
Chapter 1
Introduction

Patrick A. Naylor and Nikolay D. Gaubitch

Abstract Acoustic reverberation will be introduced in this chapter in the context
of telecommunication. The adverse effects on speech caused by reverberation are
problematic, in particular, in hands-free terminals operating typically at arms-length
from the talker’s lips. This introductory chapter will provide a system description of
room reverberation and will formulate mathematically the dereverberation problem
in its most direct form so as to introduce and underpin the more detailed presen-
tation in subsequent chapters. Elements of room acoustics will also be introduced
where needed, though detailed study of acoustics is not the aim of this text.

At the time of writing this, dereverberation is a topic of study with many impor-
tant research questions remaining as yet unanswered. Whilst reviewing the relevant
literature later in this chapter, it is intended both to describe the state-of-the-art and
to highlight some of the significant open issues. Whereas the former aims to con-
solidate, perhaps for the first time, the known achievements to date of the research
community, the latter aims to highlight potential avenues of future research.

1.1 Background

One can confidently deduce that the phenomenon of reverberation has been known
to mankind since the time of prehistoric cave dwellers. Sound reflection effects are
believed to have influenced prehistoric cave art [90, 91]. Reverberation is also used
in several well known cases by other species, such as bats for navigation during
flight.

There is evidence of comprehension of the notion of reflected speech occurring
in Plato’s Republic [76]: “And what if sound echoed off the prison wall opposite
them? When any of the passers-by spoke, don’t you think they’d be bound to assume
that the sound came from a passing shadow?”. Pioneering scientific work on sound
and acoustics in the 19th century was undertaken by, for example, Rayleigh [80] and
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Sabine [81]. In the 20th century initial efforts in the understanding of reverberation
of speech were provided by Bolt [8] and the effects of single echoes by Haas [37].

The level to which humans employ reverberation during everyday life is unclear.
There is some evidence to suggest that, through the use of two ears, spatial process-
ing is used to enhance speech intelligibility and enables a useful degree of source
separation to be achieved in human speech perception [12].

In music audio processing, the sense of ‘space’ that can be created by stereo or
surround sound reproduction adds greatly to realism and often makes recorded mu-
sic more attractive and enjoyable. We might then ask ourselves the question: since
reverberation is present in everyday life experience of sound and in some important
cases is effective in aiding speech communication, why should we be interested in
removing reverberation from speech using dereverberation processing? The answer
to this question is dependent on the application context.

There is a continuously growing demand for high quality hands-free speech input
for various telecommunication applications [71, 82]. One driving force behind this
development is the rapidly increasing use of portable devices such as mobile tele-
phones, Personal Digital Assistant (PDA) devices and laptop computers equipped
for Voice Over Internet Protocol (VoIP) [63]. Furthermore, there is a continuous
worldwide expansion of broadband internet access [5]. These factors have paved
the way for several advanced speech applications such as wideband teleconferenc-
ing with automatic camera steering, automatic speech-to-text conversion, speaker
identification, voice-controlled device operation and car interior communication
systems [82]. Another important application where speech obtained from a distant
talker is of interest is that of hearing aids [82].

1.2 Effects of Reverberation

When speech signals are obtained in an enclosed space by one or more microphones
positioned at a distance from the talker, the observed signal consists of a superpo-
sition of many delayed and attenuated copies of the speech signal due to multiple
reflections from the surrounding walls and other objects, as illustrated in Fig. 1.1.
We here define the direct-path as the acoustic propagation path from the talker to
the microphone without reflections. We also note that a delay of the superimposed
copies arises because all other propagation paths are longer than the direct-path and
that additional attenuation occurs at each reflection due to frequency dependent ab-
sorption. The perceptual effects of reverberation can be summarized as:

1. The box effect – the reverberated speech signal can be viewed as the same source
signal coming from several different sources positioned at different locations
in the room and thus arriving at different times and with different intensities
[3]. This adds spaciousness to the sound [56] and makes the talker sound as if
positioned “inside a box”.

