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Abstract In speech communication systems, such as voice-controlled systems,
hands-free mobile telephones and hearing aids, the received microphone signals are
degraded by room reverberation, ambient noise and other interferences. This sig-
nal degradation can decrease the fidelity and intelligibility of speech and the word
recognition rate of automatic speech recognition systems.

The reverberation process is often described using deterministic models that de-
pend on a large number of unknown parameters. These parameters are often difficult
to estimate blindly and are dependent on the exact spatial position of the source and
receiver. In recently emerged speech dereverberation methods, which are feasible in
practice, the reverberation process is described using a statistical model. This model
depends on smaller number of parameters such as the reverberation time of the en-
closure, which can be assumed to be independent of the spatial location of the source
and receiver. This model can be utilized to estimate the spectral variance of part of
the reverberant signal component. Together with an estimate of the spectral variance
of the ambient noise, this estimate can then be used to enhance the observed noisy
and reverberant speech.

In this chapter we provide a brief overview of dereverberation methods. We then
describe single and multiple microphone algorithms that are able to jointly suppress
reverberation and ambient noise. Finally, experimental results demonstrate the ben-
eficial use of the algorithms developed.
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3.1 Introduction

Speech signals that are received by a microphone at a distance from the speech
source usually contain reverberation, ambient noise and other interferences. Re-
verberation is the process of multi-path propagation of an acoustic sound from its
source to a microphone. The received microphone signal generally consists of a di-
rect sound, reflections that arrive shortly after the direct sound (commonly called
early reverberation) and reflections that arrive after the early reverberation (com-
monly called late reverberation). The combination of the direct sound and early re-
verberation is sometimes referred to as the early speech component. Early reverber-
ation mainly contributes to spectral colouration, while late reverberation changes the
waveform’s temporal envelope as exponentially decaying tails are added at sound
offsets. The colouration can be characterized by the spectral deviation σ , which is
defined as the standard deviation of the log-amplitude frequency response of the
Acoustic Impulse Response (AIR) [46].

For the development of dereverberation algorithms it is of great importance to
have a good understanding of the effects of reverberation on speech perception. The
reduction in speech intelligibly caused by late reverberation is especially noticeable
for non-native listeners [72] and for listeners with hearing impairments [58]. The
detrimental effects of reverberation on speech intelligibility have been attributed
to two types of masking. Bolt and MacDonald [10] and Nábělek et al. [57] found
evidence of overlap-masking, whereby late reverberation of a preceding phoneme
masks a subsequent phoneme, and of self-masking, which refers to the time and
frequency alterations of an individual phoneme.

In a reverberant room, speech intelligibility initially decreases with increasing
source-microphone distance, but beyond the so-called critical distance speech intel-
ligibility is approximately constant. The critical distance is the distance at which the
direct-path energy is equal to the energy of all reflections. For an omnidirectional
microphone the critical distance Dc is approximately given by [69]

Dc =

√
ln(106)V
4π cT60

, (3.1)

where c is the sound velocity in ms−1, V is the volume of the room in m3 and
T60 is the reverberation time in seconds. To obtain sufficiently intelligible speech
it is typically recommended that the source-microphone distance is smaller than
0.3 times the critical distance. In a living room with dimensions 7 m × 5 m × 3 m
and T60 = 0.5 s, the critical distance Dc ≈ 0.82 m. Hence, the speech intelligibility
would be affected even when the source-microphone distance is larger than 0.25 m.

Consonants play a more significant role in speech intelligibility than vowels. If
the consonants are heard clearly, the speech can be understood more easily. In 1971
Peutz [60] proposed a measure called the articulation loss of consonants (Alcons)
that quantifies the reduction in perception of consonants due to reverberation. For
distances smaller than the critical distance the measure depends on the source-
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microphone distance, the reverberation time, and the volume of the room. Beyond
the critical distance the measure depends only on the reverberation time. The speech
intelligibility can be increased by decreasing the articulation loss, which can be
achieved by decreasing the source-microphone distance or the reverberation time,
or by increasing the room volume.

In 1982 Allen [4] reported a formula to predict the subjective preference of re-
verberant speech. The main result is given by the equation

P = Pmax −σT60, (3.2)

where P is the subjective preference in some arbitrary units, Pmax is the maximum
possible preference, and σ is the spectral deviation in decibels (dB). According to
this formula, decreasing either the spectral deviation σ or the reverberation time T60
results in an increased subjective preference of reverberant speech.

It would be convenient to assume that reverberation solely reduces intelligibility,
but this assumption is incorrect [71]. Strong reflections that arrive shortly after the
direct sound actually reinforce the direct sound and are therefore considered useful
with regard to speech intelligibility. This reinforcement, which is often referred to as
the precedence effect, is what makes it easier to hold conversations in closed rooms
rather than outdoors.

While investigating the detrimental effects of reverberation on speech, it has be-
come clear that the speech fidelity and intelligibility are mostly degraded by late re-
verberation. In addition, speech intelligibility is degraded by ambient noise. There-
fore, we define the effective noise as the sum of the late reverberant component and
the ambient noise component. In this chapter we describe a spectral enhancement
method to suppress late reverberation and ambient noise, i.e., to estimate the early
speech component. Due to the joint suppression of late reverberation and ambient
noise, the effective noise is reduced and the fidelity and intelligibility of speech can
be improved.

This chapter is organized as follows. In Sect. 3.2 a short review of dereverberation
methods is provided. In Sect. 3.3 two statistical reverberation models are discussed.
In Sect. 3.4 we derive a spectral estimator which can be used to jointly suppress late
reverberation and ambient noise. In Sect. 3.5 we investigate the possibility of us-
ing multiple microphones in conjunction with spectral enhancement techniques for
dereverberation. The spectral estimator derived in Sect. 3.4 requires an estimate of
the spectral variance of the late reverberant signal component. In Sect. 3.6 such an
estimator is derived using a statistical reverberation model. Estimation of the model
parameters is discussed in Sect. 3.7. Experimental results that demonstrate the ben-
eficial use of the described dereverberation methods are presented in Sect. 3.8. Fi-
nally, a summary and directions for further research are provided in Sect. 3.9.
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3.2 Review of Dereverberation Methods

Reverberation reduction processes can be divided into many categories. They may,
for example, be divided into single or multi-microphone techniques and into those
primarily affecting colouration or those affecting late reverberation. We categorized
the reverberation reduction processes depending on whether or not the AIR needs
to be estimated. We then obtain two main categories, viz. reverberation cancellation
and reverberation suppression.

3.2.1 Reverberation Cancellation

The first category, i.e., reverberation cancellation, consists of methods known as
blind deconvolution. Much research has been undertaken on the topic of blind de-
convolution; see [43] and the references therein. Multichannel methods appear par-
ticularly interesting because theoretically exact inverse-filtering can be achieved
if the AIRs can be estimated and they do not have any common-zeros in the z-
plane [56]. To achieve dereverberation without a priori knowledge of the room
acoustics, many traditional methods assume that the source signal is independent
and identically-distributed (i.i.d.). However, the i.i.d. assumption does not hold
for speech-like signals. When applying such traditional deconvolution methods to
speech, the speech generating process is deconvolved and the resulting speech sig-
nal is excessively whitened. Delcroix et al. proposed a method that consists of a
multichannel equalizer and a compensation filter that reconstructs the colouration
of the speech signal that is whitened by the equalizer [21]. Although perfect dere-
verberation is possible in theory, the method is sensitive to estimation errors of the
covariance matrix that is required to compute the equalizer and the compensation
filter. Another interesting method was developed by Gürelli and Nikias [33] and ex-
plores the null-space of the spatial correlation matrix, calculated from the received
signals. It was shown that the null-space of the correlation matrix contains informa-
tion on the acoustic transfer functions. This method has also potential in the speech
processing framework and was extended by Gannot and Moonen [28]. In [44] the
speech signal is modelled using a block stationary auto-regressive process while the
room acoustics are modelled using an all-pole model. Bayesian parameter estima-
tion techniques were then used to estimate the unknown parameters.

While good results can be achieved the methods in this category suffer from
several limitations: (1) they have been shown to be insufficiently robust to small
changes in the AIR [63, 73], (2) channels cannot be identified uniquely when they
contain common zeros, (3) observation noise causes severe problems, and (4) some
methods require knowledge of the order of the unknown system [45]. Detailed treat-
ments on the problems involved are presented in Chaps. 5–7 and 9.
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3.2.2 Reverberation Suppression

Methods in the second category, i.e., reverberation suppression, do not require an es-
timate of the AIR and explicitly exploit the characteristics of speech, the effect of re-
verberation on speech, or the characteristics of the AIR. Methods based on process-
ing of the Linear Prediction (LP) residual signal belong to this category [30, 32, 78].
The peaks in the LP residual signal correspond to excitation events in voiced speech
together with additional random peaks due to reverberation. These random peaks
can be suppressed by, for example, averaging adjacent larynx-cycles, as proposed
in [30].

Other, so-called, spatial processing methods use multiple microphones placed at
different locations. They often use a limited amount of a priori knowledge of the
AIR such as, for example, the direction of arrival of the desired source. The mi-
crophone signals can be processed to enhance or attenuate signals emanating from
particular directions. The well-known delay and sum beamformer is a good example
of such a method and belongs to the reverberation suppression category.

Recently, spectral enhancement methods have been used for speech dereverber-
ation [37, 39, 41, 42, 49, 74]. Spectral enhancement of noisy speech has been a
challenging problem for many researchers for over 30 years and is still an active
research area, see, for example, [6, 17, 23, 24] and references therein. Spectral en-
hancement of noisy speech is often formulated as estimation of speech spectral com-
ponents from a speech signal degraded by statistically independent additive noise.
One of the earlier methods, and perhaps the most well-known method, is spectral
subtraction [9, 50]. This method generally results in random narrow-band fluctua-
tions in the residual noise, also known as musical tones, which are annoying and
disturbing to the perception of the enhanced signal. Many variations have been de-
veloped to cope with musical tones [8, 9, 31, 36, 70]. Spectral subtraction makes
minimal assumptions about the signal and noise, and when carefully implemented,
it produces enhanced signals that may be acceptable for certain applications. Lebart
et al. proposed a single-channel speech dereverberation method based on spectral
subtraction to reduce the effect of overlap-masking [49]. The method estimates the
short-term Power Spectral Density (PSD) of late reverberation based on a statisti-
cal reverberation model. This model exploits the fact that the envelope of the AIR
decays exponentially and depends on a single parameter that is related to the rever-
beration time of the room. In [38] the authors showed that the estimated short-term
PSD of late reverberation can be improved using multiple microphones. Addition-
ally, the fine-structure of the speech signal is partly restored due to spatial averaging
of the received power spectra.

