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Preface

Speech dereverberation has been on the agenda of the signal processing community
for several years. It is only in the last decade, however, that the topic has really taken
off, as seen from the growing number of publications appearing in the journals and
at conferences. One of the reasons that the topic has become more popular is the
rapidly growing availability in the marketplace of computationally capable mobile
devices, such as phones, PDAs and laptop computers, for which hands-free (distant
talking) operation is desirable. This is all the more significant when seen in the
context of the confluence of computing and communication terminals exploiting
low-cost VoIP-enabled telephony applications. Additionally, it is also true to say that
user expectations of computing and communication devices is a strongly increasing
function with time, perhaps only moderated by considerations of value versus cost –
people are more forgiving of technology limitations if they are not paying (much) for
the service they are employing. Factors such as these have combined to motivate the
signal processing community to provide robust solutions for speech enhancement in
general and to work on in particular, what for many is a new task, dereverberation.

Since we began our research in this field, we have been receiving inquiries from
curious researchers seeking a digestible review on the state-of-the-art in the field of
speech dereverberation. Until now, the answer has always been that, although there
have been several books that treat the subject of speech processing, microphone ar-
ray processing, and audio processing, which have included chapters on speech dere-
verberation, there has not been a publication that gives a comprehensive overview
of the topic. We believe that the field has now reached a maturity that allows the
compilation of such a book, solely dedicated to the topic of speech dereverberation.
It was this belief and the context of the situation that motivated our initiative in this
writing project.

Before you decide to skip the rest of this Preface on the grounds that its au-
thors have lost their grip on reality, let us momentarily clarify the level of matu-
rity to which we are referring. The three main axes of speech enhancement were
highlighted by Walter Kellermann at the 1999 International Workshop on Acoustic
Echo and Noise Control to be echo cancellation, noise reduction and dereverbera-
tion. Of these three it is a likely consensus that dereverberation is the more difficult
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task. Modelling of room acoustics is more complicated than either the modelling
of speech production or of noise generation processes and their additive combina-
tion with speech signals, at least in the manner in which such models are currently
applied in DSP algorithm development. Dereverberation is also normally formu-
lated as a blind (or unsupervised) problem, somewhat related to, but nevertheless
distinct from, blind source separation. Computational limitations both in power and
precision also present real challenges in this field. So, it is inevitable that, given the
difficulty of the problem and the fact that attention on this problem has not been
strongly focused for as long as it has on either echo cancellation or noise reduction,
the level of maturity in the understanding of the dereverberation problem and its
solutions is far below that of the other related problems. At this stage of dereverber-
ation technology, we could argue that there are more open questions than solutions;
those solutions that are available strive towards, but do not always achieve, the levels
of robustness found in many of the more mature technologies.

This book, therefore, by no means offers any ultimate solutions to the speech
dereverberation problem. Nonetheless, it aims to provide an in-depth overview of
the state-of-the-art in speech dereverberation methods with contributing chapters
from some of the key researchers in the field. It also gives what we believe to be
a valuable introduction to some topics relevant to dereverberation, such as room
acoustics and psychoacoustics, though we have not aimed to cover these subjects in
detail.

The book is aimed at researchers and graduate students who would like to pursue
research in this field, giving an accessible introduction to the topic including nu-
merous references to other publications. It could make an excellent complementary
text for postgraduate courses in speech processing. However, it is not exclusively
limited to this group of readers. The attempt to solve the very difficult problem of
speech dereverberation has involved a large variety of signal processing tools. Such
tools include multirate signal processing, adaptive filtering, Bayesian inference, and
linear prediction, to mention but a few. The applications of these techniques can be
found useful in other fields of engineering.

We would like to thank all the contributing authors for their excellent chapters.
We would also like to express our special thanks to Dr. Emanuël Habets for his care-
fully reading of our drafts and for his helpful discussions and contributions through-
out this project.

London, Patrick A. Naylor
February 2009 Nikolay D. Gaubitch
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Chapter 1
Introduction

Patrick A. Naylor and Nikolay D. Gaubitch

Abstract Acoustic reverberation will be introduced in this chapter in the context
of telecommunication. The adverse effects on speech caused by reverberation are
problematic, in particular, in hands-free terminals operating typically at arms-length
from the talker’s lips. This introductory chapter will provide a system description of
room reverberation and will formulate mathematically the dereverberation problem
in its most direct form so as to introduce and underpin the more detailed presen-
tation in subsequent chapters. Elements of room acoustics will also be introduced
where needed, though detailed study of acoustics is not the aim of this text.

At the time of writing this, dereverberation is a topic of study with many impor-
tant research questions remaining as yet unanswered. Whilst reviewing the relevant
literature later in this chapter, it is intended both to describe the state-of-the-art and
to highlight some of the significant open issues. Whereas the former aims to con-
solidate, perhaps for the first time, the known achievements to date of the research
community, the latter aims to highlight potential avenues of future research.

1.1 Background

One can confidently deduce that the phenomenon of reverberation has been known
to mankind since the time of prehistoric cave dwellers. Sound reflection effects are
believed to have influenced prehistoric cave art [90, 91]. Reverberation is also used
in several well known cases by other species, such as bats for navigation during
flight.

There is evidence of comprehension of the notion of reflected speech occurring
in Plato’s Republic [76]: “And what if sound echoed off the prison wall opposite
them? When any of the passers-by spoke, don’t you think they’d be bound to assume
that the sound came from a passing shadow?”. Pioneering scientific work on sound
and acoustics in the 19th century was undertaken by, for example, Rayleigh [80] and
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2 P.A. Naylor and N.D. Gaubitch

Sabine [81]. In the 20th century initial efforts in the understanding of reverberation
of speech were provided by Bolt [8] and the effects of single echoes by Haas [37].

The level to which humans employ reverberation during everyday life is unclear.
There is some evidence to suggest that, through the use of two ears, spatial process-
ing is used to enhance speech intelligibility and enables a useful degree of source
separation to be achieved in human speech perception [12].

In music audio processing, the sense of ‘space’ that can be created by stereo or
surround sound reproduction adds greatly to realism and often makes recorded mu-
sic more attractive and enjoyable. We might then ask ourselves the question: since
reverberation is present in everyday life experience of sound and in some important
cases is effective in aiding speech communication, why should we be interested in
removing reverberation from speech using dereverberation processing? The answer
to this question is dependent on the application context.

There is a continuously growing demand for high quality hands-free speech input
for various telecommunication applications [71, 82]. One driving force behind this
development is the rapidly increasing use of portable devices such as mobile tele-
phones, Personal Digital Assistant (PDA) devices and laptop computers equipped
for Voice Over Internet Protocol (VoIP) [63]. Furthermore, there is a continuous
worldwide expansion of broadband internet access [5]. These factors have paved
the way for several advanced speech applications such as wideband teleconferenc-
ing with automatic camera steering, automatic speech-to-text conversion, speaker
identification, voice-controlled device operation and car interior communication
systems [82]. Another important application where speech obtained from a distant
talker is of interest is that of hearing aids [82].

1.2 Effects of Reverberation

When speech signals are obtained in an enclosed space by one or more microphones
positioned at a distance from the talker, the observed signal consists of a superpo-
sition of many delayed and attenuated copies of the speech signal due to multiple
reflections from the surrounding walls and other objects, as illustrated in Fig. 1.1.
We here define the direct-path as the acoustic propagation path from the talker to
the microphone without reflections. We also note that a delay of the superimposed
copies arises because all other propagation paths are longer than the direct-path and
that additional attenuation occurs at each reflection due to frequency dependent ab-
sorption. The perceptual effects of reverberation can be summarized as:

1. The box effect – the reverberated speech signal can be viewed as the same source
signal coming from several different sources positioned at different locations
in the room and thus arriving at different times and with different intensities
[3]. This adds spaciousness to the sound [56] and makes the talker sound as if
positioned “inside a box”.

2. The distant talker effect – the perceived spaciousness explained in the previous
point makes the talker sound far away from the microphone.
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Fig. 1.1 Schematic illustration of room reverberation

When these effects are carefully controlled and moderately applied, the reverbera-
tion can add a pleasant sense of the acoustic space in which the sound resides. This
is valuable and important in audio rendering but almost always unhelpful in voice
communication. When the reverberation effects are severe, intelligibility of speech
is degraded. Reverberation alters the characteristics of the speech signal, which is
problematic for signal processing applications including speech recognition, source
localization and speaker verification, and significantly reduces the performance of
algorithms developed without taking room effects into consideration. The deleteri-
ous effects are magnified as the distance between the talker and the microphones is
increased.

1.3 Speech Acquisition

The problems associated with reverberation can sometimes be overcome in practice
by utilizing a headset by means of which the microphone is held close to the mouth.
Alternatively, a microphone with a fixed directional sensitivity characteristic posi-
tioned in front of the talker can be used. The advent of bluetooth technology has
made high quality, low cost wireless headsets feasible. Nevertheless, these solutions
impose restrictions on the flexibility and comfort of the talker, which are the main
desired features in the use of hands-free equipment [71]. In some applications, such
as teleconferencing with multiple talkers on one end, these headset based solutions
may not be practical. Therefore, a signal processing approach independent of the
relative talker-microphone configuration is certainly preferable.
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In hands-free speech acquisition, the talker’s lips are typically located at a dis-
tance of 0.3-3 m from the microphone. In such a scenario, the speech signal is
affected by the user’s surrounding environment, which results in the following three
distinct effects [71, 82]:

(i) Additive measurement noise due to, for example, other audible talkers or pass-
ing traffic. When the noise level is comparable to or greater than the speech
level, it is difficult for a listener to distinguish the desired speech signal from
the noise, and thus intelligibility and listening comfort are reduced.

(ii) Acoustic echoes due to speech from a far-end talker which is picked up by the
near-end microphones and retransmitted back to the far-end talker with delay.
This results in the talker hearing an echo of their own voice, which greatly
disturbs the communication.

(iii) Reverberation that arises whenever sound is produced in enclosed spaces, such
as offices and other rooms, due to reflections from walls and surrounding ob-
jects.

These components jointly contribute to an overall degradation in the quality of
the observed speech signals, which significantly reduce the perceived speech qual-
ity for the listener and the performance of applications such as speech recogniz-
ers [71]. Speech enhancement and acoustic echo cancellation are two widely re-
searched fields that address problems (i) and (ii) respectively. Several significant
contributions have been made in these areas [6, 7, 11, 13, 30, 41, 60] and many
algorithms have been implemented and are in use in commercial applications [77].
The problem of reverberation on the other hand, received much less attention in the
literature until recently. Nevertheless, finding solutions to this problem is essential
for the future development of applications with hands-free speech acquisition. This
indeed motivates the focus of the forthcoming chapters of this book.

1.4 System Description

A generic system diagram for multichannel dereverberation is shown in Fig. 1.2.
The speech signal, s(n), from the talker propagates through acoustic channels, Hm(z)
for m = 1 to M. The output of each channel is observed using M microphones to
give signals xm(n). All noise in the system is assumed additive and is represented
by νm(n).

The observed signal, xm(n), at microphone m can be described as the superposi-
tion of (i) the direct-path signal, which propagates by line-of-sight from the talker
to the microphone with corresponding attenuation and propagation delay and (ii) a
theoretically infinite set of reflections of the talker signal arriving at the microphone
at later time instances [56] with attenuation dependent on the properties of the re-
flecting surfaces. This can be expressed as
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Fig. 1.2 Generic multichannel reverberation-dereverberation system model

xm(n) =
∞

∑
i=0

hm,i(n)s(n− i), (1.1)

where the acoustic channel impulse responses hm,i(n) represent the attenuation and
the propagation delay corresponding to the direct signal and all the reflected com-
ponents.

The aim of speech dereverberation is to find a system with input xm(n), m =
1, . . . ,M and output ŝ(n), which is a ‘good’ estimate of s(n). The definition of ‘good’
is this context is application dependent. It may, for example, be desired to estimate
s(n) with minimum Mean Square Error (MSE). Alternatively, other criteria may be
relevant, such as those related to perceptual quality. This is a blind problem since
the acoustic channels Hm(z) are unknown.

Recent efforts in acoustic signal processing have produced several algorithms for
speech dereverberation and reverberant speech enhancement. These methods can be
divided broadly into three main categories:

1. Beamforming – the signals received at the different microphones are filtered
and weighted so as to form a beam of enhanced sensitivity in the direction of
the desired source and to attenuate sounds from other directions. Beamforming
is dependent on the availability of multi-microphone inputs. Beamforming is a
multiple input single output process.

2. Speech enhancement – the speech signals are modified so as to represent better
some features of the clean speech signal according to an a priori defined model
of the speech waveform or spectrum. Speech enhancement is often a single in-
put single output process, though many speech enhancement techniques benefit
from the use of multiple inputs.

3. Blind deconvolution – the acoustic impulse responses are identified blindly, us-
ing only the observed microphone signals, and then used to design an inverse
filter that compensates for the effect of the acoustic channels.
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1.5 Acoustic Impulse Responses

The Acoustic Impulse Response (AIR) characterizes the acoustics of a given enclo-
sure and therefore study of the AIR is a natural approach to dereverberation. This
section will introduce some of the characteristics of AIRs. The focus is on the AIRs
of rooms where reverberation has a significant effect on telecommunication applica-
tions. Further relevant details of room acoustics are given in Chap. 2. Whereas AIR
is used to refer to acoustic impulse responses in general, there are some cases where
it is more appropriate to limit the acoustic context to be within a room, in which
case, the impulse response is referred to as a Room Impulse Response (RIR). In
this book we will use AIR and also RIR, depending on the acoustic scenario being
considered.

Several models of room impulse responses have been considered in the literature,
including both Finite Impulse Response (FIR) and Infinite Impulse Response (IIR)
structures [40, 47, 48, 65, 66, 74]. The choice of AIR model will generally influence
the algorithmic development.

An often-used quantification of the impulse response of a room is the reverbera-
tion time, originally introduced by Sabine [56]. The reverberation time, T60, is de-
fined as the time taken for the reverberant energy to decay by 60 dB once the sound
source has been abruptly shut off. The reverberation time for a room is governed by
the room geometry and the reflectivity of the reflecting surfaces.

The reverberation time is approximately constant when measured at any location
in a given room. However, the impulse response is spatially variant and will vary
as the talker, the microphones or other objects in the room change location [56].
A particular characteristic that varies with the talker-microphone separation is the
relation between the energy of the direct-path component and the energy of the
reflected components of the AIR. The critical distance is the distance such that these
two energies are equal.

Figure 1.3 shows an example room impulse response. Direct-path propagation
from the sound source to the microphone gives rise to an initial short period of
near-zero amplitude, sometimes referred to as the direct-path propagation delay,
followed by a peak. The amplitude of this peak due to direct-path propagation may
be greater or less than the amplitude of the later reflections depending on the source-
microphone distance and the reflectivity of the surfaces in the room. The example of
Fig. 1.3 shows a relatively strong direct-path component, indicating that the source-
microphone distance is relatively short.

The early and the late reflections are indicated in the figure as two distinct regions
of the AIR. The early reflections are often taken as the first 50 ms of the impulse
response [56], and constitute well defined impulses of large magnitude relative to the
smaller magnitude and diffuse nature of the late reflections. The propagation from
the talker’s lips to the microphone is represented by the convolution of the speech
signal with the AIR. The AIR early reflections cause spectral changes and lead to
a perceptual effect referred to as coloration [56]. In general, closely spaced echoes
are not distinguished by human hearing due to masking properties of the ear, and it
has been shown that early reflections can have a positive impact on the intelligibility
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Fig. 1.3 An example room impulse response

of speech with an effect similar to increasing the strength of the direct-path sound
[9, 56, 71]. However, coloration can degrade the quality of recorded speech [56].
The late reflections are referred to as the tail of the impulse response and constitute
closely spaced, decaying impulses, which are seemingly randomly distributed. The
late reflections cause a ‘distant’ and ‘echo-ey’ sound quality, we refer to as the
reverberation tail and provides the major contribution to what is generally perceived
of as reverberation in everyday experience.

In terms of spectral characteristics, the room transfer function is proportional to
the sound pressure [56, 92] and has been studied extensively in the room acous-
tics literature, where many properties have been established [56]. One property of
interest in the context of dereverberation is the average magnitude difference be-
tween minimum and maximum spectral points, which has been shown to extend
beyond 10 dB [56, 83]. Since the room transfer function changes depending on the
location of the source and the microphone, it can been described as a random pro-
cess [56, 79, 92]. Neely and Allen [68] concluded that the AIRs in most real rooms
posses non-minimum phase characteristics.

Rooms are generally stable systems with the coefficients hm,i(n) tending to zero
with increasing index i and therefore, it is sufficient to consider only the first Lh
coefficients in (1.1). The choice of Lh is often linked to the reverberation time of the
room. Taking into account any additive noise sources, the observed signal at the mth

microphone can be written in a vector form

xm(n) = hT
m(n)s(n)+νm(n), (1.2)

where hm(n) = [hm,0(n) hm,1(n) . . . hm,Lh−1(n)]T is the Lh-tap impulse response
of the acoustic channel from the source to microphone m, s(n) = [s(n) s(n −
1) . . . s(n − Lh + 1)]T is the speech signal vector and ν(n) is observation noise.
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In the frequency domain this can be expressed, equivalently, as

Xm(e jω) = Hm(e jω )S(e jω)+Nm(e jω), (1.3)

where Xm(e jω), Hm(e jω), S(e jω) and Nm(e jω) are the Fourier transforms of xm(n),
hm(n), s(n) and νm(n), respectively.

Having introduced these properties of the room impulse response, the following
can be deduced regarding the processing of reverberant speech:

1. Hand-free telephony users can be expected to move around their acoustic envi-
ronment and so the AIRs will vary with time.

2. The use of measured impulse responses is not feasible for dereverberation due
to the dependence on talker-microphone position and on the room geometry.

3. If the talker-microphone separation is much smaller than the critical distance,
the effects of reverberation are likely to be negligible. Thus, dereverberation is
of greatest importance when the source-microphone distance (D) is larger than
the critical distance (Dc), D ≥ Dc.

4. The reverberation time in typical office-sized rooms can be expected to vary in
the range 0.1-1 s. Consequently, this involves FIR filters of several thousand
taps for typical sampling frequencies.

5. Although undermodelling of the channel is possible, late reflections are impor-
tant in dereverberation, in particular in the case when D ≥ Dc.

6. The non-minimum phase property and the large spectral dynamic range of room
transfer functions will raise challenges in designing AIR equalization filters.

1.6 Literature Overview

This section presents an overview of the existing literature, which deals explicitly
with enhancement of reverberant speech with the aim to serve as an introduction to
the topic and to provide an annotated bibliography. A more thorough treatment with
additional bibliographic records of several methods mentioned here is provided in
the relevant chapters.

1.6.1 Beamforming Using Microphone Arrays

Beamforming techniques are fundamentally important and among the first multi-
channel processing approaches for enhancement of speech acquisition in noisy and
reverberant environments [11]. The most direct and straightforward technique is the
Delay-and-sum Beamformer (DSB) in which the microphone signals are delayed,
to compensate for different times of arrival, and then weighted and summed [15, 89]
as a convex combination. The output of the DSB can be written as
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x̄(n) =
M

∑
m=1

wmxm(n− τm), (1.4)

where τm is the propagation delay in samples from the source to the mth sensor and
wm is the weighting applied to the mth sensor. In this way, the coherent components
across channels, due to the direct-paths, are added constructively, while incoherent
components, due to reverberation or noise, are attenuated [15].

The DSB can also be interpreted as forming a beam of sensitivity in the chosen
direction. From this spatial filtering interpretation it can be seen intuitively that the
beamformer approach works best for strongly localized sources and is less effective
when the sound field is diffuse. The design of the weights is the spatial equivalent
to the design of temporal FIR filters; the number of microphones is analogous to
the number of taps and the spacing between sensors is analogous to the sampling
frequency [15, 89]. Consequently, there is a spatial sampling criterion analogous
to the time domain Nyquist sampling criterion, which relates the distance between
microphones to the frequency components in the signal such that spatial aliasing
can be avoided. This is defined as [15]

‖qmic,m −qmic,m+1‖2 <
c

2 f
, (1.5)

where ‖ · ‖2 denotes the Euclidean norm, qmic,m is the three-dimensional position
vector of the mth microphone and c the speed of sound. Talantzis and Ward studied
an alternative design of optimal weights in [85]. It can be seen from the expression
in (1.5) that, for broadband signals such as speech, a linear array may not be the op-
timal solution. Consequently, several designs have been proposed with three or four
subarrays and with different microphone spacing such that each of these subarrays
covers a different bandwidth [11, 15].

Several variants of the DSB exist. For example, the DSB can be extended into
the filter-and-sum beamformer in which the scalar weights are replaced each by
an FIR filter [15]. Alternatively, in an approach employing frequency subbands by
Allen et al. [4], the signals are co-phased in each frequency band and the gain is
adjusted based on the cross-correlation between the channels to remove incoher-
ent components before the summation. A two-dimensional microphone array was
proposed by Flanagan et al. [19], which uses a DSB with a ‘track-while-scan’ ap-
proach where the area under consideration is quantized into overlapping regions
that are scanned sequentially and speech characteristics are incorporated to distin-
guish a speech source from noise. The extension to three-dimensional arrays has
also been considered [20] and also the use of spherical microphone arrays [58, 61].
Adaptive beamforming approaches have been studied, which automatically adjust
the weights of the beamformer [15, 43] and which may also include constraints in
the adaptation rule [22]. Generally, beamformers have been found to be efficient in
applications to suppress localized additive noise sources [11]. Reverberation can be
partially reduced, as will be shown in Chap. 2. However, since diffuse reverberant
sound comes from all possible directions in a room [56], it will always enter the
look-direction of the beam and hence will be only partially suppressed.
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Improvements to beamforming applied in reverberant environments can be
achieved using multiple beamformers where, instead of only forming a single beam
in the direction of the desired source, a three-dimensional array can be used to
form additional beams that are steered in the direction of the strong initial reflec-
tions [20, 70]. The additional reflections are treated as virtual sources in a sim-
ilar way to the source-image method for simulation of room acoustics [3] de-
scribed in Chap. 2. Another approach is the matched filter beamformer where
the microphone signals are convolved with the time-reversed room impulse re-
sponses [1, 20, 32, 53, 54]. However, both these methods require at least partial
knowledge of the room impulse response and can rather be treated as an alternative
to inverse filtering.

1.6.2 Speech Enhancement Approaches to Dereverberation

An early technique in the class of speech enhancement dereverberation was pro-
posed by Oppenheim and Schafer [72, 73]. The authors first introduce the observa-
tion that simple echoes are observed as distinct peaks in the cepstrum of the speech
signal. Consequently, they use a peak picking algorithm to identify these peaks and
attenuate them with, for example, a comb filter. An alternative to this was also con-
sidered, where a lowpass weighting function was applied to the cepstrum assuming
that most of the energy of speech is in the lower quefrencies. However, this approach
was not found suitable for more complex reverberation models [73].

A class of techniques emerged from the observation that the linear prediction
residual signal contains the effects of reverberation, comprising peaks correspond-
ing to excitation events in voiced speech together with additional peaks due to the
reverberant channel [10, 98]. These techniques aim to suppress the effects of re-
verberation without degrading the original characteristics of the residual such that
dereverberated speech can be synthesized using the processed residual and the all-
pole filter resulting from prediction analysis of the reverberant speech. It is assumed
in these methods that the effect of reverberation on the Autoregressive (AR) coeffi-
cients is insignificant [10]. It was shown in [29] that the AR coefficients of the clean
speech can be estimated accurately from multichannel observations.

An early idea based on linear prediction processing was proposed in a patent
by Allen [2] where the author suggested that synthetic clean speech could be gen-
erated from reverberant speech by identifying the Linear Predictive Coding (LPC)
parameters from one or more reverberant observations. Griebel and Brandstein et
al. [33, 34] used wavelet extrema clustering to reconstruct an enhanced prediction
residual. In [35] the authors employ coarse room impulse response estimates and
apply a matched filter type operation to obtain weighting functions for the reverber-
ant residuals. Yegnanarayana et al. [97] used multichannel time-aligned Hilbert en-
velopes to represent the strength of the peaks in the prediction residuals. The Hilbert
envelopes are then summed and the result used as a weight vector, which is applied
to the prediction residual of one of the microphones. In [98] the authors derive a
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weighting function based on the signal-to-reverberant ratio in different regions of
the prediction residual. Gillespie et al. [31] demonstrate the kurtosis of the residual
to be a useful reverberation metric, which they then maximize using an adaptive
filter. This method was extended by Wu and DeLiang [94], who added a spectral
subtraction stage to further suppress the remaining reverberation. Although these
methods do attenuate the impulses due to reverberation in the prediction residual,
they also significantly reduce naturalness in the dereverberated speech. This prob-
lem was ameliorated using a spatiotemporal averaging approach, where the speech
signals are first spatially averaged and the prediction residual is further enhanced
using temporal averaging of neighbouring larynx cycles [24, 27, 28, 86]. A further
discussion on the processing of the linear prediction residual and the spatiotemporal
averaging method will be given in Chap. 4.

A related method was proposed by Nakatani et al. [67]. This assumes a sinu-
soidal speech model. First the fundamental frequency of the speech signal is iden-
tified from the reverberant observations, then the remaining sinusoidal components
are identified. Using the identified magnitude and phases of these sinusoids, an en-
hanced speech signal is synthesized. Subsequently, the reverberant and the derever-
berated speech signals are used to derive an equivalent equalization filter. The pro-
cessing is performed in short frames and the inverse filter is updated in each frame.
It is shown that this inverse filter tends to the AIR equalization filter. However, this
method may be computationally demanding [67].

Spectral subtraction has been widely applied, with some success, in noise re-
duction [6, 13]. Spectral subtraction was applied to dereverberation by Lebart et
al. [57] and extended to the multichannel case by Habets [38, 39]. The authors as-
sume a statistical model of the room impulse response comprising Gaussian noise
modulated by a decaying exponential function. The decay rate of this exponential
function is governed by the reverberation time. It is then shown that, if the reverber-
ation time can be blindly estimated and in combination with multichannel spatial
averaging, the power spectral density of the impulse response can be identified and
subsequently removed by spectral subtraction. This method has shown promising
results [38, 93], provided that the assumed unknowns are available, and will be
elaborated in Chap. 3.

In summary, several speech enhancement approaches to dereverberation have
appeared in the literature. These do not assume explicit knowledge of the room
impulse response. However, blind identification of other features is often required.
Nevertheless, many of these methods are computationally efficient and suitable for
real-time implementation.

1.6.3 Blind System Identification and Inversion

The effects of reverberation can be removed if the AIR from the talker to at least
one microphone can be identified and inverted so as to give a perfect equalizer for
the acoustic channel. This approach presents several technical challenges that are
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the subject of much current research. Significant progress has been made towards
addressing these difficulties though, at the time of writing this, many issues related
to algorithm design and implementation remain open.

1.6.3.1 Blind System Identification

Blind multichannel system identification using second order statistics is usually
based on the cross-relation between two observations x1 and x2 and the correspond-
ing two AIRs h1 and h2, where the time index is temporarily omitted for brevity. The
cross-relation is given by [95]: x1 ∗ h2 = (s ∗ h1) ∗ h2 = x2 ∗ h1, which leads to the
system of equations Rh = 0, where in general for M channels R is a correlation-like
matrix [50] and h = [hT

1 hT
2 . . . hT

M]T is a vector of the concatenated AIRs. It can
be seen from this system of equations that the desired solution is the eigenvector
corresponding to the zeroth eigenvalue in R or, in the presence of noise, the small-
est eigenvalue. Several alternative solutions have been proposed. A Least Squares
(LS) approach for solving this problem is given in [95]. An eigendecomposition
method was proposed by Gürelli and Nikias [36]. Gannot and Moonen [23] use
eigendecomposition methods for blind system identification both in the full-band
and in frequency subbands. Huang and Benesty proposed the use of adaptive fil-
ters and derived multichannel LMS and Newton adaptive filters both in the time
domain [49, 51, 52] and in the frequency domain [50].

This type of blind system identification requires that the following identifiability
conditions are satisfied [95]:

1. The unknown channels must not include common zeros.
2. The correlation matrix of the source signal must be full rank.

Blind acoustic system identification algorithms additionally have to overcome
the following challenges:

1. Acoustic channels are normally time-varying and therefore system identifica-
tion must be performed adaptively.

2. AIRs have a duration typically corresponding to thousands of coefficients, and
estimation of systems with such high order requires robust algorithms with high
numerical precision and that typically present high computational requirements.

3. Noise in the observations can cause the adaptive algorithms to misconverge.
Some approaches have been developed to improve robustness [25, 26, 42, 52];

4. Many approaches assume knowledge of the order of the unknown system. This
issue has been addressed, for example, in [23] and [21];

5. Solutions for h are normally found only to within a scale factor [23, 52, 95].

Other approaches include Subramaniam’s [84] proposed use of the cepstrum for
blind system identification between two channels. It is shown that the channels can
be reconstructed from their phases using an iterative approach, where the phases
are identified from the cepstra of the observed data [75, 84] but that the method is
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sensitive to zeros close to the unit circle – a situation which often arises in acous-
tic systems as was shown in [59]. A method introduced by Triki and Slock [88]
comprises multichannel Linear Prediction (LP) to whiten the input signal and sub-
sequent multichannel linear prediction which is used to identify the channels. A
different approach to multichannel LP for dereverberation was taken in [14]. Recent
developments of this class of methods will be discussed in more detail in Chap. 9.
Finally, in [48] it is proposed to use an autoregressive model of channel impulse re-
sponse, which is assumed to be stationary, in contrast to the FIR model employed in
all the above methods. Furthermore, it is assumed that the source signal is a locally
stationary AR process but that it is globally nonstationary. In this way, the param-
eters of the all-pole channel filter can be identified by observing several frames of
the input signal and collecting information regarding the poles either by using a his-
togram approach or a more robust Bayesian probabilistic framework. Over several
frames, the poles due to the stationary channel become apparent and the channel
can thus be identified. One major advantage of this method is that, by using an AR
model of the channel, the order of the channel is reduced compared to the FIR chan-
nel models. Further extensions based on this idea have been developed in [16–18].
This approach will be discussed in more depth in Chap. 8. Nevertheless, problems
of sensitivity to noise and channel order estimation are common to all approaches
and the subject of much current research, which will be discussed in Chaps. 5, 6 and
8.

1.6.3.2 Inverse Filtering

If the acoustic impulse responses from the talker to the microphones, hm(n), are
available, for example, from a blind system identification algorithm, dereverberation
can be achieved in principle by an inverse system, gm, satisfying hT

m(n)gm = κδ (n−
τ), where κ and τ are, respectively, arbitrary scale and delay factors. However, direct
inversion of an acoustic channel presents several significant technical challenges.

1. AIRs have duration typically corresponding to thousands of coefficients and
inversion of systems with such high order requires robust algorithms with high
numerical precision and that typically present high computational requirements.

2. Acoustic channels typically exhibit non-minimum phase characteristics [68].
3. Acoustic channels may contain spectral nulls, which after inversion give strong

peaks in the spectrum causing narrow band noise amplification.

Several alternative approaches have been studied for single channel inversion.
For example, single channel LS inverse filters can be designed by minimizing the
error ĝm = mingm ‖hT

m(n)gm − δ (n− τ)‖2
2 [64, 66]. Homomorphic inverse filtering

has also been investigated [3, 64, 78, 87], where the impulse response is decomposed
into a minimum phase component, hmp,m(n) and an all-pass component, hap,m(n),
such that hm(n) = hT

ap,m(n)hmp,m(n). Consequently, magnitude and phase are equal-
ized separately, where an exact inverse can be found for the magnitude, while the
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phase can be equalized, e.g., using matched filtering [55, 78]. An important result is
that equalization of only the magnitude results in audible distortion [68, 78].

In the multichannel case, an exact inverse can be found by application of multi-
channel least squares design [51, 62]. The Multiple-input/output INverse Theorem
(MINT) approach was the first such multichannel inversion method proposed by
Miyoshi and Kaneda [62], which was also implemented in a subband version [96].
Adaptive versions have also been considered in [69]. If there are no common ze-
ros between the two channel transfer functions, a pair of inverse filters, g1 and g2
can be found such that: hT

1 (n)g1 +hT
2 (n)g2 = δ (n). Thus, exact inverse filtering can

be performed, with inverse filters of length similar to the channel length [51, 62].
Undermodelled estimates of hm(n) are problematic for this type of inversion, and it
has been observed that true channel inverses are of limited value for practical dere-
verberation when the channel estimate contains even moderate estimation errors.
Regularized multichannel equalization was shown to increase the equalization ro-
bustness to noise and estimation errors [44–46, 99]. Acoustic channel equalization
will be discussed in Chaps. 7 and 9.

1.7 Outline of the Book

The remainder of this book is organized as follows:
Chapter 2 reviews the acoustic characteristics of typical rooms and discusses

measurement and simulation of acoustic impulse responses. Furthermore, subjective
and objective measures of reverberation in speech are discussed.

Chapter 3 introduces a statistical model of the room impulse response and uses
that to develop a multichannel spectral subtraction based algorithm for speech dere-
verberation.

Chapter 4 reviews the use of processing of the linear prediction residual for
dereverberation of speech. A spatiotemporal averaging method for linear predic-
tion residual processing is introduced and its application to speech dereverberation
is demonstrated.

Chapter 5 develops a multichannel eigendecomposition method for blind identi-
fication of room impulse responses in the presence of coloured noise. The identified
impulse responses are then used to design equalization filters for speech dereverber-
ation.

Chapter 6 introduces a class of adaptive blind system identification methods with
implementations both in the time and frequency domain. The adverse effects of
noise on these algorithms are explored and several approaches to added noise ro-
bustness are presented and discussed.

Chapter 7 presents a multichannel Acoustic Transfer Function (ATF) equal-
izer design framework using oversampled and decimated subbands. The method
is shown to allow for approximate equalization of long, non-minimum phase ATFs
at low computational cost.
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Chapter 8 considers blind dereverberation in time-varying acoustic environ-
ments. The source and the AIRs are presented by parametric models that are em-
ployed in combination with Bayesian inference to estimate the room acoustic pa-
rameters.

Chapter 9 uses multichannel linear prediction to derive an equalization filter
without necessarily estimating the acoustic impulse responses first. This equaliza-
tion filter results in excessive whitening of the speech and, consequently, four dif-
ferent methods to overcome this problem are presented.

Chapter 10 presents TRINICON – a generic framework for Multi-Input Multi-
Output (MIMO) signal processing. It is applied here to derive two dereverberation
algorithms: one where the AIRs are first identified blindly and used to design equal-
ization filters, and the second where the equalization filters are identified directly
from the reverberant observations.
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Chapter 2
Models, Measurement and Evaluation

Patrick A. Naylor, Emanuël A.P. Habets, Jimi Y.-C. Wen, and Nikolay D. Gaubitch

Abstract It is the science of room acoustics that offers an understanding of the phys-
ical processes by which sound waves propagate in enclosed spaces and the manner
in which acoustic reflections combine to give the effect that we refer to as reverber-
ation. This chapter aims to summarize some of the main concepts of room acoustics
that are relevant to the subsequent material. In particular, this discussion will focus
on models and simulation techniques for room acoustics that aid the description of
reverberation and the development of dereverberation algorithms. Examples will be
given involving both simulated room impulse responses and measured responses
of real rooms. The issue of evaluation of dereverberation processing will then be
addressed. Measures that aim to characterize the quantity and perceived effect of re-
verberation in a speech signal will be described and discussed. The chapter ends by
considering the well known delay-and-sum beamformer, which is often considered
to be a baseline spatial filtering approach, and presents an analysis of the derever-
beration performance levels that can be expected at such a baseline.

2.1 An Overview of Room Acoustics

Consider a single omnidirectional source of sound located within an enclosed space
such as an office or living room with walls and other surfaces that reflect sound to
some extent. Let us assume that the source starts to emit at some instant in time
t = t0 and that the room was silent for t < t0. The sound emanating from the source
will be reflected multiple times in a manner that depends on the geometry of the
source and the room as well as the nature of the reflective surfaces. This process
produces a sound energy distribution that becomes increasingly uniform with time
t > t0 across a wide range of frequencies of interest.

Imperial College London, UK
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2.1.1 The Wave Equation

Let us begin by considering a sound field as a superposition of plane waves. The
propagation of such waves within a room can be considered to be a linear process
after applying several simplifications including the assumptions that the medium
in which the waves travel is homogeneous, at rest, and that its characteristics are
independent of the wave amplitude. Then the propagation of acoustic waves through
a material can be described by the second order partial differential wave equation.
The wave equation describes the evolution of sound pressure p(q, t), without any
driving source, as a function of position q = (qx,qy,qz) and time t and is given by

∇2 p(q, t)− 1
c2

∂ 2 p(q, t)
∂ t2 = 0, (2.1)

where

∇2 =
∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2 . (2.2)

The wave equation accurately describes the pressure in a realistic sound field pro-
vided that the wave amplitude is small such that |p(q, t)| � ρ0c2 where ρ0 is the
density of the propagation medium at equilibrium and c is the propagation speed. In
practice, two types of inhomogeneities occur [33]. The medium may exhibit scalar
inhomogeneities giving rise to a spatial distribution of sound speed and density, for
example, due to temperature variations in the medium. The medium may also ex-
hibit vector inhomogeneities giving rise to a spatial distribution of medium velocity,
for example, due to the presence of fans or air conditioning. However, the effects of
these inhomogeneities are usually sufficiently small so that they can be ignored in
many practical situations.

The Fourier transform of sound pressure, p(q, t), is given by

P(q,ω) =
∫ ∞

−∞
p(q, t)e− jωtdt. (2.3)

Therefore, the wave equation can be expressed in the frequency domain by taking
the Fourier transform of (2.1) to give the Helmholtz equation

∇2P(q,ω)+ k2P(q,ω) = 0, (2.4)

where
k =

ω
c

=
2π
λ

(2.5)

is the wavenumber, ω is the angular frequency and λ is the wavelength.
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2.1.2 Sound Field in a Reverberant Room

When sound is produced in a room or other reverberant environment, a listener
will hear a mixture of direct sound and reverberant sound. The direct-path com-
ponent is the sound that travels from the source to the listener without reflection
whereas the reverberant component is the sound that travels from the source to the
listener via one or more reflections. The effect of increasing the distance between
the sound source and the listening location is to reduce the energy of the direct-path
component. The energy of the reverberant sound is not in general affected by the
source-listener distance but instead is dependent on the acoustic properties of the
room.

For a single sound source in a room, the resulting sound pressure at a point q =
(qx,qy,qz) and frequency ω can be written as the sum of two components [25, 40]

P(q,ω) = Pd(q,ω)+ Pr(q,ω), (2.6)

where subscripts d and r indicate direct and reverberant components respectively.
The sound energy density, defined as the sound energy per unit volume, due to

the direct-path component is then given by

Ed =
E {Pd(q,ω)P∗

d (q,ω)}
ρ0c2 =

QWs

4πcD2 , (2.7)

where Ws is the power output from the sound source in watts, D is the distance
from the source and Q describes the directivity of the source such that Q = 1 for
an omnidirectional source. The spatial expectation operator, E {·}, is discussed in
more detail in Sect. 2.2.6 and here indicates the expected value over spatial locations
spanned by q.

Similarly, the sound energy density due to the reverberant component is given by

Er =
E {Pr(q,ω)P∗

r (q,ω)}
ρ0c2 =

4Ws

cR
, (2.8)

with the room constant, R, given by

R =
ᾱA

1− ᾱ
, (2.9)

where ᾱ and A denote the average absorption coefficient of the surfaces in the room
and the total absorption surface area, respectively.

It can be seen, therefore, that the energy density of the reverberant sound is inde-
pendent of the distance D, whilst the direct sound energy density is related to D by
an inverse square law.
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2.1.3 Reverberation Time

A widely used and important characteristic of an acoustic space is the reverberation
time. The reverberation time can be measured by exciting a room with a broad-
band signal until a steady state uniform sound energy distribution is obtained, then
switching off the sound source and recording the resulting decay of the squared
sound pressure against time. This is known as the Energy Decay Curve (EDC). The
reverberation time, T60, is defined for a diffuse sound field as the time in seconds
required for the EDC to decay by 60 dB.

This concept originates from the early work of Sabine [25] who determined that
the reverberation time was proportional to the volume of the room, V , and inversely
proportional to the amount of absorption in the room. Sabine’s method [42] esti-
mates the reverberation time, neglecting the effect of attenuation due to propagation
through the air, as

T60 =
24ln(10)

c
V

αSabineA
s. (2.10)

In this expression, αSabineA represents the total absorption and is, in the field of ar-
chitectural acoustics, formed from the sum of products of Sabine’s sound absorption
coefficients and their corresponding areas. For example, in a concert hall, different
absorption coefficients are used for regions of the hall such as audience seating,
balconies or other sound reflecting surfaces. Alternatively, the absorption may be
calculated from an average absorption coefficient ᾱ with the total corresponding
reflecting surface area.

The reverberation time is alternatively given by Eyring’s reverberation for-
mula [25] as

T60 = −24ln(10)
c

V
ln(1−αEyring)A

s, (2.11)

where αEyring is the Eyring sound absorption coefficient. As in the Sabine case, the
denominator has to take into account the various region of the hall by applying ap-
propriate absorption coefficients over the corresponding surface areas for each of the
regions, and combine them taking into account the natural logarithm function. The
Eyring reverberation time may also be calculated from an average absorption coef-
ficient ᾱ and a total corresponding reflecting surface area. The Eyring absorption
coefficients can be derived from the Sabine coefficients as given in [3]. This same
article also gives some fascinating historical insights into the original of Eyring’s
formula.

When ᾱ is small, the expansion

− ln(1− ᾱ) = ᾱ +
ᾱ2

2
+
ᾱ3

3
+ . . . (2.12)

shows that Eyring’s and Sabine’s reverberation times become approximately equal.
Furthermore, the reverberation time for a given room is seen from these expres-
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sions to be independent of the position within the room of the sound source and the
measurement location.

If the Acoustic Impulse Response (AIR) of the room, h(t), is known, the EDC
can be obtained from the Schroeder integral [25]

EDC(t) =
∫ ∞

t
h2(τ)dτ. (2.13)

An example is given in Fig. 2.1, which shows the EDC for a measured impulse
response in the MARDY database [47]. The dB scale is referred to EDC(0). Four
regions of this plot can now be identified.

1. Close to the time origin, the plot is approximately constant and close in value to
the maximum – the reference level of 0 dB. This occurs because the measured
response includes the direct-path propagation delay that is manifested in the
leading samples of the response containing only noise.

2. Shortly after the time origin, the plot shows a sharp drop in energy, which corre-
sponds to the transition from the region of the direct-path component and early
reflections to the region of free decay for which the sound energy in the room is
diffuse.

3. Between about 50 and 300 ms the plot shows a slope with near-constant negative
gradient. This region corresponds to the free decay.

4. After 350 ms, the plot can be seen to begin to flatten. This occurs when the EDC
has decayed sufficiently so that its energy approaches the energy of measure-
ment noise, which, in the case of this measurement, is approximately −48 dB.

In order to determine the T60 from an EDC plot, the impulse response should be
measured at a distance greater than the critical distance (see Sect. 2.1.4). This is so
that any effects due to the direct-path component are ignored since these are de-
pendent on the geometry of the source and microphone in the room – factors from
which T60 is independent. Estimation of T60 should also be made from measure-
ments at levels greater than the measurement noise floor in order to avoid the effects
of such noise. Accordingly, taking these factors into account, useful estimates of T60
can be obtained from EDC plots such as Fig. 2.1 by measuring the slope of only the
free decay section, being the part that has near constant gradient. This can be found
to be −89.4 dB per second in this case, which, for a decay of 60 dB, corresponds to
T60 = 0.67 s.

To give additional insight, the impulse response can be split into frequency sub-
bands and the EDC computed in each subband to give the Energy Decay Relief
(EDR) as a function of both time and frequency, EDR(t, f ) [21, 25]. This is typ-
ically presented as a 2-D surface plot and enables the frequency dependence of
reverberation time to be studied.
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Fig. 2.1 Example (a) room impulse response and (b) its corresponding energy decay curve

2.1.4 The Critical Distance

The critical distance is defined as the distance Dc from the source at which the sound
energy density due to the direct-path component, Ed, and the sound energy density
due to the reverberant component, Er, are equal. It is evaluated by equating (2.7)
and (2.8) to give

Q
4πD2

c
=

4
R

, (2.14)

so that

Dc =

√
QR
16π

m. (2.15)

As shown in [25], the critical distance can also be expressed in terms of Q, V and
the reverberation time T60 as

Dc ≈ 0.1
√

QV
πT60

m. (2.16)

An example of sound energy density in a room as a function of the distance from
the source is shown in Fig. 2.2 for a 1 watt omnidirectional source in a room of
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Fig. 2.2 Direct energy density, Ed and reverberant energy density, Er against distance from a 1 watt
source in a room of dimensions 3×4×5 m with ᾱ = 0.3 (T60 ≈ 0.29 from (2.11) with αEyring = ᾱ)
and c = 344 m/s. The vertical dashed line indicates the critical distance, Dc ≈ 0.9 m, computed
using the approximate formula in (2.16)

dimensions 3×4×5 m with ᾱ = 0.3 (giving T60 ≈ 0.29 from (2.11) with αEyring =
ᾱ) and c = 344 m/s. The critical distance corresponds to the intersection of Ed and
Er. The vertical dashed line marks the critical distance, where in this case Dc ≈
0.9 m, computed using the approximate formula in (2.16).

2.1.5 Analysis of Room Acoustics Dependent on Frequency Range

There are several different techniques for studying room acoustics [25] and, in gen-
eral, each technique is only applicable to a limited range of the audible spectrum; no
single analytical or numerical tool can currently model the entire audible spectrum
from 20 Hz to close to 20 kHz. The audible spectrum can be conveniently divided
into the following four regions (i-iv), defined in terms of the speed of sound, c, and
the largest dimension of the room, Lmax.

(i) At very low frequencies for which f < c/2Lmax, there is no resonant support
for the sound in the room. This frequency range can be analyzed using non-harmonic
solutions to the wave equation. As an example, a room with dimensions 3 × 5 ×
7 m, and a sound velocity of 344 m/s has no resonant frequencies below 25 Hz.
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(ii) The next frequency range, f ∼ c/Lmax, is that for which the wavelength of
the sound source is comparable to the dimensions of the room and spans from the
lowest resonant mode to the Schroeder frequency. The Schroeder frequency plays
an important role in room acoustics [26]. It conceptually separates the range of fre-
quencies for which distinct resonances can be observed from the range for which
the resonances are too close in frequency to be distinct since, at any observation
frequency in this range, the effects of several neighbouring resonances are super-
imposed. More specifically, consider a room of volume V with resonances having
an average 3 dB bandwidth of 〈Δ f 〉. The Schroeder frequency is the value of f for
which the resonant frequencies of the room are separated such that the three reso-
nant frequencies lie with one resonant bandwidth and is given [25] by solving for f
in

〈Δ f 〉 = 3
c3

4πV f 2 . (2.17)

The resulting Schroeder frequency can be written as

fg ≈
5500√

V ζ̄
Hz, (2.18)

where ζ̄ is the average value of the damping constants associated with each res-
onant frequency of the room. A further approximate expression for the Schroeder
frequency can be written as

fg ≈ 2000

√
T60

V
Hz, (2.19)

using the commonly quoted approximation relating the average damping constant
to the reverberation time

T60 =
3ln(10)

ζ̄
. (2.20)

In this frequency range, wave acoustics are applicable for describing the acoustical
properties of a room. Wave acoustics assume a harmonic sound source and are based
on solutions of the wave equation. For the same example room having a reverbera-
tion time of 0.5 s, this frequency range spans from 25 to 138 Hz.

(iii) In the range from the Schroeder frequency, fg to approximately 4 fg, the
wavelengths are often too short for accurate modelling using wave acoustics and
too long for geometric acoustics and so a statistical treatment is usually employed.
This range is from 138 to 552 Hz for a room of 3 × 5 × 7 m and T60 = 0.5 s. For
a car passenger compartment of volume V = 2.5 m3 and T60 = 0.05 s, this range is
from 282 to 1131 Hz.

(iv) At high frequencies f 
 c/Lmax, for which the dimensions of the room are
large compared with the wavelength of the sound, geometrical or ray room acous-
tics apply. This covers a wide range of audio frequencies in standard rooms. Hence,
in this frequency range, specular reflections and the sound ray approach to acous-
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Fig. 2.3 Methods for modelling and simulating room acoustics

tics prevail. Because the sound is represented by energy waves rather than complex
pressure waves, geometrical acoustics often neglect wave related effects such as
diffraction and interference.

2.2 Models of Room Reverberation

A consequence of the complex nature of room reverberation is the desire for simple
and accurate models of the reverberation process that can be used in, for example,
the analysis or synthesis of room acoustics. Such models can be considered in three
classes: wave-based models, ray-based models and statistical models [43]. It has
already been shown that different analysis techniques are appropriate for different
ranges of frequency of sound in rooms. A combination of modelling techniques is
therefore necessary to achieve accuracy over the full audio spectrum. For speech
signals, however, simpler modelling is usually performed because of the limited
bandwidth of the signal, particularly when considering telecommunications appli-
cations.

In the following, the main models of room reverberation will be discussed in the
context of Fig. 2.3, which shows a hierarchical overview. The subsequent discussion
will begin with a short intuitive outline and will then consider specific modelling
approaches. We will first consider wave based modelling which is based on the
wave equation and is a fundamental approach. We will then discuss the concept
of ray based modelling which leads to ray tracing methods and, subsequently, to
the image method for modelling reverberation using virtual sources. Lastly, we will
describe statistical models of reverberation that lead to the framework of Statistical
Room Acoustics (SRA).
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2.2.1 Intuitive Model

Intuitive consideration of the impulse response of a room leads to the deduction
that the response must decay with time and will contain little or no deterministic
structure after a sufficiently large number of reflections. Moorer [29] noted the re-
semblance between a concert hall impulse response and a synthetic response formed
from a white noise signal multiplied by an exponentially decaying envelope. It was
reported that the result of convolving anechoic signals with such a synthetic re-
sponse gave a natural-sounding reverberation effect. This observation leads to a
more detailed discussion of Polack’s model in Sect. 2.2.6.

2.2.2 Finite Element Models

Analytical solutions for the wave equation can normally only be found in simple
cases, such as for rectangular rooms with rigid walls. In other situations, it is there-
fore attractive to consider numerical wave-based methods. Finite Element Method
(FEM) and the related Boundary Element Method (BEM) [22, 36] can be used for
modelling and simulation of room acoustics. In both these numerical approaches,
the elements interact with each other to represent wave propagation. The size of the
elements has to be chosen to be much smaller than the size of the wavelength for
all frequencies of interest and, therefore, at high frequencies the required number of
elements becomes very large, resulting in a high computational complexity. These
methods are therefore more suitable for low frequencies and small enclosures.

Another method for room acoustics simulation is provided by the Finite-
Difference Time-Domain (FDTD) method [4, 44]. The main principle of this ap-
proach is that derivatives in the wave equation are replaced by corresponding finite
differences. The FDTD method produces impulse responses that are better suited
for auralization than FEM and BEM. On the other hand, the main benefit of the
element methods over FDTD methods is that one can create a denser mesh struc-
ture where required, such as locations near corners or other acoustically complex
regions. In all wave-based methods, it is usually highly challenging to incorporate
appropriate boundary conditions and geometrical description of the objects within
the acoustic environment. Hence, application of these approaches in the literature
has been limited.

2.2.3 Digital Waveguide Mesh

The flexibility and suitability of Digital Waveguide Mesh (DWM) techniques for
simulating room acoustics have been demonstrated in recent years [2, 31, 45]. Mod-
elling of wave propagation effects, such as diffusion and scattering, for example,
is intrinsic to the approach, and results can be obtained that are both accurate and
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computationally tractable. Recently, integrated design software has been developed
including Roomweaver [2], which makes DWM room simulation more intuitive and
straightforward. Several open issues remain the subject of research including accu-
rate modelling of dispersion and the dependence on frequency of reflector proper-
ties.

2.2.4 Ray-tracing

Acoustic propagation in geometrical room acoustics can be simplified into a form
in which sound waves are represented by rays and reflections are specular. Such a
simplification is valid when the diffraction and interference effects found in wave
propagation are insignificant, such as when the wavelength of the sound is small
compared to the dimensions of the reflecting surfaces in the room and large com-
pared to any structural details or surface texture.

Ray-tracing techniques have been proposed [23] in which rays of sound are emit-
ted from the source and arrive at the point of measurement after zero or more spec-
ular reflections. The measurement accumulates the rays to build up the acoustic re-
sponse from source to measurement position. It is advantageous to control the num-
ber of rays used in a simulation, which can be of the order 105 or more, by limiting
the model to include only first and second order reflections in order to maintain the
computational requirement of the simulation at a modest level. Ray-tracing methods
and their accuracy has been further considered in, for example, [12, 24].

2.2.5 Source-image Model

A further example of ray-based modelling of room reverberation is the source-image
method, originally proposed by Allen and Berkley [1]. This is one of the most com-
monly used techniques for simulating room acoustics in the context of speech re-
verberation. Given a single omnidirectional source in a reverberant room, the effect
of reverberation is represented using a set of source images. The location of the
image sources is determined by the dimensions of the room, which is assumed to
be rectilinear. All image sources simultaneously emit the same signal as the true
source. The signals emitted by the image sources arrive at the measurement location
at times and with intensities that depend on the distances between the image sources
and the measurement location. A reflection coefficient, φ , is applied to account for
the sound reflected by the surfaces and is related to the absorption coefficient.

An illustration of the source-image method for a two-dimensional case is de-
picted in Fig. 2.4, where the room is indicated with a bold rectangle. In practice,
the images extend over a three-dimensional lattice. Due to different distances from
each image to the measurement location, the signals arrive at the microphone at
different times and with different intensities. Moreover, finite reflection coefficients
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Fig. 2.4 Example image sound sources for a rectangular room

φx1,φx2,φy1,φy2,φz1 and φz2, which are assumed to be independent, are applied to
account for sound reflected by each the six walls and are related to the average wall
absorption coefficient ᾱ in (2.11) according to φ = 1

6 (φx1 +φx2 +φy1 +φy2 +φz1 +
φz2) =

√
1− ᾱ. Thus, for a rectangular room with dimensions (Lx,Ly,Lz), a receiver

positioned at (x,y,z), and a source positioned at (x̃, ỹ, z̃), the ith tap of the AIR can
be computed as [1]

hi =
1

∑
ε=0

∞

∑
ρ=−∞

φ |q−u|
x1 φ |q|

x2 φ
|r−v|
y1 φ |r|

y2 φ
|s−w|
z1 φ |s|

z2

× δ (n− (|Dε +Dρ |/c))
4π |Dε +Dρ |

, (2.21)

where Dε = (x− x̃ + 2ux̃,y− ỹ + 2vỹ,z− z̃ + 2wz̃) and Dρ = (qLx,rLy,sLz) such
that |Dε +Dρ | defines the Euclidean distance between the receiver and each source
image. The triplets ε = (u,v,w) and ρ = (q,r,s) indicate that each summation in
fact consists of three different summations. Although, ρ = (q,r,s) is given in the
interval [−∞,∞], in practice the limits are finite and are governed by the chosen
order of source images. The expression in (2.21) follows from the solution of the
wave equation for a rectangular enclosure [1].

In the original implementation of (2.21), impulses calculated at fractional sam-
pling delays are rounded to the nearest sample, which at lower sampling frequencies
can introduce significant errors. Peterson [34] proposed to apply a low-pass filter to
each impulse obtained in (2.21), which better satisfies the sampling theorem and
provides a more accurate representation of the simulated impulse responses, in par-
ticular for multi-microphone scenarios. This is equivalent to a fractional delay [27]
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implementation of each impulse. Consequently, a Hanning-windowed ideal low-
pass filter is applied to each impulse resulting from a simulated image according
to [34]

wL,n =
{

0.5(1 + cos(2πn/Lw))sinc(2π fcon), −Lw/2 < n < Lw/2
0, otherwise, (2.22)

where fco is the filter cut-off frequency, often taken as fco = fs/2 and Lw is the
window length, which in [34] is taken as 4 ms, so that Lw = 4 fs

1000 .

2.2.6 Statistical Room Acoustics

Within the framework of SRA, the amplitudes and phases of all reflected acoustic
plane waves in a room are considered randomly distributed such that they form a
uniform, diffuse sound field at any point in the room. Subsequently, it is assumed
that the Acoustic Transfer Function (ATF) from the source to the mth microphone
can be expressed as the sum of a direct-path component comprising only the direct-
path propagation, Hd,m(e jω), and a reverberant component comprising all reflec-
tions, Hr,m(e jω), such that

Hm(e jω) = Hd,m(e jω)+ Hr,m(e jω), m = 1,2, . . . ,M. (2.23)

The following assumptions are used in SRA and are valid for many practical situa-
tions over the bandwidth important for speech communication.

1. The dimensions of the room are large relative to the wavelength at all frequen-
cies of interest.

2. The average spacing between the resonant frequencies of the room is smaller
than one third of their bandwidth. This can be satisfied at all frequencies above
the Schroeder frequency.

3. Sound sources and microphones are situated in the room interior at least a half
wavelength from the surrounding walls.

Under these conditions and due to the different propagation directions and the
random relation of the phases of the direct-path component and all the reflected
waves, it can be assumed that the direct and the reverberant components are un-
correlated [25, 32]. We next employ the spatial expectation, E {·}, which was first
introduced in Sect. 2.1.2, defined in this context as the expectation over all allowed
source and microphone positions in a room. The spatial expectation of the energy
density spectrum of the ATF can now be written as

E {|Hm(e jω)|2} = E {|Hd,m(e jω)|2}+E {|Hr(e jω)|2}, (2.24)

since the spatial expectation of the cross-terms vanish [15, 32]. The spatial expec-
tation, E {·}, gives a result that is, in general, independent of the source and micro-
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phone positions and can be found using the methods of Radlović et al. [40] and
Gustafsson et al. [15]. An initial geometry is first defined in terms of the source
position, qsrc(0), and an initial position for each microphone, qmic,m(0). Random
translation vectors, θ(i), and rotation vectors, Θ(i), are used to generate the ith re-
alization of the geometry

qsrc(i) = Θ(i)qsrc(0)+θ(i), (2.25)
qmic,m(i) = Θ(i)qmic,m(0)+θ(i), (2.26)

i = 1, 2, . . . , N , (2.27)

such that the spatial relationships between microphones and between the source
and each microphone remain constant while the absolute position and orientation in
the room of the source-microphone configuration are varied randomly. The spatial
expectation, E {·}, is then estimated from an average over all N realizations.

Polack [37] developed a time-domain model that describes the AIR as one real-
ization of a non-stationary stochastic process

h(t) = b(t)exp−ζ̄t , for t ≥ 0, (2.28)

where b(t) is a zero-mean stationary Gaussian random process that is characterized
by its power spectral density B( f ), and ζ̄ is the average damping constant that is
related to the reverberation time T60 by

ζ̄ =
3ln(10)

T60
, (2.29)

as also indicated by (2.20).
The time-domain response can only be Gaussian if a sufficient number of reflec-

tions overlap at any time along the response. Therefore, Polack’s model becomes
valid only after a certain amount of time that is called the mixing time. After the
mixing time the peaks in the AIR no longer correspond to the arrivals of individual
reflections. Since the reflection density increases with time the situation is similar
to that found in the frequency domain, except that the spreading of a reflection in
the time domain cannot be defined solely with respect to the intrinsic properties of
the room (unlike the bandwidth of a mode). The spreading of a reflection in the time
domain can only be expressed with reference to the bandwidth of the source exci-
tation or microphone. If the criterion is that at least 10 reflections overlap within a
characteristic time interval (taken equal to 24 ms in [37]) the mixing time is given
by

tmix = 1000
√

V s. (2.30)

This expression was also proposed in [41] as a reasonable approximation for the
transition time between early reflections and late reverberation. Polack also showed
that the exponentially decaying stochastic model can be established within the
framework of geometrical acoustics and billiard theory [37, 38]. In this context the
mixing time is defined as the time it takes for a set of initially adjacent sound rays to
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spread uniformly across the room. By that time (if the origin is taken as the time of
emission of a sound pulse by the source), the reverberation process has become dif-
fuse, i.e., the sound energy density and the direction of the intensity vector are uni-
formly distributed across the room. The mixing character of a room depends on its
geometry and the diffusing properties of the boundaries. When mixing is achieved,
the echo density increases exponentially with time, rather than being proportional
to t2 [38]. Consequently, the value 1000

√
V can be considered as an upper limit for

the mixing time in typical ‘mixing’ rooms.

2.3 Subjective Evaluation

Subjective speech quality measures can be obtained using subjective listening tests
in which human participants rate the performance of a system or quality of a signal
in accordance with an opinion scale [18]. The International Telecommunications
Union (ITU-T) has standardized the most commonly used methods for measuring
the subjective quality of speech transmission over voice communication systems.
For both listening-only and conversational tests the ITU-T recommends the use of
a speech quality rating on a five-point category scale, which is commonly known
as the listening-quality scale [18]. An alternative speech quality scale that is used
in listening-only tests is the listing-effort scale. In conversational tests a binary con-
versation difficulty scale is usually employed. These scales are listed in Table 2.1.

Table 2.1 ITU-T recommended speech quality measurement scales [18]
Listening-quality scale:
Quality of the speech/connection Score
Excellent 5
Good 4
Fair 3
Poor 2
Bad 1

Listening-effort scale:
Effort required to understand the meaning of sentences Score
Complete relaxation possible; no effort required 5
Attention necessary; no appreciable effort required 4
Moderate effort required 3
Considerable effort required 2
No meaning understood with any feasible effort 1

Conversation difficulty scale:
Did you and your partner have any difficulty in hearing over the connection? Yes 1 / No 0

A listening test is performed by a number of subjects that listen to recordings
that are degraded by an acoustic channel, and enhanced by the algorithm under
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test. The subjects provide their opinion on the quality of each signal, or the effort
required to understand it, using the listening-quality scale or listening-effort scale,
respectively. In conversational tests, subjects use a voice communication system
before providing their opinion on its quality. The Mean Opinion Score (MOS) is
the averaged opinion score across subjects and indicates the subjective quality of
the system or algorithm under test. To obtain a realistic variability in the opinion
scores, a large numbers of subjects is required. Therefore, the main drawback of
subjective testing is cost [35]. Even with a large number of subjects, the variance of
MOS can still be high. Furthermore, the quality that is expected by a customer will
be different depending on whether the device is an expensive conference system or
a cheap mobile telephone. The constraints imposed by the need to limit the cost and
the amount of subjects also limit the ability to test the system or algorithm under
different environmental conditions. Hence, it is highly desirable to find automatic
assessment systems based on objective measures by which an indication of quality
can be obtained.

2.4 Channel-based Objective Measures

As will be seen later in this book, dereverberation algorithms can be considered in
two classes: (i) algorithms that affect the reverberant signal in a manner that can
be represented by a linear filter whose response is either known or can be deduced,
and (ii) algorithms that affect the reverberant signal in a manner for which a linear
transfer function does not exist or cannot be deduced. In the former, the level of re-
verberation can be found using channel-based measures discussed in this section. In
the latter, the channel impulse response is not available, so the level of reverberation
must be found using only signal-based measures which will be discussed later in
Sect. 2.5.

There are a number of objective measures of speech quality including, for exam-
ple, the Perceptual Evaluation of Speech Quality (PESQ) [19] and PEMO-Q [17],
which give a general indication of the expected perceived quality of speech. Many
such measures were originally introduced in the context of speech coding and are
intrusive in that they operate by comparing an observed signal (usually the output
of some processing, coding or transmission system) with a reference signal (usually
an original clean speech signal). Nonintrusive measures, in contrast, operate from
the observed signal only, without the need for a reference signal.

When the nature of the processing through which the observed signal has passed
is known, it is possible to develop targeted objective measures that aim to character-
ize that specific processing. In the case of reverberation, the nature of the ‘process-
ing’ is known to be a linear convolution with the AIR. This leads to measurements
based on the ratio between direct and reverberant components. When dereverbera-
tion processing is subsequently employed, it is possible to consider the total impulse
response that describes the combination of the AIR and the effect of the dereverber-
ation algorithm in cascade. In the case of an ideal dereverberation algorithm, this
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total response tends to a sinc function with zero crossings separated by the sampling
period and with system dependent scaling and delay. The performance of non-ideal
dereverberation algorithms can be assessed by measuring how closely to the ideal
case they perform. In general, objective measures are often used to assess the im-
provement brought about through processing by comparing the measures evaluated
before and after the processing.

2.4.1 Normalized Projection Misalignment

An important measure in the context of system identification is Normalized Projec-
tion Misalignment (NPM), championed by Morgan et al. [30]. This is a method for
quantifying the accuracy of an estimated impulse response in a manner that is inde-
pendent of any multiplicative scaling of the estimate. There are several applications,
of which dereverberation is one, in which it is desirable to be able to estimate an
unknown system but for which the scaling of the estimate is irrelevant; it can be ig-
nored, deduced or assumed. In the case of blind system identification, it is common
to employ algorithms that aim to identify the unknown system only to within a scale
factor, hence it is necessary to ignore the scaling of the estimate when evaluating
its accuracy. In the specific case of dereverberation, an equalizer could potentially
be designed, based on such an estimate of the acoustic system, and applied to the
reverberant speech in order to invert the effect of the room reverberation. The effect
of scaling in the estimate can be straightforwardly compensated by a gain factor in
the equalizer in order to bring the output signal to a convenient level.

NPM is usually quoted in decibels and is defined as

NPM = 10log10

(
||h−β ĥ||22

||h||22

)
dB, (2.31)

where h and ĥ represent the true and estimated impulse response vectors, respec-
tively. The scalar β is a gain factor dependent on h and ĥ and is chosen such that
the NPM is minimized. It is computed as

β =
hT ĥ
ĥT ĥ

. (2.32)

A geometric interpretation of NPM is to consider it not as a measure of the
squared distance from h to ĥ but as a measure of the squared distance from h to
the projection of h onto ĥ.



38 P.A. Naylor et al.

2.4.2 Direct-to-reverberant Ratio

The most direct objective measure is the Direct to Reverberant Ratio (DRR) and is
defined as

DRR = 10log10

⎛
⎜⎜⎝

nd
∑

n=0
h2(n)

∞
∑

n=nd+1
h2(n)

⎞
⎟⎟⎠ dB, (2.33)

in which samples of the channel impulse response, h(n), indexed from zero up to
nd are assumed to represent only the direct-path propagation, while samples of the
channel impulse response with indices greater than nd represent only the reverbera-
tion due to reflected paths.

It is intuitively helpful to visualize the direct-path propagation as being repre-
sented by the largest magnitude tap in the early part of the channel impulse re-
sponse. However, this intuitive scenario is only correct when the propagation time
from source to microphone is an integer number of sample periods. In general, finite
rate sampling of the AIR results in the direct-path propagation being represented by
samples of a sinc function corresponding to the sampling kernel and centred accord-
ing to the direct-path propagation delay.

When synthetic AIRs are used, the direct-path can be computed separately. How-
ever, when dealing with measured impulse responses the direct-path component,
and therefore the related energy, cannot be determined precisely. Therefore, nd/ fs is
often taken 8 to 16 ms larger than the approximate arrival time of the direct sound.

It should be noted that the DRR depends on the distance between the source and
the microphone, and on the reverberation time of the room. We can express the DRR
using (2.7) and (2.8) as

DRR = 10log10

(
QR

16πD2

)
, (2.34)

where Q is the directivity factor, R is the room constant given by (2.9), and D is the
source-microphone distance. Note that the room constant is inversely proportional
to the reverberation time.

The DRR is also related to the spectral deviation, which is a measure of the de-
viation of the spectrum from white and is straightforwardly defined as the standard
deviation of the energy spectrum of the AIR in dB [20].

2.4.3 Early-to-total Sound Energy Ratio

The earliest attempt to define an objective criterion of what may be described as
the distinctness of sound is called definition (originally Deutlichkeit) or early-to-
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total sound energy ratio. The range of time within the impulse response taken to
correspond to early reflections is typically the first 50 to 80 ms. This time, in mil-
liseconds, is often used as a subscript such that, in the case of ne/ fs = 50 ms, the
definition can be written as

D50 = 10log10

⎛
⎜⎜⎝

ne
∑

n=0
h2(n)

∞
∑

n=0
h2(n)

⎞
⎟⎟⎠ dB. (2.35)

2.4.4 Early-to-late Reverberation Ratio

Another objective criterion is known as the Early to Late reverberation Ratio (ELR)
or clarity index (originally Klarheitsmaß) and it is defined as

C = 10log10

⎛
⎜⎜⎝

ne
∑

n=0
h2(n)

∞
∑

n=ne+1
h2(n)

⎞
⎟⎟⎠ dB, (2.36)

where ne/ fs is also usually chosen to be in the range of 50 to 80 ms. Similarly to
definition, the time (in milliseconds) is often used as a subscript, i.e., in the case
ne/ fs = 50 ms the ELR is denoted by C50. The division of the impulse response
into an early and a late portion is motivated by way in which the human auditory
system interprets multipath signal components as a single signal if the arrival times
of components differ by less than around 50 ms. Therefore, the relative strength of
the early reflections compared to the late reflections gives a measure of how much
of the nondirect-path energy will be perceived of as coloration of the direct-path
component, compared to echoey reverberation.

2.5 Signal-based Objective Measures

In cases for which the reverberating system’s impulse response is available, it is
natural to compute performance measures that employ this information. There are,
however, some cases for which the effect of a dereverberation algorithm cannot be
characterized in terms of an impulse response, such as [9, 14, 50]. In these cases,
the processing is not Linear Time-Invariant (LTI) and hence cannot be described in
the normal manner using an impulse response. Accordingly, performance measures
must then be computed from the signals alone, without reference to the reverberating
system.
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2.5.1 Log Spectral Distortion

The Log Spectral Distortion (LSD) is one of the most straightforward and long-
standing speech distortion measures and it has been shown in [16] to be moderately
well suited to the assessment of dereverberation algorithms. It is computed as the
RMS value of the difference of the log spectra of the original clean speech signal
s(n) and the signal under test x(n) which is normally the output of a processing
algorithm. It is common to use the FFT-based short-time spectra X(l,k) and S(l,k)
of x(n) and s(n) respectively, where l denotes the time frame and k the frequency bin.
Frames of duration between 32 and 64 ms are typically employed with overlapping
between adjacent frames of between 50 and 75%. The RMS value of the difference
between S(l,k) and X(l,k), in the lth frame, is defined as

LSD(l) =

⎛
⎝ 2

K

K
2 −1

∑
k=0

|L{X(l,k)}−L{S(l,k)}|2
⎞
⎠

1
2

dB, (2.37)

where L{X(l,k)} = max{20log10(|X(l,k)|),δ} is the log spectrum confined to
about 50 dB dynamic range (δ = maxl,k{20log10(|X(l,k)|)} − 50), and likewise
L{S(l,k)}. The mean LSD is obtained by averaging (2.37) over all frames contain-
ing speech.

2.5.2 Bark Spectral Distortion

Bark Spectral Distortion (BSD) was presented in [46] as an intrusive measure for
predicting the subjective quality of speech coders. It has also been employed subse-
quently as an objective evaluation measure in other areas of speech signal process-
ing, most notably speech enhancement, for which the intention is usually to benefit
from the perceptual significance of the Bark scale to try to improve the measurement
of speech quality as it would be perceived by a human listener. Studies in [7, 46]
have shown strong correlation between the BSD measure and MOS scores. In the
broad area of speech quality assessment, and in particular in the evaluation of speech
coders, more recent developments such as PESQ [19] and subsequent developments
are now usually preferred. Nevertheless, BSD is a natural counterpart to LSD, intro-
ducing the influence of human perception on speech quality assessment methods.

BSD operates in the perceptually motivated Bark spectral domain that incorpo-
rates human auditory models [46]. It is therefore able to operate in cases where
time-domain waveform preservation is not expected, such as in many speech coders
and also in the case of reverberation.

To describe the use of BSD, consider a known speech signal, s(n), and an ob-
servation of the speech signal, x(n), in a reverberant environment. The BSD metric
makes use of Bs and Bx, the Bark spectra of s(n) and x(n), respectively. In order



2 Models, Measurement and Evaluation 41

to measure the effectiveness of a speech dereverberation algorithm, BSD can be
computed and compared before and after dereverberation processing.

The three steps involved in computing the Bark spectrum are: (i) critical band
filtering, (ii) equal loudness pre-emphasis and (iii) phon to sone conversion. For
each frame of the signals s and x, these three steps are computed starting from the
magnitude squared spectrum. The resulting Bark spectra are denoted Bs(l,k) and
Bx(l,k), respectively, where l is the frame index and k is the Bark frequency bin.

Having computed the Bark spectra, the BSD score can be obtained using

BSD =
1

Nfrm

Nfrm−1

∑
l=0

∑K
k=1 (Bs(l,k)−Bx(l,k))2

∑K
k=1 (Bs(l,k))2 , (2.38)

where Nfrm denotes the number of analysis frames. The resulting BSD score for a
speech signal is the average of the BSD scores for all of the analysis frames.

Modified Bark Spectral Distortion (MBSD) incorporates a noise-masking thresh-
old into the BSD [49] with the aim that the MBSD measure will be able to dif-
ferentiate between audible and inaudible distortions. The MBSD measure assumes
that loudness differences below the noise masking threshold are not audible and are
therefore excluded from the calculation of the perceptual distortion. MBSD uses a
simple cognition model to calculate the distortion value [49].

Several approximations of the theoretical formulation of BSD are often necessary
for practical implementations of the measure. Most current implementations make
approximations, the validity of which is restricted to narrowband speech, in partic-
ular in order to simplify the modelling of the equal loudness curves. With wideband
speech becoming more common through, for example, Voice Over Internet Protocol
(VoIP) applications, there is a need for validated wide-band quality measures and a
wide-band BSD measure would be a valuable development.

2.5.3 Reverberation Decay Tail

Two effects due to reverberation can be observed in speech. As has been previously
discussed, the human auditory system interprets multipath signal components as a
single signal if the components’ times of arrival differ by less than around 50 ms.
As a consequence, the early reflections in an AIR give rise to the first effect – the
perception of colouration of the speech. The nature of the colouration corresponds
to filtering with filter coefficients from approximately the first 50 ms of the AIR.
The second effect is the commonly understood symptom of reverberation in which
the sound ‘rings on’ for a short time before decaying, resulting in smearing such
that sounds are spread over a longer time giving rise to an impression of space and
distance. This second effect is referred to here as the reverberation tail effect. Since
there are two effects, each with a different perceptual impact, it is logical to consider
evaluating the effects separately.
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RDT is an objective measure of the tail effect proposed in [48], which jointly
characterizes the relative energy in the tail of the AIR and the rate of its decay.
It is intended to be substantially independent of colouration and does not require
estimation of the AIR. The analysis of the test signal and the reference signal are
performed in the Bark spectral domain.

The measure first requires the definition of an end-point as an instant of time at
which the speech energy falls abruptly and a flat-region as a period of time immedi-
ately following and end-point during which there is no significant increase in speech
energy due to speech onset. The function

ΔBx(l, p,k) = Bx(l,k)−Bx(l + p,k) (2.39)

describes the difference between the sone values at time frame l and l + p in the
kth Bark bin. An end-point is defined in bin k at frame lep when a sufficiently large
negative gradient is found, satisfying

ΔBx(lep,−1,k) > −δ1. (2.40)

For each end-point, the number of frames I is counted for which

ΔBx(lep + i,1,k) > δ2 i = 1,2, . . . , I. (2.41)

A flat-region may only follow an end-point. A flat-region is defined in any Bark
bin as a range of time frames within which the sone loudness in that bin varies less
than δmin and is lower in amplitude than a given floor δfloor for a duration of at least
J frames, satisfying

ΔBx(lep + I, j,k) < δmin and Bx(lep + I + j,k) > δfloor, (2.42)

with j = 1,2, . . . ,J. Typical values of I, J, δ1, δ2, δmin and δfloor are 2, 5, 0.2, 0.1, 0.1
and 0.2 for 32 ms frames. The measure uses the reference speech signal to determine
end-points and flat-regions.

Next, the decay curve

d(l,k) = Akeλkn, n = 1,2, . . . ,J, (2.43)

of length J is fitted to the reverberant speech over all flat-regions and in all Bark
bins k = 1, 2, . . . , K. The value of l = 0 is specifically omitted from the fitting
procedure.

For a particular end-point, the RDT measure employs the following three
terms: Aavg = 1

K ∑K
k=1 Ak represents the average absolute decay tail energy; λavg =

1
KAavg

∑K
k=1 Akλk represents the average decay rate, Davg = 1

K ∑K
k=1Dk represents the

average direct-path energy estimated from the reference signal, where Dk is the
direct-path energy estimate in the kth Bark bin.

The RDT measure is then computed as
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RDT =
Aavg

λavgDavg
. (2.44)

Note that a high RDT value corresponds to either a high relative energy in the tail or
a slower decay rate.

In [47], the RDT measure was tested using three dereverberation methods. The
results were compared to subjective tests involving 26 subjects. The results showed
a high correlation between the RDT values and the amount of reverberation perceived
by the subjects.

2.5.4 Signal-to-reverberant Ratio

The Signal to Reverberation Ratio (SRR) is a signal-based measure of reverberation
that can be computed even when the effect of a dereverberation algorithm cannot be
represented in the impulse response of an LTI system. It requires knowledge of the
original speech after propagation through the direct-path, sd, which is usually diffi-
cult and often impossible to obtain when dealing with measured signals but easily
available in an intrusive situation when the original signal is known. Typically, the
SRR is computed using the signals before and after processing, and an improvement
in SRR due to the processing can then be determined. The SRR requires the direct-
path signal component, sd(n), and is therefore an intrusive measure. It and can be
written as

SRR = 10log10

(
‖sd‖2

2

‖ŝ− sd‖2
2

)
dB, (2.45)

where sd = [sd(0) sd(1) . . . sd(Ls −1)]T , sd(n) = hT
d s(n) and ŝ = (ŝd + x̂r) is the Ls-

sample signal to be evaluated. For example, the SRR may be measured first using
ŝ = x at the input of a dereverberation algorithm and then with ŝ at the output of
the algorithm in order to quantify the effect of the algorithm. It is sometimes con-
venient to use the segmental SRR, SRRseg. This is found by computing SRR(l) as
the SRR of short, possibly overlapping, signal segments each of length Ls typically
corresponding to a duration of 32 ms. An average of such SRR values in dB is then
taken over all segments to give

SRRseg =
1

Nseg

Nseg−1

∑
l=0

SRR(l), (2.46)

where Nseg is the total number of speech segments.

2.5.4.1 Relationship Between DRR and SRR

Subject to correct level normalization as will be discussed below, the SRR is equiv-
alent to the DRR when the source s(n) is spectrally white. In the case when ŝd = sd
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Fig. 2.5 Comparison of DRR and SRR for (i) white Gaussian noise input, (ii) speech input and
(iii) prewhitened speech input, with (a) simulated impulse responses and (b) measured impulse
responses

and evoking Parseval’s theorem, in the frequency domain we have

∑
k
|S(k)|2|Hd(k)|2/∑

k
|S(k)|2|Hr(k)|2. (2.47)

When S(k) = S, independent of k, |S|2 can be taken outside the summation in both
numerator and denominator and cancelled. An illustrative example is when s(n) =
δ (n), so that S(k) = 1∀k, in which case (2.45) reduces directly to the formulation of
the DRR in (2.33). In practice, when speech signals are considered, a prewhitening
filter can be employed [39], as will be shown below.

These effects are illustrated in Fig. 2.5, which shows a comparison of DRR
and SRR for (a) a room of dimensions 6× 5× 4 m simulated using the source-
image method [1, 34] and (b) for real measured room impulse responses from
MARDY [47]. The SRR calculated for a white noise input is shown in curve (i) and
is seen to correspond almost exactly to DRR. Curve (ii) shows SRR calculated for
five sentences of male speech, sampled at 20 kHz from the APLAWD database [28].
Lastly the results with prewhitened speech are shown in curve (iii). The prewhiten-
ing filters were computed over all five sentences using a 10th order linear predictor;
separate filters were obtained for sd and ŝ and were applied to each of the signals
respectively. It is clear that whitening the speech signal is significantly effective.

2.5.4.2 Level Normalization in SRR

A dereverberation algorithm aims to attenuate the level of reverberation and may
affect either or both of the direct-path signal sd(n) or the reverberant component
xr(n) in order to improve the SRR. Therefore we can write that
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ŝ(n) = γsd(n)+ x̄r(n), (2.48)

where x̄r(n) is the attenuated reverberant component and γ is a scalar assumed sta-
tionary over the duration of the measurement. We also assume that any processing
delay has been appropriately compensated as is generally assumed in other mea-
surements such as the SNR.

The measurement of the reverberant component’s energy and the assessment of
its impact on the speech signal must be done relative to the energy of the direct-path
component. This can be conveniently accomplished by normalization in order to
match the level of the direct-path component before and after processing. The aim
of this normalization is to adjust the magnitude of ŝ such that the direct-path signal
energy is unchanged by the dereverberation algorithm. This can be achieved by
determining γ . The motivation for this comes from the observation that signal-based
measures are not, in general, scale independent, and therefore, unless the scaling is
correctly normalized, misleading results can be obtained.

This problem can be formulated as a search for a scalar γ̂ such that the Normal-
ized Signal-to-Reverberant Ratio (NSRR)

NSRR = 10log10

(
‖sd‖2

2

‖(1/γ̂)ŝ− sd‖2
2

)
dB (2.49)

is a good estimate of DRR.
It is necessary to estimate γ from the available signals. For baseline comparison

purposes, straightforward approaches can be employed to determine γ using

γnorm =
‖W{ŝ}‖norm

‖W{sd}‖norm
(2.50)

corresponding to RMS and peak matching for norm = 2 and norm =∞ respectively,
and employing uniform and A-weighting [25] for W{.} representing a correspond-
ing weighting filter. These approaches lead to incorrect calculation of SRR as will
be shown below.

A good solution to the normalization problem can be obtained using γls from the
least squares minimization

γls = argmin
γ̂

‖ŝ− γ̂sd‖2
2. (2.51)

The solution for γls is found by minimizing J = E{‖ŝ− γ̂sd‖2
2} arising from (2.51),

where E{·} denotes mathematical expectation. To minimize J, we differentiate it
with respect to γ̂ and set the result to zero, which gives

∂J
∂ γ̂

= −2E{sT
d [ŝ− γ̂sd]} = 0. (2.52)

The final step is to approximate expectations with sample averages giving γls to be
the value of γ̂ satisfying (2.52) as
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γls =
sT

d ŝ
sT

d sd
, (2.53)

which is a projection of ŝ onto the direct component sd.
The effect of γ̂ is seen by substituting (2.48) into J to obtain

J = E{‖γsd + x̄r− γ̂sd‖2
2}

= E{(γ− γ̂)2‖sd‖2
2}+ E{2(γ− γ̂)sT

d x̄r}+ E{‖x̄r‖2
2}. (2.54)

Clearly, J is minimized when γ = γ̂ .

2.5.4.3 SRR Computation Example

Figure 2.6 shows a comparison of DRR with NSRR computed from (2.49) with γ̂
obtained using four different level normalization schemes. These results were ob-
tained for the same experimental setup as described earlier in Sect. 2.5.4.1. The
test signal ŝ was generated as in (2.48) with γ chosen arbitrarily and x̄r(n) = xr(n).
The speech signals were prewhitened with prewhitening filters computed from sd
and (1/γ̂)ŝ and applied, after the level normalization, to each of the signals, respec-
tively. Curves (i), (ii) and (iii) show SRR with the normalization factor γ from (2.50)
with peak normalization, RMS normalization and A-weighted RMS normalization,
respectively. Curve (iv) shows SRR with least squares optimal normalization. It can
be seen that the match between DRR and least squares optimal normalized SRR
is much smaller over a wide range of DRRs, whereas other normalization schemes
substantially that overestimate offer little discrimination between different values of
DRR. These discrepancies are more severe at lower DRR values.
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2.5.4.4 SRR Summary

Two effects require consideration when employing SRR. First, the signal charac-
teristics affect the SRR calculation such that good estimates of DRR are obtained
when the signal is white. Prewhitening of speech with a 10th-order predictor has
been seen to be sufficient for the cases studied here. Second, the level of the sig-
nals must be correctly normalized. It has been shown that level normalization using
RMS, A-weighted RMS and peak matching are not appropriate. A least squares op-
timal normalization scheme has been formulated and it has been shown that this
can be expressed as a projection of the signal onto the direct-path component. The
above simulation results confirm that the least squares optimal level normalization
and prewhitening enable DRR to be estimated without the requirement for impulse
response measurements.

2.5.5 Experimental Comparisons

Signal-based objective measures have been experimentally compared to fundamen-
tal measurements associated with reverberation in order to gain an insight into the
effectiveness of the objective measures. We here consider a comparison of the objec-
tive measures with the fundamental measures of reverberation time T60 and spectral
deviation, which is defined as the standard deviation of the energy spectrum in dB
of the AIR [20]. A speech signal of 40 s duration containing utterances of both male
and female speech from the TIMIT database [8] has been employed. Reverberation
is applied by convolving the original speech signal with a AIR generated using the
image method and the resulting comparisons are shown graphically for several of
the more significant objective measures below.

The relationship of segmental SRR to reverberation time is shown in Fig. 2.7(a)
for source-microphone distances of 0.5 and 2.0 m, and the relationship of Segmental
SRR to spectral deviation is shown in Fig. 2.7(b). It can be seen that SRR varies
monotonically with reverberation time and shows a clear dependent relationship
with spectral deviation in the range of Segmental SRR between around −10 and
10 dB.