2. The distant talker effect – the perceived spaciousness explained in the previous
point makes the talker sound far away from the microphone.
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Fig. 1.1 Schematic illustration of room reverberation

When these effects are carefully controlled and moderately applied, the reverbera-
tion can add a pleasant sense of the acoustic space in which the sound resides. This
is valuable and important in audio rendering but almost always unhelpful in voice
communication. When the reverberation effects are severe, intelligibility of speech
is degraded. Reverberation alters the characteristics of the speech signal, which is
problematic for signal processing applications including speech recognition, source
localization and speaker verification, and significantly reduces the performance of
algorithms developed without taking room effects into consideration. The deleteri-
ous effects are magnified as the distance between the talker and the microphones is
increased.

1.3 Speech Acquisition

The problems associated with reverberation can sometimes be overcome in practice
by utilizing a headset by means of which the microphone is held close to the mouth.
Alternatively, a microphone with a fixed directional sensitivity characteristic posi-
tioned in front of the talker can be used. The advent of bluetooth technology has
made high quality, low cost wireless headsets feasible. Nevertheless, these solutions
impose restrictions on the flexibility and comfort of the talker, which are the main
desired features in the use of hands-free equipment [71]. In some applications, such
as teleconferencing with multiple talkers on one end, these headset based solutions
may not be practical. Therefore, a signal processing approach independent of the
relative talker-microphone configuration is certainly preferable.
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In hands-free speech acquisition, the talker’s lips are typically located at a dis-
tance of 0.3-3 m from the microphone. In such a scenario, the speech signal is
affected by the user’s surrounding environment, which results in the following three
distinct effects [71, 82]:

(i) Additive measurement noise due to, for example, other audible talkers or pass-
ing traffic. When the noise level is comparable to or greater than the speech
level, it is difficult for a listener to distinguish the desired speech signal from
the noise, and thus intelligibility and listening comfort are reduced.

(ii) Acoustic echoes due to speech from a far-end talker which is picked up by the
near-end microphones and retransmitted back to the far-end talker with delay.
This results in the talker hearing an echo of their own voice, which greatly
disturbs the communication.

(iii) Reverberation that arises whenever sound is produced in enclosed spaces, such
as offices and other rooms, due to reflections from walls and surrounding ob-
jects.

These components jointly contribute to an overall degradation in the quality of
the observed speech signals, which significantly reduce the perceived speech qual-
ity for the listener and the performance of applications such as speech recogniz-
ers [71]. Speech enhancement and acoustic echo cancellation are two widely re-
searched fields that address problems (i) and (ii) respectively. Several significant
contributions have been made in these areas [6, 7, 11, 13, 30, 41, 60] and many
algorithms have been implemented and are in use in commercial applications [77].
The problem of reverberation on the other hand, received much less attention in the
literature until recently. Nevertheless, finding solutions to this problem is essential
for the future development of applications with hands-free speech acquisition. This
indeed motivates the focus of the forthcoming chapters of this book.

1.4 System Description

A generic system diagram for multichannel dereverberation is shown in Fig. 1.2.
The speech signal, s(n), from the talker propagates through acoustic channels, Hm(z)
for m = 1 to M. The output of each channel is observed using M microphones to
give signals xm(n). All noise in the system is assumed additive and is represented
by νm(n).

The observed signal, xm(n), at microphone m can be described as the superposi-
tion of (i) the direct-path signal, which propagates by line-of-sight from the talker
to the microphone with corresponding attenuation and propagation delay and (ii) a
theoretically infinite set of reflections of the talker signal arriving at the microphone
at later time instances [56] with attenuation dependent on the properties of the re-
flecting surfaces. This can be expressed as
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Fig. 1.2 Generic multichannel reverberation-dereverberation system model

xm(n) =
∞

∑
i=0

hm,i(n)s(n− i), (1.1)

where the acoustic channel impulse responses hm,i(n) represent the attenuation and
the propagation delay corresponding to the direct signal and all the reflected com-
ponents.