A more advanced spectral enhancement method is the so-called statistical
method, which is often designed to minimize the expected value of some distor-
tion measure between the clean and estimated signals [11, 17, 25, 55]. This method
requires reliable statistical models for the speech and noise signals, a perceptually
meaningful distortion measure and an efficient signal estimator. A statistical speech
model and perceptually meaningful distortion measure that are fully appropriate for
spectral enhancement have not yet been determined. Hence, the variety of statistical
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methods for spectral enhancement differ mainly in the statistical model [15, 25, 55],
distortion measure [26, 52, 77] and the particular implementation of the spectral en-
hancement algorithm [23]. In this chapter we describe a statistical method for the
enhancement of noisy and reverberant speech based on a Gaussian model for the
speech and interferences and a squared error distortion measure.

3.3 Statistical Reverberation Models

Since the acoustic behaviour in real rooms is too complex to model explicitly, we
make use of Statistical Room Acoustics (SRA). SRA provides a statistical descrip-
tion of the transfer function of the system between the source and the microphone
in terms of a few key quantities, e.g., source-microphone distance, room volume
and reverberation time. The crucial assumption of SRA is that the distribution of
amplitudes and phases of individual plane waves, which sum up to produce sound
pressure at some point in a room, is so close to random that the sound field is fairly
uniformly distributed throughout the room volume. The validity of this description
is subjected to a set of conditions that must be satisfied to ensure the accuracy of
calculations. Our analysis therefore implicitly assumes that the following conditions
hold [48, 63, 73]:

1. The dimensions of the room are relatively large compared to the longest wave-
length of the sound of interest.

2. The average spacing of the resonance frequencies of the room must be smaller
than one third of their bandwidth. In a room with volume V this condition is ful-
filled for frequencies that exceed the Schroeder frequency: fg = 2000

√
T60/V .

3. The source and the microphone are located in the interior of the room, at least
a half-wavelength away from the walls.

3.3.1 Polack’s Statistical Model

Sabine’s [65] major contribution was the introduction of statistical methods to cal-
culate the reverberation time of an enclosed space without considering the details
of the space geometry. Schroeder extended Sabine’s fundamental work [66, 67] and
derived a frequency domain model and a set of statistical properties about the fre-
quency response of the random impulse response.

Polack [61] developed a time-domain model complementing Schroeder’s fre-
quency domain model. In this model, an AIR is described as a realization of a non-
stationary stochastic process. This model is defined as

h(n) =

{
b(n)e−ζ̄n, for n ≥ 0,

0, otherwise,
(3.3)
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where n denotes the discrete time index, b(n) is a zero-mean stationary Gaussian
noise sequence and ζ̄ is linked to the reverberation time T60 through

ζ̄ � 3ln(10)
T60 fs

, (3.4)

where fs denotes the sampling frequency in Hz. In contrast to the model in (3.3),
the reverberation time is frequency dependent due to frequency dependent reflection
coefficients of walls and other objects and the frequency dependent absorption co-
efficient of air [48]. This dependency can be taken into account by using a different
model for each frequency band. In addition, it should be noted that Polack’s statis-
tical reverberation model is only valid in cases for which the distance between the
source and the measurement point is greater than the critical distance Dc.

In the early 90s, Polack [62] proved that the most interesting properties of room
acoustics are statistical when the number of ‘simultaneously’ arriving reflections
exceeds a limit of about 10. In this case, the echo density is high enough such that
the space can be considered to be in a fully diffused or mixed state. The essential
requirement is ergodicity, which requires that any given reflection trajectory in the
space will eventually reach all points. The ergodicity assumption is determined by
the shape of the enclosure and the surface reflection properties. It should be noted
that non-ergodic shapes will exhibit much longer mixing times and may not even
have an exponential decay. Nevertheless, while it may not be true that all acoustic
environments can be modelled using this statistical model, it is sufficiently accurate
for most spaces.

The energy envelope of the AIR can be expressed as

E {h2(n)} = σ2e−2ζ̄n, (3.5)

where σ2 denotes the variance of b(n), and E {·} denotes spatial expectation. Here
the spatial expectation is defined as the ensemble average over different realizations
of the stochastic process in (3.3). Under the assumption that the space is ergodic,
we may evaluate the ensemble average in (3.5) by spatial averaging so that different
realizations of this stochastic process are obtained by varying either the position
of the receiver or the source [47]. Note that the same stochastic process will be
observed for all allowable positions (in terms of the third SRA condition) provided
that the time origin is defined with respect to the signal emitted by the source and
not with respect to the arrival time of the direct sound at the receiver.

3.3.2 Generalized Statistical Model

In many cases the source-microphone distance is smaller than the critical distance
Dc, i.e., the Direct to Reverberant Ratio (DRR) is larger than 0 dB. In these cases
Polack’s statistical model, although useful when the source-microphone distance
is larger than the critical distance, is not an accurate model of the AIR. In [39], a
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generalized statistical model was proposed, which can be used when the source-
microphone distance is smaller than the critical distance. To model the contribution
of the direct-path, the AIR h(n) is divided into two segments, viz. hd(n) and hr(n):

h(n) =

⎧⎪⎨
⎪⎩

hd(n), for 0 ≤ n < nd,

hr(n), for n ≥ nd,

0, otherwise.
(3.6)

The value nd is chosen such that hd(n) contains the direct-path and hr(n) contains all
reflections. Later we define the parameter nd according to the frame rate of the time-
frequency transformation. In practice, the direct-path is deterministic and could be
modelled using a Dirac pulse. Unfortunately this would preclude us from creating
a statistical model. To be able to model the energy related to the direct-path the
following model is proposed:

hd(n) = bd(n)e−ζ̄n, (3.7)

where bd(n) is a white zero-mean Gaussian stationary noise sequence and ζ̄ is linked
to the reverberation time T60 through (3.4). The reverberant component hr(n) is de-
scribed using the following model:

hr(n) = br(n)e−ζ̄n, (3.8)

where br(n) is a white zero-mean Gaussian stationary noise sequence. Under the
SRA conditions the direct and reverberant component of the AIR are uncorrelated
[63]. Therefore, it is reasonable to assume that bd(n) and br(n) are uncorrelated, i.e.,
E {bd(n)br(n + τ)} = 0 for τ ∈ Z.

The energy envelope of h(n) can be expressed as

E {h2(n)} =

⎧⎪⎨
⎪⎩
σ2

d e−2ζ̄n, for 0 ≤ n < nd

σ2
r e−2ζ̄n, for n ≥ nd

0, otherwise,
(3.9)

where σ2
d and σ2

r denote the variances of bd(n) and br(n), respectively. When σ2
d <

σ2
r , the contribution of the direct-path can be neglected. Therefore, it is assumed

that σ2
d ≥ σ2

r . Note that the generalized statistical model is equivalent to Polack’s
statistical model in the case σ2

d = σ2
r .

3.4 Single-microphone Spectral Enhancement

In this section the spectral enhancement of a noisy and reverberant microphone
signal is discussed. We start by formulating the spectral enhancement problem in
Sect. 3.4.1. In Sect. 3.4.2 we show how the spectrum of the early speech component
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can be estimated using the Minimum Mean Square Error (MMSE) Log Spectral
Amplitude (LSA) estimator proposed by Cohen in [13]. This estimator depends on
the so-called a priori Signal to Interference Ratio (SIR) that needs to be estimated
in practice. In Sect. 3.4.3 we describe how the a priori SIR can be estimated.

3.4.1 Problem Formulation

The reverberant signal results from the convolution of the anechoic speech signal
and a causal AIR. In this section we assume that the AIR is time-invariant and that
its length is infinite. The reverberant speech signal at discrete-time n can be written
as

z(n) =
n

∑
l=−∞

s(l)h(n− l). (3.10)

To simplify the following discussion it is assumed that the direct sound arrives
at time instance n, i.e., the direct-path is modelled by h(0). It should be noted that
this assumption can be made without loss of generality. Since our main goal is to
suppress late reverberation we split the AIR into two components (see Fig. 3.1) such
that

h(n) =

⎧⎪⎨
⎪⎩

0, n < 0,

he(n), 0 ≤ n < ne,

h�(n), n ≥ ne,

(3.11)

where ne is chosen such that he(n) consists of the direct-path and a few early re-
flections and h�(n) consists of all later reflections. The fraction ne/ fs can be used
to define the time instance (relative to the time of arrival of the direct sound) from
where the late reverberation is suppressed. Its value can be determined by the lis-
tener depending on his or her subjective preference but should be larger than the
mixing time of the room, which is defined as the time it takes for initially adja-
cent sound rays to spread uniformly across the room [61]. In practice, ne/ fs usually
ranges from 30 to 60 ms.

