
Chapter 10
TRINICON for Dereverberation of Speech and
Audio Signals

Herbert Buchner1 and Walter Kellermann2

Abstract In this chapter, we develop an analytical top-down approach to the prob-
lem of blind dereverberation of speech and audio signals based on TRINICON
(TRIple-N Independent component analysis for CONvolutive mixtures), a general
framework for broadband adaptive Multi-Input Multi-Output (MIMO) signal pro-
cessing. Two fundamentally different approaches to the dereverberation problem
for realistic scenarios can be distinguished: The “identification-and-inversion ap-
proach”, which results in a two-step procedure consisting of blind identification of
the acoustic MIMO mixing system, followed by an inversion of the identified sys-
tem. As an alternative, the “direct-inverse approach” blindly estimates the inverse
of the acoustic mixing system directly. As shown in this chapter, for both cases
TRINICON yields the information-theoretically optimum estimation procedures in
a unified way and allows for a direct comparison between the approaches, paves
the way to synergies, and yields various useful insights for practical realizations.
This chapter also relates other known algorithms, and presents novel improved al-
gorithms as special cases of the generic concept.

10.1 Introduction

Blind signal processing of convolutive mixtures of unknown time series is an im-
portant building block in modern systems involving broadband signal acquisition by
sensor arrays in multipath or convolutive environments. A challenging and impor-
tant example for such environments is given by ‘natural’ acoustic human/machine
interfaces using multiple microphones to support sound signal acquisition so that
the users may be untethered and mobile in real rooms. To obtain the desired source
signals, the signal processing generally has to cope with two fundamental prob-
lems due to the distance between the sources and the sensors: (i) the presence of
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additive noise and interferers, e.g., competing speakers, and (ii) the disturbing ef-
fect of reflections and scattering of the desired source signals in the recordings. In
this chapter we tackle these problems by blind adaptive Multi-Input Multi-Output
(MIMO) filtering.

In this introductory section, we first formulate the fundamental adaptive filtering
problems and distinguish ‘direct’ and ‘inverse’ problems in Sect. 10.1.1. Moreover,
we introduce a classification into two different generic approaches to blind deconvo-
lution that are fundamental to the dereverberation approaches for speech and audio
signals. In Sect. 10.1.2 we introduce a compact matrix notation, which we will use
throughout this chapter. Section 10.1.3 provides an overview of our analysis of the
two generic approaches to blind deconvolution as useful for blind dereverberation.

10.1.1 Generic Tasks for Blind Adaptive MIMO Filtering

The signal acquisition scenario mentioned above is modeled such that the origi-
nal source signals sq(n), q = 1, . . . ,Q are filtered by a linear MIMO system before
they are picked up by the sensors yielding the sensor signals xp(n), p = 1, . . . ,P.
In this chapter, we describe this MIMO mixing system by length-M Finite Impulse
Response (FIR) filters, i.e.,

xp(n) =
Q

∑
q=1

M−1

∑
κ=0

hqp,κsq(n−κ), (10.1)

where hqp,κ , κ = 0, . . . ,M − 1 denote the coefficients of the FIR filter model from
the qth source signal sq(n) to the pth sensor signal xp(n) according to Fig. 10.1.
Throughout this chapter, we assume that the number Q of sources is less or equal
to the number P of sensors. The cases Q < P and Q = P are of particular interest as
detailed below and they are commonly known as overdetermined and (fully) deter-
mined, respectively. Note that in general, the sources sq(n) may or may not be all
simultaneously active at a particular instant of time.
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Obviously, since only the sensor signals, i.e., the output signals of the mixing
system, are assumed to be accessible to the blind signal processing, any type of
linear blind adaptive MIMO signal processing may be described by the structure
shown in Fig. 10.1. Thus, with respect to a yet undefined optimization criterion,
we are interested in finding a corresponding demixing system by the blind adaptive
signal processing whose output signals yq(n) are described by

yq(n) =
P

∑
p=1

L−1

∑
κ=0

wpq,κxp(n−κ), (10.2)

and where the parameter L denotes the FIR filter length of the demixing filters with
coefficients wpq,κ .

Depending on the optimization criterion for determining the coefficients wpq,κ ,
we distinguish two general classes of blind signal processing problems as summa-
rized in Table 10.1 along with the corresponding supervised problems1,2.

• Direct blind adaptive filtering problems: This class summarizes here Blind Sys-
tem Identification (BSI) and Blind Source Separation (BSS)/blind interference
cancellation for convolutive mixtures.
In the BSS approach, we want to determine a MIMO FIR demixing filter that
separates the signals up to an – in general arbitrary – filtering and permutation
ambiguity by forcing the output signals to be mutually independent. Tradition-
ally, and perhaps somewhat misleadingly, BSS has often been considered to be
an inverse problem in the literature, e.g., [32, 51]. In another interpretation, BSS
may be considered as a set of blind beamformers [6, 25] under certain restricting
conditions, most notably the fulfillment of the spatial sampling theorem by the
microphone array. Furthermore, under the farfield assumption, the directions of
arrival can be extracted from the corresponding array patterns, which in turn can
be calculated from the BSS filter coefficients, e.g., [63].
In this chapter (Sect. 10.3) we will see that, more generally, a properly designed
broadband BSS system actually performs blind MIMO system identification
(which is independent of the spatial sampling theorem). The general broadband
approach presented here unifies the BSS and BSI concepts and provides various
algorithmic synergy effects and new applications. One important and particu-
larly illustrative application of the general broadband approach to MIMO BSI is
the acoustic localization of multiple simultaneously active sources even in rever-
berant environments as detailed in [19, 21]. In this chapter, we utilize the gen-

1 Note that in supervised adaptive filtering one may distinguish the analogous general classes of
problems. There, we classify system identification and interference cancellation after [45] as (there
may be others, or at least other terms) “direct supervised adaptive filtering problems”, whereas
inverse modeling and linear prediction after [45] may be classified as “inverse supervised adaptive
filtering problems”.
2 The TRINICON framework for broadband adaptive MIMO filtering presented in Sect. 10.4 is
applicable to all of the problems listed in Table 10.1 and yields corresponding generic adaptation
algorithms.
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eral MIMO BSI approach for deconvolution and especially to dereverberation of
acoustic signals (see below) as another new application.

• Inverse blind adaptive filtering problems: This class stands here for MultiChannel
Blind Deconvolution (MCBD) and so-called MultiChannel Blind Partial Decon-
volution (MCBPD)3 with respect to the mixing system H and forms the main
part of this chapter. Furthermore, the linear prediction problem as known from
the literature on supervised adaptive filtering may also be considered as an in-
verse blind adaptive filtering problem, as we show in this chapter. The relation
between linear prediction and MCBD/MCBPD will also be shown later in this
chapter.
The goal of any blind deconvolution approach is to recover the original signals
up to an arbitrary (frequency-independent) scaling and possibly a time shift. In
the general MIMO case, i.e., for multiple simultaneously active sources, blind
deconvolution also includes separation of the source signals (up to a permutation
ambiguity). MCBD and MCBPD provide adaptive methods to the blind decon-
volution problem for independent identically distributed (i.i.d.) sources and for
general nonwhite sources, respectively.
For the intended acoustic applications, i.e., for speech and audio source signals,
the problem of blind deconvolution means that we want to dereverberate the sig-
nals by inverting the effect of the convolutive mixture matrix H. In this case,
blind deconvolution is denoted by blind dereverberation. Furthermore, for blind
dereverberation, i.e., in acoustic applications, we typically have to deal with non-
white sources. Hence, for a direct adaptive approach to blind dereverberation the
more general MCBPD method has to be used, as we will discuss later in more
detail.
In terms of the MIMO system description, for the task of blind deconvolu-
tion/blind dereverberation, strictly speaking, an inversion of (long and usually
nonminimum-phase) room impulse responses is necessary. However, using the
Multiple-input/output INverse Theorem (MINT) [68], any MIMO FIR system H
can exactly be inverted by a MIMO FIR system W if P, Q, and L are suitably
chosen, and if the impulse responses hqp ∀ p ∈ {1, . . . ,P} do not have common
zeros in the z-plane. Therefore, in principle, there is a general solution to the
MCBD problem by using multiple sensors. In this chapter we present adaptive
blind deconvolution algorithms that should ideally converge to the ideal MINT
solution.

From the two classes of blind adaptive filtering problems shown in Table 10.1, it
becomes obvious that two different fundamental approaches to effective blind de-
convolution – and thus to dereverberation – are conceivable.

One approach is to perform blind MIMO system identification as mentioned
above, followed by a (MINT-based) inversion of the estimated mixing system,

3 Later in Sect. 10.6 we will see that in practical systems for the blind deconvolution tasks it
is important to take the spectral characteristics of the source signals into account. The method
of multichannel blind partial deconvolution, introduced in Sect. 10.6 to address this issue, also
belongs to the class of inverse blind adaptive filtering problems.
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Table 10.1 Classification of the linear adaptive filtering problems

Supervised Blind
adaptive filtering problems adaptive filtering problems

(after [45]) (treated in this chapter)

“Direct System identification Blind system identification
adaptive
filtering

problems” Interference cancellation Blind source separation/
blind interference cancellation

“Inverse Inverse modeling/equalization Blind (partial) deconvolution
adaptive
filtering

problems” Linear prediction Linear prediction

e.g., [36, 43]. In this chapter we refer to this approach as the Identification-and-
Inversion approach (II approach) to blind deconvolution.

The other, theoretically equivalent but, as we will see later, in practice often more
reliable approach is to perform directly a blind estimation of the actual inverse of
the MIMO mixing system, e.g., [4, 16, 28, 40]. In this chapter we refer to this ap-
proach as the Direct-Inverse approach (DI approach) to blind deconvolution. Note
that for blind dereverberation, the DI approach implies the application of MCBPD
for nonwhite signals.

10.1.2 A Compact Matrix Formulation for MIMO Filtering
Problems

To compactly formulate and analyze the blind adaptive MIMO filtering problems in
Sects. 10.2 and 10.3, respectively, we introduce the following matrix formulation of
the overall system in Fig. 10.1 consisting of the mixing and demixing systems. This
matrix formulation is also used in the TRINICON (TRIple-N Independent compo-
nent analysis for CONvolutive mixtures) framework described later in Sect. 10.4 in
order to blindly estimate the adaptive demixing filter coefficients.

For capturing the mixing system with coefficients hqp,κ , κ = 0, . . . ,M−1 and the
demixing system with coefficients wpq,κ , κ = 0, . . . ,L−1, p = 1, . . . ,P, q = 1, . . . ,Q,
we form the QM×P mixing coefficient matrix

Ȟ =

⎡
⎢⎣

h11 · · · h1P
...

. . .
...

hQ1 · · · hQP

⎤
⎥⎦ (10.3)
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and the PL×Q demixing coefficient matrix

W̌ =

⎡
⎢⎣

w11 · · · w1Q
...

. . .
...

wP1 · · · wPQ

⎤
⎥⎦ , (10.4)

respectively, where

hqp =
[
hqp,0, . . . ,hqp,M−1

]T
, (10.5)

wpq =
[
wpq,0, . . . ,wpq,L−1

]T (10.6)

denote the coefficient vectors of the individual FIR filters of the MIMO systems, and
where superscript T denotes transposition of a vector or a matrix. The downwards
pointing hat symbol (‘check’) on top of H and W in (10.3) and (10.4) serves to dis-
tinguish these condensed matrices from the corresponding larger matrix structures
as introduced below in (10.10). Although seemingly a merely formal peculiarity, the
rigorous distinction between these different matrix structures is an essential tool for
the development of the general TRINICON framework, as shown later.

Analogously, the coefficients cqr,κ , q = 1, . . . ,Q, r = 1, . . . ,Q, κ = 0, . . . ,M +L−
2 of the overall system of length M + L− 1 from the sources to the demixing filter
outputs are combined into the Q(M + L−1)×Q matrix,

Č =

⎡
⎢⎣

c11 · · · c1Q
...

. . .
...

cQ1 · · · cQQ

⎤
⎥⎦ , (10.7)

where
cqr =

[
cqr,0, . . . ,cqr,M+L−2

]T
. (10.8)

All these subfilter coefficients cqr,κ are obtained by convolving the mixing filter
coefficients with the demixing filter coefficients. In general, a convolution of two
such finite-length sequences can also be written as a matrix-vector product so that
the coefficient vector for the model from the qth source to the rth output here reads

cqr =
P

∑
p=1

Hqp,[L]wpr. (10.9)

The so-called convolution matrix or Sylvester matrix Hqp,[L] of size M + L− 1×L
in this equation exhibits a special structure, containing M filter taps in each column,
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Hqp,[L] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hqp,0 0 · · · 0

hqp,1 hqp,0
. . .

...
... hqp,1

. . . 0

hqp,M−1
...

. . . hqp,0

0 hqp,M−1
. . . hqp,1

...
. . .

...
0 · · · 0 hqp,M−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10.10)

The additional third index in brackets denotes the width of the Sylvester matrix,
which has to correspond to the length of the column vector wpr in (10.9) so that
the matrix-vector product is equivalent to a linear convolution. The brackets serve
to emphasize this fact and to clearly distinguish the meaning of this index from
the meaning of the third index of the individual matrix elements, e.g., i of hqp,i in
(10.10).

We may now compactly express the overall system matrix Č after (10.7) using
this Sylvester matrix formulation to finally obtain

Č = H[L]W̌, (10.11)

where H[L] denotes the Q(M+L−1)×PL MIMO block Sylvester matrix combining
all channels,

H[L] =

⎡
⎢⎣

H11,[L] · · · H1P,[L]
...

. . .
...

HQ1,[L] · · · HQP,[L]

⎤
⎥⎦ . (10.12)

Based on this matrix formulation, we are now able to compactly formulate the blind
adaptive MIMO filtering problems in the coming Sects. 10.2 and 10.3 and to discuss
the corresponding ideal solutions, regardless of how the adaptation is actually per-
formed in practice (note that this also implies that the results are valid for both blind
and supervised adaptation). The blind adaptation of the demixing filter coefficients
towards these ideal solutions will be treated later in Sects. 10.4–10.6.

10.1.3 Overview of this Chapter

This chapter consists of three parts. Based on the matrix notation in Sect. 10.1.2,
we formulate and analyze both the above-mentioned inverse and the direct blind
adaptive MIMO filtering problems in Sects. 10.2 and 10.3, respectively, and we
relate these categories of adaptive MIMO filtering problems to the two fundamental
approaches to blind deconvolution, i.e., the DI approach and the II approach. As it
turns out, the explicit formulation and analysis of the theoretically ideal solution of
the direct filtering problems is somewhat more involved and less well known than
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that of the inverse filtering problem. Accordingly, Sect. 10.3 gives a detailed review
of a recent comprehensive treatment [19] of the direct filtering problems. Thereby, a
fundamental relation between BSI and BSS for convolutive mixtures is of particular
practical importance. The resulting practical scheme for BSI serves as a basis for the
identification-and-inversion approach to blind deconvolution in the general MIMO
case. In this respect, Sect. 10.3 follows the ideas first outlined in [18, 21].

Section 10.4 constitutes the second major part of this chapter and is devoted
to the adaptation of the MIMO demixing system towards the ideal solutions dis-
cussed in Sects. 10.2 and 10.3. Our considerations are based on TRINICON, a pre-
viously introduced versatile framework for broadband adaptive MIMO signal pro-
cessing [13, 15–17], which is especially well suited for speech and audio signals.
The general information-theoretic optimization criterion of TRINICON allows us
to exploit all fundamental properties of the excitation signals, such as their non-
stationarity, their spectral characteristics (nonwhiteness), and their probability den-
sities (nongaussianity). Moreover, in addition to the inherent broadband structure
necessary for a proper system identification and deconvolution, the top-down, i.e.,
deductive approach of the TRINICON framework also allows us to present relations
to both already known and new efficient algorithms. So far, this deductive approach
has already led to various new insights into the several classes of adaptive filtering
problems shown in Table 10.1, most notably blind source separation [15, 19], blind
system identification including a generic framework for source localization [19],
and the corresponding supervised adaptive problems [23]. Based on the ideas first
outlined in [16], the aim of this chapter is to consider TRINICON for inverse blind
adaptive problems in more detail.

In the third part of this chapter we first apply TRINICON to BSS and the
identification-and-inversion approach to blind deconvolution/blind dereverberation
in Sect. 10.5, followed by the application to the direct-inverse approach in Sect. 10.6.
As in the previously studied classes of adaptive filtering problems, we will see that
the general framework again allows us to relate various known and seemingly dif-
ferent algorithms for dereverberation, and it also yields improvements beyond the
current state of the art. Section 10.7 presents results for both the II approach and the
DI approach.

10.2 Ideal Inversion Solution and the Direct-inverse Approach to
Blind Deconvolution

This section presents a concise summary on the ideal inversion solution for MIMO
FIR systems. This inversion solution represents the ideal solution of the DI approach
to blind deconvolution. Hence, its discussion also yields important guidelines for the
design of the adaptive system based on the DI approach.

As mentioned above, the aim of the inverse adaptive filtering problem is to re-
cover the original signals sq(n), q = 1, . . . ,Q, as shown in Fig. 10.1, up to an arbi-
trary frequency-independent scaling, time shift, and possibly a permutation of the
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demixing filter outputs. Disregarding the potential permutation among the output
signals,4 this condition may be expressed in terms of an ideal Q(M + L− 1)×Q
overall system matrix

Čideal,inv = Bdiag
{
[0, . . . ,0,1,0, . . . ,0]T , . . . , [0, . . . ,0,1,0, . . . ,0]T

}
Λα , (10.13)

where the Bdiag{·} operator describes a block-diagonal matrix containing the
listed vectors on the main diagonal. Here, these target vectors, i.e., the ideal
overall impulse responses, represent pure delays. The diagonal matrix Λα =
Diag

{
[α1, . . . ,αQ]T

}
accounts for the scaling ambiguity. The condition for the ideal

inversion solution thus reads as

H[L]W̌ = Čideal,inv. (10.14)

This system of linear equations may generally be solved exactly or approximately
by the Moore–Penrose pseudoinverse (e.g., [44]), denoted by +, so that

W̌LS,inv = H+
[L]Čideal,inv

=
[
HT

[L]H[L]

]−1
HT

[L]Čideal,inv. (10.15)

Note that this expression corresponds to the least-squares (LS) solution

W̌LS,inv = argmin
W̌

‖H[L]W̌− Čideal,inv‖2
2. (10.16)

It can be shown that under certain conditions, which can be fulfilled in practice
and are described below, this solution becomes the ideal inversion solution, i.e., the
pseudoinverse in (10.15) turns into the true matrix inverse,

W̌ideal,inv = H−1
[L] Čideal,inv. (10.17)

The principle to calculate the exact inverse using (10.17) is known as MINT [68]
and is applicable even for mixing systems with nonminimum phase. The basic re-
quirement for H[L] in order to be invertible is that it is of full row rank. This as-
sumption can be interpreted such that the FIR acoustic impulse responses contained
in H[L] do not possess any common zeros in the z-domain, which usually holds in
practice for a sufficient number of sensors [68]. Another requirement for invertibil-
ity of H[L] is that the number of its rows equals the number of its columns, i.e.,
Q(M + L− 1) = PL according to the dimensions noted above in conjunction with
(10.12). From this condition, we immediately obtain the optimum filter length for
inversion [35]:

4 This could formally be described by an additional permutation matrix in the ideal solution. How-
ever, since in many practical cases this ambiguity may be resolved by a signal classification ap-
proach or other prior information, we renounced this formal treatment for clarity.
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Lopt,inv =
Q

P−Q
(M−1). (10.18)

As an important consequence the MIMO mixing system can be inverted exactly even
with a finite-length MIMO demixing system, as long as P > Q, i.e., the number
of sensors is greater than the number of sources. Note that P,Q,M must be such
that Lopt,inv is an integer number in order to allow the matrix inversion in (10.17).
Otherwise, we have to resort to the general LS approximation (10.15) with Lopt,inv =
�Q(M−1)/(P−Q)�.

