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Abstract Human agents deliberate using models based on reason for only a minute
proportion of the decisions that they make. In stark contrast, the deliberation of
artificial agents is heavily dominated by formal models based on reason such as
game theory, decision theory and logic — despite that fact that formal reasoning will
not necessarily lead to superior real-world decisions. Further the Nobel Laureate
Friedrich Hayek warns us of the ‘fatal conceit’ in controlling deliberative systems
using models based on reason as the particular model chosen will then shape the
system’s future and either impede, or eventually destroy, the subtle evolutionary
processes that are an integral part of human systems and institutions, and are crucial
to their evolution and long-term survival. We describe an architecture for artificial
agents that is founded on Hayek’s two rationalities and supports the two forms of
deliberation used by mankind.

1 Introduction

This paper describes a form of agency that enables rational agents to move beyond
the bounds of Cartesian rationalism. The work is founded on the two forms of ratio-
nality described by the two Nobel Laureates Friedrich Hayek [1] and Vernon Smith
[2] as being within ‘two worlds’. The work of Hayek and Smith is concerned with
real systems and particularly with economic institutions. So the ideas here may not
concern agents in closed systems such as computer games, but they do concern all
real world agents and systems.

For computerised, intelligent agents the predominant logical distinction is be-
tween deliberative and reactive logic. Hayek and Smith’s two rationalities relate
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directly to two distinct forms of deliberation, and have little to do with autonomic
reactivity that typically overrides other processes in both the human neuropsycho-
logical system and in intelligent agents.

Hayek and Smith identify; constructivist rationality that underpins rational pre-
dictive models of decision making; and, ecological rationality founded on the con-
cept of “spontaneous order1” that refers to social institutions and practices that
emerge from the history of an agent’s interactions and are not pre-designed. For
intelligent agency we interpret Hayek and Smith’s two rationalities as:

• Constructivist. An agent’s actions are determined by a theory that may be inde-
pendent of the particular environment in which the agent is situated.

• Ecological. An agent’s actions are the product of prior agents’ actions only —
this includes observations that an agent has made of its environment.

As the name suggests, ecological rationality is concerned with a richer form of
bounded rationality than simplifying the calculation of a theoretically ‘optimal’ ac-
tion by: rules for simplifying search, rules for terminating search or heuristic deci-
sion rules to select actions from an incomplete set of options. Ecological rational-
ity is taken in the context of the Hayekian view [1] in which agents evolve them-
selves together with the norms of the systems they inhabit2 whilst their environment
changes. This all sounds rather Darwinian, but Hayek is careful to distinguish be-
tween genetic evolution and cultural evolution [op. cit. page 23].

Ecological rationality is deliberation that uses past experience and contextual
triggers to build action sequences from experiential memory. Past experience is a
precursor to ecological rationality. For example, as we have described them previ-
ously, trust and honour [4] and reputation [5], are purely ecological concepts. Build-
ing action sequences from experiential memory involves more than just retrieval. An
agent has: to learn to imitate the actions that it believes that others do, to form ex-
pectations of the effect of actions, to select actions from a set of candidates, to adapt
actions to suit the current norms and state of the environment, and when things don’t
work out to learn to experiment with untested actions.

Why would an agent be motivated to deliberate in a non-constructivist way? First,
it may not be aware of a constructivist theory that addresses its goals3. Second, it
may have difficulty articulating its needs and its context completely and accurately