Using (3.11) we can write the microphone signal x(n) as

x(n) =
n

∑
l=n−ne+1

s(l)he(n− l)

︸ ︷︷ ︸
ze(n)

+
n−ne

∑
l=−∞

s(l)h�(n− l)

︸ ︷︷ ︸
z�(n)

+v(n), (3.12)

where ze(n) is the early speech component, z�(n) denotes the late reverberant speech
component, and v(n) denotes the additive ambient noise component. The joint sup-
pression of z�(n) and v(n) decreases the effective noise level, and can increase the
speech fidelity and intelligibility. Since the response of the first part of the AIR,
i.e., ze(n), remains unaltered we do not reduce the colourations caused by the early
reflections.
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h�(n)

Time index n

0

he(n)

ne

h
(n
)

Fig. 3.1 Schematic representation of the acoustic impulse response

Estimating ze(n) is a challenging problem because both s(n) and h(n) are un-
known. Here we formulate the problem of estimating ze(n), or in other words sup-
pressing z�(n), using spectral enhancement. A block diagram of the spectral en-
hancement system is depicted in Fig. 3.2. The noisy and reverberant speech signal
is denoted by x(n), and is first transformed to the time-frequency domain by apply-
ing the short-time Fourier transform (STFT). Specifically,

X(�,k) =
K−1

∑
n=0

x(n + �R)w(n)e− j 2π
K nk, (3.13)

where j =
√
−1, w(n) is the analysis window of size K, and R is the number of

samples separating two successive frames. The spectral component X(�,k) can be
used to estimate the spectral variance λv(�,k) = E{|V(�,k)|2} of the ambient noise
and to estimate the spectral variance λz�(�,k) = E{|Z�(�,k)|2} of the late reverberant
signal component z�(n). In the following, we assume that the spectral variance of
the ambient noise is slowly time varying. Therefore, the spectral variance λv(�,k) of
the ambient noise can be estimated using the algorithm proposed by Martin in [54]
or using the Improved Minima Controlled Recursive Averaging (IMCRA) algorithm
proposed by Cohen in [14]. In contrast to λv(�,k), the spectral variance λz�(�,k) of
late reverberant signal component is highly time-varying due to the non-stationarity
of the anechoic speech signal. In the application that is considered in this chapter,
it is possible to estimate λz�(�,k) from the microphone signal. An estimator for
λz�(�,k) is derived in Sect 3.6. For now, we assume that an estimate of the late
reverberant spectral variance is available.

Using statistical signal processing, the spectral enhancement problem can be
formulated as deriving an estimator Ẑe(�,k) for the speech spectral coefficients
such that the expected value of a certain distortion measure is minimized [17]. Let
H1(�,k) and H0(�,k) denote the hypotheses for speech presence and absence in the
spectral coefficient Ze(�,k), respectively. Such that
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Late reverberant

x(n) TF

Noise

λ̂z�(�, k)

λ̂v(�, k)

X(�, k) Ẑe(�, k)
TF

ẑe(n)

λ̂v(�, k)

analysis

estimator

Post-filter
synthesis

energy estimator

Fig. 3.2 Block diagram of the single-microphone spectral enhancement system for late reverbera-
tion and noise suppression

H1(�,k) : X(�,k) = Ze(�,k)+ Z�(�,k)+V(�,k), (3.14)
H0(�,k) : X(�,k) = Z�(�,k)+V (�,k). (3.15)

Let p̂(�,k) = P(H1(�,k)) denote an estimate for the probability that the desired
speech component is present and let λ̂ze(�,k) denote an estimate of the variance
of the early speech spectral coefficient Ze(�,k) under H1(�,k). We can now cal-
culate an estimator for Ze(�,k) that minimizes the expected value of the distor-
tion measure given p̂(�,k), λ̂ze(�,k), the estimated late reverberant spectral variance
λ̂z�(�,k) = E{|Ẑ�(�,k)|2}, the estimated ambient noise spectral variance λ̂v(�,k) =
E{|V̂(�,k)|2} and the spectral coefficient X(�,k):

Ẑe(�,k) = argmin
Ẑe(�,k)

E
{

d
(
Ze(�,k), Ẑe(�,k)

)}
. (3.16)

In the sequel we restrict ourselves to the squared error distortion measure, i.e.,

d
(
Ze(�,k), Ẑe(�,k)

)
=
∣∣g(Ẑe(�,k))− g̃(Ze(�,k))

∣∣2 , (3.17)

where g(Ze) and g̃(Ze) are specific functions of Ze that determine the fidelity crite-
rion of the estimator. For the squared error distortion measure, the estimator Ẑe(�,k)
is calculated from

g(Ẑe(�,k)) = E
{

g̃(Ze(�,k))
∣∣∣ X(�,k), p̂(�,k)

}

= p̂(�,k) E
{

g̃(Ze(�,k))
∣∣∣ X(�,k),H1(�,k)

}

+(1− p̂(�,k)) E
{

g̃(Ze(�,k))
∣∣∣ X(�,k),H0(�,k)

}
. (3.18)

Finally, given the estimated spectral component Ẑe(�,k) the early speech compo-
nent ẑe(n) can be obtained using the inverse STFT,
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ẑe(n) =∑
�

K−1

∑
k=0

Ẑe(�,k)w̃(n− �R)e j 2π
K k(n−�R), (3.19)

where w̃(n) is a synthesis window that satisfies the so-called completeness condi-
tion:

∑
�

w(n− �R)w̃(n− �R) =
1
K

for all n. (3.20)

Given analysis and synthesis windows that satisfy (3.20) we can reconstruct ẑ(n)
from its STFT coefficients Ẑ(�,k). In practice, a Hamming window is often used for
the synthesis window. A reasonable choice for the analysis window is the one with
minimum energy [76], given by

w(n) =
w̃(n)

K∑� w̃2(n− �R)
. (3.21)

The inverse STFT is efficiently implemented using the weighted overlap-add
method [20].

3.4.2 MMSE Log-spectral Amplitude Estimator

In the previous Section it was shown that the received microphone signal is degraded
by late reverberation and ambient noise. In this section, a spectral amplitude esti-
mator is developed that can be used to estimate the early spectral speech component
Ze(�,k) in the presence of late reverberation and ambient noise.

While there are many fidelity criteria that are of interest for speech enhancement
it has been found that the MMSE of the log-spectral amplitude is advantageous to
other MMSE estimators in the case of noise suppression [17]. The MMSE-LSA
estimator is found by using the following functions:

g(Ẑe(�,k)) = loge(|Ẑe(�,k)|), (3.22)

g̃(Ze(�,k)) =

{
loge(|Ze(�,k)|) under H1(�,k)
loge(Gmin(�,k) |X(�,k)|) under H0(�,k).

(3.23)

The MMSE-LSA estimator is obtained by substituting (3.22) and (3.23) into
(3.18). Using a Gaussian model for the spectral coefficients, the MMSE-LSA gain
function yields [13]

GMMSE-LSA(�,k) = {GLSA(�,k)}p(�,k) {Gmin(�,k)}1−p(�,k), (3.24)

where GLSA(�,k) is the LSA gain function derived by Ephraim and Malah [26] and
Gmin(�,k) is the lower bound for the gain when the signal is absent and specifies
the maximum amount of suppression in those frames. An efficient estimator for the
speech presence probability p̂(�,k) was developed in [13]. Let ξ (�,k) denote the a
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priori SIR,

ξ (�,k) =
λze(�,k)

λz�(�,k)+λv(�,k)
, (3.25)

and γ(�,k) denote the a posteriori SIR,

γ(�,k) =
|X(�,k)|2

λz�(�,k)+λv(�,k)
. (3.26)

Here X(�,k) denotes the spectral coefficient of the microphone signal and λze(�,k),
λz�(�,k), and λv(�,k) denote the spectral variances of the early speech component,
late reverberation, and ambient noise, respectively. While the a posteriori SIR can
be calculated directly, the a priori SIR cannot because the spectral variance λze(�,k)
of the early speech component in (3.25) is unobservable. The estimation of the a
priori SIR is treated in Section 3.4.3.

The LSA gain function depends on the a posteriori and a priori SIR and is given
by [26]

GLSA(�,k) =
ξ (�,k)

1 + ξ (�,k)
exp

(
1
2

∫ ∞

ζ (�,k)

e−t

t
dt
)

, (3.27)

where

ζ (�,k) =
ξ (�,k)

1 + ξ (�,k)
γ(�,k). (3.28)

To avoid speech distortions Gmin is usually set between −12 and −18 dB. How-
ever, in practice the late reverberation plus ambient noise needs to be reduced more
than 12–18 dB. Therefore, we like to control the maximum suppression of the
late reverberant speech component and ambient noise separately. Due to the time-
varying nature of the interferences the lower-bound becomes time and frequency
dependent. Under the assumption that the interferences are uncorrelated a modified
lower-bound is given by

Gmin(�,k) =
Gmin,z� λ̂z�(�,k)+ Gmin,v λ̂v(�,k)

λ̂z�(�,k)+ λ̂v(�,k)
, (3.29)

where Gmin,z� and Gmin,v are used to control the maximum suppression of late re-
verberation and ambient noise, respectively. When Gmin,z� = 0 the late reverberation
is suppressed down to the residual level of the ambient noise, as shown in [40].
The results of an informal listening test using stationary ambient noise confirmed
that the sound level of the residual interference was stationary in case the modified
lower-bound Gmin(�,k) was used, while the sound level of the residual interference
fluctuated when the constant lower bound Gmin was used.

An estimate of the early spectral speech component Ze(�,k) can now be obtained
using the amplitude estimate and the phase of the noisy and reverberant spectral
coefficient X(�,k), i.e.,

Ẑe(�,k) = GMMSE-LSA(�,k) X(�,k). (3.30)
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3.4.3 a priori SIR Estimator

In this section we focus on the a priori SIR estimation. The a priori SIR in (3.25)
can be written as

1
ξ (�,k)

=
1

ξz�(�,k)
+

1
ξv(�,k)

, (3.31)

with

ξϑ (�,k) =
λze(�,k)
λϑ (�,k)

, (3.32)

where ϑ ∈ {z�,v}. Hence, the total a priori SIR can be calculated using the a priori
SIRs of each interference separately [34, 35, 40]. By doing this, one gains control
over (1) the trade-off between the interference reduction and the distortion of the
desired signal, and (2) the a priori SIR estimation approach for each interference.
In some cases, it might be desirable to reduce one of the two interferences at the
cost of larger speech distortion, while reducing the other interference less to avoid
distortion. In this Section it is shown how the decision-directed approach, proposed
by Ephraim and Malah in [25], can be used to estimate the individual a priori SIRs.

