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Abstract Within the medical domain there are clear expectations as to how a patient
should respond to treatments administered. When these responses are not observed
it can be challenging for clinicians to understand the anomalous responses. The
work reported here describes a tool which can detect anomalous patient responses
to treatment and further suggest hypotheses to explain the anomaly. In order to de-
velop this tool, we have undertaken a study to determine how Intensive Care Unit
(ICU) clinicians identify anomalous patient responses; we then asked further clini-
cians to provide potential explanations for such anomalies. The high level reasoning
deployed by the clinicians has been captured and generalised to form the procedural
component of the ontology-driven tool. An evaluation has shown that the tool suc-
cessfully reproduced the clinician’s hypotheses in the majority of cases. Finally, the
paper concludes by describing planned extensions to this work.

1 Introduction

It is widely acknowledged that anomalous scenarios provide a key role in knowl-
edge discovery; an anomaly can indicate to an expert that their understanding of a
domain may require further refinement which in turn may lead to the discovery of
new knowledge [6]. However, in a complex domain such as medicine, it can be dif-
ficult, especially for junior clinicians, to generate the required hypotheses to resolve
such anomalies. The resolution of anomalies is important as it can enhance patient
treatment.
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The Intensive Care Unit (ICU) in a hospital provides treatment to patients who
are often critically ill and possibly rapidly deteriorating. Such patients provide com-
plex challenges for the attending clinician. To aid the clinician in monitoring and
treating such patients, many modern ICUs are equipped with sophisticated patient
management systems. These systems collect the patients’ physiological measure-
ments; record the infusions given to the patient, and note some interventions such as
dialysis. The information recorded by the system is stored in a database and can be
viewed at the patient’s bedside or ‘offline’ at a later date. Access to the data stored
in the patient management system at Glasgow Royal Infirmary’s ICU has been pro-
vided for use in this study.

The focus of the work reported here is the development of a tool to assist clini-
cians in explaining why a patient has responded anomalously to treatment. To cap-
ture the process deployed by expert clinicians in such a scenario, detailed interviews
were held with five ICU consultants from Glasgow Royal Infirmary (GRI) to iden-
tify anomalous patient responses based on their physiological data. Two further ICU
clinicians from GRI were then asked to suggest potential explanations for the iden-
tified anomalies. Further, these interviews were examined by analysts to establish
both how the hypotheses were generated and the types of hypotheses presented. The
findings from this analysis form the basis of an ontology-driven hypothesis genera-
tion tool described below. A more detailed review of the interviews held with ICU
clinicians can be found in Moss et al [13].

The rest of this paper is organized as follows: section 2 gives a brief literature re-
view; section 3 discusses the interviews held with ICU clinicians; section 4 outlines
the ontology-based tool, gives examples of use, and outlines an evaluation; section
5 discusses planned future work for this tool

2 Literature Review

Anomalous scenarios play a key role in knowledge discovery; Kuhn [6] defines an
anomaly as a violation of the “paradigm-induced expectations that govern normal
science”. Such anomalies are of interest as they often point to the inadequacy of a
currently held theory and require refinement of the related theory; consequently this
can provide the impetus for the discovery of further domain knowledge. Analyses
[16][12] have shown that the detection and explanation (using domain knowledge)
of these anomalies force scientists to revise their knowledge in a number of ways;
from a minor refinement of hypotheses to major changes of fundamental knowledge.

The generation of hypotheses as part of automated scientific discovery processes
have been discussed widely in the literature [4][17][3], of most relevance to this
work is Blum’s work on the RX project which investigated the automatic generation
and testing of hypotheses from a clinical database [14]. The work was successful in
discovering a previously unknown correlation between prednisone and cholesterol
when tested on a clinical database from rheumatology patients. However, it is not
known whether this approach would be successful in other medical areas such as the
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Intensive Care Unit (ICU) domain; much larger amounts of data can be retrieved in
the ICU domain, and in particular the abstraction process that Blum deploys would
have to become more sophisticated to handle temporal datasets.

Due to the complexity and amount of data in the ICU domain it is difficult for
clinicians to be fully conversant with the data; further it is recognized that the ICU
is a challenging domain in which to perform decision making [19]. Artificial Intelli-
gence systems used in the ICU domain generally analyse real time data streams and
provide sophisticated monitoring of the data streams, applying domain knowledge
to assist in data interpretation. Some of these systems, such as those developed by
the MIMIC II [1] project have been implemented ‘live’ in an ICU ward, whilst other
systems use data ‘offline’[7]. Despite the wide variety of decision-support systems
developed for use in the ICU, such as RÉSUMÉ [20] and VIE-VENT [18], none
have focused on providing support to clinicians when faced with anomalous patient
behaviour.