Based on the generic TRINICON framework for adaptive MIMO filtering in
Sect. 10.4, we will present in Sect. 10.6 a coherent overview of blind deconvolu-
tion algorithms which aim at the ideal inversion solution (10.15) or the general LS
solution (10.17) for a suitable choice of parameters, respectively.

10.3 Ideal Solution of Direct Adaptive Filtering Problems and
the Identification-and-inversion Approach to Blind
Deconvolution

As an alternative deconvolution approach, the “identification-and-inversion ap-
proach” to blind deconvolution is based on a two-step procedure: first, the acoustic
MIMO mixing system is blindly identified, and then the identified system is inverted
in a separate step. Obviously, for the latter step the results of the previous section can
be applied, preferably the MINT solution. In this section, we therefore concentrate
on the ideal solution of the system identification step. As we shall see, the rela-
tion between source separation and MIMO system identification is of fundamental
importance for the practical realization of blind system identification.

In contrast to the inversion problem, the goal of any separation algorithm, such
as BSS or conventional beamforming, is to eliminate only the crosstalk between the
different sources sq(n), q = 1, . . . ,Q in the output signals yq(n), q = 1, . . . ,Q of the
demixing system (see Fig. 10.1). Disregarding again a potential permutation among
the output signals, this condition may be expressed in terms of the overall system
matrix Č as

Č−bdiag
{

Č
}

= boff
{

Č
}

= 0. (10.19)

Here, the operator bdiag{·} applied to a block matrix consisting of several subma-
trices or vectors sets all submatrices or vectors on the off-diagonals to zero. Analo-
gously, the boff{·} operation sets all submatrices or vectors on the diagonal to zero.

With the overall system matrix (10.11), the condition for the ideal separation is
expressed as

boff
{

H[L]W̌
}

= 0. (10.20)

This relation for the ideal solution of direct blind adaptive filtering problems is the
analogous expression to the relation (10.14) for the ideal solution of the inverse
blind adaptive filtering problems.
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W̌:1

W̌

H[L]

0

0

0

0

0

0

H(:\1):,[L]

Č

Fig. 10.2 Overall system Č for the ideal separation, illustrated for P = Q = 3

As we will see in this section, the relation (10.20) allows us

• To derive an explicit expression of the ideal separation solution analogously to
(10.17).

• To establish a link between BSS and BSI, which will serve as an important ba-
sis to the identification-and-inversion approach to blind dereverberation in the
general MIMO case

• To establish the conditions for ideal BSI.
• To derive the optimum separation FIR filter length Lopt,sep analogously to (10.18),

for which the ideal separation solution (10.19) can be achieved.

If we are only interested in separation with certain other constraints on the output
signals, but not in system identification, we may impose further explicit conditions
to the block-diagonal elements of H[L]W̌ in addition to the condition (10.20) on the
block-offdiagonals. For instance, the so-called minimum distortion principle after
[67] can, in fact, be regarded as such an additional condition. However, since this
is not within the scope of system identification we will not discuss these conditions
further in this chapter.

Traditionally, BSS has often been considered as an inverse problem (e.g., [32,
51]). In this section we show that the theoretically ideal convolutive (blind) source
separation solution corresponds to blind MIMO system identification. By choosing
an appropriate filter length L we show that for broadband algorithms the well-known
filtering ambiguity (e.g., [64]) can be avoided. In the following, we consider the
ideal broadband solution of mere MIMO separation approaches and relate it to the
known blind system identification approach based on single-input multiple-output
(SIMO) models [8, 36, 43]. This section follows the ideas outlined in [18, 21]. Some
of these ideas were also developed independently in [48] in a slightly different way.

This section discusses the ideal separation condition boff
{

H[L]W̌
}

= 0 as illus-
trated in Fig. 10.2 for the case Q = P = 3. Since in this equation we impose explicit
constraints only on the block-offdiagonal elements of Č, this is equivalent to estab-
lishing a set of homogeneous systems of linear equations
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H(:\q):,[L]W̌:q = 0, q = 1, . . . ,Q (10.21)

to be solved. Each of these systems of equations results from the constraints on
one column of Č, as illustrated in Fig. 10.2 for the first column. The notation in
the indices in (10.21) indicates that for the qth column W̌:q of the demixing filter
matrix W̌, we form a submatrix H(:\q):,[L] of H[L] by removing the qth row Hq:,[L] of
Sylvester submatrices of the original matrix H[L] .

For homogeneous systems of linear equations such as (10.21) it is known that
nontrivial solutions W̌:q �≡ 0 are indeed obtained if the rank of H(:\q):,[L] is smaller
than the number of elements of W̌:q. Based on this and later in this section, we
will also derive an expression of the optimum separation filter length Lopt,sep for an
arbitrary number of sensors and sources analogously to the optimum inversion filter
length Lopt,inv in (10.18).

In the following sections, we first discuss the solution of (10.21) for the case
P = Q = 2 and then generalize the results to more than two sources and sensors.

10.3.1 Ideal Separation Solution for Two Sources and Two Sensors

For the case Q = P = 2, the set of homogeneous linear systems of equations (10.21)
reads

H11,[L]w12 + H12,[L]w22 = 0, (10.22a)

H21,[L]w11 + H22,[L]w21 = 0. (10.22b)

Since the matrix-vector products in these equations represent convolutions of FIR
filters they can equivalently be written as a multiplication in the z-domain:

H11(z)W12(z)+ H12(z)W22(z) = 0, (10.23a)
H21(z)W11(z)+ H22(z)W21(z) = 0. (10.23b)

Due to the FIR filter structure the z-domain representations can be expressed by
the zeros z0Hqp,ν , z0Wpq,μ and the gains AHqp , AHpq of the filters Hqp(z) and Wpq(z),
respectively:
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AH11

M−1

∏
ν=1

(z− z0H11,ν) ·AW12

L−1

∏
μ=1

(z− z0W12,μ) =

−AH12

M−1

∏
ν=1

(z− z0H12,ν) ·AW22

L−1

∏
μ=1

(z− z0W22,μ), (10.24a)

AH21

M−1

∏
ν=1

(z− z0H21,ν) ·AW11

L−1

∏
μ=1

(z− z0W11,μ) =

−AH22

M−1

∏
ν=1

(z− z0H22,ν) ·AW21

L−1

∏
μ=1

(z− z0W21,μ). (10.24b)

Analogously to the case of MINT [68] described in the previous section, we assume
that the impulse responses contained in H(:\q):,[L], i.e., H11(z) and H12(z) in (10.24a)
and H21(z) and H22(z) in (10.24b), respectively, do not share common zeros. If
no common zeros exist and if we choose the optimum5 filter length for the case
Q = P = 2 as Lopt,sep = M, then the equality in (10.24a) can only hold if the zeros
of the demixing filters are chosen as z0W12,μ = z0H12,μ and z0W22,μ = z0H11,μ for μ =
1, . . . ,M−1. Analogously, the equality in (10.24b) can only hold if z0W11,μ = z0H22,μ
and z0W21,μ = z0H21,μ for μ = 1, . . . ,M − 1. Additionally, to fulfill the equality, the
gains of the demixing filters in (10.24a) have to be chosen as AW22 = α2AH11 and
AW12 =−α2AH12 , where α2 is an arbitrary scalar constant. Thus, the demixing filters
are only determined up to a scalar factor α2. Analogously, for the equality (10.24b)
the gains of the demixing filters are given as AW11 = α1AH22 and AW21 = −α1AH21

with the scalar constant α1.
In summary, this leads to the ideal separation filter matrix W̌ideal,sep given in the

time domain as

W̌ideal,sep =
[

α1h22 −α2h12
−α1h21 α2h11

]
=
[

h22 −h12
−h21 h11

][
α1 0
0 α2

]
, (10.25)

where due to the scaling ambiguity each column is multiplied by an unknown scalar
αq.

From (10.25) we see that under the conditions put on the zeros of the mixing sys-
tem in the z-domain, and for L = Lopt,sep, this ideal separation solution corresponds
to a MIMO system identification up to an arbitrary scalar constant. Thus, a suitable
algorithm that is able to perform broadband BSS under these conditions can be used
for blind MIMO system identification (if the source signals provide sufficient spec-
tral support for exciting the mixing system). In Sect. 10.4, a suitable algorithmic
framework for this task will be presented. Moreover, as we will see in the following
section, this approach can be seen as a generalization of the state-of-the-art method
for the blind identification of SIMO systems.

5 Note that for L < Lopt,sep = M it is obviously not possible to compensate all zeros of H11(z) and
H12(z) by W22(z) and W12(z), respectively. On the other hand, in the case L > Lopt,sep = M, the
filters W12(z) and W22(z) will exhibit L−M arbitrary common zeros, which are undesired. We will
consider the practically important issue of order-overestimation in Sect. 10.3.5.
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Fig. 10.3 Blind system identification based on (a) SIMO and (b) MIMO models

In practice, the difficulty of finding the correct filter length Lopt,sep is obviously
another important issue since the length M of the mixing system is generally un-
known. In Sect. 10.3.5 we will address this problem and the consequences of over-
estimation and underestimation, respectively.

10.3.2 Relation to MIMO and SIMO System Identification

From a system-theoretic point of view, the BSS approach aiming at the ideal solution
(10.25) can be interpreted as a generalization of the popular class of blind SIMO
system identification approaches, e.g., [36, 43, 61], as illustrated in Fig. 10.3(a).

The main reason for the popularity of this SIMO approach is that the optimum
filters can be found as the result of a relatively simple least-squares error minimiza-
tion. From Fig. 10.3(a) and for e(n) = 0 it follows for sufficient excitation s(n) that

h1(n)∗w1(n) = −h2(n)∗w2(n). (10.26)

This can be expressed in the z-domain as H1(z)W1(z) = −H2(z)W2(z). Comparing
this error cancelling condition with the ideal separation conditions (10.23a) and
(10.23b), we immediately see that the SIMO-based approach does indeed corre-
spond exactly to one of the separation conditions, and for deriving the ideal solution,
we may apply exactly the same reasoning as in the MIMO case above. Thus, assum-
ing that H1(z) and H2(z) have no common zeros, the equality of (10.26) can only
hold if the filter length is chosen again as L = M. Then, this leads to the ideal can-
cellation filters W1(z) = αH2(z) and W2(z) = −αH1(z), which can be determined
up to an arbitrary scaling by the factor α as in the MIMO case. For L > M, the
scaling ambiguity would result in arbitrary filtering. For the SIMO case, this scaling
ambiguity was derived similarly in [36].

Note that the SIMO case may also be interpreted as a special 2×2 MIMO case
according to Fig. 10.3(b) with the specialization being that one of the sources is
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always identical to zero so that the BSS output corresponding to this (virtual) source
must also be identical to zero, whereas the other BSS output signal is not of interest
in this case. This again leads to the cancellation condition (10.26) and illustrates that
the relation between broadband BSS and SIMO-based BSI will also hold from an
algorithmic point of view, i.e., known adaptive solutions for SIMO BSI can also be
derived as special cases of the algorithmic framework for the MIMO case.

Adaptive algorithms performing the error minimization mentioned above for the
SIMO structure have been proposed in the context of blind deconvolution, e.g.,
in [36, 43], and blind system identification for passive source localization, e.g.,
in [8, 27]. In the latter case, this algorithm is also known as the Adaptive Eigen-
value Decomposition (AED) algorithm, which points to the fact that, in the SIMO
case, the homogeneous system of equations (10.21) may be reformulated as an anal-
ogous signal-dependent homogeneous system of equations containing the sensor-
signal correlation matrix instead of the mixing filter matrix. The solution vector (in
the SIMO case the matrix W̌ reduces to a vector) of the homogeneous system can
then be interpreted as the eigenvector corresponding to the zero-valued (or smallest)
eigenvalue of the sensor correlation matrix. In [27, 43] this SIMO approach, i.e., the
single-source case, was also generalized to more than P = 2 microphone channels.
In Sect. 10.5 we will present how – from an algorithmic point of view – the AED
does indeed directly follow from the general TRINICON framework for broadband
adaptive MIMO filtering. Moreover, this will lead to a generalization of the original
least-squares-based AED algorithm so that it is able to additionally exploit higher-
order statistics and also contains an inherent adaptation control. This algorithmic
link between the SIMO and MIMO cases will also lead to important insights for the
direct-inverse approach to blind deconvolution later in Sect. 10.6.

10.3.3 Ideal Separation Solution and Optimum Separation Filter
Length for an Arbitrary Number of Sources and Sensors

As mentioned above, for homogeneous systems of linear equations such as the ideal
separation conditions (10.21) it is known that nontrivial solutions W̌:q �≡ 0 are ob-
tained if the rank of H(:\q):,[L] is smaller than the number of elements of W̌:q. Addi-
tionally, as in the case of MINT [68] described in the previous section, we assume
that the impulse responses contained in H(:\q):,[L] do not share common zeros in the
z-domain so that H(:\q):,[L] is assumed to have full row rank. Thus, combining these
conditions leads to the requirement that the matrix H(:\q):,[L] is wide, i.e., the number
PL of its columns must be greater than the number (Q−1)(M +L−1) of its rows to
obtain non-trivial solutions, i.e., PL > (Q− 1)(M + L− 1). Solving this inequality
for L yields the lower bound for the separation filter length as

Lsep >
Q−1

P−Q+ 1
(M−1). (10.27)
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The difference between the number of columns of H(:\q):,[L] and the number of
rows further specifies the dimension of the space of possible non-trivial solutions
W̌:q, i.e., the number of linearly independent solutions spanning the solution space.
Obviously, due to the bound derived above, the best choice we can make to narrow
down the solutions is a one-dimensional solution space, i.e., PL = (Q−1)(M +L−
1)+ 1. Now solving this equality for L and choosing the integer value to be strictly
larger than the above bound finally results in the optimum separation filter length as

Lopt,sep =
(Q−1)(M−1)+ 1

P−Q+ 1
. (10.28)

Note that narrowing down the solution space to a one-dimensional space by
this choice of filter length means precisely that in this case the filtering ambigu-
ity of BSS reduces to an arbitrary scaling. These considerations show that this is
possible even for an arbitrary number P of sensors and an arbitrary number Q of
sources, where P ≥ Q. However, the parameters P,Q,M must be such that Lopt,sep is
an integer number in order to allow the ideal separation solution. Otherwise, we
have to resort to approximations by choosing, e.g., the next higher integer, i.e.,
Lopt,sep = �[(Q−1)(M−1)+ 1]/(P−Q+ 1)�.

To actually obtain the ideal separation solution W̌ideal,sep with (10.28) for the
general, i.e., not necessarily square case P ≥ Q, we again consider the original set
of homogeneous systems of linear equations (10.21). For the choice L = Lopt,sep, we
may easily augment the matrix H(:\q):,[L] to a square matrix H̃(:\q):,[L] by adding one
row of zeros on both sides of (10.21). The corresponding augmented set of linear
systems of equations

H̃(:\q):,[L]W̌:q = 0, q = 1, . . . ,Q (10.29)

is equivalent to the original set (10.21). However, we may now interpret the general
solution vector W̌:q of (10.21) for the qth column of W̌ as the eigenvector corre-
sponding to the zero-valued eigenvalue of the augmented matrix H̃(:\q):,[L].

The general equation (10.28) for the optimum separation filter length plays the
same role for BSI as (10.18) for inversion. Comparing these two equations, we can
verify that in contrast to the inversion, which requires P > Q for the ideal solution
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using FIR filters, the ideal separation condition can be met for P = Q. Moreover, for
the special case P = Q = 2, the general expression (10.28) also confirms the choice
Lopt,BSS = M as already obtained in Sect. 10.3.1. Figure 10.4 compares the different
optimum filter lengths through an example.

10.3.4 General Scheme for Blind System Identification

In Sects. 10.3.1 and 10.3.2 we have explicitly shown the relation between the ideal
separation solution and the mixing system for the two-sensor cases. These consid-
erations also resulted in a link to the well-known SIMO-based system identification
method (note that for BSI with more than two sensors, a simple approach is to apply
several of these schemes in parallel, e.g., [49]), and also showed that the MIMO
case with two simultaneously active sources is a generalization of the SIMO system
identification method. In the case of more than two sources we cannot directly ex-
tract the estimated mixing system coefficients hqp,κ from the separation solution W̌.
The previous Sect. 10.3.3 generalized the considerations on the two-sensor cases for
the separation task. In this section, we now outline the generalization of the two-
sensor cases in Sects. 10.3.1 and 10.3.2 for the identification task which is the first
step of the identification-and-inversion approach to blind deconvolution, as detailed
in Sect. 10.3.5. The considerations so far suggest the following generic two-step BSI
scheme for an arbitrary number of sources (where P ≥ Q):

(1)Based on the available sensor signals, perform a properly designed broadband
BSS (see Sect. 10.4) resulting in an estimate of the demixing system matrix.

(2)Analogously to the relation (10.21) between the mixing and demixing systems,
and the associated considerations in Sect. 10.3.3 for the separation task, deter-
mine an estimate of the mixing system matrix using the estimated demixing sys-
tem from the first step.

In general, to perform step (2) for more than two sources, some further consider-
ations are required. First, an equivalent reformulation of the homogeneous system
of equations (10.21) is necessary so that now the demixing system matrix instead of
the mixing system matrix is formulated as a blockwise Sylvester matrix. Note that
this corresponds to a block-transposition (which we denote here by superscript bT)
of (10.21), i.e., (

WbT
)

(:\q):,[M]

(
ȞbT

)
:q

= 0, q = 1, . . . ,Q. (10.30)

The block-transposition is an extension of the conventional matrix transposition. It
means that we keep the original form of the channel-wise submatrices but we may
change the order of the mixing and demixing subfilters by exploiting the commu-
tativity of the convolutions. Note that the commutativity property does not hold for
the MIMO system matrices as a whole, i.e., W(:\q):,[M] and Ȟ:q, so that they have to
be block-transposed to change their order.
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Fig. 10.5 Identification-and-inversion approach to blind dereverberation

Similarly to Sect. 10.3.3, we may then calculate the corresponding estimate of
the mixing system in terms of eigenvectors using the complementary form (10.30)
of the homogeneous system of equations. Based on this system of equations, we can
devise various powerful strategies for BSI in the general MIMO case.