1 The term ‘order’ refers to: traditions, customs, norms, rules and guidelines. An agent may belong
to a number of normative systems (or, electronic institutions [3]) whose norms may be shared
with, or in conflict with, those of other systems. The ‘extended order’ includes the whole show. If a
multiagent system interacts with human society then its norms will respect the rules and laws that
apply to society as a whole.
2 The evolution of individual agents and component systems are not considered in isolation — the
whole ensemble evolves in response to itself and to the environment — they are complex systems.
For example, in Hayek’s extensive writing there is little mention of ethics as it too evolves.
3 For example, the agent may desire to act so as to strengthen, or weaken, a relationship with a
particular agent, perhaps to discharge or generate some social obligation, or it may desire to act
so that it is seen to be behaving a particular way, perhaps by apparently behaving altruistically
— there may not be a theory that satisfactorily balances these desires with more mundane desires
concerning the effect of the actions that it can take.
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in the theory. Third, the data required by the theory to determine its actions may not
be readily available. Fourth, it may not have sufficient time for all this to happen.
Fifth, it may favour ecological deliberation simply because it leads to a superior
outcome. For example, when selecting a bottle of wine, some human agents refer
to books of ratings and prices and make a constructivist choice, whereas others rely
on their merchant to make a choice for them — this choice is purely ecological, its
‘rationality’ is in the trust that has been built through repeated interaction.

This paper is related to the issue generally known as bounded rationality that
dates back to David Hume and more recently to the early work of Herbert Simon.
Bounded rationality refers to systems that are not founded on Cartesian rationalism;
it has been widely addressed in economics [6], and is discussed in all good books on
artificial intelligence, e.g. [7]. For over fifty years artificial intelligence research has
spawned countless theories and systems that are not founded on Cartesian rational-
ism; one classic contribution being Rodney Brooks’ work reported in his ‘Comput-
ers and Thought’ award-winning paper [8]. Despite these advances, work in multia-
gent systems has been heavily influenced by game theory, decision theory and logic
[9]; this is in contrast to an original motivation for investigating ‘distributed artifi-
cial intelligence’ in the mid 1970s where intelligence emerged from the interactions
between systems.

This paper is organised as follows. Various preliminaries are described in Sec-
tion 2. Section 3 introduces the essential features of the agent architecture includ-
ing the world model, and a ‘social model’ that is essential to ecological deliber-
ation. Section 4 describes expectations of the effect of actions in the experiential
memory— these expectations include measures of trust. Section 5 describes the
ecological deliberative process, and Section 6 concludes.
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2 Preliminaries

This work is based on the intelligent agent framework illustrated in Figure 1. An
agent’s in-coming messages (the actions of other agents) and observations of the
effect of its own actions are tagged with the identity of the sending agent and the
time received, and are stored in a repository. A world model contains beliefs of
the state of the other agents and the environment, a social model contains beliefs
of the state of the agent’s relationships with the other agents, and a norm model
contains beliefs of the state of the norms in the systems that the agent frequents.
The agent’s experiential memory contains complete historic information concerning
prior actions and sequences of actions — this is detailed in Section 3.

Some messages trigger the agent’s reactive logic that overrides other activities
and may cause an action to be performed or may trigger further deliberative pro-
cesses. Summarising techniques are used to distil the large number of incoming
messages into summary expectations of the effect of actions including: trust, hon-
our and reliability. These expectations may be used by the agent’s constructivist
deliberation, and are vital to its ecological deliberation. The agent aims to satisfy its
needs using one of two forms of deliberation: constructivist (described in [10]) that
is based on theories that call on plans, and ecological that uses past experience and
contextual triggers to retrieve or build action sequences from experiential memory.

This paper draws from our work on information-based agency [11] that is well-
suited to this purpose. It supports rich models of inter-agent relationships [12] that
are a quintessential feature of emergent behaviour between agents, it supports rich
models of trust, honour and reliability [4] that provide the rationale for ecologi-
cally rational behaviour, it includes a generate and test approach to planning [10],
additionally it uses tools from information theory to manage uncertainty in a nice
way. The main contribution of this paper is to describe a single agent that exhibits
ecological deliberation, we show how it evolves as its experience grows.