In the case when the early speech component and the late reverberant signal are
very small, the a priori SIRs ξz�(�,k) may be unreliable since λze(�,k) and λz�(�,k)
are close to zero. In the following, we assume that there is always a certain amount
of ambient noise, i.e., λv(�,k) > 0. We propose to calculate ξ (�,k) using only the
most important and reliable a priori SIRs as follows:

ξ (�,k) =

⎧⎪⎨
⎪⎩
ξv(�,k), 10log10

(
λv(�,k)
λz� (�,k)

)
> β dB,

ξz�(�,k) ξv(�,k)
ξz�(�,k)+ ξv(�,k)

, otherwise,
(3.33)

where the threshold β dB specifies the level difference between λv(�,k) and λz�(�,k)
in dB. When the noise power level is β dB higher than the late reverberant power
level, the total a priori SIR, ξ (�,k), will be equal to ξv(�,k). Otherwise ξ (�,k) will
depend on both ξv(�,k) and ξz�(�,k).

The decision-directed based estimator [12, 25] is given by

ξ̂ (�,k) = max
{
η

G2
LSA(�−1,k) |X(�−1,k)|2

λz�(�,k)+λv(�,k)
+ (1−η)ψ(�,k),ξmin

}
, (3.34)

where ψ(�,k) = γ(�,k)−1 is the instantaneous SIR, γ(�,k) is the a posteriori SIR
as defined in (3.26), and ξmin is a lower-bound on the a priori SIR that controls
the residual interference level when hypothesis H1 is assumed to be true (i.e., when
the desired speech is assumed to be active). The weighting factor η (0 ≤ η ≤ 1)
controls the tradeoff between the amount of noise reduction and distortion [12, 25].
To estimate ξϑ (�,k) we use the following expression:



3 Speech Dereverberation Using Statistical Reverberation Models 71

ξ̂ϑ (�,k) = max
{
ηϑ

G2
LSA(�−1,k) |X(�−1,k)|2

λϑ (�−1,k)
+ (1−ηϑ) ψϑ (�,k),ξmin,ϑ

}
,

(3.35)
where

ψϑ (�,k) =
λz�(�,k)+λv(�,k)

λϑ (�,k)
ψ(�,k)

=
|Y (�,k)|2 −

[
λz�(�,k)+λv(�,k)

]
λϑ (�,k)

,

(3.36)

and ξmin,ϑ is the lower bound on the a priori SIR ξϑ (�,k).

3.5 Multi-microphone Spectral Enhancement

Single-microphone systems only exploit the spectral and temporal diversity of the
received signal. Reverberation and most ambient noise sources, of course, also in-
duce spatial diversity. To be able to additionally exploit this diversity, multiple mi-
crophones must be used and their outputs must be combined by a suitable spatial
processor, e.g., a delay-and-sum beamformer, a filter-and-sum beamformer or an
adaptive beamformer. Although spatial processors yield a significant improvement
of the speech quality, the reverberation suppression is limited and the noise suppres-
sion is insufficient when the noise field is non-coherent or diffuse. In addition to the
spatial processor a single-channel post-filter should be used to achieve satisfactory
results.

In this section we will elaborate on the use of multiple microphone signals
for speech dereverberation. In Sect. 3.5.1 we formulate the multi-microphone
speech dereverberation problem. In Sect. 3.5.2 we describe two multi-microphone
speech enhancement systems for ambient noise and reverberation suppression. In
Sect. 3.5.3 we propose a method to enhance the speech presence probability estima-
tion when multiple microphone signals are available.

3.5.1 Problem Formulation

In Sect. 3.4 we exploited the spectral and temporal diversity of the received signal
to estimate the early speech component using a single microphone signal. When the
signals of multiple microphones are combined using a suitable spatial processor it
is possible to ‘focus’ on the desired source. The effect of early and late reflections
can be suppressed to a degree depending on the spatial processor employed.

The reverberant signal at the mth microphone results from the convolution of
the anechoic speech signal s(n) and a causal AIR hm(n). Here we assume that the
AIR is time-invariant and that its length is infinite. The reverberant speech signal at
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discrete-time n can be written as

zm(n) =
∞

∑
l=0

hm(l)s(n− l). (3.37)

The mth microphone signal is given by

xm(n) = zm(n)+ vm(n), (3.38)

where vm(n) denote the additive ambient noise received by the mth microphone.
In the STFT domain we can write (3.38) as

Xm(�,k) = Ze,m(�,k)+ Z�,m(�,k)+Vm(�,k), (3.39)

where Ze,m(�,k), Z�,m(�,k), and Vm(�,k) denote the early and late spectral speech
components and the ambient noise at the mth microphone, respectively.

Our objective is to obtain an estimate of the early speech component without
using detailed knowledge of the AIRs. Instead of estimating Ze,m(�,k) with m ∈
{1, . . . ,M}, we propose to estimate a spatially filtered version of all early speech
components.

3.5.2 Two Multi-microphone Systems

In this section we describe two multi-microphone systems that can be used to sup-
press ambient noise and reverberation. The first system consists of a Minimum Vari-
ance Distortionless Response (MVDR) beamformer followed by a single-channel
post-filter. The second system consists of a non-linear spatial processor followed by
a single-channel post-filter that was especially designed for speech dereverberation
in [39].

3.5.2.1 MVDR Beamformer and Single-channel MMSE Estimator

This multi-microphone system consists of two stages. First, an MVDR beamformer
is applied to the microphone signals. Second, a single-channel MMSE estimator is
applied to the output of the MVDR beamformer.

Let us define X(�,k) = [X1(�,k),X2(�,k), . . . ,XM(�,k)]T and V(�,k) =
[V1(�,k),V2(�,k), . . . ,VM(�,k)]T . The MVDR filter, denoted by W(�,k) =
[W1(�,k),W2(�,k), . . . ,WM(�,k)]T , is found by solving the following minimization
problem:
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WMVDR(�,k) = argmin
W(k)

{
(W(k))H ΛVV(�,k)W(k)

}

subject to (W(k))H C(k) = 1, (3.40)

where (·)H denotes the Hermitian transpose, ΛVV(�,k) = E{V(�,k)VH(�,k)} de-
notes the spatial PSD matrix of the noise, and C(k) denotes a pre-defined constraint
column vector of length M.

A major question remains how to define the constraint C(k) and thereby the
signal which is undistorted by the MVDR beamformer. One solution would be to
estimate the reverberant speech component Zm(�,k) for m ∈ {1, . . . ,M} (see, for
example, [27]). In this case, the beamformer only reduces noise (and therefore no
reverberation). Here we chose to align the direct sound signals of the desired source
at the output of the MVDR beamformer. Due to the spatial directivity of the beam-
former the spectral coloration induced by early reflections is slightly reduced.

Let us assume that the desired source is located in the far-field, such that the
propagation of the direct sound can be modelled by Hd(k) = e− jωkτ1H̃d(k), where
H̃d(k) = [1,e− jωkτ12 , . . . , e− jωkτ1M ]T , ωk = 2π fsk/K, τ1 denotes the propagation
time of the desired source signal to the first microphone and τ1m (2 ≤ m ≤ M) de-
notes the relative delay [also known as time difference of arrival (TDOA)] of the
desired source signal between the mth and the first microphone. The aim of the con-
straint of the MVDR beamformer is to align the direct-paths of the desired source at
the output of the MVDR beamformer. Therefore, the constraint vector C(k) can be
defined as

C(k) = H̃d(k). (3.41)

Estimation of the TDOAs is beyond the scope of this chapter in which we assume
that the TDOAs are known.

The solution of the minimization problem in (3.40) is given by

WMVDR(�,k) =
Λ−1

VV(�,k)C(k)
CH(k)Λ−1

VV(�,k)C(k)
. (3.42)

The output of the MVDR beamformer is given by

Q(�,k) = (WMVDR(�,k))H X(�,k)
= Qz(�,k)+ Qv(�,k), (3.43)

where Qz(�,k) and Qv(�,k) denote the residual reverberant and noise component at
the beamformer’s output. The spectral variance of Q(�,k) is given by

λq(�,k) = E{Q(�,k)(Q(�,k))∗} (3.44)
= λqz(�,k)+λqv(�,k), (3.45)

where (·)∗ denotes the complex conjugate, λqz(�,k) and λqv(�,k) denote the spec-
tral variances of the residual reverberant and noise component at the beamformer’s
output. In addition, we can express λqz(�,k) as
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λqz(�,k) = E{Qz(�,k)(Qz(�,k))∗}
= λqe(�,k)+λq�

(�,k), (3.46)

where λqe(�,k) and λq�
(�,k) denote the residual early and late reverberation at the

output of the beamformer. The spectral variance of the noise at the output of the
MVDR beamformer is given by

λqv(�,k) =
1

CH(k)Λ−1
VV(�,k)C(k)

. (3.47)

Assuming that the residual early and late reverberant signal components are mu-
tually uncorrelated we can reduce the residual late reverberation at the output of the
MVDR beamformer using a spectral enhancement technique.

Let us now consider the case in which the ambient noise field is spatially white,
i.e., ΛVV(�,k) = σ2

v I, where I denotes the identity matrix. In this case the MVDR
beamformer reduces to the well-known delay and sum beamformer, i.e.,

WMVDR(�,k) =
1
M

H̃d(�,k). (3.48)

Although the output of the beamformer is not completely dereverberated the signal
will contain less reverberation than any one of the observed microphone signals. Us-
ing statistical room acoustics, Gaubitch and Naylor derived an analytic expression
to calculate the DRR improvement of the delay and sum beamformer compared to
the best microphone [29]. Their result demonstrates that the reverberation reduction
of the delay and sum beamformer is limited, especially when the source-microphone
distance is larger than the critical distance.