10.3.5 Application of Blind System Identification to Blind
Deconvolution

In order to obtain a complete blind dereverberation system after the identification-
and-inversion approach, the considerations in the previous sections suggest the
structure shown in Fig. 10.5. As discussed above, the acoustic MIMO mixing sys-
tem can be blindly identified by means of an adaptive broadband BSS algorithm.
Algorithmic solutions will be detailed in Sect. 10.5 based on the TRINICON frame-
work outlined in Sect. 10.4. For the subsequent inversion of the estimated mixing
system we refer to Sect. 10.2.

Attractive features of the identification-and-inversion approach to blind derever-
beration are that (1) it is relatively easy to deal with an increased number of mi-
crophone channels (the so-called overdetermined case for blind adaptive filtering)
by simple parallelization of BSI algorithms, and (2) the approach is applicable for
nearly arbitrary audio source signals, as long as they exhibit sufficient spectral sup-
port.

Based on the blind SIMO system identification mentioned in Sect. 10.3.2 (i.e.,
the estimate of the channel impulse responses is the eigenvector corresponding to
the minimum eigenvalue of the correlation matrix), the identification-and-inversion
approach to blind dereverberation was proposed, e.g., in [36, 43], for one acoustic
source signal.

Using the general scheme for blind MIMO system identification from the pre-
vious Sects. 10.3.1–10.3.4 and the TRINICON framework shown below, we are
now in a position to generalize the identification-and-inversion approach to multi-
ple simultaneously active sources, i.e., to the MIMO case. Note that the MINT in
Sect. 10.2 is already capable of handling the general MIMO case for P < Q. As in
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the SIMO case, the blind MIMO system identification approach has already been
successfully applied in the context of passive source localization in reverberant en-
vironments, e.g., in [19, 21].

Note that previously, in [49], the identification-and-inversion approach was dis-
cussed for the MIMO case under the assumption that from time to time each source
signal occupies a time interval exclusively. Then, during every single-talk inter-
val, a SIMO system was blindly identified and its channel impulse responses were
saved for later dereverberation when more than one source was active. Obviously,
in practice, the applicability of this approach will be very limited in time-varying
environments and with increasing numbers of independent sources (consider, e.g.,
a cocktail party scenario). In addition, a sophisticated multichannel sound source
detection algorithm that distinguishes single and multiple speaker activity would be
needed in practice. Such a required multichannel adaptation control is inherently
available in TRINICON-based BSS/BSI algorithms for the general MIMO case.

However, both in the SIMO case and in the general MIMO case, there are still
some fundamental challenges in the context of this dereverberation approach:

• The channel impulse responses must not exhibit common zeros in the z-domain
(both for the system identification (see Sects. 10.3.1 and 10.3.3) and also for the
subsequent system inversion (see Sect. 10.2)).

• The filter length must be known exactly (both for the system identification
(see Sects. 10.3.1 and 10.3.3) and for the subsequent system inversion (see
Sect. 10.2)).

The first problem can be mitigated in practice by increasing the number of micro-
phones so that the probability for common zeros is reduced [68]. Hence, the choice
of the correct filter length Lopt,sep is the major remaining difficulty in this approach.6

The consequences of overestimation and underestimation of the filter order can
be seen, e.g., from (10.24a) and (10.24b). In the case of underestimation, i.e., for
L < Lopt,sep = M it is obviously not possible to compensate all zeros of H11(z) and
H12(z) by W22(z) and W12(z), respectively. The case of overestimation, i.e., L >
Lopt,sep = M, is by far more problematic. In this case, the filters W12(z) and W22(z)
will exhibit L−M arbitrary common zeros, which are undesired. This corresponds
to the requirement to narrow down the solution space addressed in Sect. 10.3.3, by
avoiding an overestimation of the filter length in order to prevent a filtering ambi-
guity. In other words, in the overestimated case, the ideal blind identification so-
lution Ĥ1(z) = αH1(z) and Ĥ2(z) = αH2(z) turns into Ĥ1(z) = Cmin(z)H1(z) and
Ĥ2(z) = Cmin(z)H2(z) with the common polynomial Cmin(z) corresponding to an
arbitrary filtering. Consequently, after the inverse filtering in Fig. 10.5, the overes-
timation of the filter length would result in a remaining filtering 1/Cmin(z) of the
original source signals.

6 Note that in some other applications of blind adaptive filtering we do not require a complete
identification of the mixing system. For instance, for acoustic source localization only the positions
of the dominant components are required. Fortunately, this is in line with the requirement to avoid
an overestimation of the filter length. Thus, in these applications the choice L≤ Lopt,sep is preferable
in practice.
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Various ways exist to solve the filtering ambiguity problem caused by the over-
estimation of the filter order. The transfer function order could be obtained if the
dimension of the null space in the autocorrelation matrix of the observed signals
is precisely calculated [38, 43], i.e., by counting the number of very small eigen-
values. Another way to find the optimum order is to use a suitable cost function,
e.g., [9, 36, 77]. Unfortunately, these blind system order estimation approaches are
often unreliable (particularly in noisy environments) and computationally too com-
plex (especially the latter ones, i.e., [9, 36, 77]). An alternative approach proposed,
e.g., in [46] is to compensate for the remaining filtering 1/Cmin(z) using a post filter
(Fig. 10.5) by estimating the common polynomial with a multichannel linear pre-
diction scheme. This approach seems to be numerically very sensitive for large filter
lengths. Note also that this latter approach slightly limits the application domain by
assuming sources that can be modeled by AR processes, such as speech signals.

A fundamentally different alternative to the identification-and-inversion ap-
proach to blind dereverberation is the direct-inverse approach. Here, the aim is to
directly estimate the inverse MIMO filter after Sect. 10.2 based on a dereverberation
cost function. It is therefore inherently more robust to the order-overestimation prob-
lem. However, as we will see later in this chapter, this comes at the cost of the re-
quirement for a more precise stochastic modeling of the source signals, which again
specializes the application domain, e.g., to speech signals. Moreover, the direct-
inverse approach requires that all microphone channels be taken into account at
once, which renders the adaptation more complex.

Similar to the adaptation aspects of the identification-and-inversion approach in
Sect. 10.5, we will treat the algorithmic aspects of the direct-inverse approach in
Sect. 10.6. Both approaches are presented in a unified way based on TRINICON
as outlined next in Sect. 10.4. The unified treatment also allows for an illuminating
comparison.

10.4 TRINICON – A General Framework for Adaptive MIMO
Signal Processing and Application to Blind Adaptation
Problems

For the blind estimation of the coefficients corresponding to the desired solutions
discussed in the previous section, we have to consider and exploit the properties of
the excitation signals, such as their nonstationarity, their spectral characteristics, and
their probability densities.

In the existing literature, the known algorithms for blind system identification,
blind source separation, and blind deconvolution were introduced independently.
The BSS problem has mostly been addressed for instantaneous mixtures or by nar-
rowband approaches in the frequency domain, which adapt the coefficients indepen-
dently in each Discrete Fourier Transform (DFT) bin, e.g., [34, 51, 83]. On the other
hand, in the case of MCBD, many approaches either aim at whitening the output sig-
nals as they are based on an i.i.d. model of the source signals (e.g., [4, 28]), which
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is undesirable for generally nonwhite speech and audio signals, as these should not
be whitened, or are rather heuristically motivated, e.g., [40].

The aim of this section is to present an overview of the algorithmic part of broad-
band blind adaptive MIMO filtering based on TRINICON, a generic concept for
adaptive MIMO filtering that takes the signal properties of speech and audio sig-
nals (nonwhiteness, nonstationarity, and nongaussianity) into account, and allows a
unified treatment of broadband BSS (as needed for a proper BSI) and MCBD al-
gorithms as applicable to speech and audio signals in real acoustic environments
[13, 15–17]. This framework generally uses multivariate stochastic signal models in
the cost function to describe the temporal structure of the source signals and thereby
provides a powerful cost function for both, BSS/BSI and MCBD, and, for the latter,
also leads to improved algorithms for speech dereverberation.

Although both time-domain and equivalent broadband frequency-domain formu-
lations of TRINICON have been developed with the corresponding multivariate
models in both the time domain and the frequency domain [15, 17], in this chap-
ter we mainly consider the time-domain formulation. Furthermore, we restrict our-
selves here to gradient-based coefficient updates and disregard Newton-type adap-
tation algorithms for clarity and brevity. The algorithmic TRINICON framework is
directly based on the matrix notation developed above.

Throughout this section, we regard the symmetric case where the number Q of
maximum simultaneously active source signals sq(n) is equal to the number of sen-
sor signals xp(n), i.e., Q = P. However, it should be noted that in contrast to other
blind algorithms in the Independent Component Analysis (ICA) literature, we do
not assume prior knowledge about the exact number of active sources. Thus, even
if the algorithms will be derived for Q = P, the number of simultaneously active
sources may change throughout the application of the TRINICON-based algorithm
and only the condition Q ≤ P has to be fulfilled.

10.4.1 Matrix Notation for Convolutive Mixtures

To introduce an algorithm for broadband processing of convolutive mixtures, we
first need to formulate the convolution of the FIR demixing system of length L in
the following matrix form [17]:

yT(n) = xT(n)W, (10.31)

where n denotes the time index, and
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xT(n) = [xT
1 (n), . . . ,xT

P(n)], (10.32)

yT(n) = [yT
1 (n), . . . ,yT

P(n)], (10.33)

W =

⎡
⎢⎣

W11 · · · W1P
...

. . .
...

WP1 · · · WPP

⎤
⎥⎦ , (10.34)

xT
p(n) = [xp(n), . . . ,xp(n−2L+ 1)], (10.35)

yT
q (n) = [yq(n), . . . ,yq(n−D+ 1)] (10.36)

=
P

∑
p=1

xT
p(n)Wpq. (10.37)

The parameter D in (10.36), 1 ≤ D < L, denotes the number of lags taken into
account to exploit the nonwhiteness of the source signals as shown below. Wpq, p =
1, . . . ,P, q = 1, . . . ,P denote 2L×D Sylvester matrices that contain all coefficients
of the respective filters:

Wpq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wpq,0 0 · · · 0

wpq,1 wpq,0
. . .

...
... wpq,1

. . . 0

wpq,L−1
...

. . . wpq,0

0 wpq,L−1
. . . wpq,1

...
. . .

...
0 · · · 0 wpq,L−1
0 · · · 0 0
...

...
...

0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10.38)

Note that for D = 1, (10.31) simplifies to the well-known vector formulation of a
convolution, as it is used extensively in the literature on supervised adaptive filtering,
e.g., [45].

10.4.2 Optimization Criterion

Various approaches exist to blindly estimate the demixing matrix W for the above-
mentioned tasks by utilizing the following source signal properties [51] which we
all combine into an efficient and versatile algorithmic framework [13, 15, 16]:
(i) Nongaussianity is exploited by using higher-order statistics for ICA. ICA ap-
proaches can be divided into several classes. Although they all lead to similar update
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rules, the minimization of the mutual information among the output channels can be
regarded as the most general approach to solve direct adaptive filtering problems
according to Table 10.1, such as source separation [15, 51] and system identifica-
tion [19, 23]. To obtain an even more versatile estimator not only allowing spatial
separation but also temporal separation for dereverberation and inverse adaptive fil-
tering problems in general, we use the Kullback–Leibler Divergence (KLD) [29] be-
tween a certain desired joint PDF (essentially representing a hypothesized stochas-
tic source model) and the joint PDF of the actually estimated output signals [16].
Note that the mutual information is a special case of KLD [29]. The desired PDF
in the KLD is factorized with respect to the different sources (for the direct adap-
tive filtering problems, such as source separation) and possibly also with respect
to certain temporal dependencies (for inverse adaptive filtering problems, such as
dereverberation) as shown below. The KLD is guaranteed to be positive [29], which
is a necessary condition for a useful cost function.
(ii) Nonwhiteness is exploited by simultaneous minimization of output cross-
relations over multiple time-lags. We therefore consider multivariate PDFs, i.e.,
‘densities including D time-lags’.
(iii) Nonstationarity is exploited by simultaneous minimization of output cross-
relations at different time-instants. We assume ergodicity within blocks of length
N, so that the ensemble average is replaced by time averages over these blocks.

Based on the KLD, we now define the following general cost function taking into
account all three fundamental signal properties (i)-(iii):

J (m,W) = −
∞

∑
i=0

β (i,m)
1
N

iNL+N−1

∑
j=iNL

{
log(p̂s,PD(y( j)))− log(p̂y,PD(y( j)))

}
,

(10.39)

where p̂s,PD(·) and p̂y,PD(·) are the assumed or estimated PD-variate source model
(i.e., desired) PDF and output PDF, respectively. In this chapter we assume that these
PDFs are generally described by certain data-dependent parameterizations, so that
we can write in more detail

p̂s,PD = p̂s,PD

(
y,Q(1)

s ,Q(2)
s , . . .

)
(10.40a)

and
p̂y,PD = p̂y,PD

(
y,Q(1)

y ,Q(2)
y , . . .

)
, (10.40b)

respectively. We further assume that the model parameter estimates are given by the
generic form

Q(r)
s (i) =

1
N

iNL+N−1

∑
j=iNL

{
G(r)

s (y( j))
}

, r = 1,2, . . . , (10.41a)
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Q(r)
y (i) =

1
N

iNL+N−1

∑
j=iNL

{
G(r)

y (y( j))
}

, r = 1,2, . . . , (10.41b)

where G(r)
s and G(r)

y are suitable functions of the observation vectors y, and Q(r)
s and

Q(r)
y represent block-averages of G(r)

s (y) and G(r)
y (y), respectively. In general, the

bold calligraphic symbols denote multidimensional arrays, or in other words, tenso-
rial quantities. The elements of Q(r)

s , Q(r)
y , G(r)

s , and G(r)
y are denoted by Q(r)

s,i1,i2,...,

Q(r)
y,i1,i2,..., G

(r)
s,i1,i2,..., and G(r)

y,i1,i2,..., respectively, where i1, i2, . . . are the indices in the
corresponding tensor dimensions. Well-known special cases of such parameteriza-
tions are estimates of the variance σ̂2

y (i) = 1
N ∑iNL+N−1

j=iNL

{
y2( j)

}
and the correlation

matrix Ryy(i) = 1
N ∑iNL+N−1

j=iNL

{
y( j)yT ( j)

}
in the multivariate case PD > 1. The in-

dex m denotes the block time index for a block of N output samples shifted by NL
samples relatively to the previous block. Furthermore, D is the memory length, i.e.,
the number of time-lags to model the nonwhiteness of the P signals as above. β is
a window function with finite support that is normalized so that ∑m

i=0β (i,m) = 1,
allowing for online, offline, and block-online algorithms [3, 15].

10.4.3 Gradient-based Coefficient Update

In this chapter we concentrate on iterative gradient-based block-online coefficient
updates, which can be written in the general form

W̌0(m) := W̌(m−1), (10.42a)

W̌�(m) = W̌�−1(m)− μΔW̌�(m), � = 1, . . . , �max, (10.42b)

W̌(m) := W̌�max(m), (10.42c)

where μ is a step-size parameter, and the superscript index � denotes an iteration
parameter to allow for multiple iterations (� = 1, . . . , �max) within each block m. The
LP×P coefficient matrix W̌ (defined in (10.4)) to be optimized is smaller than the
2LP×DP Sylvester matrix W used above for the formulation of the cost function,
and it contains only the non-redundant elements of W.

Obviously, when calculating the gradient of J (m,W) with respect to W̌ explic-
itly, we are confronted with the problem of the different matrix formulations W
and W̌. The larger dimensions of W (see, e.g., (10.38)) are a direct consequence of
taking into account the nonwhiteness signal property by choosing D > 1. As noted
above, the rigorous distinction between these different matrix structures is an essen-
tial aspect of the general TRINICON framework and leads to an important building
block whose actual implementation is fundamental to the properties of the resulting
algorithm, the so-called Sylvester constraint (SC) on the coefficient update, formally
introduced in [15, 17]. Using the Sylvester constraint operator the gradient descent
update can be written as
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Fig. 10.6 Illustration of the generic Sylvester constraint (SC), after [19] for one channel

ΔW̌�(m) = SC {∇WJ (m,W)}|W=W�(m) . (10.43)

Depending on the particular realization of (SC), we are able to select both, well-
known and novel improved adaptation algorithms [3]. As discussed in [3] there are
two particularly simple and popular realizations of (SC) leading to two different
classes of algorithms (see Fig. 10.7):

1. Computing only the first column of each channel of the update matrix to obtain
the new coefficient matrix W̌. This method is denoted as (SCC).

2. Computing only the Lth row of each channel of the update matrix to obtain the
new coefficient matrix W̌. This method is denoted as (SCR).

It can be shown that in both cases the update process is significantly simplified [3].
However, in general, both choices require some tradeoff regarding algorithm per-
formance. While SCC may provide a potentially more robust convergence behavior,
it will not work for arbitrary source positions, which is in contrast to the more ver-
satile SCR [3]. Specifically, SCC allows us to adapt only causal demixing systems.
In geometrical terms this means that in the case of separating two sources using
SCC, they are required to be located in different half-planes with respect to the ori-
entation of the microphone array [3]. For separating sources located in the same
half-plane, or for more than two sources, noncausal demixing filters are required.
With SCR it is possible to initialize W̌pp, p = 1, . . . ,P with shifted unit impulses to
allow noncausal filter taps [3]. Since acoustic scenarios exhibit nonminimum phase
impulse responses, the need for noncausal demixing filters is further amplified in
the dereverberation application.

In [19] an explicit formulation of a generic Sylvester constraint was derived to
further formalize and clarify this concept, and to combine the versatility of SCR
with the robust performance of SCC [20]. It turns out that the generic Sylvester
constraint corresponds – up to the constant D denoting the width of the submatrices
– to a channel-wise arithmetic averaging of elements according to Fig. 10.6.
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(a)

W =

(b)
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(c)

W = W̌ =W̌ = W̌ =

SC SCC SCR

Fig. 10.7 Illustration of two efficient approximations of (a) the generic Sylvester constraint SC,
(b) the column Sylvester constraint SCC, and (c) the row Sylvester constraint SCR

Note that the previously introduced approaches, classified by the choice of
(SCC) or (SCR) as mentioned above, thus correspond to approximations of (SC)
by neglecting most of the elements within this averaging process, as illustrated in
Fig. 10.7. In Sect. 10.6, we will see that by choosing the different Sylvester con-
straints, we are also able to establish relations to various known multichannel blind
deconvolution algorithms from the literature.

It can be shown (see Appendix A) that by taking the gradient of J (m) with
respect to the demixing filter matrix W̌(m) according to (10.43), we obtain the fol-
lowing generic gradient descent-based TRINICON update rule:

ΔW̌�(m) =
1
N

∞

∑
i=0

β (i,m)SC
{

iNL+N−1

∑
j=iNL

x( j)
[
ΦT

s,PD(y( j))−ΦT
y,PD(y( j))

]}
,

(10.44a)
with the desired generalized score function

Φs,PD(y( j)) = −∂ log p̂s,PD(y( j))
∂y( j)

− 1
N ∑r ∑

i1,i2,...

∂G(r)
s,i1,i2,...