3 Capturing the Identification & Explanation of Anomalous
Responses to Treatment

Five ICU clinicians from Glasgow Royal Infirmary were presented with physiolog-
ical data for 10 patients containing 1466 hourly sequences and asked to identify
anomalous sequences in the data. Five of these patients had been previously iden-
tified as containing anomalous patient responses and five were randomly selected
from the patient management system. A semi-structured interview was held with
the clinicians and they were asked to ‘talk-aloud’ as they completed the task [10].
A grounded theory approach [8] was applied by the analyst (LM) to the protocols
which resulted in the following coding categories (C to E describe anomalies):

A - Anticipated patient responses to treatment, possibly with minor relapses (default if clinician
does not provide any other classification)
B - Anticipated patient responses to treatment, with significant relapses e.g., additional bouts of
sepsis, cardiac or respiratory failure
C - Patient not responding as expected to treatment
D - Odd / unusual set of physiological parameters (or unusual rates of change)
E - Odd / unusual treatment

Fig. 1 Anomalous Example
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The coding categories were successfully verified by a second coder (DS)1. The
clinicians identified a total of 65 anomalies. Figure 1 provides an example anomaly.
The most interesting type of anomaly for the clinicians was category ‘C’, which
describes scenarios where a patient is not responding as expected to treatment. It
was decided that this category would be the focus of the second study.

The anomalies classified as ‘C’ (a total of 13) were used as the stimuli for a
second set of interviews with two further ICU clinicians (not involved in the ini-
tial identification of anomalies). Separate interviews were held with these clinicians
during which they were presented with a series of anomalies and given access to the
patient data. The clinicians were asked if they could suggest potential explanations
for the identified anomalies. An example of a hypothesis suggested for the anomaly
shown in Figure 1 is given in Figure 22.

Fig. 2 Hypothesis Example

Analysis [8] of the transcripts from these interviews led to the identification of a
range of hypotheses which could be organised as the following categories: 1) clin-
ical conditions, 2) hormone regulation, 3) progress of the patient’s condition, 4)
treatment, 5) functioning of the patient’s organs and 6) errors in recordings.

The interviews were analysed further and a method of information selection and
hypothesis generation used by the clinicians was identified. When generating a hy-
pothesis each clinician began with an anomaly, for example the one shown in Fig-
ure 1, “noradrenaline increased cardiac output and cardiac index” 3, which can be
broken down into the treatment, ‘noradrenaline’ and the effect ‘increase cardiac
output and cardiac index’. The clinician then proceeded to explain any combina-
tion of the treatment and anomalous effect. The clinicians appeared to use domain
knowledge about treatment, medical conditions and the desired physiological state
of the patient to suggest hypotheses that explain the treatment or effect. Further, the
clinician appeared to use domain knowledge whilst examining the patient’s data to
determine facts; for example, the patient is suffering from a myocardial infarction.
The patient’s data can also be used to eliminate hypotheses. For example, one of
the explanations for the anomaly detailed in Figure 1 was that the patient is getting
worse, if the data does not show this, this hypothesis can be eliminated. The clin-
ician repeated the process until they were satisfied that all viable hypotheses had
been proposed.

1 Further details on the analysis of protocols are provided in [13]
2 Noradrenaline is considered as a vasoconstrictor
3 Noradrenaline at low doses should not increase a patient’s cardiac output and input, but at high
doses this may be observed
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4 Generating Hypotheses for Anomalous Responses to
Treatment

A tool, named EIRA (Explaining, Inferring and Reasoning about Anomalies) has
been developed based on the general model of hypothesis generation presented
in Section 3. It is envisaged that EIRA will be used by clinicians as an ‘offline’
aid/tutoring tool when faced with an anomalous scenario. The work reported in this
section describes the initial implementation of EIRA (planned further implemen-
tation of EIRA are discussed in Section 5). EIRA comprises: a knowledge base
consisting of several OWL4 ontologies and a Java based program implementing
strategies extracted from domain experts’ protocols.

4.1 Knowledge Base

As the analyst noted when analysing the interviews, the clinicians drew from a large
knowledge base in order to create hypotheses. The knowledge base of EIRA com-
prises four ontologies which model the following sub-domains: the ICU domain,
the patient data, human physiology, and time.

Although various ICU ontologies have been discussed in the literature, for exam-
ple [15]), none were available to us at the time of development; further using a stan-
dard biomedical ontology (including [2, 11]) for this tool would not be appropriate,
mainly due to their size. Instead we created our own (relatively small) ontologies for
the task. These smaller ontologies, consisting solely of the knowledge required by
the system provided many benefits when building and editing the ontologies with
a standard ontology editor; inferencing using these ontologies is also quicker. We
do, however, recognise that standardised biomedical ontologies have a role as an
important reference point, particularly beneficial for interoperability, and should be
used whenever possible. To support such usage, a simple alignment meta-ontology
enables the definition of correspondences between concepts in our ontologies with
concepts in these standard ontologies. We believe that the framework provided by
these ontologies will enable their re-use in other medical domains.