Graphs in Figs. 2.8(a) and 2.8(b) show the relation between the BSD and re-
verbereration time and between the BSD and the spectral distortion, respectively.
The relation between the BSD and the reverberation time depends on the distance
D between the source and the microphone, as shown in Fig. 2.8(a). For D = 0.5 m
there is seen to be an almost linear relation; for D = 2 m the relation is non-linear.
For Fig. 2.8(b), the BSD values were calculated using different reverberation times
and source-microphone distances. The results demonstrate that only very low BSD
values correspond to a decrease in spectral deviation; BSD values less than 0.2 for a
significant reduction. Hence, a decrease in BSD does not necessarily correspond to
a significant reduction in spectral deviation.
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Fig. 2.7 Segmental SRR vs. (a) reverberation time and (b) spectral deviation

The relations between the reverberation decay tail measure, RDT, and the rever-
beration time is shown in Fig. 2.9(a) and can be seen to be close to linear. Fig-
ure 2.9(b) shows the relation between the RDT measure and the spectral deviation
for T60 = 300 ms and T60 = 600 ms, from which it can be seen that the RDT measure
depends on the amount of colouration, which is indicated by the spectral devia-
tion. Although the RDT measure was intended to be independent of coloration, as
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Fig. 2.8 Bark spectral distortion vs. (a) reverberation time and (b) spectral deviation

discussed in [48], the colouration process considered there was limited to that of
strong early reflections, which causes a strong modulation in the power spectrum
of the AIR. The RDT measure is inversely proportional to the average direct-path
energy Davg in (2.44). Since the average direct-path energy is inversely proportional
to D2, as is the direct energy, the RDT measure can be expected to be proportional to
D2.
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Fig. 2.9 RDT vs. (a) reverberation time and (b) spectral deviation

2.6 Dereverberation Performance of the Delay-and-sum
Beamformer

The Delay-and-sum Beamformer (DSB) is a fundamentally important approach to
dereverberation and provides a helpful reference against which baseline other meth-
ods can be compared. The performance of the DSB is now analyzed.
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The DSB applies spatial filtering to capture the direct-path signal from the di-
rection of the source whilst suppressing reverberant sound from other directions.
The source direction is assumed known or could be adaptively estimated, although
the accuracy of direction-of-arrival estimation is often degraded in strong reverber-
ation [5]. A closed form expression is now presented for the expected improvement
in DRR that can be achieved with a DSB compared to a single microphone. The
following expression is evaluated

E {DRR} = 10log10

(
E {DRRDSB}
E {DRR′}

)
dB, (2.55)

where E {·} is the spatial expectation operator, DRR′ is the DRR of the best micro-
phone which is defined as the microphone closest to the source and DRRDSB is the
DRR at the output of the DSB. Using tools from SRA it can be shown [10] that the
expected improvement in DRR that can be achieved with a DSB is

E {DRR}= 10log10

⎛
⎜⎝ D2

min∑
M
m=1∑

M
l=1

1
DmDl

∑M
m=1∑M

l=1
sink‖qmic,m−qmic,l‖2

2
k‖qmic,m−qmic,l‖2

2
cos(k[Dm −Dl])

⎞
⎟⎠ dB, (2.56)

where Dm is the distance between the source and the mth microphone, Dmin =
minm(Dm) is the distance from the source to the closest microphone and qmic,m
is the mth microphone coordinate vector in three dimensions. The wave number is
k = 2π f/c with f denoting the frequency and c being the speed of sound in air,
which here is taken as c = 344 m/s. The validity of the result in (2.56) depends
on the common SRA assumptions for diffuse sound fields [25, 40] as described in
Sect. 2.2.6.

The following observations can be made from the expression in (2.56): (i) the ex-
pected improvement that can be achieved with the DSB depends only on the distance
between the source and the array and the separation of the microphones, (ii) con-
sequently, the improvement is independent of the reverberation time and (iii) in the
special case when the microphones are separated by exactly a half wavelength at
each frequency and the distance between the source and the microphones is large,
the denominator tends to zero and perfect dereverberation is achieved.

2.6.1 Simulation Results: DSB Performance

Two simulation results are presented to validate the theoretical expression in (2.56)
and to gain some insight in the expected performance of the DSB for derever-
beration. For these simulations, the source-image method [1] and the modifica-
tion proposed in [34] were used to generate finite room impulse responses, hm.
The room transfer function, Hm(e jω), was then found by taking the Fourier trans-
form of hm. A room with the dimensions 6.4 × 5 × 4 m was modelled and a
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linear array of M microphones with the spacing between adjacent microphones
‖qmic,m−qmic,m+1‖= 0.2 m. The reverberation time was set to T60 = 0.5 s. Frequen-
cies between 300–3400 Hz were considered, and sources and microphones were
kept at least a half wavelength away from the walls to satisfy the conditions set for
the statistical room model [10, 40].

Experiment 1: Effect of Source-microphone Distance

In the first experiment, an array with M = 5 microphones was employed. The dis-
tance between the array and the source was gradually increased from 0.5 to 3 m
in steps of 0.5 m. The distance from the source to the array is defined here as the
distance to the closest microphone. The result is shown in Fig. 2.10, where the im-
provement in DRR, calculated with the expression in (2.56), is plotted with a dashed
line and the experimental result is shown with a solid line. It can be observed here
that the improvement increases with the distance when the source is close to the ar-
ray but then flattens out with increased distance. This can be related to the theoretical
expression by noting that the improvement is mainly governed by the microphone
separation when the distance to the array is large.

Experiment 2: Effect of Number of Microphones

For the second experiment, the distance between the source and the array was kept
fixed at 2 m while the number of microphones was increased. The result of this is
shown in Fig. 2.11, where the improvement in DRR, calculated with the expression
in (2.56), is plotted with a dashed line and the experimental result is shown with a
solid line. This result demonstrates that the improvement in DRR is approximately
linearly proportional to the number of microphones.

In summary, the DSB is a straightforward approach that can provide moder-
ate reduction in reverberation. Consequently, beamformers are often used as pre-
processing or post-processing multichannel techniques and as benchmark methods
for newly developed algorithms [6, 11, 13].

2.7 Summary and Discussion

Although it is indeed the science of room acoustics that offers an understanding of
the physical acoustic processes that we refer to as reverberation, choosing appro-
priate models and simulation techniques from the relatively large number of those
available could be said to be something of an art. This chapter has aimed to high-
light the main classes of models and simulation techniques for room acoustics and
has identified the circumstances under which each might be appropriately employed.
We have not aimed to present all the techniques in detail, for obvious reasons, but
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hope that the references within the text will provide sufficient information to satisfy
those wishing to work with the techniques or to satisfy their interest through further
reading.

Quantitative characterization of reverberation is not a straightforward task, nor is
evaluation of the effect of signal processing algorithms on the level of reverberation
contained in a speech signal easy. We have considered the task of such evaluation in
two sets of circumstances; in one case the AIR is available and in the other it is not.
For many researchers, it will be more direct and straightforward to use techniques
based on the AIR but, for the cases when the AIR or its estimate are not available,
the use of the signal-based measures provides a reasonable strategy for objective
measurement. We have also aimed to give a few pointers to methods of subjective
testing.

Many speech researchers encounter the subject of speech dereverberation be-
cause of their need to improve Automatic Speech Recognition (ASR) in reverber-
ant, and possible also noisy, environments. In this context, evaluation of the level of
reverberation, and the ability of a signal processing algorithm to enhance the signal,
is normally very effectively achieved by measurement of the error rate obtained in
the ASR. Two points of discussion arise here. First, it would be surprising if a dere-
verberation algorithm that improved ASR performance always made the reverberant
speech sound better. Second, evaluating reverberation, and several other degradation
types, is more straightforward in signals intended for machines than in the context
of human perception.

To end the beginning of this book, we have analysed the important tool that is
the delay-and-sum beamformer from the perspective of its dereverberation perfor-
mance. The DSB is often considered a baseline method and provides us with a firm
foundation from which to explore alternative approaches and techniques in the fol-
lowing chapters.
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Chapter 3
Speech Dereverberation Using Statistical
Reverberation Models∗

Emanuël A.P. Habets

Abstract In speech communication systems, such as voice-controlled systems,
hands-free mobile telephones and hearing aids, the received microphone signals are
degraded by room reverberation, ambient noise and other interferences. This sig-
nal degradation can decrease the fidelity and intelligibility of speech and the word
recognition rate of automatic speech recognition systems.

The reverberation process is often described using deterministic models that de-
pend on a large number of unknown parameters. These parameters are often difficult
to estimate blindly and are dependent on the exact spatial position of the source and
receiver. In recently emerged speech dereverberation methods, which are feasible in
practice, the reverberation process is described using a statistical model. This model
depends on smaller number of parameters such as the reverberation time of the en-
closure, which can be assumed to be independent of the spatial location of the source
and receiver. This model can be utilized to estimate the spectral variance of part of
the reverberant signal component. Together with an estimate of the spectral variance
of the ambient noise, this estimate can then be used to enhance the observed noisy
and reverberant speech.

In this chapter we provide a brief overview of dereverberation methods. We then
describe single and multiple microphone algorithms that are able to jointly suppress
reverberation and ambient noise. Finally, experimental results demonstrate the ben-
eficial use of the algorithms developed.

Imperial College London, UK

∗ This research was supported by the Israel Science Foundation (grant no. 1085/05) and by the
Technology Foundation STW, Applied Science Division of NWO and the Technology Programme
of the Dutch Ministry of Economic Affairs.

57



58 E.A.P. Habets

3.1 Introduction

Speech signals that are received by a microphone at a distance from the speech
source usually contain reverberation, ambient noise and other interferences. Re-
verberation is the process of multi-path propagation of an acoustic sound from its
source to a microphone. The received microphone signal generally consists of a di-
rect sound, reflections that arrive shortly after the direct sound (commonly called
early reverberation) and reflections that arrive after the early reverberation (com-
monly called late reverberation). The combination of the direct sound and early re-
verberation is sometimes referred to as the early speech component. Early reverber-
ation mainly contributes to spectral colouration, while late reverberation changes the
waveform’s temporal envelope as exponentially decaying tails are added at sound
offsets. The colouration can be characterized by the spectral deviation σ , which is
defined as the standard deviation of the log-amplitude frequency response of the
Acoustic Impulse Response (AIR) [46].

For the development of dereverberation algorithms it is of great importance to
have a good understanding of the effects of reverberation on speech perception. The
reduction in speech intelligibly caused by late reverberation is especially noticeable
for non-native listeners [72] and for listeners with hearing impairments [58]. The
detrimental effects of reverberation on speech intelligibility have been attributed
to two types of masking. Bolt and MacDonald [10] and Nábělek et al. [57] found
evidence of overlap-masking, whereby late reverberation of a preceding phoneme
masks a subsequent phoneme, and of self-masking, which refers to the time and
frequency alterations of an individual phoneme.

In a reverberant room, speech intelligibility initially decreases with increasing
source-microphone distance, but beyond the so-called critical distance speech intel-
ligibility is approximately constant. The critical distance is the distance at which the
direct-path energy is equal to the energy of all reflections. For an omnidirectional
microphone the critical distance Dc is approximately given by [69]

Dc =

√
ln(106)V
4π cT60

, (3.1)

where c is the sound velocity in ms−1, V is the volume of the room in m3 and
T60 is the reverberation time in seconds. To obtain sufficiently intelligible speech
it is typically recommended that the source-microphone distance is smaller than
0.3 times the critical distance. In a living room with dimensions 7 m × 5 m × 3 m
and T60 = 0.5 s, the critical distance Dc ≈ 0.82 m. Hence, the speech intelligibility
would be affected even when the source-microphone distance is larger than 0.25 m.

Consonants play a more significant role in speech intelligibility than vowels. If
the consonants are heard clearly, the speech can be understood more easily. In 1971
Peutz [60] proposed a measure called the articulation loss of consonants (Alcons)
that quantifies the reduction in perception of consonants due to reverberation. For
distances smaller than the critical distance the measure depends on the source-
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microphone distance, the reverberation time, and the volume of the room. Beyond
the critical distance the measure depends only on the reverberation time. The speech
intelligibility can be increased by decreasing the articulation loss, which can be
achieved by decreasing the source-microphone distance or the reverberation time,
or by increasing the room volume.

In 1982 Allen [4] reported a formula to predict the subjective preference of re-
verberant speech. The main result is given by the equation

P = Pmax −σT60, (3.2)

where P is the subjective preference in some arbitrary units, Pmax is the maximum
possible preference, and σ is the spectral deviation in decibels (dB). According to
this formula, decreasing either the spectral deviation σ or the reverberation time T60
results in an increased subjective preference of reverberant speech.

It would be convenient to assume that reverberation solely reduces intelligibility,
but this assumption is incorrect [71]. Strong reflections that arrive shortly after the
direct sound actually reinforce the direct sound and are therefore considered useful
with regard to speech intelligibility. This reinforcement, which is often referred to as
the precedence effect, is what makes it easier to hold conversations in closed rooms
rather than outdoors.

While investigating the detrimental effects of reverberation on speech, it has be-
come clear that the speech fidelity and intelligibility are mostly degraded by late re-
verberation. In addition, speech intelligibility is degraded by ambient noise. There-
fore, we define the effective noise as the sum of the late reverberant component and
the ambient noise component. In this chapter we describe a spectral enhancement
method to suppress late reverberation and ambient noise, i.e., to estimate the early
speech component. Due to the joint suppression of late reverberation and ambient
noise, the effective noise is reduced and the fidelity and intelligibility of speech can
be improved.

This chapter is organized as follows. In Sect. 3.2 a short review of dereverberation
methods is provided. In Sect. 3.3 two statistical reverberation models are discussed.
In Sect. 3.4 we derive a spectral estimator which can be used to jointly suppress late
reverberation and ambient noise. In Sect. 3.5 we investigate the possibility of us-
ing multiple microphones in conjunction with spectral enhancement techniques for
dereverberation. The spectral estimator derived in Sect. 3.4 requires an estimate of
the spectral variance of the late reverberant signal component. In Sect. 3.6 such an
estimator is derived using a statistical reverberation model. Estimation of the model
parameters is discussed in Sect. 3.7. Experimental results that demonstrate the ben-
eficial use of the described dereverberation methods are presented in Sect. 3.8. Fi-
nally, a summary and directions for further research are provided in Sect. 3.9.
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3.2 Review of Dereverberation Methods

Reverberation reduction processes can be divided into many categories. They may,
for example, be divided into single or multi-microphone techniques and into those
primarily affecting colouration or those affecting late reverberation. We categorized
the reverberation reduction processes depending on whether or not the AIR needs
to be estimated. We then obtain two main categories, viz. reverberation cancellation
and reverberation suppression.

3.2.1 Reverberation Cancellation

The first category, i.e., reverberation cancellation, consists of methods known as
blind deconvolution. Much research has been undertaken on the topic of blind de-
convolution; see [43] and the references therein. Multichannel methods appear par-
ticularly interesting because theoretically exact inverse-filtering can be achieved
if the AIRs can be estimated and they do not have any common-zeros in the z-
plane [56]. To achieve dereverberation without a priori knowledge of the room
acoustics, many traditional methods assume that the source signal is independent
and identically-distributed (i.i.d.). However, the i.i.d. assumption does not hold
for speech-like signals. When applying such traditional deconvolution methods to
speech, the speech generating process is deconvolved and the resulting speech sig-
nal is excessively whitened. Delcroix et al. proposed a method that consists of a
multichannel equalizer and a compensation filter that reconstructs the colouration
of the speech signal that is whitened by the equalizer [21]. Although perfect dere-
verberation is possible in theory, the method is sensitive to estimation errors of the
covariance matrix that is required to compute the equalizer and the compensation
filter. Another interesting method was developed by Gürelli and Nikias [33] and ex-
plores the null-space of the spatial correlation matrix, calculated from the received
signals. It was shown that the null-space of the correlation matrix contains informa-
tion on the acoustic transfer functions. This method has also potential in the speech
processing framework and was extended by Gannot and Moonen [28]. In [44] the
speech signal is modelled using a block stationary auto-regressive process while the
room acoustics are modelled using an all-pole model. Bayesian parameter estima-
tion techniques were then used to estimate the unknown parameters.

While good results can be achieved the methods in this category suffer from
several limitations: (1) they have been shown to be insufficiently robust to small
changes in the AIR [63, 73], (2) channels cannot be identified uniquely when they
contain common zeros, (3) observation noise causes severe problems, and (4) some
methods require knowledge of the order of the unknown system [45]. Detailed treat-
ments on the problems involved are presented in Chaps. 5–7 and 9.



3 Speech Dereverberation Using Statistical Reverberation Models 61

3.2.2 Reverberation Suppression

Methods in the second category, i.e., reverberation suppression, do not require an es-
timate of the AIR and explicitly exploit the characteristics of speech, the effect of re-
verberation on speech, or the characteristics of the AIR. Methods based on process-
ing of the Linear Prediction (LP) residual signal belong to this category [30, 32, 78].
The peaks in the LP residual signal correspond to excitation events in voiced speech
together with additional random peaks due to reverberation. These random peaks
can be suppressed by, for example, averaging adjacent larynx-cycles, as proposed
in [30].

Other, so-called, spatial processing methods use multiple microphones placed at
different locations. They often use a limited amount of a priori knowledge of the
AIR such as, for example, the direction of arrival of the desired source. The mi-
crophone signals can be processed to enhance or attenuate signals emanating from
particular directions. The well-known delay and sum beamformer is a good example
of such a method and belongs to the reverberation suppression category.

Recently, spectral enhancement methods have been used for speech dereverber-
ation [37, 39, 41, 42, 49, 74]. Spectral enhancement of noisy speech has been a
challenging problem for many researchers for over 30 years and is still an active
research area, see, for example, [6, 17, 23, 24] and references therein. Spectral en-
hancement of noisy speech is often formulated as estimation of speech spectral com-
ponents from a speech signal degraded by statistically independent additive noise.
One of the earlier methods, and perhaps the most well-known method, is spectral
subtraction [9, 50]. This method generally results in random narrow-band fluctua-
tions in the residual noise, also known as musical tones, which are annoying and
disturbing to the perception of the enhanced signal. Many variations have been de-
veloped to cope with musical tones [8, 9, 31, 36, 70]. Spectral subtraction makes
minimal assumptions about the signal and noise, and when carefully implemented,
it produces enhanced signals that may be acceptable for certain applications. Lebart
et al. proposed a single-channel speech dereverberation method based on spectral
subtraction to reduce the effect of overlap-masking [49]. The method estimates the
short-term Power Spectral Density (PSD) of late reverberation based on a statisti-
cal reverberation model. This model exploits the fact that the envelope of the AIR
decays exponentially and depends on a single parameter that is related to the rever-
beration time of the room. In [38] the authors showed that the estimated short-term
PSD of late reverberation can be improved using multiple microphones. Addition-
ally, the fine-structure of the speech signal is partly restored due to spatial averaging
of the received power spectra.

A more advanced spectral enhancement method is the so-called statistical
method, which is often designed to minimize the expected value of some distor-
tion measure between the clean and estimated signals [11, 17, 25, 55]. This method
requires reliable statistical models for the speech and noise signals, a perceptually
meaningful distortion measure and an efficient signal estimator. A statistical speech
model and perceptually meaningful distortion measure that are fully appropriate for
spectral enhancement have not yet been determined. Hence, the variety of statistical
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methods for spectral enhancement differ mainly in the statistical model [15, 25, 55],
distortion measure [26, 52, 77] and the particular implementation of the spectral en-
hancement algorithm [23]. In this chapter we describe a statistical method for the
enhancement of noisy and reverberant speech based on a Gaussian model for the
speech and interferences and a squared error distortion measure.

3.3 Statistical Reverberation Models

Since the acoustic behaviour in real rooms is too complex to model explicitly, we
make use of Statistical Room Acoustics (SRA). SRA provides a statistical descrip-
tion of the transfer function of the system between the source and the microphone
in terms of a few key quantities, e.g., source-microphone distance, room volume
and reverberation time. The crucial assumption of SRA is that the distribution of
amplitudes and phases of individual plane waves, which sum up to produce sound
pressure at some point in a room, is so close to random that the sound field is fairly
uniformly distributed throughout the room volume. The validity of this description
is subjected to a set of conditions that must be satisfied to ensure the accuracy of
calculations. Our analysis therefore implicitly assumes that the following conditions
hold [48, 63, 73]:

1. The dimensions of the room are relatively large compared to the longest wave-
length of the sound of interest.

2. The average spacing of the resonance frequencies of the room must be smaller
than one third of their bandwidth. In a room with volume V this condition is ful-
filled for frequencies that exceed the Schroeder frequency: fg = 2000

√
T60/V .

3. The source and the microphone are located in the interior of the room, at least
a half-wavelength away from the walls.

3.3.1 Polack’s Statistical Model

Sabine’s [65] major contribution was the introduction of statistical methods to cal-
culate the reverberation time of an enclosed space without considering the details
of the space geometry. Schroeder extended Sabine’s fundamental work [66, 67] and
derived a frequency domain model and a set of statistical properties about the fre-
quency response of the random impulse response.

Polack [61] developed a time-domain model complementing Schroeder’s fre-
quency domain model. In this model, an AIR is described as a realization of a non-
stationary stochastic process. This model is defined as

h(n) =

{
b(n)e−ζ̄n, for n ≥ 0,

0, otherwise,
(3.3)
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where n denotes the discrete time index, b(n) is a zero-mean stationary Gaussian
noise sequence and ζ̄ is linked to the reverberation time T60 through

ζ̄ � 3ln(10)
T60 fs

, (3.4)

where fs denotes the sampling frequency in Hz. In contrast to the model in (3.3),
the reverberation time is frequency dependent due to frequency dependent reflection
coefficients of walls and other objects and the frequency dependent absorption co-
efficient of air [48]. This dependency can be taken into account by using a different
model for each frequency band. In addition, it should be noted that Polack’s statis-
tical reverberation model is only valid in cases for which the distance between the
source and the measurement point is greater than the critical distance Dc.

In the early 90s, Polack [62] proved that the most interesting properties of room
acoustics are statistical when the number of ‘simultaneously’ arriving reflections
exceeds a limit of about 10. In this case, the echo density is high enough such that
the space can be considered to be in a fully diffused or mixed state. The essential
requirement is ergodicity, which requires that any given reflection trajectory in the
space will eventually reach all points. The ergodicity assumption is determined by
the shape of the enclosure and the surface reflection properties. It should be noted
that non-ergodic shapes will exhibit much longer mixing times and may not even
have an exponential decay. Nevertheless, while it may not be true that all acoustic
environments can be modelled using this statistical model, it is sufficiently accurate
for most spaces.

The energy envelope of the AIR can be expressed as

E {h2(n)} = σ2e−2ζ̄n, (3.5)

where σ2 denotes the variance of b(n), and E {·} denotes spatial expectation. Here
the spatial expectation is defined as the ensemble average over different realizations
of the stochastic process in (3.3). Under the assumption that the space is ergodic,
we may evaluate the ensemble average in (3.5) by spatial averaging so that different
realizations of this stochastic process are obtained by varying either the position
of the receiver or the source [47]. Note that the same stochastic process will be
observed for all allowable positions (in terms of the third SRA condition) provided
that the time origin is defined with respect to the signal emitted by the source and
not with respect to the arrival time of the direct sound at the receiver.

3.3.2 Generalized Statistical Model

In many cases the source-microphone distance is smaller than the critical distance
Dc, i.e., the Direct to Reverberant Ratio (DRR) is larger than 0 dB. In these cases
Polack’s statistical model, although useful when the source-microphone distance
is larger than the critical distance, is not an accurate model of the AIR. In [39], a
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generalized statistical model was proposed, which can be used when the source-
microphone distance is smaller than the critical distance. To model the contribution
of the direct-path, the AIR h(n) is divided into two segments, viz. hd(n) and hr(n):

h(n) =

⎧⎪⎨
⎪⎩

hd(n), for 0 ≤ n < nd,

hr(n), for n ≥ nd,

0, otherwise.
(3.6)

The value nd is chosen such that hd(n) contains the direct-path and hr(n) contains all
reflections. Later we define the parameter nd according to the frame rate of the time-
frequency transformation. In practice, the direct-path is deterministic and could be
modelled using a Dirac pulse. Unfortunately this would preclude us from creating
a statistical model. To be able to model the energy related to the direct-path the
following model is proposed:

hd(n) = bd(n)e−ζ̄n, (3.7)

where bd(n) is a white zero-mean Gaussian stationary noise sequence and ζ̄ is linked
to the reverberation time T60 through (3.4). The reverberant component hr(n) is de-
scribed using the following model:

hr(n) = br(n)e−ζ̄n, (3.8)

where br(n) is a white zero-mean Gaussian stationary noise sequence. Under the
SRA conditions the direct and reverberant component of the AIR are uncorrelated
[63]. Therefore, it is reasonable to assume that bd(n) and br(n) are uncorrelated, i.e.,
E {bd(n)br(n + τ)} = 0 for τ ∈ Z.

The energy envelope of h(n) can be expressed as

E {h2(n)} =

⎧⎪⎨
⎪⎩
σ2

d e−2ζ̄n, for 0 ≤ n < nd

σ2
r e−2ζ̄n, for n ≥ nd

0, otherwise,
(3.9)

where σ2
d and σ2

r denote the variances of bd(n) and br(n), respectively. When σ2
d <

σ2
r , the contribution of the direct-path can be neglected. Therefore, it is assumed

that σ2
d ≥ σ2

r . Note that the generalized statistical model is equivalent to Polack’s
statistical model in the case σ2

d = σ2
r .

3.4 Single-microphone Spectral Enhancement

In this section the spectral enhancement of a noisy and reverberant microphone
signal is discussed. We start by formulating the spectral enhancement problem in
Sect. 3.4.1. In Sect. 3.4.2 we show how the spectrum of the early speech component
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can be estimated using the Minimum Mean Square Error (MMSE) Log Spectral
Amplitude (LSA) estimator proposed by Cohen in [13]. This estimator depends on
the so-called a priori Signal to Interference Ratio (SIR) that needs to be estimated
in practice. In Sect. 3.4.3 we describe how the a priori SIR can be estimated.

3.4.1 Problem Formulation

The reverberant signal results from the convolution of the anechoic speech signal
and a causal AIR. In this section we assume that the AIR is time-invariant and that
its length is infinite. The reverberant speech signal at discrete-time n can be written
as

z(n) =
n

∑
l=−∞

s(l)h(n− l). (3.10)

To simplify the following discussion it is assumed that the direct sound arrives
at time instance n, i.e., the direct-path is modelled by h(0). It should be noted that
this assumption can be made without loss of generality. Since our main goal is to
suppress late reverberation we split the AIR into two components (see Fig. 3.1) such
that

h(n) =

⎧⎪⎨
⎪⎩

0, n < 0,

he(n), 0 ≤ n < ne,

h�(n), n ≥ ne,

(3.11)

where ne is chosen such that he(n) consists of the direct-path and a few early re-
flections and h�(n) consists of all later reflections. The fraction ne/ fs can be used
to define the time instance (relative to the time of arrival of the direct sound) from
where the late reverberation is suppressed. Its value can be determined by the lis-
tener depending on his or her subjective preference but should be larger than the
mixing time of the room, which is defined as the time it takes for initially adja-
cent sound rays to spread uniformly across the room [61]. In practice, ne/ fs usually
ranges from 30 to 60 ms.

Using (3.11) we can write the microphone signal x(n) as

x(n) =
n

∑
l=n−ne+1

s(l)he(n− l)

︸ ︷︷ ︸
ze(n)

+
n−ne

∑
l=−∞

s(l)h�(n− l)

︸ ︷︷ ︸
z�(n)

+v(n), (3.12)

where ze(n) is the early speech component, z�(n) denotes the late reverberant speech
component, and v(n) denotes the additive ambient noise component. The joint sup-
pression of z�(n) and v(n) decreases the effective noise level, and can increase the
speech fidelity and intelligibility. Since the response of the first part of the AIR,
i.e., ze(n), remains unaltered we do not reduce the colourations caused by the early
reflections.
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Fig. 3.1 Schematic representation of the acoustic impulse response

Estimating ze(n) is a challenging problem because both s(n) and h(n) are un-
known. Here we formulate the problem of estimating ze(n), or in other words sup-
pressing z�(n), using spectral enhancement. A block diagram of the spectral en-
hancement system is depicted in Fig. 3.2. The noisy and reverberant speech signal
is denoted by x(n), and is first transformed to the time-frequency domain by apply-
ing the short-time Fourier transform (STFT). Specifically,

X(�,k) =
K−1

∑
n=0

x(n + �R)w(n)e− j 2π
K nk, (3.13)

where j =
√
−1, w(n) is the analysis window of size K, and R is the number of

samples separating two successive frames. The spectral component X(�,k) can be
used to estimate the spectral variance λv(�,k) = E{|V(�,k)|2} of the ambient noise
and to estimate the spectral variance λz�(�,k) = E{|Z�(�,k)|2} of the late reverberant
signal component z�(n). In the following, we assume that the spectral variance of
the ambient noise is slowly time varying. Therefore, the spectral variance λv(�,k) of
the ambient noise can be estimated using the algorithm proposed by Martin in [54]
or using the Improved Minima Controlled Recursive Averaging (IMCRA) algorithm
proposed by Cohen in [14]. In contrast to λv(�,k), the spectral variance λz�(�,k) of
late reverberant signal component is highly time-varying due to the non-stationarity
of the anechoic speech signal. In the application that is considered in this chapter,
it is possible to estimate λz�(�,k) from the microphone signal. An estimator for
λz�(�,k) is derived in Sect 3.6. For now, we assume that an estimate of the late
reverberant spectral variance is available.

Using statistical signal processing, the spectral enhancement problem can be
formulated as deriving an estimator Ẑe(�,k) for the speech spectral coefficients
such that the expected value of a certain distortion measure is minimized [17]. Let
H1(�,k) and H0(�,k) denote the hypotheses for speech presence and absence in the
spectral coefficient Ze(�,k), respectively. Such that
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Fig. 3.2 Block diagram of the single-microphone spectral enhancement system for late reverbera-
tion and noise suppression

H1(�,k) : X(�,k) = Ze(�,k)+ Z�(�,k)+V(�,k), (3.14)
H0(�,k) : X(�,k) = Z�(�,k)+V (�,k). (3.15)

Let p̂(�,k) = P(H1(�,k)) denote an estimate for the probability that the desired
speech component is present and let λ̂ze(�,k) denote an estimate of the variance
of the early speech spectral coefficient Ze(�,k) under H1(�,k). We can now cal-
culate an estimator for Ze(�,k) that minimizes the expected value of the distor-
tion measure given p̂(�,k), λ̂ze(�,k), the estimated late reverberant spectral variance
λ̂z�(�,k) = E{|Ẑ�(�,k)|2}, the estimated ambient noise spectral variance λ̂v(�,k) =
E{|V̂(�,k)|2} and the spectral coefficient X(�,k):

Ẑe(�,k) = argmin
Ẑe(�,k)

E
{

d
(
Ze(�,k), Ẑe(�,k)

)}
. (3.16)

In the sequel we restrict ourselves to the squared error distortion measure, i.e.,

d
(
Ze(�,k), Ẑe(�,k)

)
=
∣∣g(Ẑe(�,k))− g̃(Ze(�,k))

∣∣2 , (3.17)

where g(Ze) and g̃(Ze) are specific functions of Ze that determine the fidelity crite-
rion of the estimator. For the squared error distortion measure, the estimator Ẑe(�,k)
is calculated from

g(Ẑe(�,k)) = E
{

g̃(Ze(�,k))
∣∣∣ X(�,k), p̂(�,k)

}

= p̂(�,k) E
{

g̃(Ze(�,k))
∣∣∣ X(�,k),H1(�,k)

}

+(1− p̂(�,k)) E
{

g̃(Ze(�,k))
∣∣∣ X(�,k),H0(�,k)

}
. (3.18)

Finally, given the estimated spectral component Ẑe(�,k) the early speech compo-
nent ẑe(n) can be obtained using the inverse STFT,
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ẑe(n) =∑
�

K−1

∑
k=0

Ẑe(�,k)w̃(n− �R)e j 2π
K k(n−�R), (3.19)

where w̃(n) is a synthesis window that satisfies the so-called completeness condi-
tion:

∑
�

w(n− �R)w̃(n− �R) =
1
K

for all n. (3.20)

Given analysis and synthesis windows that satisfy (3.20) we can reconstruct ẑ(n)
from its STFT coefficients Ẑ(�,k). In practice, a Hamming window is often used for
the synthesis window. A reasonable choice for the analysis window is the one with
minimum energy [76], given by

w(n) =
w̃(n)

K∑� w̃2(n− �R)
. (3.21)

The inverse STFT is efficiently implemented using the weighted overlap-add
method [20].

3.4.2 MMSE Log-spectral Amplitude Estimator

In the previous Section it was shown that the received microphone signal is degraded
by late reverberation and ambient noise. In this section, a spectral amplitude esti-
mator is developed that can be used to estimate the early spectral speech component
Ze(�,k) in the presence of late reverberation and ambient noise.

While there are many fidelity criteria that are of interest for speech enhancement
it has been found that the MMSE of the log-spectral amplitude is advantageous to
other MMSE estimators in the case of noise suppression [17]. The MMSE-LSA
estimator is found by using the following functions:

g(Ẑe(�,k)) = loge(|Ẑe(�,k)|), (3.22)

g̃(Ze(�,k)) =

{
loge(|Ze(�,k)|) under H1(�,k)
loge(Gmin(�,k) |X(�,k)|) under H0(�,k).

(3.23)

The MMSE-LSA estimator is obtained by substituting (3.22) and (3.23) into
(3.18). Using a Gaussian model for the spectral coefficients, the MMSE-LSA gain
function yields [13]

GMMSE-LSA(�,k) = {GLSA(�,k)}p(�,k) {Gmin(�,k)}1−p(�,k), (3.24)

where GLSA(�,k) is the LSA gain function derived by Ephraim and Malah [26] and
Gmin(�,k) is the lower bound for the gain when the signal is absent and specifies
the maximum amount of suppression in those frames. An efficient estimator for the
speech presence probability p̂(�,k) was developed in [13]. Let ξ (�,k) denote the a
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priori SIR,

ξ (�,k) =
λze(�,k)

λz�(�,k)+λv(�,k)
, (3.25)

and γ(�,k) denote the a posteriori SIR,

γ(�,k) =
|X(�,k)|2

λz�(�,k)+λv(�,k)
. (3.26)

Here X(�,k) denotes the spectral coefficient of the microphone signal and λze(�,k),
λz�(�,k), and λv(�,k) denote the spectral variances of the early speech component,
late reverberation, and ambient noise, respectively. While the a posteriori SIR can
be calculated directly, the a priori SIR cannot because the spectral variance λze(�,k)
of the early speech component in (3.25) is unobservable. The estimation of the a
priori SIR is treated in Section 3.4.3.

The LSA gain function depends on the a posteriori and a priori SIR and is given
by [26]

GLSA(�,k) =
ξ (�,k)

1 + ξ (�,k)
exp

(
1
2

∫ ∞

ζ (�,k)

e−t

t
dt
)

, (3.27)

where

ζ (�,k) =
ξ (�,k)

1 + ξ (�,k)
γ(�,k). (3.28)

To avoid speech distortions Gmin is usually set between −12 and −18 dB. How-
ever, in practice the late reverberation plus ambient noise needs to be reduced more
than 12–18 dB. Therefore, we like to control the maximum suppression of the
late reverberant speech component and ambient noise separately. Due to the time-
varying nature of the interferences the lower-bound becomes time and frequency
dependent. Under the assumption that the interferences are uncorrelated a modified
lower-bound is given by

Gmin(�,k) =
Gmin,z� λ̂z�(�,k)+ Gmin,v λ̂v(�,k)

λ̂z�(�,k)+ λ̂v(�,k)
, (3.29)

where Gmin,z� and Gmin,v are used to control the maximum suppression of late re-
verberation and ambient noise, respectively. When Gmin,z� = 0 the late reverberation
is suppressed down to the residual level of the ambient noise, as shown in [40].
The results of an informal listening test using stationary ambient noise confirmed
that the sound level of the residual interference was stationary in case the modified
lower-bound Gmin(�,k) was used, while the sound level of the residual interference
fluctuated when the constant lower bound Gmin was used.

An estimate of the early spectral speech component Ze(�,k) can now be obtained
using the amplitude estimate and the phase of the noisy and reverberant spectral
coefficient X(�,k), i.e.,

Ẑe(�,k) = GMMSE-LSA(�,k) X(�,k). (3.30)
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3.4.3 a priori SIR Estimator

In this section we focus on the a priori SIR estimation. The a priori SIR in (3.25)
can be written as

1
ξ (�,k)

=
1

ξz�(�,k)
+

1
ξv(�,k)

, (3.31)

with

ξϑ (�,k) =
λze(�,k)
λϑ (�,k)

, (3.32)

where ϑ ∈ {z�,v}. Hence, the total a priori SIR can be calculated using the a priori
SIRs of each interference separately [34, 35, 40]. By doing this, one gains control
over (1) the trade-off between the interference reduction and the distortion of the
desired signal, and (2) the a priori SIR estimation approach for each interference.
In some cases, it might be desirable to reduce one of the two interferences at the
cost of larger speech distortion, while reducing the other interference less to avoid
distortion. In this Section it is shown how the decision-directed approach, proposed
by Ephraim and Malah in [25], can be used to estimate the individual a priori SIRs.

In the case when the early speech component and the late reverberant signal are
very small, the a priori SIRs ξz�(�,k) may be unreliable since λze(�,k) and λz�(�,k)
are close to zero. In the following, we assume that there is always a certain amount
of ambient noise, i.e., λv(�,k) > 0. We propose to calculate ξ (�,k) using only the
most important and reliable a priori SIRs as follows:

ξ (�,k) =

⎧⎪⎨
⎪⎩
ξv(�,k), 10log10

(
λv(�,k)
λz� (�,k)

)
> β dB,

ξz�(�,k) ξv(�,k)
ξz�(�,k)+ ξv(�,k)

, otherwise,
(3.33)

where the threshold β dB specifies the level difference between λv(�,k) and λz�(�,k)
in dB. When the noise power level is β dB higher than the late reverberant power
level, the total a priori SIR, ξ (�,k), will be equal to ξv(�,k). Otherwise ξ (�,k) will
depend on both ξv(�,k) and ξz�(�,k).

The decision-directed based estimator [12, 25] is given by

ξ̂ (�,k) = max
{
η

G2
LSA(�−1,k) |X(�−1,k)|2

λz�(�,k)+λv(�,k)
+ (1−η)ψ(�,k),ξmin

}
, (3.34)

where ψ(�,k) = γ(�,k)−1 is the instantaneous SIR, γ(�,k) is the a posteriori SIR
as defined in (3.26), and ξmin is a lower-bound on the a priori SIR that controls
the residual interference level when hypothesis H1 is assumed to be true (i.e., when
the desired speech is assumed to be active). The weighting factor η (0 ≤ η ≤ 1)
controls the tradeoff between the amount of noise reduction and distortion [12, 25].
To estimate ξϑ (�,k) we use the following expression:



3 Speech Dereverberation Using Statistical Reverberation Models 71

ξ̂ϑ (�,k) = max
{
ηϑ

G2
LSA(�−1,k) |X(�−1,k)|2

λϑ (�−1,k)
+ (1−ηϑ) ψϑ (�,k),ξmin,ϑ

}
,

(3.35)
where

ψϑ (�,k) =
λz�(�,k)+λv(�,k)

λϑ (�,k)
ψ(�,k)

=
|Y (�,k)|2 −

[
λz�(�,k)+λv(�,k)

]
λϑ (�,k)

,

(3.36)

and ξmin,ϑ is the lower bound on the a priori SIR ξϑ (�,k).

3.5 Multi-microphone Spectral Enhancement

Single-microphone systems only exploit the spectral and temporal diversity of the
received signal. Reverberation and most ambient noise sources, of course, also in-
duce spatial diversity. To be able to additionally exploit this diversity, multiple mi-
crophones must be used and their outputs must be combined by a suitable spatial
processor, e.g., a delay-and-sum beamformer, a filter-and-sum beamformer or an
adaptive beamformer. Although spatial processors yield a significant improvement
of the speech quality, the reverberation suppression is limited and the noise suppres-
sion is insufficient when the noise field is non-coherent or diffuse. In addition to the
spatial processor a single-channel post-filter should be used to achieve satisfactory
results.

In this section we will elaborate on the use of multiple microphone signals
for speech dereverberation. In Sect. 3.5.1 we formulate the multi-microphone
speech dereverberation problem. In Sect. 3.5.2 we describe two multi-microphone
speech enhancement systems for ambient noise and reverberation suppression. In
Sect. 3.5.3 we propose a method to enhance the speech presence probability estima-
tion when multiple microphone signals are available.

3.5.1 Problem Formulation

In Sect. 3.4 we exploited the spectral and temporal diversity of the received signal
to estimate the early speech component using a single microphone signal. When the
signals of multiple microphones are combined using a suitable spatial processor it
is possible to ‘focus’ on the desired source. The effect of early and late reflections
can be suppressed to a degree depending on the spatial processor employed.

The reverberant signal at the mth microphone results from the convolution of
the anechoic speech signal s(n) and a causal AIR hm(n). Here we assume that the
AIR is time-invariant and that its length is infinite. The reverberant speech signal at
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discrete-time n can be written as

zm(n) =
∞

∑
l=0

hm(l)s(n− l). (3.37)

The mth microphone signal is given by

xm(n) = zm(n)+ vm(n), (3.38)

where vm(n) denote the additive ambient noise received by the mth microphone.
In the STFT domain we can write (3.38) as

Xm(�,k) = Ze,m(�,k)+ Z�,m(�,k)+Vm(�,k), (3.39)

where Ze,m(�,k), Z�,m(�,k), and Vm(�,k) denote the early and late spectral speech
components and the ambient noise at the mth microphone, respectively.

Our objective is to obtain an estimate of the early speech component without
using detailed knowledge of the AIRs. Instead of estimating Ze,m(�,k) with m ∈
{1, . . . ,M}, we propose to estimate a spatially filtered version of all early speech
components.

3.5.2 Two Multi-microphone Systems

In this section we describe two multi-microphone systems that can be used to sup-
press ambient noise and reverberation. The first system consists of a Minimum Vari-
ance Distortionless Response (MVDR) beamformer followed by a single-channel
post-filter. The second system consists of a non-linear spatial processor followed by
a single-channel post-filter that was especially designed for speech dereverberation
in [39].

3.5.2.1 MVDR Beamformer and Single-channel MMSE Estimator

This multi-microphone system consists of two stages. First, an MVDR beamformer
is applied to the microphone signals. Second, a single-channel MMSE estimator is
applied to the output of the MVDR beamformer.

Let us define X(�,k) = [X1(�,k),X2(�,k), . . . ,XM(�,k)]T and V(�,k) =
[V1(�,k),V2(�,k), . . . ,VM(�,k)]T . The MVDR filter, denoted by W(�,k) =
[W1(�,k),W2(�,k), . . . ,WM(�,k)]T , is found by solving the following minimization
problem:
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WMVDR(�,k) = argmin
W(k)

{
(W(k))H ΛVV(�,k)W(k)

}

subject to (W(k))H C(k) = 1, (3.40)

where (·)H denotes the Hermitian transpose, ΛVV(�,k) = E{V(�,k)VH(�,k)} de-
notes the spatial PSD matrix of the noise, and C(k) denotes a pre-defined constraint
column vector of length M.

A major question remains how to define the constraint C(k) and thereby the
signal which is undistorted by the MVDR beamformer. One solution would be to
estimate the reverberant speech component Zm(�,k) for m ∈ {1, . . . ,M} (see, for
example, [27]). In this case, the beamformer only reduces noise (and therefore no
reverberation). Here we chose to align the direct sound signals of the desired source
at the output of the MVDR beamformer. Due to the spatial directivity of the beam-
former the spectral coloration induced by early reflections is slightly reduced.

Let us assume that the desired source is located in the far-field, such that the
propagation of the direct sound can be modelled by Hd(k) = e− jωkτ1H̃d(k), where
H̃d(k) = [1,e− jωkτ12 , . . . , e− jωkτ1M ]T , ωk = 2π fsk/K, τ1 denotes the propagation
time of the desired source signal to the first microphone and τ1m (2 ≤ m ≤ M) de-
notes the relative delay [also known as time difference of arrival (TDOA)] of the
desired source signal between the mth and the first microphone. The aim of the con-
straint of the MVDR beamformer is to align the direct-paths of the desired source at
the output of the MVDR beamformer. Therefore, the constraint vector C(k) can be
defined as

C(k) = H̃d(k). (3.41)

Estimation of the TDOAs is beyond the scope of this chapter in which we assume
that the TDOAs are known.

The solution of the minimization problem in (3.40) is given by

WMVDR(�,k) =
Λ−1

VV(�,k)C(k)
CH(k)Λ−1

VV(�,k)C(k)
. (3.42)

The output of the MVDR beamformer is given by

Q(�,k) = (WMVDR(�,k))H X(�,k)
= Qz(�,k)+ Qv(�,k), (3.43)

where Qz(�,k) and Qv(�,k) denote the residual reverberant and noise component at
the beamformer’s output. The spectral variance of Q(�,k) is given by

λq(�,k) = E{Q(�,k)(Q(�,k))∗} (3.44)
= λqz(�,k)+λqv(�,k), (3.45)

where (·)∗ denotes the complex conjugate, λqz(�,k) and λqv(�,k) denote the spec-
tral variances of the residual reverberant and noise component at the beamformer’s
output. In addition, we can express λqz(�,k) as
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λqz(�,k) = E{Qz(�,k)(Qz(�,k))∗}
= λqe(�,k)+λq�

(�,k), (3.46)

where λqe(�,k) and λq�
(�,k) denote the residual early and late reverberation at the

output of the beamformer. The spectral variance of the noise at the output of the
MVDR beamformer is given by

λqv(�,k) =
1

CH(k)Λ−1
VV(�,k)C(k)

. (3.47)

Assuming that the residual early and late reverberant signal components are mu-
tually uncorrelated we can reduce the residual late reverberation at the output of the
MVDR beamformer using a spectral enhancement technique.

Let us now consider the case in which the ambient noise field is spatially white,
i.e., ΛVV(�,k) = σ2

v I, where I denotes the identity matrix. In this case the MVDR
beamformer reduces to the well-known delay and sum beamformer, i.e.,

WMVDR(�,k) =
1
M

H̃d(�,k). (3.48)

Although the output of the beamformer is not completely dereverberated the signal
will contain less reverberation than any one of the observed microphone signals. Us-
ing statistical room acoustics, Gaubitch and Naylor derived an analytic expression
to calculate the DRR improvement of the delay and sum beamformer compared to
the best microphone [29]. Their result demonstrates that the reverberation reduction
of the delay and sum beamformer is limited, especially when the source-microphone
distance is larger than the critical distance.

Here we employ a single-channel MMSE log spectral amplitude estimator as
described in Sect. 3.4 to estimate the residual early speech component at the beam-
fomer’s output. In order to compute the LSA gain function (3.27) we redefine the a
priori and a posteriori SIR as

ξ (�,k) =
λqe(�,k)

λq�
(�,k)+λqv(�,k)

(3.49)

and

γ(�,k) =
|Q(�,k)|2

λq�
(�,k)+λqv(�,k)

, (3.50)

respectively. The spectral variance λqv(�,k) of the residual noise can be estimated
either by estimating ΛVV(�,k) during noise only periods and using (3.47) or by us-
ing a minimum statistics approach [14, 54]. The late reverberant spectral variance
λq�

(�,k) can be obtained from Q(�,k) in a similar way to how λz�(�,k) can be ob-
tained from Z(�,k), as described in Sect. 3.6.
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3.5.2.2 Non-linear Spatial Processor

In [39] it was shown that the output signal of the delay and sum beamformer may
contain undesired signal components that result from the spatial correlation between
the acoustic channels. The spatial correlation mainly causes problems at low fre-
quencies and becomes more severe when the inter-microphone distance is small.
To avoid the creation of these undesired components, a non-linear spatial processor
was proposed that can be used when the noise field is spatially white. The spatial
processor computes the amplitude and phase spectrum independently. Firstly, the
observed spectra are delayed according to the DOA of the desired source. Secondly,
the amplitude spectrum is computed from the squared value of the average PSDs:

Q(�,k) =

(
1
M

M

∑
m=1

∣∣Xm(�,k)e jωkτ1m
∣∣2
) 1

2

, (3.51)

where τ1m denotes the TDOA of the desired source signal between the mth and the
first microphone (by definition τ11 = 0). Finally, the phase spectrum is computed by
averaging the phase spectra of the properly delayed signals:

ϕ(�,k) = arg

{
1
M

M

∑
m=1

Xm(�,k)e jωkτ1m

}
. (3.52)

It should be noted that the phase spectrum is equal to the phase spectrum of the
delay and sum beamformer. The output of the non-linear spatial processor is given
by

YNL(�,k) = Q(�,k)e jϕ(�,k). (3.53)

Due to the averaging of the PSDs the proposed spatial processor is unable to reduce
any noise. The PSD of the noise in YNL(�,k) is given by 1

M ∑M
m=1 |Vm(�,k)|2.

We can now apply the single-microphone spectral enhancement algorithm that
was described in Sect. 3.4 to YNL(�,k). The spectral variance λz�(�,k) of the late
reverberant speech component can be estimated using YNL(�,k) in a way similar to
how λz�(�,k) can be estimated from X(�,k). Using statistical room acoustics it can
be shown that the expected value of the spatially averaged acoustic transfer functions
is white. Since the statistical reverberation models in Sect. 3.3 are based on this
assumption, the result obtained sounds better than the single-microphone spectral
enhancement. Furthermore, due to the spatial averaging, the spectral colouration
that is caused by the early reflections is slightly reduced.

3.5.3 Speech Presence Probability Estimator

In order to compute the MMSE-LSA gain function (3.24) we require an estimate of
the a posteriori speech presence probability p(�,k). The a posteriori speech pres-
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ence probability p(�,k) can be obtained from Bayes’ rule, which, under a Gaussian
model for the spectral coefficients, reduces to [13]

p(�,k) =
{

1 +
1− p(�,k|�−1)

p(�,k|�−1)
(1 + ξ (�,k))exp(−ζ (�,k))

}−1

, (3.54)

where p(�,k|�−1) denotes the a priori speech presence probability, ξ (�,k) is the a
priori SIR and ζ (�,k) is defined in (3.28). In this section we develop an efficient es-
timator for the a priori speech presence probability p(�,k|�−1), which exploits the
strong correlation of speech presence in neighbouring frequency bins of consecutive
frames and the strong spatial coherence of the desired signal.

We propose to estimate the a posteriori speech presence probability using four
probabilities that are obtained using a soft-decision approach. Three probabilities,
i.e., Plocal(�,k), Pglobal(�,k), and Pframe(�), are proposed by Cohen in [13], and are
based on the time-frequency distribution of the estimated a priori SIR, ξ (�,k).
These probabilities reflect the strong correlation of speech presence in neighbour-
ing frequency bins of consecutive frames. Since the spatial coherence of the desired
direct sound is much larger than the spatial coherence of the reverberant sound, we
propose to relate the fourth probability, denoted by Pspatial(�,k), to the spatial co-
herence of the received signals. In [42] we proposed to determine Pspatial(�,k) using
Mean Square Coherence (MSC). Firstly, we smooth the MSC estimate in time and
frequency to reduce its variance. Secondly, we map the MSC value to the probabil-
ity Pspatial(�,k). The latter can easily be achieved since the MSC value lies between
zero and one.

The MSC is defined as

ΦMSC(�,k) � |λx21(�,k)|2
λx1(�,k)λx2(�,k)

, (3.55)

where λx21(�,k) = E{X2(�,k)(X1(�,k))∗} denotes the cross spectral density, and
λx1(�,k) and λx2(�,k) are the power spectral densities. In addition, we know that
0 ≤ΦMSC(�,k) ≤ 1.

Let η (0 ≤ ηs ≤ 1) denote a smoothing parameter. Then, the power and cross
spectral density are estimated using

λ̂xi(�,k) = ηsλ̂xi(�−1,k)+ (1−ηs)|Xi(�,k)|2, i ∈ {1,2} (3.56)

and
λ̂x21(�,k) = ηsλ̂x21(�−1,k)+ (1−ηs)X2(�,k)(X1(�,k))∗, (3.57)

respectively. The MSC is further smoothed over different frequencies using

Φ̃MSC(�,k) =
wMSC

∑
i=−wMSC

b(i)ΦMSC(�,k + i), (3.58)
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where b(i) are the coefficients of a normalized window (∑wMSC
i=−wMSC

b(i) = 1) of size
2wMSC + 1 that determine the frequency smoothing. In the case when more than
two microphone signals are available one could average the MSC over different
microphone pairs (with equal inter-microphone distance) to improve the estimation
procedure even further.

The spatial speech presence probability P̂spatial(�,k) is related to (3.58) by

P̂spatial(�,k) =

⎧⎪⎨
⎪⎩

0, for Φ̃MSC(�,k) ≤Φmin,

1, for Φ̃MSC(�,k) ≥Φmax,
Φ̃MSC(�,k)−Φmin

Φmax−Φmin
, otherwise,

(3.59)

where Φmin and Φmax are the minimum and maximum threshold values for
Φ̃MSC(�,k), respectively.

Finally, an estimate of the a priori speech presence probability is obtained by

p̂(�,k|�−1) = P̂local(�,k)P̂global(�,k)P̂frame(l)P̂spatial(�,k). (3.60)

3.6 Late Reverberant Spectral Variance Estimator

In this section we derive a spectral variance estimator for the late reverberant spec-
tral component, Z�(�,k), using the generalized statistical reverberation model de-
scribed in Sect. 3.3.

Before the spectral variance λz�(�,k) = E{|Z�(�,k)|2} can be estimated, we need
to obtain an estimate of the spectral variance of the reverberant spectral component
Z(�,k) denoted by λz(�,k). Assuming that the spectral coefficients of the reverberant
signal and the noise are mutually independent Gaussian random variables, an esti-
mate of the spectral variance λz(�,k) can be obtained by calculating the following
conditional expectation:

λ̂z(�,k) = E{|Z(�,k)|2 |X(�,k)}
= |GSP(�,k)X(�,k)|2, (3.61)

where GSP(�,k) denotes the MMSE spectral power gain function. This gain function
is given by [3]

GSP(�,k) =
ξSP(�,k)

1 + ξSP(�,k)

(
1

γSP(�,k)
+

ξSP(�,k)
1 + ξSP(�,k)

)
, (3.62)

where

ξSP(�,k) =
λz(�,k)
λv(�,k)

(3.63)
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and

γSP(�,k) =
|X(�,k)|2
λv(�,k)

(3.64)

denote the a priori and a posteriori SIRs, respectively. The a priori SIR is esti-
mated using the decision-directed approach proposed by Ephraim and Malah [25].
Estimates of the spectral variance, λv(�,k), of the noise in the received signal x(n)
can be estimated using so-called minimum statistics approaches [14, 54].

In order to derive an estimator for the spectral variance of the late reverberant
signal component z�(n) we start by analyzing the autocorrelation of the reverberant
signal z(n). The autocorrelation of the reverberant signal z(n) at discrete time n and
lag τ for a fixed source-microphone configuration is defined as

rzz(n,n + τ;h) = E{z(n)z(n + τ)}, (3.65)

where E{·} denotes ensemble averaging. Using (3.37), we have for one realization
of h,

rzz(n,n + τ;h) =
n

∑
l=n−nd+1

n+τ

∑
l′=n−nd+1+τ

E{s(l)s(l′)}hd(n− l)hd(n + τ− l′)

+
n−nd

∑
l=−∞

n−nd+τ

∑
l′=−∞

E{s(l)s(l′)}hr(n− l)hr(n + τ− l′). (3.66)

Using (3.6)–(3.8) and the fact that bd(n) and br(n) consist of a zero-mean white
Gaussian noise sequence, it follows that

E {hd(n− l)hd(n + τ− l′)} = σ2
d e−2ζ̄neζ̄ (l+l′−τ)δ (l − l′ + τ), (3.67)

and

E {hr(n− l)hr(n + τ− l′)} = σ2
r e−2ζ̄neζ̄ (l+l′−τ)δ (l − l′ + τ), (3.68)

where δ (·) denotes the Kronecker delta function. It should be noted that
E {bd(n)br(n + τ)} = 0 implies that E {hd(n)hr(n + τ)} = 0. Under the assumption
that the stochastic processes h and s are mutually independent the spatially averaged
autocorrelation results in

rzz(n,n + τ) = E {rzz(n,n + τ;h)}
= rzdzd(n,n + τ)+ rzrzr(n,n + τ), (3.69)

with

rzdzd(n,n + τ) = e−2ζ̄n
n

∑
l=n−nd+1

E{s(l)s(l + τ)} σ2
d e2ζ̄ l , (3.70)
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and

rzrzr(n,n + τ) = e−2ζ̄n
n−nd

∑
l=−∞

E{s(l)s(l + τ)} σ2
r e2ζ̄ l (3.71)

= e−2ζ̄n
n−nd

∑
l=n−2nd+1

E{s(l)s(l + τ)} σ2
r e2ζ̄ l

+ e−2ζ̄n
n−2nd

∑
l=−∞

E{s(l)s(l + τ)} σ2
r e2ζ̄ l . (3.72)

The first term in (3.69) depends on the direct signal between time n−nd +1 and
n, and the second depends on the reverberant signal.

Let us consider the spatially averaged autocorrelation at time n−nd:

rzz(n−nd,n−nd + τ) = rzdzd(n−nd,n−nd + τ)+ rzrzr(n−nd,n−nd + τ), (3.73)

with

rzdzd(n−nd,n−nd + τ) = σ2
d e−2ζ̄ (n−nd)

n−nd

∑
l=n−2nd+1

E{s(l)s(l + τ)}e2ζ̄ l, (3.74)

and

rzrzr(n−nd,n−nd + τ) = σ2
r e−2ζ̄ (n−nd)

n−2nd

∑
l=−∞

E{s(l)s(l + τ)}e2ζ̄ l. (3.75)

Using (3.74) and (3.75) the term rzrzr(n,n + τ) can be expressed as

rzrzr(n,n + τ) = κ e−2ζ̄ndrzdzd(n−nd,n−nd + τ)

+ e−2ζ̄nd rzrzr(n−nd,n−nd + τ), (3.76)

with κ = σ2
r /σ2

d . Here κ ≤ 1, since it is assumed that σ2
d ≥ σ2

r . Using (3.73) we can
rewrite (3.76) as

rzrzr(n,n + τ) = e−2ζ̄nd (1−κ)rzrzr(n−nd,n−nd + τ)

+κ e−2ζ̄nd rzz(n−nd,n−nd + τ). (3.77)

The late reverberant component can now be obtained using

rz�z�(n,n + τ) = e−2ζ̄(ne−nd)rzrzr(n−ne + nd,n−ne + nd + τ). (3.78)

Note that for κ = 1, i.e., σ2
d = σ2

r , (3.77) and (3.78) result in

rz�z�(n,n + τ) = e−2ζ̄nerzz(n−ne,n−ne + τ). (3.79)
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Given an estimate of the reverberation time T60, the parameter ζ̄ can be calculated
using (3.4). The parameter κ = σ2

r /σ2
d is related to the DRR, which is defined as

Ed

Er
=

nd
∑

l=0
h2(l)

∞
∑

l=nd+1
h2(l)

. (3.80)

It should be noted that the DRR can be estimated directly from the AIR using (3.80).
However, in many practical situations the AIR is not known in advance. Therefore,
we will discuss the blind estimation of the reverberation time T60 and κ in Sec-
tion 3.7. Using the model in (3.6) the direct and reverberant energy can be expressed
as

Ed =
nd

∑
l=0

σ2
d e−2ζ̄ l =

σ2
d

2ζ̄

(
1− e−2ζ̄nd

)
(3.81)

and

Er =
∞

∑
l=nd+1

σ2
r e−2ζ̄ l =

σ2
r

2ζ̄
e−2ζ̄nd , (3.82)

respectively, where σ2
d and σ2

r denote the variances of bd(n) and br(n), respectively.
Now the parameter κ can be expressed in terms of Ed and Er:

κ =
σ2

r

σ2
d

=
1− e−2ζ̄nd

e−2ζ̄nd

Er

Ed
. (3.83)

In general the DRR is frequency dependent, as shown in [48]. Hence, to improve the
accuracy of the model we propose to make κ frequency dependent. Furthermore, we
should keep in mind that the DRR, and thus κ , depends on the distance between the
source and microphone. Therefore, spatial averaging can only be performed over
those microphone signals that have the same source-microphone distance.

In practice the signals can be considered as stationary over periods of time that
are short compared to the reverberation time T60. This is justified by the fact that the
exponential decay is very slow and that speech is quasi-stationary. We consider that
ne � T60 fs and that ne/ fs is larger than the time span over which the speech signal
can be considered stationary, which is usually around 20–40 ms [22]. In the follow-
ing we assume that nd is equal to the number of samples separating two successive
STFT frames, denoted by R. Under these assumptions and by taking the frequency
dependency of κ and ζ̄ into account, the counterparts of (3.77) and (3.78) in terms
of the spectral variances are:

λzr(�,k) = e−2ζ̄(k)R (1−κ(k))λzr(�−1,k)+κ(k) e−2ζ̄ (k)Rλz(�−1,k), (3.84)

and
λz�(�,k) = e−2ζ̄(k)(ne−R)λzr(�−

ne

R
+ 1,k). (3.85)
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Note that the value ne should be chosen such that ne/R is an integer value.
By substituting λz(�,k) = λzd(�,k)+λzr(�,k) in (3.84) and rearranging the terms

we obtain

λzr(�,k) = e−2ζ̄ (k)Rλzr(�−1,k)+κ(k)e−2ζ̄(k)Rλzd(�−1,k). (3.86)

Using (3.83) we obtain

λzr(�,k) = e−2ζ̄ (k)Rλzr(�−1,k)+
Er

Ed

(
1− e−2ζ̄(k)R

)
λzd(�−1,k). (3.87)

This equation shows that the spectral variance of the reverberant signal component
at time frame � consists of e−2ζ̄ (k)R times the spectral variance of the reverberant
signal component at time frame �−1 and Er

Ed

(
1− e−2ζ̄(k)R

)
times the spectral vari-

ance of the direct speech component at time frame �−1. While the first term models
the energy decay in the room, the second term models the energy growth due to the
power of the source (λzd(�,k)/Ed). As expected, only the source can increase the
reverberant energy in the room and the absorption of the energy is completely de-
termined by the reverberation time of the room.

3.7 Estimating Model Parameters

In order to estimate the late reverberant spectral variance an estimate of the rever-
beration time T60 of the room and the direct to reverberation ratio is required.

3.7.1 Reverberation Time

Partially blind methods to estimate the reverberation time have been developed in
which the characteristics of the room are learnt using neural network approaches
[19]. Another method uses a segmentation procedure for detecting gaps in the sig-
nals and then tracks the sound decay curve [49, 74]. A blind method has been pro-
posed by Ratnam et al. based on a maximum-likelihood estimation procedure [64].
In [53] Löllmann and Vary proposed a maximum-likelihood estimator which takes
additive noise into account. Most of these methods can also be applied to band-pass
filtered versions of the original signal in order to estimate the reverberation time in
different frequency bands.

In general, it is reasonable to assume that the reverberation time is approximately
constant in the room. Therefore, in communication systems that involve echo can-
cellation, the reverberation time can be estimated using the estimated echo path [41].
For some applications such as audio or video-conferencing where a fixed setup is
used, the reverberation time can be estimated using a calibration process.
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3.7.2 Direct-to-reverberant Ratio

In many practical situations the distance between the source and the microphone
will vary. Since the DRR depends on the distance between the source and the mi-
crophone, it is important that the parameter κ can be estimated online.

The parameter κ was introduced to prevent over-estimation of the reverberant
spectral variance λzr(�,k) when the source-microphone distance is smaller than the
critical distance. In the case when κ is too large, the spectral variance λ̂zr(�,k) could
become larger than |Z(�,k)|2, which indicates that over-estimation has occurred.
In this case, the value of κ should be lowered. In addition we know that during
the free decay, which occurs after an offset of the source signal, λ̂zr(�,k) should
be approximately equal to |Z(�,k)|2. Estimation of κ could therefore be performed
after a speech offset. Unfortunately, the detection of speech offsets is rather difficult.
However, from the above discussion is has become clear that κ should at least fulfill
the following condition: |Z(�,k)|2 − λ̂zr(�,k) ≥ 0.

The parameter κ can be estimated adaptively using the following strategy: (1)
when speech is detected and |Z(�,k)|2 < λ̂zr(�,k) the value of κ is lowered, (2) when
|Z(�,k)|2 > λ̂zr(�,k) the value of κ is raised slowly and (3) when |Z(�,k)|2 = λ̂zr(�,k)
the value of κ is assumed to be correct. This strategy can be implemented as follows:

κ̂(�) = κ̂(�−1)+
μκ

Pz(�−1)

K
2 −1

∑
k=0

(
|Z(�−1,k)|2 − λ̂zr(�−1,k)

)
(3.88)

where Pz(�− 1) = ∑
K
2 −1

k=0 |Z(�− 1,k)|2, and μκ (0 < μκ < 1) denotes the step-size.
After each update step, κ̂(�) is constrained, such that 0 < κ̂(�) ≤ 1. Experimental
results that demonstrate the feasibility of this estimator can be found in Sect. 3.8.

3.8 Experimental Results

In this section we present and discuss the experimental results that were obtained
using single and multiple microphones. A uniformly linear microphone array was
used with inter-microphone spacing Di = 5 cm. The source-array distance D is de-
fined as the distance between the source and the center of the array, and ranges
from 0.25 to 3 m. The dimensions of the room are 5 m × 6 m × 4 m (length
× width × height). The experimental setup is depicted in Fig. 3.3. The APLAWD
database [51] was used for evaluation with the sampling frequency set to fs = 8 kHz;
it contains anechoic recordings comprising ten repetitions of five sentences uttered
by five male and five female talkers. The reverberant microphone signals were ob-
tained by convolving the anechoic recordings with different AIRs. The AIRs are
generated using the image method for modelling small room acoustics [5], modi-
fied to accommodate fractional sample delays according to [59], with reverberation
times from 250 to 1000 ms. The additive noise v(n) was speech-like noise, taken
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x1(n)

xM (n)

D

Di

Fig. 3.3 Experimental setup with a uniform linear microphone array

from the NOISEX-92 database [75]. The spectral variance of the noise was esti-
mated from the noisy microphone signal x(n) using the IMCRA approach [14]. All
a priori SIRs were estimated using the decision-directed approach. In all experi-
ments we assumed that the reverberation time T60 of the room is known. Its value
was determined using the Schroeder method, described in [68]. The parameter κ
was estimated adaptively using the method described in Sect. 3.7.2. The parameters
that were used for these experiments are shown in Table 3.1.

The segmental SIR and Bark Spectral Distortion (BSD), as defined in Chap. 2,
are used for the evaluation.

Table 3.1 Parameters used in experiments

fs = 8000 Hz ne = 40 ms GdB
min = 18 dB β dB = 3 dB

η = 0.95 b = Hanning window wMSC = 9 Φmin = 0.2

Φmax = 0.65 ηs = 0.35

3.8.1 Using One Microphone

In this section we evaluate the performance of the single-microphone dereverber-
ation method in the presence of noise using two objective measures. A summary
of the complete single-microphone spectral enhancement algorithm that suppresses
late reverberation and ambient noise is summarized in Algorithm 3.1.

We first evaluate the objective measures when T60 = 0.5 s and D = 1 m. The
Signal to Noise Ratio (SNR) of the microphone signal ranges from 10 to 30 dB. In
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Algorithm 3.1 Summary of the single-microphone spectral enhancement algorithm
that suppresses late reverberation and ambient noise

1. STFT: Calculate the STFT of the noisy and reverberant signal x(n).
2. Estimate model parameters: Firstly, decay-rate ζ̄ (k) is calculated using (3.4). Secondly, the

parameter κ is estimated using (3.88).
3. Estimate ambient noise: Estimate λv(�,k) using the method described in [18].
4. Estimate late reverberant energy: Calculate GSP(�,k) using (3.62)–(3.64). Estimate λz(�,k)

using (3.61), and calculate λ̂z� (�,k) using (3.85).
5. Post-filter:

(a) Calculate the a posteriori SIR using (3.26) and the individual a priori SIRs using (3.35)–
(3.36) with ϑ ∈ {z�,v}, the total a priori SIR can then be calculated using (3.33).

(b) Estimate the a priori speech presence probability p(�,k|�−1) using the method described
in [15] and calculate p̂(�,k) using (3.54).

(c) Calculate the gain function GMMSE-LSA(�,k) using (3.27), (3.29), and (3.24).
(d) Calculate Ẑe(�,k) using (3.30).

6. Inverse STFT: Calculate the output ẑe(n) by applying the inverse STFT to Ẑe(�,k).
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Fig. 3.4 (a) Segmental SIRs and (b) BSDs of the unprocessed microphone signal, the processed
signal after noise suppression (NS), and the processed signal after joint reverberation and noise
suppression (RS+NS). The SNR of the received signal varies between 10 and 30 dB (D = 1 m,T60 =
500 ms, and ne/ fs = 40 ms)

Fig. 3.4 the segmental SIR and BSD are depicted for the (unprocessed) reverber-
ant microphone signal, the signal that was obtained after noise suppression (NS),
and the signal that was obtained after joint reverberation and noise suppression
(RS+NS). Joint reverberant and noise suppression significantly improves the seg-
mental SIR (approximately 10 dB) and the BSD (approximately 0.04–0.06) com-
pared to noise suppression only. After the noise suppression is applied, the rever-
beration becomes more pronounced. When, in addition to the noise, the late rever-
beration is suppressed, the subjective sound quality is significantly improved and
the residual ambient noise sounds stationary. When listening to the processed sig-
nal, minor artifacts were audible when the SNR was larger than 15 dB. In Fig. 3.5,
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Fig. 3.5 Spectrograms and time-domain waveforms of (a) reverberant signal z(n), (b) early speech
signal ze(n), (c) microphone signal (SNR = 15 dB, T60 = 0.5 s, D = 1 m), and (d) estimated early
speech signal ẑe(n)

spectrograms and time-domain waveforms are presented for one speech fragment.
In both the spectrogram and time-domain waveform of the reverberant signal smear-
ing of the speech, caused by the late reflections can be observed. In the enhanced
speech signal, the smearing is significantly reduced as a result of the suppression of
late reverberation. In addition, it can be seen that the noise is suppressed.

In the second experiment we evaluate the algorithms for SNR = 30 dB and D =
1 m. The reverberation time T60 ranges from 0.2 to 1 s. In Fig. 3.6 the segmental
SIR and BSD are depicted for the reverberant microphone signal, the signal that was
obtained after noise suppression (NS), and the signal that was obtained after joint
reverberation and noise suppression (RS+NS). Since the SNR is relatively high, the
segmental SIR mainly depends on the reverberation suppression. The results of this
experiment demonstrate that the algorithm is able to suppress a significant amount of
late reverberation for short and long reverberation times. The results of an informal
listening test indicated that for long reverberation times (T60 > 0.5 s), a larger value
of ne is preferred to maintain a natural sounding speech signal.
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Fig. 3.6 (a) Segmental SIRs and (b) BSDs of the unprocessed microphone signal, the processed
signal after noise suppression (NS), and the processed signal after joint reverberation and noise
suppression (RS+NS). The reverberation time varies between 0.2 and 1 s (SNR = 30 dB, D = 1 m,
and ne/ fs = 40 ms)

In the third experiment we evaluate the algorithms for SNR = 30 dB and
T60 = 0.5 s. The source-microphone distance D ranges from 0.25 to 4 m. In the
current setup the critical distance Dc equals 0.9 m. In Fig. 3.7 the segmental SIR
and BSD are depicted for the reverberant microphone signal, the signal that was
obtained after noise suppression (NS), and the signal that was obtained after joint
reverberation and noise suppression (RS+NS). Since the SNR is relatively high, the
segmental SIR mainly depends on the reverberation suppression. The results shown
here demonstrate that the algorithm is able to suppress a significant amount of late
reverberation over a wide range of source-microphone distances that are smaller and
larger than the critical distance. While the BSD measures mainly show an improve-
ment when the source-microphone distances are large, the segmental SIR improve-
ment is almost constant. It should be noted that, for a source-microphone distance
smaller than the critical distance, the value of ne/ fs can be decreased without af-
fecting the amount of speech distortion significantly.

3.8.2 Using Multiple Microphones

In this section we evaluate the performance of three multi-microphone dereverber-
ation methods in the presence of spatially white noise (SNR = 30 dB) using two
objective measures. Since the SNR is relatively high, the segmental SIR mainly de-
pends on the reverberation suppression. The first multi-microphone method is the
Delay-and-sum Beamformer (DSB). The second method is the delay and sum beam-
former in conjunction with the single-channel post-filter described in Algorithm. 3.1
and is denoted by (DSB-PF). The third method is based on the non-linear spatial
processor in conjunction with the same single-channel post-filter and is denoted by
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Fig. 3.7 (a) Segmental SIRs and (b) BSDs of the unprocessed microphone signal, the processed
signal after noise suppression (NS), and the processed signal after joint reverberation and noise
suppression (RS+NS). The source-microphone varies between 0.25 and 4 m (SNR = 30 dB, T60 =
500 ms, and ne/ fs = 40 ms)

(NLSP-PF). As a reference the signal of the microphone that is closest to the desired
source was evaluated.

In the first experiment the number of microphones used was M = 5 and the
source-microphone distance was set to D = 1.5 m. The reverberation time T60 ranged
from 0.2 to 1 s. In Fig. 3.8 the segmental SIR and BSD are depicted for the refer-
ence microphone signal, the output of the DSB, the result of the DSB-PF method,
and the result of the NLSP-PF method. These results show the limited performance
of the DSB. A significant improvement is achieved by applying the single-channel
post-filter to the output of the delay and sum beamformer. According to the objec-
tive measures employed the NLSP-PF method performs slightly worse compared to
the DSB-PF method. However, the results of an informal listing test indicated that
the output of the NLSP-PF method sounds more natural and contains less audible
distortions than the output of the DSB-PF method. This could be explained by the
fact that the objective measures used in this work are unable to reflect certain per-
ceptual characteristics of the evaluated signals that are important in the context of
speech dereverberation.

In the second experiment the reverberation time T60 = 0.5 s was used, and the
source-microphone distance was set to D = 1.5 m. The number of microphones
M ranged from 1 to 9. The segmental SIR and BSD values obtained are shown in
Fig. 3.9. As in the previous experiment we can see that the single-channel post-
filter significantly increases the dereverberation performance. The segmental SIR
was increased by more than 14.5 dB compared to the reference microphone. It is
noted that the segmental SIR increases slightly when more than one microphone is
used. However, the BSD is significantly reduced by using multi-microphone signals.
In terms of the segmental SIR and BSD the best result is obtained by the DSB-
PF system. Judging from these results one might argue that the DSB-PF method
performs better than the NLSP-PF method. However, as before the results from an
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Fig. 3.8 (a) Segmental SIRs and (b) BSDs of the reference microphone signal, the DSB signal,
the DSB-PF signal, and the NLSP-PF signal. The reverberation time varies between 0.2 and 1 s
(D = 1.5 m, SNR = 30 dB, and ne/ fs = 40 ms)
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Fig. 3.9 (a) Segmental SIRs and (b) BSDs of the reference microphone signal, the DSB signal,
the DSB-PF signal, and the NLSP-PF signal. The number of microphones ranges from 1 to 9
(D = 1.5 m, T60 = 0.5 s, SNR = 30 dB, and ne/ fs = 40 ms)

informal listening test indicated that the results obtained by the NLSP-PF method
sound more natural and contain less artifacts than the results obtained by the DSB-
PF method.

3.9 Summary and Outlook

In this chapter single and multi-microphone speech dereverberation methods that are
entirely or partly based on spectral enhancement were described. The quality of the
received speech signal can be improved by reducing the effective noise that consists
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of late reverberation and ambient noise. It was shown that quantifiable properties
of the AIR, such as the reverberation time and DRR, can be used to dereverberate
the received speech signal partly. In order to use spectral enhancement methods
for speech dereverberation, an estimate of the late reverberant spectral variance is
required. In Sect. 3.6 such an estimator was derived using a generalized statistical
reverberation model. When the source-receiver distance is smaller than the critical
distance the proposed estimator that is based on the generalized statistical model is
advantageous over the estimator that is based on Polack’s statistical model [39].

In the development of the speech enhancement method we assumed that the spec-
tral coefficients of the speech and noise are Gaussian. Furthermore, we used the
minimum mean squared error distortion measure and the log-amplitude fidelity cri-
terion that was successfully used for noise suppression. However, it has yet to be de-
termined if the MSE distortion measure and log-amplitude fidelity criterion provide
the best results in the case of reverberation and noise suppression. Recently, the gen-
eralized autoregressive conditional heteroscedasticity (GARCH) model was shown
to be useful for statistically modelling speech signals in the STFT domain [16]. A
Markov-switching time-frequency GARCH model was proposed in [1, 2] for mod-
elling non-stationary signals in the time-frequency domain. The model takes into
account the strong correlation of successive spectral magnitudes and is more appro-
priate than the decision-directed approach for speech spectral variance estimation in
noisy environments. Should this or other statistical speech models be used in the de-
velopment of novel spectral speech dereverberation algorithms, they might further
increase the suppression of late reverberation and noise and decrease the amount of
speech distortion. In the course of this chapter, two modifications of the standard
MMSE-LSA estimator were discussed. The first modification concerns the spectral
gain function and allows a larger suppression of late reverberation when the early
speech component is inactive and results in a constant residual ambient noise level.
The second modification concerns the speech presence probability estimator, which
is improved by analyzing the magnitude squared coherence of the observed sound
field.

We also investigated the use of multiple microphones for speech dereverbera-
tion and described two multi-microphone systems. The first system consists of an
MVDR beamformer followed by a single-channel post-filter. Although this system
can be useful in the presence of coherent noise sources, we could not directly ex-
ploit the spatial diversity of the reverberant signal to estimate the late reverberant
spectral variance. In a spatially white noise field, the MVDR beamformer reduces
to the well-known delay and sum beamformer. It has been shown in [39] that due
to the spatial correlation between the AIRs, the residual reverberation at the output
of the beamformer might contain undesired signal components. These components
are especially pronounced at low frequencies and become larger when the inter-
microphone distances are small. A second multi-microphone system that does not
suffer from the spatial correlation between the AIRs was described. The latter con-
sists of a non-linear spatial processor followed by a single-channel post-filter. The
non-linear spatial processor can only be employed when the noise field is spatially
white. Although practically feasible multi-microphone solutions have been found,
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further research is required to investigate the tradeoff between noise suppression
and reverberation suppression.

Finally, experimental results demonstrated the beneficial use of the single-
microphone spectral dereverberation method described and showed that a large
amount of reverberation and noise can be reduced with little speech distortion.
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Chapter 4
Dereverberation Using LPC-based Approaches

Nikolay D. Gaubitch, Mark R.P. Thomas, and Patrick A. Naylor

Abstract A class of reverberant speech enhancement techniques involve processing
of the linear prediction residual signal following Linear Predictive Coding (LPC).
These approaches are based on the assumption that reverberation is mainly confined
to the prediction residual and affects the LPC coefficients to a lesser extent. This
chapter begins with a study on the effects of reverberation on the LPC parameters
where mathematical tools from statistical room acoustics are used in the analysis.
Consequently, a general framework for dereverberation using LPC is formulated
and several existing methods utilizing this approach are reviewed. Finally, a spe-
cific method for processing a reverberant prediction residual is presented in detail.
This method uses a combination of spatial averaging and larynx cycle-based tempo-
ral averaging. Experiments with a microphone array in a small office demonstrate
the dereverberation and noise suppression of the spatiotemporal averaging method,
showing up to a 5 dB improvement in segmental SRR and 0.33 in the normalized
Bark spectral distortion score.

4.1 Introduction

Speech dereverberation algorithms can be classified into one of the three main cat-
egories:

(i) Beamforming – the observed signals received at the different microphones are
delayed, weighted and summed, so as to form a beam in the direction of the
desired source and to attenuate sounds form other directions.

(ii) Speech enhancement – the observed speech signals are modified so as to better
represent some features of the clean speech signal according to a priori models
of the speech waveform or spectrum.
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(iii) Blind system identification and equalization – the acoustic impulse responses
are identified blindly (using only the observed signals) and then used to design
an equalization filter that compensates for the effect of the acoustic impulse
responses.

As discussed in Chap. 1, blind system identification and equalization methods can,
in theory, perform exact dereverberation. However, these methods are difficult to
apply in practice due to several factors, including high computational complexity
and sensitivity to noise. Speech enhancement methods and beamforming, on the
other hand, are often seen as more directly practical techniques, at least at the current
point in the development of these technologies. Although they provide incomplete
dereverberation, they allow practical online implementations. One important class
of speech enhancement algorithms for reverberation reduction is based on linear
predictive coding of speech and is the focus of this chapter.

Linear Predictive Coding (LPC) is an established and powerful analysis tool for
speech and audio signals [2, 9, 24, 28], which represents speech as an excitation sig-
nal that excites an all-pole filter that can be represented compactly. Therefore, LPC
is employed in several speech processing applications such as speech recognition,
although not normally directly, speech coding and in pitch modification [9].

It has been observed that when LPC analysis is applied to reverberant speech,
the effects of reverberation mainly reside in the prediction residual [6, 14, 40]. This
is particularly true in the case of multi-microphone systems where accuracy of the
estimation of the clean speech LPC coefficients from reverberant observations is
improved [13]. Dereverberation is achieved by processing the LPC residual signal
and then synthesizing a speech signal with reduced reverberation from the output of
a filter employing the LPC coefficients obtained from the reverberant speech whose
input is an enhanced version of the prediction residual signal. LPC based methods
have been found to provide only moderate reduction in dereverberation but possess
several additional beneficial features. Firstly, the ‘blindness’ of the dereverberation
problem is reduced to some extent because the general structure of the LPC residual
is known in the form of models that have become established over many years of
research. Secondly, such methods are less sensitive to processing errors since these
are effectively smoothed at the synthesis stage. Third, they do not require knowledge
of the room impulse responses, which are difficult and computationally expensive
to estimate. Therefore, the LPC-based methods offer practical algorithms with the
possibility of online implementation [33].

This chapter is organized as follows: Sect. 4.2 reviews the fundamentals of LPC.
In Sect. 4.3, the effects of reverberation on the LPC coefficients and on the pre-
diction residual are discussed. The use of LPC for reverberant speech enhancement
is elaborated in Sect. 4.4. One current algorithm based on prediction residual en-
hancement is developed in detail in Sect. 4.5 and its performance is demonstrated
with illustrative example simulations. The concepts presented in this chapter are
concluded in Sect. 4.6.
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4.2 Linear Predictive Coding of Speech

Linear predictive coding of speech is the key to the dereverberation methods pre-
sented in this chapter. The fundamental properties of LPC analysis of speech signals
are now reviewed. The interested reader is referred to one of the many excellent texts
on speech signal processing (e.g. [9, 28]) for more details on this topic.

A speech signal s(n) can be expressed in terms of a pth order linear predictor
according to [28]

s(n) =
p

∑
i=1

ais(n− i)+ e(n), (4.1)

where ai are the predictor coefficients and e(n) is the prediction error. The LPC
coefficients can be used to form the prediction error filter

A(z) = 1 +
p

∑
i=1

aizi (4.2)

and the corresponding all-pole filter

V (z) =
1

1 +∑p
i=1 aizi

=
1

A(z)
. (4.3)

Thus, the problem of LPC is to determine the predictor coefficients ai given the
signal s(n).

One commonly used approach is to find the coefficients that minimize the mean
squared prediction error. A cost function is formed from (4.1) as

J = E
{

e2(n)
}

= E

⎧⎨
⎩
(

s(n)−
p

∑
i=1

ais(n− i)

)2
⎫⎬
⎭ , (4.4)

where E{·} is the expectation operator.
The error is minimized in each analysis frame, defined over some range of n, in

a least squares sense by setting the derivative of J to zero with respect to each of the
LPC coefficients

∂J
∂ai

= 0, (4.5)

which results in

p

∑
u=1

auE {s(n− i)s(n−u)}= E{s(n)s(n−u)}, 1 ≤ u ≤ p. (4.6)
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The set of the p linear equations in (4.6) are often referred to as the normal equations
and can be written in matrix form as

⎡
⎢⎢⎢⎣

rss,0 rss,1 · · · rss,p−1
rss,1 rss,0 · · · rss,p−2

...
...

. . .
...

rss,p−1 rss,p−2 · · · rss,0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

a1
a2
...

ap

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

rss,1
rss,2

...
rss,p

⎤
⎥⎥⎥⎦ , (4.7)

where
rss,i = E{s(n)s(n− i)} (4.8)

is the autocorrelation of s(n) at time lag i. The autocorrelation function can be ex-
pressed equivalently in terms of the signal spectrum as

rss,i =
1

2π

∫ π

−π
|S(e jω)|2e jωi dω , i = 1,2, . . . , p, (4.9)

where S(e jω) is the Fourier transform of s(n). Equation (4.7) can be written more
compactly as

Rssa = rss, (4.10)

where
a = [a1 a2 . . . ap]T

are the prediction coefficients.
Consequently, the least squares optimal estimate of the LPC coefficients can be

found by
â = R̂−1

ss r̂ss, (4.11)

with R̂ss and r̂ss being estimates of Rss and rss, respectively, where the expectations
are calculated with sample averages [24].

In the so-called autocorrelation method of LPC, an appropriate definition of the
frame (in terms of the choice of the range of n) over which J is formulated results
in Rss exhibiting Toeplitz symmetry and, as such, (4.11) can be solved efficiently
with the Levinson–Durbin algorithm [9, 24]. In the derivation of the calculation of
the optimal LPC coefficients it is assumed that s(n) is stationary over the frame of
analysis. However, speech signals are intrinsically time-varying but can be consid-
ered stationary for a duration of 10–30 ms. Hence, the LPC coefficients are usually
calculated over windowed frames of 10 to 30 ms duration, possibly overlapping,
resulting in a time-varying filter V (z) [9].

The parameters obtained from the LPC can be linked to a model of the speech
production system given in Fig. 4.1. In this simplified model, the all-pole filter V (z)
represents the vocal tract, and the prediction residual, e(n), approximately repre-
sents the vocal tract excitation sequence, comprising a quasi-periodic pulse train for
voiced speech and random noise for unvoiced speech. Further investigations into this
model enable specific inclusion of other effects such as modelling of lip radiation
and sophisticated models of glottal excitation.
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generator
Pulse train

Voiced/unvoiced
switch
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generator

filter

Fig. 4.1 Speech production model

4.3 LPC on Reverberant Speech

In this section, we present a study on the relationship between the LPC parameters
obtained from anechoic speech and those obtained from reverberant speech.

The speech signal observed at the mth sensor in an array of M microphones can
be expressed as

xm(n) = hT
ms(n)+νm(n), m = 1,2, . . . ,M, (4.12)

where
h = [hm,0 hm,1 . . . hm,L−1]T

is the L-tap room impulse response from the source to the mth sensor,

s(n) = [s(n) s(n−1) . . . s(n−L+ 1)]T

is the input vector of clean speech samples and νm(n) denotes additive measurement
noise. For the study of the effects of reverberation on LPC, we assume a noise-
free environment, νm(n) = 0, ∀m. For additional studies on the effects of noise on
the LPC see [22, 30]. In linear prediction terms, the observation of the reverberant
speech at the mth sensor from (4.12) can be written

xm(n) =
p

∑
i=1

bm,ixm(n− i)+ em(n), m = 1,2, . . . ,M, (4.13)

and the LPC coefficients are found as in (4.11)

b̂m = R̂−1
xx,mr̂xx,m, (4.14)

where
b̂m = [b̂m,1 b̂m,2 . . . b̂m,p]T

is a vector with the prediction coefficients and em(n) is the LPC residual obtained
from the mth sensor signal. We are interested in the relationship between the pre-
diction residuals, e(n), and LPC coefficients obtained from clean speech, â, and the
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corresponding prediction residuals, em(n), and LPC coefficients, b̂m, found from re-
verberant observations. This will be discussed next in the context of both a single
microphone and multiple microphones.

4.3.1 Effects of Reverberation on the LPC Coefficients

We utilize tools from Statistical Room Acoustics (SRA) theory [21, 27, 29] for the
analysis of the LPC coefficients in reverberant speech. SRA provides a means for
describing the sound field in a room that is more mathematically tractable compared
to, for example, wave theory [29]. SRA has been employed by several researchers
for the analysis of signal processing algorithms in reverberant environments includ-
ing acoustic channel equalization [4, 29, 31], blind source separation [32], sound
source localization [18] and acoustic crosstalk cancellation [36].