We assume that a multiagent system {α,β1, . . . ,βo,ξ ,θ1, . . . ,θt}, contains an
agent α that interacts with negotiating agents, βi, and information providing agents,
θ j. We assume that each dialogical interaction takes place within a particular insti-
tution that is represented by an institutional agent, ξ , [3]. Institutions, or normative
systems, play a central role in this work. We will describe an ontology that will
permit us both to structure the dialogues and to structure the processing of the infor-
mation gathered by agents. Our agent α has two languages: C is an illocutionary-
based language for communication, and L is a probabilistic first-order language
for internal representation including the representation of its world model M t . C is
described in [12].

We model ontologies following an algebraic approach [13]. An ontology is a
tuple O = (C,R,≤,σ) where:

1. C is a finite set of concept symbols (including basic data types);
2. R is a finite set of relation symbols;
3. ≤ is a reflexive, transitive and anti-symmetric relation on C (a partial order);
4. σ : R→C+ is the function assigning to each relation symbol its arity.
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where≤ is a traditional is-a hierarchy, and R contains relations between the concepts
in the hierarchy.

The concepts within an ontology are closer, semantically speaking, depending
on how far away are they in the structure defined by the ≤ relation. A measure [14]
bases the semantic similarity between two concepts on the path length induced by
≤ (more distance in the ≤ graph means less semantic similarity), and the depth of
the subsumer concept (common ancestor) in the shortest path between the two con-
cepts (the deeper in the hierarchy, the closer the meaning of the concepts). Semantic
similarity is then defined as:

Sim(c,c′) = e−κ1l · e
κ2h− e−κ2h

eκ2h + e−κ2h

where l is the length (i.e. number of hops) of the shortest path between the concepts,
h is the depth of the deepest concept subsuming both concepts, and κ1 and κ2 are
parameters scaling the contribution of shortest path length and depth respectively.

Given a formula ϕ ∈C in the communication language we define the vocabulary
or ontological context of the formula, O(ϕ), as the set of concepts in the ontology
used in it. Thus, we extend the previous definition of similarity to sets of concepts
in the following way:

Sim(ϕ,ψ) = max
ci∈O(ϕ)

min
c j∈O(ψ)

{Sim(ci,c j)} (1)

These definitions of semantic similarity are based only on the structure of the ontol-
ogy, and are a first approximation to ‘semantic distance’ in a rich sense.

3 Agent Architecture

α acts by generating utterances, and observes by receiving them. α acts to satisfy a
need that may be exogenous such as a need to trade profitably, triggered by another
agent’s actions, or endogenous such as α deciding that it owns more wine than it
requires. Needs either trigger α’s constructivist, goal/plan deliberative reasoning
described in [10], or ecological deliberation described in Section 5.

Agent α receives all messages expressed in C , they are time-stamped and
sourced-stamped, qualified with a subjective belief function Rt(α,β ,µ) that nor-
mally decays with time (see below), and are stored in a repository Y t that contains
information concerning every4 action that α observes — presumably this will in-
clude all of those actions that α takes.

α’s experiential memory contains a history of what happened when any goal-
directed sequence of actions was triggered or when any individual action was ob-
served. First an individual action experience, a, consists of:

4 Practicality is not a concern here.

83Dual Rationality and Deliberative Agents



• the action, aact, i.e. the utterance, the sending and receiving agents, and the time
at which the action was taken,

• the trigger, or precondition, that signalled when the action was to be performed,
atrig,

• any observed effect(s), aeffect
5, i.e. any identifiable responses that are an effect of

aact — see Section 4.

Then a sequence experience, s, consists of:

• the goal of the sequence, sgoal, that may have been to satisfy a need,
• a sequence of action experiences, sa = (ai)n

i=1, where each action experience ai
is described as above,

• beliefs of the prevailing environment, senv, that includes: the state of the agent’s
norm model (see Section 3.3), snorm, the agents involved in the interaction, sagents,
and the state of the agent’s social model (see Section 3.2) between the agents,
ssocial, i.e. senv = {snorm,sagents,ssocial},

• a rating6 of the outcome of the action sequence, srate, that enables an ecologically
rational agent to develop its repertoire of actions.