∂y

iNL+N−1

∑
j=iNL

∂ p̂s,PD

∂Q(r)
s,i1,i2,...

, (10.44b)

resulting from the hypothesized source model p̂s,PD, and the actual generalized score
function

Φy,PD(y( j)) = −∂ log p̂y,PD(y( j))
∂y( j)

− 1
N ∑r ∑

i1,i2,...

∂G(r)
y,i1,i2,...

∂y

iNL+N−1

∑
j=iNL

∂ p̂y,PD

∂Q(r)
y,i1,i2,...

, (10.44c)

where the stochastic model parameters are given by (10.41), and G(r)
s,i1,i2,..., G

(r)
y,i1,i2,...,

Q(r)
s,i1,i2,..., and Q(r)

y,i1,i2,... are the elements of G(r)
s , G(r)

y , Q(r)
s , and Q(r)

y , respectively,
as explained below (10.41). The form of the coefficient update (10.44a) with the
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generalized score functions (10.44b) and (10.44c) also fits well into the theory of
so-called estimating functions [5].

The hypothesized source model p̂s,PD(·) in (10.44b) is chosen according to the
class of signal processing problem to be solved (see Table 10.1). For instance, a
factorization of p̂s,PD(·) among the sources yields BSS (or BSI via the scheme de-
scribed in Sect. 10.3.4), i.e.,

p̂s,PD(y( j))
(BSS)
=

P

∏
q=1

p̂yq,D(yq( j)), (10.45a)

while a complete factorization leads to the traditional MCBD approach,

p̂s,PD(y( j))
(MCBD)

=
P

∏
q=1

D

∏
d=1

p̂yq,1(yq( j−d + 1)). (10.45b)

Additionally, in Sect. 10.6 we will introduce another, more general class, called the
MultiChannel Blind Partial Deconvolution (MCBPD) approach.

10.4.3.1 Alternative Formulation of the Gradient-based Coefficient Update

Both for practical realizations and also for some theoretical considerations, an
equivalent reformulation of the gradient-based update (10.44a) is often useful. This
alternative formulation is obtained by transforming the output signal PDF p̂y,PD(y)
in the cost function into the PD-dimensional input signal PDF using W as a mapping
matrix for this linear transformation. The relation (10.134) in Appendix B shows
this PDF transformation. (Note that the result of Appendix B is needed again later
in this chapter.) Gradient calculation as above leads to the alternative formulation of
the gradient-based update,

ΔW̌�(m) =

1
N

∞

∑
i=0

β (i,m)SC
{

iNL+N−1

∑
j=iNL

[
x( j)ΦT

s,PD(y( j))−V
((

W�−1(m)
)T

V
)−1

]}
,

(10.46a)

with the window matrix

V = Bdiag{Ṽ, . . . ,Ṽ}, (10.46b)

Ṽ =
[
ID×D, 0D×(2L−D)

]T
. (10.46c)
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10.4.4 Natural Gradient-based Coefficient Update

It is known that stochastic gradient descent generally suffers from slow conver-
gence in many practical problems due to statistical dependencies in the data being
processed. A modification of the ordinary gradient, which is especially popular in
the field of ICA and BSS due to its computational efficiency, is the so-called natu-
ral gradient [51]. It can be shown that by taking the natural gradient of J (m) with
respect to the demixing filter matrix W(m) [17],

ΔW̌ ∝ SC
{

WWT ∂J
∂W

}
, (10.47)

we obtain the following generic TRINICON-based update rule:

ΔW̌�(m) =

1
N

∞

∑
i=0

β (i,m)SC
{

iNL+N−1

∑
j=iNL

W�(i)y( j)
[
ΦT

s,PD(y( j))−ΦT
y,PD(y( j))

]}
.

(10.48)

Moreover, from (10.46a) we obtain an alternative formulation of (10.48):

ΔW̌�(m) =
∞

∑
i=0

β (i,m)SC
{

W�(i)

[
1
N

iNL+N−1

∑
j=iNL

y( j)ΦT
s,PD(y( j))− I

]}
, (10.49)

which exhibits an especially simple – and thus computationally efficient – structure.
An important feature of this natural gradient update is that its adaptation perfor-
mance is largely independent of the conditioning of the acoustic mixing system
matrix [17].

10.4.5 Incorporation of Stochastic Source Models

The general update equations (10.42) with (10.44), (10.46), (10.48) and (10.49) of-
fer the possibility to account for all the available information on the statistical prop-
erties of the desired source signals. To apply this general approach in a real-world
scenario, appropriate multivariate score functions ΦT

s,PD(y) (and ΦT
y,PD(y) where

required) in the update equations have to be determined, based on appropriate mul-
tivarate stochastic signal models.

The selection of the stochastic signal models is based on several different con-
siderations. As already illustrated by (10.45a) and (10.45b), the design of the signal
model is instrumental in defining the class of the adaptive filtering problem accord-
ing to Table 10.1. This aspect will be detailed in Sects. 10.5 and 10.6. Another
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important aspect is that many of the different adaptation techniques in the literature
represent different approximations of the probability density functions.

For estimating PDFs a distinction between parametric and non-parametric tech-
niques is common (see, e.g., [33]).

A parametric technique defines a family of density functions in terms of a set
of parameters as in (10.40a) and (10.40b). The parameters are then optimized so
that the density function corresponds to the observed samples. In the context of ICA
different parametric representations have been used. Examples include Gaussian
models in the simplest case, Gaussian mixture models, and generalized Gaussian
models. The important class of spherically-invariant random processes, as detailed
below, may also be understood as a parametric approach. Other parametric tech-
niques are based on higher moments [56], e.g., Gram–Charlier expansion, Parson
densities, or on higher cumulants [56], e.g., the Edgeworth expansion. As an impor-
tant representative of these techniques, we consider the Gram–Charlier expansion
for TRINICON, as detailed below.

The non-parametric techniques usually define the estimated density directly in
terms of the observed samples. The best known non-parametric estimate is the his-
togram, which is very data intensive. Somewhat less data is required by the Parzen
windows method [33]. Note that sometimes the above-mentioned techniques based
on series with higher moments are also classified as non-parametric in the litera-
ture [56]. Obviously, the incorporation of various assumptions about the densities by
truncating these series expansions in practice provides a smooth transition to pow-
erful parametric techniques that require less data than the simpler non-parametric
techniques.

Another important aspect in the choice of stochastic models is their robustness.
According to [50], robustness denotes insensitivity to a certain amount of deviations
from the statistical modeling assumptions due to some fraction of outliers with some
arbitrary probability density. Unfortunately, many of the traditional estimation tech-
niques, such as least-squares estimation, or the higher-order techniques mentioned
above turn out to be fairly sensitive in this sense. The theory of robust statistics [50]
provides a systematic framework to robustify the various techniques and it has been
very successfully applied to adaptive filtering, e.g., [39]. In [23] the theory of mul-
tivariate robust statistics was introduced in TRINICON. Although we will not con-
sider the robustness extensions in detail in this chapter, it is important to note that
they fit well into the general class of spherically-invariant random processes detailed
below.

Finally, it should be noted that in addition to the model selection the choice of
estimation procedure for the corresponding stochastic model parameters (e.g., cor-
relation matrices in (10.50) below, higher-order moments, scaling parameter for ro-
bust statistics in [23], etc.), in other words, the practical realization of (10.41), is
another important design consideration. The estimation of the stochastic model pa-
rameters and the TRINICON-based updates of the adaptive filter coefficients are
performed in an alternating way.

Similar to the estimation of correlation matrices in linear prediction problems
[66] in actual implementations we have to distinguish between the more accurate
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so-called covariance method and the approximative correlation method leading to a
lower complexity, e.g., [3]. As we will see later in this chapter, based on these dif-
ferent estimation methods for the correlation matrices and on the above-mentioned
approximations SCR{·} and SCC{·} of the Sylvester constraint SC{·} we can es-
tablish an illustrative classification scheme for BSI and deconvolution algorithms.

10.4.5.1 Spherically Invariant Random Processes as Signal Model

An efficient and fairly general solution to the problem of determining the high-
dimensional score functions in broadband adaptive MIMO filtering is to assume
so-called spherically invariant random processes (SIRPs), e.g., [11, 42, 85], as pro-
posed in [13, 15]. The general form of correlated SIRPs of Dth order is given with a
properly chosen function fp,D(·) for the pth output channel of the MIMO system by

p̂yp,D(yp( j)) =
1√

πDdet(Rypyp(i))
fp,D

(
yT

p ( j)R−1
ypyp

(i)yp( j)
)

, (10.50)

where Rypyp denotes the corresponding D×D autocorrelation matrix with the cor-
responding number of lags. These models are representative for a wide class of
stochastic processes. Speech signals in particular can be represented by SIRPs very
accurately [11]. A major advantage arising from the SIRP model is that multivariate
PDFs can be derived analytically from the corresponding univariate PDF together
with the (lagged) correlation matrices. The function fp,D(·) can thus be calculated
from the well-known univariate models for speech, e.g., the Laplacian density. Us-
ing the chain rule, the corresponding score function, e.g., (10.44b) can be derived
from (10.50), as detailed in [13, 15].

To calculate the score function for SIRPs in general, we employ the chain rule to
(10.50) so that the first term in (10.44b) reads

−
∂ log p̂yp,D(yp)

∂yp
= −

∂ p̂yp,D(yp)
∂yp

p̂yp,D(yp)
= 2

[
− 1

fp,D(up)
∂ fp,D(up)

∂up

]

︸ ︷︷ ︸
:=φyp,D(up)

R−1
ypyp(i)yp( j),

(10.51)
where up = yT

p R−1
ypypyp. For convenience, we call the scalar function φyp,D(up) the

SIRP score. It can be shown (after a somewhat tedious but straightforward deriva-
tion) that for SIRPs in general, the second term in (10.44b) is equal to zero so that the
general score function is given by the simple expression (10.51). A great advantage
of SIRPs is that the required function fD(u) can actually be derived analytically from
the corresponding univariate PDF [11]. As a practical important example, follow-
ing the procedure in [11], we obtain, e.g., as the optimum SIRP score for univariate
Laplacian PDFs [13]:
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φyq,D(uq) = − 1

D−
√

2uq
KD/2+1(

√
2uq)

KD/2(
√

2uq)

, (10.52)

where Kν(·) denotes the ν th order modified Bessel function of the second kind.

10.4.5.2 Multivariate Gaussians as Signal Model: Second-order Statistics

To see the link to adaptation algorithms that are based purely on second-order statis-
tics (SOS), we use the model of multivariate Gaussian PDFs

p̂yp,D(yp( j)) =
1√

(2π)DdetRypyp(i)
e−

1
2 yT

p ( j)R−1
ypyp(i)yp( j) (10.53)

as a special case of a SIRP with fq,D(uq) = 1√
2D exp(− 1

2 uq). Hence, the score func-
tion for the generic SOS case is obtained straightforwardly from (10.51) for the
constant SIRP score φyp,D(up) = 1/2, and it can be shown that most of the popular
SOS-based adaptation algorithms represent special cases of the corresponding algo-
rithms based on SIRPs, e.g., [13, 15, 16, 23]. Moreover, by transforming the model
into the DFT domain, this relation also carries over to various links to novel and
existing popular frequency-domain algorithms [15, 19].

It is interesting to note that the generic SOS-based update was originally obtained
independently in [17] (first for the BSS application) as a generalization of the cost
function of [55]:

JSOS (m,W) =
∞

∑
i=0

β (i,m){logdetRss(i)− logdetRyy(i)} . (10.54)

This cost function can be interpreted as a distance measure between the actual time-
varying output-correlation matrix Ryy and a certain desired output-correlation ma-
trix Rss.

10.4.5.3 Nearly Gaussian Densities as Signal Model

Two different expansions are commonly used to obtain a parameterized representa-
tion of probability density functions that only slightly deviate from the Gaussian
density (often called nearly Gaussian densities): the Edgeworth and the Gram–
Charlier expansions, e.g., [51]. They lead to very similar approximations, so here
we only consider the Gram–Charlier expansion. As explained in Appendix C, these
expansions are based on the so-called Chebyshev–Hermite polynomials PH,n(·).

We first illustrate the idea in the univariate case. A fourth-order expansion of a
univariate, zero-mean, and nearly Gaussian PDF is given in (10.140) in Appendix C
with the estimates of skewness κ̂3 = Ê

{
y3} and the kurtosis κ̂4 = Ê

{
y4}− 3σ̂4,
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the latter one being the most important higher-order statistical quantity in our con-
text. Generally, speech signals exhibit supergaussian densities whose third-order
cumulants are negligible compared to its fourth-order cumulants. Therefore, we are
particularly interested in the approximation

p̂(y) ≈ 1√
2πσ̂

e−
y2

2σ̂2

(
1 +

κ̂4

4! σ̂4 PH,4

( y
σ̂

))
. (10.55)

Similar to the specialization (10.54) of the TRINICON optimization criterion
for the case of SOS, the Gram–Charlier-based model also allows an interesting il-
lustration of the criterion. By exploiting the near-gaussianity by the approximation
log(1 + ε) ≈ ε for log

(
1 + κ̂4

4! σ̂4 PH,4
( y
σ̂
))

in the logarithmized respresentation of

(10.55), and noting that PH,4
( y
σ̂
)

=
( y
σ̂
)4 − 6

( y
σ̂
)2 + 3 we can develop the follow-

ing expression appearing in the TRINICON criterion (10.39):

1
N

iNL+N−1

∑
j=iNL

log p̂(y)

≈ 1
N

(
iNL+N−1

∑
j=iNL

log
1√

2πσ̂
e−

y2

2σ̂2

)
+

1
N

(
iNL+N−1

∑
j=iNL

κ̂4

4! σ̂4 PH,4

( y
σ̂

))

=
1
N

(
iNL+N−1

∑
j=iNL

log
1√

2πσ̂
e−

y2

2σ̂2

)
+

κ̂2
4

4!(σ̂2)4 , (10.56)

where κ̂4 = 1
N ∑iNL+N−1

j=iNL
y4 − 3σ̂4 represents an estimate for the kurtosis based on

block averaging. As we can see, in addition to the SOS, the optimization is directly
based on the normalized kurtosis, which is a widely-used measure of nongaussian-
ity. This additive representation will play a particularly important role in the appli-
cation to the direct-inverse approach to blind dereverberation in Sect. 10.6.

To obtain general coefficient update rules based on this representation, we fi-
nally consider the multivariate formulation of the Gram–Charlier expansion after
(10.146a) in Appendix C. To calculate the multivariate Chebyshev–Hermite poly-
nomials, we apply the relation

PH,n(yp) =
D

∏
d=1

PH,nd (yd,p) (10.57)

from (10.144) so that

p̂yp,D(yp( j)) =
1√

(2π)DdetRypyp(i)
e−

1
2 yT

p ( j)R−1
ypyp (i)yp( j)

×
∞

∑
n1=0

· · ·
∞

∑
nD=0

an1...nD,p PH,n1

([
L−1

p (i)yp( j)
]

1

)
. . .PH,nD

([
L−1

p (i)yp( j)
]

D

)
,
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with the coefficients according to (10.146b),

an1...nD,p =
Ê
{

PH,n1

([
L−1

p (i)yp( j)
]

1

)
. . .PH,nD

([
L−1

p (i)yp( j)
]

D

)}

n1! . . .nD!
. (10.58)

Multivariate generalizations of the skewness and the kurtosis were introduced by
Mardia in [65]. In our context the corresponding multivariate generalization of the
kurtosis can be written as

κ̂ (D)
4,norm = Ê

{[
yT

p ( j)R−1
ypyp(i)yp( j)

]2
}
−D(D+ 2). (10.59)

Similar to the univariate case, this quantity can be related to our formulation of the
multivariate probability density. Note that for D = 1 it corresponds to the traditional
normalized kurtosis κ̂4/σ̂4 = Ê{y4

p}/σ̂4 −3, as it appears in, e.g., (10.55).
In this chapter, we further consider an important special case of this general mul-

tivariate model, which is particularly useful for speech processing. In this case, the
inverse covariance matrix R−1

ypyp = (LT
p Lp)−1 is first factorized as [62]

R−1
ypyp

(i) = Ap(i)Σ−1
ỹpỹp

(i)AT
p (i), (10.60)

where Ap(i) and Σỹpỹp(i) denote a D×D unit lower triangular matrix (i.e., its ele-
ments on the main diagonal are equal to 1) and a diagonal matrix, respectively [62].
The D×D unit lower triangular matrix Ap(i) can be interpreted as a (time-varying)
convolution matrix of a whitening filter. It is therefore convenient for computa-
tional reasons to model the signal yp as an autoregressive (AR) process of order
nA = D− 1, with time-varying AR coefficients ap,k(n), and residual signal ỹp(n),
i.e.,

yp(n) = −
D−1

∑
k=1

ap,k(n)yp(n− k)+ ỹp(n). (10.61)

The matrices Ap and Σỹpỹp can then be written as

Ap =

⎡
⎢⎢⎢⎣

1 ap,1(n) ap,2(n) · · · · · · · · · · · · ap,D−1(n)
0 1 ap,1(n−1) · · · · · · · · · · · · ap,D−2(n−1)
...

...
...

. . .
...

...
. . .

...
0 0 0 · · · 0 0 · · · 1

⎤
⎥⎥⎥⎦

T

(10.62)
and

Σỹpỹp = Diag
{
σ̂2

ỹp(n), . . . , σ̂2
ỹp(n−D+ 1)

}

= Ê

⎧⎪⎨
⎪⎩

⎡
⎢⎣

ỹp(n)
...

ỹp(n−D+ 1)

⎤
⎥⎦ [ỹp(n), . . . , ỹp(n−D+ 1)]

⎫⎪⎬
⎪⎭ . (10.63)
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Now, the multivariate stochastic signal model can be rewritten by shifting the pre-
filtering matrix Ap into the data terms, i.e.,

ỹp := AT
p yp = [ỹp(n), ỹp(n−1), . . . , ỹp(n−D+ 1)]T . (10.64)

Moreover, by assuming the whitened elements of vector ỹp to be i.i.d. (which
in practice is a widely used assumption in AR modeling), so that the ex-
pansion coefficients an1···nD,p are factorized, due to (10.57) with Lp(i) =

Diag
{

1
σ̂ỹp ( j) , . . . ,

1
σ̂ỹp ( j−D+1)

}
AT (i) and (10.64) we obtain the following model rep-

resentation:

p̂yp,D(yp( j)) =
D

∏
d=1

1√
2π σ̂2

ỹp
( j−d + 1)

e
− ỹ2

p( j−d+1)

2σ̂2
ỹp

( j−d+1)

×
∞

∑
nd=0

Ê
{

PH,nd

(
ỹp( j−d+1)
σ̂ỹp ( j−d+1)

)}

nd!
PH,nd

(
ỹp( j−d + 1)
σ̂ỹp( j−d + 1)

)
.