There are several ways to obtain the LPC coefficients from reverberant speech
when a multiple microphone observation is available. The following three cases are
considered in our study:

(i) LPC coefficients calculated from a single microphone observation
(ii) LPC coefficients calculated from an M-channel observation (M > 1)

(iii) LPC coefficients obtained at the output of a Delay-and-sum Beamformer
(DSB)

It will be shown, in terms of spatial expectation, that the LPC coefficients obtained
from reverberant speech are approximately equal to those from clean speech for
cases (i) and (ii), while the LPC coefficients obtained from the output of the DSB
can differ due to spatial correlation between the microphones. Furthermore, it will
be demonstrated that the M-channel LPC coefficients from (ii) provide the best es-
timate of the clean speech coefficients compared to the other two cases.

4.3.1.1 Single Microphone

Consider the single microphone case where M = 1. Applying the LPC analysis from
Sect. 4.2 on the reverberant speech signal, x(n) (we drop the subscript m for the
single channel case to improve clarity of presentation), the LPC coefficients are
obtained with

b̂ = R−1
xx rxx. (4.15)

The ith autocorrelation coefficient of Rxx is given by

rxx,i = E{x(n)x(n− i)}, (4.16)
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which can be written equivalently in the frequency domain as

rxx,i =
1

2π

∫ π

−π
|X(e jω)|2e jωi dω

=
1

2π

∫ π

−π
|H(e jω)|2|S(e jω)|2e jωi dω , i = 1,2, . . . , p (4.17)

where H(e jω) and S(e jω) are the Fourier transforms of h and s(n), respectively.
In order to study the LPC coefficients of reverberant speech, the spatial expecta-

tion [27] is taken on both sides of (4.15) giving

E {b̂} = E {R−1
xx rxx}, (4.18)

where E {·} denotes spatial expectation, which is explained in detail in Chap. 2.
Furthermore, the expectation of each term of (4.18) has to be considered separately.
We use the same approach as that used in [29], where the zeroth order Taylor series
expansion is employed in the approximation

E {g(x)} ∼= g(E {x}),

so (4.18) can be written as

E {b̂} ∼= E {Rxx}−1E {rxx}. (4.19)

This reduces the problem to studying the properties of the LPC coefficients in terms
of the autocorrelation function. Consequently, we consider the spatial expectation
of rxx,i in (4.17)

E {rxx,i} =
1

2π

∫ π

−π
E {|H(e jω)|2}|S(e jω)|2e jωi dω, (4.20)

where the term S(e jω) is taken outside the spatial expectation since it is independent
of the source-microphone position.

According to SRA (as discussed in Chap. 2) the spatial expectation of the energy
density spectrum of the Acoustic Transfer Function (ATF) can be written in terms
of a direct component and a reverberant component

E {|Hm(e jω )|2} = |Hd,m(e jω)|2 +E {|Hr(e jω)|2}. (4.21)

Furthermore, the direct and the reverberant components can be expressed as, respec-
tively, [29]

|Hd,m(e jω)|2 =
1

(4πD)2 (4.22)

and

E {|Hr(e jω)|2} =
(

1− ᾱ
πAᾱ

)
, (4.23)
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where D is the distance between the source and microphone, A is the total surface
area of the room and ᾱ is the average wall absorption coefficient. The SRA expres-
sion for the expected energy density spectrum of the ATF is then

E {|H(e jω)|2} =
1

(4πD)2 +
(

1− ᾱ
πAᾱ

)

= κ . (4.24)

Since κ is independent of frequency, by substitution of (4.24) into (4.20) the
autocorrelation coefficient in (4.20) becomes

E {rxx,i} =
κ

2π

∫ π

−π
|S(e jω)|2e jωi dω

= κrxx,i, (4.25)

for i = 1,2, . . . , p. Finally, substituting the result from (4.25) into (4.19) gives

E {b̂} ∼= â. (4.26)

This result states that if LPC analysis is applied to reverberant speech, the coeffi-
cients â and b̂ are not necessarily equal at a single observation point in space. How-
ever, in terms of spatial expectation, the LPC coefficients from reverberant speech
are approximately equal to those from clean speech. The accuracy of the approxi-
mation depends on the accuracy of the estimation of the spatial expectation of the
autocorrelation function. Intuitively, the result in (4.26) suggests that using a micro-
phone array in a manner so as to approximate the taking of the spatial expectation
will give a more accurate estimation of the LPC coefficients than the use of a single
observation alone.

4.3.1.2 Joint Multichannel Optimization

From (4.13), a joint M-channel cost function can be formulated as [6, 13]

JM =
1
M

M

∑
m=1

E{e2
m(n)} (4.27)

=
1
M

M

∑
m=1

E

⎧⎨
⎩
(

xm(n)−
p

∑
i=1

bm,ixm(n− i)

)2
⎫⎬
⎭ . (4.28)

The optimum set of coefficients that minimize this error, similarly to (4.11), is
given by

b̂M = R̄−1
xx r̄xx, (4.29)
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with

R̄xx =
1
M

M

∑
m=1

Rxx,m (4.30)

and

r̄xx =
1
M

M

∑
m=1

rxx,m, (4.31)

where R̄xx and r̄xx are, respectively, the p× p mean autocorrelation matrix and the
p×1 mean autocorrelation vector across the M microphones.

Replacing the autocorrelation matrix and the autocorrelation vector in (4.18) with
the M-microphone averages in (4.30) and (4.31), respectively, and then following
the steps of the derivation of (4.26), it can be seen that the spatial expectation of
the LPC coefficients obtained from minimization of (4.27) is approximately equal
to those from clean speech,

E {b̂M} ∼= â. (4.32)

This result implies that the optimal LPC coefficients obtained using a spatial
expectation over M channels are equivalent to the spatial expectation of the LPC
coefficients in the single microphone case in (4.26). However, at each individual po-
sition the M-channel case provides a more accurate estimation of the clean speech
LPC coefficients than that obtained with a single reverberant channel, as will be
shown by simulations in Sect. 4.3.3. This is because the averaging of the autocorre-
lation functions in (4.30) and (4.31) is equivalent in effect to the calculation of the
spatial expectation operation in the single channel case (4.19).

4.3.1.3 LPC at the Output of a Delay-and-sum Beamformer

A different approach to the multichannel LPC technique described above is to per-
form spatial averaging on the speech signals using, for example, a delay-and-sum
beamformer. The output of a delay-and-sum beamformer can be written as [35]

x̄(n) =
1
M

M

∑
m=1

xm(n− τm), (4.33)

where τm is the propagation delay in samples from the source to the mth microphone.
Assuming that the time-delays of arrival are known for all microphones, linear pre-
diction can be performed on the beamformer output, x̄(n), as for the single channel
chase

b̂DSB = R−1
x̄x̄ rx̄x̄. (4.34)

The spatial expectation of the LPC coefficients calculated by linear prediction from
the output of the DSB is

E {b̂DSB} ∼= Tâ− t, (4.35)
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with

T = I− 1
κ̄

R−1
ss Γ

(
Λ−1 −ΓH 1

κ̄
R−1

ss Γ
)−1

ΓH

and
t = (κ̄Rss +Ξ)−1ξ ,

where these terms are defined in the derivation given in Appendix A.
The result in (4.35) states that in terms of spatial expectation, the LPC coeffi-

cients obtained by LPC analysis of the DSB output, x̄(n), differ from those obtained
from clean speech. This difference depends on the spatial cross-correlation between
the acoustic channels. It can be seen from (4.57) that the inter-channel correlation
and its significance are governed by the reverberation time, the distance between
adjacent microphones, the source-microphone separation and is dependent on the
array size if the speaker is in the near-field of the microphone array. Of particular
interest is the separation of adjacent microphones in the array. From (4.57) it is evi-
dent that the term ψ(ω) and, consequently, the matrix Ξ and the vector ξ will tend
to zero as the source-microphone separation is increased. Therefore, for large inter-
microphone separation the matrix T tends to the identity matrix I and the vector t
tends to zero so that the result in (4.35) tends to the result in (4.26). Furthermore,
if estimates of T and t were available and since T is a square matrix, the effects
of the spatial cross-correlation could be compensated as â ∼= T−1(E {b̂DSB}+ t).
However, estimating these parameters is difficult in practice. Finally, for the special
case where the distance between the microphones is exactly a multiple of a half
wavelength at each frequency and the speaker is far from the microphones, then
ψ(ω) = 0,∀ω and thus Ξ and ξ from (4.58) and (4.59) are equal to zero. Therefore,
the matrix T becomes exactly the identity matrix I and the vector t is exactly zero.
This then results in the expression in (4.35) becoming equivalent to that in (4.26).

4.3.2 Effects of Reverberation on the Prediction Residual

Consider a frequency domain formulation of the source-filter speech production
model discussed in Sect. 4.2. The speech signal is written as

S(e jω) = E(e jω)V (e jω ), (4.36)

where E(e jω) is the Fourier transform of the prediction residual and V (e jω) is the
transfer function of the all-pole filter from (4.3) evaluated for z = e jω .

Now consider the speech signal produced in a reverberant room as defined in
(4.12) which, in the frequency domain, leads to

X(e jω) = S(e jω)H(e jω)

= E(e jω)V (e jω)Hm(e jω). (4.37)
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Fig. 4.2 Speech sample used in the experiments comprising the time-domain waveform of the
diphthong /eI/ as in the alphabet letter ‘a’ uttered by a male talker

Referring to (4.26), an inverse filter, B(e jω) = 1+∑p
k=1 bke jωk, can be obtained such

that E {B(e jω)} ∼= A(e jω), where A(e jω) is given by (4.2) for z = e jω . Filtering
the reverberant speech signal with this inverse filter, the coefficients of which are
obtained from the reverberant speech signal, results in

Em(e jω) ∼= E(e jω)Hm(e jω), (4.38)

where Em(e jω) is the Fourier transform of the prediction residual, em(n), obtained
from the reverberant speech observation at the mth microphone. Thus, in the time
domain, the prediction residual obtained from reverberant speech is approximately
equal to the clean speech residual convolved with the room impulse response. The
approximation in (4.38) arises from the LPC. Therefore, if the LPC coefficients
used were identical to those from clean speech, the approximation would be an
equivalence.

4.3.3 Simulation Examples for LPC on Reverberant Speech

Having established the theoretical relationship between the LPC coefficients ob-
tained from clean speech and those obtained from reverberant speech observations,
simulation results are now presented to demonstrate and to validate the theoretical
analysis. In summary, two specific points will be demonstrated:

1. On average, over all positions in the room, the LPC coefficients obtained from
a single microphone as in (4.15) and those calculated from M-microphones as
in (4.29) are not affected by reverberation, while the LPC coefficients from the
DSB become more dissimilar from the clean speech coefficients with increased
reverberation time.

2. The M-channel LPC coefficients from (4.29) are the most accurate estimates of
the clean speech LPC coefficients from the three cases studied.
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Fig. 4.3 Itakura distance vs. reverberation time for the spatially expected LPC coefficients of (a)
a single channel, (b) M = 7 channels and (c) DSB output simulation (squares) and the theoretical
expression for the DSB output (4.35) (dashed line)

The Itakura distance is used as a similarity measure between two sets of LPC
coefficients, defined as [9]

dI = log
(

bT Rssb
aT Rssa

)
, (4.39)

where Rss is the autocorrelation matrix of the clean speech signal defined in (4.7),
a is the set of clean speech LPC coefficients and b are the LPC coefficients under
test. The Itakura distance can be interpreted as the log ratio of the minimum mean
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squared errors obtained with the true and the estimated coefficients. The denomina-
tor represents the optimal solution for clean speech and thus dI � 0.

The speech sample depicted in Fig. 4.2, comprising the diphthong /eI/ as in the
alphabet letter ‘a’ uttered by a male talker, was used as an example. The LPC anal-
ysis was performed using selective linear prediction [25] with a frame length equal
to the length of the vowel and a prediction order p = 21 with sampling frequency
fs = 16 kHz. The prediction order was chosen using the relation p = fs

1000 + 5 as
recommended in [9]. This gives a pole pair per kHz of Nyquist sampling frequency
and some additional poles to model the glottal pulse. Selective linear prediction was
employed in the frequency range 0.3–7 kHz, in order to avoid errors due to ban-
dlimiting filters.

The spatial expectation was calculated from N = 200 realizations of the source-
array positions within a non-changing acoustic environment and an average auto-
correlation function was calculated for each of the cases under consideration. This
was repeated, in each new case varying the reverberation time, T60, from 0.1 to 0.9 s.
For each case the Itakura distance was calculated for the spatial expectation of the
coefficients. Figure 4.3 shows the Itakura distance of the spatially expected LPC
coefficients versus reverberation time for (a) a single channel, (b) M = 7 channels
and (c) the DSB output simulation (solid line) and the theoretical expression for
the DSB output in (4.35) (dashed line). It can be seen that the experimental out-
come closely corresponds to the theoretical results where the coefficients from the
M-channel case and from a single channel are close to the clean speech coefficients.
In contrast, the difference between the results from the DSB output and the clean
speech increases in a manner proportional to the reverberation time.

The next experiment illustrates the individual outcomes for the three cases at the
different locations. The LPC coefficients were computed at each individual source-
array position using (4.15), (4.29) and (4.34) and the Itakura distance was then cal-
culated. Figure 4.4 shows the resulting plot in terms of the mean Itakura distance
versus increasing reverberation time for (a) a single channel, (b) M = 7 channels
and (c) the DSB output. The error bars indicate the range between the maximum
and the minimum errors, while the crosses indicate the mean value for all N loca-
tions. It can be seen that the M-channel LPC provides the best approximation of the
clean speech LPC coefficients. It can also be seen that the estimation error for the
LPC coefficients obtained from the DSB output becomes greater with increasing re-
verberation time. Although this result may appear counterintuitive, it conforms with
the theoretical expression in (4.35) and will be clarified further in the following
experiment. Figure 4.5 shows examples of the spectral envelopes from the LPC co-
efficients obtained from reverberant observations using LPC for (a) a single channel,
(b) M = 7 channels and (c) the DSB output. Each case is compared to the resulting
spectral envelope from clean speech.

As discussed in Sect. 4.3.1, the discrepancy in the estimated LPC coefficients at
the output of the DSB from those obtained with clean speech is governed mainly by
the separation of the microphones. This final experiment demonstrates the effect of
the separation between adjacent microphones on the expected LPC coefficients ob-
tained at the output of a DSB. All parameters of the room, the source and the micro-
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Fig. 4.4 Itakura distance vs. reverberation time in terms of the LPC coefficients for each individual
outcome for (a) a single channel, (b) M-channels and (c) the DSB output. The error bars indicate
the maximum and minimum error while crosses show the mean value

phone array were kept fixed, while the separation, ‖qmic,m−qmic,m+1‖2, 1 ≤m < M,
between adjacent microphones in the linear array was increased from 0.05 to 0.3 m
in steps of 0.05 m. The results are shown in Fig. 4.6 where the Itakura distance is
plotted against microphone separation for (a) the theoretical results calculated with
(4.35) (dashed line) and the simulated results (crosses) for the spatially expected
LPC coefficients at the output of the DSB and (b) the LPC coefficients for each in-
dividual outcome. Error bars indicate the maximum and the minimum errors, while
crosses indicate the mean value. It is seen from these results that the estimates at the
output of the DSB become more accurate as the distance between the microphones
is increased. At a microphone separation of ‖qmic,m−qmic,m+1‖2 = 0.3 m the results
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Fig. 4.5 Spectral envelopes calculated from the LPC coefficients of clean speech compared with
spectral envelopes obtained from the LPC coefficients of (a) a single channel, (b) M = 7 channels
and (c) the DSB output

are comparable to the M-channel case both in terms of spatial expectation and of the
individual outcomes. This is because the spatial correlation between microphones
becomes negligible.

Finally, Fig. 4.7 shows a single channel example of portions of clean voiced
speech, reverberant voiced speech and the corresponding prediction residuals. This
example is from a simulated rectangular room with dimensions 6.4× 5× 4 m, a
source positioned at 1.5 m from the microphone, and reverberation time set to T60 =
0.5 s. The Acoustic Impulse Response (AIR) is shown in Fig. 4.8. It can be seen in
Fig. 4.7 (d) that the reverberant residual contains several peaks of similar strength as
the true excitation peaks. This leads to a definition adopted in the remainder of this
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Fig. 4.6 Itakura distance vs. microphone separation for (a) the theoretical results calculated with
(4.35) (dashed line) and the simulated results (crosses) for the spatially expected LPC coefficients
at the output of the DSB and (b) the LPC coefficients for each individual outcome; error bars
indicate the maximum and the minimum errors and crosses show the mean value

chapter: an erroneous peak is a pulse in the prediction residual of reverberant speech
that is of comparable strength to the true excitation peak. As source-microphone
separation and reverberation time increase, the contribution of such erroneous peaks
becomes more significant, resulting in large distortion in the prediction residual.

In summary, statistical room acoustics theory has been used for the analysis of
the LPC modelling of reverberant speech. Investigating three scenarios, it has been
shown that, in terms of spatial expectation, the LPC coefficients calculated from re-
verberant speech are approximately equivalent to those from clean speech both in
the single channel case and in the case when the coefficients are calculated jointly
from an M-channel observation. Furthermore, it was shown that the LPC coeffi-
cients calculated at the output of a DSB differ from the clean speech coefficients
due to spatial correlation, which is governed by the room characteristics and the mi-
crophone array geometry. It was also demonstrated that LPC coefficients calculated
jointly in the M-channel observation provide the best approximation of the clean
speech coefficients at individual source-microphone positions. Thus, the M-channel
joint calculation of the LPC coefficients is preferred where such an equivalence is
important. Finally, the findings in this chapter are of particular interest in speech
dereverberation methods using prediction residual processing, where the main and
crucial assumption is that reverberation mostly affects the prediction residual. Since
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Fig. 4.7 (a) Clean speech, (b) reverberant speech, (c) clean speech prediction residual and (d)
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Fig. 4.8 Measured AIR used in the example of Figs. 4.7(b) and (d) for source-microphone separa-
tion D = 1.5 m

most of these methods utilize microphone arrays for the residual processing, M-
channel joint calculation of the LPC coefficients should normally be deployed to
ensure the validity of this assumption.
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Fig. 4.9 Reverberant speech enhancement using LPC

4.4 Dereverberation Employing LPC

We have so far established that LPC coefficients can be calculated from reverberant
speech signals and that the major effect of reverberation resides in the prediction
residual. Consequently, signal processing to reduce reverberation can be applied to
the prediction residual directly, and the a priori information about the structure of
the prediction residual for voiced speech, obtained from the source-filter model [28],
can be utilized to enhance the reverberant speech. An approach to reducing rever-
beration can therefore be achieved by attenuating the erroneous peaks in the pre-
diction residuals obtained from the reverberant observations and then synthesizing
the speech signal using the processed prediction residual with the all-pole filter cal-
culated from the reverberant speech. The general procedure of the use of linear
prediction for reverberant speech enhancement is shown in Fig. 4.9. LPC analysis is
performed on the reverberant observations, xm(n), m = 1,2, . . . ,M in order to obtain
the prediction residuals em(n) and a set of LPC coefficients, b̂, which are an estimate
of the clean speech coefficients, a. The prediction residuals from the M microphone
speech signals are then processed to find an estimate of the clean speech residual,
ê(n) ≈ e(n). Finally, a clean speech estimate, ŝ(n), is found by synthesis using ê(n)
and b̂i such that

ŝ(n) =
p

∑
i=1

b̂iŝ(n− i)+ ê(n). (4.40)

An attractive feature of the prediction residual processing methods is that they
can reduce the effects of reverberation without specific knowledge of the acoustic
transfer function, which is generally not available and both difficult and computa-
tionally expensive to estimate. Therefore, it makes these algorithms practical and
suitable for online implementation. Another advantage of manipulating the predic-
tion residual instead of the speech signal is that any estimation errors are smoothed
by the characteristics of the all-pole synthesis filter [40].

Various methods for processing the prediction residual resulting from the LPC
analysis of reverberant speech have been proposed in the literature and they will be
summarized and discussed in this section. Most of these methods make use of multi-
microphone systems, which is beneficial since in the case of time-aligned signals,
peaks due to the original excitation are correlated across the channels, while those
due to the acoustic impulse response are not.
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4.4.1 Regional Weighting Function

Yegnanarayana et al. [40] provided a comprehensive study of the reverberant speech
prediction residual. They have demonstrated that reverberation affects the prediction
residual differently in different speech segments, depending on the energy in the sig-
nal and whether a segment is voiced or unvoiced. Motivated by these observations,
the authors propose to use a regional weighting function based on the signal-to-
reverberant ratio (SRR) in each region and also a global weighting function derived
from the short term signal energy. For the derivation of the SRR based weightings,
the entropy function and the normalized error are used. This algorithm is only ap-
propriate in the case of small amounts of reverberation; however, it is able to operate
on a single channel.

4.4.2 Weighting Function Based on Hilbert Envelopes

Yegnanarayana and Satyanarayana [39] propose a weighting function based on
Hilbert envelopes. The authors use the Hilbert envelopes of the prediction resid-
uals of multiple channels to represent the strength of the peaks in the residuals.
These Hilbert envelopes are then time-aligned and summed, resulting in a signal
that emphasizes the positions of the true excitation peaks. This weighting function
is applied to the prediction residual of one of the channels.

4.4.3 Wavelet Extrema Clustering

An approach proposed by Brandstein and Griebel [5, 16], based on an idea inherited
from speech de-noising, is wavelet extrema clustering. This method is based on the
assumption that the prediction residual peaks due to the true excitation sequence are
correlated among the channels, while the remaining impulses from the multipath are
not. The prediction residuals are transformed into the wavelet domain and extrema
clusters among the channels at each scale are identified and used to reconstruct an
estimate of the clean residual signal.

4.4.4 Weight Function from Coarse Channel Estimates

An alternative approach by Griebel and Brandstein [17] uses a weight function based
on coarse estimates of the room impulse responses. The authors show that coarse es-
timates of the acoustic impulse responses can be obtained by averaging the phase
transform version of the generalized cross-correlation [20] from the multiple micro-
phones. These estimates are then applied in a matched filtering operation to obtain a
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weighting function for the prediction residuals of the M microphones. The enhanced
speech signals at the output of each microphone are finally used in a beamformer
to produce the dereverberated speech signal. This method requires a large number
of microphones for the coarse channel estimates. The results in [17], for example,
were generated using M = 15 microphones.

4.4.5 Kurtosis Maximizing Adaptive Filter

An adaptive algorithm was proposed by Gillespie et al. [14] using a kurtosis max-
imizing subband adaptive filter. The authors demonstrate that the kurtosis of the
prediction residual decreases as a function of increased reverberation, which was
also suggested in [40]. They use this observation to derive an adaptive filter that
maximizes the kurtosis of the prediction residual. The filter is applied directly to
the observed signal rather than to the prediction residual and so avoids the LPC
synthesis stage. This also lessens the dependence on the LPC coefficients to some
extent. The adaptive filter is implemented in a multichannel subband framework for
increased efficiency. This is an example of a hybrid approach drawing on elements
of both speech enhancement and blind system identification and inversion. An ex-
tension to this method was presented in [37], where it was combined with spectral
subtraction to remove residual reverberation due to late reflections.
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4.5 Spatiotemporal Averaging Method for Enhancement of
Reverberant Speech

Many methods for LPC based enhancement tend to ignore the specific characteris-
tics of the prediction residual both for the peaks due to the original excitation and
the information contained between the Glottal Closure Instants (GCIs). Modify-
ing the excitation peaks or excessively flattening the waveform between such peaks
will result in distortions in the reconstructed speech signal and render it less nat-
ural [38]. Furthermore, most methods do not consider the unvoiced/silent speech
segments in the dereverberation process. In the following, a method is described
that addresses these issues; we refer to this method as SMERSH – Spatiotemporal
averaging Method for Enhancement of Reverberant SpeecH [11, 12, 33].

The observed speech signals are first spatially averaged using the DSB defined
in (4.33). Consider Fig. 4.11, which shows a portion of the prediction residual ob-
tained from (a) clean speech, (b) reverberant speech, and (c) speech at the output of
a DSB. The effect of reverberation on the prediction residual can be clearly seen in
the form of many random peaks of similar strength to the periodic peaks occurring
at the GCIs in clean speech. The following specific observations can be made from
the prediction residuals in this and in other examples:

(i) The prediction residual obtained by performing LPC on the DSB output differs
from that obtained from the clean speech by seemingly random peaks that are
left unattenuated after the spatial averaging; these appear uncorrelated among
consecutive larynx cycles.

(ii) The main features in consecutive larynx cycles of the clean speech prediction
residual change slowly and show high inter-cycle correlation.

(iii) Strong periodic peaks in the prediction residual from the DSB output appear
to represent the GCIs seen in the clean speech.

Property (i) arises from the quasi-periodic nature of voiced excitation. Property (ii)
is well-known in speech processing and has been applied in, for example, the Time-
Domain Pitch Synchronous Overlap Add Method (TD-PSOLA) for pitch modifi-
cation [9]. Motivated by these observations, it is suggested that applying a moving
average operation on neighbouring larynx cycles in voiced speech will suppress the
uncorrelated features and, hence, enhance the prediction residual. There are two key
issues to consider. First, it is necessary to identify correctly the peaks that belong
to the original excitation so as to segment the larynx cycles. Secondly, peaks at-
tributed to GCIs are important to speech quality [38] and should remain unchanged;
therefore they should be excluded from the averaging process.
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(a)

(b)

(c)

Fig. 4.11 Prediction residuals obtained from (a) clean speech, (b) reverberant speech and (c) spa-
tially averaged speech

The algorithm comprises four major components:

• Time-delay-of-arrival estimation, which is used to time align the speech signals,
such that their direct-path components of each channel coincide, prior to spatial
averaging.

• GCI detection so that the prediction residual can be segmented into individual
larynx cycles, where a larynx cycle is taken between two consecutive GCIs.

• Temporal averaging of two or more neighboring larynx cycles to obtain an en-
hanced larynx-cycle.

• Voiced/univoiced/silcence detection.

Each of these components will now be discussed in detail.

4.5.1 Larynx Cycle Segmentation with Multichannel DYPSA

One of the key components in SMERSH is the accurate larynx cycle segmentation
of the prediction residual. This requires a GCI detection algorithm that is robust to
noise and reverberation. One such algorithm is the DYnamic Programming Phase-
Slope Algorithm (DYPSA) [26], which comprises three main parts:
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1. Group delay function – this is defined as the average slope of the unwrapped
phase spectrum of the short time Fourier transform of the prediction residual.
GCI candidates are selected based on the negative-going zero crossings of the
group delay function.

2. Phase-slope projection – this is introduced to generate GCI candidates when a
local maximum is followed by a local minimum without the group delay func-
tion crossing zero. The midpoint between such turning points is identified and
projected onto the time axis with unit slope. In this way, GCIs whose negative-
going slope does not cross the zero point (i.e., those GCIs missed by the group
delay function) are correctly identified.

3. Dynamic programming – this uses known characteristics of voiced speech (such
as pitch consistency and waveform similarity across larynx cycles) and forms a
cost function that is minimized in order to select a subset of the GCI candidates
that are most likely to correspond to the true GCIs. The subset of candidates is
selected according to the minimization problem defined as

min
Ω

|Ω|

∑
r=1

λT cΩ(r), (4.41)

where Ω is a subset of GCIs of size |Ω|, λ is a vector of experimentally deter-
mined weighting factors and cΩ (r) is a vector of cost elements evaluated at the
rth GCI of the subset Ω.

Multichannel DYPSA (MC-DYPSA) was proposed in [34] to exploit the spatial
diversity of acoustic transfer functions [21]. When the channels are time-aligned,
the direct-path signal is common to all channels but reverberation components are
less likely to show correlation. MC-DYPSA applies parts (i) and (ii) above to each
channel independently and creates an additional cost element based upon the inter-
channel correlation, penalizing those which occur in a small number of channels and
encouraging those in close temporal proximity across channels. This is passed to
the dynamic programming stage and the most likely GCIs, at sample instants n�, are
identified. Experiments in [34] have shown that GCI estimation from a reverberant
speech signal for T60 = 500 ms is on average 16% more accurate with MC-DYPSA
than single-channel DYPSA applied to the output of an 8-channel DSB and 29%
more accurate than DYPSA on a single channel, providing 83% accuracy [34].

4.5.2 Time Delay of Arrival Estimation for Spatial Averaging

Both MC-DYPSA and spatial averaging rely on the correct inter-channel time align-
ment so as to maximize the correlation of the direct-path signal across channels. The
Generalized Cross-Correlation Phase Transform (GCC-PHAT) [20] is a simple and
sufficiently accurate method for the estimation of delay between two channels from
moderately reverberant speech signals [7, 8].
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Let the reference channel be xre f (n) and the measurement channel xm(n). The
delay estimate at the mth channel, τ̂m, is determined by maximizing the cross-
correlation between channels

τ̂m = argmax
τ

rxre f xm(τ), (4.42)

with

rxre f xm(τ) =
1

2π

∫ π

−π

Xre f (e jω)X∗
m(e jω)

|Xre f (e jω)||X∗
m(e jω)|e

jωτdω , (4.43)

where X∗ denotes the complex conjugate of X and rxre f xm(τ) is a weighted inverse
Fourier transform of the signal cross-spectra for time lag τ .

The GCC-PHAT method has been shown to be accurate enough for moderate
reverberation although it is suboptimal under ideal conditions as it places equal
weighting on each frequency [3, 20]. The process is repeated for M − 1 pairs of
microphones to determine the inter-channel delay between microphone m = 1 and
microphone m = 2,3, . . . ,M.

The spatial averaging of the speech signals is performed with the DSB defined
in (4.33) and the estimated delays from (4.42) according to:

x̄(n) =
1
M

M

∑
m=1

xm(n− τ̂m). (4.44)

4.5.3 Voiced/Unvoiced/Silence Detection

Voiced/unvoiced/silence detection is performed on a speech signal that has been
processed with the DSB in (4.44). Voiced segments are determined using a voiced-
unvoiced-silence detector based on five measurements [1]: (1) zero crossing rate,
(2) energy, (3) autocorrelation coefficient, (4) the first LPC coefficient and (5) nor-
malized prediction error (in dB). Each measure is computed over 32 ms frames with
60% overlap, forming a sequence of feature vectors. These vectors are then clus-
tered using an unsupervised Expectation Maximization (EM) algorithm [10]. The
three clusters are labelled as silence, unvoiced and voiced according to their mean
vectors and variances. The unvoiced cluster is chosen to be the one with an auto-
correlation coefficient closest to zero mean and 0.5 variance. Of the remaining two
clusters, the one corresponding to the high speech energy is chosen to be voiced.
Every vector in the sequence is then evaluated under each of the three Gaussians
and classified according to which cluster produces the highest likelihood.
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Fig. 4.12 Larynx weighting function defined in (4.45) with different values for β

4.5.4 Weighted Inter-cycle Averaging

In order to leave the glottal pulse undisturbed at GCIs, a weighting function is ap-
plied on each larynx cycle prior to the averaging. The weighting function should,
ideally, exclude only the true glottal pulse. However, in practice, GCIs are identi-
fied to an uncertainty in the order of 1 ms [26] and the glottal pulse is not a true
impulse but is somewhat spread in time [9]. A weighting function that has been
found suitable, with a reasonable trade-off between the issues described above, is
the time-domain Tukey window defined as [19]

wu =

⎧⎪⎪⎨
⎪⎪⎩

0.5 + 0.5cos
(

2πu
β (L−1) −π

)
, u < βL

2 ,

0.5 + 0.5cos
(

2π
β − 2πu

β (L−1) −π
)

, u > L− βL
2 −1,

1.0, otherwise,

(4.45)

whereL is the length of one larynx cycle (in samples) and 0≤β ≤ 1 is the taper ratio
of the window. An example of the weighting function with three different values for
β is shown in Fig. 4.12. The taper ratio offers a tunable parameter with the beneficial
ability to control the amount of the larynx cycle to be included in the averaging
process and can be adjusted, for example, in some proportion to the estimation error
variance of the GCI identification algorithm. Following the averaging procedure, the
inverse weight function with weights , 1−wu, is applied to the larynx cycle under
consideration to restore the original glottal pulse shape.

Thus, each enhanced larynx cycle in a voiced speech segment is obtained by av-
eraging the current weighted larynx cycle under consideration with I of its neigh-
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bouring weighted larynx cycles. The result is then added to the original larynx cycle
weighted with the inverse weight function. The final expression for the �th enhanced
larynx cycle becomes

ê(n�) = (I−W)ē(n�)+
1

2I+ 1

I
∑

i=−I
Wē(n�+i), (4.46)

where
ē(n�) = [ē(n�) ē(n� + 1) . . . ē(n� +L−1)]T

is the �th larynx cycle at the output of the DSB with its GCIs at time n�,

ê(n�) = [ê(n�) ê(n� + 1) . . . ê(n� +L−1)]T

is the �th larynx cycle of the enhanced residual, I is the identity matrix and

W = diag{w0 w1 . . . wL−1}

is a diagonal weighting matrix with the weights calculated with (4.45). Larynx cy-
cles are not strictly periodic but may be assumed to vary by a few samples over a
neighborhood defined by L. Therefore, L is set to equal the length of the larynx cy-
cle being processed; other larynx cycles used in the averaging that have less than L
samples are padded with zeros, while those with more than L samples are truncated.

The choice of I is important. If too many cycles are included, the averaging will
remove uncorrelated portions from the original excitation, whereas if too few cycles
are considered, erroneous peaks due to reverberation will remain. For the results
presented here, the number of cycles for averaging was set to I = 4. It was found
through several experiments that this is a good choice in general and that I > 4
provides less accurate results.

This averaging process can only be applied in the form as so far described to seg-
ments of voiced speech, leaving reverberation components of unvoiced speech and
silence unaffected. Furthermore, in the case of an erroneous GCI, the algorithm will
produce incorrect results. To improve robustness, a dereverberating Lg-tap equaliza-
tion filter with taps

g = [g0 g1 ... gLg−1]T

for the �th larynx cycle is defined, which performs the equivalent operation of tem-
poral averaging. An estimate of g is found by solving the following optimization
problem

ĝ = argmin
g

‖gT ē(n�)− ê(n�)‖2
2, (4.47)

whose least squares solution can be found to be

ĝ = R−1
ēē rēê, (4.48)

where Rēē is an autocorrelation matrix formed from ē(n�) and rēê is a cross-
correlation vector formed from ē(n�) and ê(n�).
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The filter in (4.48) is used to update a time-varying filter

ĝ(n�) = γ ĝ(n�−1)+ (1− γ)ĝ, (4.49)

where 0 ≤ γ ≤ 1 is a forgetting factor with typical values in the range {0.1−0.3},
initialized to ĝ(0) = [1 0 ... 0]T . It is updated only during voiced speech, with the lat-
est iteration used for periods of unvoiced speech or silence. The complete SMERSH
is summarized in Algorithm 4.1.

4.5.5 Dereverberation Results

We now present results to demonstrate the performance of the spatiotemporal aver-
aging method for enhancement of reverberant speech. The performance is compared
with the delay-and-sum beamformer using data captured in an office room. A micro-
phone array consisting of eight AKG C417 microphones spaced linearly at 0.05 m
intervals, was placed in a 3.3× 2.9× 2.9 m room with reverberation time (T60) of
0.3 s. Utterances of the sentence “George made the girl measure a good blue vase”
by five male and five female talkers were taken from the APLAWD database [23]
and played through a GENELEC 8030 loudspeaker at distances 0.5 to 2 m from the
centre of the microphone array. The AIRs between the loudspeaker and each micro-
phone was estimated using the Maximum Length Sequence (MLS) method [21].

Recording and channel alignment were made at a sampling frequency of fs =
48 kHz. The remainder of the processing was performed at fs = 16 kHz and with
the samples high pass filtered at 100 Hz. The recorded speech, the speech at the
output of the DSB and the speech processed with SMERSH were evaluated against
the clean speech samples using the segmental Signal to Reverberation Ratio (SRR)
defined in (2.45) and (2.46) and Bark Spectral Distortion (BSD) defined in (2.38)
using 30 ms frames with 50% overlap. The MLS-derived channel estimates were
truncated to determine a direct-path impulse response, hd(n), which was convolved
with the clean speech signal to align the unprocessed and processed signals, denoted
sd(n) = hd(n) ∗ s(n) which were used in the evaluation procedure as discussed in
Chap. 2.

The results in terms of segmental SRR, averaged over all ten talkers in APLAWD,
are shown in Fig. 4.13 for (a) reverberant speech at the microphone closest to the
talker, (b) speech at the output of the DSB and (c) speech processed with SMERSH.
Corresponding BSD results are shown in Fig. 4.14. Reverberation and noise reduc-
tion of up to 5.0 dB and 0.33 in BSD score are observed at a distance of 2 m,
corresponding to 2.7 dB and 0.07 over the DSB. Informal listening tests carried
out indicate that, perceptually, reverberation effects are reduced and the talker ap-
pears to be closer to the microphone. The results show a strong correlation with the
simulations in [12].
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Algorithm 4.1 SMERSH: Spatiotemporal Averaging Method for Enhancement of
Reverberant Speech

1. Calculate the LPC coefficients using M-channel LPC as in (4.29):

b̂M = R̄−1r̄.

2. Find time delays of arrival using GCC-PHAT in (4.42):

τ̂m = argmax
τ

rxre f xm (τ).

3. Apply the DSB to the M microphone signals to obtain x̄(n) as in (4.33):

x̄(n) =
1
M

M

∑
m=1

xm(n− τ̂m).

4. Apply the filter from (4.3) with coefficients b̂M to the DSB output to obtain the prediction
residual:

ē(n) = b̂T
M x̄(n).

5. Use MC-DYPSA to identify the GCIs from the excitation peaks, n� in the prediction residual
ē(n), and segment into larynx cycles ē(n�).

6. For each larynx cycle, � = 1,2, ... :

6.1 Calculate the temporally averaged larynx cycle according to (4.46):

ê(n�) = (I−W)ē(n�)+
1

2I +1

I
∑

i=−I
Wē(n�+i).

6.2 Update the time-varying filter ĝ(n�) according to (4.47):

ĝ(n�) = γ ĝ(n�−1)+(1− γ)ĝ,

with the �th filter calculated as in (4.48)

ĝ = R−1
ēē rēê.

6.3 Apply filter to the prediction residual from the DSB output until the beginning of the next
larynx cycle, �+1:

ê(n) = ĝT (n�)ē(n�).

6.4 Obtain an estimate of the clean speech signal, ŝ(n), by synthesis using the enhanced
residual ê(n) and the filter from (4.3) with LPC coefficients, b̂M :

ŝ(n) = [b̂−1
M ]T ê(n),

where b̂−1
M represents the all-pole filter coefficients corresponding to b̂M .



4 Dereverberation Using LPC-based Approaches 123

0.5 1 1.5 2
−12

−10

−8

−6

−4

−2

0

Distance (m)

S
eg

m
en

ta
l S

R
R

 (
dB

)

(i)

(ii)

(iii)

Fig. 4.13 Segmental SRR vs. distance for (i) reverberant speech, (ii) DSB processed speech and
(iii) speech processed with SMERSH

0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Source-microphone distance (m)

B
ar

k 
sp

ec
tr

al
 d

is
to

rt
io

n 
sc

or
e

(i)

(ii)

(iii)

Fig. 4.14 BSD vs. distance for (i) reverberant speech, (ii) DSB processed speech and (iii) speech
processed with SMERSH



124 N.D. Gaubitch et al.

4.6 Summary

We have discussed reverberant speech enhancement with LPC-based approaches.
Linear prediction coding of speech was first reviewed and statistical room acoustic
theory was used for the analysis of the LPC applied to reverberant speech, showing
that reverberation primarily affects the prediction residual and to lesser extent the
LPC coefficients. By investigating three scenarios it has been shown that, in terms
of spatial expectation, the LPC coefficients calculated from reverberant speech are
approximately equivalent to those from clean speech both in the single channel case
and in the case when the coefficients are calculated jointly from a multichannel
observation. Furthermore, it was shown that the LPC coefficients calculated at the
output of a delay-and- sum beamformer differ from the clean speech coefficients
due to spatial correlation, which is governed by the room characteristics and the
microphone array geometry. It was also demonstrated that LPC coefficients cal-
culated jointly on the multichannel observation provide the best approximation of
the clean speech coefficients at individual source-microphone positions. Therefore,
multichannel joint calculation of the LPC coefficients is the preferred option where
such an equivalence is important.

The general concept of linear prediction in dereverberation was described and
existing approaches for prediction residual enhancement were reviewed. A multi-
microphone method to prediction residual enhancement based on spatial averaging
of the observed signals and temporal averaging of neighbouring larynx cycles was
described in detail. The performance of the algorithm was illustrated through exper-
iments in a real office with a T60 of 0.3 s. The experiments demonstrated the dere-
verberation and noise suppression of the spatiotemporal averaging method, showing
up to a 5 dB improvement in segmental SRR and 0.33 in normalized Bark spectral
distortion score.

Appendix A

Consider a speech signal source, s(n), observed with M microphones and combined
using a DSB to give a signal x̄(n) according to (4.33). In the frequency domain this
can be expressed as

X̄(e jω) =

(
1
M

M

∑
m=1

Hm(e jω)e− j2π f τm

)
S(e jω)

= H̄(e jω)S(e jω), (4.50)

where X̄(e jω ), S(e jω) are the Fourier transforms of x̄(n) and s(n), respectively,
Hm(e jω ) is the ATF with respect to the mth microphone and H̄(e jω) is the aver-
aged ATF at the output of the DSB. The optimum estimate of the LPC coefficients,
bDSB, at the beamformer output are calculated as in Sect. 4.3.1
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b̂DSB = R−1
x̄x̄ rx̄x̄, (4.51)

where Rx̄x̄ and rx̄x̄ are a p× p autocorrelation matrix and a p× 1 autocorrelation
vector respectively with the ith correlation coefficient being

rx̄x̄,i =
1

2π

∫ π

−π
|X̄(e jω )|2e jωi dω

=
1

2π

∫ π

−π
|H̄(e jω )|2|S(e jω)|2e jωi dω , i = 1,2, . . . , p (4.52)

From this point on, we omit the frequency index for reasons of clarity. The ex-
pected energy density spectrum of the averaged ATFs can be written

E {|H̄|2} =
1

M2

⎡
⎢⎣

M

∑
m=1

E {|Hm|2}+
M

∑
m=1

M

∑
l=1
l �=m

E {HmH∗
l }e− j2π f (τm−τl)

⎤
⎥⎦ . (4.53)

From (4.24), the expected energy density for the mth channel is

E {|Hm|2} =
1

(4πDm)2 +
(

1− ᾱ
πAᾱ

)
, (4.54)

where Dm is the Euclidean distance between the source and the mth microphone, ᾱ
is the average room absorption coefficient and A is the total room surface area.

The expected cross-correlation between the mth and the lth microphones can be
shown to be [13, 36]

E {HmH∗
l } =

e jk(Dm−Dl)

16π2DmDl
+
(

1− ᾱ
πAᾱ

)
sinkΔlm

kΔlm
, (4.55)

where
Δlm = ‖qmic,m −qmic,l‖2 (4.56)

is the distance between the mth and the lth microphones.
By substituting (4.54) and (4.55) into (4.53) and with τm = Dm/c, we obtain the

following expression for the mean energy density at the DSB output:

E {|H̄|2} = κ̄ +ψ(ω), (4.57)
with

κ̄ =
1

(4πM)2

M

∑
m=1

M

∑
n=1

1
DmDl

+
(

1− ᾱ
MπAᾱ

)

and

ψ(ω) =
(

1− ᾱ
M2πAᾱ

) M

∑
m=1

M

∑
l=1
l �=m

sinkΔlm

kΔlm
cos(k[Dm −Dl]),
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where κ̄ is a frequency independent component and ψ(ω) is a component due to
spatial correlation.

Now, let

ξu =
1

2π

∫ π

−π
ψ(ω)|S(e jω)|2e jωu dω (4.58)

and
Ξu,v =

1
2π

∫ π

−π
ψ(ω)|S(e jω)|2e jω(u−v) dω (4.59)

be the uth element of a vector ξ and the (u,v)th element of a matrix Ξ respectively.
The expected value of the uth element of rx̄x̄ from (4.52) then becomes

E {rx̄x̄,u} = κ̄ru + ξu, u = 1,2, . . . , p, (4.60)

where rss,u is the uth element of the vector rss in (4.11). Similarly, the expected value
of the (u,v)th element of Rss is

E {rx̄x̄,uv} = κ̄rss,uv +Ξuv, u,v = 1,2, . . . , p, (4.61)

where rss,uv is the (u,v)th element of the matrix Rss defined in (4.11). The expected
set of coefficients for the DSB output is therefore

E {b̂DSB} ∼= (κ̄Rss +Ξ)−1(κ̄rss + ξ ). (4.62)

Since Ξ is a Hermitian symmetric matrix, it can be factored as

Ξ = ΓΛΓH , (4.63)

where Γ is a matrix of eigenvectors and Λ is a diagonal matrix of eigenvalues. Using
the matrix inversion lemma [15], we can write

(κ̄Rss +Ξ)−1 =
1
κ̄

R−1
ss (4.64)

− 1
κ̄2 R−1

ss Γ
(
Λ−1 −ΓH 1

κ̄
R−1

ss Γ
)−1

ΓHR−1
ss .

Finally, substituting the result from (4.64) into (4.62) we obtain the result in (4.35).
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Chapter 5
Multi-microphone Speech Dereverberation
Using Eigen-decomposition

Sharon Gannot

Abstract A family of approaches for multi-microphone speech dereverberation in
colored noise environments, using eigen-decomposition of the data correlation ma-
trix, is explored in this chapter. It is shown that the Acoustic Impulse Responses
(AIRs), relating the speech source and the microphones are embedded in the null
subspace of the received signals. The null subspace is estimated using either the gen-
eralized singular value decomposition of the data matrix or the generalized eigen-
value decomposition of the respective correlation matrix.

In cases where the channel order is overestimated, further processing is required.
A closed-form algorithm for extracting the AIR is derived. The proposed algorithm
exploits the special structure of the null subspace matrix by using the total least
squares criterion.

A study of the incorporation of the subspace method into a subband framework
has potential to improve the performance of the proposed method, although many
problems, especially the gain ambiguity problem, remain open.

The estimated AIRs can be used for dereverberation by applying conventional
channel inversion methods.

An experimental study supports the potential of the proposed method, and pro-
vides insight into its limitations.

5.1 Introduction

In many speech communication applications, the recorded speech signal is affected
by multipath reflections at the room walls and other objects on the propagation
path from the source to the microphones. This phenomenon is usually referred to
as reverberation. The received reverberant speech signal is often perceived by the
listeners as suffering from reduced quality, and in severe cases, as unintelligible.
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Moreover, subsequent processing of the speech signal, such as speech coding or
Automatic Speech Recognition (ASR) might be rendered useless in the presence of
even modest levels of reverberation.

This chapter is dedicated to multi-microphone algorithms, which are based on
concepts adopted from the blind deconvolution (also known as blind equalization
or blind identification) family of methods [19]. Blind deconvolution has been suc-
cessfully applied in communication applications. It usually consists of two stages.
First, the impulse response of the system, relating the source and the receivers, is
blindly estimated. Then, at the subsequent inversion stage, these estimates are used
for the equalization. It is assumed that perfect estimation of the impulse responses
suffices for perfectly equalizing the received signal. A survey of multichannel blind
identification methods is given in [40].

The core of this chapter is a discussion of methods for channel identification
based on the eigen-structure of the spatiotemporal correlation matrix of the received
signals.

Two of the early contributions to this field may be attributed to Moulines et
al. [34] and to Xu et al. [43]. In [34] the correlation matrix of a data block is first es-
timated. Then, using eigenvalue decomposition, the null subspace of the correlation
matrix is determined. Finally, based on the orthogonality of the channels, assumed
to be Finite Impulse Response (FIR) filters, and the null subspace, the identification
is performed by applying a (rather heuristic) minimization of a quadratic term, re-
lated to the null subspace. It is shown that the filters are identifiable, provided that
the dimension of the correlation matrix is large enough and that the channels do not
share any common zeros. The assumption that the filter order is known in advance,
and the tendency of the correlation matrix towards high dimensionality, restricts the
application of the proposed method to speech dereverberation problems.

Xu et al. [43] officially state and prove the necessary and sufficient conditions for
the identifiably of the Acoustic Impulse Responses (AIRs) from the received multi-
microphone data. They show that the input signal must be sufficiently ‘rich’ to excite
all the systems’ modes (i.e., the respective correlation matrix is of sufficient rank)
and that the AIR polynomials must not share common zeros. They show that the
AIR can be estimated by calculating the correlation matrix of the receivers’ signals,
provided that the length of the filters is overestimated. The correct order of the filters
can be calculated by identifying the number of zero eigenvalues.

Gürelli and Nikias [15] presented an Eigenvector-Based Algorithm for Multi-
channel Blind Deconvolution (EVAM). They show that deconvolution may be ob-
tained by filtering the received signals with an FIR filter. The order of these filters is
assumed to be an overestimation of the actual AIRs’ order. They further show that
the null subspace eigenvectors of the respective correlation matrix are filtered ver-
sions of the actual AIRs. The extraneous zeros constitute filters, the order of which
is equal to the amount of overestimation. These zeros are shown to be common
to all null eigenvectors. This observation forms the basis of the proposed proce-
dure for eliminating extraneous zeros. The authors propose a recursive method for
successively eliminating the extraneous zeros, referred to as the fractal method. In
this method, the estimated AIRs’ order is gradually decreased until only one null
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subspace eigenvector remains. The correct-order AIRs can then be extracted from
the remaining eigenvector. The algorithm has been successfully applied to noiseless
speech signals, filtered by arbitrary filters, 600 taps long.

Affes and Grenier [1] use the eigen-structure of the correlation matrix (calcu-
lated per frequency band) to show that the desired system, relating the source signal
and the receiving microphones, can be extracted from the signal subspace as well.
The signal subspace is estimated using the recursive tracking algorithm proposed by
Yang [45]. The algorithm proposed in [1] is implemented in the frequency domain.
Therefore, rather than estimating the AIR, its Fourier transform, denoted Acoustic
Transfer Function (ATF), is calculated. The estimated ATFs are then embedded into
a Generalized Sidelobe Canceller (GSC) beamformer, which is used for enhancing
a speech signal contaminated by white noise. The use of the ATF estimator can re-
duce the reverberation, provided that some a priori information is given. In [1], it is
assumed that the average norm of all ATFs can be measured in advance. It is shown
that this quantity is quite robust to small speaker movements. Doclo and Moonen [5]
extended the concept of signal subspace estimation to spatially non-white noise en-
vironments, using Generalized Eigenvalue Decomposition (GEVD). The resulting
algorithm is able to reduce jointly the noise and mitigate the reverberation, when
the average ATF norm is given. It should be emphasized, however, that when this
information is not available, neither method can eliminate the reverberation entirely.
Since the small movement assumption, which is an important assumption intrinsic
to both methods, cannot be be guaranteed in many important applications, we will
avoid using it in this chapter.

Gannot and Moonen (see [11] and its preliminary version [9]) use the received
signals’ correlation matrix (similar to the matrix used by Gürelli and Nikias [15])
for extracting the AIRs. Their method differs in the treatment of the overestima-
tion of the system order. The null subspace is first obtained using the GEVD of the
noisy correlation matrix and the respective noise-only correlation matrix. The spe-
cial Sylvester structure of the filtering matrix is then imposed on the null subspace
for deriving a Total Least Squares (TLS) estimate of the desired AIRs. Other, less
robust but computationally efficient methods are derived, based on the QR decom-
position of the same null subspace. The high sensitivity of the GEVD procedure to
noise, especially when the involved AIRs are very long, together with the wide dy-
namic range of the speech signal, limit the applicability of the full-band method in
realistic scenarios. Therefore, Gannot and Moonen further incorporate the TLS sub-
space method into a subband structure [10, 11]. The subband method proves to be
efficient, although a new problem, namely the gain ambiguity problem, arises. Ene-
man and Moonen [7] propose a method for mitigating the gain ambiguity problem
inherent to subband methods.

Several classical and more recently developed multi-microphone dereverbera-
tion algorithms are compared by Eneman and Moonen [8] in several test scenarios.
The dereverberation ability of the algorithms as pre-processors for ASR systems,
as well as their ability to flatten the frequency response of the ATFs, is validated.
Non-encouraging results are obtained by both the full-band and subband versions
of the null subspace methods, despite their higher computational load, compared to
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the simpler dereverberation methods, e.g., delay-and-sum beamforming, matched
filtering [26], and cepstral processing [31].

Lin et al. [29, 30] address the problem of the common zeros. The identifiabil-
ity conditions, stated in [34, 43], are violated when the AIRs share common zeros.
Hughes and Nakeghbali [25] show that polynomials with random coefficients tend
to have uniformly distributed zeros close to the unit circle as the polynomial order
tends to infinity. Therefore, ATFs will be more likely to have common or near com-
mon zeros for larger orders. Since, according to Polack’s theory [36], AIRs can be
modeled as long filters with uncorrelated taps having a decaying energy profile, it is
reasonable to assume that the common zeros phenomenon is likely to occur. Note,
however, that common zeros are less likely to occur when more microphone signals
are used, as the zeros should be common for all channels. It is shown in [29, 30]
that these common zeros have the effect of filtering the input signal. Hence, utiliz-
ing common subspace methods, only a filtered version of the input signal can be
reconstructed rather than the actual input signal. However, assuming slowly time
varying room responses and non-stationary input signal (recall that the input is a
speech signal) the common zeros can be identified and eliminated from the entire
response. Note that the overestimation of the AIRs order is manifested as common
zeros in the identification procedure [11]. Hence, the AIRs’ common zeros, and
the common zeros resulting in from the overestimation, are indistinguishable. It is
therefore assumed in [29] that the exact AIR order is known. The method for iden-
tification of common zeros has been tested using 512 taps long filters in a noiseless
environment.

Javidi et al. [27] investigate the influence of noise on the criterion that forms
the core of the subspace methods, namely that the AIRs are embedded in the null
(noise) subspace eigenvectors. They show that, in presence of noise, the eigenvector
producing the best channel estimate, does not necessarily correspond to the eigen-
value of the smallest power.

A class of frequency-domain adaptive approaches was proposed by Huang and
Benesty [22]. The minimizer of the proposed criterion is the smallest eigenvalue of
the data matrix. The minimization is carried out using Least Mean Squares (LMS)-
type adaptation in the frequency-domain. The resulting AIRs are normalized to have
unit norm. The robustness of the proposed Normalized Multichannel Frequency Do-
main Least Mean Square (NMCFLMS) algorithm is explored by Hasan et al. [17].
They show that by incorporating the correct delay and gain of the direct-path into
the NMCFLMS algorithm, an improved convergence behavior and increased robust-
ness of the algorithm may be obtained. Ahmad et al. [3] show that this performance
improvement is maintained when the correct direct-path delay is replaced by its es-
timate obtained using the PHAT variant of the GCC algorithm [28]. The robustness
of the NMCFLMS algorithm to additive noise is further explored by Hasan and
Naylor [18]. They show that the misconvergence of the NMCFLMS algorithm can
be attributed to the non-zero gradient of the cost function under noisy conditions.
The convergence characteristic can be ameliorated by introducing frequency domain
energy constraints which can counterbalance the low-pass filtering effect of the un-
constrained NMCFLMS algorithm. Ahmad et al. [2] propose the use of alternating
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sets of filters to alleviate the misconvergence phenomenon. One set is adapted using
the NMCFLMS algorithm, while the second set keeps track of the best available
estimate obtained just before the algorithm misconverged. A joint scheme for blind
source separation and dereverberation is proposed by Huang et al. [23]. They show
that the Multi-Input Multi-Output (MIMO) system can be recast as a set of Single-
Input Multi-Output (SIMO) systems for each input signal. Assuming that from time
to time each speaker occupies an interval exclusively, and that the AIRs are slowly
varying in time, the AIRs can be identified by the application of the NMCFLMS
algorithm.

Hikichi et al. [20, 21] propose another method for compensating for the excess
zeros resulting in from the application of the subspace method due to channel over-
estimation. In their method, the AIRs are first estimated using subspace methods.
Then, the exact inverse filter set is calculated using Multiple-input/output INverse
Theorem (MINT) [32]. The signal processed by the inverse filter set is still reverber-
ated due to the effect of the common polynomial. It is shown that this reverberation
effect is proportional to the inverse of the minimum phase counterpart of the filter
constructed by the common zeros. A method for extracting the compensating poly-
nomial coefficients from the AIR estimates (having overestimated order) is derived,
employing the multi-channel linear prediction technique.

The structure of this chapter is as follows. The general dereverberation problem
is stated in Sect. 5.2. In Sect. 5.3 we review the core principle of the null subspace
algorithm. This review serves as an intuitive explanation of the concepts proved in,
e.g., [43]. The basic full-band algorithm, based on the Sylvester structure of the
filtering matrix, is explored in Sect. 5.4. Several important extensions, namely the
two-microphone noisy case, the multi-microphone case, and the case in which only
part of the null eigenvectors is available, are presented in Sect. 5.5. Sect. 5.6 is
dedicated to the incorporation of the null subspace algorithm into a subband struc-
ture. The experimental study, presented in Sect. 5.8 verifies the applicability of the
proposed methods to the problem at hand and emphasizes their performance limita-
tions. These limitations, related to the noise robustness, the computational burden,
the common zero problem, and the gain ambiguity problem, encountered in the
subband variants, are discussed in Sect. 5.9, while possible cures and new research
directions are proposed.

5.2 Problem Formulation

A speech signal is received by M microphones in a noisy and reverberant environ-
ment. The received speech signal is subject to propagation through a set of AIRs
before being picked up by the microphones. The M received signals are given by:
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Fig. 5.1 The general reverberation model. Each of the microphone signals xm(n) is comprised of
the speech signal s(n) convolved with the ATFs Hm(z) and an additive noise signal νm(n)

xm(n) = ym(n)+νm(n) (5.1)
= hm(n)∗ s(n)+νm(n)

=
L

∑
k=0

hm(k)s(n− k)+νm(n),

where m = 1, . . . ,M is the microphone index, n = 0,1, . . . ,N is the time index, the
number of samples observed is N + 1, xm(n) is the signal received at the mth mi-
crophone, ym(n) is the corresponding desired signal component, νm(n) is the noise
signal picked up by the mth microphone and s(n) is the desired speech signal. We
further assume that the AIRs, relating the speech source and each of the M micro-
phones, can be modeled as FIR filters of order L, time-invariant during the N + 1
observed samples, and having the following coefficients:

hT
m =

[
hm(0) hm(1) . . . hm(L)

]
.

Define also the z-transform of each of the M filters as:

Hm(z) =
L

∑
k=0

hm(k)z−k, m = 1,2, . . . ,M.

All the involved signals and AIRs are depicted in Fig. 5.1. The goal of the dere-
verberation task is to reconstruct the speech signal s(n) from the noisy observations
xm(n), m = 1,2, . . . ,M. In this contribution we will try to achieve this goal by first
estimating the AIRs, hm, and then applying a signal reconstruction scheme based on
these AIR estimates. Schematically, an AIR estimation block, depicted in Fig. 5.2
will be the outcome of the first stage of the dereverberation algorithm.
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Estimation

ATF

z1(n)

z2(n)

zM (n)

Ĥ1(z)

Ĥ2(z)

ĤM(z)

Fig. 5.2 Schematic depiction of an ATF estimation procedure. The inputs of the procedure are the
microphone signals xm(n), m = 1,2, . . .,M, and its outcome are the estimated ATFs Ĥm(z), m =
1,2, . . . ,M

s[n]

ATFs

y2(n)

y1(n)

∑

Nullifying filters

0

E�(z)

E�(z)H2(z)

H1(z) H2(z)

−H1(z)

Fig. 5.3 Nullifying filters for the two-microphone noiseless case. The desired ATFs are embedded
in the nullifying filters (in reverse order)

5.3 Preliminaries

In this section we lay the foundations of the algorithm by showing that the desired
AIRs are embedded in the null subspace of a signal data matrix. This proof is a
repetition of previously established results (e.g., [15, 34, 43]), but presented in a
more intuitive way. We demonstrate the concept for the two-microphone noiseless
case.

The two-microphone noiseless case is depicted in Fig. 5.3. The noiseless signals,
ym(n), are taken from the left-hand side of the figure as:

y1(n) = h1(n)∗ s(n),
y2(n) = h2(n)∗ s(n), (5.2)

where ∗ denotes the convolution. Clearly, as depicted on the right-hand side of
Fig. 5.3, the following equality holds:

(y2(n)∗ h1(n)− y1(n)∗ h2(n))∗ e�(n) = 0, (5.3)
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where e�(n), � = 0,1,2, . . . are arbitrary and unknown filters, the number and order
of which will be discussed in the sequel. It is evident that the filtered version of the
desired AIRs, subject to the constraint that the arbitrary filters, e�(n) are common to
all the microphone systems, results in a zero output.

Define the set of filtered AIRs h̃m,�(n) = hm(n) ∗ e�(n), m = 1,2, . . . ,M. Let
h̃m,�, m = 1,2, . . . ,M be vectors comprised of the coefficients of the respective filters
given by:

h̃T
m,� =

[
h̃m,�(0) h̃m,�(1) . . . h̃m,�(L̂)

]
. (5.4)

Concatenating these vectors yields:

h̃T
� =

[
h̃T

1,� h̃T
2,� . . . h̃T

M,�

]
, (5.5)

where we assume at present that M = 2. Define also the (L̂+1)× (N + L̂+1) single
channel data matrix

Ym =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ym(0) · · · ym(L̂−1) ym(L̂) · · · ym(N) 0 · · · 0

0 ym(0) · · ·
...

... · · · ym(N) 0 0
... 0

. . .
...

. . .
...

0 ym(0)
. . . 0

. . .
0 · · · 0 ym(0) · · · ym(L̂) · · · ym(N)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (5.6)

Note that, as the correct AIR order L is unknown, an overestimated value, L̂ is used
instead, i.e., the inequality L̂ ≥ L is assumed to hold. An estimate of the correct order
would be a by-product of the proposed algorithm. Define also the two-channel data
matrix,

Y =
[

Y2
−Y1

]
. (5.7)

Using definitions (5.4)–(5.7) and Fig. 5.3 we have:

YT h̃� = 0, ∀�. (5.8)

It is therefore easily verified that

h̃�YYT h̃� = 0, ∀� (5.9)

also holds. We can now identify the 2(L̂ + 1)× 2(L̂+ 1) sample correlation matrix
of the data as R̂y = YYT

N+1 . Hence, the vectors h̃�, the number of which is yet to be
determined, are the eigenvectors belonging to the null subspace of R̂y. Now, follow-
ing [15], the null subspace of the correlation matrix can be calculated by virtue of
the eigenvalue decomposition. Let λ�, � = 0,1, . . . ,2L̂+ 1 be the eigenvalues of the
correlation matrix R̂y. Then, by sorting them in ascending order, we have:
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λ� = 0, � = 0,1, . . . , L̂−L
λ� > 0, otherwise . (5.10)

Hence, as proven by Gürelli and Nikias [15], the rank of the null subspace of the
correlation matrix is L̂−L + 1. This rank is useful for determining the correct AIR
order, L. We note that Singular Value Decomposition (SVD) of the data matrix Y
might be used instead of EVD of the correlation matrix R̂y for determining the null
subspace. SVD is generally regarded as a more robust method.

Denote the null subspace vectors (eigenvectors corresponding to zero eigenvalues
or singular values) by v� for � = 0,1,2, . . . , L̂−L. Then, splitting each null subspace
vector into two parts of equal length L̂+ 1 we obtain

V =
[

v0 v1 · · · vL̂−L

]
=
[

h̃1,0 h̃1,1 · · · h̃1,L̂−L
h̃2,0 h̃2,1 · · · h̃2,L̂−L

]
. (5.11)

Each part of the null subspace vector can be readily identified as the filtered AIRs
h̃m,�, given by (5.4), with the corresponding z-transform:

H̃m,�(z) =
L̂

∑
k=0

h̃m,�(k)z−k, l = 0,1, . . . , L̂−L, m = 1,2. (5.12)

From the above discussion, these filters may be presented as the following product:

H̃m,�(z) = Hm(z)E�(z), � = 0,1, . . . , L̂−L, m = 1,2. (5.13)

Hence, the zeros of the filters H̃m,�(z) extracted from the null subspace of the data,
include the roots of the desired filters as well as some extraneous zeros. This obser-
vation was proven by Gürelli and Nikias [15] as the basis of their EVAM algorithm.
The core of all eigen-decomposition based methods is formally stated in Lemma 5.1
(for the general M-channel case).

Lemma 5.1. Let h̃m,� be the partitions of the null subspace eigenvectors into M vec-
tors of length L̂+1, with H̃m,�(z) their equivalent filters. Then, all the filters H̃m,�(z)
for � = 0, . . . , L̂−L have L common roots, which constitute the desired ATFs Hm(z),
and L̂−L different extraneous roots, which constitute E�(z). These extraneous roots
are common for all partitions of the same vector, i.e., H̃m,�(z) for m = 1, . . . ,M. ��

Under several regularity conditions (stated, for example, by Moulines et al. [34]),
the filters Hm(z) can be found. Of special interest is the observation that common
roots of the filters Hm(z) cannot be extracted by the method, because they might be
confused with the extraneous roots that constitute E�(z). Although this is a drawback
of the method, we will benefit from this property while constructing the subband
structure in Sect. 5.6.

In matrix form, (5.13) may be written in the following manner. Define the (L̂ +
1)× (L̂−L+ 1) Sylvester filtering matrix (recall we assume L̂ ≥ L),
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Hm =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hm(0) 0 0 · · · 0
hm(1) hm(0) 0 · · · 0

... hm(1)
. . .

...

hm(L)
...

. . . . . . 0

0 hm(L)
. . . hm(0)

... 0 hm(1)
...

. . .
...

0 0 · · · 0 hm(L)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
L̂−L+1

. (5.14)

Then,
h̃m,� = Hme�, (5.15)

where, eT
� =

[
e�(0) e�(1) . . . e�(L̂−L)

]
, � = 0,1, . . . , L̂−L are vectors of the coef-

ficients of the arbitrary unknown filters E�(z). Thus, the number of different filters
(as shown in (5.13)) is L̂−L + 1 and their order is L̂−L. Using Fig. 5.3 and (5.3)
we obtain in matrix form:

V =
[

H1
H2

]
E �

= HE. (5.16)

E is an unknown (L̂− L + 1)× (L̂− L + 1) matrix, formed by concatenating the
arbitrary unknown filters,

E =
[

e0 e1 · · · eL̂−L
]
.

We note that, in the special case where the AIRs’ order is known, i.e. L̂ = L, there is
only one vector in the null subspace and its partitions h̃m,0, m = 1, . . . ,M constitute
the desired filters hm up to a (common) scaling factor. In the case where L̂ > L, the
actual ATFs Hm(z) are embedded in H̃m,�(z), � = 0,1, . . . , L̂ − L. The case L̂ < L
cannot be treated properly by the proposed method.

The special structure depicted in (5.14) and (5.16) forms the basis of our pro-
posed algorithm.

5.4 AIR Estimation – Algorithm Derivation

In this section an AIR estimation algorithm is derived. The special structure of the
null subspace, discussed in Sect. 5.3 is exploited to derive the estimation method.
Initially, we concentrate on the two-microphone noiseless case. In Sect. 5.5 we will
elaborate on several extensions of the algorithm.

Based on the special structure of (5.16) and, in particular, on the Sylvester struc-
ture of H1 and H2, found in (5.14), we now derive an algorithm for estimating the
AIRs hm.
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Note that E in (5.16) is an arbitrary square matrix, which implies that its inverse

usually exists. Denote this inverse by E−1 �
= inv(E). Then

VE−1 = H. (5.17)

Denote the columns of E−1 by ei
�, � = 0,1, . . . , L̂−L. Equation (5.17) can then be

rewritten as,
Ṽθ = 0, (5.18)

where 0 is a vector of zeros, 0T =
[

0 0 · · · 0
]
, Ṽ is defined as:

Ṽ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V O · · · · · · · · · O −S(0)

O V O · · · · · · O −S(1)

... O
. . .

...
...

...
...

. . . . . .
...

...
...

...
. . . . . . O

...
O O · · · · · · O V −S(L̂−L)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.19)

and the vector of unknowns is defined as:

θT =
[
(ei

0)
T (ei

1)
T · · · (ei

L̂−L)T hT
1 hT

2

]
. (5.20)

We used the following expressions: O is a 2(L̂+1)×(L̂−L+1) all-zero matrix and
S(�), � = 0,1, . . . , L̂−L, is a fixed shifting matrix given by:

S(�) =

⎡
⎢⎢⎢⎢⎢⎢⎣

O�×(L+1)
I(L+1)×(L+1)

O(L̂−L−l)×(L+1)

O(L̂+1)×(L+1)

O(L̂+1)×(L+1)

O�×(L+1)
I(L+1)×(L+1)

O(L̂−L−l)×(L+1)

⎤
⎥⎥⎥⎥⎥⎥⎦

.

I(L+1)×(L+1) is the (L + 1)× (L + 1) identity matrix and Ok×(L+1) is a k× (L + 1)
all-zero matrix (k as specifically determined). A non-trivial (and exact) solution for
the homogenous set of equations (5.18) may be obtained by finding the eigenvector
of the matrix Ṽ corresponding to its zero eigenvalue. The AIR coefficients are given
by the last 2(L + 1) terms of this eigenvector. The first part of the eigenvector is
comprised of the nuisance parameters ei

�, � = 0,1, . . . , L̂−L. In the presence of noise,
this somewhat non-straightforward procedure will prove to be useful.
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5.5 Extensions of the Basic Algorithm

In this section we extend the algorithm proposed in Sect. 5.4 in several important di-
rections. First, the two-microphones contaminated by noise case is treated. Then, the
basic two-channel algorithm is extended to deal with the general multi-microphone
coloured noise case. Finally, we treat the case when only part of the null subspace
vectors can be determined. This generalization becomes relevant whenever the input
signal correlation matrix becomes ill-conditioned. As the input speech signal corre-
lation matrix tends to exhibit low level eigenvalues, the likelihood of encountering
this situation is relatively high.

5.5.1 Two-microphone Noisy Case

Recall that V is a matrix containing the eigenvectors corresponding to zero eigen-
values of the noiseless data matrix. In the presence of additive noise, the noisy ob-
servations xm(n), given in (5.1), can be stacked into a data matrix fulfilling

X = Y+Υ,

where X and Υ are noisy signal and noise-only data matrices, similar to (5.7) with
ym(n) replaced by xm(n) or νm(n), respectively.

Now, for long observation intervals, the following approximation holds:

R̂x ≈ R̂y + R̂ν ,

where R̂x = XXT

N+1 and R̂ν = ΥΥT

N+1 are the noisy signal and noise-only signal correla-
tion matrices, respectively. Now (5.18) will no longer be accurate. For dealing with
this problem, several modifications to (5.18) are required. First, the null subspace
matrix V should be determined in a manner slightly different from that proposed
in (5.10). The white noise and colored noises cases are treated separately in the
sequel. Second, the matrix Ṽ defined in (5.19) will, in general, no longer have a
zero-valued eigenvalue. A reasonable approximation for the solution, although not
exact, would be to cast (5.18) into the following problem:

Ṽθ = ε, (5.21)

where ε is an error term, which should be minimized. To obtain this minimization,
the eigenvector corresponding to the smallest eigenvalue of Ṽ is chosen, and the
desired AIRs are obtained from the last part of the vector (as in the noiseless case).
Note that this corresponds exactly to the TLS approach for estimating the param-
eter vector θ . As the matrix Ṽ is highly structured, the more efficient Structured
Total Least Squares (STLS) method [24] may be used. The application of the STLS
method is beyond the scope of our discussion.
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5.5.1.1 White Noise Case

In the case of spatiotemporally white noise, i.e. when R̂ν ≈ σ2
ν I (where I stands for

the identity matrix) the first L̂−L+1 eigenvalues in (5.10) will be σ2
ν rather than 0.

However, the corresponding eigenvectors remain the same, and, hence, the rest of
the algorithm remains unchanged.

5.5.1.2 Colored Noise Case

The case of non-white noise was addressed in [15, 34]. In contrast to the pre-
whitening of the noise correlation matrix, presented in [34], and the noise balancing
method presented in [15], we treat the problem more rigorously, with the applica-
tion of either the GEVD or the Generalized Singular Value Decomposition (GSVD)
techniques. These alternative methods are computationally more efficient. GEVD
will be applied to the noisy signal correlation matrix, R̂x and the noise correlation
matrix R̂ν . The latter may be estimated from speech-free data segments. The null
subspace matrix V is now constructed by choosing the generalized eigenvectors
corresponding to the generalized eigenvalues of value 1. Alternatively, the GSVD
of the corresponding data matrices, X and Υ, can be used. After determining the
null subspace matrix, the subsequent steps of the algorithm remain unchanged.

5.5.2 Multi-microphone Case (M > 2)

In the multi-microphone case, a reasonable extension would be based on channel
pairing (see also [15]). Each of the M×(M−1)

2 pairs of the noiseless signals ful-
fills (5.22):

(yi(n)∗ h j(n)− y j(n)∗ hi(n))∗ e�(n) = 0, (5.22)

i, j = 1,2, . . . ,M, � = 0,1, . . . , L̂−L.

Thus, the new data matrix is constructed as follows:

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X2 X3 · · · XM O · · · O · · · O
−X1 O · · · X3 · · · XM O

O −X1 −X2 O
...

... O
. . .

... O
...

. . . O XM
O O · · · −X1 · · · −X2 · · · −XM−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.23)
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where O is an (L̂+1)× (N + L̂+1) all-zero matrix. This data matrix, as well as the
corresponding noise matrix can be used by either the GEVD or the GSVD methods
to construct the null subspace. Denoting this null subspace by V, we can construct
a new TLS equation,

Ṽθ = ε ,

where Ṽ is constructed following the same procedure by which Ṽ was constructed
from V in (5.19). The unknown parameter vector θ is now given by:

θT =
[

(ei
0)

T (ei
1)

T · · · (ei
L̂−L)

T hT
1 hT

2 . . . hT
M

]
.

Note that the last M× (L+1) terms of θ , hm, m = 1,2, . . . ,M, give the desired filter
coefficients.

5.5.3 Partial Knowledge of the Null Subspace

In the noisy case, especially when the dynamic range of the input signal s(n) is high
(which is the case for speech signals), determination of the null subspace might be
a troublesome task. As there are no zero eigenvalues, and as some of the eigenval-
ues are small due to the input signal, the borderline between the signal eigenvalues
and the noise eigenvalues becomes vague. As the number of actual null subspace
vectors is not known in advance, using only a subgroup of the eigenvectors, which
are associated with the smallest eigenvalues, might increase the robustness of the
method. Based on Lemma 5.1, it is obvious that in the noiseless case, even two null
subspace vectors suffice to estimate the AIRs, merely by extracting their common
zeros. Denote by L̄ < L̂− L the number of eigenvectors used. The dimensions of
the matrix E in (5.16) becomes (L̂−L + 1)× L̄, resulting in non-invertible E. To
overcome this problem we suggest concatenating several shifted versions of (5.16):

V̄ =

⎡
⎢⎢⎢⎢⎢⎢⎣

V 0 0 0
0 V 0 0
...

. . . 0
. . .

...
0 V

⎤
⎥⎥⎥⎥⎥⎥⎦

= H̄

⎡
⎢⎢⎢⎢⎢⎢⎣

E 0 0 0
0 E 0 0
...

. . . 0
. . .

...
0 E

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
L>L̂−L+l̂

�
= H̄Ē (5.24)

The dimensions of Ē are L× (L̂−L + l̂), where l̂ is the number of blocks con-
catenated. Each block adds 1 to the row dimension and L̄ to the columns dimension.

The matrix H̄ has a structure similar to H in (5.14) and (5.16) but with more
columns. The resulting matrix Ē now has more columns than rows and hence can
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generally be inverted using the pseudo-inverse

E+ = ĒT (ĒĒT )−1, (5.25)

resulting in
V̄E+ = H̄. (5.26)

Now the extended matrix V̄ can be used in (5.21), rather than V, to construct a
modified matrix Ṽ, using a procedure similar to (5.19). Subsequent stages of the
algorithm remain unchanged.

5.6 AIR Estimation in Subbands

The proposed method, although theoretically tractable, has several drawbacks when
applied to real-life scenarios. The first problem stems from the tendency of AIRs in
real room environments to be very long (2000 taps are commonly encountered even
in regular offices). In such cases, the GEVD procedure is not robust enough and
it is quite sensitive to small errors in the null subspace matrix [14]. Furthermore,
the matrices involved become extremely large, imposing huge memory and com-
putation requirements. Another problem arises from the wide dynamic range of the
speech signal. This may result in erroneous estimates of the ATFs in the low energy
bands of the input signal.

A common procedure for treating these problems is to spilt the full-band sig-
nal into several frequency subbands. We propose to incorporate the same subspace
methods presented in Sects 5.4–5.5 into a subband structure. The use of subbands for
splitting adaptive filters, especially in the context of echo cancellation, has gained
recent interest in the literature [6, 39, 41, 42]. However, the use of subbands in
subspace methods is not as common. The design of the subbands is of crucial im-
portance. Special emphasis should be given to adjusting the subband structure to the
problem at hand. In this contribution we only aim to demonstrate the ability of the
method, thus a simple 6-channel subband structure, as depicted in Fig. 5.4, is used.
Each of the channels is constructed by shifting a prototype low-pass FIR filter of
order 150 to the appropriate position along the frequency axis. The filter was de-
signed by applying the window method (using FDATool provided by MATLAB R©).
We used equi-spaced filters of equal bandwidth; however more advanced design
methods can be adopted.

The M microphone signals are now filtered by the subband structure prior to the
application of the subspace method. Although the resulting subband signal corre-
sponds to a longer filter (which is the convolution of the corresponding AIR and the
subband filter), the algorithm aims at the reconstruction of the actual AIR, ignor-
ing the filter-bank roots. This can be attributed to the fact that the filter-bank roots
are common to all channels. Recall that subspace methods are blind to common
zeros, as discussed in Sect. 5.4. For properly exploiting the benefits of the subband
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Fig. 5.4 Subband structure – six equi-spaced equi-bandwidth filters

structure, each subband signal should be decimated. We chose a critically decimated
filter-bank, i.e., the decimation factor equals the number of bands. No special efforts
were made to minimize the reconstruction error of the filter-bank. The decimation
results in an AIR order reduction (per band) by approximately the decimation fac-
tor, relaxing the computation and memory demands of the AIR estimation task. As
a direct result, the required overestimated order becomes much shorter than the cor-
responding order in the full-band case. Another benefit of the decimation may be a
boost in performance, which is obtained because the signals processed in each sub-
band are flatter in the frequency domain. Following the estimation of the decimated
AIRs, they are combined in an appropriate synthesis system, comprised of interpo-
lation followed by a synthesis filter-bank, which is similar to the analysis filter-bank.
The overall subband system is depicted in Fig. 5.5, whereas the AIR estimation block
was shown schematically in Fig. 5.2. The analysis and synthesis filters are denoted
Pk(z), k = 0,1, . . . ,K −1 and Qk(z), k = 0,1, . . . ,K −1, respectively.

5.7 Signal Reconstruction

The ultimate goal of the dereverberation algorithm is the reconstruction of the de-
sired speech. In Sects. 5.4–5.6 we introduced a family of methods for estimating the
AIRs. In this section we will use these estimates for equalizing the channels. Equal-
ization schemes were extensively studied in the literature. Miyoshi and Kaneda [32]
proposed a procedure, referred to as MINT, for inverting AIRs. They show that
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Ĥ1
M (z)

Ĥ1
2(z)

x0
2(n)

x1
2(n)

x
K−1
2 (n)

Ĥ
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Ĥ
K−1
1 (z)

Ĥ0
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Fig. 5.5 Subband dereverberation system. Pk(z), k = 0,1, . . . ,K − 1 are the analysis filters and
Qk(z), k = 0,1, . . .,K−1 are the corresponding synthesis filters, which guarantee (almost) perfect
reconstruction. The ATF estimation blocks, shown schematically in Fig. 5.2, implement the (full-
band) dereverberation algorithm, independently applied in each subband

perfect reconstruction can be obtained with FIR filters when multiple observations
are available, provided that the AIRs do no share any common zeros. Radlovic et
al. [37] argued, however, that the MINT equalizer is very sensitive to uncertainties
and variations in the positions of the source and microphone. The high sensitivity of
the MINT procedure to inaccuracies in the AIR estimates is a direct consequence of
this observation. Gaubitch et al. [13] extend previous work, presented by Yamada
et al. [44], and introduce a subband version of the MINT algorithm. They show
that the subband estimator is computationally more efficient and less sensitive to
inaccuracies in the estimated AIRs compared to its full-band counterpart.

Let gm(n), m = 1,2, . . . ,M denote a set of M equalizers. Using (5.1) the estimated
speech signal is given by:

ŝ(n) =
M

∑
m=1

gm(n)∗ xm(n)

=
M

∑
m=1

(gm(n)∗ hm(n)∗ s(n)+ gm(n)∗νm(n)) . (5.27)
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The goal of the equalization procedure is to obtain the filter set gm(n), m =
1,2, . . . ,M. Perfect equalization is obtained by satisfying:

M

∑
m=1

gm(n)∗ hm(n) = δ (n). (5.28)

In the z-domain this identity can be formulated as:

M

∑
m=1

Gm(z)Hm(z) = 1. (5.29)

As an alternative to the MINT equalizer, a simple solution for eliminating the rever-
beration can be obtained by a Matched Filter Beamformer (MBF), also known as
the zero-forcing equalizer in the communications field. A normalized version of the
MBF [26] equalizer is given by

Gm(z) =
H∗

m(1/z∗)
∑M

m=1 Hm(z)H∗
m(1/z∗)

, (5.30)

where ∗ denotes the conjugation operation. In the frequency domain the equalizer
transfer function can be restated as:

Gm(e jω) =
H∗

m(e jω)
∑M

m=1 |Hm(e jω)|2
. (5.31)

This solution has two drawbacks. First, there is no guarantee that the noise term
∑M

m=1 gm(n) ∗ νm(n) is canceled out; in fact, in some cases it might even be am-
plified. The second drawback stems from the non-causality of the filter in (5.30).
Hence, applying the filter set in (5.30) might result in a distorted reconstructed sig-
nal. The distortion is manifested as a response preceding the input signal, usually re-
ferred to as pre-echo. Note that applying inverse filtering, i.e., Gm(z) = 1

Hm(z) might
have the same effect, since, as noted by Neely and Allen [35], typical AIRs are not
minimum phase. In the sequel the performance of both MINT and MBF methods
will be demonstrated and compared.

5.8 Experimental Study

The applicability of the subspace methods for mitigating the reverberation effect is
verified in a series of simulations. Three Figures-Of-Merit (FOM) are used to quan-
tify the obtained results. The first is a simple inspection of the estimated AIR and
its corresponding ATF, in comparison with the actual filters. The second consists of
assessment of sound spectrograms (sonograms) and time-domain waveforms com-
paring the input speech signal, the reverberant signal, as captured by one of the
microphones, and the processed signal. This comparison tests both the system iden-
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Table 5.1 NPM vs. SNR (both measured in dB) for white noise input. The number of microphones
is M = 2, the AIR order is L = 16, and the AIR order assumed by the algorithm is L̂ = 21, i.e., the
order was overestimated by 5 taps

SNR 15 20 25 30 35 40 45
NPM −3.5 −8.6 −16.5 −28.0 −35.0 −44.0 −53

Table 5.2 NPM vs. SNR (both measured in dB) for speech signal input. The number of micro-
phones is M = 2, the AIR order is L = 16, and the AIR order assumed by the algorithm is L̂ = 21,
i.e., the order was overestimated by 5 taps

SNR 35 40 45 50 55 60 65
NPM 0.0 0.0 −2.0 −10.0 −11.0 −24.5 −38.0

tification procedure and the subsequent equalization procedure. The third FOM is
the objective measure proposed by Morgan et al. [33]. This measure, denoted Nor-
malized Projection Misalignment (NPM), is insensitive to the overall estimation
scaling, which makes this FOM suitable for evaluating the estimation performance.
The NPM is defined as

NPM = 10log10

⎛
⎝ 1
‖h‖2

2

∥∥∥∥∥h− hT ĥ
‖ĥ‖2

2
ĥ

∥∥∥∥∥
2

2

⎞
⎠ dB

= 10log10

(
1−

(
hT ĥ

‖h‖2‖ĥ‖2

)2)
dB. (5.32)

We start our experimental study with the full-band version of the subspace method,
described in Sects. 5.4–5.5 and continue with the subband version described in
Sect. 5.6.

5.8.1 Full-band Version – Results

In Tables 5.1–5.2 the dependency of the NPM on the SNR level is depicted. The
results in Table 5.1 were obtained by using white noise input, while for the results
in Table 5.2 speech input drawn from the TIMIT database [12], down-sampled to
8kHz, was used. In both cases, the length of the observation interval was 1 s, the
AIRs’ order was set to L = 16, and their coefficients were drawn from discrete uni-
form distribution. The number of microphones was set to M = 2. While applying the
algorithm, the order of the filters was overestimated and set to L̂ = 21. The contam-
inating signal was a colored Gaussian noise. The noise power spectral density was
estimated using noise-only segments, assumed to be available. For obtaining the re-
sults we used the median of 50 Monte Carlo trials. An NPM level above−10 dB can
be regarded as being of unacceptable quality. It is evident by comparing the results
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Table 5.3 NPM (measured in dB) vs. AIR order L for white noise input. The number of micro-
phones is M = 2 and the SNR=50 dB

L 16 32 64 128 256
NPM −60.0 −49.5 −33.0 −18.0 −0.5

in Tables 5.1 and 5.2 that the performance obtained by using speech signal input
is significantly inferior to the performance obtained while using white noise input.
The degradation might reach approximately 30 dB.

Next, we test the performance degradation as a function of the filter order. In this
scenario the AIR coefficients were Gaussian distributed with a decaying envelope
in accordance with Polack’s time-domain model [36]. We gradually increased the
filter order while maintaining SNR level of 50 dB. Again, the algorithm assumed
the overestimated filter order L̂−L = 5. The results are summarized in Table 5.3. It
is shown that even for a relatively high SNR level the performance of the algorithm
is subject to fast deterioration with increasing filter order. The algorithm is rendered
useless for a filter order higher than L = 128.

Finally, we conducted several experiments using the image method [4] to sim-
ulate the AIRs. The implementation of the simulator can be found in [16]. In a
noise-free scenario with white-noise input and reverberation time T60 = 0.7 s, the
obtained median NPM was −73 dB for AIRs truncated to order L = 512, and over-
estimated by the algorithm to L̂ = L+5. Due to the high computational burden, only
five Monte Carlo experiments were conducted. To further demonstrate the quality of
the estimation procedure in Fig. 5.6 we present the actual AIR together with its es-
timate for SNR = 110 dB and filter order L = 600 taps. Again, order overestimation
by 5 taps was assumed. The resulting NPM for this simulation was -27 dB. Note
that the decay rate of the AIR corresponds to the reverberation time T60 = 0.7 s,
although the impulse response was truncated to a much shorter order of 600 taps,
corresponding to a reverberation time as low as 0.07 s.