α uses the contents of its experiential memory to: reuse successful action sequences,
build new sequences from individual actions, and improve prior sequences by using
its knowledge of individual action experiences.

The integrity of beliefs derived from observations decreases in time. α may have
background knowledge concerning the expected integrity of a belief as t→∞. Such
background knowledge is represented as a decay limit distribution. If the back-
ground knowledge is incomplete then one possibility is for α to assume that the
decay limit distribution has maximum entropy whilst being consistent with the data.
Given an uncertain belief represented as the distribution, P(Xi), and a decay limit
distribution D(Xi), P(Xi) decays by:

Pt+1(Xi) = ∆i(D(Xi),Pt(Xi)) (2)

where ∆i is the decay function for the Xi satisfying the property that limt→∞ Pt(Xi) =
D(Xi). For example, ∆i could be linear: Pt+1(Xi) = (1−νi)×D(Xi)+ νi×Pt(Xi),
where νi < 1 is the decay rate for the i’th distribution. Either the decay function or
the decay limit distribution could also be a function of time: ∆ t

i and Dt(Xi).

5 These may be difficult to identify precisely, but recording effects is considerably more economical
than recording posterior world states.
6 This rating is not simply in terms of the extent to which the sequence outcome met the original
need, but in a sense that includes the possibility that the other agents involved may have adapted
their actions to take account of changes in circumstance that occur during the sequence itself, or
even that they went “over the odds” and gave more than was expected of them in some sense. These
ratings are on a fuzzy scale from −5 to +5 where 0 means “is perfectly acceptable”, −5 means
“ghastly, completely unacceptable” and +5 means “better than I could have dreamed of”. Ratings
are not a ‘utility function’ in any sense — they are a subjective, ex post assessment of outcomes
that is totally dependent on the prevailing state of the environment.
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3.1 World Model

In the absence of in-coming messages the integrity of M t decays by Equation 2.
The following procedure updates M t for all utterances expressed in C . Suppose
that α receives a message µ from agent β at time t. Suppose that this message
states that something is so with probability z, and suppose that α attaches an epis-
temic belief Rt(α,β ,µ) to µ — this probability reflects α’s level of personal cau-
tion. Each of α’s active plans, s, contains constructors for a set of distributions
{Xi} ∈M t together with associated update functions, Js(·), such that JXi

s (µ) is a
set of linear constraints on the posterior distribution for Xi. Examples of these up-
date functions are given in Section 4.1. Denote the prior distribution Pt(Xi) by p,
and let p(µ) be the distribution with minimum relative entropy7 with respect to p:
p(µ) = argminr ∑ j r j log r j

p j
that satisfies the constraints JXi

s (µ). Then let q(µ) be the
distribution:

q(µ) = Rt(α,β ,µ)×p(µ) +(1−Rt(α,β ,µ))×p (3)

and then let:

Pt(Xi(µ)) =

{
q(µ) q(µ) is more interesting than p
p otherwise

(4)

A general measure of whether q(µ) is ‘more interesting than’ p is: K(q(µ)‖D(Xi)) >

K(p‖D(Xi)), where K(x‖y) = ∑ j x j ln x j
y j

is the Kullback-Leibler distance between
two probability distributions x and y. Finally merging Equations 4 and 2 we obtain
the method for updating a distribution Xi on receipt of a message µ:

Pt+1(Xi) = ∆i(D(Xi),Pt(Xi(µ))) (5)

This procedure deals with integrity decay, and with two probabilities: first, any prob-
ability z in the message µ , and second the belief Rt(α,β ,µ) that α attached to µ .

Rt(α,β ,µ) is estimated by measuring the ‘difference’ between µ and its subse-
quent verification. Suppose that µ is received from agent β at time u and is verified
by ξ as µ ′ at some later time t. Denote the prior Pu(Xi) by p. Let p(µ) be the pos-
terior minimum relative entropy distribution subject to the constraints JXi

s (µ), and
let p(µ ′) be that distribution subject to JXi

s (µ ′). We now estimate what Ru(α,β ,µ)
should have been in the light of knowing now, at time t, that µ should have been µ ′.