By considering only the fourth-order term in addition to SOS again, i.e.,

p̂yp,D(yp( j)) =
D

∏
d=1

1√
2π σ̂2

ỹp
( j−d + 1)

e
− ỹ2

p( j−d+1)

2σ̂2
ỹp

( j−d+1)

×
(

1 +
κ̂4,ỹp

4!σ4
ỹp

( j−d + 1)
PH,nd

(
ỹp( j−d + 1)
σ̂ỹp( j−d + 1)

))
,

and by exploiting the near-gaussianity using the approximation log(1 + ε) ≈ ε , af-
ter a straightforward calculation we obtain the following expression for the score
function (10.44c):

Φy,PD(y( j)) = A(i)

[
ỹp( j−d + 1)

2σ̂2
ỹp

( j−d + 1)
−

⎛
⎜⎝ ∑iNL+N−1

j=iNL
ỹ4

p( j−d + 1)

3
(
∑iNL+N−1

j=iNL
ỹ2

p( j−d + 1)
)2 −1

⎞
⎟⎠

×
(

ỹ3
p( j−d + 1)

σ̂4
ỹp

( j−d + 1)
−

ỹp( j−d + 1)∑iNL+N−1
j=iNL

ỹ4
p( j−d + 1)

σ̂6
ỹp

( j−d + 1)

)]
,

(10.65)

where the expression in brackets denotes a column vector composed of the elements
for d = 1, . . . ,D and p = 1, . . . ,P, and A(i) = [A1(i), . . . ,AP(i)] after (10.62). Note
that the first term corresponds to the SOS as in (10.51), while the second term is re-
lated to the multivariate normalized kurtosis. This expression will play an important
role in Sect. 10.6.
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10.5 Application of TRINICON to Blind System Identification
and the Identification-and-inversion Approach to Blind
Deconvolution

In Sect. 10.3 we developed the identification-and-inversion approach to blind de-
convolution from a system-theoretic point of view. We have seen that in the general
MIMO case its practical (i.e., adaptive) realization can be traced back to the prob-
lem of blind source separation for convolutive mixtures with appropriately chosen
filter length L and subsequent inversion, e.g., using MINT (Fig. 10.5). Both signal
separation and system identification belong to the class of direct adaptive filtering
problems according to Table 10.1. On the other hand, it was shown that in the SIMO
case this approach leads to a well-known class of realizations for which the AED
algorithm in its various versions is known from the literature. Hence, as the two
main aspects in this section

• We discuss the specialization of the TRINICON framework to practical algo-
rithms that are suitable for adaptive MIMO BSI. Various different BSS algo-
rithms have been proposed in recent years (e.g., [64]), and many of them can be
related to TRINICON [15, 19]. However, of special importance for BSI and the
identification-and-inversion approach to dereverberation are efficient realizations
of broadband BSS algorithms.

• We develop the relation to the SIMO case explicitly from an algorithmic point of
view. This will lead to various new insights and also to some generalizations of
the AED.

Both of these main aspects will also serve as important starting points for the de-
velopments in Sect. 10.6. An experimental comparison of the identification-and-
inversion approach with the direct-inverse approach to blind dereverberation also
follows in Sect. 10.6.

10.5.1 Generic Gradient-based Algorithm for Direct Adaptive
Filtering Problems

To begin with, we specialize TRINICON to the case of direct adaptive filtering prob-
lems, i.e., signal separation and system identification. Again, for simplicity of the
presentation, we concentrate here on iterative Euclidean gradient-based and natu-
ral gradient-based block-online coefficient updates. As mentioned in Sect. 10.4, the
class of signal separation and system identification algorithms is specified by the
factorization of the hypothesized source model p̂s,PD(·) among the sources accord-
ing to (10.45a). The desired multivariate score function then becomes the partitioned
vector
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Φs,PD(y( j)) =
[
ΦT

y1,D(y1( j)), . . . ,ΦT
yP,D(yP( j))

]T
, (10.66a)

Φyp,D(yp( j)) = −
∂ log p̂yp,D(yp( j))

∂yp( j)
. (10.66b)

The corresponding generic coefficient update rules are then directly given by
(10.44a), (10.46a), (10.48), and (10.49).

In this section, our considerations are based on the SIRP model (including SOS
as a special case). Accordingly, each partition of the vector (10.66a) is given by
(10.51). The resulting general class of broadband BSS algorithms was first presented
in [13] and has led to various efficient realizations so far (see Sect. 10.5.3). The idea
of using a SIRP model was also adopted, e.g., in the approximate DFT-domain
realizations [47, 57].

10.5.1.1 Illustration for Second-order Statistics

By setting the SIRP scores φyp,D(·) = 1/2, p = 1, . . . ,P, we obtain the particularly
illustrative case of SOS-based adaptation algorithms. Here, the source models are
simplified to multivariate Gaussian functions described by PD×PD correlation ma-
trices R estimated from the length N signal blocks, so that the update rules (10.44a)
and (10.48) lead to [16]

ΔW̌(m) =
∞

∑
i=0

β (i,m)SC
{

Rxy(i)
[
R−1

ss (i)−R−1
yy (i)

]}
(10.67)

and

ΔW̌(m) =
∞

∑
i=0

β (i,m)SC
{

W(i)Ryy(i)
[
R−1

ss (i)−R−1
yy (i)

]}

=
∞

∑
i=0

β (i,m)SC
{

W(i) [Ryy(i)−Rss(i)]R−1
ss (i)

}
, (10.68)

respectively. The BSS versions of these generic SOS natural gradient updates follow
immediately by setting

Rss(i) = bdiagRyy(i). (10.69)

The update (10.68) together with (10.69) was originally obtained independently in
[17] from the cost function (10.54). The mechanism of (10.68) based on the model
(10.69) is illustrated in Fig. 10.8. By minimizing JSOS(m), all cross-correlations
for D time-lags are reduced and will ideally vanish, while the auto-correlations are
untouched to preserve the structure of the individual signals.

A very important feature of the TRINICON-based coefficient updates is the in-
herent normalization by the auto-correlation matrices, reflected by the inverse of
Rss(i) = bdiagRyy(i) in (10.68). As we will see in Sect. 10.5.2, this normalization
can in fact be interpreted as an adaptive step-size control. In fact, as was shown
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D

D

Each diagonal
represents
one time-lag

Auto-correlation Ry1y1 Cross-correlation Ry1y2

Fig. 10.8 Illustration of SOS-based broadband BSS

in [15], the update equations of another very popular subclass of second-order BSS
algorithms, based on a cost function using the Frobenius norm7 ‖A‖2

F = ∑i, j a2
i j

of a matrix A = (ai j), e.g., [26, 51, 52, 69, 74, 79], differ from the more general
TRINICON-based updates mainly in the inherent normalization. The gradient-based
update resulting from the Frobenius norm can be regarded as an analogon to the tra-
ditional Least Mean Square (LMS) algorithm [45] in supervised adaptive filtering
without step-size control. Indeed, many simulation results have shown that for large
filter lengths L, these Frobenius-based updates are prone to instability, while the
properly normalized updates show a very robust convergence behaviour even for
hundreds or thousands of filter coefficients for the application in real acoustic envi-
ronments, e.g., [17]. As we will see in Sect. 10.6, an analogous consideration con-
cerning the inherent normalization is also possible for dereverberation algorithms of
the direct-inverse-type.

The realization of this normalization is also an important aspect in various ef-
ficient approximations of generic broadband algorithms, e.g., [2, 3, 72], with a re-
duced computational complexity for real-time operation. Moreover, a close link has
been established [15, 17] to various popular frequency-domain algorithms, as we
discuss in more detail in Sect. 10.5.3.

In Sect. 10.5.2 we show that taking into account the nongaussianity (in addition
to the SOS) can be regarded as a further improvement of the inherent adaptation
control.

10.5.2 Realizations for the SIMO Case

As mentioned in Sect. 10.3.5, most of the existing literature on the identification-
and-inversion approach to blind deconvolution is based on the SIMO mixing model,
e.g., [9, 36, 38, 43, 46, 49, 77]. Using the TRINICON framework, the approach has
been developed rigorously for the more general MIMO case based on first princi-
ples.

7 Analogously to the TRINICON-based JSOS this approach may be generalized for convolutive
mixtures to JF(m) =∑∞

i=0 β (i,m)‖Ryy(i)−bdiagRyy(i)‖2
F.
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In this section we show how to deduce the class of SIMO-based algorithms from
TRINICON. Besides a generalization of these algorithms, this consideration will
also serve as an important background for the later developments in Sect. 10.6.

As a starting point, we consider the gradient-based update (10.46a) of the MIMO
demixing system W̌ with the specialized score function (10.66) for separation and
identification problems.

The ideal separation filter matrix W̌ideal,sep in the 2×2 case is given by (10.25),
i.e.,

W̌ideal,sep =
[

h22 −h12
−h21 h11

][
α1 0
0 α2

]
, (10.70)

where due to the scaling ambiguity (in blind problems) each column is multiplied
by an unknown scalar αq. For L = Lopt,sep = M, this ideal separation solution corre-
sponds to a MIMO system identification up to an arbitrary scalar constant (indepen-
dently of the adaptation method and the possible prior knowledge).

We now consider the SIMO mixing model in Fig. 10.3(a) as a specialization of
the MIMO mixing model in Fig. 10.3(b), i.e., h11 → h1, h12 → h2, h21 → 0, h22 → 0.

According to the right-hand side of (10.70) the corresponding ideal demixing
system taking into account this prior knowledge reads as

[
w11 w12
w21 w22

]
= α

[
0 −h2
0 h1

]
. (10.71)

By comparing both sides of this equation, we immediately obtain the correspond-
ing demixing system structure shown on the right-hand side in Fig. 10.3(a). This is
indeed the well-known SIMO BSI/AED approach, which in this way follows rig-
orously from the general equation (10.70) together with prior knowledge on the
specialized mixing system. Moreover, we can see that only the second column of
the demixing matrix is relevant for the adaptation process. The elements of the first
column can be regarded as don’t cares.

We now consider the second term of the coefficient update (10.46a). From the
relation (10.134) in Appendix B it immediately follows that

log p̂y,PD(y(n)) = const. ∀ W ⇒ log
∣∣det

{
VTW

}∣∣= const. ∀ W. (10.72)

Specifically, in the case of SOS (e.g., (10.54)) this leads to

log |detRyy| = const. ∀ W ⇒ log
∣∣det

{
VTW

}∣∣= const. ∀ W. (10.73)

As the second term in the update (10.46a) respresents the gradient of the expres-
sion log

∣∣det
{

VTW
}∣∣ with respect to W, we conclude that the second term in the

coefficient update is equal to zero if detRyy is independent of W. We therefore now
consider the dependence of detRyy on W in more detail. Since Ryy = Ê{yyT} =
WT HT RssHW, we have

log |detRyy| = log |detRss|︸ ︷︷ ︸
=const. ∀ W

+2 log
∣∣det{WT HT}

∣∣ . (10.74)
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Now let W =
[
WT

1 , . . . ,WT
P
]T and H = [H1, . . . ,HP] be MISO and SIMO, respec-

tively, as special case of the MIMO definition (10.12). In this special case, the input–
output relation of the overall system reads as

y = WT HT s =

(
P

∑
p=1

WT
p HT

p

)
s, (10.75)

and ∑P
p=1 WT

p HT
p represents an upper triangular matrix with diagonal elements

∑P
p=1 wp,0hp,0. Hence, in the SIMO case, (10.74) simplifies to

log |detRyy| = const.+ 2N log

∣∣∣∣∣
P

∑
p=1

wp,0hp,0

∣∣∣∣∣ . (10.76)

Again, in the special case of only one active source, we can formulate an interesting
statement concerning the first taps wp,0 of the demixing subfilters. As the demixing
subfilters ideally compensate for the individual time-differences of arrival at the mi-
crophones, only the subfilter wpfar connected to the microphone that has the greatest
distance to the source, may exhibit a nonzero value at its first tap weight, i.e.,

wp,0 = α ·δp,pfar, (10.77)

where δi j denotes the Kronecker symbol. Introducing this property finally leads to

log |detRyy| = const.+ 2N log
∣∣αhpfar,0

∣∣
= const. (10.78)

Hence, together with (10.73), we can draw the conclusion that in the SIMO case, the
second term of the coefficient update (10.46a) disappears without loss of generality.

Next, we consider the first term x( j)ΦT
s,PD(y( j)) in the coefficient update

(10.46a) for the SIMO case and note that its second (block) column reads as
x( j)ΦT

y2,D(y2( j)). We now perform the following formal substitutions in order to
be in accordance with the literature on blind SIMO identification and supervised
adaptive filtering, e.g., [45] (see Figs. 10.3(a) and (b)):

y2 → e,
[

w12
w22

]
=
[

−ĥ2
ĥ1

]
→ w =

[
w1
w2

]
. (10.79)

Hence, the second column of the first term of the coefficient update is finally ex-
pressed as x( j)ΦT

e,D(e( j)). Note that the substitution of the coefficient notation in
(10.79) is justified by (10.71).

Thus, we obtain the following sub-matrix of the specialized gradient-based
TRINICON update:
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w�(m) = w�−1(m)+
μ
N

∞

∑
i=0

β (i,m)SC
{

iNL+N−1

∑
j=iNL

x( j)ΦT
e,D(e( j))

}
. (10.80)

This formally represents the triple-N-generalization of the LMS algorithm from su-
pervised adaptive filtering theory (see also [23]), which in its well-known original
form exhibits the simple update [45]

w(n) = w(n−1)+ μ x̌(n)e(n), (10.81)

where the length-L vector x̌ is a truncated version of x (formally, this truncation is
obtained by (SC) for D = 1, see Fig. 10.6). Although not shown in this chapter, it is
possible to analogously derive the corresponding generalizations of other supervised
algorithms (NLMS, RLS, etc., which may essentially be seen as special cases of a
Newton-type update, e.g., [22]) by choosing a Newton-type TRINICON coefficient
update instead of the gradient descent-type update.

From the generalized LMS update (10.80) above we can make the following
observations in comparison with the simple case (10.81): Due to the generalized
approach, we inherently obtain

• block online adaptation, possibly with multiple iterations � to speed up the con-
vergence [15]

• block averaging by N > 1 for a more uniform convergence
• an error nonlinearity to take into account the nongaussianity of the signals (by a

proper choice of ΦT
e,D(·))

• multivariate error e to take into account the nonwhiteness of the signals (by
choosing D > 1).

Note that, in various ways, the RLS algorithm can be seen as the optimal supervised
adaptation algorithm. However, the RLS is optimum only in the case of a Gaussian
source signal and Gaussian additive noise on the microphones, with the noise being
additionally stationary and white. The general update resulting from TRINICON
does not have these restrictions.

10.5.2.1 Coefficient Initialization

The general relation between MIMO BSI and SIMO BSI also leads to an important
guideline for the initialization of the filter coefficients. In particular, we consider
the question whether the algorithm can converge to the (undesired) trivial solution
w = 0. As we will show, the answer is no, as long as the initialization w(0) is not
orthogonal to the ideal solution wideal =

[
−hT

2 hT
1
]T .

To prove this condition, we pre-multiply the update (10.80) with wT
ideal on both

sides of the update equation:
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wT
idealw

�(m) = wT
idealw

�−1(m)+
μ
N

∞

∑
i=0

β (i,m)

×
[
−hT

2 hT
1
]
SC

{
iNL+N−1

∑
j=iNL

[
x1( j)
x2( j)

]
ΦT

e,D(e( j))

}
, (10.82)

wT
idealw

�(m) = wT
idealw

�−1(m)+
μ
N

∞

∑
i=0

β (i,m)

×
iNL+N−1

∑
j=iNL

(
hT

1 SC
{

x2( j)ΦT
e,D(e( j))

}
−hT

2 SC
{

x1( j)ΦT
e,D(e( j))

})
. (10.83)

With (10.148) from Appendix D this expression can be expanded to

wT
idealw

�(m) = wT
idealw

�−1(m)+
μ
N

∞

∑
i=0

β (i,m)

×
iNL+N−1

∑
j=iNL

D

∑
l=1

(
hT

1 x̌2( j− l + 1)−hT
2 x̌1( j− l + 1)

)
Φe,l(e( j)). (10.84)

Since hT
1 x̌2(·) − hT

2 x̌1(·) ≡ 0 is fixed due to the acoustic model, we have
wT

idealw
�(m) = wT

idealw
�−1(m) = const., i.e., provided that wT

idealw(0) �= 0, the co-
efficient vector w will not converge to zero.

10.5.2.2 Efficient Implementation of the Sylvester Constraint for the Special
Case of SIMO Models

As already explained for the general MIMO case, we also further specialize the
generalized LMS update (10.80) by incorporating the SIRP model. Introducing the
score function (10.51) immediately leads to a SIRPs-based generalized LMS update
analogously to [23]

w�(m) = w�−1(m)+
2μ
N

∞

∑
i=0

β (i,m)

×
iNL+N−1

∑
j=iNL

SC
{

x( j)eT ( j)R−1
ee (i)

}
φe,D

(
eT ( j)R−1

ee (i)e( j)
)
. (10.85)

As in the general MIMO case, we can see that the SIRP model leads to an inherent
normalization by the auto-correlation matrix. Note that the SOS case follows for
φe,D (·) = 1/2. In both the SOS case and for general SIRPs the normalization by
the correlation matrix in conjunction with N > 1 may be interpreted as an inherent
step-size control. (It also illustrates why BSS does not require a separate double-talk
detector, such as traditional supervised algorithms do, e.g., for acoustic echo cancel-
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lation or adaptive beamforming.) Moreover, in [23] it was shown that for a suitable
choice of parameters, the general SIRP-based update (10.85) can be interpreted as
a multivariate, i.e., triple-N generalization of the robust LMS algorithm based on
robust statistics [50], as mentioned in Sect. 10.4.5.

To further simplify the realization, we next study the expression

SC
{

x( j)eT ( j)R−1
ee (i)

}
(10.86)

appearing in (10.85). According to the structure of the generic Sylvester constraint
in Fig. 10.6 and [19] (see also Appendix D), the lth element of the pth subvector
(contributing to the pth channel impulse response) can be expanded to

D

∑
d=1

[xp( j)]l+d−1

[
R−1

ee (i)e( j)
]

d = x̌T
p,D( j− l + 1)R−1

ee (i)e( j), (10.87)

where x̌p,D denotes the length-D vector

x̌p,D(n) = [xp(n),xp(n−1), . . . ,xp(n−D+ 1)]T . (10.88)

With this expansion, (10.86) reads as

SC
{

x( j)eT ( j)R−1
ee (i)

}
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̌T
1,D( j)

...
x̌T

1,D( j−L+ 1)
x̌T

2,D( j)
...

x̌T
2,D( j−L+ 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

R−1
ee (i)e( j). (10.89)

In the same way as shown in Sect. 10.4.5 in the context of nearly Gaussian source
models, we now factorize the inverse covariance matrix R−1

ee as [62]

R−1
ee (i) = A(i)Σ−1

ẽẽ (i)AT (i), (10.90)

where A(i) and Σẽẽ(i) denote again a D ×D unit lower triangular matrix and a
diagonal matrix, respectively [62].