The reconstruction performance, for filter order L = 500, of the two equalization
methods, namely MINT and MBF, is evaluated by an assessment of sound sono-
grams (depicted in Fig. 5.7). Although NPM is as low as -26 dB (i.e., a good match
between the real filters and their estimates), it is clearly shown that the MINT equal-
izer fails to reconstruct the signal. This observation confirms the sensitivity analysis
presented in [37]. The MBF equalizer, although superior to the MINT equalizer in
this respect, suffers from several annoying artifacts. First, we observe the pre-echo
effect, caused by the equalizer non-causality. Another artifact can be identified as
musical tones. Although the reason for this artifact is not clear, we suspect that it
can be attributed to erroneous estimation of the subspace method in sporadic fre-
quencies.
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Fig. 5.6 AIR relating the source and microphone #1 for M = 2 microphones, SNR=110 dB and
filter order L = 600 taps. (a) Original AIR, (b) estimation error
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Fig. 5.7 Spectrograms and corresponding waveforms of (a) original speech signal s(n), (b) rever-
berant speech at microphone #1 y1(n), (c) reconstructed speech signal ŝ(n) using MINT equaliza-
tion, and (d) reconstructed speech signal ŝ(n) using MBF equalization. A two-microphone system
was used in a noise-free scenario. The AIR order was set to L = 500 and the decay rate corresponds
to T60 = 0.7 s. The full-band algorithm assumed overestimated AIR order of 5 taps

5.8.2 Subband Version – Results

For the subband estimation method 6 bands were used. A prototype filter 150 taps
long was designed for keeping low overlap between bands. All bands are related
to the prototype low-pass filter by a simple frequency shift. The full-band AIR or-
der was chosen to have 24 taps, with decaying energy profile. Hence in each band
we tried to estimate 24/6 = 4 taps. In each band the overestimated filter order
L̂ = L + 2 = 6 was assumed. The results for the noise-free scenario is presented
in Fig. 5.8. For the reconstruction of the total frequency response we assumed the
availability of the individual band gains. Hence, only the ability of the method to
estimate the frequency shaping of the filters in each band is demonstrated, and the
gain ambiguity phenomenon is ignored. It is shown that, although the estimation
in each band is quite accurate, considerable misalignment in the reconstructed full-
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Fig. 5.8 Subband method for AIR estimation. (a) and (b) real and estimated filters per subband
at microphone #1 and microphone #2, respectively. (c) and (d) the total ATFs estimated with the
subband method and with gain ambiguity compensation at microphone #1 and microphone #2,
respectively

band filters occurs. This phenomenon might be attributed to the small gaps between
the bands.

5.9 Limitations of the Proposed Algorithms and Possible
Remedies

In the previous sections we presented a family of subspace-based methods for es-
timating the AIRs. The method has two main variants, namely the full-band and
the subband algorithms. Although mathematically tractable, the presented method
has many limitations. This section is dedicated to a summary of the limitations and
drawbacks presented throughout this chapter. Possible remedies to these limitations
are proposed and potential research directions are discussed.
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5.9.1 Noise Robustness

The main limitation of subspace methods is their lack of noise robustness. As de-
picted in Tables 5.1–5.2, the sensitivity of the full-band algorithm to additive noise
is very high, especially when the AIR order becomes larger than a few hundred
taps. This might be attributed to the sensitivity of the GEVD procedure [14]. The
subband algorithm is also not very robust to noise conditions, although it is expected
that, due to the shorter filter length in each subband, it might be less sensitive than
the full-band method. The use of the MINT method for equalization emphasizes the
robustness problem. It was observed that even with almost perfect estimation of the
AIRs the MINT equalization ability might significantly differ from that of a per-
fect dereverberation algorithm. The subband MINT algorithm [13] is more robust
to noise conditions. An interesting research direction might be a complete subband
system, in which both AIR estimation and equalization are performed in subbands.

5.9.2 Computational Complexity and Memory Requirements

The proposed algorithms impose a high computational burden and memory require-
ments. Some of the algorithm’s components, namely GEVD or GSVD, and the TLS
procedure, are regarded as heavy consumers of resources. The GSVD procedure,
which uses the entire data matrix, imposes severe memory requirements, which
might be circumvented by calculating the GEVD of the correlation matrix instead.
To achieve this, a direct calculation of the correlation matrix, which bypasses the
need for the data matrix construction, is required. In any case, since AIRs tend to be
very long filters (thousands of taps long), the correlation matrix dimensions become
very high.

5.9.3 Common Zeros

Common zeros cannot be determined by the subspace method. The probability of
encountering common zeros increases with the AIR order. However, the likelihood
of this phenomenon decreases as the number of channels increases. An extension to
the multi-microphone case was presented in Sect. 5.5.2. For a preliminary experi-
mental study of the multi-microphone case, see [11].

It is shown in [29, 30] that the common zeros phenomenon can be confused with
the overestimation of the AIR order. Therefore, in order to find the common zeros
the exact AIR order must be known in advance.
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5.9.4 The Demand for the Entire AIR Compensation

Subspace methods rely heavily on the assumption that the AIR order is overesti-
mated. There is no subspace available when this constraint is not met. Therefore, the
algorithm cannot be used for partial compensation of the reverberation effect. Such
partial compensation might be very attractive for at least reducing the coloration
of the signal, while giving over the dereverberation task to another algorithm. The
appropriate use of an AIR model, such as Polack’s model, might be helpful.

5.9.5 Filter-bank Design

The subband structure is sensitive to the subband filters’ design. Two design con-
straints should be met. The first is the requirement for minimum overlap between
channels. In critically decimated filter-banks, the overlap between bands might con-
fuse the subspace method altogether. In this chapter we have used simple filter-bank
design, whereas more advanced methods for filter-bank design that might take into
account the particular constraints of the problem should be considered.

5.9.6 Gain Ambiguity

Gain ambiguity may be a major drawback of the subband algorithm. Recall that all
the subspace methods’ estimates are determined up to a gain factor. While in the
full-band scheme the only consequence of this gain ambiguity is an overall scaling
of the system output, in the subband scheme the different gain factors introduced
in each subband, it is manifested as an arbitrary frequency shaping of the output
signal. Hence, the reconstructed signal suffers from a distortion that might be as
severe as the original reverberation. Several methods can be applied to mitigate the
gain ambiguity problem. First, the original gain of the signals in each subband may
be restored as an approximate gain adjustment. Another method was suggested by
Rahbar et al. [38]. This method imposes an FIR structure on the impulse response
of the dereverberation filters. The order of the these filters should be determined
in advance. As this information is usually unavailable, the AIR order estimation
obtained by the subspace method can be used instead. An alternative mitigation of
the gain ambiguity problem was proposed in [7]. The proper use of these methods
is still a topic for further research. As far as this chapter goes, the gain ambiguity
problem is ignored, and the gain in each subband is assumed to be known.
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5.10 Summary and Conclusions

This chapter was dedicated to multi-microphone speech dereverberation algorithms
using subspace methods. The core of all the presented algorithms is the observation
that the reverberating filters are embedded in the null subspace of the data received
through multiple channels. The null subspace is estimated using either the general-
ized singular value decomposition of the data matrix or the generalized eigenvalue
decomposition of the respective correlation matrix. The proposed algorithms ad-
dress the problems of channel overestimation, additive colored noise, and the wide
dynamic range of the speech signal. Two versions of the method, namely a full-band
and subband variants, are presented. While the former is limited by the extremely
high order of the AIRs, the latter suffers from the gain ambiguity inherent to sub-
band methods.

Overall, as shown by the experimental study, both variants demonstrate a high
sensitivity to the SNR level and the AIR order. At the current stage, the proposed
algorithms are not capable of solving a dereverberation problem of realistic order,
as only relatively short AIRs can be successfully treated.

However, several fascinating research paths that are due to be explored might, in
the future, overcome all these limitations. We believe that, despite the gain ambi-
guity problem, subband structures might be able to bring the prospective solution
for the dereverberation problem, perhaps in conjunction with other, more mature
algorithms explored in other chapters of this book.
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Chapter 6
Adaptive Blind Multichannel System
Identification

Andy W.H. Khong1 and Patrick A. Naylor2

Abstract The use of adaptive algorithms for blind system identification in speech
dereverberation was proposed recently. This chapter reviews adaptive multichan-
nel system identification using minimization of the cross-relation error. One of the
algorithms that adopt this approach is the Normalized Multichannel Frequency Do-
main Least Mean Square (NMCFLMS) algorithm. We show that, in the presence of
additive noise, the coefficients of the adaptive filter employing NMCFLMS con-
verge initially toward the true acoustic impulse responses after which they then
misconverge. We provide a technique to address this misconvergence problem in
NMCFLMS. This is achieved by reformulating the minimization problem into one
involving a constraint. As will be shown, this constrained minimization problem re-
quires knowledge of the direct-path components of the acoustic impulse responses
and one of the main contributions of this work is to illustrate how these direct-path
components can be estimated under practical conditions. We will then illustrate how
these estimates can be incorporated into the proposed extended NMCFLMS (ext-
NMCFLMS) algorithm so as to address the problem of misconvergence. The simu-
lation results presented show the noise robustness of the proposed algorithm for both
white Gaussian noise and speech inputs. In addition, we illustrate how errors due to
the estimation of the direct-paths affect the performance of the proposed algorithm.

6.1 Introduction

Blind System Identification (BSI) techniques have been employed for applications
such as communications [42], geophysical [29, 30] as well as multimedia signal
processing [1]. In addition, BSI algorithms for acoustic channels have generated
much interest in recent years due to the increase in quality of service for telecom-
munication transmission as well as innovation in consumer products including, but

1Nanyang Technological University, Singapore
2Imperial College London, UK
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not limited to, tele-conferencing and video-conferencing applications. In contrast to
non-blind system identification, such as for acoustic echo cancellation [6] where a
known signal is used to facilitate the identification of the acoustic channel, BSI al-
gorithms utilize signals received from the output of an unknown system for channel
estimation. For the case of speech dereverberation, acoustic channels are first identi-
fied blindly using signals received from the microphones. These estimated channels
are then used to design equalization filters in order to remove reverberation intro-
duced by the acoustic channels.

Techniques for BSI can generally be classified into two main categories: Higher
Order Statistics (HOS) and Second Order Statistics (SOS) methods. Comparisons
between SOS and HOS methods were presented in [39]. Algorithms that are based
on HOS such as those presented in [10, 24] employ fourth-order cumulants of the
received microphone signals and require a large number of observation samples. In
addition, these methods assume a linear time-invariant unknown system. As a result,
these methods suffer from a slow rate of convergence, which in turn reduces their
tracking capability. Since it is well-known that acoustic impulse responses are time-
varying in nature [12, 28], HOS methods present an inherent challenge due to their
inferior tracking ability [35].

To address problems associated with HOS based methods, SOS based algo-
rithms such as presented in [34, 44] have been proposed. These algorithms utilize
the Cross-Relation (CR) equality between the channels and the observed channel
outputs for BSI. Subspace methods such as proposed in [33, 41] are based on the
principle of orthogonality between the signal and noise subspaces. Utilizing the CR
equality, these algorithms estimate the unknown system through the subspace de-
composition of the received data matrix. The approach presented in [14] has been
shown to be effective for the estimation of acoustic channels. Although channel
decomposition can be achieved using numerically efficient algorithms such as the
singular value decomposition) [15], one of the main concerns for subspace methods
is that they are computationally expensive given the high order nature of acoustic
impulse responses. In addition, the performance of these algorithms relies on the
existence of numerically well-defined dimensions of the signal or noise subspace.

Adaptive approaches for BSI have been proposed in order to mitigate the problem
of the high computational cost that exists in subspace methods as well as to address
the lack of tracking capability in HOS based algorithms. One of the first adaptive
BSI algorithms was proposed in [26] for communications systems utilizes the CR.
This algorithm iteratively minimizes the sum square errors between the interchannel
cross-correlation of the signals received from two channels using the recursive least
squares (RLS) algorithm. More recently, the Normalized Multichannel Frequency
Domain Least Mean Square (NMCFLMS) algorithm presented in [22] was devel-
oped and has been shown to be effective in identifying room impulse responses of
length in the order of several hundred taps. This algorithm was then employed for
dereverberation using a microphone array.

Although computationally appealing, one of the main problems of the NM-
CFLMS algorithm is that it suffers from misconvergence [18] in the presence of
noise. It has been shown through simulations presented in [2, 3, 17] that the esti-
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mated filter coefficients converge first toward the correct impulse response of the
acoustic system after which they then diverge from the true solution. Under low
signal-to-noise ratio (SNR) conditions, the effect of misconvergence becomes more
significant and occurs during earlier stages of adaptation.

The aim of this chapter is to review current adaptive approaches employing the
CR for acoustic BSI. In addition, we study the effect of noise on the performance of
one such algorithm, the NMCFLMS, and we address the misconvergence problem
that exist in this algorithm. We first define in Sect. 6.2 the BSI problem and review
conditions whereby the acoustic system can be identified. We next review algo-
rithms employing the CR in Sect. 6.3. We then describe in Sect. 6.4 how additive
noise affects the performance of NMCFLMS, otherwise known as the misconver-
gence problem. To address the problem of misconvergence, we propose in Sect. 6.5
a constraint based adaptive algorithm. The proposed extended NMCFLMS (ext-
NMCFLMS) algorithm searches for the solution by introducing a constraint into the
adaptation process. As will be shown in Sect. 6.5.2, this constraint requires knowl-
edge of the direct-path components of the impulse responses. To obtain this in-
formation, the ext-NMCFLMS algorithm first extracts the delay of each direct-path
component for each channel, in terms of their Time Differences Of Arrival (TDOA),
using the Generalized Cross Correlation (GCC) algorithm [27]. As described in
Sect. 6.5.4, in order to estimate the magnitude of the direct-path components, the
ext-NMCFLMS algorithm monitors the cost function of the NMCFLMS using a
novel cost function flattening point estimation (FPE) algorithm. This combined de-
lay and magnitude information of the direct-path components is then used in the
updating equation of the ext-NMCFLMS algorithm in order to address the mis-
convergence problem of the NMCFLMS. In Sect. 6.6 we show simulation results
illustrating the noise robustness of the proposed ext-NMCFLMS using both White
Gaussian Noise (WGN) and speech inputs.
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6.2 Problem Formulation

We consider a Single-Input Multi-Output (SIMO) Finite Impulse Response (FIR)
linear system consisting of M microphones as shown in Fig. 6.1. We define the mth

channel impulse response as

hm(n) =
[
hm,0(n), hm,1(n), . . . , hm,L−1(n)

]T
, m = 1, . . . ,M, (6.1)

and the additive noise for the corresponding channel as

νm(n) =
[
νm(n), νm(n−1), . . . , νm(n−L+ 1)

]T
, (6.2)

with [·]T being the transposition operator and L being the length of the longest im-
pulse response. The mth channel output signal is then given by

xm(n) = Hm(n)s(n)+νm(n)

=
[
xm(n), xm(n−1), . . . , xm(n−L+ 1)

]T
, (6.3)

where the source signal

s(n) =
[
s(n), s(n−1), . . . , s(n−2L+ 2)

]T (6.4)

and the L× (2L−1) Sylvester matrix Hm(n) is defined as

Hm(n) =

⎡
⎢⎢⎢⎣

hm,0(n) . . . hm,L−1(n) . . . 0
0 hm,0(n) . . . hm,L−1(n) 0
...

. . . . . .
...

0 . . . hm,0(n) . . . hm,L−1(n)

⎤
⎥⎥⎥⎦ . (6.5)

Defining E{·} as the mathematical expectation operator, we assume that the additive
noise between the M channels is uncorrelated such that

E
{
νm(n)νl(n)

}
= 0, for m �= l, (6.6)

E
{
νm(n)νm(n−n′)

}
= 0, for n �= n′, (6.7)

and that it is also uncorrelated with the input signal given by

E
{
νm(n)s(n)

}
= 0. (6.8)

In addition, we assume that the additive noise has a normal distribution with zero
mean and variance of σ2

ν , i.e., νm(n) ∼ N (0,σ2
ν ), ∀m. The problem of BSI is then

to estimate the acoustic impulse responses hm(n) using received signals xm(n) for
channels m = 1, . . . ,M.
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6.2.1 Channel Identifiability Conditions

Blind identification of a SIMO system as described above can be achieved with
second order statistics of system outputs as long as the following conditions are
met [44]:

1. Channel diversity: A multichannel model derived from a microphone array
provides spatial diversity compared to a single channel model [1]. Diversity in
this context refers to channels having different modes such that the acoustic
channels, being modelled as finite impulse response filters, are coprime, i.e.,
they have no common zeros between their transfer functions [39]. If the acous-
tic channels are not coprime then one or more common factors exist across all
channels. In the presence of common zeros, BSI algorithms fail to identify the
channels correctly since they cannot distinguish whether these common terms
are due to the input signal or the acoustic channels. The notion of near-common
zeros and their effect on BSI have been studied and quantified in [25]. It
has been shown that the performance of the adaptive NMCFLMS algorithm
degrades with increasing number of near-common zeros for a multichannel
acoustic BSI problem. In order to address the problem of near-common zeros
across all acoustic channels, several microphones are employed for BSI.

2. Full rank condition for S(n): In order to estimate the unknown channels, the
L×L Hankel matrix defined by

S(n) =

⎡
⎢⎢⎢⎣

s(n) s(n−1) . . . s(n−L+ 1)
s(n−1) s(n−2) . . . s(n−L)

...
... · · ·

...
s(n−L+ 1) s(n−L) . . . s(n−2L+ 2)

⎤
⎥⎥⎥⎦ (6.9)

for the source signal must be full-rank. This can be understood by first express-
ing, for the noiseless case,

S(n)hm(n) = xm(n), for m = 1, . . . ,M. (6.10)

Hence it can be seen that, if S(n) is rank deficient (6.10), will not have a unique
solution even if the source signal s(n) is known.

We assume in the remainder of this chapter that both conditions as described above
are satisfied in order to facilitate the identification of acoustic channels.
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6.3 Review of Adaptive Algorithms for Acoustic BSI Employing
Cross-relations

We review the formulation and development of three blind adaptive algorithms in
the context of estimating acoustic channels. As will be shown, these algorithms are
based on the minimization of an error formed using the cross-relation between the
received microphone inputs and the estimated channels.

6.3.1 The Multichannel Least Mean Squares Algorithm

One of the first algorithms proposed for BSI in the context of acoustic channels
is the Multichannel Least Mean Squares (MCLMS) algorithm [21]. We consider
first a noiseless case with νm(n) = 0, ∀m,n. The MCLMS algorithm utilizes the
interchannel cross-relation of the received signal given by

xm(n)∗ hl(n) = s(n)∗ hm(n)∗ hl(n)
= xl(n)∗ hm(n), (6.11)

where ∗ represents linear convolution from which we obtain, in vector form,

xT
m(n)hl(n) = xT

l (n)hm(n), (6.12)

for channel index m, l = 1, . . . ,M. Employing this cross-relation, an error between
channels m and l for the adaptive filters with m �= l is given by

eml(n) = xT
m(n)ĥl(n)−xT

l (n)ĥm(n), (6.13)

where
ĥm(n) =

[
ĥm,0(n), . . . , ĥm,L−1(n)

]T
(6.14)

is the estimated impulse response of the mth channel. As a development of the well
known Least Mean Squares (LMS) adaptive algorithm [20], the MCLMS algorithm
then minimizes the normalized error

εml(n) =
eml(n)∥∥ĥ(n)

∥∥
2

(6.15)

iteratively, where ‖ · ‖2 is defined as the l2-norm and

ĥ(n) =
[
ĥT

1 (n), . . . , ĥT
M(n)

]T
(6.16)

is a concatenated ML×1 vector. We note that normalization of the error eml(n) with
‖ĥ(n)‖2 in (6.15) arises from a unit norm constraint imposed on the minimization of
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eml(n). This ensures that the estimated impulse responses in ĥ(n) for the MCLMS
algorithm do not converge to the trivial solution of ĥ(n) = 0ML×1 where 0ML×1 is
the ML×1 null vector.

Using (6.15), the MCLMS algorithm is obtained by minimizing the cost function

J (n) =
M−1

∑
m=1

M

∑
l=m+1

ε2
ml(n) (6.17)

with respect to the estimated impulse responses ĥm(n) for channels m = 1, . . . ,M.
The result of this minimization is the MCLMS algorithm given by [22]

R(n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
m�=1

Rxmxm(n) −Rx2x1(n) . . . −RxMx1(n)

−Rx1x2(n) ∑
m�=2

Rxmxm(n) . . . −RxMx2(n)

...
...

. . .
...

−Rx1xM (n) −Rx1xM (n) . . . ∑
m�=M

Rxmxm(n)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6.18)

Rxmxl (n) = xm(n)xT
l (n), (6.19)

ẽ(n) =
M−1

∑
m=1

M

∑
l=m+1

e2
ml(n)

= J (n)
∥∥ĥ(n−1)

∥∥2
2, (6.20)

ĥ(n) =
ĥ(n−1)−2μ

[
R(n)ĥ(n−1)− ẽ(n)ĥ(n−1)

]
∥∥ĥ(n−1)−2μ [R(n)ĥ(n−1)− ẽ(n)ĥ(n−1)]

∥∥
2

,

(6.21)

where μ in (6.21) is the step-size of the MCLMS algorithm with its optimal value
being derived in [23]. We note that the normalization in (6.21) is equivalent to the
normalized error in (6.15) but is imposed on every iteration of the update.

6.3.2 The Normalized Multichannel Frequency Domain LMS
Algorithm

Frequency domain adaptive algorithms have been proposed to improve the com-
putational efficiency and performance of time domain algorithms. As opposed to
time domain algorithms, such as the LMS where adaptation is performed sample
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by sample, frequency domain algorithms generally inherit two properties: (i) in-
corporation of block updating strategies and (ii) employment of the Fast Fourier
Transform (FFT). A comprehensive overview of the development of frequency do-
main algorithms was presented in [37]. One of the first frequency domain adaptive
algorithms proposed is the Fast LMS (FLMS) [13] where the overlap-save method
of implementing linear convolution using FFT blocks is employed.

In a similar manner to FLMS, the MCLMS algorithm described in Sect. 6.3.1 has
been extended to the frequency domain for efficient implementation. To describe the
resulting NMCFLMS algorithm [22], we first define b as the frame index and F2L
as the 2L×2L Fourier matrix. We further define

χm(b) =
[
xm(bL−L),xm(bL−L+ 1), . . . ,xm(bL+ L−1)

]T (6.22)

as the mth channel time domain input frame and a 2L×2L diagonal matrix given by

Dm(b) = diag
{

F2Lχm(b)
}
. (6.23)

For clarity of presentation, we denote all frequency domain quantities with an un-
derscore. Following the notation of [7], we also define IL×L as the L×L identity
matrix and the following quantities:

W01
L×2L =

[
0L×L IL×L

]
, (6.24)

W10
2L×L =

[
IL×L
0L×L

]
, (6.25)

W01
L×2L = FLW01

L×2LF−1
2L , (6.26)

W10
2L×L = F2LW10

2L×LF−1
L , (6.27)

ĥm(b) = FLĥm(b), (6.28)

ĥ10
m (b) = F2L

[
ĥm(b)
0L×1

]
. (6.29)

The NMCFLMS update equation for BSI is then given by

ĥ10
m (b) = ĥ10

m (b−1)−ρ
[Pm(b)+ δ I2L×2L

]−1 ×
M

∑
l=1

D∗
l (b)ε01

lm(b), (6.30)

where ∗ denotes complex conjugate, 0 < ρ ≤ 1 and δ are the step-size and regular-
ization constant, respectively, while the frequency domain cross-relation error and
power spectrum are given by
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ε01
ml(b) = W01

L×2L

[
Dm(b)W10

2L×Lĥl(b−1)

−Dl(b)W10
2L×Lĥm(b−1)

]
, (6.31)

Pm(b) = γPm(b−1)+ (1− γ)
M

∑
l=1,l �=m

D∗
l (b)Dl(b), (6.32)

such that γ = [1−1/(3L)]L in (6.32) is the forgetting factor. A full derivation of the
NMCFLMS algorithm is presented in [22].

Similar to the MCLMS algorithm reviewed in Sect. 6.3.1, the NMCFLMS algo-
rithm avoids the trivial solution of ĥm(b) = 0L×1 by satisfying the unit norm con-
straint. It uses the initialization

ĥ10
m (0) =

1√
M

12L×1, (6.33)

where 12L×1 = [1, . . . ,1]T is a column vector of length 2L. Results presented in [22]
illustrate the ability of NMCFLMS to accurately identify M = 5 unknown room
impulse responses each of length L = 256, which are sampled at 8 kHz. The NM-
CFLMS algorithm is summarized in Algorithm 6.1.

6.3.3 The Improved Proportionate NMCFLMS Algorithm

It is often observed that acoustic impulse responses contain many coefficients that
have relatively small amplitude. Regions of small amplitude coefficients are at-
tributed to the acoustic propagation delay from the source to the sensor and the
late reflections from the enclosure. These features impart quasi-sparse characteris-
tics to many acoustic impulse responses. In order to improve the convergence rate of
NMCFLMS, the improved proportionate NMCFLMS (IPNMCFLMS) algorithm is
proposed in [3]. This algorithm exploits the fast convergence, due to proportionality
control, of the improved proportionate normalized least mean squares (IPNLMS)
algorithm [8] originally proposed for sparse system identification such as used for
network echo cancellation.

The IPNLMS algorithm achieves fast convergence by updating each filter coef-
ficient with an individual step-size that is made proportional to the magnitude of
the estimated impulse response. In a similar manner, the IPNMCFLMS algorithm
incorporates proportionality into the NMCFLMS algorithm using a controlling fac-
tor α . To describe the IPNMCFLMS algorithm, we first define an L×L diagonal
step-size control matrix Qm(b) for channel index m = 1, . . . ,M given by

Qm(b) = diag
{

qm,0(b), . . . ,qm,L−1(b)
}
, (6.34)

where elements qm,p(b) for elemental index p = 0, . . . ,L−1 are given by
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Algorithm 6.1 The NMCFLMS algorithm [22]
Special matrices

W10
2L×L = [IL×L 0L×L]T ,

W01
L×2L = [0L×L IL×L],

W10
2L×L = F2LW10

2L×LF−1
L ,

W01
L×2L = FLW01

L×2LF−1
2L .

Initialization

0 < ρ ≤ 1,

γ = [1−1/(3L)]L,

ĥ10
m (0) =

1√
M

12L×1.

Algorithm

χm(b) = [xm(bL−L), xm(bL−L+1), . . . ,xm(bL+L−1)]T ,

Dm(b) = diag
{

F2Lχm(b)
}

,

ε01
ml(b) = ,W01

L×2L

[
Dm(b)W10

2L×Lĥl(b−1)−Dl(b)W10
2L×Lĥm(b−1)

]
,

Pm(b) = γPm(b−1)+(1− γ)
M

∑
l=1,l �=m

D∗
l (b)Dl(b).

Filter update

ĥ10
m (b) = ĥ10

m (b−1)−ρe
[
Pm(b)+δ I2L×2L

]−1 ×
M

∑
l=1

D∗
l (b)ε01

lm(b).

qm,p(b) =
1−α

2L
+(1 +α)

∣∣ĥm,p(b)
∣∣

2
∥∥ĥm(b)

∥∥
1 +φ

, (6.35)

while φ is defined as the regularization parameter to avoid division by zero in (6.35).
The coefficient update equation for the IPNMCFLMS algorithm is derived by first
defining the matrix

G̃10
2L×2L = W10

2L×2LF−1
2L , (6.36)

where

W10
2L×2L =

[
IL×L 0L×L
0L×L 0L×L

]
. (6.37)

The IPNMCFLMS update equation can then be expressed as

ĥm(b) = ĥm(b−1)−ρLQm(b)G̃10
2L×2L×

[Pm(b)+ δ I2L×2L
]−1

M

∑
l=1

D∗
l (b)ε01

lm(b). (6.38)
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As can be seen from (6.35) and explained in [3], the filter update for IPNMCFLMS
is performed in the time domain. More importantly, each filter coefficient is updated
in a manner proportional to the estimated impulse response, which consequently
gives rise to an improvement in convergence rate over NMCFLMS in many cases.
The IPNMCFLMS algorithm is described by Algorithm 6.2.

Frequency domain adaptive algorithms such as NMCFLMS and IPNMCFLMS
suffer from long delays when tracking time-varying acoustic impulse responses. To
address this problem, the multi-delay filtering (MDF) structure [38] has been incor-
porated into the IPNMCFLMS algorithm where, for each microphone channel, the
adaptive filter is partitioned into blocks of equal length for adaptation. As a result,
the IPMCMDF algorithm presented in [3] achieves fast convergence and low de-
lay. These beneficial properties are, respectively, due to the improved proportionate
step-size control as well as the MDF structure.

6.4 Effect of Noise on the NMCFLMS Algorithm –
The Misconvergence Problem

One of the main problems reported for the NMCFLMS algorithm is that it suffers
from misconvergence in the presence of noise [17]. To illustrate the effect of noise
on the NMCFLMS algorithm, we first define the Normalized Projection Misalign-
ment (NPM) for the bth frame given by [32]

η(b) =

∥∥h(b)−αĥ(b)
∥∥2

2∥∥h(b)
∥∥2

2

, (6.39)

α =
hT (b)ĥ(b)
ĥT (b)ĥ(b)

. (6.40)

It can be seen that the NPM measure quantifies the closeness of the estimated im-
pulse responses ĥ(b) defined in (6.16) to the true impulse responses of the acoustic
system h(b), where

h(b) =
[
hT

1 (b), . . . ,hT
M(b)

]T
. (6.41)

It is also common that BSI algorithms estimate the unknown system to within an
arbitrary scaling factor [33, 40]. To account for this, the term α in (6.40) projects
h(b) onto ĥ(b), which then allows the NPM measure to account for the unknown
scaling factor.

Figure 6.2 illustrates an important result detailing the effect of noise on the per-
formance of the NMCFLMS algorithm. In this simulation example, M = 5 impulse
responses hm(b) are generated using the method of images [4] with a sampling rate
of fs = 8 kHz. A reverberation time of T60 = 64 ms is used, giving rise to impulse
responses of length L = 512. Figure 6.3 shows an illustration of the concatenated
impulse responses generated, h(b), where we have normalized their amplitudes so
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Algorithm 6.2 The IPNMCFLMS algorithm [3]
Special matrices

W10
2L×L = [IL×L 0L×L]T ,

W01
L×2L = [0L×L IL×L],

W10
2L×L = F2LW10

2L×LF−1
L ,

W01
L×2L = FLW01

L×2LF−1
2L ,

W10
2L×2L =

[
IL×L 0L×L
0L×L 0L×L

]
,

G̃10
2L×2L = W10

2L×2LF−1
2L .

Initialization

0 < ρ ≤ 1,

γ = [1−1/(3L)]L,

ĥ10
m (0) =

1√
M

12L×1.

Step-size gain matrix

Qm(b) = diag
{

qm,0(b), . . . ,qm,L−1(b)
}

,

qm,p(b) =
1−α

2L
+(1+α)

∣∣ĥm,p(b)
∣∣

2
∥∥ĥm(b)

∥∥
1 +φ

.

Algorithm

χm(b) = [xm(bL−L), xm(bL−L+1), . . . ,xm(bL+L−1)]T ,

Dm(b) = diag
{

F2Lχm(b)
}

,

ε01
ml(b) = W01

L×2L

[
Dm(b)W10

2L×Lĥl(b−1)−Dl(b)W10
2L×Lĥm(b−1)

]
,

Pm(b) = γPm(b−1)+(1− γ)
M

∑
l=1,l �=m

D∗
l (b)Dl(b).

Filter update

ĥm(b) = ĥm(b−1)−ρLQm(b)G̃10
2L×2L ×

[
Pm(b)+δ I2L×2L

]−1
M

∑
l=1

D∗
l (b)ε01

lm(b).

that the maximum of h(b) as defined in (6.41) equals 1 for clarity of presentation.
For this illustrative example, we used a WGN input s(b), while an uncorrelated
WGN νm(b) was added to each of the received signals, as in (6.3), in order to
achieve a signal-to-noise ratio (SNR) as depicted in Fig. 6.2. For each SNR, the
step-size for the NMCFLMS algorithm was set to ρ = 0.45 and the forgetting factor
of γ = [1−1/(3L)]L = 0.7165 was used.

We note, from Fig. 6.2, that for each case of SNR, the NMCFLMS algorithm
converges first towards the true solution h(b) after which it misconverges towards



6 Adaptive Blind Multichannel System Identification 169

0 50 100 150 200 250 300
−30

−25

−20

−15

−10

−5

0

5

Time (s)

N
P

M
 (

dB
)

 

 

SNR = 20 dB

SNR = 25 dB

SNR = 10 dB

SNR = 30 dB

Fig. 6.2 Misconvergence of the NMCFLMS algorithm [L = 512, fs = 8 kHz, M = 5, ρ = 0.45,
γ = [1−1/(3L)]L = 0.7165]

0 dB NPM. In addition, it can be seen that under low SNR conditions, the effect
of misconvergence becomes more significant. Figure 6.4 illustrates, for the case of
SNR = 20 dB, the estimated impulse responses ĥ(b) for the NMCFLMS algorithm
at time t = 256 s after misconvergence. Comparing Figs. 6.3 and 6.4, we note that the
misconverged solutions differ significantly from those of the true impulse responses,
giving rise to an NPM of approximately −3.5 dB. More importantly, as can be
seen from Fig. 6.4, although the condition

∥∥ĥ(b)
∥∥

2 = 1 is satisfied, the solution
ĥ(b) → 02L×1. This has the effect of NMCFLMS finding a solution ĥ(b) with the
smallest energy that satisfies the unit norm constraint. This accounts for an NPM
that approaches 0 dB. In the next section, we propose an algorithm robust to noise
in order to address this misconvergence problem.

6.5 The Constraint Based ext-NMCFLMS Algorithm

We now propose an adaptive algorithm that addresses the problem of misconver-
gence for the NMCFLMS algorithm. We achieve this aim by first deriving the
proposed extended NMCFLMS algorithm using first principles and introducing a
penalty function into the cost function J (n) defined by (6.17). As will be described
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Fig. 6.3 True impulse responses to be estimated for M = 5 concatenated channels generated using
the method of images [4]. Each impulse response is of length L = 512

in the following, the motivation for employing this methodology can be explained
by first considering the effect of noise on the cost function J (n).

6.5.1 Effect of Noise on the Cost Function

We now consider the output of a multichannel system,

ym(n) = [ym(n), ym(n−1), . . . ,ym(n−L+ 1)]T , (6.42)

in the presence of noise such as shown in Fig. 6.1, where

ym(n) = Hm(n)s(n), (6.43)
xm(n) = ym(n)+νm(n). (6.44)

Employing these relationships, the cross-relation error eml(n) defined in (6.13) can
then be expressed as [17]

eml(n) = ey
ml(n)+ eνml(n), (6.45)



6 Adaptive Blind Multichannel System Identification 171

0 500 1000 1500 2000 2500
−1

0

1

2

3

4

5
x 10

−4

coefficient index

am
pl

itu
de

Fig. 6.4 Misconverged impulse responses ĥ(b) at time t = 256 s for the NMCFLMS algorithm
with M = 5 at an SNR=20 dB. Each impulse response is of length L = 512

where

ey
ml(n) = yT

m(n)ĥl(n)−yT
l (n)ĥm(n), (6.46)

eνml(n) = νT
m(n)ĥl(n)−νT

l (n)ĥm(n) (6.47)

are the errors due to the received signals ym(n), yl(n) and additive noise νm(n),
νl(n). We assume that the additive noise is zero mean and uncorrelated with the
received signal giving E

{
ym(n)νm(n)

}
= 0. For this noisy case, the cost function

J (n) defined in (6.17) can then be expressed as

J (n) =
M−1

∑
m=1

M

∑
l=m+1

{
[εy

ml(n)]2 +[ενml(n)]2
}

= Jy(n)+Jν(n), (6.48)
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where

Jy(n) =
M−1

∑
m=1

M

∑
l=m+1

[
εy

ml(n)
]2

, (6.49)

Jν(n) =
M−1

∑
m=1

M

∑
l=m+1

[
ενml(n)

]2
. (6.50)

Hence, we can see from (6.48) that the term Jν(n) can be viewed as a penalty func-
tion attached to the desired cost function Jy(n). The aim of the proposed algorithm
is then to penalize Jy(n) using a penalty term when minimizing J (n). As evident,
since νm(n) is unknown in real applications, the constraint Jν (n) is unavailable and
hence is not within the control of the adaptive algorithm.

6.5.2 Penalty Term Using the Direct-path Constraint

We now consider an alternative approach to introducing a penalty constraint on the
cost function J (n) in order to address the misconvergence problem of NMCFLMS.
As can be seen from Fig. 6.4, the misconverged solution ĥ(n) consist of significantly
less energy compared to that of the true system as shown in Fig. 6.3. Therefore, it can
be seen that minimizingJ (n) in (6.17) results in solutions where h(n) misconverges
to small values while satisfying ‖ĥ(n)‖2 = 1. Consequently, the final misconverged
solution when n → ∞ occurs with elements in ĥ(n) having the smallest magnitudes
whilst satisfying the unit norm constraint.

In order to prevent NMCFLMS from misconverging to small values, an addi-
tional constraint can be imposed such that the estimated direct path coefficient of
each channel ĥdp,m is equivalent to that of the actual direct-path coefficient hdp,m in
terms of both delay and magnitude [2]. The subscript “dp” denotes the direct-path
component of the respective acoustic impulse response where the direct-path is de-
fined as the received source signal with a delay given by the source-microphone
distance divided by the speed of sound. It is important to note that the direct-path of
the impulse response does not necessarily correspond to the largest magnitude, since
the largest magnitude might correspond to multiple reflections arriving in-phase at
the microphone.

By using the above constraint-based approach, we are limiting the search space
of the proposed algorithm, avoiding solutions where ĥ(n) are small. To achieve this,
we start by introducing a penalty term to the cost functionJ (n) from which we then
minimize

J (n) =
M−1

∑
m=1

M

∑
l=m+1

ε2
ml(n), (6.51)

subject to the constraint
ĥdp,m = hdp,m, (6.52)
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for channel index m = 1, . . . ,M. Employing the method of Lagrange multipli-
ers [31], the cost function can be reformulated as

Jdp(n) =
M−1

∑
m=1

M

∑
l=m+1

ε2
ml(n)+β

M

∑
m=1

[
hdp,m(n)− ĥdp,m(n)

]2
, (6.53)

where the term β is the multiplier constant. Comparing (6.17) and (6.53), the penalty
term β ∑M

m=1[hi,dp(n)− ĥi,dp(n)]2 can be viewed as a correction term for the algo-
rithm in the presence of noise. The significance of this correction term is then con-
trolled by the multiplier term β such that under low SNR conditions, a high value
of β is required to reduce the effect of noise on J (n).

To derive the adaptive formulation, the gradient of the penalty term

Jp(n) =
M

∑
m=1

[
hdp,m(n)− ĥdp,m(n)

]2 (6.54)

can be obtained as

∇Jp(n) =
∂Jp(n)
∂ ĥm(n)

= −2
[
hdp,m(n)− ĥdp,m(n)

]
um, (6.55)

with
um =

[
01×τm−1 1 01×L−τm

]T
, (6.56)

while τm in (6.56) defines the Time Difference Of Arrival (TDOA) of the direct-
path coefficient for the mth channel with respect to the channel having the earliest
direct-path. Employing the gradient vector given in (6.55), the update equation for
the proposed ext-NMCFLMS algorithm is then given by

ĥ10
m (b) = ĥ10

m (b−1)−ρe
[Pm(b)+ δ I2L×2L

]−1 ×
M

∑
l=1

D∗
l (b)ε01

lm(b)

+ 2βρeF2LW10
2L×L

{[
hdp,m(b)− ĥdp,m(b)

]
um

}
, (6.57)

where ρe is the step-size.
Comparing (6.57) with (6.30) for the NMCFLMS algorithm, we note that the ad-

ditional term 2βρeF2LW10
2L×L

{[
hdp,m(b)− ĥdp,m(b)

]
um

}
arises due to the penalty

function introduced into J (n) as described by (6.53). In contrast to the algorithm
proposed in [17] where the direct-path components hdp,m(b) are substituted into
ĥdp,m(b) at each block iteration, the proposed ext-NMCFLMS algorithm employs
the penalty term in the filter update equation given by (6.57). The algorithm pre-
sented in [17] searches for the solution within the whole subspace hm(b) ∈ RL.
The estimated solution is then obtained by substituting ĥdp,m(b) = hdp,m(b) at each
update iteration. In contrast, the proposed ext-NMCFLMS algorithm imposes a lim-



174 A.W.H. Khong and P.A. Naylor

iting constraint such that the search for solutions is constrained within the subspace
containing ĥdp,m(b) = hdp,m(b), and as a consequence, the convergence rate of ext-
NMCFLMS is higher compared to that of the algorithm proposed in [17].

As can be seen from (6.57), the proposed ext-NMCFLMS algorithm requires
knowledge of the direct-path component hdp,m(b). This requires the estimation of
the magnitude |hdp,m(b)| and the TDOA τm for each channel, as will be described
below.

6.5.3 Delay Estimation

We now describe the estimation of τm for each channel. As explained, τm defines
the TDOA of the direct-path coefficient between the mth channel and the channel
having the earliest direct-path, and we define τ̂m as the estimated TDOA.

One of the most popular algorithms for TDOA estimation is the GCC algo-
rithm [27], which is realized using two pre-filters followed by a cross-correlator. The
TDOA for each channel is then obtained by identifying the time-lag corresponding
to the highest cross-correlation between the filtered output of the microphones xm(b)
for m = 1, . . . ,M. The estimated time delay between the mth channel and that having
the earliest direct-path is thus given by

τ̂m = argmax
n
Ψ̂m(n), (6.58)

where

Ψ̂m(n) =
2L−1

∑
k=0

Φm(k)Ŝml(k)e j2πnk/L, (6.59)

j =
√
−1 and

Ŝml(k) = χ
m
(k)χ∗

l
(k) (6.60)

is the cross-spectrum estimate between the mth channel and the channel having the
earliest direct-path. The variable χ

m
(k) is the kth element of the 2L×1 vector

χ
m
(b) = F2Lχm(b)

=
[
χ

m
(0),χ

m
(1), . . . ,χ

m
(2L−1)

]T
, (6.61)

given that χm(b) is defined in (6.22) while, in a similar manner, χ
l
(k) is the kth

element of χl(b) with χl(b) being the bth frame of the input corresponding to the
channel having the earliest direct-path. It is important to note that, since the true
impulse response is unknown, the channel having the earliest direct-path can be
obtained using the estimated impulse response from the NMCFLMS algorithm.

The performance of the GCC algorithm is dependent on the choice of the pre-
filters. The variable Φm(k) in (6.59) defines the weighting function for the pre-filter
employed by the GCC algorithm. As explained in [27], the purpose of the pre-filters



6 Adaptive Blind Multichannel System Identification 175

is to reduce the spreading of the delta function, which in turn improves the accu-
racy of estimating the peak of the correlation sequence. Pre-filters that have been
proposed to improve the performance of GCC include the Roth processor [36], the
Smoothed COherence Transform (SCOT) [11], the Hannan–Thomson (HT) proces-
sor [16] and the Hassab-Boucher transform [19]. One of the most popular pre-filters
for the GCC is the PHAse Transform (PHAT) where the variable Φm(k) is defined
by

Φm(k) =
1∣∣Ŝml(k)

∣∣ . (6.62)

Substituting (6.62) into (6.59), it can be seen that the frequency components of the
cross-spectrum are weighted inversely with respect to their magnitude. For reverber-
ant speech, the GCC is performed on the Hilbert envelope of the linear prediction
residual of input speech as shown in [45]. Results presented in [9, 43] showed that
the PHAT processor achieves the best performance in the presence of reverberation
and, as a consequence, we employ the PHAT processor for the estimation of the
TDOA components τm in um described by (6.56).

6.5.4 Flattening Point Estimation

The proposed update equation for the ext-NMCFLMS algorithm in (6.57) requires
knowledge of the true direct-path component hdp,m for channels m = 1, . . . ,M. In
this section, we propose an online cost function flattening point estimation (FPE)
algorithm for the iterative estimation of |hdp,m|.

Figures 6.5 and 6.6 show, for two different SNRs of 10 and 15 dB respectively,
the relationship between J̃ (b) and NPM η(b) of the system for the NMCFLMS
algorithm where J̃ (b) is defined as the cumulative sum of the cost function J (b)
given by

J̃ (b) =
b

∑
k=1

[
10log10J (k)

]
. (6.63)

In these illustrative examples, M = 5 impulse responses each of length L = 512 as
shown in Fig. 6.3 are generated using the method of images [4]. For each case of
SNR, the step-size of the NMCFLMS algorithm is set to ρ = 0.45, and the for-
getting factor γ = [1−1/(3L)]L = 0.7165 is used. It is clear from these illustrative
results that the cumulative sum of the cost function J̃ (b) converges to a steady-
state before the NMCFLMS algorithm misconverges. More importantly, it can be
seen that convergence for J̃ (b) exists even for an SNR as low as 10 dB. Hence we
note that |ĥdp,m| provides an estimate of the relative magnitudes of the direct-path
components when J̃ (b) converges to its steady-state.

To compute the convergence time of J̃(b) at each block iteration, we evaluate the
evolution of J̃ (b) given by

�J̃ (b) =
∣∣J̃ (b)−J̃ (b−1)

∣∣. (6.64)
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Fig. 6.7 Time to misconverge for NMCFLMS against t f under different SNR conditions

We then define convergence for J̃ (b) as the time taken for this change to become
less than 0.05 dB as t f given by

t f ← arg�J̃ (b) ≤ 0.05 dB. (6.65)

We define NPM misconvergence time as the time for NMCFLMS to reach its
minimum NPM. For the NMCFLMS algorithm, Fig. 6.7 shows the variation of
NPM misconvergence time with t f under different SNR conditions. As before, for
each case of SNR, the step-size for the NMCFLMS algorithm is set to ρ = 0.45,
and the forgetting factor γ = [1− 1/(3L)]L = 0.7165 is used. We note from this
illustrative example that t f increases monotonically with the misconvergence time
as SNR increases. As a consequence, t f provides a good estimate of the point of
misconvergence for the NMCFLMS algorithm.

Unlike the algorithm proposed in [17], where the direct path of the true impulse
response is substituted, the proposed ext-NMCFLMS algorithm employs (6.64)
and (6.65) and continually monitors the convergence point of J̃ (b). Once t f is
reached, the magnitude of the estimated direct-path components are extracted and
utilized according to (6.57) during the remaining adaptation of the proposed ext-
NMCFLMS algorithm. By removing the often used unit-norm constraint, we find,
through simulation results shown in the next section, that the knowledge of the rel-
ative magnitudes of the direct-path components is the only essential requirement to
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Algorithm 6.3 The extended-NMCFLMS algorithm
Special matrices

W10
2L×L = [IL×L 0L×L]T ,

W01
L×2L = [0L×L IL×L],

W10
2L×L = F2LW10

2L×LF−1
L ,

W01
L×2L = FLW01

L×2LF−1
2L .

Initialization

0 < ρ ≤ 1,

γ = [1−1/(3L)]L ,

ĥ10
m (0) =

1√
M

12L×1.

Algorithm

χm(b) = [xm(bL−L), xm(bL−L+1), . . . ,xm(bL+L−1)]T ,

Dm(b) = diag
{

F2Lχm(b)
}

,

ε01
ml(b) = W01

L×2L

[
Dm(b)W10

2L×L ĥl(b−1)−Dl(b)W10
2L×L ĥm(b−1)

]
,

Pm(b) = γPm(b−1)+(1− γ)
M

∑
l=1,l �=m

D∗
l (b)Dl(b).

Filter update

ĥ10
m (b) = ĥ10

m (b−1)−ρe
[
Pm(b)+δ I2L×2L

]−1 ×
M

∑
l=1

D∗
l (b)ε01

lm(b)

+2βρeF2LW10
2L×L

{[
ˆ̂hdp,m(b)− ĥdp,m(b)

]
um

}
.

avoid misconvergence in this context and their exact magnitudes are not needed. The
proposed ext-NMCFLMS algorithm is given as shown in Algorithms 6.3 and 6.4.

6.6 Simulation Results

We now present simulation results to compare and evaluate the performance of the
proposed ext-NMCFLMS algorithm for acoustic BSI against the NMCFLMS algo-
rithms presented in [17, 22].
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Algorithm 6.4 TDOA and Flattening point estimation for ext-NMCFLMS
TDOA estimation using GCC

χ
m
(b) = F2Lχm(b),

Ŝml(k) = χ
m
(k)χ∗

l
(k),

Φm(k) =
1

|Ŝml(k)|
,

Ψ̂m(n) =
2L−1

∑
k=0

Φm(k)Ŝml (k)e j2πnk/L ,

τ̂m = argmax
n
Ψ̂m(n),

um =
[
01×τ̂m−1 1 01×L−τ̂m

]T .

Flattening point estimation (FPE)

J̃ (b) =
b

∑
k=1

[
10log10 J (k)

]
,

�J̃ (b) =
∣∣J̃ (b)− J̃ (b−1)

∣∣,
t f ← arg�J̃ (b) ≤ 0.05 dB,

ˆ̂hdp,m(b) = ĥdp,m(t f ).

6.6.1 Experimental Setup

All simulations are performed using impulse responses generated from the method
of images [4] with a sampling rate of fs = 8 kHz. The dimensions of the room
are � = 5× 4× 3 m while a reverberation time of T60 = 640 ms is used, and the
length of each impulse response is given by L = 512. A linear microphone array
containing M = 5 microphones with uniform separation d = 0.08 m is used. The
first microphone is placed at qmic,1 = (2.34,2,1.6) m, while the source is positioned
at a range of 1 m and a bearing of 85◦ with respect to the centroid of the microphone
array. Figure 6.8 shows the plan view of the source and microphone array placement
used when generating the impulse responses. As before, the performance of the
algorithms are quantified by the NPM measure defined by (6.39) and (6.40).

6.6.2 Variation of Convergence rate on β

We show the variation of the rate of convergence on the penalty gain β for the pro-
posed ext-NMCFLMS algorithm using a WGN input signal. As shown in Fig. 6.1,
additive WGN signals, νm(n) for m = 1, . . . ,5 are added to the received signals such
that an SNR = 15 dB is obtained for the multichannel system. The step-size of the



180 A.W.H. Khong and P.A. Naylor

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

Width (m)

Le
ng

th
 (

m
)

0.32 m

85

Microphone 
array

Source

°

Fig. 6.8 Plan view of source and microphone array placement

ext-NMCFLMS algorithm is set to ρe = 0.45 and γ = [1− 1/(3L)]L = 0.7165 is
used. It can be seen from Fig. 6.9 that the effect of misconvergence reduces with
increasing β . In addition, it can be seen that the rate of convergence is reduced with
increasing β .

Figure 6.10 shows additional results demonstrating that high β values are re-
quired at low SNRs in order to ensure the stability of the proposed ext-NMCFLMS
algorithm. It can be seen from this result that for lower SNR a high value of β
is required to achieve convergence. This implies that under low SNR conditions a
stronger penalty term must be imposed on the cost function given by (6.53) in order
to reduce the effect of additive noise in the system.

6.6.3 Degradation Due to Direct-path Estimation

We investigate the degradation in convergence performance for the ext-NMCFLMS
algorithm due to direct-path estimation using the GCC and the FPE algorithms for
the estimation of TDOA as well as the magnitude of the direct-path components as
described in Sects. 6.5.3 and 6.5.4. Figure 6.11 compares the performance of the
ext-NMCFLMS algorithm, implemented using the GCC and FPE algorithms, with
that using the true direct-path components. As before, we used a WGN input signal
and the step-size of the algorithm was set to ρe = 0.45 and the Lagrange multiplier



6 Adaptive Blind Multichannel System Identification 181

0 10 20 30 40 50 60 70
−22

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

Time (s)

N
P

M
 (

dB
)

 

 

β= 0.2

β= 0.02

β= 0.002

β= 0.001
β= 0.0008

Fig. 6.9 Effect of Lagrange multiplier factor β on the convergence rate for the proposed ext-
NMCFLMS algorithm

constant of β = 0.02 was used for both of these cases. The SNR for the system is
15 dB and γ = [1−1/(3L)]L = 0.7165 was used for both algorithms studied.

It can be seen from this result that the ext-NMCFLMS algorithm using the true
direct-path components achieves better convergence performance (both in terms of
initial convergence and steady-state NPM) than that using the GCC and FPE algo-
rithms. This degradation in convergence performance for the ext-NMCFLMS can
be attributed to the inaccuracies in TDOA and magnitude estimation of the direct-
path components. Inaccuracies for the TDOA estimation are due to reverberation of
the room [5], while inaccuracies for the FPE algorithm arise from the estimation of
the convergence point of the cumulative cost function t f . As discussed in Sect. 6.5,
it should be noted that for practical systems the direct-path components of acous-
tic impulse responses are unknown and, hence, some degradation in convergence
performance is expected. As can be seen from Fig. 6.11, these joint inaccuracies
contribute to a modest degradation in convergence performance of less than 1 dB in
terms of steady-state NPM.
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6.6.4 Comparison of Algorithm Performance Using a WGN Input
Signal

We now compare the performance of the proposed ext-NMCFLMS algorithm with
that of the NMCFLMS algorithm [22] using a WGN input signal. We have also
included the performance of the algorithm proposed in [17], where the direct-path
components of the impulse responses are assumed to be known a priori and are
substituted at each time iteration into the update equation of (6.30). We denote this
algorithm [17] as NMCFLMSdp. As before, WGN is added to the received signals
in order to achieve an SNR of 15 dB and we used β = 0.02 for the proposed ext-
NMCFLMS algorithm. The step-sizes for all the algorithms are adjusted such that
they reach the same asymptotic NPM. These correspond to ρ = 1, ρdp = 0.45 and
ρe = 0.45 for the NMCFLMS, NMCFLMSdp and ext-NMCFLMS, respectively. In
addition, we used γ = [1−1/(3L)]L = 0.7165 for all the algorithms.

It can be seen from Fig. 6.12 that the NMCFLMS algorithm misconverges after
achieving an NPM of approximately −17 dB. The proposed ext-NMCFLMS algo-
rithm exhibits a higher rate of convergence compared to that of the NMCFLMSdp
algorithm [17]. The higher rate of convergence for ext-NMCFLMS can be attributed
to it taking the effect of additive noise into account while solving the minimiza-
tion problem. This is equivalent to the ext-NMCFLMS algorithm finding a solu-
tion within the subspace determined by the constraint. During convergence, the ext-
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Fig. 6.11 Degradation of the proposed ext-NMCFLMS algorithm due to direct-path estimation

NMCFLMS algorithm achieves approximately 3 dB improvement in NPM over the
NMCFLMSdp algorithm.

6.6.5 Comparison of Algorithm Performance Using Speech Input
Signals

We compare the performance of the NMCFLMS, NMCFLMSdp and the ext-
NMCFLMS algorithm as shown in Fig. 6.13 using speech input from a male
talker. As before, the SNR of the multichannel acoustic system was 15 dB while
the step-sizes are 0.1, 0.45 and 0.45 for the NMCFLMS, NMCFLMSdp and ext-
NMCFLMS algorithms, respectively. These step-sizes have been adjusted such that
all algorithms achieve the same asymptotic NPM. Similar to the explanation in
Sect. 6.6.4, true delays and magnitudes for the direct-paths have been employed
for the NMCFLMSdp algorithm. For the ext-NMCFLMS algorithm, we have em-
ployed the GCC with PHAT pre-filter of the Hilbert envelope of the linear prediction
residual of speech to estimate the TDOA of the direct-path components [45]. The
Lagrange multiplier value of β = 1 is used for the ext-NMCFLMS algorithm in this
speech input example.

It can be seen from the result that after initial convergence, the NMCFLMS algo-
rithm misconverges, while both the NMCFLMSdp and ext-NMCFLMS algorithms
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Fig. 6.12 Comparison of the convergence between the NMCFLMS, the NMCFLSdp and the pro-
posed ext-NMCFLMS algorithms for a WGN input

converge to their steady-state. As before, the ext-NMCFLMS algorithm achieves a
modest improvement in initial convergence over the NMCFLMSdp algorithm since
the former takes the additive noise into account when minimizing the constraint
cost function as explained in Sect. 6.5. Other tests have indicated that the ext-
NMCFLMS algorithm achieves a higher rate of convergence which is robust to
the presence of noise without misconvergence as compared to the NMCFLMS and
NMCFLMSdp algorithms.

6.7 Conclusions

Estimation of acoustic impulse responses using adaptive algorithms employing the
CR have been discussed and reviewed in this chapter. For dereverberation, these es-
timated channels can be further used to design equalization filters in order to remove
reverberation introduced by the acoustic channels. We proposed the ext-NMCFLMS
algorithm for the blind identification of acoustic impulse responses. The proposed
algorithm achieves fast convergence compared to that proposed in [17] by impos-
ing a limiting constraint on the cost function of the minimization problem. The
result of this constrained minimization problem is the modified cost function term,
which penalizes the cost due to noise. The significance of this correction term is
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then controlled by a multiplier control factor that increases with reducing SNR. In
order to avoid the misconvergence problem that exists in NMCFLMS, the proposed
algorithm estimates the direct-path components of the impulse responses. This is
achieved using both the GCC and FPE algorithms for the delays and magnitudes,
respectively. The overall contribution of employing the constraint optimization cou-
pled with the estimation of the direct-path components enables the ext-NMCFLMS
algorithm to achieve fast initial convergence and robustness to noise. Results pre-
sented using white Gaussian noise and speech signals showed the overall improve-
ment in convergence performance for the ext-NMCFLMS over existing adaptive
approaches for acoustic BSI. In addition the ext-NMCFLMS algorithm shows only
a modest degradation of 1 dB NPM in convergence performance due to inaccuracies
in TDOA and magnitude estimation using the GCC and FPE algorithms.
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Chapter 7
Subband Inversion of Multichannel Acoustic
Systems

Nikolay D. Gaubitch and Patrick A. Naylor

Abstract Equalization of Acoustic Transfer Functions (ATFs) is an important topic
with several applications in acoustic signal processing including speech derever-
beration. ATFs are often modelled as finite impulse response filters with orders of
thousands of taps and non-minimum phase characteristics. In practice, only approx-
imate estimates of the actual ATFs are available due to measurement noise, limited
estimation accuracy and temporal variation of the source-receiver geometry. These
issues make equalization a difficult problem. In this chapter, we discuss multichan-
nel equalization with focus on inexact ATF estimates. We present a multichannel
method for the equalization filter design utilizing decimated and oversampled sub-
bands, where the full-band acoustic impulse response is decomposed into equivalent
subband filters prior to equalization. This technique is not only more computation-
ally efficient but also more robust to impulse response inaccuracies compared with
the full-band counterpart. Simulation results using simulated and measured ATFs
are presented and the application of the subband method to speech dereverberation
is demonstrated and evaluated.

7.1 Introduction

Equalization of Acoustic Transfer Functions (ATFs) is an important research topic
with several applications in acoustic signal processing, including speech derever-
beration [21] and sound reproduction [24]. Although, in theory, exact equalization
is possible when multiple observations are available [18], there are many obstacles
for practical application of ATF equalization algorithms. Equalization filters can be
calculated either by direct estimation from the observed signals at the microphones
or from measured or estimated acoustic impulse responses. The work presented here
concentrates on the latter and it is assumed that an estimate of the acoustic impulse
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response is available; obtained from, for example, blind system identification (see
Chaps. 5 and 6).

Consider the L-tap acoustic impulse response of the acoustic path between a
source and the mth microphone in an M-element microphone array,

hm = [hm,0 hm,1 . . . hm,L−1]T ,

with a z-transform Hm(z) constituting the ATF. The objective of equalization is to
apply an inverse system with transfer function Gm(z) such that

Hm(z)Gm(z) = κz−τ , m = 1,2, . . . ,M, (7.1)

where τ and κ are arbitrary delay and scale factors, respectively. Equivalently, con-
sidering the Li-tap impulse response of Gm(z),

gm = [gm,0 gm,1 . . . gm,Li−1]T ,

(7.1) can be written in the time domain as

Hmgm = d, (7.2)

where

Hm = diag{hm · · · hm} =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hm,0 0 . . . 0
hm,1 hm,0 . . . 0

...
. . . . . .

...

hm,L−1 . . .
... 0

0 hm,L−1
. . .

...
...

...
. . .

...
0 . . . 0 hm,L−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is a (L+ Li −1)×Li convolution matrix, and

d = [0 . . . 0︸ ︷︷ ︸
τ

κ 0 . . . 0]T

is the (L+ Li −1)×1 vector with the impulse response of the equalized ATF.
The problem of equalization is to find Gm(z). When Hm(z) is a minimum phase

system, a stable inverse filter can be found by replacing the zeros of Hm(z) with
poles [26] such that

Gm(z) =
1

Hm(z)
. (7.3)
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However, ATF equalization is not that straightforward in practice because:

(i) ATFs are non-minimum phase in general [23] and so (7.3) does not give a
stable causal solution for Gm(z).

(ii) The average difference between maxima and minima in ATFs are in excess of
10 dB [15, 28, 30] and therefore ATFs typically contain spectral nulls that, af-
ter equalization, give strong peaks in the spectrum causing narrow band noise
amplification.

(iii) Equalization filters designed from inaccurate estimates of Hm(z) will cause
distortion in the equalized signal [28].

(iv) The length L of hm at a sampling frequency fs is related to the reverbera-
tion time, T60, in a room by L = fsT60 and can be several thousand taps in
length [15].

Several alternative approaches, both for single and for multiple microphones,
have been proposed to address these issues. There are two common methods for
single channel equalization: Single Channel Least Squares (SCLS) and homomor-
phic equalization [19]. SCLS equalization filters are designed by minimizing an
error formed from (7.2) as [19, 20]

ĝm = argmin
gm

‖Hmgm −d‖2
2, (7.4)

where ‖ · ‖2 denotes Euclidean distance. The mth channel least squares optimal
equalization filter is then calculated as

ĝm = R−1
m rm, (7.5)

where
Rm = HT

mHm (7.6)

is the autocorrelation matrix of the acoustic impulse response and

rm = HT
md (7.7)

is the cross-correlation between the acoustic impulse response and the desired im-
pulse response of the equalized ATF.

In homomorphic inverse filtering [19, 23, 27, 32], the ATF is decomposed into
minimum phase and all-pass components. An exact inverse can be found for the
minimum phase component with (7.3), while the all-pass component can be equal-
ized, for example, using a matched filter [27]. Equalizing only the magnitude was
considered in [23, 27], but was found to result in audible residual echoes. In a com-
parative study between these two techniques, Mourjopoulos [19] concluded that
SCLS, although sometimes less accurate than homomorphic inversion, is more effi-
cient in practice.

Single channel methods typically result in large processing delay, which is prob-
lematic for many communications applications, extremely long and non-causal in-
verse filters, and provide only approximate equalization [18]. On the positive side,
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single channel equalization filters are less sensitive to noise and inexact ATF esti-
mates; this is due to the approximate nature of these filters [21]. Inherently, SCLS
inverse filters only partially equalize deep spectral nulls, which can be advantageous
in avoiding problems due to points (ii) and (iii) above.

In the multichannel case, the non-minimum phase problem is eliminated and
exact equalization can be achieved using Bezout’s theorem [14, 18]: given a set of
M ATFs, Hm(z), and assuming that these do not have any common zeros, a set of
filters, Gm(z), can be found such that [14, 18]

M

∑
m=1

Hm(z)Gm(z) = 1. (7.8)

The Multiple-input/output INverse Theorem (MINT) [18] is a well-known multi-
channel equalization method based on (7.8). Adaptive versions have also been con-
sidered [24]. Unlike single channel equalization filters, the length of the multichan-
nel equalization filters is of similar order to the length of the acoustic impulse re-
sponses and there is no processing delay [14, 18]. However, it has been observed that
exact equalization is of limited value in practice, when the ATF estimates contain
even moderate errors [21, 28].

Various alternatives have been proposed for improving robustness to ATF in-
accuracies. Bharitkar et al. [2] use spatially averaged ATFs for the design of the
equalization filter. In [12], the authors modify the desired signal, d, in the Multi-
channel Equalizer (MCEQ) inverse filter design, such that the late reverberation is
equalized while the early reflections are preserved. Haneda et al. [5, 6] form an infi-
nite impulse response filter by decomposing the ATFs into common acoustical poles
and non-common zeros. Mourjopoulos [20] uses an autoregressive (AR) model of
the acoustic transfer functions rather than the all-zero model in order to reduce the
filter order. The AR model of acoustic transfer functions is also exploited by Hop-
good and Rayner in a single channel subband equalization approach [13]. Hikichi
et al. [8, 9] introduce regularized multichannel equalization which adds robustness
to noise and ATF fluctuations. Other recent developments in robust equalization are
also discussed by Miyoshi et al. in Chap. 9.

In this chapter, we introduce a different method for equalization filter design
based on multichannel equalization. Given a set of multichannel ATF estimates, we
decompose the ATFs into their subband equivalent filters and use these to design
a set of subband inverse filters. The equalization is performed in each subband be-
fore a full-band equalized signal is reconstructed. It is shown that this approach not
only reduces the computational load but also reduces the sensitivity to estimation
errors and the effect of measurement noise in the ATFs. An important result is that
this method accommodates multichannel equalization of large order systems, taking
advantage of the shorter length of multichannel equalization filters and with a low
sensitivity to ATF inaccuracies similarly to single channel methods.

The remainder of the chapter is organized as follows: multichannel equalization
is described in Sect. 7.2. The effects on equalization filter design for single and for
multichannel scenarios using inexact ATFs are demonstrated in Sect. 7.3. The sub-
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+ ŝ(n)
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HM(z) GM(z)
xM(n)
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Fig. 7.1 Full-band multichannel equalization system

band equalization method is developed in Sect. 7.4. A comparative computational
complexity analysis of the full-band and the subband equalizer designs is presented
in Sect. 7.5. The application of the subband equalization method to speech dere-
verberation is discussed in Sect. 7.6 and simulation results demonstrating various
aspects of the proposed algorithm are given in Sect. 7.7. Finally, conclusions are
drawn in Sect. 7.8.

7.2 Multichannel Equalization

The relation in (7.8) can be written in the time domain as

d =
M

∑
m=1

Hmgm

= Hg, (7.9)

where
H = [H1 H2 . . . HM]

and
g = [gT

1 gT
2 . . . gT

M]T .

An optimization problem can then be formulated as

ĝ = argmin
g

‖Hg−d‖2. (7.10)

An estimate of the multichannel equalization filters can be calculated by solv-
ing (7.10) resulting in [14]

ĝ = H+d, (7.11)

where H+ is the matrix pseudo-inverse [4].
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The choice of equalization filter length, Li and, consequently, the dimensions
of H, (L + Li − 1)×MLi, define the solution obtained with (7.11). If L + Li − 1 ≤
MLi, then

Li ≥
L−1
M−1

, M ≥ 2, (7.12)

and the system is underdetermined such that several exact solutions exist [11]. Then,
the pseudo-inverse in (7.11) is defined as

H+ = HT (HHT )−1 (7.13)

and gives the minimum norm solution to (7.10). In the special case when (7.12)
results in an equivalence, the matrix H becomes square and the pseudo-inverse
in (7.11) reduces to a standard matrix inverse. The exact solution is then unique
and equivalent to that of MINT [18] . However, as pointed out in [14], it is not al-
ways possible to choose such a length for M > 2, since the relation in (7.12) may
not give an integer result. Instead, a greater length is often chosen [7, 10, 14]. A
third case arises when Li is chosen such that (L + Li − 1) > MLi, which results in
an overdetermined system of equations and only a least squares solution can be ob-
tained [11]. For this work, we consider the former, minimum norm exact solutions,
and set the equalization filter length to

Li =
⌈

L−1
M−1

⌉
, M ≥ 2, (7.14)

where �a� denotes the ceiling operator giving the smallest integer greater than or
equal to a. The relation between an input signal s(n), ATFs Hm(z), equalizers Gm(z),
and an output signal ŝ(n) is depicted in Fig. 7.1 where, following the general equal-
ization formulation in (7.1), ŝ(n) = κs(n− τ) for ideal equalization.

7.3 Equalization with Inexact Impulse Responses

In this section the effects of equalization filter design are demonstrated for the case
when using inexact hm, considering both single channel (approximate) equalization
with SCLS and multichannel (exact) equalization with MCEQ. An inexact system
impulse response,

h̃m = [h̃m,0 h̃m,1 . . . h̃m,L−1]T ,

is defined here as an impulse response with system mismatch Mm > −∞ dB, with

Mm = 20log10

(
‖hm − h̃m‖2

‖hm‖2

)
dB. (7.15)

Such inexact impulse responses occur in practical measurements and system iden-
tification due to noise, changes in the relative source-microphone configuration and
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estimation error. The formulation in (7.15) does not consider scalar ambiguities that
may result from some blind system identification methods since this does not affect
the performance of the equalization methods described herein. In the remainder of
this work system mismatch is modelled as in [3] according to

h̃m = (I+Em)hm, (7.16)

where
Em = diag{εm,0 εm,1 . . . εm,L−1},

I is the identity matrix and εm,i is a zero mean Gaussian distributed variable with the
variance set to the desired system mismatch,

Mm = 10log10(var(εm,i)) dB.

The following studies the design of an equalization filter for hm using h̃m when
Mm > −∞ dB. Furthermore, the equalized system is defined as

d̂ = Hĝ, (7.17)

with an I-point discrete Fourier transform

D̂(k) =
I−1

∑
n=0

d̂(n)e− j 2π
N kn, k = 0,1, . . . , I −1

= |D̂(k)|e jθ(k). (7.18)

For evaluation purposes the magnitude and the phase are considered separately as
follows:

1. Magnitude deviation is defined here as the standard deviation of the equalized
magnitude response [28]

σ =

√√√√1
I

I−1

∑
k=0

(
10log10 |D̂(k)|− D̄

)2
, (7.19)

with

D̄ =
1
I

I−1

∑
k=0

10 log10 |D̂(k)|.

This measure is scale independent and equals zero for exact equalization.
2. Linear phase deviation is defined as the deviation of the unwrapped phase from

a linear fit to its values and is defined here as

Δ =

√√√√1
I

I−1

∑
k=0

(
θ (k)− θ̄(k)

)2
, (7.20)
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Fig. 7.2 (a) Magnitude deviation and (b) phase deviation vs. system mismatch for exact equal-
ization with MCEQ from (7.11) (cirlcles) and approximate equalization with SCLS from (7.5)
(crosses)

where θ̄ (k) is the least squares linear approximation to the phase at frequency
bin k.

Two key effects regarding equalization filter design from inexact impulse responses
are to be demonstrated: the performance degradation caused by increased system
mismatch and the performance degradation caused by increased system length L for
a fixed system mismatch.

7.3.1 Effects of System Mismatch

An illustrative comparison experiment was performed using an arbitrary system
with M = 2 channels of length L = 64 taps. The taps of the impulse responses,
hm, m = 1,2, were generated using random sequences drawn from a zero mean,
unit variance Gaussian distribution. System mismatch ranging from 0 to −80 dB
was modelled using (7.16). For each case, the impulse response was equalized us-
ing the MCEQ method in (7.11) with Li = L−1, τ = 0 and with the SCLS method
in (7.5) with Li = 15L, τ = L/2. The results, averaged over 100 different channel
realizations, are displayed in Fig. 7.2. It is seen that equalization using the MCEQ
method introduces significant spectral deviation for Mm > −60 dB, a level of sys-
tem mismatch which is the capability of current (blind or non-blind) ATF estimation
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Fig. 7.3 (a) Magnitude deviation and (b) phase deviation vs. impulse response length for a sys-
tem mismatch Mm = −30 dB using exact equalization with MCEQ from (7.11) (cirlcles) and
approximate equalization with SCLS from (7.5) (crosses)

techniques. In contrast, the single channel SCLS equalizer degrades much more
gracefully, although equalization filters of very high orders are required. Further-
more, it is observed that for Mm <−70 dB the multichannel method results in exact
equalization while the single channel counterpart reaches a performance bound in
the magnitude deviation. These observations are also in accordance with the results
reported in [28, 31], where the authors studied equalization of ATFs measured at a
different location to that at the point of processing.

7.3.2 Effects of System Length

We examine next the interrelation between system mismatch, impulse response
length and equalization accuracy. We consider an arbitrary system with two ran-
domly generated channels (as in Sect. 7.3.1) hm, m = 1,2 with length L varied in
the range 10 to 190 taps and system mismatch Mm = −30 dB. The lengths of the
inverse filters were set to Li = L−1 and Li = 15L for the MCEQ and SCLS equaliz-
ers, respectively. Figure 7.3 shows the resulting magnitude and phase deviation for
the different channel lengths as an average of 100 different random channel realiza-
tions. It can be seen that the exact equalization with MCEQ considerably decreases



198 N.D. Gaubitch and P.A. Naylor

in performance compared with the single channel SCLS, which appears more or less
constant.

In summary, we have seen that exact multichannel equalization with inverse fil-
ters obtained from inexactly estimated systems gives worse results than approximate
single channel equalization. However, SCLS inverse filter length of the order 15L is
not suitable for realistic applications involving acoustic impulse responses and the
achieved equalization is limited even when the system mismatch is low. In addition,
the deteriorating effects of exact multichannel equalization, for a fixed system mis-
match, were seen to increase with increased channel length. These observations lead
us to the conclusion that when equalization filters are designed from inexact system
estimates, approximate solutions are preferable and the system length should be kept
as short as possible. This, consequently, motivates the development of a multichan-
nel subband equalizer, where shorter system length and approximate equalization
are inherent features.

7.4 Subband Multichannel Equalization

Now we derive the Subband Multichannel Equalizer (SB-MCEQ). A conceptual
system diagram of the process considered in this derivation is depicted in Fig. 7.4;
the SB-MCEQ uses a subband filtering model of the reverberation process and ap-
plies the multichannel equalizer depicted in Fig. 7.1 to each subband. Thus, there
are three key factors to consider:

1. Choice of filter-bank structure
2. Determination of the subband equivalent filters of the full-band ATFs
3. Subband equalization filter design

Multirate processing [33] has been applied successfully in acoustic signal pro-
cessing problems such as, for example, acoustic echo cancellation where consid-
erable improvement in convergence rates has been demonstrated using subband
adaptive filters [22, 29, 35, 36]. A subband version of MINT was first investigated
in [37]. This approach uses a critically decimated filter-bank. The subband trans-
fer functions to be equalized are estimated using a least squares estimate using the
observation of a known reference signal. A different multichannel subband method
was proposed by Wang and Itakura [34] for a critically decimated filter-bank. A sin-
gle channel least squares equalizer is applied to each subband and each microphone
signal and the full-band signal is reconstructed using the best microphone signal in
each subband; the best microphone signal is selected for each subband using a nor-
malized estimation error criterion from the estimation of the SCLS filters. Hopgood
and Rayner [13] take a rigorous approach to subband equalization and study the
relation between full-band and subband filters utilizing an autoregressive model of
the acoustic impulse response. An adaptive method for multichannel equalization in
oversampled subbands was proposed in [35] and was shown to provide significant
improvement over the full-band counterpart.
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Fig. 7.4 Conceptual subband multichannel equalization system: both the ATFs and the correspond-
ing inverse filters are applied to the decimated subband signals

The relation between full-band and subband filtering was studied, for example,
by Lanciani et al. [16] for filtering of MPEG audio signals and by Reilly et al.
[29] with applications to acoustic echo cancellation. The former authors derive the
relations between the full-band and subband filters for critically decimated cosine
modulated filter-banks [33], which is shown to require cross-subband filtering. On
the other hand, Reilly et al. [29] show that good approximations can be obtained
with a diagonal filtering matrix, involving only one filter per subband, for complex
oversampled filter-banks because these suppress aliasing in adjacent subbands [35]
sufficiently. We extend this approach to the multichannel case with application to
ATF equalization. This method differs from the previously proposed methods in
that it uses oversampled subbands in conjunction with explicit relations between the
full-band and the subband ATFs.

7.4.1 Oversampled Filter-banks

The Generalized Discrete Fourier Transform (GDFT) filter-bank [36] is employed
in the subsequent development work. The advantages of this filter-bank include
straightforward implementation of fractional oversampling and computationally ef-
ficient implementations [36]. The oversampling is of importance because it facili-
tates the use of a single equalization filter per subband without the requirement for
cross-filters. Within the framework of the GDFT filter-bank, the kth subband anal-
ysis filters, uk,i, are calculated from a single prototype filter, pi, with bandwidth 2π

K
according to the relation

uk,i = pie j 2π
K (k+k0)(i+i0), (7.21)
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Fig. 7.5 Subband filters of length Lpr = 512 taps for K = 32 subbands, decimated by N = 24

where the properties of the frequency and time offset terms, k0 and i0, are discussed
in, for example, [36]; we set these to i0 = 0 and k0 = 1/2 as in [29]. It has been
shown [36] that a corresponding set of synthesis filters satisfying near perfect recon-
struction can be obtained from the time-reversed, conjugated version of the analysis
filters

vk,i = u∗k,Lpr−i−1, (7.22)

where Lpr is the length of the prototype filter and, consequently, the length of all
analysis and synthesis filters of the filter-bank. Although this filter design results
in complex subband signals, for K even, only K/2 subbands need to be processed
since the remaining subbands are straightforward complex conjugates of these.

The choice of decimation factor, N, and number of subbands, K, has several
consequences. The use of a large number of subbands requires a long prototype
filter to suppress aliasing efficiently. On the other hand, if too few subbands are
used, the benefit of shorter subband filters is reduced. The choice of oversampling
ratio (N/K) affects the performance of the equivalent subband filters as will be
discussed in Sect. 7.4.2. The filter-bank used for the illustrative experiments in this
chapter uses K = 32 subbands and decimation factor, N = 24. An Lpr = 512-tap
prototype filter was designed using the iterative least squares method [36], giving
an estimated aliasing suppression of 82 dB. The magnitude response of the analysis
filters is shown in Fig. 7.5.

From the properties of the GDFT filter-bank outlined here, the following two
properties can be assumed to be valid:
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P1:Aliasing is sufficiently suppressed in the subbands

Uk(zW i
N)Vk(z) ≈ 0, i > 0, ∀k, (7.23)

where WN = e− j2π/N and Uk(zW i
N) are the z-transform alias components arising

from the decimation of the subband analysis filters, uk,i.
P2:Magnitude distortion of the filter-bank is negligible

K/2−1

∑
k=0

Uk(z)Vk(z) ≈ κz−τ , (7.24)

where Uk(z) and Vk(z) are the z-transforms of the subband analysis and synthesis
filters from (7.21) and (7.22), respectively.

7.4.2 Subband Decomposition

Consider the K subband, M microphone system in Fig. 7.4. It is clear that in order
to design the subband equalizers G′

km(z), the subband ATFs H ′
km(z) must be found

using, for example, complex subband decomposition [29]. The objective of the sub-
band decomposition is to find a set of subband filters, H ′

km(z), k = 0,1, . . . ,K/2−1,
given the full-band filter Hm(z), such that the total transfer function of the filter-
bank, Fm(z), is equivalent to the that of the full-band filter up to an arbitrary scale
factor, κ , and an arbitrary delay, τ . This can be written as

Fm(z) = κz−τHm(z), ∀m. (7.25)

The total transfer function of the filter-bank for the mth channel is given by

Fm(z) =
1
N

K/2−1

∑
k=0

N−1

∑
i=0

Uk(zW i
N)H ′

km(zN)Vk(z), (7.26)

Evoking property P1 in (7.23), the aliasing components in (7.26) can be discarded,
and the filter-bank transfer function reduces to

Fm(z) ≈ 1
N

K/2−1

∑
k=0

Uk(z)H ′
km(zN)Vk(z). (7.27)

In contrast to (7.26), the expression in (7.27) facilitates the use of a single filter
H ′

km(z) in each subband.
Next, following the approach in [29], we choose the filters in each subband,

H ′
km(z), such that they satisfy the relation

Uk(z)H ′
km(zN) = Uk(z)Hm(z), ∀k. (7.28)
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Substituting (7.28) into (7.27) we obtain

Fm(z) ≈ Hm(z)
1
N

K/2−1

∑
k=0

Uk(z)Vk(z). (7.29)

Finally, due to property P2 in (7.24), we find that the overall filter-bank transfer
function is

Fm(z) ≈ κ
N

z−τHm(z), (7.30)

which is the desired result. Thus, the remaining problem is to solve for H ′
km(z)

in (7.28).
Decimating (7.28) by a factor of N, the following approximation can be formed

1
N

N−1

∑
i=0

Uk(z1/NW i
N)H ′

km(z) ≈ 1
N

N−1

∑
i=0

Uk(z1/NW i
N)Hm(z1/NW i

N), (7.31)

which in the time domain is written, equivalently, as

UN,kh′
km ≈ rN,km, (7.32)

where
h′

km = [h′km,0 h′km,1 . . . h′km,L′−1]
T

is the L′-tap subband impulse response of the mth microphone (note that L′ is the
same for all K subbands),

rN,km = [rkm,0 rkm,N . . . rkm,N(L−1)]
T

is a
⌈
(L+ Lpr −1)/N

⌉
×1 vector with

rkm,i = hm,i ∗ uk,i, (7.33)

and

UN,k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uk,0 0 . . . 0
uk,N uk,0 . . . 0

...
. . .

. . .
...

uk,Lpr−1 . . .
... 0

0 uk,Lpr−1
. . .

...
...

...
. . .

...
0 . . . 0 uk,Lpr−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where ∗ denotes convolution and Lpr is the length of the prototype filter (and hence
of the analysis and synthesis filters). The convolution on the left-hand side of (7.32)
is of length

⌈
Lpr/N

⌉
+ L′ −1, and consequently, the length of the subband filters is
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L′ =
⌈

L+ Lpr −1
N

⌉
−
⌈

Lpr

N

⌉
+ 1. (7.34)

The estimates of the subband filters ĥ′
km are then found by solving the following

optimization problem [29]

ĥ′
km = argmin

h′km

‖UN,kh′
km − rN,km‖2

2. (7.35)

The kth subband, mth channel optimal (in the least squares sense) filters are calcu-
lated according to

ĥ′
km = U+

N,krN,km, (7.36)

where U+
N,k is the pseudo-inverse U+

N,k of the matrix UN,k.
In summary, given a full-band ATF, Hm(z), and K/2-band filter-bank satisfying

perfect reconstruction and aliasing suppression in the subbands, a set of subband
filters, H ′

km(z), of the order L/N, can be found such that the overall subband transfer
function is equivalent to the full-band filter response. We now aim to exploit this
significant order reduction in the subband filters of the very long full-band acoustic
impulse responses to design the equalizing filters G′

km(z).

7.4.3 Subband Multichannel Equalization

The multichannel equalization filters, G′
km(z), can be calculated for each subband

using the filters Ĥ ′
km(z) obtained from (7.36). Here, this is done utilizing the multi-

channel equalization filter design from (7.11), which now becomes

ĝ′k = Ĥ
′+
k d, k = 0,1, . . . ,

K
2
−1, (7.37)

such that for each subband

M

∑
m=1

Ĝ′
km(z)Ĥ ′

km(z) = 1, k = 1,2, . . . ,
K
2
−1, (7.38)

where Ĝ′
km(z) is the minimum norm estimate of G′

km(z). The equivalent subband
ATFs are shorter than the full-band ATFs. Therefore, the length of the inverse filters,
L′

i, is shortened and is given by

L′
i =

⌈
L′ −1
M−1

⌉
, M ≥ 2, (7.39)

where L′ is defined in (7.34).
Equalization is achieved by applying the inverse filters, ĝ′k, to the subband signals

of the reverberant observations in each subband k, ∀k and an equalized full-band
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Fig. 7.6 Floating point operation count vs. system length for the full-band (crosses) and sub-
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signal is constructed. Assuming that exact equalization is achieved in each subband,
the accuracy of the final result will depend on the reconstruction properties of the
filter-bank, the accuracy of aliasing suppression and, ergo, on the design of the pro-
totype filter. Consequently, the overall equalization of the subband method will not
be exact in practice, which can be beneficial as discussed in Sect. 7.3. These depen-
dencies will be explained through illustrative simulations in Sect. 7.7.

7.5 Computational Complexity

One of the several issues discussed in Sects. 7.1–7.3 was the large order of the acous-
tic impulse responses, which result in highly computationally intensive calculation
of multichannel equalization filters. In some cases the computational complexity
renders the MCEQ equalization infeasible [11]. A subband implementation, such as
the SB-MCEQ, is expected to reduce this computational complexity.

In this section, we present a comparative analysis of the computations required
for the solution of the full-band MCEQ equalizer design and the SB-MCEQ equal-
izer design (including the cost of the subband decomposition). The comparison is
made in terms of floating point operations (flops), where one flop is defined as either
one real multiplication or one real addition [4].

Consider the generic optimization problem

x̂ = argmin
x

‖Ax−b‖2
2, (7.40)
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which has a solution
x̂ = AT (AT A)

−1b, (7.41)

where A is an arbitrary real valued p×q matrix and b is a real valued p×1 vector.
The number of flops required to solve this problem using the normal equations is
given by [4]

pq2 +
q3

3
. (7.42)

From the dimensions of the full-band equalization filter calculation in (7.11), the
number of flops required for the MCEQ design is

(MLi)2(L+ Li −1)+
(MLi)3

3
. (7.43)

The subband equalization filter design takes into consideration two separate cal-
culations for each of the K/2 subbands: the cost of the subband inverse filter com-
putation in (7.37) and the cost of the subband decomposition in (7.36). The data
for these calculations is complex where, generally, one complex multiplication re-
quires four real multiplications and two real additions and one complex addition
requires two real additions. Under the assumption that an equal number of complex
multiplications and complex additions are required to solve the system of equations
considered here, we multiply the expression in (7.42) by a factor of four. The total
flops required for the subband inverse filter design can be expressed as

2K
(

(ML′
i)

2(L′ + L′
i −1)+ Lr(L′)2 +

(ML′
i)

3 +(L′)3

3

)
, (7.44)

where Lr =
⌈
(L+ Lpr −1)/N

⌉
. The key factor of the computational complexity is

the system length and thus, the improvement achieved by the subband method will
depend on the number of subbands and on the decimation ratio. An example is given
in Fig. 7.6 where the computational complexity is calculated with (7.43) and (7.44)
respectively. The subband implementation for this example is that presented in Sec-
tion 7.4.1 with K = 32 subbands decimated by N = 24 and for M = 8 microphones.
On average over all system lengths, the subband approach reduces the required flops
by a factor of 106.

7.6 Application to Speech Dereverberation

Having derived the subband adaptive filters, we are now equipped with all the tools
necessary to perform speech dereverberation in subbands. We consider a speech
signal s(n) produced in a reverberant room and observed by an M microphone array.
The reverberant observation at the mth microphone is written as

xm(n) = hT
ms(n)+νm(n), (7.45)
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where
s(n) = [s(n) s(n−1) . . . s(n−L+ 1)]T ,

and νm(n) is measurement noise. For the purpose of this work, we assume that
νm(n) = 0 in order to study explicitly the effects of inaccuracies in the ATF es-
timates. Assuming that a measurement or an estimate of the acoustic impulse re-
sponses ĥm is available, the subband dereverberation algorithm can be summarized
as follows:

1. The subband equivalent filters are calculated with (7.36); these impulse re-
sponses are then used to design the subband equalization filters ĝ′k with (7.37).