The idea of Equation 3, is that Rt(α,β ,µ) should be such that, on average
across M t , q(µ) will predict p(µ ′). The observed reliability for µ and distribution
Xi, Rt

Xi
(α,β ,µ)|µ ′, is the value of k that:

Rt
Xi

(α,β ,µ)|µ ′ = argmin
k

K(k ·p(µ) +(1− k) ·p ‖ p(µ ′))

7 Entropy-based inference is a form of Bayesian inference that is convenient when the data is sparse
[15] and encapsulates common-sense reasoning [16].
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3.2 Social Model

The social model contains beliefs of the state of α’s relationships with other agents
— it consists of two components. First, an intimacy model that for each agent β

consists of α’s model of β ’s private information, and, α’s model of the private in-
formation that β has about α . Second, a balance model of the extent of reciprocity
between pairs of agents. Private information is categorised first by the type of state-
ment, using a set of illocutionary particles F , and second by the contents of the
statement, using the ontology O . A categorising function κ : U →P(F ), where
U is the set of utterances, allocates utterances to one or more illocutionary particle
category.

It
α/β

is α’s model of β ’s private information; it is represented as real numeric
values over F ×O . Suppose α receives utterance u from β and that category f ∈
κ(u) then: It

α/β ( f ,c) = It−1
α/β ( f ,c) +λ × I(u)×Sim(u,c) for any c ∈O , where λ is the

learning rate, It
α/β ( f ,c) is the intimacy value in the ( f ,c) position in F ×O , I(u) is

the Shannon information gain in M t due to receiving u using Equation 5, and Sim
is as in Equation 1. Additionally, the intimacy model decays in time in any case by
It
α/β

= δ × It−1
α/β

where δ < 1 and very close to 1 is the decay rate.
It
α\β is α’s model of the private information that β has about α . Assuming that

confidential information is treated in confidence α will know what β knows about
α . This means that the same method can be used to model It

α\β as It
α/β

with the
exception of estimating I(u) as it is most unlikely that α will know the precise
state of β ’s world model — for this we resort to the assumption that β ’s world
model mirrors α’s and ‘estimate’ the information gain. Then the intimacy model is
It
αβ

= (It
α/β

, It
α\β ). In [12] balance was defined as the element by element numeric

difference of It
α/β

and It
α\β . That definition is not suitable here.

Rt
α/β

is a model of α’s aggregated rating of β ’s actions in assisting α to achieve
her goals and satisfy her needs. α will have a variety of goals that are categorised
using a set of illocutionary particles G and the ontology O . Suppose α triggers an
action sequence s with goal g = (k,d) when the state of the environment is e and on
completion of the sequence rates the outcome as ρ(α,s,e) then:

Rt
α/β (k,c) = Rt−1

α/β (k,c) +λ ×ρ(α,s,e)×Sim(d,c)

for any c ∈ O , where ρ(α,s,e) is the fuzzy rating of the outcome of s as an integer
in the range [−5,+5], λ is the learning rate, Rt

α/β (k,c) is the aggregated rating in the

(k,c) position in G ×O , and Sim is as in Equation 1. The model decays8 in time in
any case by Rt

α/β
= δ ×Rt−1

α/β
where δ < 1 and very close to 1 is the decay rate. The

balance model is the pair Rt
αβ

= (Rt
α/β

,Rt
α\β ).

8 This form of decay means that in the limit all values in the model decay to 0 meaning “is perfectly
acceptable”. This may appear to be odd, but the model is used only to gauge divergence from the
norm; it is not used to select a trading partner — that is a job for the trust model.
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3.3 Norm Model

In Electronic Institutions [3], norms constrain the dialogues between agents partic-
ularly constraints that help to warrant the commitments between agents. [17] re-
views various proposals for formalising norms including: conditional deontic logic,
Z specification of norms, event calculus, hybrid metric interval temporal logic, so-
cial integrity constraints, and object constraint language. The formalism used is to
some degree unimportant, and we do not favour any particular formalism in this pa-
per. Our interest here is simply that each agent knows and models those norms that
constrain its dialogical freedom, and more important any desire to negotiate with
the other agents to modify those norms in some way.