The aim of speech dereverberation is to find a system with input xm(n), m =
1, . . . ,M and output ŝ(n), which is a ‘good’ estimate of s(n). The definition of ‘good’
is this context is application dependent. It may, for example, be desired to estimate
s(n) with minimum Mean Square Error (MSE). Alternatively, other criteria may be
relevant, such as those related to perceptual quality. This is a blind problem since
the acoustic channels Hm(z) are unknown.

Recent efforts in acoustic signal processing have produced several algorithms for
speech dereverberation and reverberant speech enhancement. These methods can be
divided broadly into three main categories:

1. Beamforming – the signals received at the different microphones are filtered
and weighted so as to form a beam of enhanced sensitivity in the direction of
the desired source and to attenuate sounds from other directions. Beamforming
is dependent on the availability of multi-microphone inputs. Beamforming is a
multiple input single output process.

2. Speech enhancement – the speech signals are modified so as to represent better
some features of the clean speech signal according to an a priori defined model
of the speech waveform or spectrum. Speech enhancement is often a single in-
put single output process, though many speech enhancement techniques benefit
from the use of multiple inputs.

3. Blind deconvolution – the acoustic impulse responses are identified blindly, us-
ing only the observed microphone signals, and then used to design an inverse
filter that compensates for the effect of the acoustic channels.
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1.5 Acoustic Impulse Responses

The Acoustic Impulse Response (AIR) characterizes the acoustics of a given enclo-
sure and therefore study of the AIR is a natural approach to dereverberation. This
section will introduce some of the characteristics of AIRs. The focus is on the AIRs
of rooms where reverberation has a significant effect on telecommunication applica-
tions. Further relevant details of room acoustics are given in Chap. 2. Whereas AIR
is used to refer to acoustic impulse responses in general, there are some cases where
it is more appropriate to limit the acoustic context to be within a room, in which
case, the impulse response is referred to as a Room Impulse Response (RIR). In
this book we will use AIR and also RIR, depending on the acoustic scenario being
considered.

Several models of room impulse responses have been considered in the literature,
including both Finite Impulse Response (FIR) and Infinite Impulse Response (IIR)
structures [40, 47, 48, 65, 66, 74]. The choice of AIR model will generally influence
the algorithmic development.

An often-used quantification of the impulse response of a room is the reverbera-
tion time, originally introduced by Sabine [56]. The reverberation time, T60, is de-
fined as the time taken for the reverberant energy to decay by 60 dB once the sound
source has been abruptly shut off. The reverberation time for a room is governed by
the room geometry and the reflectivity of the reflecting surfaces.

The reverberation time is approximately constant when measured at any location
in a given room. However, the impulse response is spatially variant and will vary
as the talker, the microphones or other objects in the room change location [56].
A particular characteristic that varies with the talker-microphone separation is the
relation between the energy of the direct-path component and the energy of the
reflected components of the AIR. The critical distance is the distance such that these
two energies are equal.

Figure 1.3 shows an example room impulse response. Direct-path propagation
from the sound source to the microphone gives rise to an initial short period of
near-zero amplitude, sometimes referred to as the direct-path propagation delay,
followed by a peak. The amplitude of this peak due to direct-path propagation may
be greater or less than the amplitude of the later reflections depending on the source-
microphone distance and the reflectivity of the surfaces in the room. The example of
Fig. 1.3 shows a relatively strong direct-path component, indicating that the source-
microphone distance is relatively short.

The early and the late reflections are indicated in the figure as two distinct regions
of the AIR. The early reflections are often taken as the first 50 ms of the impulse
response [56], and constitute well defined impulses of large magnitude relative to the
smaller magnitude and diffuse nature of the late reflections. The propagation from
the talker’s lips to the microphone is represented by the convolution of the speech
signal with the AIR. The AIR early reflections cause spectral changes and lead to
a perceptual effect referred to as coloration [56]. In general, closely spaced echoes
are not distinguished by human hearing due to masking properties of the ear, and it
has been shown that early reflections can have a positive impact on the intelligibility
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Fig. 1.3 An example room impulse response

of speech with an effect similar to increasing the strength of the direct-path sound
[9, 56, 71]. However, coloration can degrade the quality of recorded speech [56].
The late reflections are referred to as the tail of the impulse response and constitute
closely spaced, decaying impulses, which are seemingly randomly distributed. The
late reflections cause a ‘distant’ and ‘echo-ey’ sound quality, we refer to as the
reverberation tail and provides the major contribution to what is generally perceived
of as reverberation in everyday experience.