Here we employ a single-channel MMSE log spectral amplitude estimator as
described in Sect. 3.4 to estimate the residual early speech component at the beam-
fomer’s output. In order to compute the LSA gain function (3.27) we redefine the a
priori and a posteriori SIR as

ξ (�,k) =
λqe(�,k)

λq�
(�,k)+λqv(�,k)

(3.49)

and

γ(�,k) =
|Q(�,k)|2

λq�
(�,k)+λqv(�,k)

, (3.50)

respectively. The spectral variance λqv(�,k) of the residual noise can be estimated
either by estimating ΛVV(�,k) during noise only periods and using (3.47) or by us-
ing a minimum statistics approach [14, 54]. The late reverberant spectral variance
λq�

(�,k) can be obtained from Q(�,k) in a similar way to how λz�(�,k) can be ob-
tained from Z(�,k), as described in Sect. 3.6.
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3.5.2.2 Non-linear Spatial Processor

In [39] it was shown that the output signal of the delay and sum beamformer may
contain undesired signal components that result from the spatial correlation between
the acoustic channels. The spatial correlation mainly causes problems at low fre-
quencies and becomes more severe when the inter-microphone distance is small.
To avoid the creation of these undesired components, a non-linear spatial processor
was proposed that can be used when the noise field is spatially white. The spatial
processor computes the amplitude and phase spectrum independently. Firstly, the
observed spectra are delayed according to the DOA of the desired source. Secondly,
the amplitude spectrum is computed from the squared value of the average PSDs:

Q(�,k) =

(
1
M

M

∑
m=1

∣∣Xm(�,k)e jωkτ1m
∣∣2
) 1

2

, (3.51)

where τ1m denotes the TDOA of the desired source signal between the mth and the
first microphone (by definition τ11 = 0). Finally, the phase spectrum is computed by
averaging the phase spectra of the properly delayed signals:

ϕ(�,k) = arg

{
1
M

M

∑
m=1

Xm(�,k)e jωkτ1m

}
. (3.52)

It should be noted that the phase spectrum is equal to the phase spectrum of the
delay and sum beamformer. The output of the non-linear spatial processor is given
by

YNL(�,k) = Q(�,k)e jϕ(�,k). (3.53)

Due to the averaging of the PSDs the proposed spatial processor is unable to reduce
any noise. The PSD of the noise in YNL(�,k) is given by 1

M ∑M
m=1 |Vm(�,k)|2.

We can now apply the single-microphone spectral enhancement algorithm that
was described in Sect. 3.4 to YNL(�,k). The spectral variance λz�(�,k) of the late
reverberant speech component can be estimated using YNL(�,k) in a way similar to
how λz�(�,k) can be estimated from X(�,k). Using statistical room acoustics it can
be shown that the expected value of the spatially averaged acoustic transfer functions
is white. Since the statistical reverberation models in Sect. 3.3 are based on this
assumption, the result obtained sounds better than the single-microphone spectral
enhancement. Furthermore, due to the spatial averaging, the spectral colouration
that is caused by the early reflections is slightly reduced.

3.5.3 Speech Presence Probability Estimator

In order to compute the MMSE-LSA gain function (3.24) we require an estimate of
the a posteriori speech presence probability p(�,k). The a posteriori speech pres-
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ence probability p(�,k) can be obtained from Bayes’ rule, which, under a Gaussian
model for the spectral coefficients, reduces to [13]

p(�,k) =
{

1 +
1− p(�,k|�−1)

p(�,k|�−1)
(1 + ξ (�,k))exp(−ζ (�,k))

}−1

, (3.54)

where p(�,k|�−1) denotes the a priori speech presence probability, ξ (�,k) is the a
priori SIR and ζ (�,k) is defined in (3.28). In this section we develop an efficient es-
timator for the a priori speech presence probability p(�,k|�−1), which exploits the
strong correlation of speech presence in neighbouring frequency bins of consecutive
frames and the strong spatial coherence of the desired signal.

We propose to estimate the a posteriori speech presence probability using four
probabilities that are obtained using a soft-decision approach. Three probabilities,
i.e., Plocal(�,k), Pglobal(�,k), and Pframe(�), are proposed by Cohen in [13], and are
based on the time-frequency distribution of the estimated a priori SIR, ξ (�,k).
These probabilities reflect the strong correlation of speech presence in neighbour-
ing frequency bins of consecutive frames. Since the spatial coherence of the desired
direct sound is much larger than the spatial coherence of the reverberant sound, we
propose to relate the fourth probability, denoted by Pspatial(�,k), to the spatial co-
herence of the received signals. In [42] we proposed to determine Pspatial(�,k) using
Mean Square Coherence (MSC). Firstly, we smooth the MSC estimate in time and
frequency to reduce its variance. Secondly, we map the MSC value to the probabil-
ity Pspatial(�,k). The latter can easily be achieved since the MSC value lies between
zero and one.

The MSC is defined as

ΦMSC(�,k) � |λx21(�,k)|2
λx1(�,k)λx2(�,k)

, (3.55)

where λx21(�,k) = E{X2(�,k)(X1(�,k))∗} denotes the cross spectral density, and
λx1(�,k) and λx2(�,k) are the power spectral densities. In addition, we know that
0 ≤ΦMSC(�,k) ≤ 1.

Let η (0 ≤ ηs ≤ 1) denote a smoothing parameter. Then, the power and cross
spectral density are estimated using

λ̂xi(�,k) = ηsλ̂xi(�−1,k)+ (1−ηs)|Xi(�,k)|2, i ∈ {1,2} (3.56)

and
λ̂x21(�,k) = ηsλ̂x21(�−1,k)+ (1−ηs)X2(�,k)(X1(�,k))∗, (3.57)

respectively. The MSC is further smoothed over different frequencies using

Φ̃MSC(�,k) =
wMSC

∑
i=−wMSC

b(i)ΦMSC(�,k + i), (3.58)
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where b(i) are the coefficients of a normalized window (∑wMSC
i=−wMSC

b(i) = 1) of size
2wMSC + 1 that determine the frequency smoothing. In the case when more than
two microphone signals are available one could average the MSC over different
microphone pairs (with equal inter-microphone distance) to improve the estimation
procedure even further.

The spatial speech presence probability P̂spatial(�,k) is related to (3.58) by

P̂spatial(�,k) =

⎧⎪⎨
⎪⎩

0, for Φ̃MSC(�,k) ≤Φmin,

1, for Φ̃MSC(�,k) ≥Φmax,
Φ̃MSC(�,k)−Φmin

Φmax−Φmin
, otherwise,

(3.59)

where Φmin and Φmax are the minimum and maximum threshold values for
Φ̃MSC(�,k), respectively.

Finally, an estimate of the a priori speech presence probability is obtained by

p̂(�,k|�−1) = P̂local(�,k)P̂global(�,k)P̂frame(l)P̂spatial(�,k). (3.60)

3.6 Late Reverberant Spectral Variance Estimator

In this section we derive a spectral variance estimator for the late reverberant spec-
tral component, Z�(�,k), using the generalized statistical reverberation model de-
scribed in Sect. 3.3.

Before the spectral variance λz�(�,k) = E{|Z�(�,k)|2} can be estimated, we need
to obtain an estimate of the spectral variance of the reverberant spectral component
Z(�,k) denoted by λz(�,k). Assuming that the spectral coefficients of the reverberant
signal and the noise are mutually independent Gaussian random variables, an esti-
mate of the spectral variance λz(�,k) can be obtained by calculating the following
conditional expectation:

λ̂z(�,k) = E{|Z(�,k)|2 |X(�,k)}
= |GSP(�,k)X(�,k)|2, (3.61)

where GSP(�,k) denotes the MMSE spectral power gain function. This gain function
is given by [3]

GSP(�,k) =
ξSP(�,k)

1 + ξSP(�,k)

(
1

γSP(�,k)
+

ξSP(�,k)
1 + ξSP(�,k)

)
, (3.62)

where

ξSP(�,k) =
λz(�,k)
λv(�,k)

(3.63)
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and

γSP(�,k) =
|X(�,k)|2
λv(�,k)

(3.64)

denote the a priori and a posteriori SIRs, respectively. The a priori SIR is esti-
mated using the decision-directed approach proposed by Ephraim and Malah [25].
Estimates of the spectral variance, λv(�,k), of the noise in the received signal x(n)
can be estimated using so-called minimum statistics approaches [14, 54].

In order to derive an estimator for the spectral variance of the late reverberant
signal component z�(n) we start by analyzing the autocorrelation of the reverberant
signal z(n). The autocorrelation of the reverberant signal z(n) at discrete time n and
lag τ for a fixed source-microphone configuration is defined as

rzz(n,n + τ;h) = E{z(n)z(n + τ)}, (3.65)

where E{·} denotes ensemble averaging. Using (3.37), we have for one realization
of h,

rzz(n,n + τ;h) =
n

∑
l=n−nd+1

n+τ

∑
l′=n−nd+1+τ

E{s(l)s(l′)}hd(n− l)hd(n + τ− l′)

+
n−nd

∑
l=−∞

n−nd+τ

∑
l′=−∞

E{s(l)s(l′)}hr(n− l)hr(n + τ− l′). (3.66)

Using (3.6)–(3.8) and the fact that bd(n) and br(n) consist of a zero-mean white
Gaussian noise sequence, it follows that

E {hd(n− l)hd(n + τ− l′)} = σ2
d e−2ζ̄neζ̄ (l+l′−τ)δ (l − l′ + τ), (3.67)

and

E {hr(n− l)hr(n + τ− l′)} = σ2
r e−2ζ̄neζ̄ (l+l′−τ)δ (l − l′ + τ), (3.68)

where δ (·) denotes the Kronecker delta function. It should be noted that
E {bd(n)br(n + τ)} = 0 implies that E {hd(n)hr(n + τ)} = 0. Under the assumption
that the stochastic processes h and s are mutually independent the spatially averaged
autocorrelation results in

rzz(n,n + τ) = E {rzz(n,n + τ;h)}
= rzdzd(n,n + τ)+ rzrzr(n,n + τ), (3.69)

with

rzdzd(n,n + τ) = e−2ζ̄n
n

∑
l=n−nd+1

E{s(l)s(l + τ)} σ2
d e2ζ̄ l , (3.70)
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and

rzrzr(n,n + τ) = e−2ζ̄n
n−nd

∑
l=−∞

E{s(l)s(l + τ)} σ2
r e2ζ̄ l (3.71)

= e−2ζ̄n
n−nd

∑
l=n−2nd+1

E{s(l)s(l + τ)} σ2
r e2ζ̄ l

+ e−2ζ̄n
n−2nd

∑
l=−∞

E{s(l)s(l + τ)} σ2
r e2ζ̄ l . (3.72)

The first term in (3.69) depends on the direct signal between time n−nd +1 and
n, and the second depends on the reverberant signal.