4 Expectations

An ecologically rational agent’s rationality lies only in its past experience. To be-
have rationally it will require some expectation, based on that experience, of what
other agents will do. Experiential memory records each of the agent’s individual
experiences; it does not address expectation. We now derive expectations from this
historic data. Expectations are considered for the two classes of experience in expe-
riential memory. First, expectations concerning the effect of making a single action
(i.e. utterance), second, expectations of the effect of triggering an action sequence.

4.1 Expected effect of a single action

We consider expectations concerning the effect of making a single action; that is,
the expected aeffect given aact. To make this problem tractable we consider only
utterances for which a particular form of response is expected. For example, “what
is the time?” or “send me a bottle of Protos9”. For these utterances α utters u and
expects to observe utterances, v, from a particular set of agents, Ω , and of a form
from the set F . α’s expectations are that:

∀u ∈U ·Enacttα(u)→∀β ∈Ω · ∃v ∈U · ∃w ∈ F

(Observe
tβ
α (Enactβ (v))∧ In(v,w)∧Form(u,β ,w))

(6)

where Form(u,β ,w) means that w is a form of response that α expects having ut-
tered u, In(v,w) means that v is an instantiation of w, and tβ > t. For example, u
could be “what is the price of Protos”, w could be “the price of Protos is x”, and v
could be “the price of Protos is e40”.

9 A fine wine from the ‘Ribera del Duero’ region, Spain.
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For each agent β ∈ Ω we abbreviate the expectation of Equation 6 to Pt
β
(v|u).

In the absence of in-coming messages the conditional probabilities, Pt
β
(v|u), should

tend to ignorance as represented by the decay limit distribution and Equation 2. We
now show how Equation 5 may be used to revise Pt(v|u) as observations are made.
Let the set of possible utterances be Φ = {v1,v2, . . . ,vm} with prior distribution
p = Pt

β
(v|u). Suppose that message w is received, we estimate the posterior p(w) =

(p(w)i)m
i=1 = Pt+1(v|u).

First, given the expectation Pt
β
(v|u), if α observes that β utters vk then α may

use this observation to estimate p(vk)k as some value d at time t + 1. We estimate
the distribution p(vk) by applying the principle of minimum relative entropy as in
Equation 5 with prior p, and the posterior p(vk) = (p(vk) j)m

j=1 satisfying the single
constraint: J(v|u)(vk) = {p(vk)k = d}.

Second, α may use the above observation to revise Pt
β
(v′|u′) when u and u′ are

semantically close in the sense of Equation 1. For example, u could be “please send
me a chicken on Tuesday” and u′ could be “please send me a duck on Thurs-
day”. Following the notation above this is achieved by: J(v′|u′)(vk) = {p(vk)k =
d×g(Sim(u,u′))} provided that: d×g(Sim(u,u′)) > pk, where g is a function that
moderates the values of the Sim function, and pk is the prior value. Equation 4 will
ensure that this update process only applies when d× g(Sim(u,u′)) is sufficiently
large to deliver positive information gain to Pt+1

β
(v′|u′).