In terms of spectral characteristics, the room transfer function is proportional to
the sound pressure [56, 92] and has been studied extensively in the room acous-
tics literature, where many properties have been established [56]. One property of
interest in the context of dereverberation is the average magnitude difference be-
tween minimum and maximum spectral points, which has been shown to extend
beyond 10 dB [56, 83]. Since the room transfer function changes depending on the
location of the source and the microphone, it can been described as a random pro-
cess [56, 79, 92]. Neely and Allen [68] concluded that the AIRs in most real rooms
posses non-minimum phase characteristics.

Rooms are generally stable systems with the coefficients hm,i(n) tending to zero
with increasing index i and therefore, it is sufficient to consider only the first Lh
coefficients in (1.1). The choice of Lh is often linked to the reverberation time of the
room. Taking into account any additive noise sources, the observed signal at the mth

microphone can be written in a vector form

xm(n) = hT
m(n)s(n)+νm(n), (1.2)

where hm(n) = [hm,0(n) hm,1(n) . . . hm,Lh−1(n)]T is the Lh-tap impulse response
of the acoustic channel from the source to microphone m, s(n) = [s(n) s(n −
1) . . . s(n − Lh + 1)]T is the speech signal vector and ν(n) is observation noise.
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In the frequency domain this can be expressed, equivalently, as

Xm(e jω) = Hm(e jω )S(e jω)+Nm(e jω), (1.3)

where Xm(e jω), Hm(e jω), S(e jω) and Nm(e jω) are the Fourier transforms of xm(n),
hm(n), s(n) and νm(n), respectively.

Having introduced these properties of the room impulse response, the following
can be deduced regarding the processing of reverberant speech:

1. Hand-free telephony users can be expected to move around their acoustic envi-
ronment and so the AIRs will vary with time.

2. The use of measured impulse responses is not feasible for dereverberation due
to the dependence on talker-microphone position and on the room geometry.

3. If the talker-microphone separation is much smaller than the critical distance,
the effects of reverberation are likely to be negligible. Thus, dereverberation is
of greatest importance when the source-microphone distance (D) is larger than
the critical distance (Dc), D ≥ Dc.

4. The reverberation time in typical office-sized rooms can be expected to vary in
the range 0.1-1 s. Consequently, this involves FIR filters of several thousand
taps for typical sampling frequencies.

5. Although undermodelling of the channel is possible, late reflections are impor-
tant in dereverberation, in particular in the case when D ≥ Dc.

6. The non-minimum phase property and the large spectral dynamic range of room
transfer functions will raise challenges in designing AIR equalization filters.

1.6 Literature Overview

This section presents an overview of the existing literature, which deals explicitly
with enhancement of reverberant speech with the aim to serve as an introduction to
the topic and to provide an annotated bibliography. A more thorough treatment with
additional bibliographic records of several methods mentioned here is provided in
the relevant chapters.

1.6.1 Beamforming Using Microphone Arrays

Beamforming techniques are fundamentally important and among the first multi-
channel processing approaches for enhancement of speech acquisition in noisy and
reverberant environments [11]. The most direct and straightforward technique is the
Delay-and-sum Beamformer (DSB) in which the microphone signals are delayed,
to compensate for different times of arrival, and then weighted and summed [15, 89]
as a convex combination. The output of the DSB can be written as
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x̄(n) =
M

∑
m=1

wmxm(n− τm), (1.4)

where τm is the propagation delay in samples from the source to the mth sensor and
wm is the weighting applied to the mth sensor. In this way, the coherent components
across channels, due to the direct-paths, are added constructively, while incoherent
components, due to reverberation or noise, are attenuated [15].