By interpreting A(i) as a time-varying convolution matrix of a whitening filter,
we model the signal e as an AR process of order D − 1, with time-varying AR
coefficients ak(n), and residual signal ẽ(n), i.e.,

e(n) = −
D−1

∑
k=1

ak(n)e(n− k)+ ẽ(n). (10.91)

Now, (10.89) can be rewritten by shifting the prefiltering matrix A into the data
terms, i.e.,
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ẽ := AT e = [ẽ(n), ẽ(n−1), . . . , ẽ(n−D+ 1)]T , (10.92)
ˇ̃xp,D := AT x̌p,D = [x̃p(n), x̃p(n−1), . . . , x̃p(n−D+ 1)]T , (10.93)

so that

SC
{

x( j)eT ( j)R−1
ee (i)

}
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ˇ̃xT
1,D( j)

...
ˇ̃xT

1,D( j−L+ 1)
ˇ̃xT

2,D( j)
...

ˇ̃xT
2,D( j−L+ 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Σ−1
ẽẽ (i)ẽ( j)

=
[ ˇ̃x( j), . . . , ˇ̃x( j−D+ 1)

]
⎡
⎢⎢⎢⎣

ẽ( j)
σ2

ẽ ( j)
...

ẽ( j−D+1)
σ2

ẽ ( j−D+1)

⎤
⎥⎥⎥⎦

=
D−1

∑
d=0

ˇ̃x( j−d)
ẽ( j−d)
σ2

ẽ ( j−d)
. (10.94)

Finally, (10.85) becomes

w�(m) = w�−1(m)+
2μ
N

∞

∑
i=0

β (i,m)

×
iNL+N−1

∑
j=iNL

D−1

∑
d=0

ˇ̃x( j−d)
ẽ( j−d)
σ2

ẽ ( j−d)
φe,D

(
ẽT ( j)Σ−1

ẽẽ (i)ẽ( j)
)
. (10.95)

Note that this formulation provides a computationally efficient realization of the
generic Sylvester constraint.

Moreover, it is interesting to note that both the error signal e and the input (i.e.,
microphone) signal vector x̌ appear as filtered versions in the update. After inter-
preting A in (10.90) as a whitening filter, this adaptation algorithm can in fact be
interpreted as a so-called filtered-x-type algorithm [24]. As shown in Fig. 10.9, this
type of algorithm typically appears whenever there is another filter between the
adaptive filter and the position of the error calculation. This cascade structure will
also be of fundamental importance in the direct-inverse approach in Sect. 10.6.

10.5.3 Efficient Frequency-domain Realizations for the MIMO
Case

For convolutive mixtures, the classical approach of frequency-domain BSS appears
to be an attractive alternative where all techniques originally developed for instan-
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Fig. 10.9 Supervised adaptive filtering in (a) conventional and (b) filtered-x configuration

taneous BSS are typically applied independently in each frequency bin, e.g., [51].
However, this traditional narrowband approach exhibits several limitations as iden-
tified in, e.g., [7, 53, 78]. In particular, the permutation problem, which is inherent
to BSS, may then also appear independently in each frequency bin so that extra re-
pair measures are needed to address this internal permutation. Problems caused by
circular convolution effects due to the narrowband approximation are reported in,
e.g., [78].

In [15] it is shown how the equations of the TRINICON framework can be trans-
formed into the frequency domain in a rigorous way (i.e., without any approxi-
mations) in order to avoid the above-mentioned problems. As in the case of the
time-domain algorithms, the resulting generic DFT-domain BSS may serve both as
a unifying framework for existing algorithms, and also as a guideline for developing
new improved algorithms by certain suitable selective approximations as shown in,
e.g., [15] or [2]. Figure 10.10 gives an overview on the most important classes of
DFT-domain BSS algorithms known so far. A very important observation from this
framework using multivariate PDFs is that, in general, all frequency components
are linked together so that the internal permutation problem is avoided (the follow-
ing elements are reflected in Fig. 10.10 by different approximations of the generic
SIRP-based BSS):

1. Constraint matrices appearing in the generic frequency-domain formulation
(see, e.g., [15]) describe the inter-frequency correlation between DFT compo-
nents.

2. The multivariate score function, derived from the multivariate PDF is a broad-
band score function. As an example, for SIRPs the argument of the multivari-
ate score function (which is a nonlinear function in the higher-order case) is
yT

p( j)R−1
ypyp(i)yp( j) according to (10.50). Even for the simple case R−1

ypyp(i) = I
where we have yT

p( j)yp( j) = ‖yp( j)‖2, i.e., the quadratic norm, and – due to
Parseval’s theorem – the same in the frequency domain, i.e., the quadratic norm
over all DFT components, we immediately see that all DFT-bins are taken into
account simultaneously so that the internal permutation problem is avoided.
Note that the traditional narrowband approach (with the internal permutation
problem) would result as a special case if we assumed all DFT components to
be statistically independent from each other (which is of course not the case for
real-world broadband signals such as speech and audio signals). In contrast to
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Fig. 10.10 Overview of BSS algorithms in the DFT domain. Note that the broadband algorithms
in the left-hand column are also suitable for BSI, and thus, for the identification-and-inversion
approach to blind deconvolution/blind dereverberation
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this independence approximation the dependencies among all frequency com-
ponents (including higher-order dependencies) are inherently taken into account
in TRINICON in an optimal way by considering the joint densities as the most
comprehensive description of random signals. Actually, in the traditional nar-
rowband approach, the additionally required repair mechanisms for permutation
alignment try to exploit such inter-frequency dependencies.

From the viewpoint of blind system identification, broadband algorithms with con-
straint matrices (i.e., the algorithms represented in the first column of Fig. 10.10)
are of particular interest. Among these algorithms, the system described in [2] has
turned out to be very efficient in this context. A pseudo-code of this algorithm is
also included in [2].

Another important consideration for the practical implementation of BSI is the
proper choice of the Sylvester constraint. Since the column constraint SCC is not
suited for arbitrary source configurations, it is generally not appropriate for BSI
and deconvolution. Thus, for the implementations discussed in this chapter the row
constraint SCR is used.

10.6 Application of TRINICON to the Direct-inverse Approach
to Blind Deconvolution

In this section we discuss multichannel blind adaptation algorithms with the aim to
solve the inverse adaptive filtering problem (see Table 10.1) directly without BSI
as an intermediate step. This section mainly follows and extends the concept first
presented in [16].

The two main aspects in this section are as follows:

• First, we briefly discuss traditional ICA-based Multichannel Blind Deconvolu-
tion (MCBD) algorithms from the literature. Unfortunately, as we will see, these
algorithms are not well suited for speech and audio signals. However, our consid-
erations lead to various insights and to a classification scheme that is also useful
for both the pure separation/identification algorithms from the previous section
and also to the MultiChannel Blind Partial Deconvolution (MCBPD) algorithms
considered afterwards.

• A discussion of the MCBPD algorithms is also given. These algorithms can be
regarded as advanced versions of MCBD so that they are also suitable for speech
and audio signals. As already mentioned at the end of Sect. 10.3.5, these algo-
rithms are not just based on the spatial diversity and the statistical independence
of the different source signals, but they require more precise stochastic source
models. Based on the results of Sect. 10.4, and to some extent of Sect. 10.5, we
present a general framework which unifies the treatment of many of the known
algorithms for the direct-inverse approach to blind dereverberation of speech sig-
nals, and also leads to various new algorithms.
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(a) (b) (c)

Fig. 10.11 Desired correlation matrices Rss for (a) BSS (Sect. 10.5), (b) MCBD (Sect. 10.6.1),
and (c) MCBPD (Sect. 10.6.2) with TRINICON in the SOS case

10.6.1 Multichannel Blind Deconvolution

Analogously to the Sect. 10.5.1, we now specialize TRINICON to the case of tradi-
tional MCBD algorithms. As shown by (10.45b), this class of algorithms is specified
by a complete factorization of the hypothesized source model p̂s,PD(·), i.e., tradi-
tionally, ICA-based MCBD algorithms assume i.i.d. source models, e.g., [4, 28].
In other words, in addition to the separation of statistically independent sources,
MCBD algorithms also temporally whiten the output signals; thus this approach is
not directly suitable for audio signals. Nevertheless, studying these algorithms leads
to some important insights, because in contrast to some BSS algorithms they are
inherently broadband algorithms. Their popularity results from the fact that due to
the complete factorization of the source model, they only require univariate PDFs.
Thereby, the multivariate score function (10.44b) reduces to a vector of univariate
score functions each representing a scalar nonlinearity. As, additionally, the sec-
ond term in (10.44b) is commonly neglected in most of these algorithms, the scalar
nonlinearity reads

Φyp,1(yp( j−d + 1)) = −
∂ log p̂yp,1(yp( j−d + 1))

∂yp( j−d + 1)
. (10.96)

The corresponding generic coefficient update rules are then given by (10.44a),
(10.46a), (10.48), and (10.49).

In the SOS case, analogously to the representation in Sect. 10.5.1, the complete
factorization of the output PDF corresponds to the desired correlation matrix Rss =
diagRyy, as illustrated in Fig. 10.11(b).

Using (10.96) several relationships between the generic HOS natural gradient
update rule (10.49) and well-known MCBD algorithms in the literature can be es-
tablished [1]. As noted in Sect. 10.4.5, these links are obtained by the application
of different implementations of the Sylvester constraint SC, the distinction between
the correlation and covariance method [66] for the estimation of the cross-relation

RyΦ(y)(i) =
1
N

iNL+N−1

∑
j=iNL

y( j)ΦT
s,PD(y( j)) (10.97)

in (10.49), and the different approximations of the multivariate PDFs. This alto-
gether spans a whole tree of algorithms as depicted in Fig. 10.12. Here, the most
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general algorithm is given as the generic HOS natural gradient algorithm (10.49),
which is based on multivariate PDFs. A distinction with respect to the implementa-
tion of the Sylvester constraint SC leads to two branches, which can again be split
up with respect to the method used for the estimation of the cross-relation matrices.
Approximating the multivariate PDFs by univariate ones, neglecting the nonstation-
arity, and using the Sylvester constraint SCR yields the two block-based MCBD al-
gorithms presented in [30, 54]. By changing the block-based adaptation to a sample-
by-sample algorithm, a link to the popular MCBD algorithm in [4] and [31] can be
established. (It should be noted that also the so-called nonholonomic extension [15]
of [4] presented in [28] can be derived from the framework.) By using the Sylvester
constraintSCC a link to the MCBD algorithm in [88] is obtained. However, it should
be remembered that algorithms based on SCC are less general as only causal filters
can be adapted and thus for MCBD algorithms only minimum-phase systems can
be treated, as was pointed out in [88].

Note that by using the general Sylvester constraint without approximations, a
performance gain both over SCR and SCC is possible [20].

Generic TRINICON-based update rule (10.49)

Enforcing the Sylvester
constraint SCC by using the

first column of ΔW

Enforcing the Sylvester
constraint SCR by using

the Lth row of ΔW

CovarianceCovariance
methodmethod

CorrelationCorrelation
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Fig. 10.12 Overview of links between the generic algorithm (10.49) and existing MCBD algo-
rithms after [1]
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Room (slowly time-varying)
to be equalized

Vocal tract (rapidly time-varying)
to be preserved

Excitation

Fig. 10.13 Illustration of speech dereverberation as an MCBPD application (after [16])

10.6.2 Multichannel Blind Partial Deconvolution

Signal sources that are non i.i.d. should not become i.i.d. at the output of the
blind adaptive filtering stage. Therefore, their statistical dependencies should be
preserved. In other words, the adaptation algorithm has to distinguish between the
statistical dependencies within the source signals, and the statistical dependencies
introduced by the mixing system Ȟ, i.e., the reverberant room. We denote the corre-
sponding generalization of the traditional MCBD technique as MCBPD [16]. Equa-
tions (10.44)–(10.49) inherently contain a statistical source model (signal properties
(i)–(iii) in Sect. 10.4.2), expressed by the multivariate densities, and thus provide all
necessary requirements for the MCBPD approach.

Ideally, only the influence of the room acoustics should be minimized. A typi-
cal example for MCBPD applications is speech dereverberation, which is especially
important for distant-talking automatic speech recognition (ASR), where there is a
strong demand for speech dereverberation without introducing artifacts to the sig-
nals. In this application, MCBPD allows us to distinguish between the actual speech
production system, i.e., the vocal tract, and the reverberant room (Fig. 10.13).

For the distinction between the production system of the source signals (e.g., the
speech production system) and the room acoustics we can again exploit all three
fundamental signal properties already mentioned in Sect. 10.4.2:

(i) Nonwhiteness. The auto-correlation structure of the speech signals can be
taken into account, as illustrated in Fig. 10.11(c). While the room acoustics
influences all off-diagonals, the effect of the vocal tract is concentrated in the
first few off-diagonals around the main diagonal. In the simplest case, these
first Z off-diagonals of Ryy are now taken over into the banded matrix

Rss = bandbdiagZ Ryy, (10.98)

as illustrated in Fig. 10.11(c). Note that there is a close link to linear prediction
techniques as detailed below which gives guidelines for the number of lags to
be preserved.

(ii) Nonstationarity. The speech production system and the room acoustics also
differ in their time-variance according to Fig. 10.13. While the room acous-
tics is assumed to be constant during the adaptation process, the speech signal
is only short-time stationary [66], modeled by the time-varying speech pro-
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duction model. Typically, the duration of the stationarity intervals is assumed
to be approximately 20 ms [66]. We therefore adjust the block length N and
in practice preferably also the block shift NL in the criterion (10.39) with the
model parameter estimates (10.41) and in the corresponding updates (10.44)–
(10.49) to the assumed duration of the stationarity interval. Note that for a
block-based adaptation (typically performed by exploiting the efficiency of
the FFT, cf. Sect. 10.5.3 for the case of BSS) and N = NL < L, this corre-
sponds to a partitioned block formulation as known from supervised adaptive
filtering, e.g., [22].

(iii) Nongaussianity. Speech is a well-known example for supergaussian signals.
Due to a convolutive sum – in our application describing the filtering by the
room acoustics – the PDFs of the recorded sensor/microphone signals tend to
be somewhat closer to Gaussians. Hence, another strategy is to maximize the
nongaussianity of the output signals of the demixing system (as far as possible
by the MIMO FIR filters), e.g., [12, 41, 60, 82]. This strategy is addressed,
e.g., using the kurtosis as a widely-used distance measure of nongaussianity
as in the second term in (10.56). It can be shown that this second term can
indeed be identified as an estimate of the so-called negentropy, which is an
information-theoretic distance measure to the Gaussian [51].

Formally, the above-mentioned exploitation of the nonwhiteness to distinguish
between the coloration of the sources and the mixing system is achieved by decou-
pling the prediction order nA in (10.61) from the dimension D of the correlation
matrix Ryy, i.e.,

ỹp(n) =
nA

∑
k=0

ap,k(n)yp(n− k) (10.99)

with 0 ≤ nA ≤ D− 1 and ap,0(n) ≡ 1. This corresponds to a generalization of the
upper triangular matrix structure (10.62) in the factorization (10.60) to the banded
matrix

Ap =

⎡
⎢⎢⎢⎣

1 ap,1(n) ap,2(n) · · · ap,nA(n) 0 · · · 0
0 1 ap,1(n−1) · · · ap,nA−1(n−1) ap,nA(n−1) · · · 0
...

...
...

. . .
...

...
. . .

...
0 0 0 · · · 0 0 · · · 1

⎤
⎥⎥⎥⎦

T

(10.100)
so that we can again apply the compact notation

ỹq = AT
q yq = [ỹq(n), ỹq(n−1), . . . , ỹq(n−D+ 1)]T , (10.101)

ˇ̃x(q)
p,D = AT

q x̌p,D =
[
x̃(q)

p (n), x̃(q)
p (n−1), . . . , x̃(q)

p (n−D+ 1)
]T

. (10.102)

Hence, the resulting formulation of the generalized score function (10.65) carries
over to MCBPD, as well as to the traditional MCBD and to broadband BSS/BSI,
depending on the parameter nA. In other words, the different modes in Fig. 10.11 are
selected by certain choices of the order nA. This is further illustrated in Fig. 10.14.
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Fig. 10.14 Illustration of the parameter nA

The corresponding general gradient descent-based coefficient update for nearly
Gaussian sources is then obtained by introducing the score function (10.65) into the
generic update (10.46a). Note that for an efficient implementation of the Sylvester
constraint of the first term in (10.46a) we can apply the same procedure as demon-
strated in (10.87) and (10.89). With (10.102) we then obtain

w̌�
pq(m) = w̌�−1

pq (m)− μ
N

∞

∑
i=0

β (i,m)
iNL+N−1

∑
j=iNL

D−1

∑
d=0

ˇ̃x(q)
p ( j−d)

×
[

ỹq( j−d)
2σ̂2

ỹq
( j−d)

−
(
∑iNL+N−1

j=iNL
ỹ4

q( j−d)

3σ̂4
ỹq

( j−d)
−1

)

×
(

ỹ3
q( j−d)

σ̂4
ỹq

( j−d)
−

ỹq( j−d)∑iNL+N−1
j=iNL

ỹ4
q( j−d)

σ̂6
ỹq

( j−d)

)]

+ μ
∞

∑
i=0

β (i,m)SC
[

V
((

W�−1(m)
)T

V
)−1

]

pq

. (10.103)

This general TRINICON-based MIMO coefficient update for nearly Gaussian
sources leads both to blind separation and dereverberation of the signals.

Analogously to the considerations at the end of Sect. 10.5.2 we see that this up-
date rule can again be interpreted as a so-called filtered-x-type algorithm since both
the input (i.e., microphone) signal vector and the output signals appear as filtered
versions in the update. Analogously to Fig. 10.9 we immediately obtain Fig. 10.15
for the dereverberation application as a consequence of this filtered-x interpreta-
tion. While W, driven by the filtered-x-type coefficient update, ideally inverts the
room acoustic mixing system H, the (set of) linear prediction filter(s) A from the
stochastic source model ideally inverts the (set of) speech production system(s) of
the source(s). The coefficient updates of W and the estimation of A are carried out
in an alternating fashion like the estimation of the other stochastic model parame-
ters, as mentioned in Sect. 10.4.5. Note that (in accordance with the known filtered-x
concept) the filtered input vector ˇ̃x in (10.103) is obtained using the filter coefficients
from the Linear Prediction (LP) analysis of the output signals yp. In other words, the
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Fig. 10.15 Inversion of the speech production models within the blind signal processing and
filtered-x-type interpretation

coefficients of the output LP analysis filters are copied to the input transformation
filters according to (10.102).

It should be mentioned that the linear prediction is also classified as a (blind)
inverse adaptive filtering problem in Table 10.1, and hence, the estimate of the pre-
diction coefficients can also be obtained directly from the TRINICON optimization
criterion (10.39). Assuming a single-source scenario and SOS-based estimation of
the prediction coefficients for this inverse adaptive filtering problem, as a special
case of (10.39) according to (10.54) and the considerations in Sect. 10.5.2 for the
single-source case, we obtain

Jpred (m,A) =
∞

∑
i=0

β (i,m) logdetdiagRỹỹ(i) ∝
∞

∑
i=0

β (i,m) log σ̂2
ỹ,i. (10.104)

Furthermore, assuming stationarity, this criterion is equivalent to the traditional
least-squares-based estimate Jpred,LS (m,A) ∝ σ̂2

ỹ,m due to the monotonicity of the
logarithm, while for non-stationary signals, it is more general. Nevertheless, for the
practical experiments in Sect. 10.7 we will apply the Levinson–Durbin algorithm
as an efficient realization of the LS-based estimation using the so-called correlation
method [66].