Let us consider the spatially averaged autocorrelation at time n−nd:

rzz(n−nd,n−nd + τ) = rzdzd(n−nd,n−nd + τ)+ rzrzr(n−nd,n−nd + τ), (3.73)

with

rzdzd(n−nd,n−nd + τ) = σ2
d e−2ζ̄ (n−nd)

n−nd

∑
l=n−2nd+1

E{s(l)s(l + τ)}e2ζ̄ l, (3.74)

and

rzrzr(n−nd,n−nd + τ) = σ2
r e−2ζ̄ (n−nd)

n−2nd

∑
l=−∞

E{s(l)s(l + τ)}e2ζ̄ l. (3.75)

Using (3.74) and (3.75) the term rzrzr(n,n + τ) can be expressed as

rzrzr(n,n + τ) = κ e−2ζ̄ndrzdzd(n−nd,n−nd + τ)

+ e−2ζ̄nd rzrzr(n−nd,n−nd + τ), (3.76)

with κ = σ2
r /σ2

d . Here κ ≤ 1, since it is assumed that σ2
d ≥ σ2

r . Using (3.73) we can
rewrite (3.76) as

rzrzr(n,n + τ) = e−2ζ̄nd (1−κ)rzrzr(n−nd,n−nd + τ)

+κ e−2ζ̄nd rzz(n−nd,n−nd + τ). (3.77)

The late reverberant component can now be obtained using

rz�z�(n,n + τ) = e−2ζ̄(ne−nd)rzrzr(n−ne + nd,n−ne + nd + τ). (3.78)

Note that for κ = 1, i.e., σ2
d = σ2

r , (3.77) and (3.78) result in

rz�z�(n,n + τ) = e−2ζ̄nerzz(n−ne,n−ne + τ). (3.79)
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Given an estimate of the reverberation time T60, the parameter ζ̄ can be calculated
using (3.4). The parameter κ = σ2

r /σ2
d is related to the DRR, which is defined as

Ed

Er
=

nd
∑

l=0
h2(l)

∞
∑

l=nd+1
h2(l)

. (3.80)

It should be noted that the DRR can be estimated directly from the AIR using (3.80).
However, in many practical situations the AIR is not known in advance. Therefore,
we will discuss the blind estimation of the reverberation time T60 and κ in Sec-
tion 3.7. Using the model in (3.6) the direct and reverberant energy can be expressed
as

Ed =
nd

∑
l=0

σ2
d e−2ζ̄ l =

σ2
d

2ζ̄

(
1− e−2ζ̄nd

)
(3.81)

and

Er =
∞

∑
l=nd+1

σ2
r e−2ζ̄ l =

σ2
r

2ζ̄
e−2ζ̄nd , (3.82)

respectively, where σ2
d and σ2

r denote the variances of bd(n) and br(n), respectively.
Now the parameter κ can be expressed in terms of Ed and Er:

κ =
σ2

r

σ2
d

=
1− e−2ζ̄nd

e−2ζ̄nd

Er

Ed
. (3.83)

In general the DRR is frequency dependent, as shown in [48]. Hence, to improve the
accuracy of the model we propose to make κ frequency dependent. Furthermore, we
should keep in mind that the DRR, and thus κ , depends on the distance between the
source and microphone. Therefore, spatial averaging can only be performed over
those microphone signals that have the same source-microphone distance.

In practice the signals can be considered as stationary over periods of time that
are short compared to the reverberation time T60. This is justified by the fact that the
exponential decay is very slow and that speech is quasi-stationary. We consider that
ne � T60 fs and that ne/ fs is larger than the time span over which the speech signal
can be considered stationary, which is usually around 20–40 ms [22]. In the follow-
ing we assume that nd is equal to the number of samples separating two successive
STFT frames, denoted by R. Under these assumptions and by taking the frequency
dependency of κ and ζ̄ into account, the counterparts of (3.77) and (3.78) in terms
of the spectral variances are:

λzr(�,k) = e−2ζ̄(k)R (1−κ(k))λzr(�−1,k)+κ(k) e−2ζ̄ (k)Rλz(�−1,k), (3.84)

and
λz�(�,k) = e−2ζ̄(k)(ne−R)λzr(�−

ne

R
+ 1,k). (3.85)
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Note that the value ne should be chosen such that ne/R is an integer value.
By substituting λz(�,k) = λzd(�,k)+λzr(�,k) in (3.84) and rearranging the terms

we obtain

λzr(�,k) = e−2ζ̄ (k)Rλzr(�−1,k)+κ(k)e−2ζ̄(k)Rλzd(�−1,k). (3.86)

Using (3.83) we obtain

λzr(�,k) = e−2ζ̄ (k)Rλzr(�−1,k)+
Er

Ed

(
1− e−2ζ̄(k)R

)
λzd(�−1,k). (3.87)

This equation shows that the spectral variance of the reverberant signal component
at time frame � consists of e−2ζ̄ (k)R times the spectral variance of the reverberant
signal component at time frame �−1 and Er

Ed

(
1− e−2ζ̄(k)R

)
times the spectral vari-

ance of the direct speech component at time frame �−1. While the first term models
the energy decay in the room, the second term models the energy growth due to the
power of the source (λzd(�,k)/Ed). As expected, only the source can increase the
reverberant energy in the room and the absorption of the energy is completely de-
termined by the reverberation time of the room.

3.7 Estimating Model Parameters

In order to estimate the late reverberant spectral variance an estimate of the rever-
beration time T60 of the room and the direct to reverberation ratio is required.

3.7.1 Reverberation Time

Partially blind methods to estimate the reverberation time have been developed in
which the characteristics of the room are learnt using neural network approaches
[19]. Another method uses a segmentation procedure for detecting gaps in the sig-
nals and then tracks the sound decay curve [49, 74]. A blind method has been pro-
posed by Ratnam et al. based on a maximum-likelihood estimation procedure [64].
In [53] Löllmann and Vary proposed a maximum-likelihood estimator which takes
additive noise into account. Most of these methods can also be applied to band-pass
filtered versions of the original signal in order to estimate the reverberation time in
different frequency bands.

In general, it is reasonable to assume that the reverberation time is approximately
constant in the room. Therefore, in communication systems that involve echo can-
cellation, the reverberation time can be estimated using the estimated echo path [41].
For some applications such as audio or video-conferencing where a fixed setup is
used, the reverberation time can be estimated using a calibration process.
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3.7.2 Direct-to-reverberant Ratio

In many practical situations the distance between the source and the microphone
will vary. Since the DRR depends on the distance between the source and the mi-
crophone, it is important that the parameter κ can be estimated online.

The parameter κ was introduced to prevent over-estimation of the reverberant
spectral variance λzr(�,k) when the source-microphone distance is smaller than the
critical distance. In the case when κ is too large, the spectral variance λ̂zr(�,k) could
become larger than |Z(�,k)|2, which indicates that over-estimation has occurred.
In this case, the value of κ should be lowered. In addition we know that during
the free decay, which occurs after an offset of the source signal, λ̂zr(�,k) should
be approximately equal to |Z(�,k)|2. Estimation of κ could therefore be performed
after a speech offset. Unfortunately, the detection of speech offsets is rather difficult.
However, from the above discussion is has become clear that κ should at least fulfill
the following condition: |Z(�,k)|2 − λ̂zr(�,k) ≥ 0.

The parameter κ can be estimated adaptively using the following strategy: (1)
when speech is detected and |Z(�,k)|2 < λ̂zr(�,k) the value of κ is lowered, (2) when
|Z(�,k)|2 > λ̂zr(�,k) the value of κ is raised slowly and (3) when |Z(�,k)|2 = λ̂zr(�,k)
the value of κ is assumed to be correct. This strategy can be implemented as follows:

κ̂(�) = κ̂(�−1)+
μκ

Pz(�−1)

K
2 −1

∑
k=0

(
|Z(�−1,k)|2 − λ̂zr(�−1,k)

)
(3.88)

where Pz(�− 1) = ∑
K
2 −1

k=0 |Z(�− 1,k)|2, and μκ (0 < μκ < 1) denotes the step-size.
After each update step, κ̂(�) is constrained, such that 0 < κ̂(�) ≤ 1. Experimental
results that demonstrate the feasibility of this estimator can be found in Sect. 3.8.

3.8 Experimental Results

In this section we present and discuss the experimental results that were obtained
using single and multiple microphones. A uniformly linear microphone array was
used with inter-microphone spacing Di = 5 cm. The source-array distance D is de-
fined as the distance between the source and the center of the array, and ranges
from 0.25 to 3 m. The dimensions of the room are 5 m × 6 m × 4 m (length
× width × height). The experimental setup is depicted in Fig. 3.3. The APLAWD
database [51] was used for evaluation with the sampling frequency set to fs = 8 kHz;
it contains anechoic recordings comprising ten repetitions of five sentences uttered
by five male and five female talkers. The reverberant microphone signals were ob-
tained by convolving the anechoic recordings with different AIRs. The AIRs are
generated using the image method for modelling small room acoustics [5], modi-
fied to accommodate fractional sample delays according to [59], with reverberation
times from 250 to 1000 ms. The additive noise v(n) was speech-like noise, taken



3 Speech Dereverberation Using Statistical Reverberation Models 83

x1(n)

xM (n)

D

Di

Fig. 3.3 Experimental setup with a uniform linear microphone array

from the NOISEX-92 database [75]. The spectral variance of the noise was esti-
mated from the noisy microphone signal x(n) using the IMCRA approach [14]. All
a priori SIRs were estimated using the decision-directed approach. In all experi-
ments we assumed that the reverberation time T60 of the room is known. Its value
was determined using the Schroeder method, described in [68]. The parameter κ
was estimated adaptively using the method described in Sect. 3.7.2. The parameters
that were used for these experiments are shown in Table 3.1.