The DSB can also be interpreted as forming a beam of sensitivity in the chosen
direction. From this spatial filtering interpretation it can be seen intuitively that the
beamformer approach works best for strongly localized sources and is less effective
when the sound field is diffuse. The design of the weights is the spatial equivalent
to the design of temporal FIR filters; the number of microphones is analogous to
the number of taps and the spacing between sensors is analogous to the sampling
frequency [15, 89]. Consequently, there is a spatial sampling criterion analogous
to the time domain Nyquist sampling criterion, which relates the distance between
microphones to the frequency components in the signal such that spatial aliasing
can be avoided. This is defined as [15]

‖qmic,m −qmic,m+1‖2 <
c

2 f
, (1.5)

where ‖ · ‖2 denotes the Euclidean norm, qmic,m is the three-dimensional position
vector of the mth microphone and c the speed of sound. Talantzis and Ward studied
an alternative design of optimal weights in [85]. It can be seen from the expression
in (1.5) that, for broadband signals such as speech, a linear array may not be the op-
timal solution. Consequently, several designs have been proposed with three or four
subarrays and with different microphone spacing such that each of these subarrays
covers a different bandwidth [11, 15].

Several variants of the DSB exist. For example, the DSB can be extended into
the filter-and-sum beamformer in which the scalar weights are replaced each by
an FIR filter [15]. Alternatively, in an approach employing frequency subbands by
Allen et al. [4], the signals are co-phased in each frequency band and the gain is
adjusted based on the cross-correlation between the channels to remove incoher-
ent components before the summation. A two-dimensional microphone array was
proposed by Flanagan et al. [19], which uses a DSB with a ‘track-while-scan’ ap-
proach where the area under consideration is quantized into overlapping regions
that are scanned sequentially and speech characteristics are incorporated to distin-
guish a speech source from noise. The extension to three-dimensional arrays has
also been considered [20] and also the use of spherical microphone arrays [58, 61].
Adaptive beamforming approaches have been studied, which automatically adjust
the weights of the beamformer [15, 43] and which may also include constraints in
the adaptation rule [22]. Generally, beamformers have been found to be efficient in
applications to suppress localized additive noise sources [11]. Reverberation can be
partially reduced, as will be shown in Chap. 2. However, since diffuse reverberant
sound comes from all possible directions in a room [56], it will always enter the
look-direction of the beam and hence will be only partially suppressed.
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Improvements to beamforming applied in reverberant environments can be
achieved using multiple beamformers where, instead of only forming a single beam
in the direction of the desired source, a three-dimensional array can be used to
form additional beams that are steered in the direction of the strong initial reflec-
tions [20, 70]. The additional reflections are treated as virtual sources in a sim-
ilar way to the source-image method for simulation of room acoustics [3] de-
scribed in Chap. 2. Another approach is the matched filter beamformer where
the microphone signals are convolved with the time-reversed room impulse re-
sponses [1, 20, 32, 53, 54]. However, both these methods require at least partial
knowledge of the room impulse response and can rather be treated as an alternative
to inverse filtering.

1.6.2 Speech Enhancement Approaches to Dereverberation

An early technique in the class of speech enhancement dereverberation was pro-
posed by Oppenheim and Schafer [72, 73]. The authors first introduce the observa-
tion that simple echoes are observed as distinct peaks in the cepstrum of the speech
signal. Consequently, they use a peak picking algorithm to identify these peaks and
attenuate them with, for example, a comb filter. An alternative to this was also con-
sidered, where a lowpass weighting function was applied to the cepstrum assuming
that most of the energy of speech is in the lower quefrencies. However, this approach
was not found suitable for more complex reverberation models [73].