10.6.3 Special Cases and Links to Known Algoritms

According to Fig. 10.14, all of the previously discussed algorithms from the vari-
ous classes according to Table 10.1 can be regarded as special cases of the MCBPD
concept. In this section, we only discuss algorithms that are specifically designed for
dereverberation using the direct-inverse approach. Moreover, we focus here on algo-
rithms based on the Gram–Charlier model, i.e., we discuss special cases of (10.103)
and relations to some known algorithms.
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10.6.3.1 SIMO vs. MIMO Mixing Systems

Similar to the considerations in Sect. 10.5.2 for SIMO-based BSI, we deduce now
the specialized coefficient update for the case of SIMO mixing systems, i.e., for
the case of only one source signal. Again, we first consider the last term of the
generic gradient-based update (10.103). According to the corresponding steps of
the derivation in Sect. 10.5.2 (Eqs. (10.72)-(10.78)) we can see that in the same way
the last term also disappears for MCBPD in the SIMO case. Next, we pick the filter
coefficients of interest for the SIMO case. Assuming the active source signal will
appear on the first output of the demixing filter, it is straightforward to pick w as the
first column of the general MIMO coefficient matrix W̌. This way we immediately
obtain

w�(m) = w�−1(m)− μ
N

∞

∑
i=0

β (i,m)
iNL+N−1

∑
j=iNL

D−1

∑
d=0

ˇ̃x( j−d)

×
(

ỹ( j−d)
2σ̂2

ỹ ( j−d)
−
(
∑iNL+N−1

j=iNL
ỹ4( j−d)

3σ̂4
ỹ ( j−d)

−1

)

×
(

ỹ3( j−d)
σ̂4

ỹ ( j−d)
−

ỹ( j−d)∑iNL+N−1
j=iNL

ỹ4( j−d)

σ̂6
ỹ ( j−d)

))
.

(10.105)

Note that the structure of the resulting algorithm is very similar to the one of the
generalized AED (10.95) in Sect. 10.5.2. The main differences are the different sign
of the update term and the fact that we now pick the first column of W̌, since we are
now interested in obtaining the enhanced signal rather than in minimizing an error
signal for the signal cancellation in the AED.

10.6.3.2 Efficient Implementation Using the Correlation Method

An efficient implementation that still exploits all three fundamental signal properties
as discussed in Sect. 10.6.2 is obtained by assuming a global nonstationarity of
the source signals but short-time stationarity in each block as known from linear
prediction. As a first step to obtain a simplified update equation, we integrate the
sum over d into the sum over j. Next, we replace the time-varying output prediction
error variances by blockwise constant values σ̂ỹp,i for the ith block. This finally
allows us to move the sum over j into the numerators in the brackets in order to
obtain the compact expression
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w̌�
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p ( j)ỹq( j)

2σ̂2
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pq

. (10.106)

Note that for the SIMO case this expression is simplified in a straightforward way,
as mentioned in the previous paragraph, so that the last term again disappears. This
efficient version is also used for the experiments in Sect. 10.7.

10.6.3.3 Relations to Some Known HOS Approaches

As has already been mentioned in Sect. 10.6.2 most of the HOS-based blind de-
convolution approaches aim at finding deconvolution filters that render the output
signals as nongaussian as possible [12, 60, 82] with kurtosis being the most common
measure for nongaussianity.

In [41] an approach to speech dereverberation by kurtosis maximization was pre-
sented. It is based on the idea of performing the whole adaptation and filtering pro-
cedure on LP residuals as a heuristic extension of the ideas in [10, 86]. Hence, the
main structural difference of this approach to the general TRINICON-based update
rule is that the LP analysis is carried out using the microphone signals, i.e., the
input signals of the blind adaptive filter rather than on its output signals as in the
above-mentioned and systematically obtained filtered-x structure. Nevertheless, the
resulting algorithm also exhibits several remarkable similarities to the generic up-
date. The adaptation rule in [41] is based directly on the kurtosis, i.e., the square
root of only the second term in (10.56). The update therefore structurally corre-
sponds to the part in the second parentheses of the second term in the brackets in
(10.103). (The first term in (10.103) results from the SOS and the expression in the
first parentheses in the second term results from the application of the chain rule due
to the square of the kurtosis in the Gram–Charlier expansion.)

The same approximate expression of the update rule, i.e., the gradient descent
directly based on the kurtosis is also used in [87]. Note that these approaches are
based on the acoustic SIMO model.
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10.6.3.4 Relations to Some Known SOS Approaches

It is known that linear filtering of a source signal increases the temporal predictabil-
ity of the observed signal. A deconvolution filter that makes its output less pre-
dictable may thus be able to recover the source signal. This observation is the key to
most SOS-based linear deconvolution methods, i.e., in essence they aim at finding
deconvolution filters that minimize a measure of predictability of the output signal,
e.g., [81]. Hence, in a certain sense, blind deconvolution may also be interpreted
as the application of a very long linear prediction error filter. Note that this is also
reflected by the symmetric structure in Fig. 10.15.

As a simple approach, the optimization criterion in [81] is directly based on the
variance of the long-term prediction error at the output of the deconvolution filter. In
order to avoid trivial solutions and to preserve some of the temporal structure of the
source signals, this long-term prediction error variance is normalized by a short-term
prediction error variance, and finally the logarithm of this ratio is taken. Although
this approach does not explicitly exploit the nonstationarity of the signals in the
sense as outlined in Sect. 10.6.2, this logarithm of the ratio between the prediction
error variances – which can be expressed as a difference between two logarithmic
prediction error variances – can still roughly be related to the generic SOS-based
optimization criterion (10.54) considering the link with linear prediction at the end
of Sect. 10.6.2, and the short-term prediction error variance in the normalization as
a special case of the desired correlation matrix Rss.

Another related approach to preserve the temporal structure of the original source
signal is called correlation shaping in [40]. The heuristically introduced optimiza-
tion criterion after Gillespie and Atlas in [40] for the SIMO case reads

JGA =∑
κ
γ(κ)(ryy(κ)− rss(κ))2 , (10.107)

where κ denotes the lag of the output correlation sequence ryy(κ) and a certain de-
sired correlation sequence rss(κ). The factor γ(κ) allows for an individual weight-
ing of the lags. As a preferred embodiment of this concept, in [40] it is proposed
to choose γ(κ) and rss(κ) such that ryy(κ) is minimized for all lags outside of the
don’t care region −Z ≤ κ ≤ Z. Obviously, this approach is equivalent to the min-
imization of the Frobenius norm JF,GA = ‖Ryy − Rss‖2

F with the banded matrix
Rss = bandbdiagZ Ryy after (10.98) and Fig. 10.11(c) if the so-called correlation
method is used for the estimation of Ryy (i.e., this matrix is assumed to be Toeplitz).
Hence, in the context of dereverberation the approach [40] can be seen directly as an
analogon to the Frobenius-based approaches for BSS/BSI mentioned in Sect. 10.5.1
(e.g., [26, 51, 52, 69, 74, 79]). The main differences between [40] and the generic
SOS-based MCBPD are:
(i) The criterion (10.107) does not exploit the nonstationarity of the signals in the
sense as outlined in Sect. 10.6.2.
(ii) As already explained in Sect. 10.5.1, in contrast to the generic SOS criterion
(10.54) the minimization of the Frobenius-based criterion does not lead to the in-
herent normalization of the coefficient update, which can be interpreted as an in-
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herent step-size control according to Sect. 10.5.2, and hence is an important feature
for a robust adaptation performance. Similar to the BSS/BSI case, many simulation
results have shown that for large filter lengths L, the Frobenius-based adaptation
is prone to instability, while the generic MCBPD adaptation shows a very robust
convergence behavior for real acoustic environments, as we will see in Sect. 10.7.

In [35, 37] a third related SOS-based approach was presented. As in the pre-
viously described SOS-based algorithms, this approach distinguishes between the
speech production system and the room acoustics by exploiting only the nonwhite-
ness. It explicitly takes into account an estimate of the long-term power spectral
density of the speech signal. Moreover, an interesting aspect of this approach is that
it was originally derived directly from MINT (see Sect. 10.2) describing the ideal
inversion solution at the equilibrium of the adaptation. Indeed, it can be shown (anal-
ogously to the analysis of the equilibria for BSS in [17] in the SOS case) that ideally
the equilibrium of the SOS-based update (10.67) in the case of MCBPD with (10.98)
corresponds to the MINT solution according to Sect. 10.2. We now show how this
approach can be derived rigorously from the TRINICON-based coefficient update
(10.67). Under the stationarity assumption we have in the equilibrium

ΔW = Rxy
[
R−1

ss −R−1
yy
]
= 0, (10.108)

i.e.,
Rxy = RxyR−1

yy Rss. (10.109)

Developing the left-hand side of this equation as RxxW and the right-hand side
of this equation using Sylvester matrices and corresponding data matrices X,
Y, S of compatible dimensions as in [17] as RxyR−1

yy Rss = XT Y(YT Y)−1ST S =
XT (YT )+ST S = XT (ST )+(CT )+ST S = XT S = Rxs, where ·+ denotes the Moore–
Penrose pseudoinverse, we obtain

RxxW = Rxs. (10.110)

Note that this relation is in fact the Wiener–Hopf equation for the inverse filtering
configuration. (This again reflects the equivalence to the traditional LS approach for
inverse adaptive filtering problems in the stationary case, as mentioned at the end
of Sect. 10.6.2 for the linear prediction problem.) Next, a filter B in the Sylvester
structure modeling the vocal tract is introduced so that S = S0B, where S0 denotes
a corresponding data matrix of the i.i.d. excitation signal. Hence

Rss = ST S = BT Rs0s0B = BT B. (10.111)

Using this model, we can rewrite (10.110) as

RxxW = HT Rss = HT BT B. (10.112)

Multiplication by the pseudoinverse of B on both sides, and exploiting the commu-
tation property of the convolution (B denotes a SISO system), we can write
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RxxB+W = BT HT , (10.113)

or (
B+)T RxxB+W = HT . (10.114)

Let us denote the inverse filter of the vocal tract similarly as in the previous sections
as A := B+. Using this filter the correlation matrix Rxx is transformed into Rx̃x̃ =
AT RxxA so that

Rx̃x̃W = HT . (10.115)

We now pick only the first columns of the Sylvester matrices for the SIMO case on
both sides. Moreover, it is important to assume that the first microphone is the one
that is closest to the source [37]. Using this assumption we finally obtain

w = h1,0R−1
x̃x̃ 1, (10.116)

where 1 = [1,0, . . . ,0]T and h1,0 denotes the first coefficient of the acoustic model
from the source to the first microphone, which acts as an arbitrary scaling factor.
This expression exactly corresponds to the algorithm presented in [37] including
the whitening procedure, originally introduced in a heuristic way. We can see from
this derivation that this algorithm indeed follows from TRINICON for the SOS case
and stationarity assumption. Moreover, we see that in contrast to the previously
presented approaches, this algorithm requires some prior knowledge of the source
position. In other words, it may in fact be regarded as a semi-blind deconvolution
algorithm. Furthermore, it becomes obvious that extending this approach to the gen-
eral MIMO case raises the problem of estimating the relative positions of multiple
simultaneously active sound sources.

10.7 Experiments

In this section, we evaluate the dereverberation performance for both the SIMO case
(i.e., one source) and the MIMO case (two sources) using measured data. In the first
set of experiments in the SIMO case, we compare the convergence properties based
on the exploitation of the different stochastic signal properties (SOS, HOS) for the
ideal demixing filter length. We then compare the DI approach with the II approach
and investigate the sensitivity of both approaches with respect to the overestima-
tion of the filter lengths. Finally, by extending the scenario to the MIMO case, we
consider both the separation performance and the dereverberation performance. For
illustration, we also compare the results in the MIMO case with the corresponding
results of pure separation algorithms.
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10.7.1 The SIMO Case

The experiments were conducted using speech data convolved with impulse re-
sponses of length M = 9000 of a real room with a reverberation time T60 ≈ 700 ms
and a sampling frequency of 16 kHz. To begin with, we consider an acoustic SIMO
scenario, i.e., there is only Q = 1 active sound source in the room. A linear four-
element microphone array (P = 4) with an inter-element spacing of 16 cm was used.
Preliminary experiments using MINT (see Sect. 10.2) applied to the measured im-
pulse responses showed that for the choice P = 4 the ideal inversion solution indeed
exists for the given acoustic scenario, i.e., the mixing system is invertible according
to Sect. 10.2. The speech signal arrived from 24◦ relative to the normal plane of the
array axis and the distance between the speaker and the center of the microphone
array was 165 cm.

As has already been mentioned, according to MINT the overdetermined scenario
P > Q is required for dereverberation. From a practical point of view it is thus
interesting to consider the required degrees of freedom depending on the number of
sensors. The total number of filter coefficients is C := LP. According to (10.18), we
obtain as the optimal number of filter coefficients in the SIMO case

C = P · M−1
P−1

=
P

P−1
· (M−1). (10.117)

We see that for the minimum number P = 2 of sensors we require C = 2 · (M − 1)
coefficients. For P → ∞ it follows C → M − 1. It turns out that the total number
of required filter coefficients decreases with an increasing number of microphones.
Hence, the framework is well suitable and efficient for the overdetermined case.

To evaluate our simulation results there are various possible quality measures for
dereverberation of speech and audio signals (e.g., [58, 59, 75, 76]), such as the rever-
beration time (T60), the definition (D50), the clarity index (C80), the (Rapid) Speech
Transmission Index (STI/RASTI), or Spectral Distortion (SD). While the first three
quantities are system-based and are defined in the context of room acoustics, the lat-
ter two are signal-dependent distortion measures. Another signal-dependent quan-
tity which is commonly used in the signal processing literature for the evalua-
tion of dereverberation approaches is the Signal-to-Reverberant Ratio (SRR, see,
e.g., [70]). Similarly to the quantities D50 and C80 it measures the power ratio be-
tween the direct sound and the contribution by the reverberation. However, since
the SRR is signal-based, it also takes into account the excitation of the adaptation
algorithm. It is measured in decibels (dB) and is defined for a signal sq at a sensor
with signal xp as

SRRp,sq = 10log
∑n
(
∑nΔ
κ=0 hqp,κsq(n−κ)

)2

∑n
(
∑M−1
κ=nΔ hqp,κsq(n−κ)

)2 dB, (10.118)

where nΔ is a discrete-time index defining the boundary between the direct signal
path and the contribution by the reverberation. Note that usually, in the case of
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Fig. 10.16 SRR performance of SIMO-based MCBPD for (a) increasing number of offline-
iterations, (b) different overall signal lengths

speech signals, the first 50 ms after the main peak of the impulse responses are
also added to the contribution of the direct path, i.e., nΔ is replaced by the so-called
critical delay time n50, which is known to contribute to the speech intelligibility [59].
In the following simulation results this perceptual effect is taken into account. The
SRR after (10.118) also forms the basis for the definition of the so-called segmental
SRR (e.g., [70]), which is usually preferred in practice due to the nonstationarity
of speech and audio signals and the higher correlation to the quality perceived by
auditory measurements. The segmental SRR is based on time-varying local SRR
estimates which are obtained by decomposing the signals into KS segments of length
NS, i.e., the averaging in (10.118) is performed only over these short intervals. The
segmental SRR is then defined as the average of the local SRR estimates over the
KS segments. In our simulations, we use NS = 320. This corresponds to the typical
stationarity interval for speech (20 ms for a sampling rate of 16 kHz).

Furthermore, in the context of adaptive signal processing, another interesting
aspect of the SRR is that formally it corresponds directly to the definition of the
so-called Signal-to-Interference Ratio (SIR), which is usually used in the literature
for the evaluation of signal separation approaches, such as BSS. If we consider the
MCBPD optimization criterion, which can also be regarded as a contrast function
for signal separation and dereverberation, we may hypothesize that in practice, the
potential SRR improvement will generally be upper-bounded by the potential SIR
improvement in the MIMO case. The same consideration also applies to the seg-
mental SRR and the segmental SIR.

We first consider the direct-inverse approach to SIMO-based dereverberation.
Our simulations are based on the coefficient update (10.106) (without the last term
in the SIMO case) using the correlation method. We chose L = 3000 according to
(10.18), the block length N = N′

L = 320 corresponding to a stationarity interval of
20 ms, and nA = 32. Figure 10.16 shows the SRR improvement for offline (batch)
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Fig. 10.17 First 5000 taps of (a) one of the measured room impulse responses of the mixing system
H and (b) impulse response of the overall system C after convergence

adaptation, i.e., β (i,m) = β (i) in (10.39) (and thus β ′(i,m) = β ′(i) in (10.106)) cor-
responds to a rectangular window function over the entire available signal length,
and the outer sum in (10.39) and (10.106) turns into a summation of the contribu-
tions from all blocks with equal weights. Figure 10.16(a) illustrates the convergence
over the number of iterations. We see that the optimization based purely on second-
order statistics (SOS, dash-dot line, only the first term in the brackets in (10.106)
was used) exhibits a rapid initial convergence, while the kurtosis-based approach
(HOS, dashed line, only the second term in the brackets in (10.106) was used) finally
achieves a higher level of SRR improvement at the cost of a slower initial conver-
gence. By exploiting all the available statistical signal properties (SOS+HOS, solid
line, both terms in the brackets in (10.106) were used), the TRINICON framework
combines the advantages of the former two approaches. The higher data requirement
for HOS-based estimation is also reflected in Fig. 10.16(b). Here, we performed the
offline adaptation for various overall signal lengths. It can be seen that the SOS-
based contribution of the optimization already provides reasonable performance for
relatively short signal lengths. Hence, in practice, where online adaptation is re-
quired due to potential changes of the room impulse responses, the synergy effects
provided by TRINICON appear to be attractive.

Figure 10.17 shows the first 5000 taps of one of the room impulse responses
of the measured mixing system and of the overall system (i.e., between the source
and the MCBPD output) after dereverberation, based on the combined (SOS+HOS)
TRINICON approach and 180 iterations with a signal length of 30s (see Fig. 10.16).
The same parameters were used for the spectrograms for the first three seconds of
the signals in Fig. 10.18. Both representations illustrate a significant enhancement
of the speech signals. The spectrograms were computed as sequences of DFTs of
windowed data segments. In this example, the Hamming window length was chosen
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Fig. 10.18 Spectrograms for 0 . . .4 kHz of the first 3 s of (a) original source signal s(n) (b) received
signal x1(n) at microphone 1 and (c) output signal y(n) after convergence

to be 20 ms, as it is typical in speech analysis. This is short enough so that any single
20 ms frame will typically contain data from only one phoneme, yet long enough
that it will include at least two periods of the fundamental frequency during voiced
speech assuming the lowest voiced pitch to be around 100 Hz.