2. The decimated subband signals of the reverberant observations are obtained
by processing each channel’s observation data, x′km(n), with the analysis filter-
bank, followed by decimation such that

x′km(n) = ykm(Nn), k = 0,1, . . .K/2−1, m = 1,2, . . . ,M, (7.46)

ykm(n) = uT
k xm(n),

where
uk = [uk,0 uk,1 . . . uk,Lpr−1]T

is the analysis filter with uk,i calculated from (7.21) and

xm(n) = [xm(n) xm(n−1) . . . xm(n−Lpr + 1)]T .

3. The equalization filters are applied to each subband signal

ŝk(n) = Ĝ′
kx′km(n), (7.47)

with
Ĝ′

k = [Ĝ′
k1 Ĝ′

k2 . . . Ĝ′
kM],

where

Ĝ′
km = diag{g′km · · · g′km} =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g′km,0 0 . . . 0
g′km,1 g′km,0 . . . 0

...
. . . . . .

...

g′km,L′i−1 . . .
... 0

0 g′km,L′i−1
. . .

...
...

...
. . .

...
0 . . . 0 g′km,L′i−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is a convolution matrix, constructed in a similar manner to Hm in (7.2) and

x′km(n) = [x′km(n) x′km(n−1) . . . x′km(n−Lpr + 1)]T .
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4. An equalized full-band signal is reconstructed by upsampling of the subband
signals s′k(n) followed by the synthesis filter-bank according to

ŝ(n) =
K/2−1

∑
k=0

vT
k ŝ′N,k(n), (7.48)

where

ŝ′N,k(n) = [ŝ′N,k(n) ŝ′N,k(n−1) . . . ŝ′N,k(n−Lpr + 1)]T ,

ŝ′N,k(n) =
{

ŝ′k(
n
N ), if n

N is an integer,
0, otherwise

and
vk = [vk,0 vk,1 . . . vk,Lpr−1]T

is the synthesis filter with vk,i calculated from (7.22).

This procedure designs the subband equalizer based on a given measurement
of hm in a computationally efficient manner and then applies the equalizer in the
subbands before finally generating the full-band dereverberated signal.

7.7 Simulations and Results

The following simulation results are presented to demonstrate the performance of
the SB-MCEQ equalization method. Four experiments were performed to show:

(i) The properties of the complex subband decomposition in relation to the down-
sampling factor N

(ii) A comparative performance evaluation with the full-band MCEQ using ran-
domly generated channels

(iii) The application of the SB-MCEQ to simulated acoustic impulse responses
with illustrative examples of the algorithm

(iv) The performance in speech dereverberation

7.7.1 Experiment 1: Complex Subband Decomposition

First, we provide some experimental results using the complex subband decompo-
sition with focus on the effects of the downsampling factor N. The results, shown in
Table 7.1, were obtained with a filter-bank with K = 32 subbands, a prototype fil-
ter of length Lpr = 512 and downsampling factors N = 14,16, . . . ,32; this variation
of N represents a range from critical sampling (N = K) to 43.75% oversampling. A
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Table 7.1 Complex subband decomposition for varying downsampling factor N

N Aliasing suppression NPM Subband filtering Computational
ξaliasing (dB) (dB) accuracy, ξaccuracy (dB) savings factor

32 18.3 −7.2 −4.0 228
30 31.5 −26.4 −20.8 196
28 33.5 −33.5 −28.0 159
26 51.5 −48.8 −44.7 128
24 82.2 −70.3 −54.0 106
22 94.5 −85.8 −58.2 80
20 103.1 −105.7 −70.8 61
18 99.8 −107.7 −74.3 45
16 146.1 −130.1 −87.9 30
14 206.0 −150.8 −100.2 21

simulated impulse response, shown in Fig. 7.8, was used and the subband equivalent
filters were calculated using (7.36) and the following quantities were measured:

• SNR due to in-band aliasing (ξaliasing) is calculated from the prototype filter and
is defined as the ratio of the energy of its passband to the energy of its stopband
[36]

ξaliasing = 10log10

(
∑�I/N�

k=0 |P(k)|2

∑N−1
k=�I/N�+1 |P(k)|2

)
dB, (7.49)

where P(k) is the I-point DFT of the prototype filter pi. This measure quantifies
how much of the aliasing between adjacent subbands is suppressed. Furthermore,
it is related to the validity of property P1 in (7.23), which is a key property in the
development of the subband decomposition. The larger the value of ξaliasing, the
greater the accuracy of P1.

• Normalized projection misalignment (NPM) measures the similarity between two
impulse responses, ignoring any scale factors. It was defined in Chap. 2. It is
applied here by using a unit impulse as the input to the filter-bank. The resulting
impulse response is then compared to the full-band impulse response. In this
way, the accuracy of the desired overall transfer function of the filter-bank given
in (7.25) is examined.

• Subband filtering approximation accuracy (ξaccuracy) compares the accuracy of
a signal filtered with the subband equivalent filters and the same signal at the
output of the full-band filter. This measure is defined as in [29] to be

ξaccuracy = 20log10

(
‖x− x̂‖2

‖x‖2

)
dB, (7.50)

where x is the output signal from the full-band filter and x̂ is the output signal
from the filter-bank with the subband equivalent filters. The results are obtained
with a zero mean white Gaussian noise input sequence for both the full-band and
the subband filters, resulting in x and x̂, respectively.
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Fig. 7.7 (a) Magnitude deviation and (b) phase deviation vs. system mismatch for full-band equal-
ization with MCEQ (circles) and subband equalization with SB-MCEQ (crosses) using randomly
generated impulse responses

• Computational savings factor is the ratio between the number of computations,
in flops, required to calculate the full-band MCEQ equalizing filters according
to (7.43) and the computations required for the SB-MCEQ equalizing filter de-
sign according to (7.44).

The results of this experiment highlight the inversely proportional relationship of
the computational gain and subband filtering accuracy, a trade-off that is controlled
by N. Greatest computational gain is achieved at critical sampling (a savings factor
of 228 in this case). However, in this extreme case the aliasing suppression is low
and, consequently, the subband filtering accuracy is poor. On the other hand, when
the oversampling is large (N = 14), the aliasing effects are reduced to very low
levels (ξaliasing = 206 dB), resulting in very accurate subband filtering, however,
with a relatively low computational gain (a savings factor of 21 in this case). Our
choice of N = 24 for the following experiments represents a good trade-off between
these two factors.

7.7.2 Experiment 2: Random Channels

This experiment demonstrates the performance of the SB-MCEQ equalizer, com-
pared with full-band MCEQ. A system with M = 5 randomly generated L = 512-tap
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Fig. 7.8 Example of (a) a simulated room impulse response and (b) its corresponding magnitude
response at one of the microphones in the array, generated using the source-image method
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Fig. 7.10 Equalized (a) time domain impulse response and (b) magnitude response, using the SB-
MCEQ method Mm = −∞ dB. The magnitude deviation is σ = 0.025. (Note that the magnitude
scaling of the equalized impulse response is of no significance.)

channels was used and system misalignment, Mm varying between 0 and −80 dB
was simulated with (7.16). The taps of the channel impulse responses were gen-
erated using random sequences drawn from a zero mean, unit variance Gaussian
distribution. The results, which are an average over 100 different channel realiza-
tions, are shown in Fig. 7.7 for the full-band MCEQ (circles) and for the proposed
subband implementation (crosses). Notably, the SB-MCEQ exhibits much gentler
performance degradation with increased misalignment in comparison with the full-
band MCEQ and with a similar behaviour as the single channel SCLS equalizer
shown in Fig. 7.2. Thus, the SB-MCEQ method is shown in these results to be less
sensitive to inexact impulse responses, while benefiting from the shorter filters of
multichannel inversion. This improvement is a consequence of the reduced filter
length in the subbands, which in Section 7.3.2 was shown to improve the MCEQ
equalizer performance.

7.7.3 Experiment 3: Simulated Room Impulse Responses

We now demonstrate the performance of the SB-MCEQ equalizer for simu-
lated ATFs. A linear array of M = 8 uniformly distributed microphones with
0.05 m separation between adjacent sensors was simulated using the source-image
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Fig. 7.11 Equalized (a) time domain impulse response and (b) magnitude response, using the SB-
MCEQ method for Mm =−10 dB. The magnitude deviation is σ = 2.25. (Note that the magnitude
scaling of the equalized impulse response is of no significance but the relative scaling between
Figs. 7.10a and 7.11a is of interest.)

method [1, 25] for a room with dimensions 5×4×3. The impulse response at one
of the microphones, h1, is depicted in Fig. 7.8. The channel lengths are L = 3200
taps, which is equivalent to T60 = 0.4 s at fs = 8 kHz sampling frequency. More-
over, keeping the source-microphone configuration fixed, ATFs were simulated at 20
different locations in the room. System misalignment, Mm varying between 0 and
−80 dB was simulated with (7.16). Figure 7.9 shows the results in terms of magni-
tude and phase deviation, as an average of the 10 measurement locations. This again
shows a similar pattern to the single channel case as in the previous experiment.
Thus, with the subband equalizer, we are able to achieve the lower sensitivity to
system estimate inaccuracies of the approximate SCLS but with the filter lengths of
the MCEQ. In addition, nearly perfect equalization is achieved with the SB-MCEQ
method for Mm ≤−40 dB.

Finally, we provide two characteristic examples of the subband equalizer out-
put for the simulated ATFs. Figure 7.10a shows a typical outcome of the equalized
acoustic impulse response in the time domain and Fig. 7.10b shows the correspond-
ing magnitude response for Mm =−∞ dB. It can be seen that near perfect equaliza-
tion is achieved with only small spectral deviation (σ = 0.025); this deviation results
from the approximations in the subband filter decomposition and in the filter-bank
reconstruction. Thus, the accuracy depends on the ability of the prototype filter to
suppress aliasing and on the oversampling ratio. The delay in the equalized impulse
in Fig. 7.10a is due to the filter-bank and is governed by the order of the prototype
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filter Lpr. As a further illustration for a less accurate ATF estimation, a characteris-
tic outcome for Mm = −10 dB is shown in Fig. 7.11, where the spectral deviation
is more notable (σ = 2.26), which is due to inaccuracies in the acoustic impulse
response.

7.7.4 Experiment 4: Speech Dereverberation

The subband equalization method is now applied to speech dereverberation. Test
data comprising the sentence “George made the girl measure a good blue vase.” ut-
tered by a a male talker was drawn from the APLAWD database [17]. The sampling
frequency was set to fs = 8 kHz. A room with dimensions 5×4×3 m was simulated
using the source-image method [1, 25]. An eight-element linear microphone array
with 0.05 m spacing between adjacent microphones was modelled and the reverber-
ation time was varied in the range T60 = {0.2−0.8} s in incremental steps of 0.05 s.
Various levels of misalignment were simulated ranging from 0 to −∞. A delay-
and-sum beamformer was used as a baseline algorithm. The segmental Signal to
Reverberation Ratio (SRR) and Bark Spectral Distortion (BSD), defined in Chap. 2,
were applied using 30 ms frames with 50% overlap to quantify the improvement of
the processed speech.

The results in terms of Segmental SRR vs. reverberation time, T60, are shown in
Fig. 7.12 for reverberant speech, speech at the output of the delay-and-sum beam-
former and speech inverse filtered with the SB-MCEQ and with various levels of
misalignment in the impulse responses ranging from 0 to −∞. The legend in the fig-
ure indicates the different plots. In all cases the inverse filtering approach provides
significant improvements over the delay-and-sum beamformer, but the improvement
degrades as the misalignment increases, as could be expected. Figure 7.13 shows
the results evaluated in terms of the Bark spectral distortion for reverberant speech,
speech at the output of the delay-and-sum beamformer and speech inverse filtered
with SB-MCEQ and with various levels of misalignment in the impulse responses
ranging from 0 to −∞. It can be seen that for Mm < −30 dB, the dereverberated
speech signals are effectively equivalent (in terms of BSD) to the clean speech for
all reverberation times considered. This was also confirmed with informal listen-
ing tests. The listening tests also indicate that, in the case of Mm = 0 dB, there is
an audible residual echo in the processed speech signal, despite the apparent im-
provement in terms of the error measures used. This result, however, is not surpris-
ing and corresponds accurately to the expected outcome based on the results pre-
sented in Figs. 7.7 and 7.9, where a relatively large spectral deviation is observed at
Mm = 0 dB.
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7.8 Summary

Equalization of acoustic impulse responses has been discussed both for single and
multiple microphones. Single microphone approaches can provide only approxi-
mate equalization, require very long inverse filters and result in a long processing
delay due to the non-minimum phase property of the ATFs. On the other hand, exact
equalization with no delay and with inverse filters of similar order to the acoustic
impulse responses is possible in the multi-microphone case. However, multichannel
methods are very sensitive to inaccuracies in the estimated systems to be equalized,
causing significant distortions to the equalized signal.

Consequently, a new algorithm was derived operating on decimated oversampled
subband signals, where the full-band impulse response is decomposed into equiva-
lent filters in the subbands and multichannel equalization is applied to each subband.
It was shown that this method results in substantial computational savings at the cost
of very small spectral distortion due to the filter-bank. Simulation results were pre-
sented to evaluate the performance of this method and equalization of channels of
several thousand taps was demonstrated. Most importantly, experimental results in-
dicated that the new method is more robust to errors in the impulse responses of
the channels to be equalized, which is due to a combination of shorter filters and
approximation of the filtering in the subbands. Thus, the proposed subband mul-
tichannel equalization benefits from the reduced sensitivity to channel estimation
errors, shorter equalization filters, no delay due to the equalization (the delay due
to the filter-bank is less than 32 ms in our examples), giving significant advantages
over existing single and multichannel techniques. Finally, the subband inverse filter-
ing method was applied in the context of speech dereverberation, where the results
show that near perfect dereverberation can be achieved with impulse responses with
estimation errors of Mm < −30 dB.
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Chapter 8
Bayesian Single Channel Blind Dereverberation
of Speech from a Moving Talker

James R. Hopgood, Christine Evers, and Steven Fortune

Abstract This chapter discusses a model-based framework for single-channel blind
dereverberation of speech, in which parametric models are used to represent both
the unknown source and the unknown acoustic channel. The parameters of the en-
tire model are estimated using the Bayesian paradigm, and an estimate of the source
signal is found by either inverse filtering of the observed signal with the estimated
channel coefficients, or directly within a sequential framework. Model-based ap-
proaches fundamentally rely on the availability of realistic and tractable models that
reflect the underlying speech process and acoustic systems. The choice of these
models is extremely important and is discussed in detail, with a focus on spatially
varying room impulse responses. The mathematical framework and methodology
for parameter estimation and dereverberation is also discussed. Some examples of
the proposed approaches are presented with results.

8.1 Introduction and Overview

Acoustic dereverberation arises when an audio signal is radiated in a confined acous-
tic space. Blind dereverberation is an important and challenging signal processing
problem, which is required when this audio signal is acquired by a sensor placed
away from the source by a distance greater than the reverberation distance [25].
This problem differs from Acoustic Echo Cancellation (AEC) found in, for ex-
ample, teleconferencing applications, where a known source signal emitted from
a loudspeaker is distorted by acoustic reflections (or system echoes), and results in
a feedback path to the microphone sensor. AEC is generally a non-blind deconvolu-
tion problem and is typically solved using well-known adaptive filtering algorithms.
In blind dereverberation, however, the source signal,1 the source location, and con-

University of Edinburgh, UK

1 The source is necessarily unknown since, if it were known, there would be no need for signal
enhancement.
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sequently the Room Impulse Response (RIR) between the source and sensor, are
all assumed unknown. If an estimate of the RIR were available, the effect of rever-
beration could be removed by filtering the observed signal with the inverse of the
RIR. However, in practice, the RIR is unknown since it is not possible to measure
the specific source-sensor Room Transfer Function (RTF) between any two arbitrary
positions using a fixed measurement geometry. Although it might be possible to esti-
mate the common-acoustic component of the response from a measurement between
two other positions in the room, this is only useful with additional geometry-specific
information.2

With only the observations available, the blind deconvolution problem is under-
determined, i.e., more unknowns than observations must be estimated from a single
realisation of the measurement process at each time instance. Prior knowledge of the
statistical properties of the source and channel is essential for solving this problem,
and can be incorporated through a model-based approach to blind dereverberation.
The rest of this section is organised as follows: an overview of a model-based ap-
proach to blind dereverberation and the numerical methods involved is presented
in Sect. 8.1.1; a discussion of practical issues that occur in blind dereverberation is
given in Sect. 8.1.2; the organisation of the remainder of the chapter is outlined in
Sect. 8.1.3.

8.1.1 Model-based Framework

In a model-based approach to blind dereverberation, the source and acoustics are
represented by parametric models. The parameters of this system model are es-
timated from the observed data, and subsequently used to reconstruct the source
signal. The problem of blind dereverberation is thus transformed into an exercise in
parameter estimation and inference. If all the parameters and observable variables
in the source and channel models are regarded as unknown stochastic quantities,
the system model can be rephrased in a statistical context using Probability Density
Functions (PDFs). There is a plethora of statistical parameter estimation techniques
available, including maximum likelihood methods such as the Expectation Maxi-
mization (EM) algorithm. However, a robust and consistent way of exploiting and
manipulating these PDFs is by using Bayes’s theorem to infer a degree of belief
of an unknown hypothesis. More specifically, the Bayesian framework provides a
learning procedure where knowledge of the system is inferred from prior belief and
updated through the availability of new data.

In this chapter, Bayesian inference and associated numerical optimisation meth-
ods are used for parameter estimation. Monte Carlo approaches are used to obtain
empirical estimates of the resulting target distributions by drawing a large number of
samples from a (potentially different) hypothesis or sampling distribution. Parame-

2 Such a measurement of such a common-acoustical component could, for example, be incorpo-
rated in self-calibrating teleconferencing applications.
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ter estimates are then obtained from averaging the drawn variates. These algorithms
are generally divided into offline batch methods and online sequential approaches.

8.1.1.1 Online vs. Offline Numerical Methods

Online methods assume the signal is presented in a stream and can be processed
sequentially and immediately as each sample is observed. Batch methods, on the
other hand, assume that the observed signal samples become available only as soon
as all the data has been measured. Based on this collective information, batch meth-
ods explore the system using the knowledge inferred from all observations. In con-
trast, online methods are adaptive approaches that track a system model with each
processed sample. Online methods thus facilitate real-time processing and can be
used where data sets are not fixed, i.e., where new data constantly becomes avail-
able. However, in order to build a realistic hypothesis from one sample only, online
methods often require more complex approaches than batch methods and can hence
be more computationally expensive and complicated to implement. Implementa-
tions of online methods are based on Sequential Monte Carlo (SMC) techniques in
the Bayesian framework, whereas batch methods are frequently implemented using
Markov Chain Monte Carlo (MCMC) techniques, for example the Gibbs sampler.

The choice of whether an application operates sequentially or in a batch mode
not only depends on the nature of the availability of data, but is closely tied to
the choice of methodologies and models that can actually facilitate either online
or offline estimation. Each methodology and model carries its own advantages and
drawbacks that need to be weighed carefully in order to decide between sequential
and batch processing. This is discussed further below, while a comparison of the
numerical methods for online and offline approaches is given in Sect. 8.2.3, and
a comparison of results for dereverberation of speech from a stationary talker is
presented in Sect. 8.7.3.

8.1.1.2 Parametric Estimation and Optimal Filtering methods

In addition to the choice of using either batch or sequential processing, there is the
choice of two distinct approaches to the inference problem:

1. Estimate the room impulse response and obtain an estimate of the source signal
by inverse filtering the observed signal with the estimated channel coefficients.
In general, a static parametric model is used for the RIR, so this is an exercise
in offline parameter estimation using batch methods.

2. Estimate the source signal directly as though it were an unknown parameter –
this is an exercise in optimal filtering, and therefore is solved in a sequential
manner using online methods.

Each of these approaches fundamentally rely on the availability of realistic and
tractable models that reflect the underlying speech processes and acoustic systems:
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model selection is therefore extremely important. Generation of speech through the
vocal tract as well as the effect of the reverberation process on audio signals should
motivate the choice of a particular model. The nature of room acoustics is investi-
gated in Sect. 8.3. Based on these findings, two different channel models are pro-
posed in Sects. 8.4.6 and 8.4.7. The time-varying nature of speech signals and the
rationale for the proposed speech production models are discussed in Sect. 8.6.

8.1.2 Practical Blind Dereverberation Scenarios

Blind dereverberation has recently received much attention in the literature, but of-
ten a number of key assumptions about the application setup are made. The first is in
the use of multi-microphone techniques, and the second is in solutions that assume
time-invariance of the acoustic channel. Neither of these assumptions is always ap-
propriate in practice as outlined below.

8.1.2.1 Single-sensor Applications

Spatial diversity of acoustic channels can be constructively exploited by multiple
sensor blind dereverberation techniques [28] in order to obtain an estimate of the re-
mote speech signal. Nevertheless, despite the usefulness and power of spatial diver-
sity, there are numerous applications where only a single measurement of the rever-
berant signal is available. Single-sensor blind dereverberation is utilised in applica-
tions where numerous microphones prove infeasible or ineffectual due to the phys-
ical size of arrays. Examples of applications with commercial appeal include hear-
ing aids, hands-free telephony, and automatic speech recognition. For these reasons,
this chapter considers the single-sensor problem of blind dereverberation, although
Bayesian approaches to the multi-sensor case have been considered in [10, 15, 17].

8.1.2.2 Time-varying Acoustic Channels

Signal processing in acoustic environments is often approached with the assumption
that the room impulse response is time-invariant. This is appropriate in scenarios
where the source-sensor geometry is not rapidly varying, for example, a hands-free
kit in a car cabin, in which the driver and the microphone are approximately fixed
relative to one another, or in a work environment where a user is seated in front
of a computer terminal. However, there are many applications where the source-
sensor geometry is subject to change; the wearer of a hearing-aid typically wishes to
move around a room, as might users of hands-free conference telephony equipment.
A talker moving in a room at 1 m/s covers a distance of 50 mm in 50 ms. This
distance might be enough for the room impulse response to vary sufficiently that any
assumption of a time-invariant acoustic channel is no longer valid (see Sect. 8.4.5).
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An implicit assumption often made is that the physical properties giving rise to the
acoustics of the room are time-invariant; thus, it is assumed that it is the variable
source-sensor geometry that leads to the changing RIR. However, it is not beyond
possibility that the room acoustics may vary: the changing state of doors, windows,
or items being moved in the room will influence the room dynamics.

Although there is some limited recent work dealing with time-varying acoustic
channels [4, 31], generally the problem of single-channel blind dereverberation of
speech from a moving talker has to date received little attention from the signal
processing community. This is in part because the case of a stationary talker has not
yet been solved satisfactorily. Nevertheless, the problem is of growing interest, and
in itself can give insight to the simpler Linear Time-Invariant (LTI) problem. This
chapter specifically attempts to bridge this gap by considering Linear Time-Variant
(LTV) channels for blind dereverberation of speech from moving talkers.

8.1.3 Chapter Organisation

The remainder of this chapter is organised as follows: Section 8.2 introduces a math-
ematical formulation of the blind dereverberation problem including model ambi-
guities. Sect. 8.2.1 revises the Bayesian framework used for blind dereverberation.
The nature of room acoustics is considered in Sect. 8.3, which provides motivation
for the parametric channel models in Sect. 8.4. Noise and source models are out-
lined in Sects. 8.5 and 8.6, respectively. Details of several offline and online blind
dereverberation algorithms are then given in Sect. 8.7, while some brief conclusions
are found in Sect. 8.8.

8.2 Mathematical Problem Formulation

Typically, in single-channel blind deconvolution, the degraded observation, x(n),3 is
modelled as the linear convolution of the unknown source signal, s(n), and a room
impulse response, h(qsrc,qmic)(n), in additive noise, ν(n), as indicated in Fig. 8.1. This
model assumes the noise within an acoustic environment is an additive common
signal unaffected by the acoustics of a room. Moreover, as discussed in Sects. 8.3
and 8.4, the RIR is dependent on the source and observer positions, qsrc and qmic,
respectively. If the source and sensor positions vary with time, such that qsrc =
qsrc(n) and qmic = qmic(n) are functions of time, then the spatially varying nature
of the RIR corresponds to a time-varying impulse response function. This response
is denoted by h(qsrc(�),qmic(�))(n) = h(n, �), and represents the RIR at time index n to
an impulse applied to the system at time index �. Consequently, the discrete-time

3 All signals are assumed to be defined over the range n ∈N = {0, . . . ,N−1},N ∈Z
+ is a positive

integer. In all other cases, unless stated otherwise, the following set notation is used for simplicity:
U = {1, . . . ,U} ⊂ Z

+U .
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Fig. 8.1 General additive noise system model

model is written as:4

x(n) = ∑
�∈L

h(n, �)s(�)+ν(n). (8.1)

The characteristics of the noise term, ν(n), are discussed in depth in Sect. 8.5. Of-
ten, however, this observation error is used to encompass all other background noise
sources in the acoustic environment; application of the central limit theorem is used
to argue that the sum of all background noise is Gaussian and unaffected by the
acoustics of the room. Additionally, some noise sources might lead to a diffuse
sound field and, since they have unknown statistics, again it is reasonable to model
their superposition as Gaussian. Thus, ν(n), is typically assumed to be White Gaus-
sian Noise (WGN) with variance σ2

ν , uncorrelated with both the RIR and the source
signal, such that:

ν(n) ∼N
(
0, σ2

ν
)
. (8.2)

The convolution in (8.1) may be written in matrix-vector form by defining the
vectors [x]i = x(i), [s]i = s(i), [ν]i = ν(i), i ∈ N , and the matrix [H]i, j = h(i, j),
{i, j} ∈ N ×N , such that:

x = Hs+ν. (8.3)

If the source and observer have a fixed spatial geometry, such that qsrc and qmic
are time-invariant, then the RIR is also time-invariant due to its dependency on the
fixed values of qsrc and qmic. By writing h(qsrc(�),qmic(�))(n, �) ≡ h(qsrc,qmic)(n− �) �
h(n− �), (8.1) reduces to the standard LTI convolution:

x(n) = ∑
�∈L

h(n− �)s(�)+ν(n)≡ h(n)∗ s(n)+ν(n), (8.4)

and the matrix H of (8.3) becomes Toeplitz. The general objective of blind derever-
beration is to estimate the source signal, s, or the matrix of room impulse responses,
H, based on prior knowledge about s, the noise ν , and H. An inference framework is
required to estimate the unknowns s and H. As outlined in Sect. 8.1.1, the approach
presented in this chapter is to parametrically model these unknowns and estimate

4 Thus, if s(n) = δ (n− �) represents an impulse applied at time �, the convolution of (8.1) gives
the output x(n) = h(n, �) as required.
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the model parameters using the Bayesian paradigm, as described in the following
section.

8.2.1 Bayesian Framework for Blind Dereverberation

Bayesian methods use probability density functions to quantify degrees of belief in
an uncertain hypothesis, and utilise the rules of probability as the calculus for oper-
ating on those degrees of belief. Thus, a fundamental principle of the Bayesian phi-
losophy is to regard all parameters and observable variables as unknown stochastic
quantities. Two key characteristics of the Bayesian framework include the consis-
tency of its inductive inference, and the utilisation of the marginalisation operator.
Bayesian approaches are consistent since the calculus of probability is consistent:
any valid use of the rules of probability will lead to a unique conclusion. Marginal-
isation is a powerful inferential tool that facilitates the reduction of the number of
parameters appearing in the PDFs by the so-called elimination of nuisance parame-
ters. Consider a data model, M, with unknown parameters, θM, for the N samples
of observed data, x = {x(n), n ∈ N}. The posterior probability, p(θM | x,M), for
the unknown parameters is defined by Bayes’s theorem as

p(θM | x,M) =
p(x | θM,M) p(θM | M)

p(x |M)
, (8.5)

where p(x | θM,M) is the likelihood, p(θM |M) is the prior PDF on θM. The
term p(x |M) is called the evidence, and is usually regarded as a normalising con-
stant. Given the likelihood and the prior distributions, Bayesian methods aim to
estimate the unknown parameters from the posterior distribution.

In the most general case of single-channel blind dereverberation, the system is
expressed by (8.3) where the original source signal, s, the room impulse response,
H, and the noise, ν , are all considered as random vectors or matrices. Each of these
random quantities possesses a corresponding PDF that models knowledge of the
speech production process, the nature of reverberation, and the nature of any ob-
servation noise, respectively. Moreover, each of s, H, and ν , depends on a set of
parameters denoted by θ = {θ s, θ h, θν}, respectively. Thus, a direct application of
Bayes’s theorem in (8.5) yields the joint PDF of all the unknown parameters given
the observations x:

p( s,H,ν,θ | x)=
p(x | s,H,ν ,θ ) pS ( s | θ s) pH (H | θ h) pν (ν | θν) pΘ (θ )

pX (x)
, (8.6)

where it is assumed that s, H and ν are a priori conditionally independent given
the system parameters θ .5 The denominator pX (x) is independent of the unknown
vectors and can therefore be considered as a normalising constant, except in the case

5 The subscripts denoting the variable which defines a PDF are omitted from the terms
p( s,H,ν,θ | x) and p( x | s,H,ν,θ), in (8.6) and onwards, for clarity.
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of model selection. The term pΘ (θ ) contains all a priori knowledge, i.e., it reflects
knowledge about the parameters before the data is observed. By means of prior
densities, the posterior, p( s,H,ν ,θ | x), can therefore be manipulated by inferring
any required statistic, leading to a fully interpretable PDF. If no prior knowledge
is available, the prior PDF should be broad and flat compared to the likelihood.
Such priors are known as non-informative and convey ignorance of the values of the
parameters before observing the data.

If s, H, ν , and θ , are all known then the value of the observation vector x = Hs+ν
is unique. Therefore, it directly follows that:

p(x | s, H, ν, θ) = δ (x− [Hs+ν]) .

Consequently, since the observations x are known, when any two of the three ran-
dom vectors, {s, H, ν}, in (8.6) are known, the solution of the third is trivial. Since
the noise model in Fig. 8.1 is additive, ν is commonly considered as the determined
random vector, and (8.6) simplifies to:

p( s, H, θ | x)∝ pS ( s | θ s) pH (H | θ h) pν (x−Hs | θν ) pΘ (θ ) , (8.7)

where pν ( · | θν) is the noise PDF. As mentioned in Sect. 8.2, the objective is to esti-
mate the source signal, s, or the room impulse responses, H. These are obtained from
(8.7) using the marginalisation operator. By marginalising the RIRs, the source sig-
nal can be expressed directly, thus bypassing the estimation of the system response.
The PDF of s is thus found by:

p( s | x) =
∫∫

p( s, H, θ | x) dHdθ , (8.8a)

where the integrals are over all the elements of H and θ . If it is desired to obtain a
source signal estimate by inverse-filtering the observations with the RIR, the source
signal should be marginalised. The PDF of the room impulse response is thus found
as:

p(H | x) =
∫∫

p( s, H, θ | x) dsdθ . (8.8b)

In practice, the calculations involved in the marginalisation of either the source sig-
nal in (8.8a) or the channel response in (8.8b) are typically implicitly performed
with appropriate dereverberation algorithms; there is little difference in the imple-
mentation of these marginalisation calculations. Moreover, the marginalisations are
often performed numerically, as discussed in Sect. 8.2.3, so frequently the joint PDF,
p( s, H, θ | x), of (8.7) is estimated.
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8.2.2 Classification of Blind Dereverberation Formulations

The joint PDF in (8.7) of the source, channel, and model parameters, completely en-
capsulates the full system model shown in (8.1) and (8.3). Unfortunately, the length
of the impulse responses and source are typically very long. Therefore, if the source
signal, s, and the channel, H, are simply considered as unknown parameters, the
dimension of the joint PDF will be extremely high. This will make estimation of
the full parameter set difficult. However, some special cases and simplifications are
considered, as follows:

Stochastic channel model The term pH (H | θ h) in (8.7) allows for a stochastic chan-
nel model, inasmuch as the impulse response functions are still random processes
given knowledge of the channel parameters, θ h. While H is stochastic in nature
given the parameters θ h, often pH (H | θ h) takes on a standard distribution, such
as Gaussian, such that H is frequently amenable to the marginalisation in (8.8a).
Some examples of stochastic channel models are discussed in Sect. 8.4.7.

Static parametric channel model If a static parametric model is used for the RIR, the
channel model parameters, θ h, completely determine H. Hence, if H = G(θ h)
for some matrix G of functions, the channel PDF simplifies to pH (H | θ h) =
δ (H−G(θh)). Therefore, Bayes’s theorem in (8.7) reduces to:

p( s, θ | x)∝ pS ( s | θ s) pν (x−G(θh)s | θν ) pΘ (θ ) , (8.9)

where θ = {θh, θ s} is the reduced parameter set. The observation likelihood
in this expression, pν (x−G(θh)s | θν ), is still determined by the observation
noise PDF. However, since pν ( · | θν ) and pS ( s | θ s) are often Gaussian, it is
straightforward to marginalise s in (8.8b):

p(θ s,θ h | x) =
∫

p( s, θ | x) ds. (8.10)

Unfortunately, such a marginalisation can then make removal of the nuisance
parameters, θ s, difficult. Static parametric channel models are discussed in detail
in Sect. 8.4.6.

Zero observation noise with stochastic channel model In the case of no observation
noise:

pν (x−G(θh)s | θν) = δ (x−G(θh)s) ,

and so assuming a stochastic channel model, (8.7) simplifies to:

p(H, θ | x) ∝ pS ( s | θ s)|x=G(θh)s pH (H | θ h) pΘ (θ) , (8.11)

where the PDF p( s | θ s)|x=G(θh)s requires an appropriate probability transfor-
mation from x to s given θ h to correctly determine its form.

Zero observation noise with static channel model Similarly, in the case of a static
channel model and no observation noise, (8.9) simplifies to:
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p(θ s, θ h | x)∝ pS ( s | θ s)|x=G(θh)s pΘ (θ s, θ h) . (8.12)

Note that, in this context, the likelihood is pX (x | θ ) = pS ( s | θ s)|x=G(θh)s. The
interesting form of the simplified Bayes’s expression in (8.12) is that the joint
PDF is now just in terms of the model parameters. Therefore, assuming that the
number of model parameters is substantially fewer than the length of the source
signal and RIRs, this reduced parameter space should be simpler to estimate.
Moreover, unlike the case in (8.10), the source model parameters, θ s, can usually
be marginalised, to leave the marginal PDF for the channel parameters:

p(θ h | x) =
∫

p(θ s, θ h | x) dθ s. (8.13)

The optimal channel parameter, θ̂ h, estimates can then be used to recover the
source signal from the reverberant observations using the relation s = G−1(θ̂ h)x.
Figure 8.2 shows a graphical representation of the general parametric system
model with zero observation noise.

8.2.3 Numerical Bayesian Methods

As discussed in Sect. 8.1.1, blind dereverberation can be approached either as an
offline batch parameter estimation, or as an online optimal filtering problem. Of-
fline estimation generally uses batch approaches such as MCMC methods, whereas
online approaches use SMC methods.

8.2.3.1 Markov Chain Monte Carlo

In the batch approach, a Maximum Marginal a Posteriori (MMAP) estimate of the
channel parameters is found by solving, for example, (8.13):

θ̂ h,MMAP = argmax
θh

p(θ h | x) = argmax
θh

∫
p(θ s, θ h | x) dθ s, (8.14)

where x denotes all available data. The MMAP estimate, θ̂ h,MMAP, is then used to
inverse-filter the noise-free observed signal in (8.3) with the room transfer function
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Algorithm 8.1 Generic two-component Gibbs sampler
for i = 1, . . . , I −1 do

Sample θ (i+1)
s ∼ p

(
θ s | θ (i)

h , x
)

.

Sample θ (i+1)
h ∼ p

(
θ h | θ (i+1)

s , x
)

.
end for
Discard samples {θ (i)

s , θ (i)
h } for i = {0, . . . , Iburnin −1}.

–
Note that the conditionals take the form:

p(θ s | θh, x) ∝ p( x | θ s, θ h) p(θ s) , (8.16a)

p(θ h | θ s, x) ∝ p( x | θ s, θ h) p(θ h) , (8.16b)

where the measurement likelihood is given from (8.12) as:

p( x | θ s, θ h) = pS ( s | θ s)|x=G(θh)s . (8.16c)

in order to reconstruct the speech signal:

sMMAP = G−1 (θ̂ h,MMAP
)

x. (8.15)

Although deterministic optimisation methods could be used for directly determining
the MMAP estimate, θ̂ h,MMAP, in practice it is difficult to find since the a posteriori
PDF in (8.13) and (8.14) is usually multi-modal and subject to rapid fluctuation with
variations in the parameter space. Instead, iterative stochastic sampling schemes
can be used: MCMC methods can be utilised to sample from the joint PDF of the
channel and source parameters, θ h and θ s, respectively. MCMC methods are based
on constructing a Markov chain that has the desired distribution as its invariant
distribution. Gibbs sampling [6, 9] is a MCMC method that approximates the joint
PDF of the unknown model parameters by iteratively drawing random variates from
the conditional densities in order to sample from their joint PDF. A generic form of
a simple two-component Gibbs sampler is given in Algorithm 8.1. Independent of
the initial distribution, the probabilities of the chain are guaranteed to converge to
the invariant distribution, i.e., the joint PDF, after a sufficiently long burn-in period.
A Minimum Mean Square Error (MMSE) estimate of the channel parameters is
then obtained through numerical marginalisation of the nuisance parameters, which
is achieved simply by computing the expected value of only the variates of interest:

θ̂ h,MMSE =
1

I − Iburnin

I−1

∑
i=Iburnin

θ (i)
h , (8.17)

where θ (i)
h are the samples drawn at iteration i, I is the total number of iterations and

Iburnin is the number of samples discarded in the burn-in period. Often, it is assumed
that the MMSE estimate of the channel parameters approximately corresponds to
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Algorithm 8.2 Generic particle filter using importance sampling
for n = 1, . . . , number of samples do

for i = 1, . . . , number of particles do
Sample θ (i)

n ∼ π
(
θ (i)

n

∣∣∣ x1:n, θ
(i)
0:n−1

)
.

Evaluate w(i)
n ∝

p
(

x(n) | x1:n−1, θ
(i)
n

)
p
(
θ (i)

n

∣∣∣ θ (i)
0:n−1

)

π
(
θ (i)

n

∣∣∣ x1:n, θ
(i)
0:n−1

) .

end for
Normalisation of importance weights w(i)

n → w(i)
n

∑i w(i)
n

.

Resampling step (see, e.g., [40]).
end for

the MMAP channel estimate, θ̂ h,MMSE ≈ θ̂ h,MMAP [7]. An estimate of the source
signal is then obtained by the inverse-filtering operation in (8.15).

8.2.3.2 Sequential Monte Carlo

SMC methods or Particle Filter (PF)s [40] facilitate direct estimation of the source
signal, thus avoiding issues caused by inversion of non-minimum phase channels
(see Sect. 8.3.3). It is desired to find the PDFs for the unknown signal states and
parameters, p( s, θ | x), for example, as given by (8.9), in a sequential online man-
ner. Thus, the objective is to actually estimate, at time index n, p( s0:n, θ0:n | x0:n),6

where θ � {θn} is now assumed to consist of a sequence of parameters, and there-
fore θ 0:n is the sequence of parameters until time n. This posterior PDF is approx-
imated at each time instance by a cloud of random variates, also called particles.
Since the posterior PDF is usually difficult to sample from directly, these particles
are drawn from an importance distribution, π (θ n | x1:n, θ 0:n−1), which is straight-
forward to sample from. The resulting random variates are assigned weights to ap-
portion their contribution to the empirical PDF appropriately. The posterior can then
be updated on a per-sample basis by recursively updating the locations of the parti-
cles, and rejuvenating the particle cloud by resampling those particles that contribute
most to the empirical PDF. The generic form of a particle filter is summarized in
Algorithm 8.2. MMSE parameter estimates can be obtained from a sample mean of
the particles, similar to (8.17). The aim is to obtain a direct estimate of the joint PDF
of the source signal, and ideally as a byproduct, the model parameters.

8.2.3.3 General Comments

A comparison of online and offline methods is summarized in Table 8.1. One partic-
ular difference involves the inverse channel filtering implicitly used in the MCMC

6 Note that in a sequential framework, the following notation is used to represent a sequence:
ua:b � {u(a), u(a+1), . . . , u(b)}.
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Table 8.1 Comparison of online and offline methods

Online Offline

Method: SMC MCMC
Exploration by: tracking/updating estimates searching parameter space
Enhancement via: direct source signal estimation channel inversion
Results: available in real-time delayed

System model: stochastic static
Noise model: flexible noise model WGN or no noise
Estimated signal and model parameters model parameters (usually)
posterior PDF: p( s0:n, θ0:n | x1:n) p(θ | x)

Model advantages: flexible system models requires model selection

method [7], but avoided in the SMC approach since the latter estimates the source
signal directly. As discussed in Sect. 8.3.3, channel inversion introduces several
difficulties that can potentially increase the distortion in the enhanced signal. The
discussion thus far has assumed that there is some optimal estimate of either the
source signal, or model parameters. Since blind dereverberation is an inherently un-
derdetermined problem, in that there are more unknowns than observations, this is a
strong assumption. The choice of parametric models in, for example, Fig. 8.2, might
lead to multiple modes in the joint PDF of (8.11) and (8.12), and therefore multiple
optimal solutions. To ensure a unique solution, it is required to consider the system
identifiability.

8.2.4 Identifiability

Single-channel blind dereverberation is an inherently under-determined problem.
A characteristic of blind deconvolution is that the source signal and RIR must be
irreducible for unambiguous deconvolution [24]. An irreducible signal is one in
which the z-transform polynomial representation cannot be expressed as a product
of at least two non-trivial factors over a given set.7 This corresponds to saying that
an irreducible signal is one that cannot be expressed as a time-invariant convolution
of two or more signal components. Thus, a reducible signal, h(n), is one which can
be expressed as h(n) = h1(n)∗ h2(n).

In the noiseless linear time-invariant case, as given by (8.4) with ν(n) = 0,
the observed signal may be expressed as x(n) = h(n) ∗ s(n). Hence, if h(n) is re-
ducible such that h(n) = h1(n) ∗ h2(n), the observed signal is given by s(n) =
h1(n) ∗ h2(n) ∗ s(n). Consequently, there are multiple solutions to the deconvolu-
tion problem, {ĥ(n), ŝ(n)}, as shown in Table 8.2. It is impossible to decide which
of the solutions in Table 8.2 is the correct solution without additional knowledge.

7 This is on the understanding that the delta function corresponds to a trivial factor, and is therefore
not a signal component.
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Table 8.2 Possible solutions, {ĥ(n), ŝ(n)}, to blind dereverberation of a stationary talker when the
LTI channel, h(t) = h1(n)∗h2(n), is reducible

ĥ(n) ŝ(n)

1 h1(n)∗h2(n)∗ s(n)
h1(n) h2(n)∗ s(n)
h2(n) h1(n)∗ s(n)
s(n) h1(n)∗h2(n)

h1(n)∗h2(n) s(n)
h1(n)∗ s(n) h2(n)
h2(n)∗ s(n) h1(n)

h1(n)∗h2(n)∗ s(n) 1

By realising that many linear systems are reducible when the signals are consid-
ered stationary and the system time-invariant, it is clear that blind deconvolution is
impossible in such cases. If, however, s(n) and h(n) are quasi-stationary and quasi-
time-invariant, respectively, then while the system is locally reducible, s(n) and h(n)
are not globally reducible. This is provided that s(n) and h(n) possess different rates
of global time-variation. In such a case, therefore, blind deconvolution is possible.

Several examples shall reiterate this point:

1. If, for example, the source is modelled as a stationary Autoregressive (AR) pro-
cess and the channel as an LTI all-pole filter (see Sect. 8.4.3), the observed
signal is also a stationary AR process. Consequently, it is not possible to at-
tribute a particular pole estimated from the observed signal to either the source
or channel; there is an identifiability ambiguity and the system is reducible.
This source-channel ambiguity can be avoided by, for example, modelling the
acoustic source as a Time-Varying AR (TVAR) process (see Sect. 8.6.2), and the
channel by an LTI Finite Impulse Response (FIR) filter. The observed signal is
then a Time-Varying ARMA (TVARMA) process, in which the poles belong to
the source model and zeros to the channel; in this case, the system is irreducible
given prior knowledge that the source has poles only, and the channel has zeros
only. There appears to be no ambiguity in distinguishing between the parame-
ters associated with each, and this model is used in [4] for the case of separating
and recovering convolutively mixed signals. However, this TVAR-FIR source-
channel model is of course not always realistic, as it cannot be ascertained that
the source only has poles and no zeros, and the channel only has zeros and no
poles.

2. In an alternative approach to single-channel blind dereverberation focusing on
stationary talkers [21], the locally-stationary nature of the source and the as-
sumed time-invariance of the channel are utilised to provide sufficient informa-
tion to distinguish between the two models. In this approach it is argued that
the statistics of speech signals remain quasi-stationary for around 20–50 ms.
The source signal is modelled by a Block Stationary AR (BSAR) process (see
Sect. 8.6.3), while the Acoustic Impulse Response (AIR) is modelled by an LTI
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all-pole filter.8 These models allow the AIR to be uniquely identified up to a
scaling ambiguity, since essentially any common poles estimated from different
blocks of the observed data must belong to the channel.

The issue of system identifiability is clearly determined by assumptions regarding
the characteristics of the source signal and the acoustic impulse response. These
characteristics must be appropriately reflected in the parametric models used, and it
must be determined whether the proposed system model is identifiable. This, how-
ever, does not address the question of whether the underlying physical system is
identifiable only from the observations. In blind dereverberation, this is an open
question and readily in need of more investigation [34]. With these identifiability
issues in mind, the following sections discuss appropriate channel (Sect. 8.4) and
source models (Sect. 8.6).

8.3 Nature of Room Acoustics

The Bayesian paradigm suggests the use of either stochastic or static parametric
channel models. This section considers the nature of room acoustics from a per-
spective relevant to the justification of commonly used models in blind derever-
beration. The most general form of a room impulse response in continuous time,
h(qsrc(τ),qmic(τ))(t), resulting from an impulse applied at time τ between a sound
source and observer at positions qsrc(τ) and qmic(τ), respectively (see (8.1)), re-
sults from solving the acoustic wave equation. For clarity, the dependence on τ will
subsequently be dropped, since τ is essentially characterised by the source-sensor
geometry (qsrc,qmic). The solution is expressed in continuous-time as a linear com-
bination of damped harmonics:

h(qsrc,qmic)(t) =

{
0 for t < 0,

∑k Ãke−δ̃k t cos
(
ω̃kt + θ̃k

)
for t ≥ 0.

(8.18)

The amplitude coefficients, Ãk, implicitly contain the locations of the source and
sensor, qsrc and qmic. On the other hand, the damping factors, δ̃k, corresponding
to the quality-factor (Q-factor), the undamped natural frequencies, ω̃k, and phase
terms, θ̃k, are independent of the source and receiver positions. Their values are
determined by the room size, wall reflection coefficient, and room shape. While
the general parametric model in (8.18) completely characterises the room impulse
response, it is intractable for many estimation problems in signal processing and
does not easily lead to an analytical solution in the Bayesian framework for blind

8 In this chapter, the terms RIR and RTF specifically refer to any impulse response or transfer
function, respectively, associated with room reverberation, whereas the terms acoustic impulse
response and acoustic transfer function are used to refer to the response of an acoustic environment
other than a room. In [21] and later in this chapter, results are presented for an acoustic gramophone
horn, and therefore it is referred to by an acoustic rather than room response.
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dereverberation. Even though numerical Bayesian methods (see Sect. 8.2.3) can be
used to circumvent the lack of closed form solutions, (8.18) does not necessarily
lead to a parsimonious representation, and therefore alternative models should be
considered.

Moreover, while there are many other techniques for modelling an RIR, not all
lend themselves to algorithms for straightforward parameter estimation. In general,
each model applies to a different frequency range of the audible spectrum and, from
a signal processing perspective, there is no single practical generative model for the
entire audible frequency range [25].

8.3.1 Regions of the Audible Spectrum

Generally, the audible spectrum can be divided into four distinct regions, as sum-
marised in Fig. 8.3. In the following, consider a typical shoebox shaped office envi-
ronment with dimensions 2.78×4.68×3.2m, volume V = 41.6m3, and reverbera-
tion time of T60 = 0.23 seconds. This room is denoted by R. A single-tone source of
frequency f is assumed in the discussion, with the argument extending to wideband
sources by using linear superposition.

Very Low Frequencies and Wave Acoustics At very low frequencies, f < fw = c
2L ,

where c is the speed of sound, and L is the largest dimension of the acoustic envi-
ronment, there is no resonant support. Typically, fw is around 35 Hz for room R.
The so called wave-acoustics region corresponds to frequencies where the source
wavelength is comparable to the room dimensions. It spans the lowest resonant
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mode, approximately given by fw, to the Schroeder frequency fg ≈ 2000
√

T60/V
(Hz). Distinct resonants occur in which the Q-factor is sufficiently large that the
average spacing of resonant frequencies is substantially larger than the average
half-width of the resonant mode. For this room, distinct resonances occur be-
tween fw = 35 Hz and fg = 149 Hz.

In practice, however, the very low frequency and wave acoustic regions are generally
irrelevant for speech dereverberation since electro-acoustic systems have a limited
bandwidth at low frequencies. Analytical tools are thus utilised only for the high
sound frequency and geometric acoustic regions.

High Sound Frequencies and Geometric Acoustics Above fg, there is such a strong
model overlap that the concept of a resonant mode becomes meaningless. How-
ever, below a frequency of around 4 fg, the wavelengths are too long for the appli-
cation of geometric acoustics. Thus, in this transition region, a statistical treat-
ment is generally employed. For the room above, statistical theory is relevant
from fg = 149 Hz to 4 fg = 595 Hz.
Above 4 fg, geometrical room acoustics applies and assumes the limiting case
of vanishingly small wavelengths. This assumption is valid if the dimensions of
the room and its walls are large compared with the wavelength of sound: this
condition is met for a wide-range of audio frequencies in standard rooms. In
this frequency range, specular reflections and the sound ray approach to acous-
tics prevail. Geometrical acoustics usually neglect wave related effects such as
diffraction and interference. The image method [1] for simulated AIRs is valid
only in this frequency range.

8.3.2 The Room Transfer Function

Parametric modelling is often justified by considering the Room Transfer Function
(RTF) between a sound source in an enclosed space and a receiver, rather than the
time-domain representation in (8.18). The RTF is derived directly from (8.18) by
taking Laplace transforms as:

H(qsrc,qmic)(s) = ∑
k∈K

αk +βk s

ω̃2
k +(δ̃k + s)2

≡ ∏
k∈K

D(qsrc,qmic)(s)
(s− sk)(s+ sk)

, (8.19)

where ω is angular frequency, sk = −δ̃k + jω̃k, the constants {αk,βk} and the poly-
nomial D(qsrc,qmic)(s) are functions of {Ãk, δ̃k, θ̃k} and consequently dependent on
the source-sensor geometry.9 Thus, the frequency response is:

H(qsrc,qmic)( jω) = ∑
k∈K

αk + jβkω
ω̃2

k + δ̃ 2
k −2 jδ̃kω−ω2

. (8.20)

9 It is easily shown that αk = Ãk

(
δ̃k cos θ̃k − ω̃k sin θ̃k

)
and βk = Ãkω̃k cos θ̃k.
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When ω ≈ ω̃k, the associated term in (8.20) assumes a high absolute value. As such,
ω̃k is sometimes called an eigenfrequency of the room [25], or a resonant frequency
due to the resonances occurring in the vicinity of ω̃k.

8.3.3 Issues with Modelling Room Transfer Functions

Audio signal processing in acoustic environments is a notoriously difficult and chal-
lenging field, and blind dereverberation is no exception. The difficulty arises due to
the complexity of the room acoustics. There are a number of problems encoun-
tered in this application when dealing with AIRs, such as in (8.18), and RTFs of
(8.19) [34].

Long and Non-minimum Phase AIRs

In general, RIRs are long and, for instance, a Finite Impulse Response (FIR) imple-
mentation would typically require ns = T60 fs coefficients, where fs is the sampling
frequency. For example, if T60 = 0.5 s and fs = 10 kHz, the length of the RIR is
around ns = 5000 coefficients. This can render modelling and parameter estima-
tion difficult. Moreover, RIRs are often non-minimum phase, leading to difficulties
with channel modelling and inversion. The non-minimum phase contribution to the
perception of reverberation is significant [22, 33].

Robustness to Estimation Error and Variation of Inverse of the AIR

Any small error in an RIR estimate leads to a significant error in the inverse of
the RIR. Thus, inversion can increase distortion in the enhanced signal compared
to the reverberant signal. Any deviation from the true RIR means that attempts to
equalise high-Q resonances can still leave high-Q resonances in the equalised re-
sponse degrading the intelligibility of the restored signal. Similarly, a small change
in source-sensor geometry might give rise to a small change in the RIR, so again the
corresponding changes in the inverse of an RIR can sometimes be large.

Subband and Frequency-zooming Solutions

Since the proposed channel estimation techniques and source recovery methods dis-
cussed in this chapter implicitly use inverse-filtering methods, these issues are par-
ticularly pertinent. Some of these problems cannot be alleviated by either attempt-
ing to process the full frequency range of the source, nor by attempting to invert
the full-band RTF using a single filter. In problems with long channels, it is better
to utilise subband methods that attempt to enhance the reverberant signal by invert-
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ing the channel response over a number of separate frequency ranges. Modelling
each frequency band independently can lead to a parsimonious approximation of
the RTF, lower model orders, and an overall reduction in the total number of pa-
rameters needed to approximate the acoustic channel. Moreover, there may be only
a few bands that have high-Q resonances, which need careful equalisation, whereas
other frequency bands have lower-Q factors, so less care is required.

An additional advantage of using subband models is that subbands possess-
ing minimum phase characteristics can be inverted, despite the AIRs being non-
minimum phase over the full frequency range. Hence, in the case of a non-minimum
phase response, where a causal inverse does not exist, methods for detecting and
equalising the minimum phase subbands should be developed: this follows the ap-
proaches in [45, 46]. Details of a subband all-pole model and methodology are dis-
cussed in Sect. 8.4.4.

8.4 Parametric Channel Models

This section discusses a variety of parametric models, both static and stochastic,
that can be used tractably within a Bayesian framework. Rational parametric models
are introduced, but it is important to note that it is the characteristic of the model
parameters that determines whether the model is static or stochastic; this is discussed
in Sect. 8.4.5.

8.4.1 Pole-zero and All-zero Models

The RTF in (8.19) is rational and can therefore, in principle, be modelled by a con-
ventional pole-zero model [30]. From a physical point of view, poles represent reso-
nances, and zeros represent time delays and anti-resonances. Two common simplifi-
cations of (8.19) are the all-zero and all-pole models, each with their own advantages
and disadvantages.

There are several main limitations imposed by the nature of room acoustics of
the resulting FIR filters given by all-zero models [29, 30]. Firstly, as discussed in
Sect. 8.3.3, RIRs are, in general, very long and an all-zero filter typically requires
as many taps as the length of the RIR. Secondly, the resulting FIR filter may be
effective only for a limited spatial combination of source and receiver positions,
(qsrc,qmic), as all-zero models lead to large variations in the RTF for small changes
in source-observer positions [29, 30]. A further disadvantage of the pole-zero and
all-zero models for the single channel case is that estimation of the zeros requires
solving a set of non-linear equations.
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Fig. 8.4 Resonant standing waves for a 1-D room can be observed at any point except node points,
such as point C. Since this standing wave occurs independently of the source location and can be
observed at all observation points, the acoustical poles that reflect the information of the resonant
frequencies are independent of source-sensor locations

8.4.2 The Common-acoustical Pole and Zero Model

The poles of the room transfer function on the right-hand side of (8.19) are func-
tions of the damping factors, δ̃k, and undamped natural frequencies, ω̃k, and are,
therefore, approximately independent of the source and sensor positions (qsrc,qmic).
Consequently, the poles encapsulate all the information pertaining to the resonants
of a room; standing waves occur independently of the source location and can be
observed at any point in the room, except at node points, as depicted in the 1-D case
shown in Fig. 8.4. Naturally, the amplitude of the standing wave varies depending
on the sensor positions, as seen in Fig. 8.4, and this variation is reflected in the ze-
ros of the RTF [14]. This leads to the Common-Acoustical Pole and Zero (CAPZ)
model of an RTF, which was first introduced by Haneda et al. [13, 14]. It should be
noted the acoustical argument used above for the justification of the CAPZ model
is simplistic, and other investigations on the fluctuations of AIRs within reverberant
environments suggest that this assumption may not be strictly true [34].

Nevertheless, the CAPZ model is particularly useful in applications where mul-
tiple room transfer functions from different source-observer positions are modelled,
which could have applications in, for example, multi-channel blind source separa-
tion [10], or blind dereverberation from a moving talker. Like the general pole-zero
model, the CAPZ model still suffers from the problem that it is not possible to write
an input–output equation that is Linear-In-The-Parameters (LITP), which thereby
complicates parameter estimation.

8.4.3 The All-pole Model

An LITP model that lends itself to straightforward parameter estimation is the all-
pole model, which is widely used in many fields to approximate rational transfer
functions. In discrete-time, its transfer function is given by:



8 Blind Dereverberation from a Moving Talker 239

Hq(z) = Gq ∏
k∈P

1
1− pq,k z−1 ≡ Gq

1 + ∑
k∈P

aq,k z−k , (8.21)

where q = (qsrc,qmic) is the set of source and sensor positions, Gq is a gain term,
{pq,k}P

k=1 denote the P poles, and {aq,k}P
k=1 denote the P all-pole parameters. It

is claimed that typical all-pole model orders required for approximating RIRs with
reverberation times T60 ≈ 0.5 s are in the range 50 ≤ P ≤ 500 [30], although this
depends on the frequency range of the acoustic spectrum considered. In fact, practi-
cal experience seems to indicate this is a relatively conservative estimate, although
it obviously depends on how much data is available for model order estimation.
Mourjopoulos and Paraskevas [30] conclude that in many signal processing appli-
cations dealing with room acoustics, it may be both sufficient and more efficient to
manipulate all-pole model coefficients rather than high order all-zero models. All-
pole models are particularly useful for modelling resonances in the wave acoustics
and high sound frequency regions.

Despite the dependence of the model parameters on the source-sensor positions,
q = (qsrc,qmic), a purported advantage of the all-pole over the all-zero model is its
lower sensitivity to changes in q [30]. While the CAPZ model contributes to this
argument, it is still the case that a subset of poles in the all-pole model must account
for the variations in the RTF with source-sensor geometry, even if it is less sensitive
than the all-zero model.

In the time-domain, suppose a signal, s(n), is filtered through a room impulse
response between a source position that varies as a function of time, qsrc(n), and a
fixed observation position qmic. As the source-sensor geometry varies as a function
of time, the parameters that define the RIR also vary as a function of time. If the
acoustic channel is modelled by an all-pole filter of order P, the observed signal,
x(n), received at the sensor, is expressed as

x(n) = −
P

∑
k=1

ak(n)x(n− k)+ s(n), (8.22)

where the all-pole coefficients, {aq,k}P
k=1, are now considered as functions of time

and are denoted by {ak(n)}P
k=1. The nature of the parameter variations is discussed

in Sect. 8.4.5.

8.4.4 Subband All-pole Modelling

The all-pole model in Sect. 8.4.3 will be referred to as the full-band all-pole model,
since it essentially attempts to fit the entire frequency range simultaneously. The
full-band all-pole model can result in a high number of parameters, the estima-
tion of which will require a large computational load that can be unacceptable in
computationally intensive algorithms such as blind dereverberation. The modelling
of complicated room transfer functions requires a highly flexible and scalable para-
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Fig. 8.5 (a) Transfer function of an acoustic gramophone horn [41] with the corresponding AR
model and (b) poles corresponding to response in (a). The unit semi-circle maps to frequency
range 0 → 10 kHz

metric model. As discussed in Sect. 8.3.3, a subband approach can resolve a number
of modelling issues.

An intuitive rationale for why high model orders result in the full-band all-pole
model is as follows: consider a transfer function that is highly resonant in a low
frequency band, and much less resonant in a higher band, as shown in Fig. 8.5(a).
Spencer [41] shows that this response can be accurately modelled by an all-pole
model with 68 parameters. As shown in Fig. 8.5(b), these poles seem uniformly dis-
tributed around the edge of the unit circle. In the low frequency band, up to approxi-
mately 2 kHz, there are a number of closely spaced high-Q resonances; these can be
modelled using approximately 12 poles. The response due to each pole-pair rolls-
off at 40 dB per decade. Since the low-frequency poles are closely spaced with high
spectral peaks, a large number of poles are needed at high-frequencies to counteract
the roll-off effect of having a large number of low-frequency high-Q poles, while si-
multaneously attempting to model a relatively smooth frequency response. Thus, in
essence, the full-band channel model requires many parameters because it attempts
to fit the entire frequency range simultaneously, even though it may fit some regions
in the frequency space better than others. Consequently, it is preferable to simply
model a particular frequency band of the acoustic channel’s spectrum by an all-pole
filter, leading to lower model orders. Subband linear prediction was first considered
in [27] and developed in [16–20, 38, 43]. The so-called unconstrained subband all-
pole model is discussed, which attempts to fit different frequency bands indepen-
dently, leading to a parsimonious approximation of the rational transfer functions
and lower model orders. It is shown in [20] that the response in Fig. 8.5 (a), when
using three subbands, can be modelled using just 51 parameters: a 25% reduction in
parameters.

The subband all-pole model is more flexible for channel modelling than a sin-
gle full-band. Makhoul [27] suggests a similar model when analysing speech using
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(a) (b)

Fig. 8.6 Subband modelling – (a) continuous spectrum, (b) discrete spectrum and indices mapping

linear prediction. Consider a discrete-time representation of the system with B sub-
bands; in subband b ∈ B the frequency response of the RTF, Hq

(
e jω), is modelled

by an all-pole spectrum in the region [ωb, ωb+1) obtained from (8.21) through the
mapping graphically shown in Fig. 8.6(a):

ω → π
ω−ωb

ωb+1 −ωb
. (8.23)

Thus, in the bth subband, the mapped frequency response is given by:

H(b)
q
(
e jω)=

Gb

1 + ∑
k∈Pb

ab,k e− jωk , ω ∈ [−π , π),

where ab = {ab,k}Pb
k=1 and Gb ∈ R

+ denote model parameters in subband b. These
parameters are implicitly conditional on q = (qsrc,qmic), although this dependence
has been dropped for clarity. The gain term, Gb, allows a further degree of freedom
in the model, although to avoid scaling ambiguities, G0 � 1. Hence, the total RTF is
modelled for ω ∈ [−π , π) as:10

10 Since the energy in subband b must be equivalent to the energy in the mapped frequency re-
sponse, the scaling term γb in (8.24) is required:

∫ ωb+1

ωb

∣∣Hq
(
e jω)∣∣2 dω =

ωb+1 −ωb

π

∫ π

0

∣∣∣∣Hq

(
e

jπ ω−ωb
ωb+1−ωb

)∣∣∣∣
2

dω.
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Hq
(
e jω)=

B

∑
b=1

(
ωb+1 −ωb

π

) 1
2

︸ ︷︷ ︸
γb

H(b)
q

(
e

jπ ω−ωb
ωb+1−ωb

)
I[ωb,ωb+1) (ω) , (8.24)

where the indicator function is defined as IA (a) = 1 if a ∈ A and zero otherwise.
When the spectrum is sampled, the mapping in (8.23) is adjusted accordingly as
indicated graphically in Fig. 8.6(b). Thus, each subband b ∈ B covers a total of
Kb = 2(kb+1 − kb) frequency bins, namely k ∈ {kb, . . . , kb+1 − 1} and the corre-
sponding complementary frequency bins (see Fig. 8.6(b)). The subband boundaries
are defined by {kb, b ∈ B}, with k0 � 0 and kB � K, where K is the total number of
frequency bins. The frequency bin closest to the half sampling frequency is given
by k fs/2 = �K/2�. The transfer function in a particular subband is obtained using the

mapping k → k−kb
Kb

for k K ≤ 2. This results in a sampled transfer function that is
essentially identical to (8.24) with ωb replaced by kb.

A significant problem with this subband model as presented, however, is that the
transfer function being modelled in each subband is no longer smooth, as indicated
in the magnitude responses shown in Fig. 8.6(a). Moreover, due to the asymmetry
of the phases, the subband phase response will be discontinuous and non-zero at the
boundaries. Yet, the phase response of the subband all-pole model at the subband
boundaries is zero. Techniques for dealing with this phase modelling problem are
discussed in [19]. Despite this, the subband model is assumed throughout the rest of
this chapter in order to reduce the complexity of the channel model.

8.4.5 The Nature of Time-varying All-pole Models

As argued in Sect. 8.4.3, a time-varying source-sensor geometry leads to a Time-
Varying All-Pole (TVAP) model, as defined by (8.22). The subband all-pole model
discussed in Sect. 8.4.4 is used in practice to model the complete RTF, and therefore
discussions henceforth apply to a limited spectral region.

Consider again the interpretation of (8.22). While the poles in the CAPZ model
discussed in Sect. 8.4.2 are invariant to changes in source-sensor positions, some of
the poles in the all-pole model of (8.22) are not. The problem of modelling the RIR
between a spatially varying source and sensor reduces to determining an appropri-
ate model for the time-varying all-pole parameters, {ak(n)}P

k=1. Determining such
a model is complicated, in part an open question, and is often constrained by the
availability of suitable and tractable parameter estimation techniques. Appropriate
models are discussed in Sects. 8.4.6 and 8.4.7. In the meantime, the spatially-varying
nature of RIRs and the variation of the all-pole model parameters with spatial po-
sition is investigated. Simulated and measured RIRs are obtained for the acoustic
set-up illustrated in Fig. 8.7 for a small office of size 2.78×4.68×3.2m (length ×
width × height); this room matches room R discussed in Sect. 8.3.1. An acoustic
source remains fixed while the microphone sensor is moved in 2 mm increments.
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Fig. 8.7 Source and sensor locations in experimental set-up; all measurements in millimeters.
Source and sensor elevation is 845 mm, room height of 3200 mm. The sensor is moved from its
initial position in 2 mm increments

This experimental set-up mimics the spatially-varying nature of the RIR for moving
sources.

The simulated RIRs are generated using the image method [1] with the reflec-
tion coefficient chosen to give a reverberation time of T60 = 0.23 s. This choice
corresponds to the measured reverberation time of the real office. As the image
model assumes geometric room acoustics, the simulated responses only apply above
four times the Schroeder frequency, fg, as discussed in Sect. 8.3.1, and in this case
4 fg = 595 Hz. Using the simulated RIRs, the RTF is modelled in the frequency
range between 600 to 1200 Hz by a 16th-order subband all-pole model as discussed
in Sect. 8.4.4. The variation of the resulting pole positions from the initial sensor po-
sition to a final offset of 400 mm is plotted in Fig. 8.8(a). The results indicate smooth
pole variation and, consequently, the TVAP parameters of the RIR vary relatively
smoothly with sensor spatial displacement. This can be confirmed by measures of
the changes in the RIR, e.g., normalised projection misalignment.

For verification of these results using real data, 910 RIRs were measured in a real
office by moving a 26-microphone linear array in small increments over a distance
of 70 mm. To obtain comparable results to the simulated data, the pole variations are
again acquired by modelling the RTF as a 16th-order subband Autoregressive (AR)
model in the range 600 to 1200 Hz. The poles for real RIRs are subject to larger
variation than those for the simulated RIRs; they cover a wider region within the unit
circle, and intersect the trajectories of neighbouring poles. To avoid cluttered pole
trajectory plots, only a subset of the pole variations from the microphone array for
several microphones (labelled mics. 7 and 8) are displayed in Figs. 8.8(c) and 8.8(d).
This corresponds to offsets from 432 to 502 mm for microphone 7 and from 504 to
574 mm for microphone 8. For comparison with equivalent results for simulated
data, see Fig. 8.8(b). The pole variations from the measured data clearly exhibit
reasonably smooth trajectories, validating the simulated results.
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Fig. 8.8 Simulated and experimental results for spatiotemporal variation of the poles in all-pole
modelling of RIRs; pole trajectories illustrated through colour map from black (starting point) to
light grey (ending point). Model order: 16. (a) Simulated: 0 → 400 mm. (b) Simulated: 432 →
574 mm. (c) Measured: 432 → 502 mm (d) Measured: 504 → 574 mm

An in-depth discussion of the variability of room acoustics is beyond the scope of
this chapter and requires considerably more investigation than the results presented
in this section. Nonetheless, the results presented in Fig. 8.8 give useful insight into
the possibilities for modelling the parameters {ak(n)}P

k=1 of the TVAP model in
(8.22).

8.4.6 Static Modelling of TVAP Parameters

The smooth variations of the poles with changing position in Fig. 8.8 suggests that a
suitable static model of the TVAP model parameters in (8.22) could be a determin-
istic function with unknown but fixed parameters. Such a function could be decom-
posed as a linear combination of basis functions. A similar decomposition will be
used for modelling speech and this is discussed in Sect. 8.6.3 (see also (8.29) and
(8.31)). Hence, the TVAP are modelled as:
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ap(n) = ∑
k∈G

ap,kgk(n− p), (8.25)

where {ap,k, p ∈ P ,k ∈ G} are the G unknown static time-invariant basis coeffi-
cients, {gk(n)}k∈G are the known time-varying basis functions. Note this model is
assumed to apply over the full length of the source signal.

As the basis functions span the vector space to which the underlying time-varying
all-pole parameters are mapped, they define the scope of their variation. Thus, their
choice is essential. Unfortunately, no general rules for choosing these functions ex-
ist. The choice of basis is therefore dependent on the prior belief of the variation
of the parameters. Amongst the wide range of basis functions that have been inves-
tigated [3, 11, 12, 39], standard choices include Fourier functions, Legendre poly-
nomials and discrete prolate spheroidal sequences. These classes tend to assume
smooth parameter behaviour and respond to abrupt changes as a low-pass filter [12].
Hence, for abrupt changes in the RIR with position (and therefore time), the param-
eters are not modelled correctly. A discontinuous basis like the step function can
capture abrupt changes well, but cannot handle smooth variations [12]. Modelling
rapid parameter variation is theoretically possible by utilising an infinite number
of basis functions. However, this leads to over-parameterised coefficients since the
model would have as many degrees of freedom as the RIR itself [12, 36].

8.4.7 Stochastic Modelling of Acoustic Channels

It might be argued that the variation of poles in Fig. 8.8, and therefore the corre-
sponding parameters, is more stochastic in nature than a smooth predictable deter-
ministic function. The simplest stochastic model for the TVAP parameters is the
random walk:

ap(n) = ap(n−1)+ wap(n), wap(n) ∼N
(

0, σ2
ap

)
,

where wap(n) is a WGN process. In actuality, the TVAP coefficients are likely to be
composed of a predictable deterministic variation or trend, which can be modelled
by a linear combination of basis functions, and an unpredictable stochastic element
that might be modelled by a random walk.

Alternatively, and inspired by models used for communication channels in the lit-
erature, it might be that the coefficients of the RIR in (8.1) are themselves modelled
as a random walk:

h(n, �) � hq(�)(n) = hq(�)(n−1)+ wh(n),

where again, q(�) = (qsrc(�),qmic(�)) denotes the source-sensor geometry, and
wh(n) is WGN with variance σ2

h . Perhaps a more structured approach is to model
the RIR, hq(n), as the product of a WGN process and a damping exponential de-
cay as described in (2.28) in Chap. 2. Despite the fact that the process in (2.28) is
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Fig. 8.9 Clean speech in a reverberant environment with remote noise signals

stochastic in nature given the variance of the WGN process and the damping factor,
it is amenable to marginalisation due to its simple structure and the small parameter
space (see the discussion in Sect. 8.2.2). These models are yet to receive substantial
attention in the research literature, but have good potential for online or sequential
algorithms (see Sect. 8.2.1). In the rest of this chapter, the static parametric model
of Sect. 8.4.6 is used.

8.5 Noise and System Model

In the general problem formulation of Sect. 8.2, the noise was modelled as an addi-
tive measurement error at the microphone, as shown in Fig. 8.1. This was based on
the argument that the observation noise is the superposition of all undesired sound
sources in the room and therefore, by a central limit theorem argument, it will be
WGN and unaffected by the room acoustics.

However, it is equally valid to argue that the underlying sources of noise arise
from distinct localised positions; for example, the humming of computer fans, air
conditioning units, or general distant traffic noise. Consider, then, the more general
model shown in Fig. 8.9 in which spatially separated noise sources are each ob-
served after they have propagated through the acoustic system; each noise source-
sensor path has a distinct room impulse response. The receiver thus observes a noise
contribution that is the linear combination of noise source signals filtered by sepa-
rate channels due to the different AIRs associated with each noise-sensor geometry.
Assuming that the noise sources are spatially-stationary, the model in (8.1) is written
as:

x(n) = h(qsrc,qmic)(n, �)∗ s(n)+
R

∑
r=1

h(qνr ,qmic)(n)∗νr(n)+ν(n), (8.26)
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Fig. 8.10 Clean speech with remote noise signals in a reverberant environment which can be de-
composed using the CAPZ model

where h(qsrc,qmic)(n, �) is the source-sensor RIR, h(qνr ,qmic)(n) is the RIR between
the rth noise source, νr(n), and the sensor, R denotes the number of noise sources,
and ∗ represents either LTV or LTI convolution depending on the context. Although
such a noise model is idealistic, it is also overly complicated, making it difficult to
estimate all the relevant system parameters. Moreover, due to the lack of knowl-
edge of the noise statistics, it might also be over-determined. Nevertheless, it is
interesting to note that the model in Fig. 8.9 can be simplified by using the notion
of common-acoustical poles as described in Sect. 8.4.2. Recall that each individ-
ual channel response can be decomposed into a combination of two components:
one that is dependent on the source-sensor geometry, and one that is acoustically
common to all source-sensor arrangements [14]. Using the CAPZ model, each RIR
can be decomposed into a path-independent all-pole model, hAP(n), and a path-
dependent pole-zero model, as shown in Fig. 8.10. Hence, (8.26) may be rewritten
as:

x(n) =

{
ĥ(qsrc,qmic)(n, �)∗ s(n)+

R

∑
r=1

ĥ(qνr ,qmic)(n)∗νr(n)

}
∗hAP(n)+ν(n), (8.27)

where hq(n, �) = ĥq(n, �)∗ hAP(n). The modified coloured noise term

νd(n) =
R

∑
r=1

ĥ(qνr ,qmic)(n)∗νr(n)

is extremely difficult to model, and it can be argued that since νr(n) has undergone
less filtering through ĥ(qνr ,qmic)(n) than through h(qνr ,qmic)(n), νd(n) will be more
Gaussian than ∑r h(qνr ,qmic)(n)∗νr(n). Hence, νd(n) is modelled as WGN such that
the overall model reduces to that shown in Fig. 8.11, and (8.27) reduces further to:
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Fig. 8.11 Noise model simplification using CAPZ model

x(n) =
{

ĥ(qsrc,qmic)(n, �)∗ s(n)+νd(n)
}
∗ hAP(n)+ν(n), (8.28)

where νd(n) ∼ N
(
0, σ2

νd

)
is the distant or remote WGN source. Moreover, it is

possible to omit the observation or measurement noise term ν(n) by essentially
combining it with νd(n) to obtain an even more simplified model. In essence, the
model in (8.28) states that any remote noise sources that are affected by reverber-
ation should not be modelled as white, but rather as WGN filtered by a common
component of the room acoustics. It turns out that the shifting of the position of
this noise term can help simplify the methodology used for source estimation, as
described in Sect. 8.7.2.

8.6 Source Model

8.6.1 Speech Production

Speech sounds can be divided into three classes depending on the mode of excita-
tion [32]. Voiced sounds are produced by vibrating vocal cords producing a periodic
series of glottal pulses. The sound is quasi-periodic with a spectrum of rich harmon-
ics at multiples of the fundamental or pitch frequency, f0, as shown in Fig. 8.12.
Unvoiced sounds, on the other hand, do not have a vibrating source: they are pro-
duced by turbulent flow, leading to a wideband noise source. Plosive sounds, with
an impulsive source, also exist, but are transient and are considered less important
in this model.

These different modes of excitation can be combined into the binary source-filter
model of speech production, as shown in Fig. 8.12. One of two source excitations is
selected, then filtered by the vocal tract, which is assumed to include the filtering ef-
fect of the mouth. The binary source-filter model is, of course, an over-simplification
of the rather complicated speech production process. Although extended models do
exist, the simple source-filter model is commonly used in the speech processing lit-
erature and gives adequate model performance [32]. Generally, linear time-variant
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Fig. 8.12 Source-filter speech model, including typical time-domain waveforms for the voiced
and unvoiced source excitation, a typical frequency response of the vocal tract and the resulting
waveform

pole-zero filters and all-pole filters in particular are a popular approach for mod-
elling the vocal tract of a talker due to their ability to accurately model the con-
tinuous short-term spectrum of speech [32]. Physically, the resonances (formants)
of speech correspond to the poles of the vocal tract transfer function, while sounds
that are generated through a coupling between oral and nasal tracts, for example
French nasals, have anti-resonances and therefore are better modelled if the transfer
function includes zeros. Thus, nasal and fricative sounds must be represented by
pole-zero pairs but not by pole-only models. Nevertheless, pole-zero speech mod-
els generally require non-linear methods for estimating their parameters [27], and
all-pole models are normally used instead.

8.6.2 Time-varying AR Modelling of Unvoiced Speech

According to the source-filter model for speech, unvoiced sounds correspond to
a WGN excitation passing through a time-varying all-pole filter representing the
vocal tract, as shown in Fig. 8.12. Hence, unvoiced speech is modelled as a TVAR
process [11, 12, 27], which is defined as:

s(n) = −
Qn

∑
q=1

bq(n)s(n−q)+σe(n)e(n), e(n) ∼N (0, 1) , (8.29)

where e(n) is the time-varying zero-mean WGN with unit variance, σ2
e (n) repre-

sents the variance of the excitation sequence ê(n) = σe(n)e(n), s(n) is the source
signal, Qn is the time-varying model order at time n and {bq(n)}Qn

q=1 are the Time-
Varying AR (TVAR) coefficients. Non-coincidentally, the TVAR process in (8.29)
is of the same form as the TVAP channel model (8.22) in Sect. 8.4.3, except that
the input is white. Thus, as discussed in Sect. 8.4.5, the problem of modelling un-
voiced speech using this representation reduces to finding an appropriate model for
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the TVAR parameters, {bq(n)}. However, as discussed previously in Sect. 8.2.2, the
model for the parameters is often determined by the methodology used for their
estimation.

The most general variation of the parameters, {bq(n)}, in (8.29) is when the pa-
rameters are completely uncorrelated at each sample. In this case, each sample of the
signal is represented by more than one unknown coefficient. This over-determined
parameterisation results in numerical problems as there is not enough data from a
single realisation of a process to allow accurate parameter estimation. Therefore,
it is necessary to introduce correlation into the parameter variations, and two dis-
tinct approaches are discussed in Sects. 8.6.3 and 8.6.4: namely static and stochastic
source models.

8.6.2.1 Statistical Nature of Speech Parameter Variation

As explained above, it is difficult to estimate all the parameters {bq(n)} from (8.29)
at each time step without access to the ensemble statistics. Hence, the precise sta-
tistical nature of the speech parameter variation for the TVAR model in (8.29) is
essentially hidden; any estimation method is limited by prior assumptions on the
statistical nature of the problem. Despite this, an illustration of the time-varying
characteristics of the parameter variation can be given by taking a sliding window of
block length M over a segment of speech; the window moves by one sample in each
of S steps. In each window, the AR coefficients are estimated assuming the model
within that block is stationary. The coefficients are computed by solving the stan-
dard Yule–Walker equations [23], and the corresponding poles are the roots of the
characteristic equation. For the two segments of speech shown in the grey regions
in Fig. 8.13, the corresponding pole variations introduced by the sliding window
are shown in Fig. 8.14(a) and Fig. 8.14(b). The poles exhibit smooth variation over
these segments of speech; this characteristic of pole movements is discussed, for
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Fig. 8.14 (a) Birth and death of true poles ( ) and LSE ( ) for left shaded area in Fig. 8.13; model
order: Q = 8. (b) True poles ( ) and LSE ( ) for speech segment in right shaded area of Fig. 8.13;
model order: Q = 6. (c) Smooth pole variation (Fig. 8.14 (b)) corresponds to relatively smooth
parameter variation, (d) Close-up of Fig. 8.14(b) showing LSE ( ) matching true poles ( )

example, in [12]. Smooth pole variation often leads to relatively smooth parameter
variation, as shown in Fig. 8.14(c).

8.6.3 Static Block-based Modelling of TVAR Parameters

Many statistical estimation methods impose stationarity on the model of the signal
primarily to constructively exploit ergodicity. Since within the speech production
process, the vocal tract is continually changing with time, sometimes slowly, some-
times rapidly as, for example, during plosive sounds and speech transitions, the
assumption of stationarity is a limitation that results in poor modelling [44]. In or-
der to reconcile partially the global non-stationarity while utilising the advantages
of local ergodicity in estimation methods, a compromise is to model speech as a
block-stationary process: the signal is divided into short segments or frames where
the statistics of the signal are assumed to be locally stationary within blocks, but
globally time-varying.



252 J.R. Hopgood et al.

Thus, the signal s(n) is partitioned into K contiguous disjoint blocks. Block k ∈K
begins at sample nk with length Nk = nk+1 − nk. In this block, the signal is repre-
sented by a stationary AR model of order Qk. Using (8.29), this is equivalent to set-
ting Qn = Qk, {bq(n) = bk,q, q ∈Qk}, σe(n) = σe,k, ∀n ∈Nk = {nk, . . . ,nk+1−1}⊂
Z

Nk , such that

s(n) = −
Qk

∑
q=1

bk,qs(n−q)+σe,k e(n), (8.30)

where {bk,q}Qk
q=1 are the Block Stationary AR (BSAR) coefficients in block k ∈ K

that are stationary within each block but vary over different blocks k. For continuous
sounds such as vowels, the TVAR parameters change slowly, such that the BSAR
model works well. With transient sounds such as plosives and stops, the BSAR
model is not as good but still adequate [32]. In general, however, it is clear that even
local stationarity prohibits the estimation of the full variation of the signal within
that block, which is essential for accurate modelling of a time series.

8.6.3.1 Basis Function Representation

As an alternative to the BSAR model, correlation can be introduced into the pa-
rameter variations of {bq(n)} in (8.29) by a transformation of the non-stationary
signal to a space where it can be analysed as an LTI process [3, 11, 12, 26, 35–37].
This corresponds to modelling the parameters, {bq(n)}, as a linear combination of
basis functions, and this is the same approach as used for modelling the channel
in Sect. 8.4.6. To ensure that the correct number of basis functions and AR model
orders are chosen, model order selection procedures should be implemented; [36]
proposes such an algorithm based on the discrete Karhunen–Loève transform.

Ideally, the pole locations rather than the parameter variation are represented as a
function of time by a parametric model. However, this is difficult as the relationship
between poles and parameters is non-linear and a closed-form expression for the
pole positions for high order models cannot be derived. If the TVAR coefficients can
be represented by a linear combination of basis functions, (8.29) can be formulated
as [11, 37]:

s(n) = −
Q

∑
q=1

{
F

∑
m=1

bq,m fm(n−q)

}

︸ ︷︷ ︸
bq(n)

s(n−q)+σe e(n), (8.31)

where F is the number of basis functions, b = {bq,m}Q M
q=1,m=1 are the unknown time-

invariant basis coefficients, and { fm(n)}F
m=1 are the known time-varying basis func-

tions. To demonstrate that the speech pole movements can be approximated by the
model in (8.31), a Least Squares Estimate (LSE) fit to the AR parameters corre-
sponding to the speech pole movements in Fig. 8.14(a) and Fig. 8.14(b) is performed
using the trigonometric Fourier basis set
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fm(n) =
{

sin
(

mω0
n
N

)
, cos

(
mω0

n
N

)}
for m ∈ {0,1,2}, (8.32)

with fundamental frequency ω0 = 2π 5
9 rad/s. Due to the linearity of the source

model in (8.31), the basis coefficients, b, are obtained as the linear least squares
estimate [23]. The full TVAR coefficients, {bq(n)}, are then estimated by multipli-
cation of the basis functions with the linear LSE estimate of the basis coefficients
using the decomposition in (8.31). The estimates of the TVAR parameters are de-
picted in Fig. 8.14(a) and Fig. 8.14(b) in black dots, and show a good match to the
actual poles (Fig. 8.14(d)). This and the results in [3, 11, 12, 26, 37] lead to the
conclusion that a model based on the transformation from an LTV process to an LTI
one through a set of basis functions can capture appropriately the time-variation of
short segments of speech.

8.6.3.2 Choice of Basis Functions

The difficulties of choosing the basis functions are the same as those discussed in
Sect. 8.4.6. A comparison of modelling speech signals using Fourier, Legendre and
other basis sets is detailed in Charbonnier et al. [3]. It is often assumed for sim-
plicity that the true speech parameters can be approximated by sinusoidal functions
(Fourier basis), since these are seen to be a good model of the source parameter
variations as depicted in Fig. 8.14(c).

The difficulty of abrupt parameter variations is seen in Fig. 8.14(a), where some
of the speech poles evolve towards the origin and then abruptly jump away from
it. Since the frequency response of poles approaching the origin becomes increas-
ingly flat, this pole behaviour corresponds to a birth–death process. This effect does
not occur for the same experiment using a lower order due to a more parsimonious
representation. In other words, the death and birth of poles is an artefact introduced
through the over-parameterisation of the model. Ideally, the system should have a
time-varying model order so as to capture poles that contribute to the frequency
response of the speech signal, and adjust the model order when poles become re-
dundant. Thus, the model order, Q, and the block-length, N (see (8.33) in the next
section) are in principle also random variables and could be allowed to vary with the
block index. While this would capture any births or deaths of poles, the estimation
techniques required, such as reversible-jump MCMC methods, greatly increase the
computational burden and implementation complexity.

8.6.3.3 Block-based Time-varying Approach

An alternative approach to address the issue of abrupt parameter variations while
using a limited set of basis functions is proposed, which relies on a block-based
time-varying model. Here, the signal is segmented into shorter blocks that are mod-
elled as locally time-varying, as well as globally time-varying. Instead of utilising
one set of parameters coping with rapid global variation, several sets of param-
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Fig. 8.15 Block-based time-varying AR speech production model

eters are introduced that capture the local variation within each block. For suffi-
ciently short blocks, the time variation of the signal will be smooth and parame-
ters can be estimated accurately using a standard choice of basis functions. This
model thus attempts to incorporate the time-varying nature of the signal both lo-
cally as well as globally. In the block-based TVAR model, the source signal is ex-
pressed for a block of data, indexed by k and of length Nk = nk+1 −nk, for samples
n ∈ Nk = {nk, . . . ,nn+1 −1} as:

s(n) = −
Q

∑
q=1

{
F

∑
m=1

bkqm fm(n−nk + Q−q)

}

︸ ︷︷ ︸
bq(n),n∈Nk

s(n−q)+σe,ke(n), (8.33)

where e(n) ∼ N (0, 1) and the block boundaries are specified by nk and nk+1 in
block k ∈ K. This model is illustrated in Fig. 8.15 and reduces to the TVAR model
(8.31) in the case of a single block. Note that this model implicitly assumes unvoiced
speech segments because it uses a white excitation. An issue for further research is
whether the model also works effectively for voiced speech.