A class of techniques emerged from the observation that the linear prediction
residual signal contains the effects of reverberation, comprising peaks correspond-
ing to excitation events in voiced speech together with additional peaks due to the
reverberant channel [10, 98]. These techniques aim to suppress the effects of re-
verberation without degrading the original characteristics of the residual such that
dereverberated speech can be synthesized using the processed residual and the all-
pole filter resulting from prediction analysis of the reverberant speech. It is assumed
in these methods that the effect of reverberation on the Autoregressive (AR) coeffi-
cients is insignificant [10]. It was shown in [29] that the AR coefficients of the clean
speech can be estimated accurately from multichannel observations.

An early idea based on linear prediction processing was proposed in a patent
by Allen [2] where the author suggested that synthetic clean speech could be gen-
erated from reverberant speech by identifying the Linear Predictive Coding (LPC)
parameters from one or more reverberant observations. Griebel and Brandstein et
al. [33, 34] used wavelet extrema clustering to reconstruct an enhanced prediction
residual. In [35] the authors employ coarse room impulse response estimates and
apply a matched filter type operation to obtain weighting functions for the reverber-
ant residuals. Yegnanarayana et al. [97] used multichannel time-aligned Hilbert en-
velopes to represent the strength of the peaks in the prediction residuals. The Hilbert
envelopes are then summed and the result used as a weight vector, which is applied
to the prediction residual of one of the microphones. In [98] the authors derive a
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weighting function based on the signal-to-reverberant ratio in different regions of
the prediction residual. Gillespie et al. [31] demonstrate the kurtosis of the residual
to be a useful reverberation metric, which they then maximize using an adaptive
filter. This method was extended by Wu and DeLiang [94], who added a spectral
subtraction stage to further suppress the remaining reverberation. Although these
methods do attenuate the impulses due to reverberation in the prediction residual,
they also significantly reduce naturalness in the dereverberated speech. This prob-
lem was ameliorated using a spatiotemporal averaging approach, where the speech
signals are first spatially averaged and the prediction residual is further enhanced
using temporal averaging of neighbouring larynx cycles [24, 27, 28, 86]. A further
discussion on the processing of the linear prediction residual and the spatiotemporal
averaging method will be given in Chap. 4.

A related method was proposed by Nakatani et al. [67]. This assumes a sinu-
soidal speech model. First the fundamental frequency of the speech signal is iden-
tified from the reverberant observations, then the remaining sinusoidal components
are identified. Using the identified magnitude and phases of these sinusoids, an en-
hanced speech signal is synthesized. Subsequently, the reverberant and the derever-
berated speech signals are used to derive an equivalent equalization filter. The pro-
cessing is performed in short frames and the inverse filter is updated in each frame.
It is shown that this inverse filter tends to the AIR equalization filter. However, this
method may be computationally demanding [67].

Spectral subtraction has been widely applied, with some success, in noise re-
duction [6, 13]. Spectral subtraction was applied to dereverberation by Lebart et
al. [57] and extended to the multichannel case by Habets [38, 39]. The authors as-
sume a statistical model of the room impulse response comprising Gaussian noise
modulated by a decaying exponential function. The decay rate of this exponential
function is governed by the reverberation time. It is then shown that, if the reverber-
ation time can be blindly estimated and in combination with multichannel spatial
averaging, the power spectral density of the impulse response can be identified and
subsequently removed by spectral subtraction. This method has shown promising
results [38, 93], provided that the assumed unknowns are available, and will be
elaborated in Chap. 3.

In summary, several speech enhancement approaches to dereverberation have
appeared in the literature. These do not assume explicit knowledge of the room
impulse response. However, blind identification of other features is often required.
Nevertheless, many of these methods are computationally efficient and suitable for
real-time implementation.

1.6.3 Blind System Identification and Inversion

The effects of reverberation can be removed if the AIR from the talker to at least
one microphone can be identified and inverted so as to give a perfect equalizer for
the acoustic channel. This approach presents several technical challenges that are
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the subject of much current research. Significant progress has been made towards
addressing these difficulties though, at the time of writing this, many issues related
to algorithm design and implementation remain open.