The entropy Ht
β
(v|u) estimates α’s uncertainty in β ’s response given that α has

uttered u. α may interact with more than one agent. Suppose that agent γ is an ideal
agent who always responds impeccably then β ’s trust, honour or reliability is:

Tα(β ,γ,u) = 1−∑
v

Pt
γ(v|u) log

Pt
γ(v|u)

Pt
β
(v|u)

measures the relative entropy between this ideal distribution, Pt
γ(v|u), and the dis-

tribution of β ’s expected actions, Pt
β
(v|u), where the “1” is an arbitrarily chosen

constant being the maximum value that this measure may have. This estimate is
with respect to a single u. It makes sense to aggregate these values over a class of
utterances, say over those u that are in the ontological context o, that is u≤ o:

Tα(β ,γ,o) = 1− ∑u:u≤o Pt
α(u) [1−Mα(β ,γ,u)]
∑u:u≤o Pt

β
(u)

where Pt
α(u) is a probability distribution over the space of utterances that α’s next

utterance to β is u.
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4.2 Expected rating of an action sequence

We consider expectations concerning the effect of triggering an action sequence.
Suppose that α triggers an action sequence, s with goal g where the state of the
environment is e then we are interested in the rating of the outcome r. Given the rich
meaning of the environment, as described in Section 3, it is reasonable to consider:

P(Observet ′(r) | Enactt(s),e) (7)

If Ω ∈ e is the set of agents in e, then the aggregated rating10 of their responsive
actions leading to the sequence outcome is a subjective measure of their collective
trust, honour or reliability — a fuller account of these estimates is given in [4].

We first consider a special case of the expected rating of a diminutive action
sequence consisting of a single agent, Ω = {β}, and a single action — as is observed
in the case of “commitment followed by subsequent enactment”. In this case if we
use the method of Section 4.1 to estimate Pt

β
(v|u) where u is the commitment and v

the enactment then:

Tα(β ,u,e) = ∑
v

ρ(α,v,e)×Pt
β
(v|u)

Then α’s estimate of the trust, honour or reliability of β with respect to a class of
utterances U will be:

Tα(β ,U,e) = ∑
u∈U

Tα(β ,u,e)×Pt
α(u)

where Pt
α(u) is as above.

For action sequences in general we abbreviate the expectation of Equation 7 to
Pt(r|s,e) that we may estimate directly using the same reasoning for estimating
Pt

β
(v|u) in Section 4.1 as r is over a discrete space. Then Tα(Ω ,s,e) = Et

Ω
(r|s,e)

and Tα(Ω ,S,e) = ∑s∈S Tα(Ω ,s,e)×Pt
α(s). Pt

α(s) is discussed in Section 5.
We are also interested in forming a view on how effective various norms are.

If an action sequence, s, takes place within a normative system, I, then it will be
constrained by a well-defined set of norms, Ns ⊆ Inorms, from that system. Given a
set of norms, N, let SN = {s | Ns = N} and Tα(N) = ∑s∈SN Et(r|s,e)×Pt

α(s). An
agent deliberates to satisfy its needs. Given a need, g, let St

g be the set of sequences
that satisfy g to some degree, and Tα(g) = ∑s∈St

g
Et(r|s,e)×Pt

α(s). For any s ∈ St
g,

Ns will be its prevailing set of norms. Let Nt
g = {Ns | s ∈ St

g} we are interested in
which norm set in Nt

g proves most reliable in the satisfaction of g, Tα(g | N ∈Nt
g) =

∑s∈St
g,Ns=N Et(r|s,e)×Pt

α(s).

10 See Footnote 6.
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5 Ecological deliberation

Human agents employ ecological deliberation for all but a very small proportion
of the decisions that they make. It appears that given a need, contextual triggers
somehow retrieve appropriate action sequences from experiential memory. The re-
trieval process does not require a complete match and operates tentatively when the
perceived environment is new, possibly by adapting the action sequence. This is
reminiscent of the work of Roger Schank on dynamic memory. α has the following
assets at its disposal to support ecological deliberation:

• an experiential memory — Section 3
• expectations — Section 4
• a world model — Section 3.1
• a social model — Section 3.2
• a norm model — Section 3.3

Together experiential memory and expectations make a potent pair. Experiential
memory contains details of action sequences, and expectations tell us what to expect
if those sequences are reused. The world, social and norm models describe the states
of affairs that α may desire to change.