8.6.4 Stochastic Modelling of TVAR Parameters

The parameter models of Sect. 8.6.3 are static in that once the parameters of the
model are known, the speech production process is determined. Furthermore, the
TVAR processes of (8.30) and (8.31) are singly stochastic, inasmuch as there is a
single stochastic excitation to the system. If the parameters {bq(n)} of the general
TVAR model of (8.29) are themselves allowed to evolve stochastically, then the
process becomes doubly stochastic. Such a speech production model is used by
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Vermaak et al. [44] who varied the parameters in (8.29) as a simple random walk
given by:

bq(n) = bq(n−1)+σbqwb(n)

φe(n) = φe(n−1)+σφewφe(n)

}
{wb(n), wφe(n)} ∼ N (0, 1) , (8.34)

where φe(n)= logσ2
e (n) and q∈Q.11 A fixed model order is assumed for simplicity.

Stability constraints can be enforced by only allowing the parameter set {bq(n)} to
take on values in the admissible region, BQ, which corresponds to the instantaneous
poles being inside the unit circle. Hence, defining the vector of TVAR coefficients
at time n as b(n) = [b1(n), . . . ,bQ(n)]T , the source parameter variation in (8.34) can
be written as the conditional PDFs 12

p(b(n) | b(n−1))∝N
(
b(n)

∣∣b(t −1), Δb
)
IBQ (b(n)) , (8.35a)

p(φe(n) | φe(n−1)) = N
(
φe(n)

∣∣φe(n−1), δ 2
e
)
, (8.35b)

where φe(n) = lnσ2
e (n) and IBQ (b(n)) is the indicator function defining the re-

gion of support, BQ, of b(n). The initial states are given defined by p(b(0)) ∝
N
(
b(0)

∣∣0Q×1, Δb,0
)
IBQ (b(0)) and p(φe(0)) � N

(
φe(0)

∣∣0, δ 2
e,0

)
.

Alternatively, the model can be reparameterised in terms of time-varying reflec-
tion coefficients or partial correlation coefficients [8]. If the reflection coefficients
all have a magnitude of less than 1, the system is guaranteed to be stable. The key to
utilising models in which the parameters {bq(n)} vary in a stochastic nature is to use
a numerical Bayesian methodology that provides a natural environment for dealing
with evolutionary or sequential problems. SMC (see Sect. 8.2.3) is particularly apt
at tracking the unknown signal, s(n), from the observations, x(n), given in (8.1).

Nevertheless, it is still important to ensure that the motivation for a particular
speech model does not become skewed by the desire to use a particular methodol-
ogy. What motivates the model of (8.34): the sequential online numerical Bayesian
methodology, or the “goodness” of the speech model? As discussed in Sect. 8.6.2,
if it is assumed that the parameters vary slowly, a BSAR process might be more
appropriate than the doubly stochastic model formed from (8.29) and (8.34). The
parameters of a BSAR process, since they are time-invariant, can be estimated us-
ing a batch method such as MCMC. Thus, what really motivates the use of a BSAR
model? It is apparent that the particular methodology utilised influences the choice
of model.

Using the channel models in Sect. 8.4, the noise model in Sect. 8.5 and the speech
models in this section, the Bayesian framework of Sect. 8.2.1 leads to Bayesian blind
dereverberation algorithms as discussed in the next section.

11 Variance terms are, by definition, positive, such that σ 2
e (n) ∈ R

+; allowing the log-variance to
vary as a random walk ensures this constraint is met.
12 The set of Markov parameters

{
Δb,Δb,0,δ 2

e ,δ 2
e,0

}
are usually assumed known.
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8.7 Bayesian Blind Dereverberation Algorithms

8.7.1 Offline Processing Using MCMC

In the offline approach to blind dereverberation, it is sought to find an analytical
expression for the marginal PDF in (8.8b):

p(H | x) =
∫∫

p( s, H, θ | x) dsdθ .

An MMAP estimate can be found either through deterministic or stochastic optimi-
sation methods. The most straightforward situation in which an analytic solution to
(8.8b) is possible is when appropriate static parametric models for the source signal
and channel are used, and when it is assumed there is no observation noise. Thus,
the Bayesian formulation reduces to (8.12) and the channel can be estimated using
(8.13).

The static block-based TVAR model discussed in Sect. 8.6.3 is utilised for the
speech signal, and an LTI all-pole filter for the channel model, such that the ob-
served reverberant signal, x(n), is given by (8.22). Given an estimate of the channel
parameters, θ h, the source, s(n), can easily be recovered through a rearrangement
of (8.22), in what is essentially an inverse filtering operation. Although it is possible
to perform the marginalisation in (8.13) analytically, the resulting posterior PDF is
complicated to optimise, and in practice the Gibbs sampler described in Sect. 8.2.3
is utilised. The Gibbs sampler implementation requires conditional densities. As in-
dicated in (8.16) of Algorithm 8.1, these rely on the complete likelihood and the
priors. Thus, the likelihood term and the choice of priors are described below.

8.7.1.1 Likelihood for Source Signal

It can be shown that the likelihood for all the source data across K blocks, each of
size Nk = nk+1 −nk, is given by

pS ( s | θ s) = pS0 ( s0 | Ms)∏
k∈K

1(
2πσ2

e,k

)Nk/2 exp

{
−‖sk + Ukbk‖2

2

2σ2
e,k

}
, (8.36)

where the source parameter vector is defined by θ s = {b, σ e}, with σ e containing
the excitation variances and b = {bk, k ∈ K} containing the basis parameter coeffi-
cients. Thus, in block k:

• [σ e]k = σ2
e,k ∈ R

+ is the excitation variance, and bk � [bT
k,1 . . . bT

k,Q]T ∈ R
FQ×1,

with
[
bk,q

]
i = bkqi the basis function coefficients.

• The vector of source samples is sk = [s(nk) . . . s(nk+1 − 1)]T ∈ R
Nk×1, and

Sk,q = diag{s(nk −q) . . . s(nk+1 −1−q)} ∈ R
Nk×Nk is a diagonal matrix of

shifted source signal samples.
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• Fk,q ∈ R
Nk×F is a matrix whose columns contains the basis functions such that

the (i, j)th element of Fk,q is [Fk,q]i j = fi( j + Q−q).
• Uk � [Uk,1 . . . Uk,Q] ∈ R

Nk×FQ, where Uk,q = Sk,qFk,q.

The vector containing all the source data is denoted s = [sT
0 . . . sT

K ]T , s0 is the initial
data for the first block and Ms is the data model.

8.7.1.2 Complete Likelihood for Observations

The complete likelihood can be expressed by writing (8.22) as s = Ax, where the
vector of observation samples x = [x(0) . . . x(N − 1)]T ∈ R

N×1, the vector of the
source samples is s ∈ R

N−P×1 is as in (8.36) and A ∈R
N−P×N is the matrix contain-

ing the TVAP channel coefficients:

A =

⎡
⎢⎢⎢⎣

aP(P) · · · a1(P) 1 0 . . . 0
0 aP(P + 1) · · · a1(P+ 1) 1 . . . 0
...

. . .
. . .

. . .
0 · · · 0 aP(N −1) · · · a1(N −1) 1

⎤
⎥⎥⎥⎦ .

From (8.36), the likelihood of the observations given the source parameters, θ s, and
the channel coefficients, θ h = a, is given by (see (8.12)):

pX (x | θ) = pS ( s | θ s)|s=Ax

≈ ∏
k∈K

1
(

2πσ2
e,k

)Nk
2

exp

{
−‖sk + Ukbk‖2

2

2σ2
e,k

}∣∣∣∣∣∣∣∣
s=Ax

, (8.37)

where the vectors {sk} and matrices {Uk} are functions of the channel parame-
ters and observations via the relationship s = Ax, and it has been assumed that
pS0 ( s0 |Ms) � const. The TVAP parameters in A are evaluated from the channel
basis weighting coefficients, a, through (8.25).

8.7.1.3 Prior Distributions of Source, Channel and Error Residual

The prior in (8.12) can be factorised assuming that the source parameters are inde-
pendent between blocks and also independent of the channel parameters:

pΘ (θ | ψ) = pΘh (θh | ψh) pΘs (θ s | ψs)

= p
(

a | σ2
a
)

p
(
σ2

a
∣∣ αa,βa

)
∏
k∈K

p
(

bk | σ2
bk

)
p
(
σ2

bk

)
p
(
σ2

e,k
), (8.38)

where ψ = {ψs, ψh} are the hyper-parameters and hyper-hyperparameters. Note
that σ2

a and σ2
bk

are the channel and source hyperparameters and that all the hyper-
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Fig. 8.16 Equivalent frequency response variation of the LTV all-pole channel
.

hyperparameters are assumed known (and therefore not shown in (8.38)). The
terms in the likelihood for AR parameters usually take the form of a Gaussian [2].
Thus, to maintain analytical tractability, Gaussian priors are imposed on the chan-
nel and source parameters, i.e., p

(
a | σ2

a
)

= N
(
a
∣∣0, σ2

a IP
)

and p
(

bk | σ2
bk

)
=

N
(

bk
∣∣0, σ2

bk
IQ

)
.13 A standard prior for scale parameters, such as variances,

is the inverse-Gamma density.14 The prior distribution on the excitation vari-
ance, and the hyperparameters on the source and channel are therefore assigned
as: p

(
σ2

e,k

)
= IG

(
σ2

e,k

∣∣αe,k, βe,k

)
, p
(
σ2

bk

)
= IG

(
σ2

bk

∣∣αbk , βbk

)
and p

(
σ2

a
)

=

IG
(
σ2

a
∣∣αa, βa

)
; {α{a,bk,ek}, β{a,bk,ek}} are the known hyper-hyperparameters.

Thus, ψ � {σ2
{a,bk},α{a,bk,ek}, β{a,bk,ek}}.

8.7.1.4 Posterior Distribution of the Channel Parameters

The joint-posterior PDF is found using Bayes’s theorem in (8.13):

p(a,b,σ e | x,ψ)∝ p(x | a,b,σ e) p(a,b,σ e | ψ) . (8.39)

Using the relationships in (8.37) and (8.38), and the marginalisation of (8.13), the
nuisance parameters b and σ e can be marginalised out to form the marginal a pos-
teriori PDF. As shown in [7], this evaluates to:

p(a | x, ψ) ∝ exp
{
− aT a

2σ2
a

}
∏
k∈K

|Σk|−
1
2 E

−
(

Nk
2 +αe,k

)
k , (8.40a)

with E j = 2βe, j + sT
j s j − sT

j U j Σ−1
j UT

j s j (8.40b)

and Σ j = UT
j U j + δ−2

b j
IFQ, (8.40c)

13 p
(

x | μ ,σ 2
)

= N
(
x
∣∣μ , σ

)
denotes a Gaussian PDF whereas x ∼N (μ , σ ) denotes that x is a

Gaussian sample; IK is the identity matrix of size K ×K.
14 The inverse-Gamma PDF is IG

(
x
∣∣α , β

)
= βα

Γ (α) x−(α+1) exp
{
− β

x

}
.
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where j ∈ K, δb j is a hyperparameter defined for analytical tractability as σ2
b j

�
δ 2

b j
σ2

e, j . Similarly to (8.37), it is understood in (8.40) that s j and U j are functions of
the parameters a and the observed data x. The MMAP estimate is found by solving
âMMAP = argmaxa p(a | x, ψ). This MMAP estimate is most easily found using
Gibbs sampling (see Algorithm 8.1):

a(i+1) ∼ p
(

a | b(i),σ (i)
e ,σ2(i)

a ,σ (i)
b

)
,

b(i+1)
� ∼ p

(
b | a(i+1),{bk}(i+1)

k=1:�−1 ,{bk}(i)
k=�+1:L ,σ (i)

e ,σ2(i)
a ,σ (i)

b

)
,

σ2(i+1)
e,� ∼ p

(
σ2

e,�

∣∣ a(i+1),b(i+1),
{
σ2

e,k
}(i+1)

k=1:�−1 ,
{
σ2

e,k
}(i)

k=�+1:L ,σ2(i)
a ,σ (i)

b

)
,

σ2(i+1)
a ∼ p

(
σ2

a
∣∣ a(i+1),b(i+1),σ (i+1)

e ,σ (i)
b

)
,

σ2(i+1)
b�

∼ p
(
σ2

b�

∣∣ a(i+1),b(i+1),σ (i+1)
e ,σ2(i+1)

a ,
{
σ2

bk

}(i+1)
k=1:�−1 ,

{
σ2

bk

}(i)
k=�+1:L

)
,

where each of the conditional PDFs are also dependent on the observations, x, and
known hyper-hyperparameters. These conditionals take the form:

p(a | θ−a) ∝ p(x | θh,θ s) p
(

a | σ2
a
)
,

p
(

b� | θ−b�

)
∝ p(x | θh,θ s) p

(
b� | σ2

b�

)
,

p
(
σ2

e,�

∣∣ θ−σ2
e,�

)
∝ p(x | θh,θ s) p

(
σ2

e,�

∣∣ αe,�, βe,�
)
,

p
(
σ2

a
∣∣ θ−σ2

a

)
∝ p

(
a | σ2

a
)

p
(
σ2

a
∣∣ αa,βa

)
,

p
(
σ2

b�

∣∣ θ−σ2
b�

)
∝ p

(
b� | σ2

b�

)
p
(
σ2

b�

∣∣ αb�
,βb�

)
,

where θ = {θ s,θ h} = {a,b,σe,σ2
a ,σb} and θ−α denotes θ with element α re-

moved. Full details of the form of these conditions can be found in [7].

8.7.1.5 Experimental Results

Results demonstrating the performance of this offline Bayesian inference problem
are shown in Evers and Hopgood [7]. A single experimental result is presented
in this section to summarise the performance of the algorithm. An acoustic chan-
nel is based on perturbations of an actual acoustic gramophone horn response up
to a frequency of 1225 Hz [21]. This range matches that of the investigations in
Sect. 8.4.5. Full-band signal enhancement could be achieved using subband meth-
ods as discussed in Sect. 8.4.4. The magnitude frequency response of the original
time-invariant channel has four resonant modes which introduces a reasonable and
noticeable amount of acoustic distortion into a signal passed through the filter. A
time-varying response is obtained by perturbing each of the original channel poles
in a circle of small radius. Despite there being a highly non-linear relationship be-



260 J.R. Hopgood et al.

(a) (b)

Fig. 8.17 Actual poles ( ) vs. Gibbs estimates ( ) for (a) the source and (b) the channel

tween the poles and filter parameters, it is possible to model the parameter variation
accurately using the sinusoidal basis set:

{g�(n)} = {1, sin(2πn/N), cos(2πn/N), sin(2.5πn/N), cos(2.5πn/N)},

where N is the total number of samples. The variability of the channel is shown as
grey lines in Fig. 8.16. Here, the magnitude frequency response of the acoustic im-
pulse response is plotted at each time instance, assuming the parameters represent an
equivalent LTI system. The frequency response of the original unperturbed channel
corresponds to the black line; the actual pole variations are shown in Fig. 8.17(b).

The experiment presented considers globally modelling the source using a single-
block TVAR. A synthetic fourth-order TVAR process is presented to the input
of the eighth-order channel. The source is generated with time-varying parame-
ters that reflect the statistical nature and pole variations of real speech. The pa-
rameter variations are chosen to give the LSE approximations of the two left-
most pole trajectories shown in Fig. 8.14(b); these trajectories are reproduced in
Fig. 8.17(a). The basis set used for the source corresponds to the Fourier set
{ fm(n)} = {sin(mω0n/N), cos(mω0n/N)}2

m=0 with fundamental frequency ω0 =
2π 5

9 rad/s. The total number of source samples used is N = 2000, and is chosen to
give sufficient data that the channel estimates have low variance. With regards to
(8.33), K = 1, n1 = 4 and n2 = N, where nk are the change-points, i.e., n1 is the
index of the first sample in the block and n2 is the index of the last sample in the
block. The Gibbs sampler is executed for 5000 iterations with a burn-in period of
500 (10%) samples, although the estimates tend to converge within a few hundred
samples. A Monte Carlo experiment with 100 runs is executed to ensure that the
performance is consistent. The averaged estimated pole trajectories are shown in
Fig. 8.17(a) and Fig. 8.17(b); any individual run gives very similar results to the
averaged performance.

The single-block TVAR model will not adequately capture the full time-varying
nature of a real speech signal and therefore, as discussed in Sect. 8.6.3.3, a multi-
block-based model is more robust and flexible. Results demonstrating the perfor-
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Fig. 8.18 Simplified system model for online dereverberation algorithm

mance of the MCMC algorithm for the block-based TVAR for both synthetic and
real speech signals are presented in [7].

8.7.2 Online Processing Using Sequential Monte Carlo

Online or sequential estimation facilitates online processing of the signal, which is
of particular interest for applications such as security surveillance systems where
results should become available as soon as a signal sample is measured, i.e., where
offline batch methods are impractical. Particle filters (or SMC methods) represent a
target distribution by a large number of random variates from a hypothesis distribu-
tion. Incorporation of knowledge about the current and past measured samples al-
lows for correction and evolution of the particles in time. Particle filters were shown
to effectively enhance systems distorted by WGN [44] and for reverberant all-zero
channels [4]. This section describes an extension of this work to reverberant all-pole
channels (see Sect. 8.4.3) and spatially distinct noise sources (see Sect. 8.5).

8.7.2.1 Source and Channel Model

Various system and noise models were discussed in Sect. 8.5. The CAPZ channel
model simplified the full system model in Fig. 8.9 to that shown in Fig. 8.11. Al-
though the model in Fig. 8.11 is of great interest, the presence of the general RTFs
dependent on source-sensor geometries leads to difficulties in uniquely modelling
and blindly identifying the source signal. Additional identifiability results are re-
quired before it can be determined whether this model leads to unique solutions.
As a compromise, a more simple model is used to facilitate online estimation; this
model is shown in Fig. 8.18.15 In this model, the source signal, s(n), is distorted by
WGN, ν(n), with variance σ2

ν (n). This noisy speech signal is then filtered through
the channel, which is modelled as a Pth order time-varying all-pole filter. The obser-
vations are thus given by:

15 Although the noise and signal are assumed independent, a channel gain in Fig. 8.18 is unneces-
sary since there is an inherent scaling ambiguity.
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x(n) = −
P

∑
p=1

ap(n)x(n− p)+ s(n)+σν(n)ν(n), ν(n) ∼N (0, 1) . (8.41)

It is important to note that this model differs from simply adding noise to (8.22); in
other words, it differs from the model x̂(n) = x(n)+ s(n) with x(n) given by (8.22).
The source signal, s(n), results from (8.29), where the parameters vary stochasti-
cally as described in Sect. 8.6.4. In particular, the conditional PDFs for the param-
eter variation are given by (8.35). The measurement noise is assumed to have a
similar variation as the excitation noise in (8.35b). Thus, ν(n) has a log-variance
that follows a random walk:

p(φν (n) | φν(n−1)) � N
(
φν(n)

∣∣φν (n−1), δ 2
ν
)
, (8.42)

where φν (n) = lnσ2
ν (n). The initial state is p(φν(0)) � N

(
φν (0)

∣∣0, δ 2
ν0
)
. The hy-

perparameters {δ 2
ν , δ 2

ν0} are assumed known.

8.7.2.2 Conditionally Gaussian State Space

Assuming known source and channel parameters, θ s and θ h respectively, the source
model, (8.29) and measurement equation in (8.41) can be written in the linear state-
space form:

s(n) = B(n)s(n−1)+σe(n)ce(n), (8.43a)

x(n) = −aT (n)xn−1:n−P + cT s(n)+σν(n)ν(n), (8.43b)

for n > 0. The state vector, s(n), and state transition matrix, B(n), are:

s(n) = [s(n) . . . s(n−P+ 1)]T , B(n) �
[

b(n)T

IQ−1 0Q−1×1

]
.

Moreover, cT � [1 0 ×1Q−1], the TVAP channel parameters are contained in a(n)=
[a1(n) . . . aP(n)]T , while xn−1:n−P = [x(n−1) · · · x(t−P)]T contains the P previous
observations. The set of model parameters, θ0:n, defines the system parameters θn =
{b(n), a(n), σ2

e (n), σ2
ν (n)}. Assuming θ 0:n are known, since the source excitation,

e(n), and the measurement noise, ν(n), are both WGN, (8.43) is a Conditionally
Gaussian State Space (CGSS) system, and the optimal estimate of the state-vector,
s(n), can be found using the Kalman Filter (KF). The KF recursion relationships
[40] at time step n are shown in Algorithm 8.3.16 However, by the very nature of
blind deconvolution, the set of parameters, θ0:n, is unknown and therefore a direct
application of the KF is not possible. Instead, the KF can be incorporated within

16 Due to the presence of the linear combination of past observations, −aT (n)xn−1:n−P, in the ob-
servation equation, (8.43b), the standard KF equations are modified slightly; namely the predicted
observation, (8.44c), and as a result the corrected state estimate, (8.44d).
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Algorithm 8.3 Kalman filter recursion relationships

μ(n|n−1) = B(n)μ(n−1|n−1) (prediction) , (8.44a)

P(n|n−1) = σ 2
e (n)ccT +B(n)P(n−1|n−1)BT (n), (8.44b)

x(n|n−1) = −aT (n)xn−1:n−P + cTμ(n|n−1), (8.44c)

μ(n|n) = μ(n|n−1)+k(n)(x(n)− x(n|n−1)) (correction) , (8.44d)

P(n|n) =
(
Iq −k(n)cT )P(n|n−1). (8.44e)

The optimal Kalman gain, k(n), and measurement residual variance, σ 2
z (n), are:

k(n) =
1

σ 2
z (n)

P(n|n−1)c, with σ 2
z (n) = cT P(n|n−1)c+σ 2

ν (n). (8.45)

Two important distributions are the conditional likelihood of the current observation given past
observations, and the PDF of the state estimate:

p( x(n) | x1:n−1, θ 0:n) = N
(
x(n)

∣∣ x(n|n−1), σ 2
z (n)

)
, (8.46)

p( s(n) | θ(n), x1:n) = N
(
s0:n

∣∣μ(n|n), P(n|n)
)
. (8.47)

a sequential Monte Carlo framework where at each time step, (8.44) is evaluated
using an estimate of the parameters, θ 0:n.

8.7.2.3 Methodology

The aim is to directly reconstruct the source signal, s0:n = [s(0) . . . s(n)], and the
set of parameters, θ 0:n, given only the distorted signal, x1:n. This can be achieved by
sampling from the posterior distribution of the source signal and unknown parame-
ters. Since the source signal is dependent on the model parameters and observations,
the joint posterior can be written as

p( s0:n, θ 0:n | x1:n) = p( s0:n | θ 0:n, x1:n) p(θ0:n | x1:n) . (8.48)

The joint posterior often has a complicated functional form that cannot be sam-
pled from directly. Instead, estimates of the source signal and model parameters
can be obtained by drawing samples from the conditional densities in (8.48) sepa-
rately. Given θ 0:n, since the system in (8.43) is CGSS, the likelihood of the clean
signal, p( s0:n | θ0:n, x1:n), can be estimated using the KF equations (8.47) in Algo-
rithm 8.3 [4, 44]. Hence, estimation of the joint posterior in (8.48) reduces to the
estimation of p(θ 0:n | x1:n). In the simplest of particle filters, namely the Sequential
Importance Resampling (SIR) PF, the hypothesis (or proposal) distribution is the
prior density; thus, π (θ n | x1:n, θ 0:n−1) = p(θ n | θ0:n−1), and the weights are there-
fore given by wn ∝ p(x(n) | x1:n−1, θ n) (see Algorithm 8.2). The Kalman filter is
then bombarded with these particles and particle resampling is performed to ensure
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that only statistically significant particles are retained. The resampling method aims
to keep particles corresponding to regions of high likelihood, as given by (8.46). The
estimate of the source signal corresponds to the mean of the state estimates, μ(n|n),
over all particles. In the SIR PF in Algorithm 8.4, particles are drawn from the priors
in (8.35a), (8.35b) and (8.42), and the importance weights reduce to (8.46) [44]. The
sampling of the channel parameters, however, requires special attention.

8.7.2.4 Channel Estimation Using Bayesian Channel Updates

Various approaches for modelling the TVAP parameter variations are given in
Sects. 8.4.6 and 8.4.7. The static model describing {ap(n)} as a linear combination
of basis functions, as given by (8.25), allows for smooth parameter variation. The
model is also linear-in-the-parameters, so that (8.43b) can be written in the form:

x(n) = −aT x̃n−1:n−P + cT s(n)+σν(n)w(n), (8.49)

where x̃n−1:n−P is a function of past samples of the observations and the channel
basis functions, g�(n). The channel coefficients a are static parameters.

Particle filters implicitly assume that all unknown parameters are dynamic and,
therefore, work well with time-varying parameters. Thus, the models in Sect. 8.4.7
are particularly suited for the PF framework. However, these models perhaps need
more justification, and the static models are preferred. The static models also have
the advantage of being able to model linear time-invariant channels. However, with
static parameters, such as the channels in (8.25) and (8.49), the non-dynamics in the
particles makes them degenerate into a few different values [42]. Various approaches
for circumventing this problem exist, but a simple approach for linear Gaussian
systems is a straightforward Bayesian update. Using Bayes’s theorem, the channel
posterior is,17

p
(

a | x1:n,θ
(−a)
0:n

)
=

p
(

x(n),θ (−a)
n

∣∣∣ x1:n−1,θ
(−a)
0:n−1, a

)
p
(

a | x1:n−1,θ
(−a)
0:n−1

)

p
(

x(n), θ (−a)
n

∣∣∣ x1:n−1, θ
(−a)
0:n−1

) .

Using the basic probability factorisation

p
(

x(n),θ (−a)
n

∣∣∣ x1:n−1,θ
(−a)
0:n−1, a

)
= p(x(n) | x1:n−1,θ 0:n) p

(
θ (−a)

n

∣∣∣ θ (−a)
0:n−1

)
,

and ignoring any terms that are not functions of the unknown channel parameters,
a, a recursive update follows:

p
(

a | x1:n,θ
(−a)
0:n

)
∝ p(x(n) | x1:n−1,θ 0:n) p

(
a | x1:n−1,θ

(−a)
0:n−1

)
. (8.50)

17 θ (−a) denotes the parameter set θ with the channel parameters, a, removed.
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Algorithm 8.4 SIR particle filter for reverberant systems
1: for n = 1, . . . , number of samples do
2: for i = 1, . . . , number of particles do
3: Sample a proposal of θ (−a)

n from (8.35a), (8.35b), (8.42).
4: Prediction step of KF: (8.44a), (8.44b), from Algorithm 8.3.
5: Evaluation of k(n), σ 2

z (n): (8.45), from Algorithm 8.3.
6: Bayesian update of channel parameters: (8.51b).
7: MMAP estimation of channel: aMMAP = μa,n
8: Evaluation of importance weights with aMMAP: (8.46).
9: Correction step of KF: (8.44d), (8.44e), from Algorithm 8.3.

10: end for
11: Normalisation of importance weights.
12: Resampling step (see, e.g., [5]).
13: end for

Table 8.3 Markov parameters for synthesis and estimation

δ 2
e0

δ 2
n0

δ 2
e δ 2

n Δa0 Δa

0.5 0.5 5 ·10−4 5 ·10−4 0.5IQ 5 ·10−4IQ

Assuming a Gaussian distribution on a at time n−1 with mean, μa,n−1, and covari-

ance, Pa,n−1, such that p
(

a | x1:n−1, θ
(−a)
0:n−1

)
� N

(
a
∣∣μa,n−1, Pa,n−1

)
, since (8.46)

is also Gaussian, from (8.50), so is:

p
(

a | x1:n,θ
(−a)
0:n

)
∝N

(
a
∣∣μa,n, Pa,n

)
, (8.51a)

with covariance and mean

Pa,n =
(

P−1
a,n−1 +

1
σ2

z (n)
xn−1:n−PxT

n−1:n−P

)−1

,

μa,n = Pa,n

(
xn−1:n−P

σ2
z (n)

[
x(n)− cTμ(n|n−1)

]
+ P−1

a,n−1μa,n−1

)
.

(8.51b)

The initial mean, μa,0, and variance, Pa,0 are assumed known. At time n, the MMAP
estimate of the channel is aMMAP = μa,n. This channel estimate is then used for the
Kalman filter correction step, (8.44d), and evaluation of the weights, (8.46). The
complete SIR PF is summarized in Algorithm 8.4.

8.7.2.5 Experimental Results

To demonstrate the performance of the online method, both synthetic sources and
real speech signals are estimated from a reverberant noisy signal. The synthetic
signal is used as a benchmark for the ground truth, since for real speech, the true
parameter variations in the source model, (8.29), are hidden.



266 J.R. Hopgood et al.

840 850 860 870 880 890 900 910 920 930 940

−10

−5

0

5

10

Number of samples, t

S
ig

na
l x

t

(a)

0 100 200 300 400 500 600 700 800 900 1000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Number of samples, t

S
ou

rc
e 

pa
ra

m
et

er
 a

2,
t

(b)

(c)

100 200 300 400 500 600 700 800 900 1000
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

Number of samples, t
C

ha
nn

el
 p

ar
am

et
er

 b

 b
6
 

�

� 
 b

1

(d)

Fig. 8.19 (a) Synthetic data: estimate ( ), original ( ), observations ( ). (b) Estimated ( ) and
actual source parameter ( ), b2,n. (c) Convergence of estimated ( ) to actual channel poles ( ).
(d) Estimated ( ) and true ( ) channel parameters, a{1,6}

A fourth-order synthetic source signal is filtered through an eighth-order all-
pole channel according to Fig. 8.18. The channel is, for simplicity, assumed to
be stationary, and is identical to the initial channel parameter values used in
Sect. 8.7.1. The noise level is such that the Signal Based Measure (SBM)18 of
the distorted signal is −6.15 dB. The Markov parameters are set to the values in
Table 8.3 [44]. The particle filter is executed for 1000 samples and 800 particles,
and μa,0 = 0.5× 1P×1, Pa,0 = 0Q×1. Even though the source parameter estimates
appear inaccurate (Fig. 8.19(b)), the SBM of the enhanced signal is 4.42 dB, an im-
provement of 10.57 dB. The accuracy of the estimated signal compared to the clean
signal and the observed signal is shown in Fig. 8.19(a). The evolution of the poles
with time of the MMAP estimates of the stationary channel parameters are shown in
Fig. 8.19(c). After few iterations, the estimates converge towards the actual channel
poles. Likewise, the channel parameters converge after around 200 samples to the
actual coefficients (Fig. 8.19(d)).

The words “The farmer’s life must be arranged” uttered by a female talker sam-
pled at 8 kHz are distorted by an eighth order acoustic horn channel [41] and
noise with σφw0

= 0.5 and constant σφw = 0.05. The SBM of the observed signal
is −5.73 dB. The SIR particle filter is run for 15,000 samples and 750 particles,
estimating six source parameters, where σφ{w,v}0

= 0.5, σφ{w,v} = 0.05, Σ{a0,a} =
σ{φv0 ,φv}IQ. The results are shown in Fig. 8.20. The particle filter removes low-

18 SBMdB = 10log10

(
‖s0:n−1‖2

2
‖ū0:n−1−s0:n−1‖2

2

)
, where ū is either the estimated, s̄, or the distorted, x̄, signal

sequence.
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Fig. 8.20 Source signal ( ), its SIR estimate ( ) vs. observations ( )

amplitude noise and the “metallic” sound effects generated by the channel. Between
0.8–0.97 s and 1.33–1.82 s, noise is dominant and the signal is not recovered. The
SBM of the estimated signal is 1.950 dB, an improvement of 7.68 dB.

8.7.3 Comparison of Offline and Online Approaches

One particular difference involves the inverse channel filtering implicitly used in the
MCMC method [7] but avoided in the SMC approach since the latter estimates the
source signal directly. Channel inversion introduces several difficulties: (i) practical
RIRs are non-minimum phase and thus difficult to invert, despite the phase being a
major contributor to the perception of reverberation; (ii) any small error in the RIR
estimate can lead to a significant error in its inversion since attempts to equalize
high-Q resonances can still leave high-Q resonances in the equalized response. Both
of these issues can potentially increase the distortion in the enhanced signal.

As a comparison with the real results presented in Sect. 8.7.2, a batch MCMC
method is used for channel estimation. Although observation noise is not explicitly
modelled by the approach in Sect. 8.7.1, the same observed data is used. The source
model of (8.33) in Sect. 8.6.3 is again used, with K = 30 blocks of Nk = 500 samples
length to match the number of samples used in Fig. 8.20. The source model order
is Q = 8, and the basis functions are assumed to be piece-wise constant such that
the model reduces to the BSAR process in (8.30). Hence, the model is equivalent
to that used in [21]. The Gibbs sampler is run for 2000 iterations with a 10% burn-
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Fig. 8.21 (a) Actual channel poles ( ) vs. Gibbs estimates ( ) and (b) source signal ( ) vs. Gibbs
estimate ( )

in period. The channel estimate is shown in Fig. 8.21(a), and a comparison of the
actual source and its estimate is shown in Fig. 8.21(b).

The SBM of the estimated source signal is 0.262 dB, an improvement of 6.02 dB.
Notice that there is significant noise gain towards the end of the signal. The results
can be improved by using a richer set of basis functions in the source model. Nev-
ertheless, the results are comparable with the SMC method. Currently, the compu-
tational expense of the online SMC framework is greater, but in principle facilitates
sequential estimation leading to real-time implementations.

8.8 Conclusions

This chapter has given an introduction to model-based Bayesian blind dereverber-
ation. It has outlined the variety of source and channel models that can be used.
Two key numerical methodologies have been discussed: offline batch methods and
online sequential methods. There is a clear symbiosis between the methodologies
available and the models that suit that methodological framework. The challenge
that still remains for Bayesian blind dereverberation is to tackle the full acoustic
spectrum simultaneously, as opposed to current implementations that deal with se-
lected frequency bands independently.
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33. Radlović, B.D., Kennedy, R.A.: Nonminimum-phase equalization and its subjective impor-

tance in room acoustics. IEEE Trans. Speech Audio Process. 8(6), 728–737 (2000)
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Chapter 9
Inverse Filtering for Speech Dereverberation
Without the Use of Room Acoustics Information

Masato Miyoshi, Marc Delcroix, Keisuke Kinoshita, Takuya Yoshioka, Tomohiro
Nakatani, and Takafumi Hikichi

Abstract This chapter discusses multi-microphone inverse filtering, which does not
use a priori information of room acoustics, such as room impulse responses between
the target speaker and the microphones. One major problem as regards achieving
this type of processing is the degradation of the recovered speech caused by exces-
sive equalization of the speech characteristics. To overcome this problem, several
approaches have been studied based on a multichannel linear prediction framework,
since the framework may be able to perform speech dereverberation as well as noise
attenuation. Here, we first discuss the relationship between optimal filtering and lin-
ear prediction. Then, we review our four approaches, which differ in terms of their
treatment of the statistical properties of a speech signal.

9.1 Introduction

The inverse filtering of room acoustics is useful in various applications such as
sound reproduction, sound-field equalization, and speech dereverberation. Usually
an impulse response between a sound source and a microphone in an enclosure is
modeled as a polynomial with a finite order, which is called an Acoustic Trans-
fer Function (ATF), and an inverse filter is designed to remove the reverberation
effect of the polynomial. Such inverse filter design may be roughly classified into
two groups: one is to calculate an inverse of the replica of an ATF, which may be
measured or estimated a priori. The other is to calculate the inverse directly from
reverberant signals observed at microphones.

As regards the latter, a major problem that we must solve is the degradation of
the recovered speech caused by excessive equalization of the speech characteristics
[19]. This problem would not occur if speech were considered to be independent
and identically distributed (i.i.d) [20].
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Fig. 9.1 Speech capture model with multiple microphones

In this chapter, we review our four approaches to solving this problem [10, 24,
30, 40]. These approaches are a type of multichannel inverse filtering without the
use of ATF replicas as mentioned above. In order to calculate inverse filters, we have
commonly used a framework of multichannel Linear Prediction (LP) [14, 35], since
this framework can be considered similar to optimal inverse filtering, which may
achieve speech dereverberation as well as noise attenuation.

The rest of this chapter is organized as follows. In the next section, we first model
a speech capture system with multiple microphones in a noisy and reverberant en-
closure. Then, we present an optimal inverse filtering framework followed by mul-
tichannel LP as a possible approximation of the framework. The excessive speech-
characteristic equalization mentioned above, namely “over-whitening of the target
speech”, is described in detail. In Sect. 9.3, we review four different approaches to
this problem.

1. Precise compensation for over-whitening of the target speech
2. Late reflection removal with multichannel multistep LP
3. Estimation of linear predictors and short-time speech characteristics
4. Probabilistic model based speech dereverberation

9.2 Inverse Filtering for Speech Dereverberation

In this section, we first define a simple acoustic model where a speech signal is
captured with multiple microphones in a noisy and reverberant environment. Then,
an optimal inverse filtering framework is reviewed in terms of the relation be-
tween noise and speech dereverberation performance. Next, we discuss whether
multichannel LP can be used to approximate such inverse filtering. Finally, we de-
scribe the over-whitening effect, which degrades the speech recovered with the al-
gorithm [19].
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9.2.1 Speech Capture Model with Multiple Microphones

Let us consider the speech capture system shown in Fig. 9.1. A speech signal s(n)
at discrete time index n is captured with a microphone m (m = 1,2, . . . ,M) after
being reverberated through an ATF Hm(z) between the speaker and the microphone.
The microphone simultaneously receives incoherent noise νm(n). Here, incoherent
noise is defined as noise for which the source cannot be localized in space. Hence,
the sound signals observed at the microphone may be expressed as

xm(n) = hm(n)∗ s(n)+νm(n), (9.1)

where ∗ denotes linear convolution and impulse response hm,n (n = 0,1, . . . ,L) corre-
sponds to the coefficients of ATF Hm(z); hm,0, hm,1, . . . ,and hm,L. Then, microphone
signal xm(n) is processed through an inverse filter Gm(z) with an impulse response
given as gm,n (n = 0,1, . . . , p). This impulse response, like hm,n, corresponds to the
filter coefficients, gm,0, gm,1, . . . , and gm,p. Thus, the filter output signal may be
given as follows:

zm(n) = gm(n)∗ x(n)
= gm(n)∗ (hm(n)∗ s(n)+νm(n))
= s(n)∗ hm(n)∗ gm(n)+νm(n)∗ gm(n), (9.2)

or, equivalently, in matrix form as

zm(n) = gm
T x(m)

n

= sn
T Hmgm +(v(m)

n )T gm, (9.3)

where symbol T stands for the matrix transpose, and

x(m)
n = [xm(n),xm(n−1), . . . ,xm(n− p)]T ,

gm = [gm,0,gm,1, . . . ,gm,p]T ,

sn = [s(n),s(n−1), . . . ,s(n− (L+ p))]T ,

← p + 1 →

Hm =

⎡
⎢⎢⎢⎢⎢⎣

hm

hm
0

0
. . .

hm

⎤
⎥⎥⎥⎥⎥⎦

↑

L+ p + 1

↓

,

hm = [hm,0,hm,1, . . . ,hm,L]T ,

v(m)
n = [νm(n),νm(n−1), . . . ,νm(n− p)]T .
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Finally, the sum of the filter output signals is calculated to recover the target speech,
s(n):

y(n) =
M

∑
m=1

zm(n) =
M

∑
m=1

gm
T x(m)

n = gT xn, (9.4)

or, equivalently,

y(n) =
M

∑
m=1

zm(n) =
M

∑
m=1

(
sn

T Hmgm +(v(m)
n )T gm

)
= sn

T Hg + vn
T g, (9.5)

where

g = [g1
T ,g2

T , . . . ,gM
T ]T ,

xn = [(x(1)
n )

T
,(x(2)

n )
T
, . . . ,(x(M)

n )
T
]T ,

H = [H1,H2, . . . ,HM],

vn = [(v(1)
n )

T
,(v(2)

n )
T
, . . . ,(v(M)

n )
T
]T .

9.2.2 Optimal Inverse Filtering

Let us consider the following cost function:

fcost[g] = E{|s(n)− y(n)|2}
= E{|s(n)−gT xn|2}
= E{|s(n)− (sn

T Hg + vn
T g)|2}

= E{|s(n)− sn
T Hg|2}+ E{|vn

T g|2}, (9.6)

where the mathematical expectation E{a} is interpreted as the time average of a
value a, |a| denotes the absolute value, and the covariance matrix E{snvn

T} is as-
sumed to be zero to simplify the last two expressions. In the final expression, the
first term on the right-hand side corresponds to the speech dereverberation accuracy
achieved with inverse filters g. The second term shows the mean energy value of the
incoherent noise processed with the filters. Considering the homogeneous equation
obtained by differentiating the cost function with respect to filters g, we can derive
optimal inverse filters go as a solution that minimizes the cost function [27] as
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go = (E{xnxn
T})+E{xns(n)}

= (HT E{snsn
T}H + E{vnvn

T})+HT E{sns(n)}
≈ ((HT E{snsn

T}H + E{vnvn
T})+ δ 2I)−1HT E{sns(n)}

= ((HT E{snsn
T}H + δ 2I)+ E{vnvn

T})−1HT E{sns(n)}
= (I+(HT E{snsn

T}H + δ 2I)−1E{vnvn
T})−1ga, (9.7)

where + denotes the Moore–Penrose inverse and I stands for an identity matrix. The
approximation from the second expression of (9.7) to the third is valid only when
δ is a small positive number [5]. Hereafter, ga are called accurate inverse filters. ga
correspond to the inverse filters derived in the noise-free case and are represented as

ga = (HT E{snsn
T }H + δ 2I)−1HT E{sns(n)}

= (HT E{snsn
T }H + δ 2I)−1HT E{snsn}1, (9.8)

where 1 stands for a column vector whose elements are zeros except for the first
element, which is unity. Inverse filters ga may be further simplified as [5]

ga ≈ (HT E{snsn
T}H)+HT E{snsn

T}1

= HT (HHT )−1(E{snsn
T})−1E{snsn

T}1 (9.9)

= HT (HHT )−11,

on condition that the Sylvester matrix H has a full row rank [18], namely the rank
of H is L+ p+1. This condition is interpreted as the following conditions based on
the Multiple-input/output INverse Theorem (MINT) [29, 32]:

• ATFs Hm(z) have no common zero
• The inverse filter order is set to satisfy the relation:

p ≥
⌈

L
M−1

−1
⌉

,

where �a� rounds a number a up to the nearest integer.
Applying observed speech sn

T H to accurate inverse filters ga, we may find that
target speech s(n) is recovered as follows:

ya(n) = sn
T Hga ≈ sn

T HHT (HHT )−11 = sn
T 1 = s(n). (9.10)

According to (9.7), the optimal inverse filters, go, may lose their accuracy in
inverse filtering (and therefore speech dereverberation) compared with the accurate
filters, ga, because of the incoherent noise power E{vnvn

T}. On the other hand,
the noise may be less amplified with optimal filters go than with accurate filters ga.
Hereafter, we evaluate the effect of the noise on the performance of optimal filters
go. To simplify the evaluation, the following condition is assumed:

rNS = ‖(HT E{snsn
T}H + δ 2I)−1E{vnvn

T}‖2 < 1, (9.11)
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where ‖A‖2 stands for the spectral norm of a matrix A, which is defined as the max-
imum eigenvalue of the matrix, κmax[A]. Then, we may evaluate the performance
degradation of optimal filters go by comparison with accurate filters ga [8];

Rg =
‖ga −go‖2

2

‖ga‖2
2

=
‖{I− (I+(HTE{snsn

T}H + δ 2I)−1E{vnvn
T})−1}ga‖

2
2

‖ga‖2
2

≤ ‖I− (I+(HTE{snsn
T}H + δ 2I)−1E{vnvn

T})−1‖2
2

≤
∣∣∣∣∣
κmax

[
(HT E{snsn

T}H + δ 2I)−1E{vnvn
T}
]

1 +κmin [(HT E{snsnT}H + δ 2I)−1E{vnvnT}]

∣∣∣∣∣
2

=
∣∣∣∣ rNS

1 +κmin [(HT E{snsnT}H + δ 2I)−1E{vnvnT}]

∣∣∣∣
2

, (9.12)

where κmin[A] denotes the minimum eigenvalue of a square matrix A. Next, the
noise amplification with filters go may be evaluated as

Rv =
E{|vn

T go|2}
E{|vnT ga|2}

=
E{|vn

T {I+(HT E{snsn
T}H + δ 2I)−1E{vnvn

T}}−1ga|2}
E{|vnT ga|2}

≤ ‖(I+(HT E{snsn
T}H + δ 2I)−1E{vnvn

T})−1‖2
2

×‖(E{vnvn
T})−1E{vnvn

T}‖2

=
∣∣∣∣ 1
1 +κmin [(HT E{snsnT}H + δ 2I)−1E{vnvnT}]

∣∣∣∣
2

(≤ 1). (9.13)

Here, covariance matrix E{vnvn
T} is assumed to be positive, and the following

relation is utilized for simplifying the third expressions [18]:

xT AT DAx
xT Bx

≤ ‖AT DAB−1‖2 ≤ ‖AT‖2‖AB−1D‖2 ≤ ‖AT‖2
2‖B−1D‖2,

where x denotes a column vector, A, D are Hermitian matrices, and B should be a
positive Hermitian matrix.

As shown in (9.13), optimal inverse filters go may be less sensitive to incoherent
noise than the accurate filters ga (see also Appendix A), although the inverse filtering
(and hence speech dereverberation) performance of go may be inferior to that of ga,
as shown in (9.12). To increase the dereverberation accuracy of the optimal filters,
we need to reduce incoherent noise prior to optimal inverse filtering.
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Fig. 9.2 Schematic diagram of an inverse filtering system with M microphones based on the mul-
tichannel LP

9.2.3 Unsupervised Algorithm to Approximate Optimal Processing

To achieve dereverberation with optimal inverse filters go given as (9.7), we would
need to calculate such filters using a priori knowledge of the speech s(n). However,
there are many situations where s(n) is unknown and therefore we should approx-
imate the optimal filters from only the signals observed at the microphones. Here-
after, we examine whether multichannel linear prediction [14, 35] has the potential
to be used as an algorithm for such an approximation.

Figure 9.2 is a schematic diagram of an inverse filtering system with M micro-
phones based on multichannel LP. A microphone signal xm(n) is delayed by one
sample and processed through prediction filter Wm(z) whose impulse response is
given as wm,n (n = 0,1, . . . , p). Then, the sum of the output signals of M predic-
tors is subtracted from the non-delayed version of microphone signal x1(n). Here,
microphone 1 is assumed to be the closest microphone to the speaker. Hence, the
system output signal may be expressed as

y1(n) = x1(n)−
M

∑
m=1

wm(n)∗ xm(n−1)

= x1(n)−
M

∑
m=1

(
sn−1

T Hmwm +(v(m)
n−1)

T wm

)

=
(
sn

T h1 +ν1(n)
)
−
(
sn−1

T Hw+ vn−1
T w
)
, (9.14)

and

wm = [wm,0,wm,1, . . . ,wm,p]T ,

w = [w1
T ,w2

T , . . . ,wM
T ]T .
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Since covariance matrix E{snvn
T} is assumed to be zero (see (9.6)), the mean en-

ergy of the system output signal may be expressed as

fcost[w] = E{|y1(n)|2}
= E{|(sn

T h1 +ν1(n))− (sn−1
T Hw+ vn−1

T w)|2}
= E{|sn

T h1 − sn−1
T Hw|2}+ E{|ν1(n)−vn−1

T w|2}
= E{|sn

T h1 − sn−1
T Hw|2}+ E{|ν1(n)|2}+ E{|vn−1

T w|2},
(9.15)

where covariance vector E{ν1(n)vn−1
T} is also assumed to be zero. Here, the first

term corresponds to the cost function of multichannel LP, which is intended to es-
timate the observed speech at microphone 1, sn

T h1, from all the observed speech
signals sn−1

T H. The second term shows the mean energy value of incoherent noise
processed with predictors w. Thus, by minimizing cost function fcost[w], the optimal
predictors may be calculated as

wo = (E{xn−1xn−1
T})+E{xn−1x(n)}

= (HT E{sn−1sn−1
T}H + E{vn−1vn−1

T})+

×HT E{sn−1(sn
T h1 + v(n))}

≈ ((HT E{sn−1sn−1
T}H + δ 2I)+ E{vn−1vn−1

T})−1

×HT E{sn−1sn
T}h1

= (I+(HT E{sn−1sn−1
T}H + δ 2I)−1E{vn−1vn−1

T})−1wa, (9.16)

where
wa = (HT E{sn−1sn−1

T}H + δ 2I)−1HT E{sn−1sn
T}h1. (9.17)

Here, wa represents a set of accurate predictors that minimizes only the first term of
cost function fcost[w]. Comparing wo with optimal inverse filters go shown in (9.7),
we notice that the effect of incoherent noise on wa is similar to that on accurate
inverse filters ga.

Next, let us evaluate the speech dereverberation performance of accurate predic-
tors wa. Assuming the full row-rank condition of the Sylvester matrix H (MINT
condition), we may simplify the predictors to (see (9.9))

wa ≈ HT (HHT )−1(E{sn−1sn−1
T})−1E{sn−1sn

T}h1

= HT (HHT )−1Ch1, (9.18)
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where

C = (E{sn−1sn−1
T})−1E{sn−1sn

T}

=

⎡
⎢⎢⎢⎢⎢⎢⎣

c1 1 0 · · · 0

c2 0 1
...

...
... 0

. . .
...

...
...

...
. . . 1

cL+p+1 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦

↑

L+ p + 1

↓

, (9.19)

← L+ p + 1 →

c j denotes the coefficients of Autoregressive (AR) polynomial [22] given as

C(z) = 1−{c1z−1 + c2z−2 + . . .+ cL+p+1z−(L+p+1)}

=
L+p+1

∑
j=0

c jz− j, c0 = 1. (9.20)

Applying accurate predictors wa to one-sample delayed speech signals, sn−1
T H, and

then subtracting the resulting signal from observed speech sn
T h1, we may obtain

prediction residual y1(n) as follows:

y1(n) = sn
T h1 − sn−1

T Hw

= sn
T h1 − sn

T HHT (HHT )−1Ch1

= (sn
T − sn

T C)h1

=

(
s(n)−

L+p+1

∑
j=1

c js(n− j)

)
h(1)

0

= h(1)
0

L+p+1

∑
j=0

c js(n− j)

∝ c(n)∗ s(n). (9.21)

This relation shows that the effect of reverberation on the speech observed at mi-
crophone 1, which is caused by ATF H1(z), may be precisely removed, but simul-
taneously the recovered speech may be degraded by its own autocorrelation. This
degradation is known as over-whitening, and may occur in other algorithms [2, 36].
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9.3 Approaches to Solving the Over-whitening of the Recovered
Speech

As discussed above, multichannel LP may deal with incoherent noise in almost the
same manner as the optimal inverse filtering described in Sect. 9.2.2. However, the
recovered speech will suffer from over-whitening effects caused by the autocorre-
lation of the speech signal. To adopt multichannel LP as an approximation of the
optimal inverse filtering, we need to find a way to reduce such harmful effects on
the recovered speech.

In this section, we describe four different approaches to solving the effects of
over-whitening on the recovered speech with multichannel LP [10, 24, 30, 40].

9.3.1 Precise Compensation for Over-whitening of Target Speech

If we could estimate the AR polynomial, C(z), shown in (9.20) solely from observed
speech signals sT

n−1H, we would be able to recover the target speech by applying the
inverse of the estimated AR polynomial, 1/Ĉ(z), to the prediction residual, y1(n).
There have been a few attempts to calculate such an estimate as a characteristic
common to the observed speech signals [28, 33]. For example, the inverse AR poly-
nomial, 1/C(z), may be estimated as the greatest common divisor (GCD) of the
signal transmission channels between the speaker and the microphones. It is shown
in [33] that such GCD could be obtained from the covariance matrix of the observed
speech signals based on the subspace method.

In this section, we review another recently proposed approach [10, 28].

9.3.1.1 Principle

Let us consider a prediction matrix Q defined as follows [10, 28].

Q = (HT E{sn−1sn−1
T}H + δ 2I)−1HT E{sn−1sn

T }H (9.22)

≈ HT (HHT )−1(E{sn−1sn−1
T})−1E{sn−1sn

T }H

= HT (HHT )−1CH.

This definition is obtained by replacing the speech signal observed at microphone
1, sT

n−1H1, with observed speech signals sT
n−1H in (9.18). Hence, the first column

vector of Q is equivalent to accurate predictors wa. Then, we may find the following
relation between non-zero eigenvalues κ j of matrices Q and C [18]:
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κ j[Q] = κ j[HT (HHT )−1CH]

= κ j[HHT (HHT )−1C]
= κ j[C]. (9.23)

Here, we deduce from this relation that the characteristic polynomials of Q and
C are equivalent. The characteristic polynomial of companion matrix C may be
calculated as

fchar[Q] = fchar[C]
= det[κI−C]

= κL+p+1 − (c1κL+p + c2κL+p−1 + . . .+ cL+p+1)

= κL+p+1
L+p+1

∑
j=0

c jκ− j. (9.24)

Comparing this relation with (9.20), we find that the coefficients of the AR poly-
nomial C(z) are equivalent to those of the characteristic polynomial of C. Hence,
we may deduce that an estimated AR polynomial Ĉ(z) can be obtained from the
characteristic polynomial of prediction matrix Q. Applying the inverse of such an
estimated AR polynomial, 1/Ĉ(z), to prediction residual y1(n), we recover the target
speech signal as

ŝ(n) = [1/Ĉ(z)]y1(n)

= [1/Ĉ(z)][C(z)]s(n)
≈ s(n). (9.25)

Figure 9.3 is a schematic diagram of the multichannel inverse filtering system
based on the procedure described above. The whole algorithm may be summarized
as follows:

1. First, prediction matrix Q is calculated according to (9.22).
2. Prediction residual y1(n) is calculated by using (9.21), where accurate predic-

tors wa are given as the first column vector of Q.
3. Simultaneously, estimated AR polynomial C(z) is obtained from the character-

istic polynomial of Q [34].
4. The target speech is recovered by applying the inverse of the estimated polyno-

mial, 1/Ĉ(z), to y1(n).

Below, we discuss three issues related to the proposed algorithm, which can be
summarized as follows:

1. Close to perfect dereverberation
2. Dereverberation and coherent noise reduction
3. Sensitivity to incoherent noise
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Fig. 9.3 Schematic diagram of proposed algorithm

9.3.1.2 Close to Perfect Dereverberation

A speech dereverberation experiment was conducted to confirm the high perfor-
mance of the algorithm by using ATFs measured in an experimental chamber with a
volume of about 40 m3 and a reverberation time (T60) of about 0.5 s. Up to 6 micro-
phones were used. The distance between the loudspeaker and the microphones was
set at about 4 m. The microphone signals were simulated by convolving the ATFs
with speech taken from the ATR database [1]. The sampling rate was 8 kHz. The
experimental results are shown in Figs. 9.4 and 9.5.

Figure 9.4 plots the energy density curves of an ATF and corresponding equalized
ATFs using the proposed algorithm with three, four and six microphones. The origi-
nal reverberation energy is attenuated by more than 20 dB. Comparing the curves for
three, four and six microphones, we notice that the algorithm benefits from spatial
information provided by increasing the number of microphones. The worse per-
formance obtained with three microphones may be explained by the presence of
overlapping zeros among all the ATFs. These zeros cannot be compensated by the
algorithm and are therefore responsible for the remaining distortions. Increasing the
spatial information may reduce the probability of overlapping zeros, and therefore
the dereverberation performance improves. The effect of spatial information on the
algorithm is discussed in more detail in [10].

Figures 9.5 plots spectrograms of the target clean speech, the observed rever-
berant speech, and the recovered speech when six microphones were used. We can
see that the reverberation effect is completely removed and the recovered speech is
very close to the target speech. These experimental results demonstrate that the pro-
posed algorithm may achieve close to perfect speech dereverberation as suggested
by (9.25).
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Fig. 9.4 Energy decay curve of the original ATF (thick solid line) and dereverberated ATF using
three (thin solid line), four (dashed line), and six microphones (dash-dotted line)

9.3.1.3 Dereverberation and Coherent Noise Reduction

Let us consider an acoustic system with M (M ≥ 3) microphones that receive co-
herent noise in addition to the target speech. Here, we define coherent noise as an
undesired signal whose source can be localized in space.1 We assume that there is at
least one microphone closer to the speaker than to the noise source and choose as a
reference the microphone that is the closest to the speaker but not the closest to the
noise source. This reference microphone is hereafter called microphone 1. Figure
9.6 shows an example of the disposition of sources and microphones.

As above, the target speech is denoted as s(n). The coherent noise signal is de-
noted as νc(n). We denote the ATFs between the speaker and the microphones as
Hs,m(z) (m = 1,2, . . . ,M), and the AR polynomial associated with the target speech
as Cs(z). Similarly, we denote the ATFs between the noise source and the micro-
phones as Hν,m(z), and the AR polynomial associated with noise signal νc(n) as
Cn(z). We can generalize the expression for the convolution matrix H for 2 sources

as H2src =
[

Hs,1 . . . Hs,M
Hν,1 . . . Hν,M

]
, and define a source signal vector as

s2src
n = [s(n), . . . ,s(n− (L+ p)),νc(n), . . . ,νc(n− (L+ p))]T

= [sT
n ,vT

c,n]
T .

We can derive a prediction matrix Q2src simply by replacing H and s with H2src and
s2src, respectively, in (9.22) [9]. Then, we can derive the following residual, y1(n),

1 Here we consider one coherent source, although the discussion could be extended to more noise
sources.
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Fig. 9.5 Spectrograms of (a) the target signal, (b) the reverberant signal and (c) the recovered signal
using six microphones. The impulse responses were measured in a real room with a reverberation
time of 0.5 s

referring to (9.21):

y1(n) = (s2src
n )T h2src

1 − s2src,T
n−1 H2srcw2src

= ((s2src
n )T − s2src,T

n−1 C2src)h1

= h(0)
s1 [Cs(z)]s(n)+ h(0)

ν1 [Cν (z)]νc(n)

≈ h(0)
s1 [Cs(z)]s(n), (9.26)

where C2src = (E{s2src
n−1(s

2src
n−1)

T})−1E{s2src
n−1(s

2src
n )T}, and assuming that the noise

and the target speech are uncorrelated, matrix C2src may be expressed as:

C2src =
[

Cs 0
0 Cν

]
, (9.27)
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Fig. 9.6 Example of the disposition of the sources and microphones in the room

where

Cs = (E{sn−1sT
n−1})−1E{sn−1sT

n }
Cν = (E{vc,n−1vT

c,n−1})−1E{vc,n−1vT
c,n}.

According to the hypothesis that microphone 1 is closer to the speaker than the
noise source, noise νc(n) will arrive at microphone 1 after target speech s(n), and
therefore we can consider that h(0)

ν1 = 0. Here, the noise reduction shown in the sim-
plification from the second to the third line of (9.26) may be intuitively understood.
According to the above assumption regarding the microphone and noise source dis-
position, microphone 1 is not the microphone closest to the noise source, and there-
fore noise νc(n) arrives first at other microphones. Thus, the predictors w2src may
use the observations at these microphones to produce a replica of the noise included
in the signal observed at microphone 1 (based on MINT). Then, the noise is can-
celled out by subtracting this replica from the signal at microphone 1.

The predictors suppress the effect of room reverberation and remove the inter-
ference emanating from the noise source. We therefore observe that, based on the
assumptions regarding the source and microphone positions, the presence of a noise
source does not affect the prediction residual. As before, the target speech could be
recovered by filtering the residual with the inverse of the estimated target source AR
polynomial, 1/Ĉs(z).

Let us look at the effect of the noise source on the estimated AR polynomial
obtained from the characteristic polynomial of the prediction matrix as shown in
(9.24). It is easy to show that the characteristic polynomial of Q2src becomes the
product of both source AR polynomials as [18]:

fchar[Q2src] = fchar[C2src] = Cs(z)Cν (z). (9.28)

As seen in (9.28), the estimated AR polynomial is affected by the noise AR polyno-
mial. If such an AR polynomial were used, the recovered signal would be degraded.
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Note that if the noise source is white, Cν (z) = 1, the estimated AR polynomial is
equivalent to the AR polynomial of the target source,Cs(z). If the noise source is col-
ored, we need to eliminate the effect of the noise AR polynomial. Here we assume
that the noise is stationary and that there are periods when only the noise source
is active. These periods could be determined by using a voice activity detection
method [26]. During one of these periods, we can estimate the AR polynomial of
the noise source, Ĉν (z) by using the proposed algorithm for a single source. Then by
pre-filtering the observed microphone signals with Ĉν(z), the noise is pre-whitened
and therefore, the effect of Cν (z) is removed from the estimated AR polynomial
given by the characteristic polynomial of the prediction matrix [9].

We used the proposed method for dereverberating speech in the presence of col-
ored noise. The room impulse responses were generated by the image method [3].
The simulated room was designed with a reverberation time of 0.5 s. We truncated
the impulse responses to 0.2 s in order to simplify the computation involved in the
experiments. The computational complexity of this simulation was about the same
as that involved in performing single-source dereverberation in a room with a room
impulse response duration of 0.4 s. The colored noise was generated by applying
a 30 tap long AR process to white noise. The speech signals consisted of 4 s ut-
terances by a male and a female speaker drawn from the ATR database [1]. The
sampling rate was 8 kHz.

To measure both the dereverberation and noise reduction performance we de-
compose the output of the algorithm as follows:

ŝ(n) = ŝD(n)+ ŝI(n), (9.29)

where ŝD(n) corresponds to the dereverberated speech and ŝI(n) corresponds to the
remaining interference. In the experiments, ŝD(n) is obtained by applying the predic-
tors and estimated AR process only to the signals emanating from the target source,
xs,m(n) (m = 1, . . . ,M). Similarly, ŝI(n) is obtained by using only the signals ema-
nating from the noise source, xν,m(n) (m = 1, . . . ,M). We use the input and output
Signal to Distortion Ratio (SDR) to evaluate the dereverberation performance:

SDRIn = 10log10

(
∑ |s(n)|2

∑ |s(n)− xs,m(n)|2

)
, (9.30)

SDROut = 10log10

(
∑ |s(n)|2

∑ |s(n)− ŝD(n)|2

)
. (9.31)

The noise reduction performance is measured by the input and output Signal to
Noise Ratio (SNR):

SNRIn = 10log10

(
∑ |xs,m(n)|2

∑ |xν,m(n)|2

)
, (9.32)

SNROut = 10log10

(
∑ |ŝD(n)|2

∑ |ŝI(n)|2

)
. (9.33)
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Table 9.1 Results using for female and male speakers for 4 seconds of speech

Proposed DSB
SDRIn SNRIn SDROut SNROut SDROut SNROut

Female 1 dB 0 dB 22 dB 11 dB 1 dB 5 dB
1 dB 10 dB 22 dB 11 dB 1 dB 15 dB

Male 0 dB 0 dB 22 dB 11 dB 2 dB 5 dB
0 dB 10 dB 22 dB 11 dB 2 dB 15 dB

Table 9.1 shows the results obtained for a female and a male speaker for input
SDRs of 0 and 10 dB using the proposed method, and a conventional Delay-and-
sum Beamformer (DSB) [19]. The second column of Table 9.1 shows that with the
proposed method, the predictors successfully reduce both the reverberation and the
noise. Interestingly, the same output SNR and SDR values were obtained when the
input SDR was in the −5 to 15 dB range [9]. The noise reduction performance
can be greatly improved by using longer observation data. For example, using 10 s
of observation data, the output SNR was increased to 16 dB. For comparison, we
also show the results we obtained with a conventional DSB. DSB is one approach
frequently used to remove spatially localized noise. We observe that the DSB re-
duces the noise by around 5 dB but has little effect on reducing reverberation. To
show the optimum performance of the DSB, we assumed that the time delays were
known beforehand. In practice, time-delay estimation under such noisy and rever-
berant conditions may be difficult and poorer performance would be expected. Note
that with the proposed algorithm, time-delay estimation is not needed.

This experiment proves that the proposed algorithm could achieve both the dere-
verberation and reduction of coherent noise.

9.3.1.4 Sensitivity to Incoherent Noise

We demonstrated the robustness of the proposed method to coherent noise sources.
Here, we discuss the effect of incoherent noise on the algorithm. The proposed al-
gorithm relies on the computation of the predictors and speech AR polynomial. The
calculation of the predictors is relatively robust as regards incoherent noise for input
SNRs higher than 20 dB. Incoherent noise mainly affects the accuracy of the compu-
tation of the AR polynomial. Recall that the AR polynomial can be estimated from
the characteristic polynomial of prediction matrix Q. This result was demonstrated
theoretically, and it relies on the fact that the covariance matrix of the observed sig-
nals is rank deficient. If there is no incoherent noise, the covariance matrix can be
expressed as:

R = HT E{sn−1sT
n−1}H. (9.34)

Since H has more columns than rows, R is rank deficient. In the presence of inco-
herent noise, the covariance matrix becomes the sum of the covariance matrices of
the reverberant source signals and the incoherent noise:
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R = HT E{sn−1sT
n−1}H + E{vn−1vT

n−1}, (9.35)

where E{vn−1vT
n−1} is the noise covariance matrix. In this case, it can be easily

seen that R has a full rank. For example, when much observation data are available,
the covariance matrix of the noise tends to be a unit matrix multiplied by a scalar
, σ2, equivalent to the noise variance. One of the effects of the noise is to add
the scalar, σ2, to the eigenvalues of the covariance matrix of the observed signals,
which therefore becomes full rank. In this case, the AR polynomial may not be
obtained accurately. In theory, σ2 can be estimated as the smallest eigenvalue of the
covariance matrix of the observed signals. Consequently, a prediction matrix that
would not be affected by the noise could be calculated as:

Q = (HT E{sn−1sT
n−1}H + E{vn−1vT

n−1}−σ2I)+

(HT E{sn−1sT
n }H + E{vn−1vT

n }−σ2Υ), (9.36)

where Υ corresponds to a block shifting matrix defined as:

Υ =

⎡
⎢⎣

D 0
. . .

0 D

⎤
⎥⎦ , D =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0

0 0 1
...

...
... 0

. . .
...

...
...

...
. . . 1

0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Using (9.36) the AR polynomial was obtained precisely. Such an approach may
require much observation data in order to approximate the noise covariance matrix
with a unit matrix. The estimation of the covariance matrix of incoherent noise with
limited observation data remains an issue.

9.3.2 Late Reflection Removal with Multichannel Multistep LP

Here we introduce another approach to solving the over-whitening effects. If we
could assume a certain time lag, τo, after which the autocorrelation of the tar-
get speech becomes fairly small, we would be able to reduce the effects of over-
whitening on the direct sound and subsequent early reflections by replacing unit
delays with τ-sample (τ ≥ τo +1) delays as shown in Fig. 9.2. With this idea, some
coloration caused by the early reflections may characterize the prediction residual
as recovered speech, but severe reverberation arising from the late reflections may
be cancelled out.

In Automatic Speech Recognition (ASR) [12], for example, such severe rever-
beration is considered more problematic rather than the coloration caused by early
reflections [15]. Hence, there have been a number of studies aimed at mitigating the
reverberant effect from late reflections [17, 37]. In most of these studies, the late re-
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flections are estimated based on the assumption that the reverberation energy curve
in a room decays exponentially, and then subtracted from the observed speech in the
power spectrum domain. However, since late reflection energy may not be well es-
timated solely with such an exponential model, sufficient improvement in the ASR
performance has yet to be achieved.

In this section, we review a dereverberation algorithm based on multichannel LP
with τ-sample delay units, which may achieve a better estimate of late reflections
[24].

9.3.2.1 Principle

Let us consider a multichannel LP system with M microphones. The locations of
the microphones and speaker are assumed to be the same as those shown in Fig.
9.2. The observed speech at microphone 1, sn

T h1, is predicted with the observed
speech signals, sn

T H, processed with the abovementioned τ-sample delay units.
Thus, referring to (9.18) to (9.21), we may express τ-step predictors wτ as [25]

wτ = (HT E{sn−τsn−τ
T}H + δ 2I)−1HT E{sn−τsn

T}h1

≈ (HT E{sn−τsn−τ
T}H)+HT E{sn−τsn

T}h1. (9.37)

If we could assume that the Sylvester matrix H has a full row rank (see (9.8) and
(9.9)), predictors wτ would be simplified as

wτ ≈ HT (HHT )−1E{sn−τsn−τ
T}−1E{sn−τsn

T}h1

= HT (HHT )−1Cτh1, (9.38)

where

← L+ p + 1 →
← τ →

Cτ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

· · · 0 c(τ)
τo,1 · · · c(τ)

1,1
... 0

. . .
... I

...
. . . c(τ)

1,τo

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

↑

L+ p + 1

↓

.

(9.39)

c(τ)
j,k denotes the coefficients of a j-step AR polynomial given as
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C(τ)
j (z) = 1−

L+p+1

∑
k=1

c(τ)
j,k z−( j+k−1). (9.40)

We assume that c(τ)
j,k can be neglected when τo + 1 < j + k, thus denoted as 0 in

(9.39). Applying τ-step predictors wτ to τ-sample delayed speech signals sn−τT H,
and then subtracting the resulting signal from observed speech sn

T h1, we obtain the
τ-step prediction residual y(1)

τ (n) as follows.

y(1)
τ (n) = sn

T h1 − sn−τ
T Hwτ

= sn
T h1 − sn−τ

T HHT (HHT )T Cτh1

= (sn
T − sn−τ

T Cτ)h1

=
τ−1

∑
j=0

(
s(n− j)−

L+p

∑
k=0

s(n− τ− j)c(τ)
τ− j,k+1

)
h(1)

0

≈
τ−τo−1

∑
j=0

s(n− j)h(1)
j

+
τ−1

∑
j=τ−τo

(
s(n− j)−

L+p

∑
k=0

s(n− τ− k)c(τ)
τ− j,k+1

)
h(1)

j . (9.41)

Here, the abovementioned assumption, c(τ)
j,k ≈ 0 ( j + k > τo + 1), is reflected in the

simplification of the last two expressions. First, we notice that the late reflections
caused by the terms of ATF h1(z) higher than τ th are cancelled out. As regards the
first term in the final expression, it consists of the direct sound and a few follow-
ing early reflections that are not over-whitened. The second term consists of early
reflections that suffer from the over-whitening effect caused by the target-speech
autocorrelation within a time lag of τ . Note that τ is set at around 30 ms in our
experimental algorithm.

As for this over-whitening problem, we have experimentally confirmed that pre-
whitening of the observed speech signals should be performed before the abovemen-
tioned τ-step LP to reduce the effects of AR coefficients c(τ)

j,k ( j+k ≤ τo +1). In our
experimental algorithm, the pre-whitening was performed by using conventional LP
with a predictor order of around 20. Moreover, in ASR applications, Cepstral Mean
Subtraction (CMS) [4] may be utilized to reduce such early reflections in the first
term as well as the remaining over-whitening effects in the second term.

In our actual implementation of the proposed algorithm, we employed spectral
subtraction [7] to subtract the estimated late reflections sn−τHwτ from the observed
speech signal, sn

T h1. We assumed that spectral subtraction would be insensitive to
the phase differences between the late reflections included in the actual observed
speech and estimation ones. Thus, at the expense of some artifacts in the resultant
speech, this procedure may work robustly compared with the simple time-domain
subtraction shown in (9.41). The implementation of the proposed algorithm is sum-
marized as follows:
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Summary of the proposed algorithm

1. First, pre-whitening is applied to the observed speech signals, sn
T H.

2. Next, τ-step predictors wτ are calculated by using those pre-whitened signals
instead of the observed signals shown in (9.37).

3. Then, the late reflections, sn−τHwτ , are estimated by applying wτ to the τ-
sample delayed version of the observed speech, sn−τT H.

4. Next, the estimated late reflections and the observed speech signal at micro-
phone 1, sn

T h1, are both divided into short-time frames with Hamming win-
dows, and their power spectra are calculated with the short-time Fourier trans-
form (STFT).

5. Then, the power spectrum of the estimated late reflections is subtracted from
that of the observed speech.

6. Finally, the resulting spectrum is converted back to a time-domain signal with
the inverse STFT and the overlap-add technique. To synthesize the signal, the
phase of the observed signal at microphone 1 is applied.

Moreover, this algorithm may be repeated for all the microphone signals if the dif-
ferences in the arrival times of the target speech at the microphones are much smaller
than τ samples. Then, to benefit from the spatial diversity provided by the multiple
microphones, the concept of the DSB [11, 38] may be incorporated. In this pro-
cedure, we should adjust the delays among the M τ-step prediction residuals and
calculate the sum of the residuals as the resultant signal. The delays may be esti-
mated, for example, based on the cross-correlation of the residuals.

Below, we discuss three issues related to the proposed algorithm, which can be
summarized as follows:

1. Speech dereverberation performance in terms of ASR score
2. Speech dereverberation in a noisy environment
3. Dereverberation of multiple sound source signals

9.3.2.2 Speech Dereverberation Performance in Terms of ASR Score

We conducted a speech dereverberation experiment to test the proposed algorithm.
Four microphones and a loudspeaker were positioned in a room with a volume of
about 40 m3 and a reverberation time of around 0.5 s. The microphones were equally
spaced at 0.2 m. We recorded the reverberant speech for four different loudspeaker
positions, with distances of 0.5, 1.0, 1.5 and 2.0 m between the microphones and the
loudspeaker. The SNRs of the recordings were about 15 to 20 dB. The SNRs were
improved to around 30 dB by high-pass filtering with a cutoff frequency of 200
Hz. One hundred utterances taken from the Japanese Newspaper Article Sentences
(JNAS) corpus were used as the target speech signals. The sampling frequency was
12 kHz.

ASR performance was evaluated in terms of the Word Error Rate (WER) av-
eraged over genders and speakers. In the acoustic model, we used the following
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Fig. 9.7 Spectrograms in a real reverberant environment when the distance between the micro-
phones and speaker was set to 1.5 m: (a) clean speech, (b) recorded reverberant speech, and (c)
speech processed with the proposed algorithm

parameters: 12 order MFCCs + energy, their Δ and ΔΔ , 3 state HMMs, and 16 mix-
ture Gaussian distributions [12]. The model was trained on clean speech processed
with CMS. The language model was a standard trigram model trained on Japanese
newspaper articles written over a ten-year period. The average duration of the test
data was about 6 s.

As regards the algorithm parameters, the number of predictor taps and the delay
τ were set at 750 and 30 ms (360 samples), respectively. To pre-whiten the observed
speech signals, we used a 20th-order predictor calculated similarly to the approach
described in [13]. No special parameters such as over-subtraction parameters or
smoothing parameters were used for the spectral subtraction shown in procedure
step 5 above. The length of the Hamming window for the short-time Fourier trans-
form (STFT) was 360 samples, and the frame overlap factor was 1/8. The speech
dereverberation was performed utterance by utterance, which means that the amount
of observed speech data used to calculate predictors wτ is equivalent to the duration
of each input utterance.

Figure 9.7 shows spectrograms of (a) target clean speech, (b) reverberant speech
observed 1.5 m away from the loudspeaker, and (c) dereverberated speech with the
proposed algorithm using four microphones. All speech signals were processed with
the CMS. We can clearly see that the effects of reverberation on the target speech
are greatly reduced with the proposed algorithm.

Table 9.2 shows the relation between the WER and the distance from the loud-
speaker to the microphones. In this table, “No proc” corresponds to the observed
speech processed with the CMS, and “Proposed” to the speech dereverberated with
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Table 9.2 Speech dereverberation evaluated with the WER

Dist. 0.5 m 1.0 m 1.5 m 2.0 m

No proc. 21% 45% 57% 66%
Proposed 8% 11% 13% 14%

Dist.: distance between loudspeaker and microphones
No proc.: observed speech
Proposed: dereverberated speech with proposed algorithm
Baseline performance of ASR system was 5%

the proposed algorithm using four microphones. In this experiment, the baseline
performance was 5%, which is the WER obtained with recordings made under a
non-reverberant condition. The proposed algorithm achieved an excellent and sta-
ble dereverberation performance for all reverberant conditions.

These results show that the proposed algorithm works well even in a severely
reverberant environment.

9.3.2.3 Speech Dereverberation in a Noisy Environment

In the previous experiment, the proposed algorithm performed very well with re-
spect to the dereverberation of recorded speech with a relatively high SNR of 30
dB. Here, as pre-processing of the dereverberation algorithm, we examine spectral
subtraction for its potential to reduce incoherent noise. This processing consists of
similar procedures to those in steps 4–6 of the above algorithm. Each microphone
signal, which consists of an observed speech signal sn

T Hm and incoherent noise
νm(n), is first converted into its power spectrum. Next, the power spectrum of the
noise is estimated in speech-absent segments, and this power spectrum is subtracted
from that of the microphone signal. Then, the resulting power spectrum is converted
back into a time-domain signal. Each time-domain signal is used for the input of the
proposed dereverberation algorithm.

To test the combination of the spectral subtraction and the proposed dereverber-
ation algorithm (hereafter called the comb-algorithm), we conducted a simulation
using model impulse responses calculated with the image method [3]. The model
room was designed to have the same dimensions as the room used in the previous
experiment. The reverberation time was set to at around 0.65 s. One hundred utter-
ances taken from the JNAS corpus were used as the target speech, and convolved
with the model impulse responses to simulate reverberant observed speech signals.
To simulate a noisy environment, pink noise was artificially generated and added to
the reverberant speech with an SNR of 10 or 20 dB. The SNR is defined as the ratio
of the reverberant speech and additive noise. All other conditions were the same as
those of the previous experiment.

Figure 9.8 shows the spectrograms of (a) clean speech, (b) noisy and reverberant
speech observed at a distance of 1.5 m from the loudspeaker with an SNR of 20 dB,
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Fig. 9.8 Spectrograms: (a) clean speech, (b) noisy reverberant speech, and (c) processed speech

Table 9.3 Dereverberation and denoising evaluated with the WER

Dist. 0.5 m 1.0 m 1.5 m 2.0 m

Denoise (10 dB) 20% 42% 55% 65%
Denoise (20 dB) 12% 42% 55% 63%
Comb. (10 dB) 11% 12% 12% 15%
Comb. (20 dB) 5% 6% 8% 10%

Dist: distance between loudspeaker and microphones
Denoise: reverberant speech processed only with spectral subtraction and CMS
Comb.: dereverberated speech with comb-algorithm
Baseline performance of the ASR system was 5% for SNR = 20 dB, or 12% for SNR = 10 dB

and (c) speech processed with the proposed comb-algorithm. We can clearly see the
dereverberation and denoising effects of the comb-algorithm.

Table 9.3 shows the relation between the WER and the distance from the loud-
speaker to the microphones. “Denoise” represents the WER of reverberant speech
processed only with the spectral subtraction and CMS. “Comb” corresponds to the
WER achieved by using the comb-algorithm with four microphones. The SNR is
given in parentheses. The baseline WER was 5% for non-reverberant speech with
an SNR of 20 dB, and 12% for an SNR of 10 dB. These speech signals were pro-
cessed only with the spectral subtraction and CMS. As shown in the table, the WER
achieved with the comb-algorithm was excellent and close to the baseline perfor-
mance.

These results demonstrate that the comb-algorithm works well even in a noisy
reverberant environment.
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9.3.2.4 Dereverberation of Multiple Sound Source Signals

Suppose here that there is an additional sound source in the acoustic situation con-
sidered in (9.37) to (9.41). Then, we may obtain a similar result to (9.41), where the
late reflections associated with the additional source signal observed at microphone
m (m = 1,2, . . . ,M; M ≥ 3) as well as those associated with the target speech are
removed. This relation may be expressed as follows:

ỹ(m)
τ (n) =

τ−1

∑
j=0

(
s(n− j)−

L+p

∑
k=0

s(n− τ− k)c(τ)
τ− j,k+1

)
h(m)

j

+
τ−1

∑
j=0

(
s̃(n− j)−

L+p

∑
k=0

s̃(n− τ− k)c̃(τ)
τ− j,k+1

)
h̃(m)

j ,

(9.42)

where s̃(n), h̃(n) and c̃(τ)
j,k stand for an additional source signal, the ATF between the

additional source and microphone m, and the coefficients of j-step AR polynomial
defined similarly to (9.39) and (9.40).

Looking at this relation, we may notice that the arrival time difference between
the target speech and additional source sound at each microphone is preserved. This
means that we can utilize microphone-array technology such as null beamform-
ing [11, 38] or blind source separation [6] in a reverberant enclosure, where such
technology would not otherwise work well to emphasize, for example, the target
speech by suppressing the additional source sound that remains after the proposed
dereverberation algorithm (see the second term of (9.42)).

To test the abovementioned idea, we conducted a simulation using model impulse
responses calculated with the image method. The simulated room had the same
dimensions as the previous simulation, and its reverberation time was set to 0.6 s.
The target speaker and pink-noise source were placed 1.5 m away and at a ± 45◦

angle to the microphone array, which consisted of four equally spaced microphones.
The SNR was set at 5 dB at the center microphone. The sampling frequency, the
number of predictor taps and τ were set at 8 kHz, 4,000 and 50, respectively.

Figure 9.9 shows the impulse responses between each sound source and a micro-
phone before and after the dereverberation achieved with the proposed algorithm.
We can see that the late reflections were greatly reduced for both sound sources.
The energy ratio of the late reflections to the whole impulse response was reduced
by 65% for the target speaker and by 62% for the pink-noise source.

These results demonstrate that the proposed algorithm may effectively reduce the
late reflection energy even when there are multiple sound sources.
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Fig. 9.9 The impulse responses between each sound source and a microphone before and after the
dereverberation achieved with the proposed algorithm

9.3.3 Joint Estimation of Linear Predictors and Short-time Speech
Characteristics

Another approach to addressing the over-whitening problem is to jointly estimate
the linear predictors and the short-time characteristics of speech signals. We next
review this approach.

9.3.3.1 Background

Let us assume that companion matrix C in (9.19) is a one-tap shift matrix. Then,
accurate linear predictors wa do not cause over-whitening. The companion matrix
C is identical to a one-tap shift matrix if and only if speech signal s(n) follows
a stationary white process. Therefore, if the signals observed at the microphones,
x(n) = [x1(n), . . . ,xM(n)]T , are pre-processed so that s(n) can be considered a sta-
tionary white process, the optimal predictors wo will closely approximate the opti-
mal inverse filters go.

Then, what kind of pre-processing is suitable for this purpose? To investigate
this question, it is useful to focus on the difference between a speech signal and a
stationary white process. A speech signal differs from a stationary white process in
the following two respects:

1. A speech signal is colored because it is physically produced by a time-variant
articulatory filter.
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2. The variance of the (assumed) white signal that is the input to the articulatory
filter, which is hereafter called an innovation variance, is non-stationary.

Therefore, if the observed signals in each short-time frame are processed by the in-
verse articulatory filter of the corresponding frame and then scaled by the reciprocal
of the square root of the innovation variance of the corresponding frame, we can
consider s(n) to follow the stationary white process. In the following, we refer to
the inverse of the articulatory filter as an inverse articulatory filter.

The most fundamental problem when pre-processing the observed signals ac-
cording to the above idea lies in the fact that the true inverse articulatory filter and
the innovation variance of each frame are unknown in advance. Hence, they also
need to be estimated using the observed signals. The inverse articulatory filter of
each frame may be estimated as the prediction error filter that is obtained from
a linear prediction analysis of the corresponding short-time observed signals. The
innovation variance of that frame may then be estimated as the variance of the short-
time observed signals filtered with the estimate of the inverse articulatory filter. This
is the most convenient method for estimating the inverse articulatory filter and the
innovation variance. Note that a small value is chosen for the order of the linear
prediction analysis so that the resultant prediction error filter can approximate the
true inverse articulatory filter. This kind of pre-processing was first proposed by
Gillespie et al. [16]. However, the method described in [16] is not based on mul-
tichannel LP. Gaubitch et al. [13] also confirmed the effectiveness of this kind of
pre-processing experimentally.

Although the above method for estimating the inverse articulatory filter and the
innovation variance is easy to implement, the dereverberation performance achieved
with this method is sometimes unsatisfactory. Furthermore, its mathematical back-
ground is unclear. Intuitively, the dereverberation performance will be improved
by repeating the estimation of the predictors and the estimation of the inverse ar-
ticulatory filter and the innovation variance alternately. We can expect this cyclic
estimation to lead to a more accurate estimate of the inverse articulatory filter and
the innovation variance and hence to an improvement in the dereverberation perfor-
mance.

Yoshioka et al. [40] showed that such heuristically-derived pre-processing meth-
ods can be justified from the information theoretic viewpoint. The important point
is that now we estimate the predictors, the inverse articulatory filter, and the innova-
tion variance jointly. In the remainder of this subsection, we describe the principle
and algorithms based on the concept of joint estimation.

9.3.3.2 Principle

First, let us introduce the model of a speech signal based on the above two charac-
teristics of speech. We assume that:

1. s(n) follows a time-variant AR process of order q. Hence, we have
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Fig. 9.10 System diagram

s(n) =
q

∑
k=1

b(k,n)s(n− k)+ e(n), (9.43)

where b(k,n) denotes the kth regression coefficients at time index n and e(n)
denotes the innovations process. (9.43) is equivalent to filtering the innovations
process e(n) with an articulatory filter of the form 1/(1−B(z,n)) with

B(z,n) =
q

∑
k=1

b(k,n)z−k. (9.44)

2. The innovations {e(n)}n∈Z consist of zero-mean uncorrelated random variables.
The variances of {e(n)}n∈Z are not necessarily identical.

3. The articulatory filter 1/(1−B(z,n)) has no time-invariant poles. Thus, we have

GCD{. . . ,1−B(z,0),1−B(z,1), . . .} = 1, (9.45)

where GCD{P1(z), . . . ,Pn(z)} represents the greatest common divisor of poly-
nomials P1(z), . . . ,Pn(z).

Now, let us consider filtering the residual of the multichannel LP, y1(n), with
time-variant filter 1−A(z,n) as shown in Fig. 9.10. The output of the time-variant
filter, d(n), is given as follows:

d(n) = y1(n)−
q

∑
k=1

a(k,n)y1(n− k). (9.46)

Similarly to (9.43), (9.46) is equivalent to filtering y1(n) with

A(z,n) =
q

∑
k=1

a(k,n)z−k. (9.47)

The adjustable parameters are {wm(k)}1≤m≤M, 1≤k≤p and {a(k,n)}1≤k≤q, 1≤n≤N ,
where N is the number of samples.

We have the following theorem under the above assumptions [40].

Theorem 9.1. Assume that the output d(n) is equal to the innovations process e(n),
and that 1−A(z,n) has no time-invariant zero, i.e.,



9 Inverse Filtering Without Room Acoustics Information 299

d(n) = e(n), (9.48)
GCD{1−A(z,1), . . . ,1−A(z,N)} = 1, (9.49)

then, the residual of the multichannel LP, y1(n), is equal to s(n).

Accordingly, we simply have to set up the tap weights2 {wm(k)} and {a(k,n)}
jointly so that d(n) is made equal to e(n).