The segmental SIR and Bark Spectral Distortion (BSD), as defined in Chap. 2,
are used for the evaluation.

Table 3.1 Parameters used in experiments

fs = 8000 Hz ne = 40 ms GdB
min = 18 dB β dB = 3 dB

η = 0.95 b = Hanning window wMSC = 9 Φmin = 0.2

Φmax = 0.65 ηs = 0.35

3.8.1 Using One Microphone

In this section we evaluate the performance of the single-microphone dereverber-
ation method in the presence of noise using two objective measures. A summary
of the complete single-microphone spectral enhancement algorithm that suppresses
late reverberation and ambient noise is summarized in Algorithm 3.1.

We first evaluate the objective measures when T60 = 0.5 s and D = 1 m. The
Signal to Noise Ratio (SNR) of the microphone signal ranges from 10 to 30 dB. In
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Algorithm 3.1 Summary of the single-microphone spectral enhancement algorithm
that suppresses late reverberation and ambient noise

1. STFT: Calculate the STFT of the noisy and reverberant signal x(n).
2. Estimate model parameters: Firstly, decay-rate ζ̄ (k) is calculated using (3.4). Secondly, the

parameter κ is estimated using (3.88).
3. Estimate ambient noise: Estimate λv(�,k) using the method described in [18].
4. Estimate late reverberant energy: Calculate GSP(�,k) using (3.62)–(3.64). Estimate λz(�,k)

using (3.61), and calculate λ̂z� (�,k) using (3.85).
5. Post-filter:

(a) Calculate the a posteriori SIR using (3.26) and the individual a priori SIRs using (3.35)–
(3.36) with ϑ ∈ {z�,v}, the total a priori SIR can then be calculated using (3.33).

(b) Estimate the a priori speech presence probability p(�,k|�−1) using the method described
in [15] and calculate p̂(�,k) using (3.54).

(c) Calculate the gain function GMMSE-LSA(�,k) using (3.27), (3.29), and (3.24).
(d) Calculate Ẑe(�,k) using (3.30).

6. Inverse STFT: Calculate the output ẑe(n) by applying the inverse STFT to Ẑe(�,k).

10 12.5 15 17.5 20 22.5 25 27.5 30
−20

−15

−10

−5

0

5

10

S
eg

m
en

ta
l S

IR
 (

dB
)

SNR (dB)

 

 
Microphone
Processed NS
Processed RS+NS

(a)

10 12.5 15 17.5 20 22.5 25 27.5 30
0.08

0.1

0.12

0.14

0.16

0.18

0.2

B
ar

k 
sp

ec
tr

al
 d

is
to

rt
io

n

SNR (dB)

 

 
Microphone
Processed NS
Processed RS+NS

(b)

Fig. 3.4 (a) Segmental SIRs and (b) BSDs of the unprocessed microphone signal, the processed
signal after noise suppression (NS), and the processed signal after joint reverberation and noise
suppression (RS+NS). The SNR of the received signal varies between 10 and 30 dB (D = 1 m,T60 =
500 ms, and ne/ fs = 40 ms)

Fig. 3.4 the segmental SIR and BSD are depicted for the (unprocessed) reverber-
ant microphone signal, the signal that was obtained after noise suppression (NS),
and the signal that was obtained after joint reverberation and noise suppression
(RS+NS). Joint reverberant and noise suppression significantly improves the seg-
mental SIR (approximately 10 dB) and the BSD (approximately 0.04–0.06) com-
pared to noise suppression only. After the noise suppression is applied, the rever-
beration becomes more pronounced. When, in addition to the noise, the late rever-
beration is suppressed, the subjective sound quality is significantly improved and
the residual ambient noise sounds stationary. When listening to the processed sig-
nal, minor artifacts were audible when the SNR was larger than 15 dB. In Fig. 3.5,
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Fig. 3.5 Spectrograms and time-domain waveforms of (a) reverberant signal z(n), (b) early speech
signal ze(n), (c) microphone signal (SNR = 15 dB, T60 = 0.5 s, D = 1 m), and (d) estimated early
speech signal ẑe(n)

spectrograms and time-domain waveforms are presented for one speech fragment.
In both the spectrogram and time-domain waveform of the reverberant signal smear-
ing of the speech, caused by the late reflections can be observed. In the enhanced
speech signal, the smearing is significantly reduced as a result of the suppression of
late reverberation. In addition, it can be seen that the noise is suppressed.

In the second experiment we evaluate the algorithms for SNR = 30 dB and D =
1 m. The reverberation time T60 ranges from 0.2 to 1 s. In Fig. 3.6 the segmental
SIR and BSD are depicted for the reverberant microphone signal, the signal that was
obtained after noise suppression (NS), and the signal that was obtained after joint
reverberation and noise suppression (RS+NS). Since the SNR is relatively high, the
segmental SIR mainly depends on the reverberation suppression. The results of this
experiment demonstrate that the algorithm is able to suppress a significant amount of
late reverberation for short and long reverberation times. The results of an informal
listening test indicated that for long reverberation times (T60 > 0.5 s), a larger value
of ne is preferred to maintain a natural sounding speech signal.
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Fig. 3.6 (a) Segmental SIRs and (b) BSDs of the unprocessed microphone signal, the processed
signal after noise suppression (NS), and the processed signal after joint reverberation and noise
suppression (RS+NS). The reverberation time varies between 0.2 and 1 s (SNR = 30 dB, D = 1 m,
and ne/ fs = 40 ms)

In the third experiment we evaluate the algorithms for SNR = 30 dB and
T60 = 0.5 s. The source-microphone distance D ranges from 0.25 to 4 m. In the
current setup the critical distance Dc equals 0.9 m. In Fig. 3.7 the segmental SIR
and BSD are depicted for the reverberant microphone signal, the signal that was
obtained after noise suppression (NS), and the signal that was obtained after joint
reverberation and noise suppression (RS+NS). Since the SNR is relatively high, the
segmental SIR mainly depends on the reverberation suppression. The results shown
here demonstrate that the algorithm is able to suppress a significant amount of late
reverberation over a wide range of source-microphone distances that are smaller and
larger than the critical distance. While the BSD measures mainly show an improve-
ment when the source-microphone distances are large, the segmental SIR improve-
ment is almost constant. It should be noted that, for a source-microphone distance
smaller than the critical distance, the value of ne/ fs can be decreased without af-
fecting the amount of speech distortion significantly.

3.8.2 Using Multiple Microphones

In this section we evaluate the performance of three multi-microphone dereverber-
ation methods in the presence of spatially white noise (SNR = 30 dB) using two
objective measures. Since the SNR is relatively high, the segmental SIR mainly de-
pends on the reverberation suppression. The first multi-microphone method is the
Delay-and-sum Beamformer (DSB). The second method is the delay and sum beam-
former in conjunction with the single-channel post-filter described in Algorithm. 3.1
and is denoted by (DSB-PF). The third method is based on the non-linear spatial
processor in conjunction with the same single-channel post-filter and is denoted by
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Fig. 3.7 (a) Segmental SIRs and (b) BSDs of the unprocessed microphone signal, the processed
signal after noise suppression (NS), and the processed signal after joint reverberation and noise
suppression (RS+NS). The source-microphone varies between 0.25 and 4 m (SNR = 30 dB, T60 =
500 ms, and ne/ fs = 40 ms)

(NLSP-PF). As a reference the signal of the microphone that is closest to the desired
source was evaluated.

In the first experiment the number of microphones used was M = 5 and the
source-microphone distance was set to D = 1.5 m. The reverberation time T60 ranged
from 0.2 to 1 s. In Fig. 3.8 the segmental SIR and BSD are depicted for the refer-
ence microphone signal, the output of the DSB, the result of the DSB-PF method,
and the result of the NLSP-PF method. These results show the limited performance
of the DSB. A significant improvement is achieved by applying the single-channel
post-filter to the output of the delay and sum beamformer. According to the objec-
tive measures employed the NLSP-PF method performs slightly worse compared to
the DSB-PF method. However, the results of an informal listing test indicated that
the output of the NLSP-PF method sounds more natural and contains less audible
distortions than the output of the DSB-PF method. This could be explained by the
fact that the objective measures used in this work are unable to reflect certain per-
ceptual characteristics of the evaluated signals that are important in the context of
speech dereverberation.

In the second experiment the reverberation time T60 = 0.5 s was used, and the
source-microphone distance was set to D = 1.5 m. The number of microphones
M ranged from 1 to 9. The segmental SIR and BSD values obtained are shown in
Fig. 3.9. As in the previous experiment we can see that the single-channel post-
filter significantly increases the dereverberation performance. The segmental SIR
was increased by more than 14.5 dB compared to the reference microphone. It is
noted that the segmental SIR increases slightly when more than one microphone is
used. However, the BSD is significantly reduced by using multi-microphone signals.
In terms of the segmental SIR and BSD the best result is obtained by the DSB-
PF system. Judging from these results one might argue that the DSB-PF method
performs better than the NLSP-PF method. However, as before the results from an
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Fig. 3.8 (a) Segmental SIRs and (b) BSDs of the reference microphone signal, the DSB signal,
the DSB-PF signal, and the NLSP-PF signal. The reverberation time varies between 0.2 and 1 s
(D = 1.5 m, SNR = 30 dB, and ne/ fs = 40 ms)
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Fig. 3.9 (a) Segmental SIRs and (b) BSDs of the reference microphone signal, the DSB signal,
the DSB-PF signal, and the NLSP-PF signal. The number of microphones ranges from 1 to 9
(D = 1.5 m, T60 = 0.5 s, SNR = 30 dB, and ne/ fs = 40 ms)

informal listening test indicated that the results obtained by the NLSP-PF method
sound more natural and contain less artifacts than the results obtained by the DSB-
PF method.