An agent acts to satisfy its needs. An ecological agent’s rationality lies in its
ability to predict how others will behave. This means that the actions that an ecolog-
ical agent takes should attempt to shape its social model (i.e. who it interacts with),
its norm model (i.e. how it interacts) as well as its world model. An agent’s social
relationships, and the structures of the institutions that it inhabits, are its means to
transcend its individual deliberative ability.

An agent will make an ecologically rational deliberative action by: reusing an
existing action sequence11, improving an existing action sequence, adapting an ex-
isting action sequence, simplifying an existing action sequence, experimenting —
possibly by attempting to second-guess the rationale behind other agents’ actions.
In the cases of improving, adapting or simplifying a sequence that is to be enacted
in a normative system this may involve prior negotiation of the norms when the
measures of effectiveness of norms in Section 4.2 will be useful.

Rather than give a tedious description of how each of the above operations may
be performed we simply assume that they all have been, and that we are confronted
with an enormous selection of previous, improved, adapted, simplified and created
action sequences.

Our problem then is: given a current need, the current norm state, and the current
states of the world, social and norm models, to select one sequence. We deal with
the complexity of matching the current goal and environment to those of previously
observed sequences with a ‘super-Sim’ function that moderates the expected rating
(Section 4.2) of each previously recorded sequence, s, to give expectations of the
rating, rt(s) ∈ [0,1], of how that sequence would perform if it was reused now in an
attempt to satisfy the current need.

11 In case this appears to be a simple application of case-based-reasoning-style case retrieval, note
the complexity of the all important environment. The devil is in the environment.
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Given that we now face the problem of devising a method that selects an action
sequence it is worth considering first what we expect of that method. What it should
not do is to say “That one is the best choice” that is pure constructivism. Worse
still it would mean that by determining the agent’s actions it would then pervert the
agent’s experiential memory for ever more.

What is needed is an evolutionary method of some sort — that may well be
how humans operate. A problem with evolutionary methods is that we may not be
prepared to accept poor performance while the method evolves, although permitting
a method to explore and make mistakes may also enable it to discover. Given a
need, g, and two sequences, s and s′, that we expect to satisfy g to some degree,
we estimate the two distributions, Pt(rt(s)|s,e) and Pt(rt(s′)|s′,e), and hence the
probability that s will achieve a higher rating than s′, Pt(rt(s) > rt(s′)|s,s′,e), and
hence the probability that s ∈ St

g is the best in St
g:

pg,s = Pt(rt(s) > rt(s′)|s,s′,e) | ∀s′ ∈ St
g s′ 6= s

then given need g, α selects s ∈ St
g with probability pg,s. This strategy favours se-

quences that perform well whilst re-visiting those who have performed poorly with
a lower frequency.

5.1 Overall Strategy

Finally we consider how an agent combines constructivist and ecological delib-
eration. Ecological deliberation is by no means the poor relation of its Cartesian
brother. Referring back to the ‘wine merchant’ example in Section 1, it may simply
be that the recommendations of the wine merchant are better in all respects than
those that the agent could derive from the data available. If this is so then a rational
agent should surely prefer ecological deliberation. A rational agent builds an expe-
riential memory and maintains an open mind on whether to choose constructivist
or ecological deliberation. It reinforces the choices it makes by forming a view on
which performs better by using its subjective ability to evaluate outcomes.

6 Discussion

The full realisation of the Hayekian vision of self-evolving agents situated in a world
of self-evolving institutions is an extensive research agenda that is the subject of on-
going research. For example, there is no clear means of achieving an orderly self-
evolution of normative systems in a multi-system context. The contribution of this
paper is to describe how a single agent can engage in ecological deliberation in ad-
dition to well-understood constructivist deliberation. This enables agents to evolve
and adapt their deliberative processes as their environment and their fellow agents

91Dual Rationality and Deliberative Agents



evolve. If the self-evolution of a single normative system, including its agents, can
be achieved through ecological deliberation then we will be close to understanding
self-evolving electronic institutions that will take multiagent systems technology to
a new level.
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