1.6.3.1 Blind System Identification

Blind multichannel system identification using second order statistics is usually
based on the cross-relation between two observations x1 and x2 and the correspond-
ing two AIRs h1 and h2, where the time index is temporarily omitted for brevity. The
cross-relation is given by [95]: x1 ∗ h2 = (s ∗ h1) ∗ h2 = x2 ∗ h1, which leads to the
system of equations Rh = 0, where in general for M channels R is a correlation-like
matrix [50] and h = [hT

1 hT
2 . . . hT

M]T is a vector of the concatenated AIRs. It can
be seen from this system of equations that the desired solution is the eigenvector
corresponding to the zeroth eigenvalue in R or, in the presence of noise, the small-
est eigenvalue. Several alternative solutions have been proposed. A Least Squares
(LS) approach for solving this problem is given in [95]. An eigendecomposition
method was proposed by Gürelli and Nikias [36]. Gannot and Moonen [23] use
eigendecomposition methods for blind system identification both in the full-band
and in frequency subbands. Huang and Benesty proposed the use of adaptive fil-
ters and derived multichannel LMS and Newton adaptive filters both in the time
domain [49, 51, 52] and in the frequency domain [50].

This type of blind system identification requires that the following identifiability
conditions are satisfied [95]:

1. The unknown channels must not include common zeros.
2. The correlation matrix of the source signal must be full rank.

Blind acoustic system identification algorithms additionally have to overcome
the following challenges:

1. Acoustic channels are normally time-varying and therefore system identifica-
tion must be performed adaptively.

2. AIRs have a duration typically corresponding to thousands of coefficients, and
estimation of systems with such high order requires robust algorithms with high
numerical precision and that typically present high computational requirements.

3. Noise in the observations can cause the adaptive algorithms to misconverge.
Some approaches have been developed to improve robustness [25, 26, 42, 52];

4. Many approaches assume knowledge of the order of the unknown system. This
issue has been addressed, for example, in [23] and [21];

5. Solutions for h are normally found only to within a scale factor [23, 52, 95].

Other approaches include Subramaniam’s [84] proposed use of the cepstrum for
blind system identification between two channels. It is shown that the channels can
be reconstructed from their phases using an iterative approach, where the phases
are identified from the cepstra of the observed data [75, 84] but that the method is
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sensitive to zeros close to the unit circle – a situation which often arises in acous-
tic systems as was shown in [59]. A method introduced by Triki and Slock [88]
comprises multichannel Linear Prediction (LP) to whiten the input signal and sub-
sequent multichannel linear prediction which is used to identify the channels. A
different approach to multichannel LP for dereverberation was taken in [14]. Recent
developments of this class of methods will be discussed in more detail in Chap. 9.
Finally, in [48] it is proposed to use an autoregressive model of channel impulse re-
sponse, which is assumed to be stationary, in contrast to the FIR model employed in
all the above methods. Furthermore, it is assumed that the source signal is a locally
stationary AR process but that it is globally nonstationary. In this way, the param-
eters of the all-pole channel filter can be identified by observing several frames of
the input signal and collecting information regarding the poles either by using a his-
togram approach or a more robust Bayesian probabilistic framework. Over several
frames, the poles due to the stationary channel become apparent and the channel
can thus be identified. One major advantage of this method is that, by using an AR
model of the channel, the order of the channel is reduced compared to the FIR chan-
nel models. Further extensions based on this idea have been developed in [16–18].
This approach will be discussed in more depth in Chap. 8. Nevertheless, problems
of sensitivity to noise and channel order estimation are common to all approaches
and the subject of much current research, which will be discussed in Chaps. 5, 6 and
8.

1.6.3.2 Inverse Filtering

If the acoustic impulse responses from the talker to the microphones, hm(n), are
available, for example, from a blind system identification algorithm, dereverberation
can be achieved in principle by an inverse system, gm, satisfying hT

m(n)gm = κδ (n−
τ), where κ and τ are, respectively, arbitrary scale and delay factors. However, direct
inversion of an acoustic channel presents several significant technical challenges.

1. AIRs have duration typically corresponding to thousands of coefficients and
inversion of systems with such high order requires robust algorithms with high
numerical precision and that typically present high computational requirements.