3.9 Summary and Outlook

In this chapter single and multi-microphone speech dereverberation methods that are
entirely or partly based on spectral enhancement were described. The quality of the
received speech signal can be improved by reducing the effective noise that consists
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of late reverberation and ambient noise. It was shown that quantifiable properties
of the AIR, such as the reverberation time and DRR, can be used to dereverberate
the received speech signal partly. In order to use spectral enhancement methods
for speech dereverberation, an estimate of the late reverberant spectral variance is
required. In Sect. 3.6 such an estimator was derived using a generalized statistical
reverberation model. When the source-receiver distance is smaller than the critical
distance the proposed estimator that is based on the generalized statistical model is
advantageous over the estimator that is based on Polack’s statistical model [39].

In the development of the speech enhancement method we assumed that the spec-
tral coefficients of the speech and noise are Gaussian. Furthermore, we used the
minimum mean squared error distortion measure and the log-amplitude fidelity cri-
terion that was successfully used for noise suppression. However, it has yet to be de-
termined if the MSE distortion measure and log-amplitude fidelity criterion provide
the best results in the case of reverberation and noise suppression. Recently, the gen-
eralized autoregressive conditional heteroscedasticity (GARCH) model was shown
to be useful for statistically modelling speech signals in the STFT domain [16]. A
Markov-switching time-frequency GARCH model was proposed in [1, 2] for mod-
elling non-stationary signals in the time-frequency domain. The model takes into
account the strong correlation of successive spectral magnitudes and is more appro-
priate than the decision-directed approach for speech spectral variance estimation in
noisy environments. Should this or other statistical speech models be used in the de-
velopment of novel spectral speech dereverberation algorithms, they might further
increase the suppression of late reverberation and noise and decrease the amount of
speech distortion. In the course of this chapter, two modifications of the standard
MMSE-LSA estimator were discussed. The first modification concerns the spectral
gain function and allows a larger suppression of late reverberation when the early
speech component is inactive and results in a constant residual ambient noise level.
The second modification concerns the speech presence probability estimator, which
is improved by analyzing the magnitude squared coherence of the observed sound
field.

We also investigated the use of multiple microphones for speech dereverbera-
tion and described two multi-microphone systems. The first system consists of an
MVDR beamformer followed by a single-channel post-filter. Although this system
can be useful in the presence of coherent noise sources, we could not directly ex-
ploit the spatial diversity of the reverberant signal to estimate the late reverberant
spectral variance. In a spatially white noise field, the MVDR beamformer reduces
to the well-known delay and sum beamformer. It has been shown in [39] that due
to the spatial correlation between the AIRs, the residual reverberation at the output
of the beamformer might contain undesired signal components. These components
are especially pronounced at low frequencies and become larger when the inter-
microphone distances are small. A second multi-microphone system that does not
suffer from the spatial correlation between the AIRs was described. The latter con-
sists of a non-linear spatial processor followed by a single-channel post-filter. The
non-linear spatial processor can only be employed when the noise field is spatially
white. Although practically feasible multi-microphone solutions have been found,
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further research is required to investigate the tradeoff between noise suppression
and reverberation suppression.

Finally, experimental results demonstrated the beneficial use of the single-
microphone spectral dereverberation method described and showed that a large
amount of reverberation and noise can be reduced with little speech distortion.

Acknowledgment

The author thanks Dr. Sharon Gannot and Dr. Israel Cohen for the valuable discus-
sions and helpful suggestions.

References

1. Abramson, A., Cohen, I.: Markov-switching GARCH model and application to speech en-
hancement in subbands. In: Proc. Int. Workshop Acoust. Echo Noise Control (IWAENC), pp.
1–4. Paris, France (2006)

2. Abramson, A., Cohen, I.: Recursive supervised estimation of a Markov-switching GARCH
process in the short-time Fourier transform domain. IEEE Trans. Signal Process. 55(7), 3227–
3238 (2007)

3. Accardi, A.J., Cox, R.V.: A modular approach to speech enhancement with an application
to speech coding. In: Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing
(ICASSP), vol. 1, pp. 201–204 (1999)

4. Allen, J.B.: Effects of small room reverberation on subjective preference. J. Acoust. Soc. Am.
71(S1), S5 (1982)

5. Allen, J.B., Berkley, D.A.: Image method for efficiently simulating small-room acoustics. J.
Acoust. Soc. Am. 65(4), 943–950 (1979)

6. Benesty, J., Makino, S., Chen, J. (eds.): Speech Enhancement. Springer (2005)
7. Benesty, J., Sondhi, M.M., Huang, Y. (eds.): Springer Handbook of Speech Processing.

Springer (2007)
8. Berouti, M., Schwartz, R., Makhoul, J.: Enhancement of speech corrupted by acoustic noise.

In: Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), vol. 4, pp.
208–211 (1979)

9. Boll, S.F.: Suppression of acoustic noise in speech using spectral subtraction. IEEE Trans.
Acoust., Speech, Signal Process. ASSP-27(2), 113–120 (1979)

10. Bolt, R.H., MacDonald, A.D.: Theory of speech masking by reverberation. J. Acoust. Soc.
Am. 21, 577–580 (1949)

11. Burshtein, D., Gannot, S.: Speech enhancement using a mixture-maximum model. IEEE
Trans. Speech Audio Process. 10(6), 341351 (2002)

12. Cappe, O.: Elimination of the musical noise phenomenon with the Ephraim and Malah noise
suppressor. IEEE Trans. Speech Audio Process. 2(2), 345–349 (1994). DOI 10.1109/89.
279283

13. Cohen, I.: Optimal speech enhancement under signal presence uncertainty using log-spectral
amplitude estimator. IEEE Signal Process. Lett. 9(4), 113–116 (2002)

14. Cohen, I.: Noise spectrum estimation in adverse environments: Improved minima controlled
recursive averaging. IEEE Trans. Speech Audio Process. 11(5), 466–475 (2003). DOI 10.
1109/TSA.2003.811544



3 Speech Dereverberation Using Statistical Reverberation Models 91

15. Cohen, I.: From volatility modeling of financial time-series to stochastic modeling and en-
hancement of speech signals. In: J. Benesty, S. Makino, J. Chen (eds.) Speech Enhancement,
chap. 5, pp. 97–114. Springer (2005)

16. Cohen, I.: Speech spectral modeling and enhancement based on autoregressive conditional
heteroscedasticity models. Signal Processing 86(4), 698–709 (2006)

17. Cohen, I., Gannot, S.: Spectral enhancement methods. In: Benesty et al. [7], chap. 45. Part H
18. Cohen, I., Gannot, S., Berdugo, B.: An integrated real-time beamforming and post filtering

system for nonstationary noise environments. EURASIP J. on App. Signal Process. 11, 1064–
1073 (2003)

19. Cox, T.J., Li, F., Darlington, P.: Extracting room reverberation time from speech using artificial
neural networks. J. Audio Eng. Soc. 49(4), 219–230 (2001)

20. Crochiere, R.E., Rabiner, L.R.: Multirate Digital Signal Processing. Prentice-Hall (1983)
21. Delcroix, M., Hikichi, T., Miyoshi, M.: Precise dereverberation using multichannel linear pre-

diction. IEEE Trans. Audio, Speech, Lang. Process. 15(2), 430–440 (2007)
22. Deller, J.R., Proakis, J.G., Hansen, J.H.L.: Discrete-Time Processing of Speech Signals. New

York: MacMillan (1993)
23. Ephraim, Y., Cohen, I.: Recent advancements in speech enhancement. In: R.C. Dorf (ed.) The

Electrical Engineering Handbook, Circuits, Signals, and Speech and Image Processing, third
edn. CRC Press (2006)

24. Ephraim, Y., Lev-Ari, H., Roberts, W.J.J.: A brief survey of speech enhancement. In: The
Electronic Handbook, second edn. CRC Press (2005)

25. Ephraim, Y., Malah, D.: Speech enhancement using a minimum-mean square error short-time
spectral amplitude estimator. IEEE Trans. Acoust., Speech, Signal Process. 32(6), 1109–1121
(1984)

26. Ephraim, Y., Malah, D.: Speech enhancement using a minimum mean-square error log-
spectral amplitude estimator. IEEE Trans. Acoust., Speech, Signal Process. 33(2), 443–445
(1985)

27. Gannot, S., Cohen, I.: Adaptive beamforming and postfiltering. In: Benesty et al. [7], chap. 48
28. Gannot, S., Moonen, M.: Subspace methods for multimicrophone speech dereverberation.

EURASIP J. on App. Signal Process. 2003(11), 1074–1090 (2003)
29. Gaubitch, N.D., Naylor, P.A.: Analysis of the dereverberation performance of microphone

arrays. In: Proc. Int. Workshop Acoust. Echo Noise Control (IWAENC) (2005)
30. Gaubitch, N.D., Naylor, P.A., Ward, D.B.: On the use of linear prediction for dereverberation

of speech. In: Proc. Int. Workshop Acoust. Echo Noise Control (IWAENC), pp. 99–102 (2003)
31. Goh, Z., Tan, K.C., Tan, T.G.: Postprocessing method for suppressing musical noise generated

by spectral subtraction. IEEE Trans. Speech Audio Process. 6(3), 287–292 (1998). DOI
10.1109/89.668822

32. Griebel, S.M., Brandstein, M.S.: Wavelet transform extrema clustering for multi-channel
speech dereverberation. In: Proc. Int. Workshop Acoust. Echo Noise Control (IWAENC),
pp. 52–55. Pocono Manor, Pennsylvania (1999)
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53. Löllmann, H.W., Vary, P.: Estimation of the reverberation time in noisy environments. In:
Proc. Int. Workshop Acoust. Echo Noise Control (IWAENC), pp. 1–4 (2008)

54. Martin, R.: Noise power spectral density estimation based on optimal smoothing and minimum
statistics. IEEE Trans. Speech Audio Process. 9, 504–512 (2001). DOI 10.1109/89.928915

55. Martin, R.: Speech enhancement based on minimum mean-square error estimation and su-
pergaussian priors. IEEE Trans. Speech Audio Process. 13(5), 845–856 (2005). DOI
10.1109/TSA.2005.851927

56. Miyoshi, M., Kaneda, Y.: Inverse filtering of room acoustics. IEEE Trans. Acoust., Speech,
Signal Process. 36(2), 145–152 (1988)
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