Since the innovations process e(n) is inaccessible in reality, we have to develop
criteria defined solely by using d(n). To develop such criteria, we focus on the fact
that output d(n) is an estimate of innovations process e(n). Therefore, it would
be natural to set up {wm(k)} and {a(k,n)} so that the outputs {d(n)}1≤n≤N are
uncorrelated.

Let K(ξ1, . . . ,ξn) denote a suitable measure of correlation between random vari-
ables ξ1, . . . ,ξn. Then, the task is mathematically formulated as

minimize
{a(k,n)}, {wm(k)}

K(d(1), . . . ,d(N)). (9.50)

A reasonable definition of K(·) is

K(ξ1, . . . ,ξn) =
n

∑
i=1

logυ(ξi)− log |detΣ(ξ )|, (9.51)

ξ = [ξ1, . . . ,ξn]T , (9.52)

where υ(ξ1), . . . ,υ(ξn), respectively, represent the variances of random variables
ξ1, . . . ,ξn, and Σ(ξ ) denotes the covariance matrix of ξ .

Then, we try to minimize

K(d(1), . . . ,d(N)) =
N

∑
n=1

logυ(d(n))− log |detΣ(d)|, (9.53)

d = [d(1), . . . ,d(N)]T , (9.54)

with respect to {a(k,n)} and {wm(k)}, where N is the number of observed samples.
This loss function can be further simplified as

K(d(1), . . . ,d(N)) =
N

∑
n=1

logυ(d(n))+ constant. (9.55)

Hence, (9.50) is finally reduced to

minimize
{a(k,n)}, {wm(k)}

N

∑
n=1

logυ(d(n)). (9.56)

2 Hereafter, we omit the range of indices unless required.
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Therefore, we have to set up the tap weights {a(k,n)} and {wm(k)} to minimize
the logarithmic mean of the variances of outputs {d(n)}. It is noteworthy that the
solution for (9.56) is proven to give d(n) = e(n) [40].

9.3.3.3 Algorithms

Here we derive algorithms for accomplishing (9.56). Before proceeding, we in-
troduce an approximation of time-variant filter 1− A(z,n). Since a speech signal
within a short-time frame of several tens of milliseconds is almost stationary, we
approximate 1− A(z,n) by using a filter that is globally time-variant but locally
time-invariant as

1−A(z,n) = 1−At(z), t =
⌊n−1

W
+ 1

⌋
, (9.57)

where W is the frame size and �·� represents the floor function. Furthermore, if
sample index n is in the range of the t th frame, we estimate the variance of d(n) by
1
W ∑W

n=1 d(W (t − 1)+ n)2. By using these approximations, task (9.56) is reformu-
lated as

minimize
Θa, Θw

T

∑
t=1

log
( W

∑
n=1

d(W (t −1)+ n)2
)
, (9.58)

whereΘa = {at(k)}1≤t≤T,1≤k≤q andΘw = {wm(k)}1≤m≤M,1≤k≤p.
Task (9.58) may be solved by using the gradient descent method as described

in [40]. Although the gradient descent method provides an accurate solution for
(9.58), its convergence to an optimum value is very slow. Furthermore, the gradient
descent method requires the step-size to be adjusted well. Therefore, we describe
here an alternative method that uses no additional parameters such as step-size. This
method is novel and published here for the first time.

Let us represent the cost function of (9.58) by

L(Θa,Θw) =
T

∑
t=1

log
( W

∑
n=1

d(W (t −1)+ n)2
)
. (9.59)

The difficulty in minimizing L arises from the term log(∑W
n=1 d(W (t −1)+n)2). To

avoid this difficulty, we capitalize on the following inequality:

logx ≤ x
λ
−1 + logλ , (9.60)

where the equality holds if and only if x = λ . By using (9.60), we have

L(Θa,Θw) ≤
T

∑
t=1

( 1
λt

W

∑
n=1

d(W (t −1)+ n)2−1 + logλt

)
, (9.61)
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Algorithm 9.1 Summary of the algorithm

1. InitializeΘa and Λ byΘ (0)
a and Λ (0) , respectively. Iteration index i is set at 0.

2. Update the estimate of Θw toΘ (i+1)
w to minimize L+(Θ (i)

a ,Θ (i+1)
w ,Λ (i)). Since we have

L(Θ (i)
a ,Θ (i+1)

w ) ≤ L+(Θ (i)
a ,Θ (i+1)

w ,Λ (i)) ≤ L+(Θ (i)
a ,Θ (i)

w ,Λ (i)) = L(Θ (i)
a ,Θ (i)

w ), (9.62)

the value of cost function L is also reduced.
3. Update the estimate of Θa toΘ (i+1)

a to minimize L(Θ (i+1)
a ,Θ (i+1)

w ). Consequently, we obtain

L(Θ (i+1)
a ,Θ (i+1)

w ) ≤ L(Θ (i)
a ,Θ (i+1)

w ). (9.63)

4. Update the value of Λ to Λ (i+1) to minimize L+(Θ (i+1)
a ,Θ (i+1)

w ,Λ (i+1)). Then we have

L+(Θ (i+1)
a ,Θ (i+1)

w ,Λ (i+1)) = L(Θ (i+1)
a ,Θ (i+1)

w ). (9.64)

5. Increment i and return to Step 2, unless convergence is reached.

where we denote the right-hand side of (9.61) by L+(Θa,Θw,Λ) with Λ =
{λt}1≤t≤T .

By using the functionL+ introduced above, we obtain an algorithm for achieving
(9.58) based on the coordinate descent method as shown in Algorithm 9.1. We easily
find that this algorithm monotonically reduces the value of cost function L. How the
algorithm in Algorithm 9.1 reduces the cost is illustrated in Fig. 9.11. This kind of
algorithm is essentially identical to the expectation maximization (EM) algorithm
and was first introduced in [23].

The remaining issues are the specific realization of Steps 2, 3, and 4. As regards
Step 3, we find that, for each t, {a(i+1)

t (k)}1≤k≤P is calculated by applying linear
predictive analysis to {y1(n)}(t−1)W<n≤(tW ), where y1(n) is the tentative estimate of
the speech signal s(n). It is also found that Step 4 is accomplished by

λ (i+1)
t =

W

∑
n=1

d((t −1)W + n)2. (9.65)

Note that Θ (i+1)
a and Λ (i+1) are the tentative estimates of the (inverse) articulatory

filter and the innovation variances, respectively.
Finally, the update rule for Θw in Step 2 is derived as follows. By setting the

differential of L+ with respect to w at zero, we obtain the following linear equation
relating to w(i+1):

(
T

∑
t=1

tW

∑
n=(t−1)W+1

ut(n−1)ut(n−1)T

)
w(i+1)

=
T

∑
t=1

tW

∑
n=(t−1)W+1

ut,1(n)ut(n−1), (9.66)
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Fig. 9.11 Schematic diagram of the algorithm

where

ut(n) =
1√
λ (i)

t

(
x(n)−

q

∑
k=1

at(k)x(n− k)
)

(9.67)

and

ut,1(n) =
1√
λ (i)

t

(
x1(n)−

q

∑
k=1

at(k)x1(n− k)
)

(9.68)

are the observed signals pre-processed by the tentative estimates of the inverse ar-
ticulatory filter and the innovation variances.

In conclusion, the dereverberation method that iterates the estimation of the in-
verse filter set and the estimation of the inverse articulatory filter and the innovation
variances is completely justified from the perspective of information theory.

9.3.4 Probabilistic Model Based Speech Dereverberation

This section describes a different approach to overcoming the over-whitening prob-
lem. The probabilistic model based approach is introduced into multichannel LP
based speech dereverberation. When the signal of interest is speech that manifests
certain inherent characteristics, we can consider the dereverberation as a speech
enhancement problem (as opposed to a problem of inverting the room impulse re-
sponse), where reverberant components in the microphone signal are to be sup-
pressed according to the source characteristics [31, 39]. The use of source charac-
teristics has led to a new formulation of multichannel LP based on a probabilistic
speech model, in which the objective is not to estimate a filter that whitens the ob-
served signal as in (9.15), but to design one that would turn reverberant speech into
a signal that is probabilistically more like clean speech [30]. The over-whitening
problem does not arise with this mechanism provided that the probabilistic speech
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model appropriately represents the spectral features of speech. The resultant opti-
mization problem can be solved by employing maximum likelihood estimation.

9.3.4.1 Probabilistic Speech Model

With this approach, (9.14) is used as a model for representing the relationship be-
tween the observed signal xm(n) and the residual of the multichannel LP ŷ(n), where
the residual is taken as the signal to be obtained, namely a speech signal s(n). For
simplicity, we consider a noise-free case in this section, where vm(n) = 0, and we
set ŷ(n) = s(n). (It is easy to show the noise robust property of this approach in a
similar way to that of the multichannel LP shown by (9.15).) In addition, because
short-time segments of the signals are dealt with as objects to be processed with this
approach, we rewrite (9.14) so that it includes the short-time segments explicitly as

x̄1(n) =
M

∑
m=1

X̄m(n− p : n−1)wm + s̄(n),

= X̄(n− p : n−1)w+ s̄(n), (9.69)

where p is the length of the prediction filter wm in each channel, s̄(n) and x̄m(n) are
vectors of short-time segments of length K for s(n) and xm(n) defined as3

s̄(n) = [s(n),s(n−1), . . . ,s(n−K + 1)]T ,

x̄m(n) = [xm(n),xm(n−1), . . . ,xm(n−K + 1)]T ,

and X̄(n1 : n2) is a matrix that contains a time series of x̄m(n) for all microphones m
from time n1 to n2, defined as

X̄m(n1 : n2) = [x̄m(n2), x̄m(n2 −1), . . . , x̄m(n1)],
X̄(n1 : n2) = [X̄1(n1 : n2),X̄2(n1 : n2), . . . ,X̄M(n1 : n2)].

A probabilistic speech model is introduced as a criterion for evaluating the degree
to which the residual is likely to be clean speech in a probabilistic sense, and used to
determine the prediction filter coefficients. A Time-Varying Gaussian Source Model
(TVGSM) has been shown to be suitable as a general probabilistic speech model for
multichannel LP. With this model, the following assumptions are introduced.

1. Each short-time speech segment of the order of tens of milliseconds is a real-
ization of a stationary multivariate Gaussian random process with a zero mean
and a covariance matrix of Rs(n) = E{s̄(n)s̄(n)T}, where E{·} represents the
expectation function. The Probability Density Function (PDF) of the segment,
fs(s̄(n)), is defined as

3 In this section, symbols with bars such as x̄(n) and X̄, respectively, denote a vector of a short-time
segment and a matrix of a time series of the vector.
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fs(s̄(n)) = N (s̄(n);0,Rs(n)), (9.70)

where N (s̄;μ ,Σ) denotes a PDF of a multivariate Gaussian random process
with a mean vector μ and a covariance matrix Σ , which is defined as

N (s̄;μ ,Σ) = (2π)−K/2(detΣ)−1/2 exp
(
−1

2
|s̄− μ |2Σ−1

)
,

|s|2Σ−1 = sTΣ−1s.

Note that the covariance matrix Rs(n) can be employed as an autocorrelation
matrix4 in the above definition because s̄(n) is assumed to be stationary.

2. The autocorrelation matrices in the above PDF may vary over different short-
time segments.

With TVGSM, the characteristics of a short-time speech segment are represented
by the autocorrelation matrix of the segment, or equivalently by the autocorrelation
function. Because the autocorrelation function of a segment contains information
that is equivalent to its power spectrum, it can represent the characteristics of the
power, the spectral envelope, and other finer spectral structures such as the har-
monicity of the segment. The properties of an autocorrelation matrix can be more
clearly determined when we further assume the short-time segment to be an autore-
gressive process excited by white Gaussian noise. Then, the autocorrelation matrix
of the segment can be parameterized using the AR process parameters [21] as

Rs(n) = σ2(n)(A(n)T A(n))−1, (9.71)

where A(n) is an upper triangular Toeplitz matrix whose first row contains the AR
coefficients and σ2(n) is the average energy of the AR residual [21]. With this
model, σ2(n) and A(n), respectively, correspond to the power and spectral shape
information of the segment. The order of the AR process determines how finely
the model represents the spectral features. By contrast, the time-varying nature of
speech can be represented by appropriately changing the values of the autocorrela-
tion functions over different short-time segments with TVGSM.

Note that TVGSM has been adopted for many useful speech enhancement tech-
niques, such as Wiener filtering and source and channel estimation [41]. The autore-
gressive hidden Markov model [21] is also a class of TVGSM.

9.3.4.2 Likelihood Function for Multichannel LP

A likelihood function is needed as a criterion for determining the prediction filter
with the probabilistic model based formulation. We define it as

L(Θ) = log fx(X̄(1 : N);Θ), (9.72)

4 An autocorrelation matrix is defined as a symmetric Toeplitz matrix that contains an autocorre-
lation function of a segment in its first column.
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where fx(X̄) is the Probability Density Function (PDF) of the X̄ being observed and
Θ is a set of parameters to be estimated.Θ should contain the prediction filter coef-
ficients w and a time series of the autocorrelation matrices of the short-time speech
segments Rs(n). Dereverberation is defined as a problem of finding the parameter
set that maximizes the likelihood function as

Θ̂ = argmax
Θ

L(Θ). (9.73)

It is easy to rewrite the likelihood function by expanding the PDF along with the
time sequence of X̄(1 : N) as

L(Θ) = log fx(X̄(1 : 1);Θ)

+
N

∑
n=1

log fx|X (x̄2(n), x̄3(n), . . . , x̄M(n)|x̄1(n),X̄(1 : n−1);Θ)

+
N

∑
n=1

log fx|X (x̄1(n)|X̄(1 : n−1);Θ).

In the above equation, the first two terms on the right-hand side are not terms of in-
terest when determining the prediction filter coefficients that predict the first channel
as in (9.69), and thus we disregard them. By contrast, according to (9.69), x̄1(n) only
depends on X̄(n− p : n−1) and s̄(n). Therefore, the third term can be rewritten as

L(Θ) =
N

∑
n=1

log fx|X (x̄1(n)|X̄(n− p : n−1);Θ). (9.74)

Finally, the likelihood function can further be rewritten based on (9.69) and (9.70)
as

L(Θ) =
N

∑
n=1

log fs(s̄(n) = x̄1(n)− X̄(n− p : n−1)w;Θ),

=
N

∑
n=1

logN (x̄1(n);X̄(n− p : n−1)w,Rs(n)),

= −1
2

N

∑
n=1

|x̄1(n)− X̄(n− p : n−1)w|2Rs(n)−1

− 1
2

N

∑
n=1

logdetRs(n)+ const. (9.75)

As a consequence, dereverberation is achieved by finding the parameter set Θ =
{w,R̄s} that maximizes (9.75), where R̄s = [Rs(0),Rs(1), . . . ,Rs(N)].

It is important to note that various dereverberation algorithms can be derived by
introducing more specific source assumptions into TVGSM. For example, when we
assume s̄(n) to be stationary white Gaussian noise, we can set Rs(n) = I, and the
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Fig. 9.12 Processing flow of autocorrelation codebook based speech dereverberation

above likelihood function becomes equivalent to the cost function of the multichan-
nel LP shown by (9.15). By contrast, when we assume that s̄(n) is a stationary AR
process, we can set Rs(n) = (AT A)−1 based on (9.71). Then, (9.75) can further be
rewritten by disregarding the constant terms as

L(Θ) = −1
2

N

∑
n=1

|Ax̄1(n)−AX̄(n− p : n−1)w|2.

According to the above likelihood function, we can determine the prediction filter w
using multichannel LP assuming the source signal to be a stationary white Gaussian
process once the observed signal is pre-whitened by A. This corresponds to the
pre-processing used for multichannel multistep LP based speech dereverberation
discussed in Sect. 9.3.2. In addition, when we assume the source to be a time-varying
AR process, we can derive a dereverberation algorithm similar to that described in
Sect. 9.3.3 by setting Rs(n) = σ2(n)(A(n)T A(n))−1.

9.3.4.3 Autocorrelation Codebook-based Speech Dereverberation

As an example, we detail a dereverberation method based on the autocorrelation
codebook [30], in which a priori knowledge of the speech signals is introduced
as a PDF of the signal represented by a set of autocorrelation functions, referred
to as the autocorrelation codebook. With this method, the following assumption is
introduced:

Each short-time speech segment s̄(n) can be categorized as one of a finite number
of states, β , where 1 ≤ β ≤Nβ . In each state β , s̄(n) is modeled by a multivariate
Gaussian random process with an autocorrelation matrix R̃s(β ) determined by
the state, that is, fs(s̄(n);β ) = N (s̄(n);0,R̃s(β )).

According to this assumption, the PDF of the short-time speech segments can be
represented by a finite number of autocorrelation matrices, referred to as codewords
of the autocorrelation codebook. The autocorrelation codebook has to be prepared
in advance based on this approach. It can be generated, for example, based on a
certain clustering method using clean speech data.

With autocorrelation codebook based multichannel LP, we need to include the
state sequence β̄ = [β (1),β (2), . . . ,β (N)]T over successive short-time segments in
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Fig. 9.13 Spectrograms of (a) a reverberated signal and (b) a signal dereverberated with the au-
tocorrelation codebook using an observed signal that contains a five-word sequence uttered by a
female talker (T60 = 0.5 s)

the parameter setΘ instead of the autocorrelation matrix sequence R̄s. (See [21] for
an example of parameter estimation with a finite state speech model.) The likelihood
function is then rewritten by disregarding constant terms as

L(Θ) = −1
2

N

∑
n=1

|x̄1(n)− X̄(n− p : n−1)w|2R̃s(β (n))−1 −
1
2

N

∑
n=1

logdetR̃s(β (n)).

(9.76)

It is difficult to give the closed-form solution that maximizes (9.76). Instead, a
repetitive estimation method can be derived for this maximization, where the like-
lihood function can be maximized up to a stationary point by iteratively updating
the state sequence and the prediction filter coefficients in turn from certain initial
values. They are summarized as follows:

1. Set the initial values as s̄(0)(n) = x̄1(n) and the iteration counter as i = 1.
2. Update β (i)(n), w(i) and s̄(i)(n) in turn to obtain a value that maximizes the

likelihood function on the variables as

β (i)(n) = argmax
β

p(s̄(i−1)(n);β ) for all n,

w(i) = (
N

∑
n=1

X̄(n− p : n−1)T R̃s(β (i)(n))−1X̄(n− p : n−1))−1

×
N

∑
n=1

X̄(n− p : n−1)T R̃s(β (i)(n))−1x̄1(n),

s̄(i)(n) = x̄1(n)− X̄(n− p : n−1)w(i) for all n.

3. If the iteration converges, terminate the iteration and take s̄(i)(n) as the derever-
berated signal. Otherwise, set i = i+ 1, and return to step 2.
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It is guaranteed that the likelihood function monotonically increases according to
this iteration. Figure 9.12 summarizes the processing flow of this optimization
method. It has been shown by simulation experiments that autocorrelation codebook
based speech dereverberation can effectively recover the quality of speech signals
based on a few seconds of observance of reverberant signals [30]. Figure 9.13 shows
example spectrograms obtained before and after dereverberation when the observed
signals were captured by two microphones with a reverberation time (T60) of 0.5 s.

9.4 Concluding Remarks

We have demonstrated that there are at least four solutions to the problem of over-
whitening target speech, which is an essential drawback of inverse filtering based
on multichannel LP. We are currently pursuing research to improve the noise-
robustness of these solutions.

Appendix A

Here, we derive a sufficient condition on which optimal inverse filters go are consid-
ered to be less sensitive to noise as well as fluctuation in ATFs than accurate filters
ga by using the condition numbers related to these two filter-sets. The condition
numbers are, respectively, given as [22]:

for go: condNo[go] =
κmax[(HT E{snsn

T}H + δ 2I)+ E{vnvn
T}]

κmin[(HT E{snsnT}H + δ 2I)+ E{vnvnT}] ,

for ga: condNo[ga] =
κmax[HT E{snsn

T}H + δ 2I]
κmin[HT E{snsnT}H + δ 2I]

.

As regards condition number condNo[go], the following inequality holds.

condNo[go] ≤
κmax[(HT E{snsn

T}H + δ 2I)]+κmax[E{vnvn
T}]

κmin[(HT E{snsnT}H + δ 2I)]+κmin[E{vnvnT}] .

Here, the following relation is considered [18]:

κmin[A]+κmin[B] ≤ κ j[A+ B]≤ κmax[A]+κmax[B],

where A and B are J× J (J: natural number) Hermitian matrices, and

κmax[A+ B] = κ1[A+ B] ≥ . . . ≥ κ j[A+ B]≥ . . . ≥ κJ[A+ B] = κmin[A+ B].

Hence, the sufficient condition may be given as follows:
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κmax[(HT E{snsn
T}H + δ 2I)]+κmax[E{vnvn

T}]
κmin[(HT E{snsnT}H + δ 2I)]+κmin[E{vnvnT}]

≤ κmax[HT E{snsn
T }H + δ 2I]

κmin[HT E{snsnT}H + δ 2I]
,

⇔ κmax[E{vnvn
T}]

κmin[E{vnvnT}] ≤
κmax[HT E{snsn

T }H + δ 2I]
κmin[HT E{snsnT }H + δ 2I]

. (9.77)

This relation could be interpreted to mean that incoherent noise vn should be flatter
(and more spatially uncorrelated) than observed speech signals sn

T H.
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Chapter 10
TRINICON for Dereverberation of Speech and
Audio Signals

Herbert Buchner1 and Walter Kellermann2

Abstract In this chapter, we develop an analytical top-down approach to the prob-
lem of blind dereverberation of speech and audio signals based on TRINICON
(TRIple-N Independent component analysis for CONvolutive mixtures), a general
framework for broadband adaptive Multi-Input Multi-Output (MIMO) signal pro-
cessing. Two fundamentally different approaches to the dereverberation problem
for realistic scenarios can be distinguished: The “identification-and-inversion ap-
proach”, which results in a two-step procedure consisting of blind identification of
the acoustic MIMO mixing system, followed by an inversion of the identified sys-
tem. As an alternative, the “direct-inverse approach” blindly estimates the inverse
of the acoustic mixing system directly. As shown in this chapter, for both cases
TRINICON yields the information-theoretically optimum estimation procedures in
a unified way and allows for a direct comparison between the approaches, paves
the way to synergies, and yields various useful insights for practical realizations.
This chapter also relates other known algorithms, and presents novel improved al-
gorithms as special cases of the generic concept.

10.1 Introduction

Blind signal processing of convolutive mixtures of unknown time series is an im-
portant building block in modern systems involving broadband signal acquisition by
sensor arrays in multipath or convolutive environments. A challenging and impor-
tant example for such environments is given by ‘natural’ acoustic human/machine
interfaces using multiple microphones to support sound signal acquisition so that
the users may be untethered and mobile in real rooms. To obtain the desired source
signals, the signal processing generally has to cope with two fundamental prob-
lems due to the distance between the sources and the sensors: (i) the presence of

1 Deutsche Telekom Laboratories, Berlin University of Technology, Germany
2 University of Erlangen-Nuremberg, Germany
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additive noise and interferers, e.g., competing speakers, and (ii) the disturbing ef-
fect of reflections and scattering of the desired source signals in the recordings. In
this chapter we tackle these problems by blind adaptive Multi-Input Multi-Output
(MIMO) filtering.

In this introductory section, we first formulate the fundamental adaptive filtering
problems and distinguish ‘direct’ and ‘inverse’ problems in Sect. 10.1.1. Moreover,
we introduce a classification into two different generic approaches to blind deconvo-
lution that are fundamental to the dereverberation approaches for speech and audio
signals. In Sect. 10.1.2 we introduce a compact matrix notation, which we will use
throughout this chapter. Section 10.1.3 provides an overview of our analysis of the
two generic approaches to blind deconvolution as useful for blind dereverberation.

10.1.1 Generic Tasks for Blind Adaptive MIMO Filtering

The signal acquisition scenario mentioned above is modeled such that the origi-
nal source signals sq(n), q = 1, . . . ,Q are filtered by a linear MIMO system before
they are picked up by the sensors yielding the sensor signals xp(n), p = 1, . . . ,P.
In this chapter, we describe this MIMO mixing system by length-M Finite Impulse
Response (FIR) filters, i.e.,

xp(n) =
Q

∑
q=1

M−1

∑
κ=0

hqp,κsq(n−κ), (10.1)

where hqp,κ , κ = 0, . . . ,M − 1 denote the coefficients of the FIR filter model from
the qth source signal sq(n) to the pth sensor signal xp(n) according to Fig. 10.1.
Throughout this chapter, we assume that the number Q of sources is less or equal
to the number P of sensors. The cases Q < P and Q = P are of particular interest as
detailed below and they are commonly known as overdetermined and (fully) deter-
mined, respectively. Note that in general, the sources sq(n) may or may not be all
simultaneously active at a particular instant of time.

...
...

...

...
...

...

... ... ...

s1

sQ

x1

xP

y1

yQ

Sensor 1

Sensor P

h11

hQP

hQ1

h1P

w11

wPQ

wP1

w1Q

Mixing system H Demixing system W

Fig. 10.1 Setup for blind MIMO signal processing
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Obviously, since only the sensor signals, i.e., the output signals of the mixing
system, are assumed to be accessible to the blind signal processing, any type of
linear blind adaptive MIMO signal processing may be described by the structure
shown in Fig. 10.1. Thus, with respect to a yet undefined optimization criterion,
we are interested in finding a corresponding demixing system by the blind adaptive
signal processing whose output signals yq(n) are described by

yq(n) =
P

∑
p=1

L−1

∑
κ=0

wpq,κxp(n−κ), (10.2)

and where the parameter L denotes the FIR filter length of the demixing filters with
coefficients wpq,κ .

Depending on the optimization criterion for determining the coefficients wpq,κ ,
we distinguish two general classes of blind signal processing problems as summa-
rized in Table 10.1 along with the corresponding supervised problems1,2.

• Direct blind adaptive filtering problems: This class summarizes here Blind Sys-
tem Identification (BSI) and Blind Source Separation (BSS)/blind interference
cancellation for convolutive mixtures.
In the BSS approach, we want to determine a MIMO FIR demixing filter that
separates the signals up to an – in general arbitrary – filtering and permutation
ambiguity by forcing the output signals to be mutually independent. Tradition-
ally, and perhaps somewhat misleadingly, BSS has often been considered to be
an inverse problem in the literature, e.g., [32, 51]. In another interpretation, BSS
may be considered as a set of blind beamformers [6, 25] under certain restricting
conditions, most notably the fulfillment of the spatial sampling theorem by the
microphone array. Furthermore, under the farfield assumption, the directions of
arrival can be extracted from the corresponding array patterns, which in turn can
be calculated from the BSS filter coefficients, e.g., [63].
In this chapter (Sect. 10.3) we will see that, more generally, a properly designed
broadband BSS system actually performs blind MIMO system identification
(which is independent of the spatial sampling theorem). The general broadband
approach presented here unifies the BSS and BSI concepts and provides various
algorithmic synergy effects and new applications. One important and particu-
larly illustrative application of the general broadband approach to MIMO BSI is
the acoustic localization of multiple simultaneously active sources even in rever-
berant environments as detailed in [19, 21]. In this chapter, we utilize the gen-

1 Note that in supervised adaptive filtering one may distinguish the analogous general classes of
problems. There, we classify system identification and interference cancellation after [45] as (there
may be others, or at least other terms) “direct supervised adaptive filtering problems”, whereas
inverse modeling and linear prediction after [45] may be classified as “inverse supervised adaptive
filtering problems”.
2 The TRINICON framework for broadband adaptive MIMO filtering presented in Sect. 10.4 is
applicable to all of the problems listed in Table 10.1 and yields corresponding generic adaptation
algorithms.
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eral MIMO BSI approach for deconvolution and especially to dereverberation of
acoustic signals (see below) as another new application.

• Inverse blind adaptive filtering problems: This class stands here for MultiChannel
Blind Deconvolution (MCBD) and so-called MultiChannel Blind Partial Decon-
volution (MCBPD)3 with respect to the mixing system H and forms the main
part of this chapter. Furthermore, the linear prediction problem as known from
the literature on supervised adaptive filtering may also be considered as an in-
verse blind adaptive filtering problem, as we show in this chapter. The relation
between linear prediction and MCBD/MCBPD will also be shown later in this
chapter.
The goal of any blind deconvolution approach is to recover the original signals
up to an arbitrary (frequency-independent) scaling and possibly a time shift. In
the general MIMO case, i.e., for multiple simultaneously active sources, blind
deconvolution also includes separation of the source signals (up to a permutation
ambiguity). MCBD and MCBPD provide adaptive methods to the blind decon-
volution problem for independent identically distributed (i.i.d.) sources and for
general nonwhite sources, respectively.
For the intended acoustic applications, i.e., for speech and audio source signals,
the problem of blind deconvolution means that we want to dereverberate the sig-
nals by inverting the effect of the convolutive mixture matrix H. In this case,
blind deconvolution is denoted by blind dereverberation. Furthermore, for blind
dereverberation, i.e., in acoustic applications, we typically have to deal with non-
white sources. Hence, for a direct adaptive approach to blind dereverberation the
more general MCBPD method has to be used, as we will discuss later in more
detail.
In terms of the MIMO system description, for the task of blind deconvolu-
tion/blind dereverberation, strictly speaking, an inversion of (long and usually
nonminimum-phase) room impulse responses is necessary. However, using the
Multiple-input/output INverse Theorem (MINT) [68], any MIMO FIR system H
can exactly be inverted by a MIMO FIR system W if P, Q, and L are suitably
chosen, and if the impulse responses hqp ∀ p ∈ {1, . . . ,P} do not have common
zeros in the z-plane. Therefore, in principle, there is a general solution to the
MCBD problem by using multiple sensors. In this chapter we present adaptive
blind deconvolution algorithms that should ideally converge to the ideal MINT
solution.

From the two classes of blind adaptive filtering problems shown in Table 10.1, it
becomes obvious that two different fundamental approaches to effective blind de-
convolution – and thus to dereverberation – are conceivable.

One approach is to perform blind MIMO system identification as mentioned
above, followed by a (MINT-based) inversion of the estimated mixing system,

3 Later in Sect. 10.6 we will see that in practical systems for the blind deconvolution tasks it
is important to take the spectral characteristics of the source signals into account. The method
of multichannel blind partial deconvolution, introduced in Sect. 10.6 to address this issue, also
belongs to the class of inverse blind adaptive filtering problems.
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Table 10.1 Classification of the linear adaptive filtering problems

Supervised Blind
adaptive filtering problems adaptive filtering problems

(after [45]) (treated in this chapter)

“Direct System identification Blind system identification
adaptive
filtering

problems” Interference cancellation Blind source separation/
blind interference cancellation

“Inverse Inverse modeling/equalization Blind (partial) deconvolution
adaptive
filtering

problems” Linear prediction Linear prediction

e.g., [36, 43]. In this chapter we refer to this approach as the Identification-and-
Inversion approach (II approach) to blind deconvolution.

The other, theoretically equivalent but, as we will see later, in practice often more
reliable approach is to perform directly a blind estimation of the actual inverse of
the MIMO mixing system, e.g., [4, 16, 28, 40]. In this chapter we refer to this ap-
proach as the Direct-Inverse approach (DI approach) to blind deconvolution. Note
that for blind dereverberation, the DI approach implies the application of MCBPD
for nonwhite signals.

10.1.2 A Compact Matrix Formulation for MIMO Filtering
Problems

To compactly formulate and analyze the blind adaptive MIMO filtering problems in
Sects. 10.2 and 10.3, respectively, we introduce the following matrix formulation of
the overall system in Fig. 10.1 consisting of the mixing and demixing systems. This
matrix formulation is also used in the TRINICON (TRIple-N Independent compo-
nent analysis for CONvolutive mixtures) framework described later in Sect. 10.4 in
order to blindly estimate the adaptive demixing filter coefficients.

For capturing the mixing system with coefficients hqp,κ , κ = 0, . . . ,M−1 and the
demixing system with coefficients wpq,κ , κ = 0, . . . ,L−1, p = 1, . . . ,P, q = 1, . . . ,Q,
we form the QM×P mixing coefficient matrix

Ȟ =

⎡
⎢⎣

h11 · · · h1P
...

. . .
...

hQ1 · · · hQP

⎤
⎥⎦ (10.3)
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and the PL×Q demixing coefficient matrix

W̌ =

⎡
⎢⎣

w11 · · · w1Q
...

. . .
...

wP1 · · · wPQ

⎤
⎥⎦ , (10.4)

respectively, where

hqp =
[
hqp,0, . . . ,hqp,M−1

]T
, (10.5)

wpq =
[
wpq,0, . . . ,wpq,L−1

]T (10.6)

denote the coefficient vectors of the individual FIR filters of the MIMO systems, and
where superscript T denotes transposition of a vector or a matrix. The downwards
pointing hat symbol (‘check’) on top of H and W in (10.3) and (10.4) serves to dis-
tinguish these condensed matrices from the corresponding larger matrix structures
as introduced below in (10.10). Although seemingly a merely formal peculiarity, the
rigorous distinction between these different matrix structures is an essential tool for
the development of the general TRINICON framework, as shown later.

Analogously, the coefficients cqr,κ , q = 1, . . . ,Q, r = 1, . . . ,Q, κ = 0, . . . ,M +L−
2 of the overall system of length M + L− 1 from the sources to the demixing filter
outputs are combined into the Q(M + L−1)×Q matrix,

Č =

⎡
⎢⎣

c11 · · · c1Q
...

. . .
...

cQ1 · · · cQQ

⎤
⎥⎦ , (10.7)

where
cqr =

[
cqr,0, . . . ,cqr,M+L−2

]T
. (10.8)

All these subfilter coefficients cqr,κ are obtained by convolving the mixing filter
coefficients with the demixing filter coefficients. In general, a convolution of two
such finite-length sequences can also be written as a matrix-vector product so that
the coefficient vector for the model from the qth source to the rth output here reads

cqr =
P

∑
p=1

Hqp,[L]wpr. (10.9)

The so-called convolution matrix or Sylvester matrix Hqp,[L] of size M + L− 1×L
in this equation exhibits a special structure, containing M filter taps in each column,
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Hqp,[L] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hqp,0 0 · · · 0

hqp,1 hqp,0
. . .

...
... hqp,1

. . . 0

hqp,M−1
...

. . . hqp,0

0 hqp,M−1
. . . hqp,1

...
. . .

...
0 · · · 0 hqp,M−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10.10)

The additional third index in brackets denotes the width of the Sylvester matrix,
which has to correspond to the length of the column vector wpr in (10.9) so that
the matrix-vector product is equivalent to a linear convolution. The brackets serve
to emphasize this fact and to clearly distinguish the meaning of this index from
the meaning of the third index of the individual matrix elements, e.g., i of hqp,i in
(10.10).

We may now compactly express the overall system matrix Č after (10.7) using
this Sylvester matrix formulation to finally obtain

Č = H[L]W̌, (10.11)

where H[L] denotes the Q(M+L−1)×PL MIMO block Sylvester matrix combining
all channels,

H[L] =

⎡
⎢⎣

H11,[L] · · · H1P,[L]
...

. . .
...

HQ1,[L] · · · HQP,[L]

⎤
⎥⎦ . (10.12)

Based on this matrix formulation, we are now able to compactly formulate the blind
adaptive MIMO filtering problems in the coming Sects. 10.2 and 10.3 and to discuss
the corresponding ideal solutions, regardless of how the adaptation is actually per-
formed in practice (note that this also implies that the results are valid for both blind
and supervised adaptation). The blind adaptation of the demixing filter coefficients
towards these ideal solutions will be treated later in Sects. 10.4–10.6.

10.1.3 Overview of this Chapter

This chapter consists of three parts. Based on the matrix notation in Sect. 10.1.2,
we formulate and analyze both the above-mentioned inverse and the direct blind
adaptive MIMO filtering problems in Sects. 10.2 and 10.3, respectively, and we
relate these categories of adaptive MIMO filtering problems to the two fundamental
approaches to blind deconvolution, i.e., the DI approach and the II approach. As it
turns out, the explicit formulation and analysis of the theoretically ideal solution of
the direct filtering problems is somewhat more involved and less well known than
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that of the inverse filtering problem. Accordingly, Sect. 10.3 gives a detailed review
of a recent comprehensive treatment [19] of the direct filtering problems. Thereby, a
fundamental relation between BSI and BSS for convolutive mixtures is of particular
practical importance. The resulting practical scheme for BSI serves as a basis for the
identification-and-inversion approach to blind deconvolution in the general MIMO
case. In this respect, Sect. 10.3 follows the ideas first outlined in [18, 21].

Section 10.4 constitutes the second major part of this chapter and is devoted
to the adaptation of the MIMO demixing system towards the ideal solutions dis-
cussed in Sects. 10.2 and 10.3. Our considerations are based on TRINICON, a pre-
viously introduced versatile framework for broadband adaptive MIMO signal pro-
cessing [13, 15–17], which is especially well suited for speech and audio signals.
The general information-theoretic optimization criterion of TRINICON allows us
to exploit all fundamental properties of the excitation signals, such as their non-
stationarity, their spectral characteristics (nonwhiteness), and their probability den-
sities (nongaussianity). Moreover, in addition to the inherent broadband structure
necessary for a proper system identification and deconvolution, the top-down, i.e.,
deductive approach of the TRINICON framework also allows us to present relations
to both already known and new efficient algorithms. So far, this deductive approach
has already led to various new insights into the several classes of adaptive filtering
problems shown in Table 10.1, most notably blind source separation [15, 19], blind
system identification including a generic framework for source localization [19],
and the corresponding supervised adaptive problems [23]. Based on the ideas first
outlined in [16], the aim of this chapter is to consider TRINICON for inverse blind
adaptive problems in more detail.

In the third part of this chapter we first apply TRINICON to BSS and the
identification-and-inversion approach to blind deconvolution/blind dereverberation
in Sect. 10.5, followed by the application to the direct-inverse approach in Sect. 10.6.
As in the previously studied classes of adaptive filtering problems, we will see that
the general framework again allows us to relate various known and seemingly dif-
ferent algorithms for dereverberation, and it also yields improvements beyond the
current state of the art. Section 10.7 presents results for both the II approach and the
DI approach.

10.2 Ideal Inversion Solution and the Direct-inverse Approach to
Blind Deconvolution

This section presents a concise summary on the ideal inversion solution for MIMO
FIR systems. This inversion solution represents the ideal solution of the DI approach
to blind deconvolution. Hence, its discussion also yields important guidelines for the
design of the adaptive system based on the DI approach.

As mentioned above, the aim of the inverse adaptive filtering problem is to re-
cover the original signals sq(n), q = 1, . . . ,Q, as shown in Fig. 10.1, up to an arbi-
trary frequency-independent scaling, time shift, and possibly a permutation of the
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demixing filter outputs. Disregarding the potential permutation among the output
signals,4 this condition may be expressed in terms of an ideal Q(M + L− 1)×Q
overall system matrix

Čideal,inv = Bdiag
{
[0, . . . ,0,1,0, . . . ,0]T , . . . , [0, . . . ,0,1,0, . . . ,0]T

}
Λα , (10.13)

where the Bdiag{·} operator describes a block-diagonal matrix containing the
listed vectors on the main diagonal. Here, these target vectors, i.e., the ideal
overall impulse responses, represent pure delays. The diagonal matrix Λα =
Diag

{
[α1, . . . ,αQ]T

}
accounts for the scaling ambiguity. The condition for the ideal

inversion solution thus reads as

H[L]W̌ = Čideal,inv. (10.14)

This system of linear equations may generally be solved exactly or approximately
by the Moore–Penrose pseudoinverse (e.g., [44]), denoted by +, so that

W̌LS,inv = H+
[L]Čideal,inv

=
[
HT

[L]H[L]

]−1
HT

[L]Čideal,inv. (10.15)

Note that this expression corresponds to the least-squares (LS) solution

W̌LS,inv = argmin
W̌

‖H[L]W̌− Čideal,inv‖2
2. (10.16)

It can be shown that under certain conditions, which can be fulfilled in practice
and are described below, this solution becomes the ideal inversion solution, i.e., the
pseudoinverse in (10.15) turns into the true matrix inverse,

W̌ideal,inv = H−1
[L] Čideal,inv. (10.17)

The principle to calculate the exact inverse using (10.17) is known as MINT [68]
and is applicable even for mixing systems with nonminimum phase. The basic re-
quirement for H[L] in order to be invertible is that it is of full row rank. This as-
sumption can be interpreted such that the FIR acoustic impulse responses contained
in H[L] do not possess any common zeros in the z-domain, which usually holds in
practice for a sufficient number of sensors [68]. Another requirement for invertibil-
ity of H[L] is that the number of its rows equals the number of its columns, i.e.,
Q(M + L− 1) = PL according to the dimensions noted above in conjunction with
(10.12). From this condition, we immediately obtain the optimum filter length for
inversion [35]:

4 This could formally be described by an additional permutation matrix in the ideal solution. How-
ever, since in many practical cases this ambiguity may be resolved by a signal classification ap-
proach or other prior information, we renounced this formal treatment for clarity.
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Lopt,inv =
Q

P−Q
(M−1). (10.18)

As an important consequence the MIMO mixing system can be inverted exactly even
with a finite-length MIMO demixing system, as long as P > Q, i.e., the number
of sensors is greater than the number of sources. Note that P,Q,M must be such
that Lopt,inv is an integer number in order to allow the matrix inversion in (10.17).
Otherwise, we have to resort to the general LS approximation (10.15) with Lopt,inv =
�Q(M−1)/(P−Q)�.

Based on the generic TRINICON framework for adaptive MIMO filtering in
Sect. 10.4, we will present in Sect. 10.6 a coherent overview of blind deconvolu-
tion algorithms which aim at the ideal inversion solution (10.15) or the general LS
solution (10.17) for a suitable choice of parameters, respectively.

10.3 Ideal Solution of Direct Adaptive Filtering Problems and
the Identification-and-inversion Approach to Blind
Deconvolution

As an alternative deconvolution approach, the “identification-and-inversion ap-
proach” to blind deconvolution is based on a two-step procedure: first, the acoustic
MIMO mixing system is blindly identified, and then the identified system is inverted
in a separate step. Obviously, for the latter step the results of the previous section can
be applied, preferably the MINT solution. In this section, we therefore concentrate
on the ideal solution of the system identification step. As we shall see, the rela-
tion between source separation and MIMO system identification is of fundamental
importance for the practical realization of blind system identification.

In contrast to the inversion problem, the goal of any separation algorithm, such
as BSS or conventional beamforming, is to eliminate only the crosstalk between the
different sources sq(n), q = 1, . . . ,Q in the output signals yq(n), q = 1, . . . ,Q of the
demixing system (see Fig. 10.1). Disregarding again a potential permutation among
the output signals, this condition may be expressed in terms of the overall system
matrix Č as

Č−bdiag
{

Č
}

= boff
{

Č
}

= 0. (10.19)

Here, the operator bdiag{·} applied to a block matrix consisting of several subma-
trices or vectors sets all submatrices or vectors on the off-diagonals to zero. Analo-
gously, the boff{·} operation sets all submatrices or vectors on the diagonal to zero.

With the overall system matrix (10.11), the condition for the ideal separation is
expressed as

boff
{

H[L]W̌
}

= 0. (10.20)

This relation for the ideal solution of direct blind adaptive filtering problems is the
analogous expression to the relation (10.14) for the ideal solution of the inverse
blind adaptive filtering problems.
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W̌:1

W̌

H[L]

0

0

0

0

0

0

H(:\1):,[L]

Č

Fig. 10.2 Overall system Č for the ideal separation, illustrated for P = Q = 3

As we will see in this section, the relation (10.20) allows us

• To derive an explicit expression of the ideal separation solution analogously to
(10.17).

• To establish a link between BSS and BSI, which will serve as an important ba-
sis to the identification-and-inversion approach to blind dereverberation in the
general MIMO case

• To establish the conditions for ideal BSI.
• To derive the optimum separation FIR filter length Lopt,sep analogously to (10.18),

for which the ideal separation solution (10.19) can be achieved.

If we are only interested in separation with certain other constraints on the output
signals, but not in system identification, we may impose further explicit conditions
to the block-diagonal elements of H[L]W̌ in addition to the condition (10.20) on the
block-offdiagonals. For instance, the so-called minimum distortion principle after
[67] can, in fact, be regarded as such an additional condition. However, since this
is not within the scope of system identification we will not discuss these conditions
further in this chapter.

Traditionally, BSS has often been considered as an inverse problem (e.g., [32,
51]). In this section we show that the theoretically ideal convolutive (blind) source
separation solution corresponds to blind MIMO system identification. By choosing
an appropriate filter length L we show that for broadband algorithms the well-known
filtering ambiguity (e.g., [64]) can be avoided. In the following, we consider the
ideal broadband solution of mere MIMO separation approaches and relate it to the
known blind system identification approach based on single-input multiple-output
(SIMO) models [8, 36, 43]. This section follows the ideas outlined in [18, 21]. Some
of these ideas were also developed independently in [48] in a slightly different way.

This section discusses the ideal separation condition boff
{

H[L]W̌
}

= 0 as illus-
trated in Fig. 10.2 for the case Q = P = 3. Since in this equation we impose explicit
constraints only on the block-offdiagonal elements of Č, this is equivalent to estab-
lishing a set of homogeneous systems of linear equations
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H(:\q):,[L]W̌:q = 0, q = 1, . . . ,Q (10.21)

to be solved. Each of these systems of equations results from the constraints on
one column of Č, as illustrated in Fig. 10.2 for the first column. The notation in
the indices in (10.21) indicates that for the qth column W̌:q of the demixing filter
matrix W̌, we form a submatrix H(:\q):,[L] of H[L] by removing the qth row Hq:,[L] of
Sylvester submatrices of the original matrix H[L] .

For homogeneous systems of linear equations such as (10.21) it is known that
nontrivial solutions W̌:q �≡ 0 are indeed obtained if the rank of H(:\q):,[L] is smaller
than the number of elements of W̌:q. Based on this and later in this section, we
will also derive an expression of the optimum separation filter length Lopt,sep for an
arbitrary number of sensors and sources analogously to the optimum inversion filter
length Lopt,inv in (10.18).

In the following sections, we first discuss the solution of (10.21) for the case
P = Q = 2 and then generalize the results to more than two sources and sensors.

10.3.1 Ideal Separation Solution for Two Sources and Two Sensors

For the case Q = P = 2, the set of homogeneous linear systems of equations (10.21)
reads

H11,[L]w12 + H12,[L]w22 = 0, (10.22a)

H21,[L]w11 + H22,[L]w21 = 0. (10.22b)

Since the matrix-vector products in these equations represent convolutions of FIR
filters they can equivalently be written as a multiplication in the z-domain:

H11(z)W12(z)+ H12(z)W22(z) = 0, (10.23a)
H21(z)W11(z)+ H22(z)W21(z) = 0. (10.23b)

Due to the FIR filter structure the z-domain representations can be expressed by
the zeros z0Hqp,ν , z0Wpq,μ and the gains AHqp , AHpq of the filters Hqp(z) and Wpq(z),
respectively:
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AH11

M−1

∏
ν=1

(z− z0H11,ν) ·AW12

L−1

∏
μ=1

(z− z0W12,μ) =

−AH12

M−1

∏
ν=1

(z− z0H12,ν) ·AW22

L−1

∏
μ=1

(z− z0W22,μ), (10.24a)

AH21

M−1

∏
ν=1

(z− z0H21,ν) ·AW11

L−1

∏
μ=1

(z− z0W11,μ) =

−AH22

M−1

∏
ν=1

(z− z0H22,ν) ·AW21

L−1

∏
μ=1

(z− z0W21,μ). (10.24b)

Analogously to the case of MINT [68] described in the previous section, we assume
that the impulse responses contained in H(:\q):,[L], i.e., H11(z) and H12(z) in (10.24a)
and H21(z) and H22(z) in (10.24b), respectively, do not share common zeros. If
no common zeros exist and if we choose the optimum5 filter length for the case
Q = P = 2 as Lopt,sep = M, then the equality in (10.24a) can only hold if the zeros
of the demixing filters are chosen as z0W12,μ = z0H12,μ and z0W22,μ = z0H11,μ for μ =
1, . . . ,M−1. Analogously, the equality in (10.24b) can only hold if z0W11,μ = z0H22,μ
and z0W21,μ = z0H21,μ for μ = 1, . . . ,M − 1. Additionally, to fulfill the equality, the
gains of the demixing filters in (10.24a) have to be chosen as AW22 = α2AH11 and
AW12 =−α2AH12 , where α2 is an arbitrary scalar constant. Thus, the demixing filters
are only determined up to a scalar factor α2. Analogously, for the equality (10.24b)
the gains of the demixing filters are given as AW11 = α1AH22 and AW21 = −α1AH21

with the scalar constant α1.
In summary, this leads to the ideal separation filter matrix W̌ideal,sep given in the

time domain as

W̌ideal,sep =
[

α1h22 −α2h12
−α1h21 α2h11

]
=
[

h22 −h12
−h21 h11

][
α1 0
0 α2

]
, (10.25)

where due to the scaling ambiguity each column is multiplied by an unknown scalar
αq.

From (10.25) we see that under the conditions put on the zeros of the mixing sys-
tem in the z-domain, and for L = Lopt,sep, this ideal separation solution corresponds
to a MIMO system identification up to an arbitrary scalar constant. Thus, a suitable
algorithm that is able to perform broadband BSS under these conditions can be used
for blind MIMO system identification (if the source signals provide sufficient spec-
tral support for exciting the mixing system). In Sect. 10.4, a suitable algorithmic
framework for this task will be presented. Moreover, as we will see in the following
section, this approach can be seen as a generalization of the state-of-the-art method
for the blind identification of SIMO systems.

5 Note that for L < Lopt,sep = M it is obviously not possible to compensate all zeros of H11(z) and
H12(z) by W22(z) and W12(z), respectively. On the other hand, in the case L > Lopt,sep = M, the
filters W12(z) and W22(z) will exhibit L−M arbitrary common zeros, which are undesired. We will
consider the practically important issue of order-overestimation in Sect. 10.3.5.
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Fig. 10.3 Blind system identification based on (a) SIMO and (b) MIMO models

In practice, the difficulty of finding the correct filter length Lopt,sep is obviously
another important issue since the length M of the mixing system is generally un-
known. In Sect. 10.3.5 we will address this problem and the consequences of over-
estimation and underestimation, respectively.

10.3.2 Relation to MIMO and SIMO System Identification

From a system-theoretic point of view, the BSS approach aiming at the ideal solution
(10.25) can be interpreted as a generalization of the popular class of blind SIMO
system identification approaches, e.g., [36, 43, 61], as illustrated in Fig. 10.3(a).

The main reason for the popularity of this SIMO approach is that the optimum
filters can be found as the result of a relatively simple least-squares error minimiza-
tion. From Fig. 10.3(a) and for e(n) = 0 it follows for sufficient excitation s(n) that

h1(n)∗w1(n) = −h2(n)∗w2(n). (10.26)

This can be expressed in the z-domain as H1(z)W1(z) = −H2(z)W2(z). Comparing
this error cancelling condition with the ideal separation conditions (10.23a) and
(10.23b), we immediately see that the SIMO-based approach does indeed corre-
spond exactly to one of the separation conditions, and for deriving the ideal solution,
we may apply exactly the same reasoning as in the MIMO case above. Thus, assum-
ing that H1(z) and H2(z) have no common zeros, the equality of (10.26) can only
hold if the filter length is chosen again as L = M. Then, this leads to the ideal can-
cellation filters W1(z) = αH2(z) and W2(z) = −αH1(z), which can be determined
up to an arbitrary scaling by the factor α as in the MIMO case. For L > M, the
scaling ambiguity would result in arbitrary filtering. For the SIMO case, this scaling
ambiguity was derived similarly in [36].

Note that the SIMO case may also be interpreted as a special 2×2 MIMO case
according to Fig. 10.3(b) with the specialization being that one of the sources is
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always identical to zero so that the BSS output corresponding to this (virtual) source
must also be identical to zero, whereas the other BSS output signal is not of interest
in this case. This again leads to the cancellation condition (10.26) and illustrates that
the relation between broadband BSS and SIMO-based BSI will also hold from an
algorithmic point of view, i.e., known adaptive solutions for SIMO BSI can also be
derived as special cases of the algorithmic framework for the MIMO case.

Adaptive algorithms performing the error minimization mentioned above for the
SIMO structure have been proposed in the context of blind deconvolution, e.g.,
in [36, 43], and blind system identification for passive source localization, e.g.,
in [8, 27]. In the latter case, this algorithm is also known as the Adaptive Eigen-
value Decomposition (AED) algorithm, which points to the fact that, in the SIMO
case, the homogeneous system of equations (10.21) may be reformulated as an anal-
ogous signal-dependent homogeneous system of equations containing the sensor-
signal correlation matrix instead of the mixing filter matrix. The solution vector (in
the SIMO case the matrix W̌ reduces to a vector) of the homogeneous system can
then be interpreted as the eigenvector corresponding to the zero-valued (or smallest)
eigenvalue of the sensor correlation matrix. In [27, 43] this SIMO approach, i.e., the
single-source case, was also generalized to more than P = 2 microphone channels.
In Sect. 10.5 we will present how – from an algorithmic point of view – the AED
does indeed directly follow from the general TRINICON framework for broadband
adaptive MIMO filtering. Moreover, this will lead to a generalization of the original
least-squares-based AED algorithm so that it is able to additionally exploit higher-
order statistics and also contains an inherent adaptation control. This algorithmic
link between the SIMO and MIMO cases will also lead to important insights for the
direct-inverse approach to blind deconvolution later in Sect. 10.6.

10.3.3 Ideal Separation Solution and Optimum Separation Filter
Length for an Arbitrary Number of Sources and Sensors

As mentioned above, for homogeneous systems of linear equations such as the ideal
separation conditions (10.21) it is known that nontrivial solutions W̌:q �≡ 0 are ob-
tained if the rank of H(:\q):,[L] is smaller than the number of elements of W̌:q. Addi-
tionally, as in the case of MINT [68] described in the previous section, we assume
that the impulse responses contained in H(:\q):,[L] do not share common zeros in the
z-domain so that H(:\q):,[L] is assumed to have full row rank. Thus, combining these
conditions leads to the requirement that the matrix H(:\q):,[L] is wide, i.e., the number
PL of its columns must be greater than the number (Q−1)(M +L−1) of its rows to
obtain non-trivial solutions, i.e., PL > (Q− 1)(M + L− 1). Solving this inequality
for L yields the lower bound for the separation filter length as

Lsep >
Q−1

P−Q+ 1
(M−1). (10.27)
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Fig. 10.4 Comparison of the optimum filter lengths for inversion and separation for M = 1000 and
Q = 3

The difference between the number of columns of H(:\q):,[L] and the number of
rows further specifies the dimension of the space of possible non-trivial solutions
W̌:q, i.e., the number of linearly independent solutions spanning the solution space.
Obviously, due to the bound derived above, the best choice we can make to narrow
down the solutions is a one-dimensional solution space, i.e., PL = (Q−1)(M +L−
1)+ 1. Now solving this equality for L and choosing the integer value to be strictly
larger than the above bound finally results in the optimum separation filter length as

Lopt,sep =
(Q−1)(M−1)+ 1

P−Q+ 1
. (10.28)

Note that narrowing down the solution space to a one-dimensional space by
this choice of filter length means precisely that in this case the filtering ambigu-
ity of BSS reduces to an arbitrary scaling. These considerations show that this is
possible even for an arbitrary number P of sensors and an arbitrary number Q of
sources, where P ≥ Q. However, the parameters P,Q,M must be such that Lopt,sep is
an integer number in order to allow the ideal separation solution. Otherwise, we
have to resort to approximations by choosing, e.g., the next higher integer, i.e.,
Lopt,sep = �[(Q−1)(M−1)+ 1]/(P−Q+ 1)�.

To actually obtain the ideal separation solution W̌ideal,sep with (10.28) for the
general, i.e., not necessarily square case P ≥ Q, we again consider the original set
of homogeneous systems of linear equations (10.21). For the choice L = Lopt,sep, we
may easily augment the matrix H(:\q):,[L] to a square matrix H̃(:\q):,[L] by adding one
row of zeros on both sides of (10.21). The corresponding augmented set of linear
systems of equations

H̃(:\q):,[L]W̌:q = 0, q = 1, . . . ,Q (10.29)

is equivalent to the original set (10.21). However, we may now interpret the general
solution vector W̌:q of (10.21) for the qth column of W̌ as the eigenvector corre-
sponding to the zero-valued eigenvalue of the augmented matrix H̃(:\q):,[L].

The general equation (10.28) for the optimum separation filter length plays the
same role for BSI as (10.18) for inversion. Comparing these two equations, we can
verify that in contrast to the inversion, which requires P > Q for the ideal solution
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using FIR filters, the ideal separation condition can be met for P = Q. Moreover, for
the special case P = Q = 2, the general expression (10.28) also confirms the choice
Lopt,BSS = M as already obtained in Sect. 10.3.1. Figure 10.4 compares the different
optimum filter lengths through an example.

10.3.4 General Scheme for Blind System Identification

In Sects. 10.3.1 and 10.3.2 we have explicitly shown the relation between the ideal
separation solution and the mixing system for the two-sensor cases. These consid-
erations also resulted in a link to the well-known SIMO-based system identification
method (note that for BSI with more than two sensors, a simple approach is to apply
several of these schemes in parallel, e.g., [49]), and also showed that the MIMO
case with two simultaneously active sources is a generalization of the SIMO system
identification method. In the case of more than two sources we cannot directly ex-
tract the estimated mixing system coefficients hqp,κ from the separation solution W̌.
The previous Sect. 10.3.3 generalized the considerations on the two-sensor cases for
the separation task. In this section, we now outline the generalization of the two-
sensor cases in Sects. 10.3.1 and 10.3.2 for the identification task which is the first
step of the identification-and-inversion approach to blind deconvolution, as detailed
in Sect. 10.3.5. The considerations so far suggest the following generic two-step BSI
scheme for an arbitrary number of sources (where P ≥ Q):

(1)Based on the available sensor signals, perform a properly designed broadband
BSS (see Sect. 10.4) resulting in an estimate of the demixing system matrix.

(2)Analogously to the relation (10.21) between the mixing and demixing systems,
and the associated considerations in Sect. 10.3.3 for the separation task, deter-
mine an estimate of the mixing system matrix using the estimated demixing sys-
tem from the first step.

In general, to perform step (2) for more than two sources, some further consider-
ations are required. First, an equivalent reformulation of the homogeneous system
of equations (10.21) is necessary so that now the demixing system matrix instead of
the mixing system matrix is formulated as a blockwise Sylvester matrix. Note that
this corresponds to a block-transposition (which we denote here by superscript bT)
of (10.21), i.e., (

WbT
)

(:\q):,[M]

(
ȞbT

)
:q

= 0, q = 1, . . . ,Q. (10.30)

The block-transposition is an extension of the conventional matrix transposition. It
means that we keep the original form of the channel-wise submatrices but we may
change the order of the mixing and demixing subfilters by exploiting the commu-
tativity of the convolutions. Note that the commutativity property does not hold for
the MIMO system matrices as a whole, i.e., W(:\q):,[M] and Ȟ:q, so that they have to
be block-transposed to change their order.
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Fig. 10.5 Identification-and-inversion approach to blind dereverberation

Similarly to Sect. 10.3.3, we may then calculate the corresponding estimate of
the mixing system in terms of eigenvectors using the complementary form (10.30)
of the homogeneous system of equations. Based on this system of equations, we can
devise various powerful strategies for BSI in the general MIMO case.

10.3.5 Application of Blind System Identification to Blind
Deconvolution

In order to obtain a complete blind dereverberation system after the identification-
and-inversion approach, the considerations in the previous sections suggest the
structure shown in Fig. 10.5. As discussed above, the acoustic MIMO mixing sys-
tem can be blindly identified by means of an adaptive broadband BSS algorithm.
Algorithmic solutions will be detailed in Sect. 10.5 based on the TRINICON frame-
work outlined in Sect. 10.4. For the subsequent inversion of the estimated mixing
system we refer to Sect. 10.2.

Attractive features of the identification-and-inversion approach to blind derever-
beration are that (1) it is relatively easy to deal with an increased number of mi-
crophone channels (the so-called overdetermined case for blind adaptive filtering)
by simple parallelization of BSI algorithms, and (2) the approach is applicable for
nearly arbitrary audio source signals, as long as they exhibit sufficient spectral sup-
port.

Based on the blind SIMO system identification mentioned in Sect. 10.3.2 (i.e.,
the estimate of the channel impulse responses is the eigenvector corresponding to
the minimum eigenvalue of the correlation matrix), the identification-and-inversion
approach to blind dereverberation was proposed, e.g., in [36, 43], for one acoustic
source signal.

Using the general scheme for blind MIMO system identification from the pre-
vious Sects. 10.3.1–10.3.4 and the TRINICON framework shown below, we are
now in a position to generalize the identification-and-inversion approach to multi-
ple simultaneously active sources, i.e., to the MIMO case. Note that the MINT in
Sect. 10.2 is already capable of handling the general MIMO case for P < Q. As in
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the SIMO case, the blind MIMO system identification approach has already been
successfully applied in the context of passive source localization in reverberant en-
vironments, e.g., in [19, 21].

Note that previously, in [49], the identification-and-inversion approach was dis-
cussed for the MIMO case under the assumption that from time to time each source
signal occupies a time interval exclusively. Then, during every single-talk inter-
val, a SIMO system was blindly identified and its channel impulse responses were
saved for later dereverberation when more than one source was active. Obviously,
in practice, the applicability of this approach will be very limited in time-varying
environments and with increasing numbers of independent sources (consider, e.g.,
a cocktail party scenario). In addition, a sophisticated multichannel sound source
detection algorithm that distinguishes single and multiple speaker activity would be
needed in practice. Such a required multichannel adaptation control is inherently
available in TRINICON-based BSS/BSI algorithms for the general MIMO case.

However, both in the SIMO case and in the general MIMO case, there are still
some fundamental challenges in the context of this dereverberation approach:

• The channel impulse responses must not exhibit common zeros in the z-domain
(both for the system identification (see Sects. 10.3.1 and 10.3.3) and also for the
subsequent system inversion (see Sect. 10.2)).

• The filter length must be known exactly (both for the system identification
(see Sects. 10.3.1 and 10.3.3) and for the subsequent system inversion (see
Sect. 10.2)).

The first problem can be mitigated in practice by increasing the number of micro-
phones so that the probability for common zeros is reduced [68]. Hence, the choice
of the correct filter length Lopt,sep is the major remaining difficulty in this approach.6

The consequences of overestimation and underestimation of the filter order can
be seen, e.g., from (10.24a) and (10.24b). In the case of underestimation, i.e., for
L < Lopt,sep = M it is obviously not possible to compensate all zeros of H11(z) and
H12(z) by W22(z) and W12(z), respectively. The case of overestimation, i.e., L >
Lopt,sep = M, is by far more problematic. In this case, the filters W12(z) and W22(z)
will exhibit L−M arbitrary common zeros, which are undesired. This corresponds
to the requirement to narrow down the solution space addressed in Sect. 10.3.3, by
avoiding an overestimation of the filter length in order to prevent a filtering ambi-
guity. In other words, in the overestimated case, the ideal blind identification so-
lution Ĥ1(z) = αH1(z) and Ĥ2(z) = αH2(z) turns into Ĥ1(z) = Cmin(z)H1(z) and
Ĥ2(z) = Cmin(z)H2(z) with the common polynomial Cmin(z) corresponding to an
arbitrary filtering. Consequently, after the inverse filtering in Fig. 10.5, the overes-
timation of the filter length would result in a remaining filtering 1/Cmin(z) of the
original source signals.

6 Note that in some other applications of blind adaptive filtering we do not require a complete
identification of the mixing system. For instance, for acoustic source localization only the positions
of the dominant components are required. Fortunately, this is in line with the requirement to avoid
an overestimation of the filter length. Thus, in these applications the choice L≤ Lopt,sep is preferable
in practice.
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Various ways exist to solve the filtering ambiguity problem caused by the over-
estimation of the filter order. The transfer function order could be obtained if the
dimension of the null space in the autocorrelation matrix of the observed signals
is precisely calculated [38, 43], i.e., by counting the number of very small eigen-
values. Another way to find the optimum order is to use a suitable cost function,
e.g., [9, 36, 77]. Unfortunately, these blind system order estimation approaches are
often unreliable (particularly in noisy environments) and computationally too com-
plex (especially the latter ones, i.e., [9, 36, 77]). An alternative approach proposed,
e.g., in [46] is to compensate for the remaining filtering 1/Cmin(z) using a post filter
(Fig. 10.5) by estimating the common polynomial with a multichannel linear pre-
diction scheme. This approach seems to be numerically very sensitive for large filter
lengths. Note also that this latter approach slightly limits the application domain by
assuming sources that can be modeled by AR processes, such as speech signals.

A fundamentally different alternative to the identification-and-inversion ap-
proach to blind dereverberation is the direct-inverse approach. Here, the aim is to
directly estimate the inverse MIMO filter after Sect. 10.2 based on a dereverberation
cost function. It is therefore inherently more robust to the order-overestimation prob-
lem. However, as we will see later in this chapter, this comes at the cost of the re-
quirement for a more precise stochastic modeling of the source signals, which again
specializes the application domain, e.g., to speech signals. Moreover, the direct-
inverse approach requires that all microphone channels be taken into account at
once, which renders the adaptation more complex.

Similar to the adaptation aspects of the identification-and-inversion approach in
Sect. 10.5, we will treat the algorithmic aspects of the direct-inverse approach in
Sect. 10.6. Both approaches are presented in a unified way based on TRINICON
as outlined next in Sect. 10.4. The unified treatment also allows for an illuminating
comparison.

10.4 TRINICON – A General Framework for Adaptive MIMO
Signal Processing and Application to Blind Adaptation
Problems

For the blind estimation of the coefficients corresponding to the desired solutions
discussed in the previous section, we have to consider and exploit the properties of
the excitation signals, such as their nonstationarity, their spectral characteristics, and
their probability densities.

In the existing literature, the known algorithms for blind system identification,
blind source separation, and blind deconvolution were introduced independently.
The BSS problem has mostly been addressed for instantaneous mixtures or by nar-
rowband approaches in the frequency domain, which adapt the coefficients indepen-
dently in each Discrete Fourier Transform (DFT) bin, e.g., [34, 51, 83]. On the other
hand, in the case of MCBD, many approaches either aim at whitening the output sig-
nals as they are based on an i.i.d. model of the source signals (e.g., [4, 28]), which
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is undesirable for generally nonwhite speech and audio signals, as these should not
be whitened, or are rather heuristically motivated, e.g., [40].

The aim of this section is to present an overview of the algorithmic part of broad-
band blind adaptive MIMO filtering based on TRINICON, a generic concept for
adaptive MIMO filtering that takes the signal properties of speech and audio sig-
nals (nonwhiteness, nonstationarity, and nongaussianity) into account, and allows a
unified treatment of broadband BSS (as needed for a proper BSI) and MCBD al-
gorithms as applicable to speech and audio signals in real acoustic environments
[13, 15–17]. This framework generally uses multivariate stochastic signal models in
the cost function to describe the temporal structure of the source signals and thereby
provides a powerful cost function for both, BSS/BSI and MCBD, and, for the latter,
also leads to improved algorithms for speech dereverberation.

Although both time-domain and equivalent broadband frequency-domain formu-
lations of TRINICON have been developed with the corresponding multivariate
models in both the time domain and the frequency domain [15, 17], in this chap-
ter we mainly consider the time-domain formulation. Furthermore, we restrict our-
selves here to gradient-based coefficient updates and disregard Newton-type adap-
tation algorithms for clarity and brevity. The algorithmic TRINICON framework is
directly based on the matrix notation developed above.

Throughout this section, we regard the symmetric case where the number Q of
maximum simultaneously active source signals sq(n) is equal to the number of sen-
sor signals xp(n), i.e., Q = P. However, it should be noted that in contrast to other
blind algorithms in the Independent Component Analysis (ICA) literature, we do
not assume prior knowledge about the exact number of active sources. Thus, even
if the algorithms will be derived for Q = P, the number of simultaneously active
sources may change throughout the application of the TRINICON-based algorithm
and only the condition Q ≤ P has to be fulfilled.

10.4.1 Matrix Notation for Convolutive Mixtures

To introduce an algorithm for broadband processing of convolutive mixtures, we
first need to formulate the convolution of the FIR demixing system of length L in
the following matrix form [17]:

yT(n) = xT(n)W, (10.31)

where n denotes the time index, and
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xT(n) = [xT
1 (n), . . . ,xT

P(n)], (10.32)

yT(n) = [yT
1 (n), . . . ,yT

P(n)], (10.33)

W =

⎡
⎢⎣

W11 · · · W1P
...

. . .
...

WP1 · · · WPP

⎤
⎥⎦ , (10.34)

xT
p(n) = [xp(n), . . . ,xp(n−2L+ 1)], (10.35)

yT
q (n) = [yq(n), . . . ,yq(n−D+ 1)] (10.36)

=
P

∑
p=1

xT
p(n)Wpq. (10.37)

The parameter D in (10.36), 1 ≤ D < L, denotes the number of lags taken into
account to exploit the nonwhiteness of the source signals as shown below. Wpq, p =
1, . . . ,P, q = 1, . . . ,P denote 2L×D Sylvester matrices that contain all coefficients
of the respective filters:

Wpq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wpq,0 0 · · · 0

wpq,1 wpq,0
. . .

...
... wpq,1

. . . 0

wpq,L−1
...

. . . wpq,0

0 wpq,L−1
. . . wpq,1

...
. . .

...
0 · · · 0 wpq,L−1
0 · · · 0 0
...

...
...

0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10.38)

Note that for D = 1, (10.31) simplifies to the well-known vector formulation of a
convolution, as it is used extensively in the literature on supervised adaptive filtering,
e.g., [45].

10.4.2 Optimization Criterion

Various approaches exist to blindly estimate the demixing matrix W for the above-
mentioned tasks by utilizing the following source signal properties [51] which we
all combine into an efficient and versatile algorithmic framework [13, 15, 16]:
(i) Nongaussianity is exploited by using higher-order statistics for ICA. ICA ap-
proaches can be divided into several classes. Although they all lead to similar update
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rules, the minimization of the mutual information among the output channels can be
regarded as the most general approach to solve direct adaptive filtering problems
according to Table 10.1, such as source separation [15, 51] and system identifica-
tion [19, 23]. To obtain an even more versatile estimator not only allowing spatial
separation but also temporal separation for dereverberation and inverse adaptive fil-
tering problems in general, we use the Kullback–Leibler Divergence (KLD) [29] be-
tween a certain desired joint PDF (essentially representing a hypothesized stochas-
tic source model) and the joint PDF of the actually estimated output signals [16].
Note that the mutual information is a special case of KLD [29]. The desired PDF
in the KLD is factorized with respect to the different sources (for the direct adap-
tive filtering problems, such as source separation) and possibly also with respect
to certain temporal dependencies (for inverse adaptive filtering problems, such as
dereverberation) as shown below. The KLD is guaranteed to be positive [29], which
is a necessary condition for a useful cost function.
(ii) Nonwhiteness is exploited by simultaneous minimization of output cross-
relations over multiple time-lags. We therefore consider multivariate PDFs, i.e.,
‘densities including D time-lags’.
(iii) Nonstationarity is exploited by simultaneous minimization of output cross-
relations at different time-instants. We assume ergodicity within blocks of length
N, so that the ensemble average is replaced by time averages over these blocks.

Based on the KLD, we now define the following general cost function taking into
account all three fundamental signal properties (i)-(iii):

J (m,W) = −
∞

∑
i=0

β (i,m)
1
N

iNL+N−1

∑
j=iNL

{
log(p̂s,PD(y( j)))− log(p̂y,PD(y( j)))

}
,

(10.39)

where p̂s,PD(·) and p̂y,PD(·) are the assumed or estimated PD-variate source model
(i.e., desired) PDF and output PDF, respectively. In this chapter we assume that these
PDFs are generally described by certain data-dependent parameterizations, so that
we can write in more detail

p̂s,PD = p̂s,PD

(
y,Q(1)

s ,Q(2)
s , . . .

)
(10.40a)

and
p̂y,PD = p̂y,PD

(
y,Q(1)

y ,Q(2)
y , . . .

)
, (10.40b)

respectively. We further assume that the model parameter estimates are given by the
generic form

Q(r)
s (i) =

1
N

iNL+N−1

∑
j=iNL

{
G(r)

s (y( j))
}

, r = 1,2, . . . , (10.41a)
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Q(r)
y (i) =

1
N

iNL+N−1

∑
j=iNL

{
G(r)

y (y( j))
}

, r = 1,2, . . . , (10.41b)

where G(r)
s and G(r)

y are suitable functions of the observation vectors y, and Q(r)
s and

Q(r)
y represent block-averages of G(r)

s (y) and G(r)
y (y), respectively. In general, the

bold calligraphic symbols denote multidimensional arrays, or in other words, tenso-
rial quantities. The elements of Q(r)

s , Q(r)
y , G(r)

s , and G(r)
y are denoted by Q(r)

s,i1,i2,...,

Q(r)
y,i1,i2,..., G

(r)
s,i1,i2,..., and G(r)

y,i1,i2,..., respectively, where i1, i2, . . . are the indices in the
corresponding tensor dimensions. Well-known special cases of such parameteriza-
tions are estimates of the variance σ̂2

y (i) = 1
N ∑iNL+N−1

j=iNL

{
y2( j)

}
and the correlation

matrix Ryy(i) = 1
N ∑iNL+N−1

j=iNL

{
y( j)yT ( j)

}
in the multivariate case PD > 1. The in-

dex m denotes the block time index for a block of N output samples shifted by NL
samples relatively to the previous block. Furthermore, D is the memory length, i.e.,
the number of time-lags to model the nonwhiteness of the P signals as above. β is
a window function with finite support that is normalized so that ∑m

i=0β (i,m) = 1,
allowing for online, offline, and block-online algorithms [3, 15].

10.4.3 Gradient-based Coefficient Update

In this chapter we concentrate on iterative gradient-based block-online coefficient
updates, which can be written in the general form

W̌0(m) := W̌(m−1), (10.42a)

W̌�(m) = W̌�−1(m)− μΔW̌�(m), � = 1, . . . , �max, (10.42b)

W̌(m) := W̌�max(m), (10.42c)

where μ is a step-size parameter, and the superscript index � denotes an iteration
parameter to allow for multiple iterations (� = 1, . . . , �max) within each block m. The
LP×P coefficient matrix W̌ (defined in (10.4)) to be optimized is smaller than the
2LP×DP Sylvester matrix W used above for the formulation of the cost function,
and it contains only the non-redundant elements of W.

Obviously, when calculating the gradient of J (m,W) with respect to W̌ explic-
itly, we are confronted with the problem of the different matrix formulations W
and W̌. The larger dimensions of W (see, e.g., (10.38)) are a direct consequence of
taking into account the nonwhiteness signal property by choosing D > 1. As noted
above, the rigorous distinction between these different matrix structures is an essen-
tial aspect of the general TRINICON framework and leads to an important building
block whose actual implementation is fundamental to the properties of the resulting
algorithm, the so-called Sylvester constraint (SC) on the coefficient update, formally
introduced in [15, 17]. Using the Sylvester constraint operator the gradient descent
update can be written as
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Fig. 10.6 Illustration of the generic Sylvester constraint (SC), after [19] for one channel

ΔW̌�(m) = SC {∇WJ (m,W)}|W=W�(m) . (10.43)

Depending on the particular realization of (SC), we are able to select both, well-
known and novel improved adaptation algorithms [3]. As discussed in [3] there are
two particularly simple and popular realizations of (SC) leading to two different
classes of algorithms (see Fig. 10.7):

1. Computing only the first column of each channel of the update matrix to obtain
the new coefficient matrix W̌. This method is denoted as (SCC).

2. Computing only the Lth row of each channel of the update matrix to obtain the
new coefficient matrix W̌. This method is denoted as (SCR).

It can be shown that in both cases the update process is significantly simplified [3].
However, in general, both choices require some tradeoff regarding algorithm per-
formance. While SCC may provide a potentially more robust convergence behavior,
it will not work for arbitrary source positions, which is in contrast to the more ver-
satile SCR [3]. Specifically, SCC allows us to adapt only causal demixing systems.
In geometrical terms this means that in the case of separating two sources using
SCC, they are required to be located in different half-planes with respect to the ori-
entation of the microphone array [3]. For separating sources located in the same
half-plane, or for more than two sources, noncausal demixing filters are required.
With SCR it is possible to initialize W̌pp, p = 1, . . . ,P with shifted unit impulses to
allow noncausal filter taps [3]. Since acoustic scenarios exhibit nonminimum phase
impulse responses, the need for noncausal demixing filters is further amplified in
the dereverberation application.

In [19] an explicit formulation of a generic Sylvester constraint was derived to
further formalize and clarify this concept, and to combine the versatility of SCR
with the robust performance of SCC [20]. It turns out that the generic Sylvester
constraint corresponds – up to the constant D denoting the width of the submatrices
– to a channel-wise arithmetic averaging of elements according to Fig. 10.6.
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+ +

+ +

(a)

W =

(b)

W =

(c)

W = W̌ =W̌ = W̌ =

SC SCC SCR

Fig. 10.7 Illustration of two efficient approximations of (a) the generic Sylvester constraint SC,
(b) the column Sylvester constraint SCC, and (c) the row Sylvester constraint SCR

Note that the previously introduced approaches, classified by the choice of
(SCC) or (SCR) as mentioned above, thus correspond to approximations of (SC)
by neglecting most of the elements within this averaging process, as illustrated in
Fig. 10.7. In Sect. 10.6, we will see that by choosing the different Sylvester con-
straints, we are also able to establish relations to various known multichannel blind
deconvolution algorithms from the literature.

It can be shown (see Appendix A) that by taking the gradient of J (m) with
respect to the demixing filter matrix W̌(m) according to (10.43), we obtain the fol-
lowing generic gradient descent-based TRINICON update rule:

ΔW̌�(m) =
1
N

∞

∑
i=0

β (i,m)SC
{

iNL+N−1

∑
j=iNL

x( j)
[
ΦT

s,PD(y( j))−ΦT
y,PD(y( j))

]}
,

(10.44a)
with the desired generalized score function

Φs,PD(y( j)) = −∂ log p̂s,PD(y( j))
∂y( j)

− 1
N ∑r ∑

i1,i2,...

∂G(r)
s,i1,i2,...

∂y

iNL+N−1

∑
j=iNL

∂ p̂s,PD

∂Q(r)
s,i1,i2,...

, (10.44b)

resulting from the hypothesized source model p̂s,PD, and the actual generalized score
function

Φy,PD(y( j)) = −∂ log p̂y,PD(y( j))
∂y( j)

− 1
N ∑r ∑

i1,i2,...

∂G(r)
y,i1,i2,...

∂y

iNL+N−1

∑
j=iNL

∂ p̂y,PD

∂Q(r)
y,i1,i2,...

, (10.44c)

where the stochastic model parameters are given by (10.41), and G(r)
s,i1,i2,..., G

(r)
y,i1,i2,...,

Q(r)
s,i1,i2,..., and Q(r)

y,i1,i2,... are the elements of G(r)
s , G(r)

y , Q(r)
s , and Q(r)

y , respectively,
as explained below (10.41). The form of the coefficient update (10.44a) with the
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generalized score functions (10.44b) and (10.44c) also fits well into the theory of
so-called estimating functions [5].

The hypothesized source model p̂s,PD(·) in (10.44b) is chosen according to the
class of signal processing problem to be solved (see Table 10.1). For instance, a
factorization of p̂s,PD(·) among the sources yields BSS (or BSI via the scheme de-
scribed in Sect. 10.3.4), i.e.,

p̂s,PD(y( j))
(BSS)
=

P

∏
q=1

p̂yq,D(yq( j)), (10.45a)

while a complete factorization leads to the traditional MCBD approach,

p̂s,PD(y( j))
(MCBD)

=
P

∏
q=1

D

∏
d=1

p̂yq,1(yq( j−d + 1)). (10.45b)

Additionally, in Sect. 10.6 we will introduce another, more general class, called the
MultiChannel Blind Partial Deconvolution (MCBPD) approach.

10.4.3.1 Alternative Formulation of the Gradient-based Coefficient Update

Both for practical realizations and also for some theoretical considerations, an
equivalent reformulation of the gradient-based update (10.44a) is often useful. This
alternative formulation is obtained by transforming the output signal PDF p̂y,PD(y)
in the cost function into the PD-dimensional input signal PDF using W as a mapping
matrix for this linear transformation. The relation (10.134) in Appendix B shows
this PDF transformation. (Note that the result of Appendix B is needed again later
in this chapter.) Gradient calculation as above leads to the alternative formulation of
the gradient-based update,

ΔW̌�(m) =

1
N

∞

∑
i=0

β (i,m)SC
{

iNL+N−1

∑
j=iNL

[
x( j)ΦT

s,PD(y( j))−V
((

W�−1(m)
)T

V
)−1

]}
,

(10.46a)

with the window matrix

V = Bdiag{Ṽ, . . . ,Ṽ}, (10.46b)

Ṽ =
[
ID×D, 0D×(2L−D)

]T
. (10.46c)
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10.4.4 Natural Gradient-based Coefficient Update

It is known that stochastic gradient descent generally suffers from slow conver-
gence in many practical problems due to statistical dependencies in the data being
processed. A modification of the ordinary gradient, which is especially popular in
the field of ICA and BSS due to its computational efficiency, is the so-called natu-
ral gradient [51]. It can be shown that by taking the natural gradient of J (m) with
respect to the demixing filter matrix W(m) [17],

ΔW̌ ∝ SC
{

WWT ∂J
∂W

}
, (10.47)

we obtain the following generic TRINICON-based update rule:

ΔW̌�(m) =

1
N

∞

∑
i=0

β (i,m)SC
{

iNL+N−1

∑
j=iNL

W�(i)y( j)
[
ΦT

s,PD(y( j))−ΦT
y,PD(y( j))

]}
.

(10.48)

Moreover, from (10.46a) we obtain an alternative formulation of (10.48):

ΔW̌�(m) =
∞

∑
i=0

β (i,m)SC
{

W�(i)

[
1
N

iNL+N−1

∑
j=iNL

y( j)ΦT
s,PD(y( j))− I

]}
, (10.49)

which exhibits an especially simple – and thus computationally efficient – structure.
An important feature of this natural gradient update is that its adaptation perfor-
mance is largely independent of the conditioning of the acoustic mixing system
matrix [17].

10.4.5 Incorporation of Stochastic Source Models

The general update equations (10.42) with (10.44), (10.46), (10.48) and (10.49) of-
fer the possibility to account for all the available information on the statistical prop-
erties of the desired source signals. To apply this general approach in a real-world
scenario, appropriate multivariate score functions ΦT

s,PD(y) (and ΦT
y,PD(y) where

required) in the update equations have to be determined, based on appropriate mul-
tivarate stochastic signal models.

The selection of the stochastic signal models is based on several different con-
siderations. As already illustrated by (10.45a) and (10.45b), the design of the signal
model is instrumental in defining the class of the adaptive filtering problem accord-
ing to Table 10.1. This aspect will be detailed in Sects. 10.5 and 10.6. Another



10 TRINICON for Dereverberation of Speech and Audio Signals 339

important aspect is that many of the different adaptation techniques in the literature
represent different approximations of the probability density functions.

For estimating PDFs a distinction between parametric and non-parametric tech-
niques is common (see, e.g., [33]).

A parametric technique defines a family of density functions in terms of a set
of parameters as in (10.40a) and (10.40b). The parameters are then optimized so
that the density function corresponds to the observed samples. In the context of ICA
different parametric representations have been used. Examples include Gaussian
models in the simplest case, Gaussian mixture models, and generalized Gaussian
models. The important class of spherically-invariant random processes, as detailed
below, may also be understood as a parametric approach. Other parametric tech-
niques are based on higher moments [56], e.g., Gram–Charlier expansion, Parson
densities, or on higher cumulants [56], e.g., the Edgeworth expansion. As an impor-
tant representative of these techniques, we consider the Gram–Charlier expansion
for TRINICON, as detailed below.

The non-parametric techniques usually define the estimated density directly in
terms of the observed samples. The best known non-parametric estimate is the his-
togram, which is very data intensive. Somewhat less data is required by the Parzen
windows method [33]. Note that sometimes the above-mentioned techniques based
on series with higher moments are also classified as non-parametric in the litera-
ture [56]. Obviously, the incorporation of various assumptions about the densities by
truncating these series expansions in practice provides a smooth transition to pow-
erful parametric techniques that require less data than the simpler non-parametric
techniques.

Another important aspect in the choice of stochastic models is their robustness.
According to [50], robustness denotes insensitivity to a certain amount of deviations
from the statistical modeling assumptions due to some fraction of outliers with some
arbitrary probability density. Unfortunately, many of the traditional estimation tech-
niques, such as least-squares estimation, or the higher-order techniques mentioned
above turn out to be fairly sensitive in this sense. The theory of robust statistics [50]
provides a systematic framework to robustify the various techniques and it has been
very successfully applied to adaptive filtering, e.g., [39]. In [23] the theory of mul-
tivariate robust statistics was introduced in TRINICON. Although we will not con-
sider the robustness extensions in detail in this chapter, it is important to note that
they fit well into the general class of spherically-invariant random processes detailed
below.

Finally, it should be noted that in addition to the model selection the choice of
estimation procedure for the corresponding stochastic model parameters (e.g., cor-
relation matrices in (10.50) below, higher-order moments, scaling parameter for ro-
bust statistics in [23], etc.), in other words, the practical realization of (10.41), is
another important design consideration. The estimation of the stochastic model pa-
rameters and the TRINICON-based updates of the adaptive filter coefficients are
performed in an alternating way.

Similar to the estimation of correlation matrices in linear prediction problems
[66] in actual implementations we have to distinguish between the more accurate
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so-called covariance method and the approximative correlation method leading to a
lower complexity, e.g., [3]. As we will see later in this chapter, based on these dif-
ferent estimation methods for the correlation matrices and on the above-mentioned
approximations SCR{·} and SCC{·} of the Sylvester constraint SC{·} we can es-
tablish an illustrative classification scheme for BSI and deconvolution algorithms.

10.4.5.1 Spherically Invariant Random Processes as Signal Model

An efficient and fairly general solution to the problem of determining the high-
dimensional score functions in broadband adaptive MIMO filtering is to assume
so-called spherically invariant random processes (SIRPs), e.g., [11, 42, 85], as pro-
posed in [13, 15]. The general form of correlated SIRPs of Dth order is given with a
properly chosen function fp,D(·) for the pth output channel of the MIMO system by

p̂yp,D(yp( j)) =
1√

πDdet(Rypyp(i))
fp,D

(
yT

p ( j)R−1
ypyp

(i)yp( j)
)

, (10.50)

where Rypyp denotes the corresponding D×D autocorrelation matrix with the cor-
responding number of lags. These models are representative for a wide class of
stochastic processes. Speech signals in particular can be represented by SIRPs very
accurately [11]. A major advantage arising from the SIRP model is that multivariate
PDFs can be derived analytically from the corresponding univariate PDF together
with the (lagged) correlation matrices. The function fp,D(·) can thus be calculated
from the well-known univariate models for speech, e.g., the Laplacian density. Us-
ing the chain rule, the corresponding score function, e.g., (10.44b) can be derived
from (10.50), as detailed in [13, 15].

