the observed signal is shown in Fig. 8.19(a). The evolution of the poles
with time of the MMAP estimates of the stationary channel parameters are shown in
Fig. 8.19(c). After few iterations, the estimates converge towards the actual channel
poles. Likewise, the channel parameters converge after around 200 samples to the
actual coefficients (Fig. 8.19(d)).

The words “The farmer’s life must be arranged” uttered by a female talker sam-
pled at 8 kHz are distorted by an eighth order acoustic horn channel [41] and
noise with σφw0

= 0.5 and constant σφw = 0.05. The SBM of the observed signal
is −5.73 dB. The SIR particle filter is run for 15,000 samples and 750 particles,
estimating six source parameters, where σφ{w,v}0

= 0.5, σφ{w,v} = 0.05, Σ{a0,a} =
σ{φv0 ,φv}IQ. The results are shown in Fig. 8.20. The particle filter removes low-

18 SBMdB = 10log10

(
‖s0:n−1‖2

2
‖ū0:n−1−s0:n−1‖2

2

)
, where ū is either the estimated, s̄, or the distorted, x̄, signal

sequence.
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Fig. 8.20 Source signal ( ), its SIR estimate ( ) vs. observations ( )

amplitude noise and the “metallic” sound effects generated by the channel. Between
0.8–0.97 s and 1.33–1.82 s, noise is dominant and the signal is not recovered. The
SBM of the estimated signal is 1.950 dB, an improvement of 7.68 dB.

8.7.3 Comparison of Offline and Online Approaches

One particular difference involves the inverse channel filtering implicitly used in the
MCMC method [7] but avoided in the SMC approach since the latter estimates the
source signal directly. Channel inversion introduces several difficulties: (i) practical
RIRs are non-minimum phase and thus difficult to invert, despite the phase being a
major contributor to the perception of reverberation; (ii) any small error in the RIR
estimate can lead to a significant error in its inversion since attempts to equalize
high-Q resonances can still leave high-Q resonances in the equalized response. Both
of these issues can potentially increase the distortion in the enhanced signal.

As a comparison with the real results presented in Sect. 8.7.2, a batch MCMC
method is used for channel estimation. Although observation noise is not explicitly
modelled by the approach in Sect. 8.7.1, the same observed data is used. The source
model of (8.33) in Sect. 8.6.3 is again used, with K = 30 blocks of Nk = 500 samples
length to match the number of samples used in Fig. 8.20. The source model order
is Q = 8, and the basis functions are assumed to be piece-wise constant such that
the model reduces to the BSAR process in (8.30). Hence, the model is equivalent
to that used in [21]. The Gibbs sampler is run for 2000 iterations with a 10% burn-
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Fig. 8.21 (a) Actual channel poles ( ) vs. Gibbs estimates ( ) and (b) source signal ( ) vs. Gibbs
estimate ( )

in period. The channel estimate is shown in Fig. 8.21(a), and a comparison of the
actual source and its estimate is shown in Fig. 8.21(b).

The SBM of the estimated source signal is 0.262 dB, an improvement of 6.02 dB.
Notice that there is significant noise gain towards the end of the signal. The results
can be improved by using a richer set of basis functions in the source model. Nev-
ertheless, the results are comparable with the SMC method. Currently, the compu-
tational expense of the online SMC framework is greater, but in principle facilitates
sequential estimation leading to real-time implementations.

8.8 Conclusions

This chapter has given an introduction to model-based Bayesian blind dereverber-
ation. It has outlined the variety of source and channel models that can be used.
Two key numerical methodologies have been discussed: offline batch methods and
online sequential methods. There is a clear symbiosis between the methodologies
available and the models that suit that methodological framework. The challenge
that still remains for Bayesian blind dereverberation is to tackle the full acoustic
spectrum simultaneously, as opposed to current implementations that deal with se-
lected frequency bands independently.
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