As mentioned in Sects. 10.2 and 10.3, the correct choice of the filter length is
an important issue in blind dereverberation, especially in the application of the
identification-and-inversion approach. Hence, we now compare the DI and II ap-
proaches with respect to the sensitivity of overestimation of the filter lengths. Note
that formally, according to Sect. 10.5.2, the TRINICON-based adaptation algorithm
for blind system identification differs only slightly from the corresponding MCBPD
algorithm (e.g., (10.105)): the sign of the update term is changed and the relation
between the filter coefficients and the estimates of the mixing system, i.e., (10.79),
has to be taken into account. Moreover, in the II approach to dereverberation, ad-
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Fig. 10.19 Poles and zeros in the z-domain of subfilters (a) h1 and (b) h2 of a simple SIMO mixing
system without common zeros

ditionally, the application of MINT (10.17) is required to calculate the demixing
system based on the estimated mixing system. These modifications were made in
(10.106) for our next experiment comparing the II approach with the DI approach
(using (10.106) without modifications).

To allow for a fair comparison between the two different approaches, we as-
sumed the same mixing system with only two sensor channels in both cases. For
this experiment, the mixing system was composed of two very simple artificially
created impulse responses in order to guarantee the avoidance of common zeros (or
even near common zeros), as shown in Fig. 10.19. Hence, as long as the optimal
filter length is chosen, this SIMO system is guaranteed to be invertible, which we
also confirmed by applying MINT in a supervised manner. Table 10.2 shows the
results of the blind estimation in terms of SRR improvement for both the DI and II
approaches for different demixing filter lengths, and without any of the additional
repair measures mentioned in Sect. 10.3.5. Note that in this experiment we chose
nΔ in the above SRR definition equal to the delay of the main peaks of the impulse
responses due to their short lengths. Obviously, the numerical results confirm that
with both approaches the best performance is obtained by choosing the optimal filter
length according to Sects. 10.2 and 10.3. Moreover, the results clearly show that the
direct-inverse approach is significantly more robust to overestimation of the filter
length. On the other hand, however, we have to note that the potential applicability
of the identification-and-inversion approach is more general because the distinction
between the speech production system and the room acoustics is not required in this
case.
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Table 10.2 Comparison of the DI approach to blind dereverberation with the II approach with
respect to the sensitivity of overestimation of the filter length for the simple example M = 10,
P = 2, LDI,opt = 9, LII,opt = 10

L ≈ 80%Lopt L = Lopt L ≈ 120%Lopt L ≈ 140%Lopt L ≈ 150%Lopt

DI 29.8 dB 31.2 dB 27.3 dB 24.1 dB 22.4 dB

II 22.0 dB 25.4 dB 9.6 dB 4.5 dB 0.2 dB

10.7.2 The MIMO Case

Finally, we extend the investigation of MCBPD for the direct-inverse approach to
the MIMO case. We again consider the same acoustic scenario with T60 ≈ 700 ms,
as described above for the SIMO case. In the following experiment there are two
active speakers (one male speaker and one female speaker). The configuration is
symmetric with respect to to the linear microphone array. We again apply the coeffi-
cient update (10.106) using the correlation method and the same parameter settings
as described for the SIMO case. Figure 10.20 shows both the improvement of the
signal-to-interference ratio (i.e., source separation at the ouputs) and the improve-
ment of the signal-to-reverberation ratio. The SIR and SRR curves were averaged
between the contributions from the two sources. Similar to the SIMO case, TRINI-
CON provides synergies between the SOS-based adaptation and the HOS-based
adaptation. This advantage can be seen in both the separation and the dereverbera-
tion performances. We also confirm that the SRR improvement is generally upper
bounded by the SIR improvement. It is remarkable that the SRR improvements in
the MIMO case are only slightly lower than those in the SIMO case. As a reference,
we also included the SIR convergence curve of the popular narrowband BSS algo-
rithm after Fancourt and Parra [34], which is based on SOS (see also Sect. 10.5.3).
We see that the initial convergence of the rigorously derived broadband approach is
well comparable with that of the narrowband algorithm, while the final SIR perfor-
mance is significantly higher. The reference curve for a pure separation algorithm
based on SOS ( [17] as a special case of (10.106) with nA = L− 1 according to
Fig. 10.14, N = L, and using only the first term in the brackets) in the SRR plot, and
the comparison with a conventional delay-and-sum beamformer confirms the high
efficiency of the MCBPD extension presented in this chapter.
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Fig. 10.20 (a) SIR and (b) SRR performance of MIMO-based MCBPD

10.8 Conclusions

Based on the TRINICON framework for broadband adaptive MIMO filtering, in this
chapter we developed a strictly analytical top-down approach to the problem of blind
dereverberation of speech and audio signals. It was shown that this provides both a
common framework for various existing and novel powerful blind dereverberation
algorithms and allows for a direct comparison between the various algorithms and
the different existing approaches to blind dereverberation.

Comparing the two fundamental approaches to blind dereverberation, i.e., the
identification-and-inversion approach and the direct-inverse approach, we can sum-
marize that in principle the II approach is suitable for arbitrary audio signals, how-
ever, on the downside, this flexibility with respect to the source signals implies a
high sensitivity to overestimation of the optimum filter length and common zeros
in z-domain representation of the mixing system paths, so that additional repair
mechanisms are necessary. Moreover, the explicit MINT-based inversion of the es-
timated mixing matrix in the II approach increases the computational complexity.
On the other hand, the direct-inverse approach avoids the two-step procedure and the
related problems of the II approach, but requires more stringent stochastic model as-
sumptions on the source signals in order to avoid whitening effects. Fortunately, the
TRINICON framework inherently allows the incorporation of powerful source mod-
els leading to a high separation and dereverberation performance without distortions
for signals like speech.

Appendix A: Compact Derivation of the Gradient-based Coefficient Update

For the following compact derivation, we formulate the TRINICON coefficient op-
timization criterion (10.39) in the following way:
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J = Êlong

{
Êblock

{
f
(

y,Q(1),Q(2), . . .
)}}

, (10.119)

with
f = −

(
log p̂s,PD(y)− log p̂y,PD(y)

)
, (10.120)

and the operators Êblock{a}= 1
N ∑iNL+N−1

j=iNL
a( j) for averaging within each block, and

Êlong{b} = ∑∞
i=0β (i,m) · b(i) over multiple blocks depending on the choice of the

function β . The set of quantities

Q(r) = Êblock

{
G(r)(y)

}
, r = 1,2, . . . , (10.121)

(where G(r) are suitable functions of the observation vectors y) contains all stochas-
tic model parameters Q(·)

s and Q(·)
y according to (10.41) determining p̂s,PD(·) and

p̂y,PD(·), respectively.
The gradient of (10.119) with respect to W̌ reads according to (10.43) (omitting

the iteration index here for simplicity) as:

ΔW̌ = Êlong

{
SC

{
Êblock

{
∂
∂W

f
(

y,Q(1),Q(2), . . .
)}}}

. (10.122)

We now apply the general multivariate chain rule:

∂
∂W

f
(

y,Q(1),Q(2), . . .
)

=∑
i

∂ [y]i
∂W

∂ f
∂ [y]i

+∑
r
∑

i1,i2,...

∂Q(r)
i1,i2,...

∂W
∂ f

∂Q(r)
i1,i2,...

,

(10.123)
whereQ(r)

i1,i2,... denote the elements of Q(r). AnalogouslyG(r)
i1,i2,... denote the elements

of G(r). The derivatives in the second term with respect to W can be expressed as

∂Q(r)
i1,i2,...

∂W
= Êblock

{
∂
∂W

G(r)
i1,i2,... (y)

}
= Êblock

⎧⎨
⎩∑i

∂G(r)
i1,i2,...

∂ [y]i

∂ [y]i
∂W

⎫⎬
⎭ . (10.124)

With the MIMO relation y = WT x and with (10.124) we obtain8 from (10.123)

∂
∂W

f
(

y,Q(1),Q(2), . . .
)

= x
∂ f
∂yT +∑

r
∑

i1,i2,...

Êblock

⎧⎨
⎩x

∂G(r)
i1,i2,...

∂yT

⎫⎬
⎭

∂ f

∂Q(r)
i1,i2,...

.

(10.125)
By introducing this equation into (10.122), we obtain

8 Since in element-wise formulation, [y]i =∑� [x]� [W]�i, we obtain ∂ [y]i
∂ [W] jk

=∑� [x]� δ j�δki = [x] j δki,

and thus
[
∑i

∂ [y]i
∂ [W] jk

∂ f
∂ [y]i

]
=
[
∑i [x] j δki

∂ f
∂ [y]i

]
=
[
[x] j

∂ f
∂ [y]k

]
= x ∂ f

∂yT .
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ΔW̌ = Êlong

{
SC
{

Êblock

{
x
∂ f
∂yT

}

+∑
r
∑

i1,i2,...

Êblock

{
x
∂G(r)

i1,i2,...

∂yT

}
Êblock

{
∂ f

∂Q(r)
i1,i2,...

}}}

= Êlong

{
SC
{

Êblock

{
x

(
∂ f
∂yT

+∑
r
∑

i1,i2,...

∂G(r)
i1,i2,...

∂yT Êblock

{
∂ f

∂Q(r)
i1,i2,...

})}}}
. (10.126)

With (10.120) the last expression finally leads to the gradient-based update (10.44).

Appendix B: Transformation of the Multivariate Output Signal PDF in (10.39)
by Blockwise Sylvester Matrix

Due to the linear MIMO relation

yT(n) = xT(n)W(n), (10.127)

from (10.31) we express the PD-variate output log-likelihood log(p̂y,PD(y(n))) in
(10.39) in terms of the 2PL×PD MIMO coefficient matrix W and the corresponding
multivariate input PDF.

Since in general, W is not quadratic (D ≤ L), we cannot immediately apply the
well-known relation between the PDFs of two linearly related vectors via the deter-
minant of a quadratic mapping matrix [73]. However, in our case 2PL > PD, i.e., for
‘tall’ matrices W we can form a joint PDF p̂yx̃,2LP(y(n), x̃(n)) of the output vector y
and certain elements x̃ of the input vector x so that this joint PDF exhibits the same
dimensionality as the input PDF p̂x,2LP(x(n)). Then, after the transformation

p̂yx̃,2LP(y(n), x̃(n)) =
p̂x,2LP(x(n))∣∣detW̃

∣∣ , (10.128)

with a quadratic 2LP × 2LP matrix W̃, the desired multivariate output PDF
p̂y,PD(y(n)) is obtained without loss of generality as a marginal density by inte-
gration for x̃(n) [73].

In our application a channel-wise extension of matrix W is desirable so that the
MIMO relation (10.127)

[
yT

1 , . . . ,yT
P
]
=
[
xT

1 , . . . ,xT
P
]
⎡
⎢⎣

W11 · · · W1P
...

. . .
...

WP1 · · · WPP

⎤
⎥⎦
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may be extended to
[
yT

1 , x̃T
1 , . . . ,yT

P, x̃T
P
]
=
[
xT

1 , . . . ,xT
P
]

W̃, (10.129)

where x̃p, p = 1, . . . ,P denote vectors containing the 2L−D last elements of xp and

W̃ =

⎡
⎢⎢⎢⎢⎢⎣

W11

[
0D×2L−D

I2L−D×2L−D

]
· · · W1P 02L×2L−D

...
...

. . .
...

...

WP1 02L×2L−D · · · WPP

[
0D×2L−D

I2L−D×2L−D

]

⎤
⎥⎥⎥⎥⎥⎦

. (10.130)

With (10.128) we obtain

p̂y,PD(y(n)) =
1∣∣detW̃

∣∣
∫ ∞

−∞
· · ·
∫ ∞

−∞
p̂x,2LP(x(n))dx̃1 · . . . ·dx̃P

=
1∣∣detW̃

∣∣ p̂xPD,PD(xPD(n)), (10.131)

which leads to the following simple expression for the desired log-likelihood:

log p̂y,PD(y(n)) = log p̂xPD,PD(xPD(n))− log
∣∣detW̃

∣∣ . (10.132)

Since the first term on the right hand-side of (10.132) does not depend on the fil-
ter coefficients, it does not need to be considered further for the gradient of the
optimization criterion (10.39). To simplify the important second term in (10.132)
together with W̃ from (10.130) we exploit the fact that we can exchange colums or
rows of W̃ without changing the value of |detW̃|. Application of the general matrix
relation

det
[

A1 0
A2 I

]
= detA1 (10.133)

immediately leads then to the compact formulation

log p̂y,PD(y(n)) = log p̂xPD,PD(xPD(n))− log
∣∣det

{
VTW

}∣∣ , (10.134)

with the window matrix V defined in (10.46). Note that VTW is only of dimension
DP×DP.
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Appendix C: Polynomial Expansions for Nearly Gaussian Probability
Densities

Orthogonal Polynomials

Let I be a finite or infinite interval and r(x) be a continuous and positive function
(which we here call a weighting function) on the interval such that

∫
I f (x)r(x)dx

exists for every polynomial f (x). Then there is a unique set of polynomials Pn(x),
n = 0,1, ..., of order n such that

∫
I
Pk(x)Pn(x)r(x)dx := 〈Pk,Pn〉r = cn δkn (10.135)

with a predefined constant cn. These polynomials Pn(x) are called orthogonal poly-
nomials. The operation 〈·, ·〉r denotes the inner product in the vector space of the
polynomials.

An important class of orthogonal polynomials in our context are the so-called
Chebyshev–Hermite polynomials PH,n(x), which are specified by I = (−∞,∞), the
weighting function r(x) = 1√

2π e−x2/2, and cn = n!, e.g., [56].
For the orthogonal polynomials considered here there is an important proposi-

tion stating that they even form a basis in a Hilbert space so that any quadratically
integrable function f (x) with respect to r(x) on I can be expressed by the expansion,
e.g., [56]

f (x) =
∞

∑
n=0

1
cn

〈 f ,Pn〉r Pn(x). (10.136)

Polynomial Expansion for Univariate Densities

The two different expansions that are usually used to obtain a parameterized rep-
resentation of nearly Gaussian probability density functions are the Edgeworth and
the Gram–Charlier expansions, e.g., [51]. They lead to very similar approximations,
so in this chapter we only consider the Gram–Charlier expansion. These expansions
are based on the above-mentioned Chebyshev–Hermite polynomials PH,n(x).

Let p(x) = 1√
2πσ e−

x2

2σ2 p̃
( x
σ
)

represent an arbitrary univariate probability den-
sity, where p̃(·) contains the higher-order contributions. According to (10.136) the
higher-order statistics contribution p̃ can readily be expanded as

p̃(x) =
∞

∑
n=0

anPH,n(x), (10.137a)

an =
1
n!

∫ ∞

−∞
p̃(x′)PH,n(x′)

1√
2π

e−x′2/2dx′. (10.137b)

Hence, the complete density function p(x) is finally expressed as
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p(x) =
1√

2πσ
e−

x2

2σ2
∞

∑
n=0

anPH,n

( x
σ

)
. (10.138a)

The coefficients an after (10.137b) can be compactly written using the expectation
operator:

an =
1
n!

E
{

PH,n

( x
σ

)}
. (10.138b)

Example: Fourth-order Approximation for a Zero-mean Process

To obtain explicit expressions for the coefficients (10.138b), the Chebyshev–
Hermite can be calculated using the derivatives of the standardized Gaussian prob-
ability density function (corresponding to the weighting function r(x)):

PH,n(x) = (−1)n 1
r(x)

∂ nr(x)
∂xn , (10.139)

so that PH,0(x) = 1, PH,1(x) = x, PH,2(x) = x2 −1, PH,3(x) = x3 −3x, PH,4(x) = x4 −
6x2 + 3. The resulting expansion coefficients for zero-mean processes are a0 = 1,

a1 = a2 = 0, a3 =
E{x3}
3!σ3 , a4 = 1

4!

(
E{x4}
σ4 −3

)
, so that

p(x) ≈ 1√
2πσ

e−
x2

2σ2
(

1 +
κ3

3!σ3 PH,3

( x
σ

)
+

κ4

4!σ4 PH,4

( x
σ

))
, (10.140)

with [71] the skewness κ3 = E
{

x3} and the kurtosis κ4 = E
{

x4}− 3σ4. In the
context of higher-order statistics-based estimation the kurtosis plays a particularly
prominent role since it indicates whether a PDF is supergaussian (κ4 > 0) or sub-
gaussian (κ4 < 0).

Multivariate Orthogonal Polynomials

Based on the previous section we may now generalize the Gram–Charlier expansion
to multivariate probability density functions for a vector x of length D.

We formulate the orthogonality relation analogously to (10.135),
∫

ID
Pk(x)Pn(x)r(x)dx = cn δkn, (10.141)

and the inner product

〈 f ,g〉r :=
∫

ID
f (x)g(x)r(x)dx. (10.142)

The D-variate Chebyshev–Hermite polynomials are specified by the D-variate
weighting function [84]
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r(x) =
1√

(2π)D
e−‖x‖2

2/2 =
D

∏
i=1

1√
2π

e−x2
i /2

=
D

∏
i=1

r1(xi). (10.143)

As we can see, in this case we have a product weighting function. It can be shown
[84] that this has the very advantageous consequence that it also leads to corre-
sponding product polynomials

Pn(x) =
D

∏
i=1

Pi,ni(xi). (10.144)

Note that n denotes a vector of indices ni, i = 1, . . . ,D. The expansion of a multi-
variate function f (x) is then given as

f (x) =
∞
∑
n=0

1
cn

〈 f ,Pn〉r Pn(x). (10.145)

Polynomial Expansion for Multivariate Densities

Let p(x) = 1√
(2π)DdetRxx

e−
1
2 xT Rxx−1x p̃

(
L−1x

)
represent an arbitrary D-variate prob-

ability density, where p̃(·) again contains the higher-order contributions, and L
is obtained by the Cholesky decomposition Rxx = LT L (note that

√
xT Rxx

−1x =
‖L−1x‖2).

In the same way as in the univariate case, we now obtain the following represen-
tation of a multivariate probability density function p(x):

p(x) =
1√

(2π)DdetRxx
e−

1
2 xT Rxx−1x

∞
∑
n=0

anPH,n
(
L−1x

)
, (10.146a)

with the coefficients
an =

1

∏D
i=1 ni!

E
{

PH,n(L−1x)
}

. (10.146b)

Note that PH,n(·) in (10.146a) and (10.146b) is given by (10.144).

Appendix D: Expansion of the Sylvester Constraints in (10.83)

We consider here an expression with the Sylvester Constraint for one channel of the
form

aTSC
{

bcT} ,
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where a, b, c denote column vectors of length L, 2L, and D, respectively. With the
explicit expression of the generic Sylvester constraint for one channel after Fig. 10.6
and [19],

[w]m =
2L

∑
k=1

D

∑
�=1

[W]k� δk,(m+�−1),

where δi j denotes the Kronecker symbol, the above expression reads as

L

∑
m=1

am

2L

∑
k=1

D

∑
�=1

bkc�δk,(m+�−1) =
D

∑
�=1

L

∑
m=1

ambm+�−1c�. (10.147)

From the linearity of the operations, we easily deduce

aT
1 SC

{
b1cT}+ aT

2 SC
{

b2cT}

=
D

∑
�=1

(
L

∑
m=1

a1,mb1,m+�−1 +
L

∑
m=1

a2,mb2,m+�−1

)
c�. (10.148)
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