2. Acoustic channels typically exhibit non-minimum phase characteristics [68].
3. Acoustic channels may contain spectral nulls, which after inversion give strong

peaks in the spectrum causing narrow band noise amplification.

Several alternative approaches have been studied for single channel inversion.
For example, single channel LS inverse filters can be designed by minimizing the
error ĝm = mingm ‖hT

m(n)gm − δ (n− τ)‖2
2 [64, 66]. Homomorphic inverse filtering

has also been investigated [3, 64, 78, 87], where the impulse response is decomposed
into a minimum phase component, hmp,m(n) and an all-pass component, hap,m(n),
such that hm(n) = hT

ap,m(n)hmp,m(n). Consequently, magnitude and phase are equal-
ized separately, where an exact inverse can be found for the magnitude, while the
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phase can be equalized, e.g., using matched filtering [55, 78]. An important result is
that equalization of only the magnitude results in audible distortion [68, 78].

In the multichannel case, an exact inverse can be found by application of multi-
channel least squares design [51, 62]. The Multiple-input/output INverse Theorem
(MINT) approach was the first such multichannel inversion method proposed by
Miyoshi and Kaneda [62], which was also implemented in a subband version [96].
Adaptive versions have also been considered in [69]. If there are no common ze-
ros between the two channel transfer functions, a pair of inverse filters, g1 and g2
can be found such that: hT

1 (n)g1 +hT
2 (n)g2 = δ (n). Thus, exact inverse filtering can

be performed, with inverse filters of length similar to the channel length [51, 62].
Undermodelled estimates of hm(n) are problematic for this type of inversion, and it
has been observed that true channel inverses are of limited value for practical dere-
verberation when the channel estimate contains even moderate estimation errors.
Regularized multichannel equalization was shown to increase the equalization ro-
bustness to noise and estimation errors [44–46, 99]. Acoustic channel equalization
will be discussed in Chaps. 7 and 9.

1.7 Outline of the Book

The remainder of this book is organized as follows:
Chapter 2 reviews the acoustic characteristics of typical rooms and discusses

measurement and simulation of acoustic impulse responses. Furthermore, subjective
and objective measures of reverberation in speech are discussed.

Chapter 3 introduces a statistical model of the room impulse response and uses
that to develop a multichannel spectral subtraction based algorithm for speech dere-
verberation.

Chapter 4 reviews the use of processing of the linear prediction residual for
dereverberation of speech. A spatiotemporal averaging method for linear predic-
tion residual processing is introduced and its application to speech dereverberation
is demonstrated.

Chapter 5 develops a multichannel eigendecomposition method for blind identi-
fication of room impulse responses in the presence of coloured noise. The identified
impulse responses are then used to design equalization filters for speech dereverber-
ation.

Chapter 6 introduces a class of adaptive blind system identification methods with
implementations both in the time and frequency domain. The adverse effects of
noise on these algorithms are explored and several approaches to added noise ro-
bustness are presented and discussed.

Chapter 7 presents a multichannel Acoustic Transfer Function (ATF) equal-
izer design framework using oversampled and decimated subbands. The method
is shown to allow for approximate equalization of long, non-minimum phase ATFs
at low computational cost.
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Chapter 8 considers blind dereverberation in time-varying acoustic environ-
ments. The source and the AIRs are presented by parametric models that are em-
ployed in combination with Bayesian inference to estimate the room acoustic pa-
rameters.

Chapter 9 uses multichannel linear prediction to derive an equalization filter
without necessarily estimating the acoustic impulse responses first. This equaliza-
tion filter results in excessive whitening of the speech and, consequently, four dif-
ferent methods to overcome this problem are presented.

Chapter 10 presents TRINICON – a generic framework for Multi-Input Multi-
Output (MIMO) signal processing. It is applied here to derive two dereverberation
algorithms: one where the AIRs are first identified blindly and used to design equal-
ization filters, and the second where the equalization filters are identified directly
from the reverberant observations.
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