To calculate the score function for SIRPs in general, we employ the chain rule to
(10.50) so that the first term in (10.44b) reads

−
∂ log p̂yp,D(yp)

∂yp
= −

∂ p̂yp,D(yp)
∂yp

p̂yp,D(yp)
= 2

[
− 1

fp,D(up)
∂ fp,D(up)

∂up

]

︸ ︷︷ ︸
:=φyp,D(up)

R−1
ypyp(i)yp( j),

(10.51)
where up = yT

p R−1
ypypyp. For convenience, we call the scalar function φyp,D(up) the

SIRP score. It can be shown (after a somewhat tedious but straightforward deriva-
tion) that for SIRPs in general, the second term in (10.44b) is equal to zero so that the
general score function is given by the simple expression (10.51). A great advantage
of SIRPs is that the required function fD(u) can actually be derived analytically from
the corresponding univariate PDF [11]. As a practical important example, follow-
ing the procedure in [11], we obtain, e.g., as the optimum SIRP score for univariate
Laplacian PDFs [13]:
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φyq,D(uq) = − 1

D−
√

2uq
KD/2+1(

√
2uq)

KD/2(
√

2uq)

, (10.52)

where Kν(·) denotes the ν th order modified Bessel function of the second kind.

10.4.5.2 Multivariate Gaussians as Signal Model: Second-order Statistics

To see the link to adaptation algorithms that are based purely on second-order statis-
tics (SOS), we use the model of multivariate Gaussian PDFs

p̂yp,D(yp( j)) =
1√

(2π)DdetRypyp(i)
e−

1
2 yT

p ( j)R−1
ypyp(i)yp( j) (10.53)

as a special case of a SIRP with fq,D(uq) = 1√
2D exp(− 1

2 uq). Hence, the score func-
tion for the generic SOS case is obtained straightforwardly from (10.51) for the
constant SIRP score φyp,D(up) = 1/2, and it can be shown that most of the popular
SOS-based adaptation algorithms represent special cases of the corresponding algo-
rithms based on SIRPs, e.g., [13, 15, 16, 23]. Moreover, by transforming the model
into the DFT domain, this relation also carries over to various links to novel and
existing popular frequency-domain algorithms [15, 19].

It is interesting to note that the generic SOS-based update was originally obtained
independently in [17] (first for the BSS application) as a generalization of the cost
function of [55]:

JSOS (m,W) =
∞

∑
i=0

β (i,m){logdetRss(i)− logdetRyy(i)} . (10.54)

This cost function can be interpreted as a distance measure between the actual time-
varying output-correlation matrix Ryy and a certain desired output-correlation ma-
trix Rss.

10.4.5.3 Nearly Gaussian Densities as Signal Model

Two different expansions are commonly used to obtain a parameterized representa-
tion of probability density functions that only slightly deviate from the Gaussian
density (often called nearly Gaussian densities): the Edgeworth and the Gram–
Charlier expansions, e.g., [51]. They lead to very similar approximations, so here
we only consider the Gram–Charlier expansion. As explained in Appendix C, these
expansions are based on the so-called Chebyshev–Hermite polynomials PH,n(·).

We first illustrate the idea in the univariate case. A fourth-order expansion of a
univariate, zero-mean, and nearly Gaussian PDF is given in (10.140) in Appendix C
with the estimates of skewness κ̂3 = Ê

{
y3} and the kurtosis κ̂4 = Ê

{
y4}− 3σ̂4,
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the latter one being the most important higher-order statistical quantity in our con-
text. Generally, speech signals exhibit supergaussian densities whose third-order
cumulants are negligible compared to its fourth-order cumulants. Therefore, we are
particularly interested in the approximation

p̂(y) ≈ 1√
2πσ̂

e−
y2

2σ̂2

(
1 +

κ̂4

4! σ̂4 PH,4

( y
σ̂

))
. (10.55)

Similar to the specialization (10.54) of the TRINICON optimization criterion
for the case of SOS, the Gram–Charlier-based model also allows an interesting il-
lustration of the criterion. By exploiting the near-gaussianity by the approximation
log(1 + ε) ≈ ε for log

(
1 + κ̂4

4! σ̂4 PH,4
( y
σ̂
))

in the logarithmized respresentation of

(10.55), and noting that PH,4
( y
σ̂
)

=
( y
σ̂
)4 − 6

( y
σ̂
)2 + 3 we can develop the follow-

ing expression appearing in the TRINICON criterion (10.39):

1
N

iNL+N−1

∑
j=iNL

log p̂(y)

≈ 1
N

(
iNL+N−1

∑
j=iNL

log
1√

2πσ̂
e−

y2

2σ̂2

)
+

1
N

(
iNL+N−1

∑
j=iNL

κ̂4

4! σ̂4 PH,4

( y
σ̂

))

=
1
N

(
iNL+N−1

∑
j=iNL

log
1√

2πσ̂
e−

y2

2σ̂2

)
+

κ̂2
4

4!(σ̂2)4 , (10.56)

where κ̂4 = 1
N ∑iNL+N−1

j=iNL
y4 − 3σ̂4 represents an estimate for the kurtosis based on

block averaging. As we can see, in addition to the SOS, the optimization is directly
based on the normalized kurtosis, which is a widely-used measure of nongaussian-
ity. This additive representation will play a particularly important role in the appli-
cation to the direct-inverse approach to blind dereverberation in Sect. 10.6.

To obtain general coefficient update rules based on this representation, we fi-
nally consider the multivariate formulation of the Gram–Charlier expansion after
(10.146a) in Appendix C. To calculate the multivariate Chebyshev–Hermite poly-
nomials, we apply the relation

PH,n(yp) =
D

∏
d=1

PH,nd (yd,p) (10.57)

from (10.144) so that

p̂yp,D(yp( j)) =
1√

(2π)DdetRypyp(i)
e−

1
2 yT

p ( j)R−1
ypyp (i)yp( j)

×
∞

∑
n1=0

· · ·
∞

∑
nD=0

an1...nD,p PH,n1

([
L−1

p (i)yp( j)
]

1

)
. . .PH,nD

([
L−1

p (i)yp( j)
]

D

)
,
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with the coefficients according to (10.146b),

an1...nD,p =
Ê
{

PH,n1

([
L−1

p (i)yp( j)
]

1

)
. . .PH,nD

([
L−1

p (i)yp( j)
]

D

)}

n1! . . .nD!
. (10.58)

Multivariate generalizations of the skewness and the kurtosis were introduced by
Mardia in [65]. In our context the corresponding multivariate generalization of the
kurtosis can be written as

κ̂ (D)
4,norm = Ê

{[
yT

p ( j)R−1
ypyp(i)yp( j)

]2
}
−D(D+ 2). (10.59)

Similar to the univariate case, this quantity can be related to our formulation of the
multivariate probability density. Note that for D = 1 it corresponds to the traditional
normalized kurtosis κ̂4/σ̂4 = Ê{y4

p}/σ̂4 −3, as it appears in, e.g., (10.55).
In this chapter, we further consider an important special case of this general mul-

tivariate model, which is particularly useful for speech processing. In this case, the
inverse covariance matrix R−1

ypyp = (LT
p Lp)−1 is first factorized as [62]

R−1
ypyp

(i) = Ap(i)Σ−1
ỹpỹp

(i)AT
p (i), (10.60)

where Ap(i) and Σỹpỹp(i) denote a D×D unit lower triangular matrix (i.e., its ele-
ments on the main diagonal are equal to 1) and a diagonal matrix, respectively [62].
The D×D unit lower triangular matrix Ap(i) can be interpreted as a (time-varying)
convolution matrix of a whitening filter. It is therefore convenient for computa-
tional reasons to model the signal yp as an autoregressive (AR) process of order
nA = D− 1, with time-varying AR coefficients ap,k(n), and residual signal ỹp(n),
i.e.,

yp(n) = −
D−1

∑
k=1

ap,k(n)yp(n− k)+ ỹp(n). (10.61)

The matrices Ap and Σỹpỹp can then be written as

Ap =

⎡
⎢⎢⎢⎣

1 ap,1(n) ap,2(n) · · · · · · · · · · · · ap,D−1(n)
0 1 ap,1(n−1) · · · · · · · · · · · · ap,D−2(n−1)
...

...
...

. . .
...

...
. . .

...
0 0 0 · · · 0 0 · · · 1

⎤
⎥⎥⎥⎦

T

(10.62)
and

Σỹpỹp = Diag
{
σ̂2

ỹp(n), . . . , σ̂2
ỹp(n−D+ 1)

}

= Ê

⎧⎪⎨
⎪⎩

⎡
⎢⎣

ỹp(n)
...

ỹp(n−D+ 1)

⎤
⎥⎦ [ỹp(n), . . . , ỹp(n−D+ 1)]

⎫⎪⎬
⎪⎭ . (10.63)
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Now, the multivariate stochastic signal model can be rewritten by shifting the pre-
filtering matrix Ap into the data terms, i.e.,

ỹp := AT
p yp = [ỹp(n), ỹp(n−1), . . . , ỹp(n−D+ 1)]T . (10.64)

Moreover, by assuming the whitened elements of vector ỹp to be i.i.d. (which
in practice is a widely used assumption in AR modeling), so that the ex-
pansion coefficients an1···nD,p are factorized, due to (10.57) with Lp(i) =

Diag
{

1
σ̂ỹp ( j) , . . . ,

1
σ̂ỹp ( j−D+1)

}
AT (i) and (10.64) we obtain the following model rep-

resentation:

p̂yp,D(yp( j)) =
D

∏
d=1

1√
2π σ̂2

ỹp
( j−d + 1)

e
− ỹ2

p( j−d+1)

2σ̂2
ỹp

( j−d+1)

×
∞

∑
nd=0

Ê
{

PH,nd

(
ỹp( j−d+1)
σ̂ỹp ( j−d+1)

)}

nd!
PH,nd

(
ỹp( j−d + 1)
σ̂ỹp( j−d + 1)

)
.

By considering only the fourth-order term in addition to SOS again, i.e.,

p̂yp,D(yp( j)) =
D

∏
d=1

1√
2π σ̂2

ỹp
( j−d + 1)

e
− ỹ2

p( j−d+1)

2σ̂2
ỹp

( j−d+1)

×
(

1 +
κ̂4,ỹp

4!σ4
ỹp

( j−d + 1)
PH,nd

(
ỹp( j−d + 1)
σ̂ỹp( j−d + 1)

))
,

and by exploiting the near-gaussianity using the approximation log(1 + ε) ≈ ε , af-
ter a straightforward calculation we obtain the following expression for the score
function (10.44c):

Φy,PD(y( j)) = A(i)

[
ỹp( j−d + 1)

2σ̂2
ỹp

( j−d + 1)
−

⎛
⎜⎝ ∑iNL+N−1

j=iNL
ỹ4

p( j−d + 1)

3
(
∑iNL+N−1

j=iNL
ỹ2

p( j−d + 1)
)2 −1

⎞
⎟⎠

×
(

ỹ3
p( j−d + 1)

σ̂4
ỹp

( j−d + 1)
−

ỹp( j−d + 1)∑iNL+N−1
j=iNL

ỹ4
p( j−d + 1)

σ̂6
ỹp

( j−d + 1)

)]
,

(10.65)

where the expression in brackets denotes a column vector composed of the elements
for d = 1, . . . ,D and p = 1, . . . ,P, and A(i) = [A1(i), . . . ,AP(i)] after (10.62). Note
that the first term corresponds to the SOS as in (10.51), while the second term is re-
lated to the multivariate normalized kurtosis. This expression will play an important
role in Sect. 10.6.
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10.5 Application of TRINICON to Blind System Identification
and the Identification-and-inversion Approach to Blind
Deconvolution

In Sect. 10.3 we developed the identification-and-inversion approach to blind de-
convolution from a system-theoretic point of view. We have seen that in the general
MIMO case its practical (i.e., adaptive) realization can be traced back to the prob-
lem of blind source separation for convolutive mixtures with appropriately chosen
filter length L and subsequent inversion, e.g., using MINT (Fig. 10.5). Both signal
separation and system identification belong to the class of direct adaptive filtering
problems according to Table 10.1. On the other hand, it was shown that in the SIMO
case this approach leads to a well-known class of realizations for which the AED
algorithm in its various versions is known from the literature. Hence, as the two
main aspects in this section

• We discuss the specialization of the TRINICON framework to practical algo-
rithms that are suitable for adaptive MIMO BSI. Various different BSS algo-
rithms have been proposed in recent years (e.g., [64]), and many of them can be
related to TRINICON [15, 19]. However, of special importance for BSI and the
identification-and-inversion approach to dereverberation are efficient realizations
of broadband BSS algorithms.

• We develop the relation to the SIMO case explicitly from an algorithmic point of
view. This will lead to various new insights and also to some generalizations of
the AED.

Both of these main aspects will also serve as important starting points for the de-
velopments in Sect. 10.6. An experimental comparison of the identification-and-
inversion approach with the direct-inverse approach to blind dereverberation also
follows in Sect. 10.6.

10.5.1 Generic Gradient-based Algorithm for Direct Adaptive
Filtering Problems

To begin with, we specialize TRINICON to the case of direct adaptive filtering prob-
lems, i.e., signal separation and system identification. Again, for simplicity of the
presentation, we concentrate here on iterative Euclidean gradient-based and natu-
ral gradient-based block-online coefficient updates. As mentioned in Sect. 10.4, the
class of signal separation and system identification algorithms is specified by the
factorization of the hypothesized source model p̂s,PD(·) among the sources accord-
ing to (10.45a). The desired multivariate score function then becomes the partitioned
vector
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Φs,PD(y( j)) =
[
ΦT

y1,D(y1( j)), . . . ,ΦT
yP,D(yP( j))

]T
, (10.66a)

Φyp,D(yp( j)) = −
∂ log p̂yp,D(yp( j))

∂yp( j)
. (10.66b)

The corresponding generic coefficient update rules are then directly given by
(10.44a), (10.46a), (10.48), and (10.49).

In this section, our considerations are based on the SIRP model (including SOS
as a special case). Accordingly, each partition of the vector (10.66a) is given by
(10.51). The resulting general class of broadband BSS algorithms was first presented
in [13] and has led to various efficient realizations so far (see Sect. 10.5.3). The idea
of using a SIRP model was also adopted, e.g., in the approximate DFT-domain
realizations [47, 57].

10.5.1.1 Illustration for Second-order Statistics

By setting the SIRP scores φyp,D(·) = 1/2, p = 1, . . . ,P, we obtain the particularly
illustrative case of SOS-based adaptation algorithms. Here, the source models are
simplified to multivariate Gaussian functions described by PD×PD correlation ma-
trices R estimated from the length N signal blocks, so that the update rules (10.44a)
and (10.48) lead to [16]

ΔW̌(m) =
∞

∑
i=0

β (i,m)SC
{

Rxy(i)
[
R−1

ss (i)−R−1
yy (i)

]}
(10.67)

and

ΔW̌(m) =
∞

∑
i=0

β (i,m)SC
{

W(i)Ryy(i)
[
R−1

ss (i)−R−1
yy (i)

]}

=
∞

∑
i=0

β (i,m)SC
{

W(i) [Ryy(i)−Rss(i)]R−1
ss (i)

}
, (10.68)

respectively. The BSS versions of these generic SOS natural gradient updates follow
immediately by setting

Rss(i) = bdiagRyy(i). (10.69)

The update (10.68) together with (10.69) was originally obtained independently in
[17] from the cost function (10.54). The mechanism of (10.68) based on the model
(10.69) is illustrated in Fig. 10.8. By minimizing JSOS(m), all cross-correlations
for D time-lags are reduced and will ideally vanish, while the auto-correlations are
untouched to preserve the structure of the individual signals.

A very important feature of the TRINICON-based coefficient updates is the in-
herent normalization by the auto-correlation matrices, reflected by the inverse of
Rss(i) = bdiagRyy(i) in (10.68). As we will see in Sect. 10.5.2, this normalization
can in fact be interpreted as an adaptive step-size control. In fact, as was shown
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Fig. 10.8 Illustration of SOS-based broadband BSS

in [15], the update equations of another very popular subclass of second-order BSS
algorithms, based on a cost function using the Frobenius norm7 ‖A‖2

F = ∑i, j a2
i j

of a matrix A = (ai j), e.g., [26, 51, 52, 69, 74, 79], differ from the more general
TRINICON-based updates mainly in the inherent normalization. The gradient-based
update resulting from the Frobenius norm can be regarded as an analogon to the tra-
ditional Least Mean Square (LMS) algorithm [45] in supervised adaptive filtering
without step-size control. Indeed, many simulation results have shown that for large
filter lengths L, these Frobenius-based updates are prone to instability, while the
properly normalized updates show a very robust convergence behaviour even for
hundreds or thousands of filter coefficients for the application in real acoustic envi-
ronments, e.g., [17]. As we will see in Sect. 10.6, an analogous consideration con-
cerning the inherent normalization is also possible for dereverberation algorithms of
the direct-inverse-type.

The realization of this normalization is also an important aspect in various ef-
ficient approximations of generic broadband algorithms, e.g., [2, 3, 72], with a re-
duced computational complexity for real-time operation. Moreover, a close link has
been established [15, 17] to various popular frequency-domain algorithms, as we
discuss in more detail in Sect. 10.5.3.

In Sect. 10.5.2 we show that taking into account the nongaussianity (in addition
to the SOS) can be regarded as a further improvement of the inherent adaptation
control.

10.5.2 Realizations for the SIMO Case

As mentioned in Sect. 10.3.5, most of the existing literature on the identification-
and-inversion approach to blind deconvolution is based on the SIMO mixing model,
e.g., [9, 36, 38, 43, 46, 49, 77]. Using the TRINICON framework, the approach has
been developed rigorously for the more general MIMO case based on first princi-
ples.

7 Analogously to the TRINICON-based JSOS this approach may be generalized for convolutive
mixtures to JF(m) =∑∞

i=0 β (i,m)‖Ryy(i)−bdiagRyy(i)‖2
F.
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In this section we show how to deduce the class of SIMO-based algorithms from
TRINICON. Besides a generalization of these algorithms, this consideration will
also serve as an important background for the later developments in Sect. 10.6.

As a starting point, we consider the gradient-based update (10.46a) of the MIMO
demixing system W̌ with the specialized score function (10.66) for separation and
identification problems.

The ideal separation filter matrix W̌ideal,sep in the 2×2 case is given by (10.25),
i.e.,

W̌ideal,sep =
[

h22 −h12
−h21 h11

][
α1 0
0 α2

]
, (10.70)

where due to the scaling ambiguity (in blind problems) each column is multiplied
by an unknown scalar αq. For L = Lopt,sep = M, this ideal separation solution corre-
sponds to a MIMO system identification up to an arbitrary scalar constant (indepen-
dently of the adaptation method and the possible prior knowledge).

We now consider the SIMO mixing model in Fig. 10.3(a) as a specialization of
the MIMO mixing model in Fig. 10.3(b), i.e., h11 → h1, h12 → h2, h21 → 0, h22 → 0.

According to the right-hand side of (10.70) the corresponding ideal demixing
system taking into account this prior knowledge reads as

[
w11 w12
w21 w22

]
= α

[
0 −h2
0 h1

]
. (10.71)

By comparing both sides of this equation, we immediately obtain the correspond-
ing demixing system structure shown on the right-hand side in Fig. 10.3(a). This is
indeed the well-known SIMO BSI/AED approach, which in this way follows rig-
orously from the general equation (10.70) together with prior knowledge on the
specialized mixing system. Moreover, we can see that only the second column of
the demixing matrix is relevant for the adaptation process. The elements of the first
column can be regarded as don’t cares.

We now consider the second term of the coefficient update (10.46a). From the
relation (10.134) in Appendix B it immediately follows that

log p̂y,PD(y(n)) = const. ∀ W ⇒ log
∣∣det

{
VTW

}∣∣= const. ∀ W. (10.72)

Specifically, in the case of SOS (e.g., (10.54)) this leads to

log |detRyy| = const. ∀ W ⇒ log
∣∣det

{
VTW

}∣∣= const. ∀ W. (10.73)

As the second term in the update (10.46a) respresents the gradient of the expres-
sion log

∣∣det
{

VTW
}∣∣ with respect to W, we conclude that the second term in the

coefficient update is equal to zero if detRyy is independent of W. We therefore now
consider the dependence of detRyy on W in more detail. Since Ryy = Ê{yyT} =
WT HT RssHW, we have

log |detRyy| = log |detRss|︸ ︷︷ ︸
=const. ∀ W

+2 log
∣∣det{WT HT}

∣∣ . (10.74)
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Now let W =
[
WT

1 , . . . ,WT
P
]T and H = [H1, . . . ,HP] be MISO and SIMO, respec-

tively, as special case of the MIMO definition (10.12). In this special case, the input–
output relation of the overall system reads as

y = WT HT s =

(
P

∑
p=1

WT
p HT

p

)
s, (10.75)

and ∑P
p=1 WT

p HT
p represents an upper triangular matrix with diagonal elements

∑P
p=1 wp,0hp,0. Hence, in the SIMO case, (10.74) simplifies to

log |detRyy| = const.+ 2N log

∣∣∣∣∣
P

∑
p=1

wp,0hp,0

∣∣∣∣∣ . (10.76)

Again, in the special case of only one active source, we can formulate an interesting
statement concerning the first taps wp,0 of the demixing subfilters. As the demixing
subfilters ideally compensate for the individual time-differences of arrival at the mi-
crophones, only the subfilter wpfar connected to the microphone that has the greatest
distance to the source, may exhibit a nonzero value at its first tap weight, i.e.,

wp,0 = α ·δp,pfar, (10.77)

where δi j denotes the Kronecker symbol. Introducing this property finally leads to

log |detRyy| = const.+ 2N log
∣∣αhpfar,0

∣∣
= const. (10.78)

Hence, together with (10.73), we can draw the conclusion that in the SIMO case, the
second term of the coefficient update (10.46a) disappears without loss of generality.

Next, we consider the first term x( j)ΦT
s,PD(y( j)) in the coefficient update

(10.46a) for the SIMO case and note that its second (block) column reads as
x( j)ΦT

y2,D(y2( j)). We now perform the following formal substitutions in order to
be in accordance with the literature on blind SIMO identification and supervised
adaptive filtering, e.g., [45] (see Figs. 10.3(a) and (b)):

y2 → e,
[

w12
w22

]
=
[

−ĥ2
ĥ1

]
→ w =

[
w1
w2

]
. (10.79)

Hence, the second column of the first term of the coefficient update is finally ex-
pressed as x( j)ΦT

e,D(e( j)). Note that the substitution of the coefficient notation in
(10.79) is justified by (10.71).

Thus, we obtain the following sub-matrix of the specialized gradient-based
TRINICON update:
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w�(m) = w�−1(m)+
μ
N

∞

∑
i=0

β (i,m)SC
{

iNL+N−1

∑
j=iNL

x( j)ΦT
e,D(e( j))

}
. (10.80)

This formally represents the triple-N-generalization of the LMS algorithm from su-
pervised adaptive filtering theory (see also [23]), which in its well-known original
form exhibits the simple update [45]

w(n) = w(n−1)+ μ x̌(n)e(n), (10.81)

where the length-L vector x̌ is a truncated version of x (formally, this truncation is
obtained by (SC) for D = 1, see Fig. 10.6). Although not shown in this chapter, it is
possible to analogously derive the corresponding generalizations of other supervised
algorithms (NLMS, RLS, etc., which may essentially be seen as special cases of a
Newton-type update, e.g., [22]) by choosing a Newton-type TRINICON coefficient
update instead of the gradient descent-type update.

From the generalized LMS update (10.80) above we can make the following
observations in comparison with the simple case (10.81): Due to the generalized
approach, we inherently obtain

• block online adaptation, possibly with multiple iterations � to speed up the con-
vergence [15]

• block averaging by N > 1 for a more uniform convergence
• an error nonlinearity to take into account the nongaussianity of the signals (by a

proper choice of ΦT
e,D(·))

• multivariate error e to take into account the nonwhiteness of the signals (by
choosing D > 1).

Note that, in various ways, the RLS algorithm can be seen as the optimal supervised
adaptation algorithm. However, the RLS is optimum only in the case of a Gaussian
source signal and Gaussian additive noise on the microphones, with the noise being
additionally stationary and white. The general update resulting from TRINICON
does not have these restrictions.

10.5.2.1 Coefficient Initialization

The general relation between MIMO BSI and SIMO BSI also leads to an important
guideline for the initialization of the filter coefficients. In particular, we consider
the question whether the algorithm can converge to the (undesired) trivial solution
w = 0. As we will show, the answer is no, as long as the initialization w(0) is not
orthogonal to the ideal solution wideal =

[
−hT

2 hT
1
]T .

To prove this condition, we pre-multiply the update (10.80) with wT
ideal on both

sides of the update equation:
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wT
idealw

�(m) = wT
idealw

�−1(m)+
μ
N

∞

∑
i=0

β (i,m)

×
[
−hT

2 hT
1
]
SC

{
iNL+N−1

∑
j=iNL

[
x1( j)
x2( j)

]
ΦT

e,D(e( j))

}
, (10.82)

wT
idealw

�(m) = wT
idealw

�−1(m)+
μ
N

∞

∑
i=0

β (i,m)

×
iNL+N−1

∑
j=iNL

(
hT

1 SC
{

x2( j)ΦT
e,D(e( j))

}
−hT

2 SC
{

x1( j)ΦT
e,D(e( j))

})
. (10.83)

With (10.148) from Appendix D this expression can be expanded to

wT
idealw

�(m) = wT
idealw

�−1(m)+
μ
N

∞

∑
i=0

β (i,m)

×
iNL+N−1

∑
j=iNL

D

∑
l=1

(
hT

1 x̌2( j− l + 1)−hT
2 x̌1( j− l + 1)

)
Φe,l(e( j)). (10.84)

Since hT
1 x̌2(·) − hT

2 x̌1(·) ≡ 0 is fixed due to the acoustic model, we have
wT

idealw
�(m) = wT

idealw
�−1(m) = const., i.e., provided that wT

idealw(0) �= 0, the co-
efficient vector w will not converge to zero.

10.5.2.2 Efficient Implementation of the Sylvester Constraint for the Special
Case of SIMO Models

As already explained for the general MIMO case, we also further specialize the
generalized LMS update (10.80) by incorporating the SIRP model. Introducing the
score function (10.51) immediately leads to a SIRPs-based generalized LMS update
analogously to [23]

w�(m) = w�−1(m)+
2μ
N

∞

∑
i=0

β (i,m)

×
iNL+N−1

∑
j=iNL

SC
{

x( j)eT ( j)R−1
ee (i)

}
φe,D

(
eT ( j)R−1

ee (i)e( j)
)
. (10.85)

As in the general MIMO case, we can see that the SIRP model leads to an inherent
normalization by the auto-correlation matrix. Note that the SOS case follows for
φe,D (·) = 1/2. In both the SOS case and for general SIRPs the normalization by
the correlation matrix in conjunction with N > 1 may be interpreted as an inherent
step-size control. (It also illustrates why BSS does not require a separate double-talk
detector, such as traditional supervised algorithms do, e.g., for acoustic echo cancel-
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lation or adaptive beamforming.) Moreover, in [23] it was shown that for a suitable
choice of parameters, the general SIRP-based update (10.85) can be interpreted as
a multivariate, i.e., triple-N generalization of the robust LMS algorithm based on
robust statistics [50], as mentioned in Sect. 10.4.5.

To further simplify the realization, we next study the expression

SC
{

x( j)eT ( j)R−1
ee (i)

}
(10.86)

appearing in (10.85). According to the structure of the generic Sylvester constraint
in Fig. 10.6 and [19] (see also Appendix D), the lth element of the pth subvector
(contributing to the pth channel impulse response) can be expanded to

D

∑
d=1

[xp( j)]l+d−1

[
R−1

ee (i)e( j)
]

d = x̌T
p,D( j− l + 1)R−1

ee (i)e( j), (10.87)

where x̌p,D denotes the length-D vector

x̌p,D(n) = [xp(n),xp(n−1), . . . ,xp(n−D+ 1)]T . (10.88)

With this expansion, (10.86) reads as

SC
{

x( j)eT ( j)R−1
ee (i)

}
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̌T
1,D( j)

...
x̌T

1,D( j−L+ 1)
x̌T

2,D( j)
...

x̌T
2,D( j−L+ 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

R−1
ee (i)e( j). (10.89)

In the same way as shown in Sect. 10.4.5 in the context of nearly Gaussian source
models, we now factorize the inverse covariance matrix R−1

ee as [62]

R−1
ee (i) = A(i)Σ−1

ẽẽ (i)AT (i), (10.90)

where A(i) and Σẽẽ(i) denote again a D ×D unit lower triangular matrix and a
diagonal matrix, respectively [62].

By interpreting A(i) as a time-varying convolution matrix of a whitening filter,
we model the signal e as an AR process of order D − 1, with time-varying AR
coefficients ak(n), and residual signal ẽ(n), i.e.,

e(n) = −
D−1

∑
k=1

ak(n)e(n− k)+ ẽ(n). (10.91)

Now, (10.89) can be rewritten by shifting the prefiltering matrix A into the data
terms, i.e.,
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ẽ := AT e = [ẽ(n), ẽ(n−1), . . . , ẽ(n−D+ 1)]T , (10.92)
ˇ̃xp,D := AT x̌p,D = [x̃p(n), x̃p(n−1), . . . , x̃p(n−D+ 1)]T , (10.93)

so that

SC
{

x( j)eT ( j)R−1
ee (i)

}
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ˇ̃xT
1,D( j)

...
ˇ̃xT

1,D( j−L+ 1)
ˇ̃xT

2,D( j)
...

ˇ̃xT
2,D( j−L+ 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Σ−1
ẽẽ (i)ẽ( j)

=
[ ˇ̃x( j), . . . , ˇ̃x( j−D+ 1)

]
⎡
⎢⎢⎢⎣

ẽ( j)
σ2

ẽ ( j)
...

ẽ( j−D+1)
σ2

ẽ ( j−D+1)

⎤
⎥⎥⎥⎦

=
D−1

∑
d=0

ˇ̃x( j−d)
ẽ( j−d)
σ2

ẽ ( j−d)
. (10.94)

Finally, (10.85) becomes

w�(m) = w�−1(m)+
2μ
N

∞

∑
i=0

β (i,m)

×
iNL+N−1

∑
j=iNL

D−1

∑
d=0

ˇ̃x( j−d)
ẽ( j−d)
σ2

ẽ ( j−d)
φe,D

(
ẽT ( j)Σ−1

ẽẽ (i)ẽ( j)
)
. (10.95)

Note that this formulation provides a computationally efficient realization of the
generic Sylvester constraint.

Moreover, it is interesting to note that both the error signal e and the input (i.e.,
microphone) signal vector x̌ appear as filtered versions in the update. After inter-
preting A in (10.90) as a whitening filter, this adaptation algorithm can in fact be
interpreted as a so-called filtered-x-type algorithm [24]. As shown in Fig. 10.9, this
type of algorithm typically appears whenever there is another filter between the
adaptive filter and the position of the error calculation. This cascade structure will
also be of fundamental importance in the direct-inverse approach in Sect. 10.6.

10.5.3 Efficient Frequency-domain Realizations for the MIMO
Case

For convolutive mixtures, the classical approach of frequency-domain BSS appears
to be an attractive alternative where all techniques originally developed for instan-
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ŷ

y

e
+

−

(a)

x̌ w
ˆ̃y

ỹ
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Fig. 10.9 Supervised adaptive filtering in (a) conventional and (b) filtered-x configuration

taneous BSS are typically applied independently in each frequency bin, e.g., [51].
However, this traditional narrowband approach exhibits several limitations as iden-
tified in, e.g., [7, 53, 78]. In particular, the permutation problem, which is inherent
to BSS, may then also appear independently in each frequency bin so that extra re-
pair measures are needed to address this internal permutation. Problems caused by
circular convolution effects due to the narrowband approximation are reported in,
e.g., [78].

In [15] it is shown how the equations of the TRINICON framework can be trans-
formed into the frequency domain in a rigorous way (i.e., without any approxi-
mations) in order to avoid the above-mentioned problems. As in the case of the
time-domain algorithms, the resulting generic DFT-domain BSS may serve both as
a unifying framework for existing algorithms, and also as a guideline for developing
new improved algorithms by certain suitable selective approximations as shown in,
e.g., [15] or [2]. Figure 10.10 gives an overview on the most important classes of
DFT-domain BSS algorithms known so far. A very important observation from this
framework using multivariate PDFs is that, in general, all frequency components
are linked together so that the internal permutation problem is avoided (the follow-
ing elements are reflected in Fig. 10.10 by different approximations of the generic
SIRP-based BSS):

1. Constraint matrices appearing in the generic frequency-domain formulation
(see, e.g., [15]) describe the inter-frequency correlation between DFT compo-
nents.

2. The multivariate score function, derived from the multivariate PDF is a broad-
band score function. As an example, for SIRPs the argument of the multivari-
ate score function (which is a nonlinear function in the higher-order case) is
yT

p( j)R−1
ypyp(i)yp( j) according to (10.50). Even for the simple case R−1

ypyp(i) = I
where we have yT

p( j)yp( j) = ‖yp( j)‖2, i.e., the quadratic norm, and – due to
Parseval’s theorem – the same in the frequency domain, i.e., the quadratic norm
over all DFT components, we immediately see that all DFT-bins are taken into
account simultaneously so that the internal permutation problem is avoided.
Note that the traditional narrowband approach (with the internal permutation
problem) would result as a special case if we assumed all DFT components to
be statistically independent from each other (which is of course not the case for
real-world broadband signals such as speech and audio signals). In contrast to
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Fig. 10.10 Overview of BSS algorithms in the DFT domain. Note that the broadband algorithms
in the left-hand column are also suitable for BSI, and thus, for the identification-and-inversion
approach to blind deconvolution/blind dereverberation
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this independence approximation the dependencies among all frequency com-
ponents (including higher-order dependencies) are inherently taken into account
in TRINICON in an optimal way by considering the joint densities as the most
comprehensive description of random signals. Actually, in the traditional nar-
rowband approach, the additionally required repair mechanisms for permutation
alignment try to exploit such inter-frequency dependencies.

From the viewpoint of blind system identification, broadband algorithms with con-
straint matrices (i.e., the algorithms represented in the first column of Fig. 10.10)
are of particular interest. Among these algorithms, the system described in [2] has
turned out to be very efficient in this context. A pseudo-code of this algorithm is
also included in [2].

Another important consideration for the practical implementation of BSI is the
proper choice of the Sylvester constraint. Since the column constraint SCC is not
suited for arbitrary source configurations, it is generally not appropriate for BSI
and deconvolution. Thus, for the implementations discussed in this chapter the row
constraint SCR is used.

10.6 Application of TRINICON to the Direct-inverse Approach
to Blind Deconvolution

In this section we discuss multichannel blind adaptation algorithms with the aim to
solve the inverse adaptive filtering problem (see Table 10.1) directly without BSI
as an intermediate step. This section mainly follows and extends the concept first
presented in [16].

The two main aspects in this section are as follows:

• First, we briefly discuss traditional ICA-based Multichannel Blind Deconvolu-
tion (MCBD) algorithms from the literature. Unfortunately, as we will see, these
algorithms are not well suited for speech and audio signals. However, our consid-
erations lead to various insights and to a classification scheme that is also useful
for both the pure separation/identification algorithms from the previous section
and also to the MultiChannel Blind Partial Deconvolution (MCBPD) algorithms
considered afterwards.

• A discussion of the MCBPD algorithms is also given. These algorithms can be
regarded as advanced versions of MCBD so that they are also suitable for speech
and audio signals. As already mentioned at the end of Sect. 10.3.5, these algo-
rithms are not just based on the spatial diversity and the statistical independence
of the different source signals, but they require more precise stochastic source
models. Based on the results of Sect. 10.4, and to some extent of Sect. 10.5, we
present a general framework which unifies the treatment of many of the known
algorithms for the direct-inverse approach to blind dereverberation of speech sig-
nals, and also leads to various new algorithms.
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(a) (b) (c)

Fig. 10.11 Desired correlation matrices Rss for (a) BSS (Sect. 10.5), (b) MCBD (Sect. 10.6.1),
and (c) MCBPD (Sect. 10.6.2) with TRINICON in the SOS case

10.6.1 Multichannel Blind Deconvolution

Analogously to the Sect. 10.5.1, we now specialize TRINICON to the case of tradi-
tional MCBD algorithms. As shown by (10.45b), this class of algorithms is specified
by a complete factorization of the hypothesized source model p̂s,PD(·), i.e., tradi-
tionally, ICA-based MCBD algorithms assume i.i.d. source models, e.g., [4, 28].
In other words, in addition to the separation of statistically independent sources,
MCBD algorithms also temporally whiten the output signals; thus this approach is
not directly suitable for audio signals. Nevertheless, studying these algorithms leads
to some important insights, because in contrast to some BSS algorithms they are
inherently broadband algorithms. Their popularity results from the fact that due to
the complete factorization of the source model, they only require univariate PDFs.
Thereby, the multivariate score function (10.44b) reduces to a vector of univariate
score functions each representing a scalar nonlinearity. As, additionally, the sec-
ond term in (10.44b) is commonly neglected in most of these algorithms, the scalar
nonlinearity reads

Φyp,1(yp( j−d + 1)) = −
∂ log p̂yp,1(yp( j−d + 1))

∂yp( j−d + 1)
. (10.96)

The corresponding generic coefficient update rules are then given by (10.44a),
(10.46a), (10.48), and (10.49).

In the SOS case, analogously to the representation in Sect. 10.5.1, the complete
factorization of the output PDF corresponds to the desired correlation matrix Rss =
diagRyy, as illustrated in Fig. 10.11(b).

Using (10.96) several relationships between the generic HOS natural gradient
update rule (10.49) and well-known MCBD algorithms in the literature can be es-
tablished [1]. As noted in Sect. 10.4.5, these links are obtained by the application
of different implementations of the Sylvester constraint SC, the distinction between
the correlation and covariance method [66] for the estimation of the cross-relation

RyΦ(y)(i) =
1
N

iNL+N−1

∑
j=iNL

y( j)ΦT
s,PD(y( j)) (10.97)

in (10.49), and the different approximations of the multivariate PDFs. This alto-
gether spans a whole tree of algorithms as depicted in Fig. 10.12. Here, the most
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general algorithm is given as the generic HOS natural gradient algorithm (10.49),
which is based on multivariate PDFs. A distinction with respect to the implementa-
tion of the Sylvester constraint SC leads to two branches, which can again be split
up with respect to the method used for the estimation of the cross-relation matrices.
Approximating the multivariate PDFs by univariate ones, neglecting the nonstation-
arity, and using the Sylvester constraint SCR yields the two block-based MCBD al-
gorithms presented in [30, 54]. By changing the block-based adaptation to a sample-
by-sample algorithm, a link to the popular MCBD algorithm in [4] and [31] can be
established. (It should be noted that also the so-called nonholonomic extension [15]
of [4] presented in [28] can be derived from the framework.) By using the Sylvester
constraintSCC a link to the MCBD algorithm in [88] is obtained. However, it should
be remembered that algorithms based on SCC are less general as only causal filters
can be adapted and thus for MCBD algorithms only minimum-phase systems can
be treated, as was pointed out in [88].

Note that by using the general Sylvester constraint without approximations, a
performance gain both over SCR and SCC is possible [20].

Generic TRINICON-based update rule (10.49)

Enforcing the Sylvester
constraint SCC by using the

first column of ΔW

Enforcing the Sylvester
constraint SCR by using

the Lth row of ΔW

CovarianceCovariance
methodmethod

CorrelationCorrelation
methodmethod

Assumption of univariate PDFs and neglecting nonstationarity

Sample-by-sample algorithms
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Fig. 10.12 Overview of links between the generic algorithm (10.49) and existing MCBD algo-
rithms after [1]
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Room (slowly time-varying)
to be equalized

Vocal tract (rapidly time-varying)
to be preserved

Excitation

Fig. 10.13 Illustration of speech dereverberation as an MCBPD application (after [16])

10.6.2 Multichannel Blind Partial Deconvolution

Signal sources that are non i.i.d. should not become i.i.d. at the output of the
blind adaptive filtering stage. Therefore, their statistical dependencies should be
preserved. In other words, the adaptation algorithm has to distinguish between the
statistical dependencies within the source signals, and the statistical dependencies
introduced by the mixing system Ȟ, i.e., the reverberant room. We denote the corre-
sponding generalization of the traditional MCBD technique as MCBPD [16]. Equa-
tions (10.44)–(10.49) inherently contain a statistical source model (signal properties
(i)–(iii) in Sect. 10.4.2), expressed by the multivariate densities, and thus provide all
necessary requirements for the MCBPD approach.

Ideally, only the influence of the room acoustics should be minimized. A typi-
cal example for MCBPD applications is speech dereverberation, which is especially
important for distant-talking automatic speech recognition (ASR), where there is a
strong demand for speech dereverberation without introducing artifacts to the sig-
nals. In this application, MCBPD allows us to distinguish between the actual speech
production system, i.e., the vocal tract, and the reverberant room (Fig. 10.13).

For the distinction between the production system of the source signals (e.g., the
speech production system) and the room acoustics we can again exploit all three
fundamental signal properties already mentioned in Sect. 10.4.2:

(i) Nonwhiteness. The auto-correlation structure of the speech signals can be
taken into account, as illustrated in Fig. 10.11(c). While the room acoustics
influences all off-diagonals, the effect of the vocal tract is concentrated in the
first few off-diagonals around the main diagonal. In the simplest case, these
first Z off-diagonals of Ryy are now taken over into the banded matrix

Rss = bandbdiagZ Ryy, (10.98)

as illustrated in Fig. 10.11(c). Note that there is a close link to linear prediction
techniques as detailed below which gives guidelines for the number of lags to
be preserved.

(ii) Nonstationarity. The speech production system and the room acoustics also
differ in their time-variance according to Fig. 10.13. While the room acous-
tics is assumed to be constant during the adaptation process, the speech signal
is only short-time stationary [66], modeled by the time-varying speech pro-
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duction model. Typically, the duration of the stationarity intervals is assumed
to be approximately 20 ms [66]. We therefore adjust the block length N and
in practice preferably also the block shift NL in the criterion (10.39) with the
model parameter estimates (10.41) and in the corresponding updates (10.44)–
(10.49) to the assumed duration of the stationarity interval. Note that for a
block-based adaptation (typically performed by exploiting the efficiency of
the FFT, cf. Sect. 10.5.3 for the case of BSS) and N = NL < L, this corre-
sponds to a partitioned block formulation as known from supervised adaptive
filtering, e.g., [22].

(iii) Nongaussianity. Speech is a well-known example for supergaussian signals.
Due to a convolutive sum – in our application describing the filtering by the
room acoustics – the PDFs of the recorded sensor/microphone signals tend to
be somewhat closer to Gaussians. Hence, another strategy is to maximize the
nongaussianity of the output signals of the demixing system (as far as possible
by the MIMO FIR filters), e.g., [12, 41, 60, 82]. This strategy is addressed,
e.g., using the kurtosis as a widely-used distance measure of nongaussianity
as in the second term in (10.56). It can be shown that this second term can
indeed be identified as an estimate of the so-called negentropy, which is an
information-theoretic distance measure to the Gaussian [51].

Formally, the above-mentioned exploitation of the nonwhiteness to distinguish
between the coloration of the sources and the mixing system is achieved by decou-
pling the prediction order nA in (10.61) from the dimension D of the correlation
matrix Ryy, i.e.,

ỹp(n) =
nA

∑
k=0

ap,k(n)yp(n− k) (10.99)

with 0 ≤ nA ≤ D− 1 and ap,0(n) ≡ 1. This corresponds to a generalization of the
upper triangular matrix structure (10.62) in the factorization (10.60) to the banded
matrix

Ap =

⎡
⎢⎢⎢⎣

1 ap,1(n) ap,2(n) · · · ap,nA(n) 0 · · · 0
0 1 ap,1(n−1) · · · ap,nA−1(n−1) ap,nA(n−1) · · · 0
...

...
...

. . .
...

...
. . .

...
0 0 0 · · · 0 0 · · · 1

⎤
⎥⎥⎥⎦

T

(10.100)
so that we can again apply the compact notation

ỹq = AT
q yq = [ỹq(n), ỹq(n−1), . . . , ỹq(n−D+ 1)]T , (10.101)

ˇ̃x(q)
p,D = AT

q x̌p,D =
[
x̃(q)

p (n), x̃(q)
p (n−1), . . . , x̃(q)

p (n−D+ 1)
]T

. (10.102)

Hence, the resulting formulation of the generalized score function (10.65) carries
over to MCBPD, as well as to the traditional MCBD and to broadband BSS/BSI,
depending on the parameter nA. In other words, the different modes in Fig. 10.11 are
selected by certain choices of the order nA. This is further illustrated in Fig. 10.14.
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MCBD (MCBPD) BSS/BSI

0 ≤≤ nA D−1

Vocal tract Room

Fig. 10.14 Illustration of the parameter nA

The corresponding general gradient descent-based coefficient update for nearly
Gaussian sources is then obtained by introducing the score function (10.65) into the
generic update (10.46a). Note that for an efficient implementation of the Sylvester
constraint of the first term in (10.46a) we can apply the same procedure as demon-
strated in (10.87) and (10.89). With (10.102) we then obtain

w̌�
pq(m) = w̌�−1

pq (m)− μ
N

∞

∑
i=0

β (i,m)
iNL+N−1

∑
j=iNL

D−1

∑
d=0

ˇ̃x(q)
p ( j−d)

×
[

ỹq( j−d)
2σ̂2

ỹq
( j−d)

−
(
∑iNL+N−1

j=iNL
ỹ4

q( j−d)

3σ̂4
ỹq

( j−d)
−1

)

×
(

ỹ3
q( j−d)

σ̂4
ỹq

( j−d)
−

ỹq( j−d)∑iNL+N−1
j=iNL

ỹ4
q( j−d)

σ̂6
ỹq

( j−d)

)]

+ μ
∞

∑
i=0

β (i,m)SC
[

V
((

W�−1(m)
)T

V
)−1

]

pq

. (10.103)

This general TRINICON-based MIMO coefficient update for nearly Gaussian
sources leads both to blind separation and dereverberation of the signals.

Analogously to the considerations at the end of Sect. 10.5.2 we see that this up-
date rule can again be interpreted as a so-called filtered-x-type algorithm since both
the input (i.e., microphone) signal vector and the output signals appear as filtered
versions in the update. Analogously to Fig. 10.9 we immediately obtain Fig. 10.15
for the dereverberation application as a consequence of this filtered-x interpreta-
tion. While W, driven by the filtered-x-type coefficient update, ideally inverts the
room acoustic mixing system H, the (set of) linear prediction filter(s) A from the
stochastic source model ideally inverts the (set of) speech production system(s) of
the source(s). The coefficient updates of W and the estimation of A are carried out
in an alternating fashion like the estimation of the other stochastic model parame-
ters, as mentioned in Sect. 10.4.5. Note that (in accordance with the known filtered-x
concept) the filtered input vector ˇ̃x in (10.103) is obtained using the filter coefficients
from the Linear Prediction (LP) analysis of the output signals yp. In other words, the
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Blind signal processing

A

Fig. 10.15 Inversion of the speech production models within the blind signal processing and
filtered-x-type interpretation

coefficients of the output LP analysis filters are copied to the input transformation
filters according to (10.102).

It should be mentioned that the linear prediction is also classified as a (blind)
inverse adaptive filtering problem in Table 10.1, and hence, the estimate of the pre-
diction coefficients can also be obtained directly from the TRINICON optimization
criterion (10.39). Assuming a single-source scenario and SOS-based estimation of
the prediction coefficients for this inverse adaptive filtering problem, as a special
case of (10.39) according to (10.54) and the considerations in Sect. 10.5.2 for the
single-source case, we obtain

Jpred (m,A) =
∞

∑
i=0

β (i,m) logdetdiagRỹỹ(i) ∝
∞

∑
i=0

β (i,m) log σ̂2
ỹ,i. (10.104)

Furthermore, assuming stationarity, this criterion is equivalent to the traditional
least-squares-based estimate Jpred,LS (m,A) ∝ σ̂2

ỹ,m due to the monotonicity of the
logarithm, while for non-stationary signals, it is more general. Nevertheless, for the
practical experiments in Sect. 10.7 we will apply the Levinson–Durbin algorithm
as an efficient realization of the LS-based estimation using the so-called correlation
method [66].

10.6.3 Special Cases and Links to Known Algoritms

According to Fig. 10.14, all of the previously discussed algorithms from the vari-
ous classes according to Table 10.1 can be regarded as special cases of the MCBPD
concept. In this section, we only discuss algorithms that are specifically designed for
dereverberation using the direct-inverse approach. Moreover, we focus here on algo-
rithms based on the Gram–Charlier model, i.e., we discuss special cases of (10.103)
and relations to some known algorithms.
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10.6.3.1 SIMO vs. MIMO Mixing Systems

Similar to the considerations in Sect. 10.5.2 for SIMO-based BSI, we deduce now
the specialized coefficient update for the case of SIMO mixing systems, i.e., for
the case of only one source signal. Again, we first consider the last term of the
generic gradient-based update (10.103). According to the corresponding steps of
the derivation in Sect. 10.5.2 (Eqs. (10.72)-(10.78)) we can see that in the same way
the last term also disappears for MCBPD in the SIMO case. Next, we pick the filter
coefficients of interest for the SIMO case. Assuming the active source signal will
appear on the first output of the demixing filter, it is straightforward to pick w as the
first column of the general MIMO coefficient matrix W̌. This way we immediately
obtain

w�(m) = w�−1(m)− μ
N

∞

∑
i=0

β (i,m)
iNL+N−1

∑
j=iNL

D−1

∑
d=0

ˇ̃x( j−d)

×
(

ỹ( j−d)
2σ̂2

ỹ ( j−d)
−
(
∑iNL+N−1

j=iNL
ỹ4( j−d)

3σ̂4
ỹ ( j−d)

−1

)

×
(

ỹ3( j−d)
σ̂4

ỹ ( j−d)
−

ỹ( j−d)∑iNL+N−1
j=iNL

ỹ4( j−d)

σ̂6
ỹ ( j−d)

))
.

(10.105)

Note that the structure of the resulting algorithm is very similar to the one of the
generalized AED (10.95) in Sect. 10.5.2. The main differences are the different sign
of the update term and the fact that we now pick the first column of W̌, since we are
now interested in obtaining the enhanced signal rather than in minimizing an error
signal for the signal cancellation in the AED.

10.6.3.2 Efficient Implementation Using the Correlation Method

An efficient implementation that still exploits all three fundamental signal properties
as discussed in Sect. 10.6.2 is obtained by assuming a global nonstationarity of
the source signals but short-time stationarity in each block as known from linear
prediction. As a first step to obtain a simplified update equation, we integrate the
sum over d into the sum over j. Next, we replace the time-varying output prediction
error variances by blockwise constant values σ̂ỹp,i for the ith block. This finally
allows us to move the sum over j into the numerators in the brackets in order to
obtain the compact expression
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w̌�
pq(m) = w̌�−1

pq (m)− μ
N

∞

∑
i=0

β ′(i,m)

×
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L

ˇ̃x(q)
p ( j)ỹq( j)

2σ̂2
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⎛
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L+N−1
j=iN′

L
ỹ4
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∞
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i=0

β (i,m)SC
[

V
((

W�−1(m)
)T

V
)−1

]

pq

. (10.106)

Note that for the SIMO case this expression is simplified in a straightforward way,
as mentioned in the previous paragraph, so that the last term again disappears. This
efficient version is also used for the experiments in Sect. 10.7.

10.6.3.3 Relations to Some Known HOS Approaches

As has already been mentioned in Sect. 10.6.2 most of the HOS-based blind de-
convolution approaches aim at finding deconvolution filters that render the output
signals as nongaussian as possible [12, 60, 82] with kurtosis being the most common
measure for nongaussianity.

In [41] an approach to speech dereverberation by kurtosis maximization was pre-
sented. It is based on the idea of performing the whole adaptation and filtering pro-
cedure on LP residuals as a heuristic extension of the ideas in [10, 86]. Hence, the
main structural difference of this approach to the general TRINICON-based update
rule is that the LP analysis is carried out using the microphone signals, i.e., the
input signals of the blind adaptive filter rather than on its output signals as in the
above-mentioned and systematically obtained filtered-x structure. Nevertheless, the
resulting algorithm also exhibits several remarkable similarities to the generic up-
date. The adaptation rule in [41] is based directly on the kurtosis, i.e., the square
root of only the second term in (10.56). The update therefore structurally corre-
sponds to the part in the second parentheses of the second term in the brackets in
(10.103). (The first term in (10.103) results from the SOS and the expression in the
first parentheses in the second term results from the application of the chain rule due
to the square of the kurtosis in the Gram–Charlier expansion.)

The same approximate expression of the update rule, i.e., the gradient descent
directly based on the kurtosis is also used in [87]. Note that these approaches are
based on the acoustic SIMO model.
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10.6.3.4 Relations to Some Known SOS Approaches

It is known that linear filtering of a source signal increases the temporal predictabil-
ity of the observed signal. A deconvolution filter that makes its output less pre-
dictable may thus be able to recover the source signal. This observation is the key to
most SOS-based linear deconvolution methods, i.e., in essence they aim at finding
deconvolution filters that minimize a measure of predictability of the output signal,
e.g., [81]. Hence, in a certain sense, blind deconvolution may also be interpreted
as the application of a very long linear prediction error filter. Note that this is also
reflected by the symmetric structure in Fig. 10.15.

As a simple approach, the optimization criterion in [81] is directly based on the
variance of the long-term prediction error at the output of the deconvolution filter. In
order to avoid trivial solutions and to preserve some of the temporal structure of the
source signals, this long-term prediction error variance is normalized by a short-term
prediction error variance, and finally the logarithm of this ratio is taken. Although
this approach does not explicitly exploit the nonstationarity of the signals in the
sense as outlined in Sect. 10.6.2, this logarithm of the ratio between the prediction
error variances – which can be expressed as a difference between two logarithmic
prediction error variances – can still roughly be related to the generic SOS-based
optimization criterion (10.54) considering the link with linear prediction at the end
of Sect. 10.6.2, and the short-term prediction error variance in the normalization as
a special case of the desired correlation matrix Rss.

Another related approach to preserve the temporal structure of the original source
signal is called correlation shaping in [40]. The heuristically introduced optimiza-
tion criterion after Gillespie and Atlas in [40] for the SIMO case reads

JGA =∑
κ
γ(κ)(ryy(κ)− rss(κ))2 , (10.107)

where κ denotes the lag of the output correlation sequence ryy(κ) and a certain de-
sired correlation sequence rss(κ). The factor γ(κ) allows for an individual weight-
ing of the lags. As a preferred embodiment of this concept, in [40] it is proposed
to choose γ(κ) and rss(κ) such that ryy(κ) is minimized for all lags outside of the
don’t care region −Z ≤ κ ≤ Z. Obviously, this approach is equivalent to the min-
imization of the Frobenius norm JF,GA = ‖Ryy − Rss‖2

F with the banded matrix
Rss = bandbdiagZ Ryy after (10.98) and Fig. 10.11(c) if the so-called correlation
method is used for the estimation of Ryy (i.e., this matrix is assumed to be Toeplitz).
Hence, in the context of dereverberation the approach [40] can be seen directly as an
analogon to the Frobenius-based approaches for BSS/BSI mentioned in Sect. 10.5.1
(e.g., [26, 51, 52, 69, 74, 79]). The main differences between [40] and the generic
SOS-based MCBPD are:
(i) The criterion (10.107) does not exploit the nonstationarity of the signals in the
sense as outlined in Sect. 10.6.2.
(ii) As already explained in Sect. 10.5.1, in contrast to the generic SOS criterion
(10.54) the minimization of the Frobenius-based criterion does not lead to the in-
herent normalization of the coefficient update, which can be interpreted as an in-
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herent step-size control according to Sect. 10.5.2, and hence is an important feature
for a robust adaptation performance. Similar to the BSS/BSI case, many simulation
results have shown that for large filter lengths L, the Frobenius-based adaptation
is prone to instability, while the generic MCBPD adaptation shows a very robust
convergence behavior for real acoustic environments, as we will see in Sect. 10.7.

In [35, 37] a third related SOS-based approach was presented. As in the pre-
viously described SOS-based algorithms, this approach distinguishes between the
speech production system and the room acoustics by exploiting only the nonwhite-
ness. It explicitly takes into account an estimate of the long-term power spectral
density of the speech signal. Moreover, an interesting aspect of this approach is that
it was originally derived directly from MINT (see Sect. 10.2) describing the ideal
inversion solution at the equilibrium of the adaptation. Indeed, it can be shown (anal-
ogously to the analysis of the equilibria for BSS in [17] in the SOS case) that ideally
the equilibrium of the SOS-based update (10.67) in the case of MCBPD with (10.98)
corresponds to the MINT solution according to Sect. 10.2. We now show how this
approach can be derived rigorously from the TRINICON-based coefficient update
(10.67). Under the stationarity assumption we have in the equilibrium

ΔW = Rxy
[
R−1

ss −R−1
yy
]
= 0, (10.108)

i.e.,
Rxy = RxyR−1

yy Rss. (10.109)

Developing the left-hand side of this equation as RxxW and the right-hand side
of this equation using Sylvester matrices and corresponding data matrices X,
Y, S of compatible dimensions as in [17] as RxyR−1

yy Rss = XT Y(YT Y)−1ST S =
XT (YT )+ST S = XT (ST )+(CT )+ST S = XT S = Rxs, where ·+ denotes the Moore–
Penrose pseudoinverse, we obtain

RxxW = Rxs. (10.110)

Note that this relation is in fact the Wiener–Hopf equation for the inverse filtering
configuration. (This again reflects the equivalence to the traditional LS approach for
inverse adaptive filtering problems in the stationary case, as mentioned at the end
of Sect. 10.6.2 for the linear prediction problem.) Next, a filter B in the Sylvester
structure modeling the vocal tract is introduced so that S = S0B, where S0 denotes
a corresponding data matrix of the i.i.d. excitation signal. Hence

Rss = ST S = BT Rs0s0B = BT B. (10.111)

Using this model, we can rewrite (10.110) as

RxxW = HT Rss = HT BT B. (10.112)

Multiplication by the pseudoinverse of B on both sides, and exploiting the commu-
tation property of the convolution (B denotes a SISO system), we can write
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RxxB+W = BT HT , (10.113)

or (
B+)T RxxB+W = HT . (10.114)

Let us denote the inverse filter of the vocal tract similarly as in the previous sections
as A := B+. Using this filter the correlation matrix Rxx is transformed into Rx̃x̃ =
AT RxxA so that

Rx̃x̃W = HT . (10.115)

We now pick only the first columns of the Sylvester matrices for the SIMO case on
both sides. Moreover, it is important to assume that the first microphone is the one
that is closest to the source [37]. Using this assumption we finally obtain

w = h1,0R−1
x̃x̃ 1, (10.116)

where 1 = [1,0, . . . ,0]T and h1,0 denotes the first coefficient of the acoustic model
from the source to the first microphone, which acts as an arbitrary scaling factor.
This expression exactly corresponds to the algorithm presented in [37] including
the whitening procedure, originally introduced in a heuristic way. We can see from
this derivation that this algorithm indeed follows from TRINICON for the SOS case
and stationarity assumption. Moreover, we see that in contrast to the previously
presented approaches, this algorithm requires some prior knowledge of the source
position. In other words, it may in fact be regarded as a semi-blind deconvolution
algorithm. Furthermore, it becomes obvious that extending this approach to the gen-
eral MIMO case raises the problem of estimating the relative positions of multiple
simultaneously active sound sources.

10.7 Experiments

In this section, we evaluate the dereverberation performance for both the SIMO case
(i.e., one source) and the MIMO case (two sources) using measured data. In the first
set of experiments in the SIMO case, we compare the convergence properties based
on the exploitation of the different stochastic signal properties (SOS, HOS) for the
ideal demixing filter length. We then compare the DI approach with the II approach
and investigate the sensitivity of both approaches with respect to the overestima-
tion of the filter lengths. Finally, by extending the scenario to the MIMO case, we
consider both the separation performance and the dereverberation performance. For
illustration, we also compare the results in the MIMO case with the corresponding
results of pure separation algorithms.
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10.7.1 The SIMO Case

The experiments were conducted using speech data convolved with impulse re-
sponses of length M = 9000 of a real room with a reverberation time T60 ≈ 700 ms
and a sampling frequency of 16 kHz. To begin with, we consider an acoustic SIMO
scenario, i.e., there is only Q = 1 active sound source in the room. A linear four-
element microphone array (P = 4) with an inter-element spacing of 16 cm was used.
Preliminary experiments using MINT (see Sect. 10.2) applied to the measured im-
pulse responses showed that for the choice P = 4 the ideal inversion solution indeed
exists for the given acoustic scenario, i.e., the mixing system is invertible according
to Sect. 10.2. The speech signal arrived from 24◦ relative to the normal plane of the
array axis and the distance between the speaker and the center of the microphone
array was 165 cm.

As has already been mentioned, according to MINT the overdetermined scenario
P > Q is required for dereverberation. From a practical point of view it is thus
interesting to consider the required degrees of freedom depending on the number of
sensors. The total number of filter coefficients is C := LP. According to (10.18), we
obtain as the optimal number of filter coefficients in the SIMO case

C = P · M−1
P−1

=
P

P−1
· (M−1). (10.117)

We see that for the minimum number P = 2 of sensors we require C = 2 · (M − 1)
coefficients. For P → ∞ it follows C → M − 1. It turns out that the total number
of required filter coefficients decreases with an increasing number of microphones.
Hence, the framework is well suitable and efficient for the overdetermined case.

To evaluate our simulation results there are various possible quality measures for
dereverberation of speech and audio signals (e.g., [58, 59, 75, 76]), such as the rever-
beration time (T60), the definition (D50), the clarity index (C80), the (Rapid) Speech
Transmission Index (STI/RASTI), or Spectral Distortion (SD). While the first three
quantities are system-based and are defined in the context of room acoustics, the lat-
ter two are signal-dependent distortion measures. Another signal-dependent quan-
tity which is commonly used in the signal processing literature for the evalua-
tion of dereverberation approaches is the Signal-to-Reverberant Ratio (SRR, see,
e.g., [70]). Similarly to the quantities D50 and C80 it measures the power ratio be-
tween the direct sound and the contribution by the reverberation. However, since
the SRR is signal-based, it also takes into account the excitation of the adaptation
algorithm. It is measured in decibels (dB) and is defined for a signal sq at a sensor
with signal xp as

SRRp,sq = 10log
∑n
(
∑nΔ
κ=0 hqp,κsq(n−κ)

)2

∑n
(
∑M−1
κ=nΔ hqp,κsq(n−κ)

)2 dB, (10.118)

where nΔ is a discrete-time index defining the boundary between the direct signal
path and the contribution by the reverberation. Note that usually, in the case of
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Fig. 10.16 SRR performance of SIMO-based MCBPD for (a) increasing number of offline-
iterations, (b) different overall signal lengths

speech signals, the first 50 ms after the main peak of the impulse responses are
also added to the contribution of the direct path, i.e., nΔ is replaced by the so-called
critical delay time n50, which is known to contribute to the speech intelligibility [59].
In the following simulation results this perceptual effect is taken into account. The
SRR after (10.118) also forms the basis for the definition of the so-called segmental
SRR (e.g., [70]), which is usually preferred in practice due to the nonstationarity
of speech and audio signals and the higher correlation to the quality perceived by
auditory measurements. The segmental SRR is based on time-varying local SRR
estimates which are obtained by decomposing the signals into KS segments of length
NS, i.e., the averaging in (10.118) is performed only over these short intervals. The
segmental SRR is then defined as the average of the local SRR estimates over the
KS segments. In our simulations, we use NS = 320. This corresponds to the typical
stationarity interval for speech (20 ms for a sampling rate of 16 kHz).

Furthermore, in the context of adaptive signal processing, another interesting
aspect of the SRR is that formally it corresponds directly to the definition of the
so-called Signal-to-Interference Ratio (SIR), which is usually used in the literature
for the evaluation of signal separation approaches, such as BSS. If we consider the
MCBPD optimization criterion, which can also be regarded as a contrast function
for signal separation and dereverberation, we may hypothesize that in practice, the
potential SRR improvement will generally be upper-bounded by the potential SIR
improvement in the MIMO case. The same consideration also applies to the seg-
mental SRR and the segmental SIR.

We first consider the direct-inverse approach to SIMO-based dereverberation.
Our simulations are based on the coefficient update (10.106) (without the last term
in the SIMO case) using the correlation method. We chose L = 3000 according to
(10.18), the block length N = N′

L = 320 corresponding to a stationarity interval of
20 ms, and nA = 32. Figure 10.16 shows the SRR improvement for offline (batch)
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Fig. 10.17 First 5000 taps of (a) one of the measured room impulse responses of the mixing system
H and (b) impulse response of the overall system C after convergence

adaptation, i.e., β (i,m) = β (i) in (10.39) (and thus β ′(i,m) = β ′(i) in (10.106)) cor-
responds to a rectangular window function over the entire available signal length,
and the outer sum in (10.39) and (10.106) turns into a summation of the contribu-
tions from all blocks with equal weights. Figure 10.16(a) illustrates the convergence
over the number of iterations. We see that the optimization based purely on second-
order statistics (SOS, dash-dot line, only the first term in the brackets in (10.106)
was used) exhibits a rapid initial convergence, while the kurtosis-based approach
(HOS, dashed line, only the second term in the brackets in (10.106) was used) finally
achieves a higher level of SRR improvement at the cost of a slower initial conver-
gence. By exploiting all the available statistical signal properties (SOS+HOS, solid
line, both terms in the brackets in (10.106) were used), the TRINICON framework
combines the advantages of the former two approaches. The higher data requirement
for HOS-based estimation is also reflected in Fig. 10.16(b). Here, we performed the
offline adaptation for various overall signal lengths. It can be seen that the SOS-
based contribution of the optimization already provides reasonable performance for
relatively short signal lengths. Hence, in practice, where online adaptation is re-
quired due to potential changes of the room impulse responses, the synergy effects
provided by TRINICON appear to be attractive.

Figure 10.17 shows the first 5000 taps of one of the room impulse responses
of the measured mixing system and of the overall system (i.e., between the source
and the MCBPD output) after dereverberation, based on the combined (SOS+HOS)
TRINICON approach and 180 iterations with a signal length of 30s (see Fig. 10.16).
The same parameters were used for the spectrograms for the first three seconds of
the signals in Fig. 10.18. Both representations illustrate a significant enhancement
of the speech signals. The spectrograms were computed as sequences of DFTs of
windowed data segments. In this example, the Hamming window length was chosen
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Fig. 10.18 Spectrograms for 0 . . .4 kHz of the first 3 s of (a) original source signal s(n) (b) received
signal x1(n) at microphone 1 and (c) output signal y(n) after convergence

to be 20 ms, as it is typical in speech analysis. This is short enough so that any single
20 ms frame will typically contain data from only one phoneme, yet long enough
that it will include at least two periods of the fundamental frequency during voiced
speech assuming the lowest voiced pitch to be around 100 Hz.

As mentioned in Sects. 10.2 and 10.3, the correct choice of the filter length is
an important issue in blind dereverberation, especially in the application of the
identification-and-inversion approach. Hence, we now compare the DI and II ap-
proaches with respect to the sensitivity of overestimation of the filter lengths. Note
that formally, according to Sect. 10.5.2, the TRINICON-based adaptation algorithm
for blind system identification differs only slightly from the corresponding MCBPD
algorithm (e.g., (10.105)): the sign of the update term is changed and the relation
between the filter coefficients and the estimates of the mixing system, i.e., (10.79),
has to be taken into account. Moreover, in the II approach to dereverberation, ad-
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Fig. 10.19 Poles and zeros in the z-domain of subfilters (a) h1 and (b) h2 of a simple SIMO mixing
system without common zeros

ditionally, the application of MINT (10.17) is required to calculate the demixing
system based on the estimated mixing system. These modifications were made in
(10.106) for our next experiment comparing the II approach with the DI approach
(using (10.106) without modifications).

To allow for a fair comparison between the two different approaches, we as-
sumed the same mixing system with only two sensor channels in both cases. For
this experiment, the mixing system was composed of two very simple artificially
created impulse responses in order to guarantee the avoidance of common zeros (or
even near common zeros), as shown in Fig. 10.19. Hence, as long as the optimal
filter length is chosen, this SIMO system is guaranteed to be invertible, which we
also confirmed by applying MINT in a supervised manner. Table 10.2 shows the
results of the blind estimation in terms of SRR improvement for both the DI and II
approaches for different demixing filter lengths, and without any of the additional
repair measures mentioned in Sect. 10.3.5. Note that in this experiment we chose
nΔ in the above SRR definition equal to the delay of the main peaks of the impulse
responses due to their short lengths. Obviously, the numerical results confirm that
with both approaches the best performance is obtained by choosing the optimal filter
length according to Sects. 10.2 and 10.3. Moreover, the results clearly show that the
direct-inverse approach is significantly more robust to overestimation of the filter
length. On the other hand, however, we have to note that the potential applicability
of the identification-and-inversion approach is more general because the distinction
between the speech production system and the room acoustics is not required in this
case.
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Table 10.2 Comparison of the DI approach to blind dereverberation with the II approach with
respect to the sensitivity of overestimation of the filter length for the simple example M = 10,
P = 2, LDI,opt = 9, LII,opt = 10

L ≈ 80%Lopt L = Lopt L ≈ 120%Lopt L ≈ 140%Lopt L ≈ 150%Lopt

DI 29.8 dB 31.2 dB 27.3 dB 24.1 dB 22.4 dB

II 22.0 dB 25.4 dB 9.6 dB 4.5 dB 0.2 dB

10.7.2 The MIMO Case

Finally, we extend the investigation of MCBPD for the direct-inverse approach to
the MIMO case. We again consider the same acoustic scenario with T60 ≈ 700 ms,
as described above for the SIMO case. In the following experiment there are two
active speakers (one male speaker and one female speaker). The configuration is
symmetric with respect to to the linear microphone array. We again apply the coeffi-
cient update (10.106) using the correlation method and the same parameter settings
as described for the SIMO case. Figure 10.20 shows both the improvement of the
signal-to-interference ratio (i.e., source separation at the ouputs) and the improve-
ment of the signal-to-reverberation ratio. The SIR and SRR curves were averaged
between the contributions from the two sources. Similar to the SIMO case, TRINI-
CON provides synergies between the SOS-based adaptation and the HOS-based
adaptation. This advantage can be seen in both the separation and the dereverbera-
tion performances. We also confirm that the SRR improvement is generally upper
bounded by the SIR improvement. It is remarkable that the SRR improvements in
the MIMO case are only slightly lower than those in the SIMO case. As a reference,
we also included the SIR convergence curve of the popular narrowband BSS algo-
rithm after Fancourt and Parra [34], which is based on SOS (see also Sect. 10.5.3).
We see that the initial convergence of the rigorously derived broadband approach is
well comparable with that of the narrowband algorithm, while the final SIR perfor-
mance is significantly higher. The reference curve for a pure separation algorithm
based on SOS ( [17] as a special case of (10.106) with nA = L− 1 according to
Fig. 10.14, N = L, and using only the first term in the brackets) in the SRR plot, and
the comparison with a conventional delay-and-sum beamformer confirms the high
efficiency of the MCBPD extension presented in this chapter.
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Fig. 10.20 (a) SIR and (b) SRR performance of MIMO-based MCBPD

10.8 Conclusions

Based on the TRINICON framework for broadband adaptive MIMO filtering, in this
chapter we developed a strictly analytical top-down approach to the problem of blind
dereverberation of speech and audio signals. It was shown that this provides both a
common framework for various existing and novel powerful blind dereverberation
algorithms and allows for a direct comparison between the various algorithms and
the different existing approaches to blind dereverberation.

Comparing the two fundamental approaches to blind dereverberation, i.e., the
identification-and-inversion approach and the direct-inverse approach, we can sum-
marize that in principle the II approach is suitable for arbitrary audio signals, how-
ever, on the downside, this flexibility with respect to the source signals implies a
high sensitivity to overestimation of the optimum filter length and common zeros
in z-domain representation of the mixing system paths, so that additional repair
mechanisms are necessary. Moreover, the explicit MINT-based inversion of the es-
timated mixing matrix in the II approach increases the computational complexity.
On the other hand, the direct-inverse approach avoids the two-step procedure and the
related problems of the II approach, but requires more stringent stochastic model as-
sumptions on the source signals in order to avoid whitening effects. Fortunately, the
TRINICON framework inherently allows the incorporation of powerful source mod-
els leading to a high separation and dereverberation performance without distortions
for signals like speech.

Appendix A: Compact Derivation of the Gradient-based Coefficient Update

For the following compact derivation, we formulate the TRINICON coefficient op-
timization criterion (10.39) in the following way:
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J = Êlong

{
Êblock

{
f
(

y,Q(1),Q(2), . . .
)}}

, (10.119)

with
f = −

(
log p̂s,PD(y)− log p̂y,PD(y)

)
, (10.120)

and the operators Êblock{a}= 1
N ∑iNL+N−1

j=iNL
a( j) for averaging within each block, and

Êlong{b} = ∑∞
i=0β (i,m) · b(i) over multiple blocks depending on the choice of the

function β . The set of quantities

Q(r) = Êblock

{
G(r)(y)

}
, r = 1,2, . . . , (10.121)

(where G(r) are suitable functions of the observation vectors y) contains all stochas-
tic model parameters Q(·)

s and Q(·)
y according to (10.41) determining p̂s,PD(·) and

p̂y,PD(·), respectively.
The gradient of (10.119) with respect to W̌ reads according to (10.43) (omitting

the iteration index here for simplicity) as:

ΔW̌ = Êlong

{
SC

{
Êblock

{
∂
∂W

f
(

y,Q(1),Q(2), . . .
)}}}

. (10.122)

We now apply the general multivariate chain rule:

∂
∂W

f
(

y,Q(1),Q(2), . . .
)

=∑
i

∂ [y]i
∂W

∂ f
∂ [y]i

+∑
r
∑

i1,i2,...

∂Q(r)
i1,i2,...

∂W
∂ f

∂Q(r)
i1,i2,...

,

(10.123)
whereQ(r)

i1,i2,... denote the elements of Q(r). AnalogouslyG(r)
i1,i2,... denote the elements

of G(r). The derivatives in the second term with respect to W can be expressed as

∂Q(r)
i1,i2,...

∂W
= Êblock

{
∂
∂W

G(r)
i1,i2,... (y)

}
= Êblock

⎧⎨
⎩∑i

∂G(r)
i1,i2,...

∂ [y]i

∂ [y]i
∂W

⎫⎬
⎭ . (10.124)

With the MIMO relation y = WT x and with (10.124) we obtain8 from (10.123)

∂
∂W

f
(

y,Q(1),Q(2), . . .
)

= x
∂ f
∂yT +∑

r
∑

i1,i2,...

Êblock

⎧⎨
⎩x

∂G(r)
i1,i2,...

∂yT

⎫⎬
⎭

∂ f

∂Q(r)
i1,i2,...

.

(10.125)
By introducing this equation into (10.122), we obtain

8 Since in element-wise formulation, [y]i =∑� [x]� [W]�i, we obtain ∂ [y]i
∂ [W] jk

=∑� [x]� δ j�δki = [x] j δki,

and thus
[
∑i

∂ [y]i
∂ [W] jk

∂ f
∂ [y]i

]
=
[
∑i [x] j δki

∂ f
∂ [y]i

]
=
[
[x] j

∂ f
∂ [y]k

]
= x ∂ f

∂yT .
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ΔW̌ = Êlong

{
SC
{

Êblock

{
x
∂ f
∂yT

}

+∑
r
∑

i1,i2,...

Êblock

{
x
∂G(r)

i1,i2,...

∂yT

}
Êblock

{
∂ f

∂Q(r)
i1,i2,...

}}}

= Êlong

{
SC
{

Êblock

{
x

(
∂ f
∂yT

+∑
r
∑

i1,i2,...

∂G(r)
i1,i2,...

∂yT Êblock

{
∂ f

∂Q(r)
i1,i2,...

})}}}
. (10.126)

With (10.120) the last expression finally leads to the gradient-based update (10.44).

Appendix B: Transformation of the Multivariate Output Signal PDF in (10.39)
by Blockwise Sylvester Matrix

Due to the linear MIMO relation

yT(n) = xT(n)W(n), (10.127)

from (10.31) we express the PD-variate output log-likelihood log(p̂y,PD(y(n))) in
(10.39) in terms of the 2PL×PD MIMO coefficient matrix W and the corresponding
multivariate input PDF.

Since in general, W is not quadratic (D ≤ L), we cannot immediately apply the
well-known relation between the PDFs of two linearly related vectors via the deter-
minant of a quadratic mapping matrix [73]. However, in our case 2PL > PD, i.e., for
‘tall’ matrices W we can form a joint PDF p̂yx̃,2LP(y(n), x̃(n)) of the output vector y
and certain elements x̃ of the input vector x so that this joint PDF exhibits the same
dimensionality as the input PDF p̂x,2LP(x(n)). Then, after the transformation

p̂yx̃,2LP(y(n), x̃(n)) =
p̂x,2LP(x(n))∣∣detW̃

∣∣ , (10.128)

with a quadratic 2LP × 2LP matrix W̃, the desired multivariate output PDF
p̂y,PD(y(n)) is obtained without loss of generality as a marginal density by inte-
gration for x̃(n) [73].

In our application a channel-wise extension of matrix W is desirable so that the
MIMO relation (10.127)

[
yT

1 , . . . ,yT
P
]
=
[
xT

1 , . . . ,xT
P
]
⎡
⎢⎣

W11 · · · W1P
...

. . .
...

WP1 · · · WPP

⎤
⎥⎦
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may be extended to
[
yT

1 , x̃T
1 , . . . ,yT

P, x̃T
P
]
=
[
xT

1 , . . . ,xT
P
]

W̃, (10.129)

where x̃p, p = 1, . . . ,P denote vectors containing the 2L−D last elements of xp and

W̃ =

⎡
⎢⎢⎢⎢⎢⎣

W11

[
0D×2L−D

I2L−D×2L−D

]
· · · W1P 02L×2L−D

...
...

. . .
...

...

WP1 02L×2L−D · · · WPP

[
0D×2L−D

I2L−D×2L−D

]

⎤
⎥⎥⎥⎥⎥⎦

. (10.130)

With (10.128) we obtain

p̂y,PD(y(n)) =
1∣∣detW̃

∣∣
∫ ∞

−∞
· · ·
∫ ∞

−∞
p̂x,2LP(x(n))dx̃1 · . . . ·dx̃P

=
1∣∣detW̃

∣∣ p̂xPD,PD(xPD(n)), (10.131)

which leads to the following simple expression for the desired log-likelihood:

log p̂y,PD(y(n)) = log p̂xPD,PD(xPD(n))− log
∣∣detW̃

∣∣ . (10.132)

Since the first term on the right hand-side of (10.132) does not depend on the fil-
ter coefficients, it does not need to be considered further for the gradient of the
optimization criterion (10.39). To simplify the important second term in (10.132)
together with W̃ from (10.130) we exploit the fact that we can exchange colums or
rows of W̃ without changing the value of |detW̃|. Application of the general matrix
relation

det
[

A1 0
A2 I

]
= detA1 (10.133)

immediately leads then to the compact formulation

log p̂y,PD(y(n)) = log p̂xPD,PD(xPD(n))− log
∣∣det

{
VTW

}∣∣ , (10.134)

with the window matrix V defined in (10.46). Note that VTW is only of dimension
DP×DP.
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Appendix C: Polynomial Expansions for Nearly Gaussian Probability
Densities

Orthogonal Polynomials

Let I be a finite or infinite interval and r(x) be a continuous and positive function
(which we here call a weighting function) on the interval such that

∫
I f (x)r(x)dx

exists for every polynomial f (x). Then there is a unique set of polynomials Pn(x),
n = 0,1, ..., of order n such that

∫
I
Pk(x)Pn(x)r(x)dx := 〈Pk,Pn〉r = cn δkn (10.135)

with a predefined constant cn. These polynomials Pn(x) are called orthogonal poly-
nomials. The operation 〈·, ·〉r denotes the inner product in the vector space of the
polynomials.

An important class of orthogonal polynomials in our context are the so-called
Chebyshev–Hermite polynomials PH,n(x), which are specified by I = (−∞,∞), the
weighting function r(x) = 1√

2π e−x2/2, and cn = n!, e.g., [56].
For the orthogonal polynomials considered here there is an important proposi-

tion stating that they even form a basis in a Hilbert space so that any quadratically
integrable function f (x) with respect to r(x) on I can be expressed by the expansion,
e.g., [56]

f (x) =
∞

∑
n=0

1
cn

〈 f ,Pn〉r Pn(x). (10.136)

Polynomial Expansion for Univariate Densities

The two different expansions that are usually used to obtain a parameterized rep-
resentation of nearly Gaussian probability density functions are the Edgeworth and
the Gram–Charlier expansions, e.g., [51]. They lead to very similar approximations,
so in this chapter we only consider the Gram–Charlier expansion. These expansions
are based on the above-mentioned Chebyshev–Hermite polynomials PH,n(x).

Let p(x) = 1√
2πσ e−

x2

2σ2 p̃
( x
σ
)

represent an arbitrary univariate probability den-
sity, where p̃(·) contains the higher-order contributions. According to (10.136) the
higher-order statistics contribution p̃ can readily be expanded as

p̃(x) =
∞

∑
n=0

anPH,n(x), (10.137a)

an =
1
n!

∫ ∞

−∞
p̃(x′)PH,n(x′)

1√
2π

e−x′2/2dx′. (10.137b)

Hence, the complete density function p(x) is finally expressed as
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p(x) =
1√

2πσ
e−

x2

2σ2
∞

∑
n=0

anPH,n

( x
σ

)
. (10.138a)

The coefficients an after (10.137b) can be compactly written using the expectation
operator:

an =
1
n!

E
{

PH,n

( x
σ

)}
. (10.138b)

Example: Fourth-order Approximation for a Zero-mean Process

To obtain explicit expressions for the coefficients (10.138b), the Chebyshev–
Hermite can be calculated using the derivatives of the standardized Gaussian prob-
ability density function (corresponding to the weighting function r(x)):

PH,n(x) = (−1)n 1
r(x)

∂ nr(x)
∂xn , (10.139)

so that PH,0(x) = 1, PH,1(x) = x, PH,2(x) = x2 −1, PH,3(x) = x3 −3x, PH,4(x) = x4 −
6x2 + 3. The resulting expansion coefficients for zero-mean processes are a0 = 1,

a1 = a2 = 0, a3 =
E{x3}
3!σ3 , a4 = 1

4!

(
E{x4}
σ4 −3

)
, so that

p(x) ≈ 1√
2πσ

e−
x2

2σ2
(

1 +
κ3

3!σ3 PH,3

( x
σ

)
+

κ4

4!σ4 PH,4

( x
σ

))
, (10.140)

with [71] the skewness κ3 = E
{

x3} and the kurtosis κ4 = E
{

x4}− 3σ4. In the
context of higher-order statistics-based estimation the kurtosis plays a particularly
prominent role since it indicates whether a PDF is supergaussian (κ4 > 0) or sub-
gaussian (κ4 < 0).

Multivariate Orthogonal Polynomials

Based on the previous section we may now generalize the Gram–Charlier expansion
to multivariate probability density functions for a vector x of length D.

We formulate the orthogonality relation analogously to (10.135),
∫

ID
Pk(x)Pn(x)r(x)dx = cn δkn, (10.141)

and the inner product

〈 f ,g〉r :=
∫

ID
f (x)g(x)r(x)dx. (10.142)

The D-variate Chebyshev–Hermite polynomials are specified by the D-variate
weighting function [84]



380 H. Buchner and W. Kellermann

r(x) =
1√

(2π)D
e−‖x‖2

2/2 =
D

∏
i=1

1√
2π

e−x2
i /2

=
D

∏
i=1

r1(xi). (10.143)

As we can see, in this case we have a product weighting function. It can be shown
[84] that this has the very advantageous consequence that it also leads to corre-
sponding product polynomials

Pn(x) =
D

∏
i=1

Pi,ni(xi). (10.144)

Note that n denotes a vector of indices ni, i = 1, . . . ,D. The expansion of a multi-
variate function f (x) is then given as

f (x) =
∞
∑
n=0

1
cn

〈 f ,Pn〉r Pn(x). (10.145)

Polynomial Expansion for Multivariate Densities

Let p(x) = 1√
(2π)DdetRxx

e−
1
2 xT Rxx−1x p̃

(
L−1x

)
represent an arbitrary D-variate prob-

ability density, where p̃(·) again contains the higher-order contributions, and L
is obtained by the Cholesky decomposition Rxx = LT L (note that

√
xT Rxx

−1x =
‖L−1x‖2).

In the same way as in the univariate case, we now obtain the following represen-
tation of a multivariate probability density function p(x):

p(x) =
1√

(2π)DdetRxx
e−

1
2 xT Rxx−1x

∞
∑
n=0

anPH,n
(
L−1x

)
, (10.146a)

with the coefficients
an =

1

∏D
i=1 ni!

E
{

PH,n(L−1x)
}

. (10.146b)

Note that PH,n(·) in (10.146a) and (10.146b) is given by (10.144).

Appendix D: Expansion of the Sylvester Constraints in (10.83)

We consider here an expression with the Sylvester Constraint for one channel of the
form

aTSC
{

bcT} ,
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where a, b, c denote column vectors of length L, 2L, and D, respectively. With the
explicit expression of the generic Sylvester constraint for one channel after Fig. 10.6
and [19],

[w]m =
2L

∑
k=1

D

∑
�=1

[W]k� δk,(m+�−1),

where δi j denotes the Kronecker symbol, the above expression reads as

L

∑
m=1

am

2L

∑
k=1

D

∑
�=1

bkc�δk,(m+�−1) =
D

∑
�=1

L

∑
m=1

ambm+�−1c�. (10.147)

From the linearity of the operations, we easily deduce

aT
1 SC

{
b1cT}+ aT

2 SC
{

b2cT}

=
D

∑
�=1

(
L

∑
m=1

a1,mb1,m+�−1 +
L

∑
m=1

a2,mb2,m+�−1

)
c�. (10.148)
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Markov chain Monte Carlo, 228
Matched filter beamformer, 146
Mean opinion score, 35
Mean squared coherence, 76
MINT, see Multiple-input/output inverse

theorem
Misconvergence, 159
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Polack’s model, 34, 62
Pseudo-inverse, 194

Ray-tracing, 31
Reflection coefficient, 32
Reverberant component, 7, 23, 41
Reverberation, 7
Reverberation time, 24, 81

Eyring’s formula, 24
Sabine’s formula, 24

Schroeder frequency, 28
Sequential Monte Carlo, 230
Short-time Fourier transform, 66
Signal-to-reverberant ratio, 43, 368
Single-input multi-output system, 160
Sound energy density, 23
Sound field, 23
Source-image model, 31

Spatial expectation, 23, 34, 63
Spatial filtering, 9, 51
Speech quality measures

Objective, 36
Subjective, 35

Spherically invariant random process, 353
SRR, see Signal-to-reverberant ratio
Statistical reverberation model, 62
Statistical room acoustics, 33, 62, 100
STFT, see Short-time Fourier transform
Subband equalization, 198
Sylvester constraint, 334
Sylvester matrix, 137, 160, 316
System mismatch, 194

T60, see Reverberation time
Time delay of arrival estimation

GCC-PHAT, 117, 175

Wave equation, 22, 33
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