The ICU domain ontology was developed in collaboration with an ICU clinician
(MS) and it has been shown to be sufficient to support the clinical reasoning dis-
cussed in section 3. Four types of knowledge are described: disorders, treatments,
disorder severity scores, and drugs.

The Drug class (a subclass of Treatment, visualised in figure 3) describes how
drugs are used as treatments in the ICU domain. Features of a drug, such as ac-
tiveDrugName, alternativeDrugNames, the anticipated length of time between the
drug’s administration to a patient and its effect being observed (the drug’s time-
ToReact), and any contraindications of the drug (disorders or other treatments) have
been modelled in the drug class; in addition, descriptions of a drug’s effects, inter-

4 http://www.w3.org/2004/OWL/
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actions, and uses have been supported. Various types of drug effects are described:
expected effects, conditional effects which occur under certain conditions, rarely
observed effects which are rare but still theoretically possible, and (unwanted) side
effects.

Drugs can interact with other drugs to produce anticipated and unanticipated
physiological effects. For a particular drug, it is usually known which other drugs
can interact with it and the associated effect. This is represented by the
Drug Interaction class (shown in figure 4). Each Drug Interaction is
associated with a drug (hasDrug), the interacting drug (interactsWith), and the phys-
iological effects observed during the interaction (interactionEffect).

Various properties are used to represent different drug doses, as a particular drug
may be given at different doses depending on the severity of the disorder for which
the drug is being administered. Differences in how commonly (or not) a drug is used
to treat particular disorders is also described.

Fig. 3 Visualisation of the Drug Class from the ICU Ontology

Fig. 4 Visualisation of the Drug Interaction Class from the ICU Ontology
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The Patient Data ontology has been designed to model the time series data which
is typically collected in medical domains. The ontology defines a Patient Data
class, which represents the patient’s Sessions and Location. The Session
class models a treatment session, which in turn links a series of Timepoints; the
later describe the Readings for a particular xsd:dateTime. Each Reading has a
Parameter and value.

The Human Physiology ontology models, at a high level, knowledge re-
garding organs and organ systems, clinical features, and physiological effects. The
Organ System and Organ classes are used to represent basic human physiology,
with the hasOrgan property associating the organ system with its primary organ.
The Clinical Feature class provides a template for describing physiological
states such as low MAP and high temperature. The Physiological Effect
class represents different types of effects that occur in the human body; two types
of effects have been defined: parameter changes and symptoms.

4.2 Reasoning about Anomalies

Section 3 suggests an anomaly can be defined as a treatment and an anomalous effect
and can be considered to take the form:

For an anomaly at Time (T)→ Treatment (TR)T−1, AND Anomalous Effect (E)T

For example the anomalous statement shown in Figure 1 can be expanded to
include relevant patient data as:

T = 12:00:00 Day 32 of Patient 583, TR = Noradrenaline, E = Increase Cardiac Output.

An anomaly is entered into EIRA in the format shown above (this is referred
to as the ‘original anomaly’ in the rest of this document). EIRA then proceeds to
determine if there are any other anomalous responses to treatment in addition to the
original anomaly at this particular timepoint and then provides hypotheses for this
set of anomalies.

4.2.1 Detecting Additional Anomalies

Anomalies, in addition to the anomaly identified by a clinician, can occur in a pa-
tient’s dataset. EIRA can detect further anomalies at the anomaly time point(T). For
example, in addition to the previous anomaly, the system may also detect that after
administering noradrenaline, the patient’s mean arterial pressure (MAP) reading is
low. As discussed previously, an anomaly can be considered as a counterexample to
domain knowledge. In this particular domain, this can be considered as:

Domain knowledge contains when drug(D) administered at T, expected effect(E) observed at Time
(T + 1) AND patient data contains D at T AND observed effect, ¬ E at T + 1.
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Additionally, when attempting to detect anomalies, EIRA identifies the drugs
given to the patient at the anomaly time point5 from the patient’s data and retrieves
the anticipated effects of administering each drug from the ICU ontology. When
the anticipated response(s) have not occurred, the actual response observed in the
data is noted. For example, the drug noradrenaline has been given to the patient
at 12.00; further it is specified in the ICU ontology that noradrenaline is expected
to increase systolic pressure, diastolic pressure, systemic vascular resistance (SVR)
and MAP. These can be compared with the patient’s readings and any discrepancies
(for example, an observed decrease in MAP) are reported as additional anomalies.

4.2.2 Explaining Anomalous Responses to Treatment

To generate hypotheses for given anomalies, EIRA captures the various strategies
(algorithms) and domain knowledge used by the two observed expert ICU clinicians
and produce the types of hypotheses the clinicians proposed.

As identified in Section 3 the clinicians’ hypothesis generation process focused
on either providing an explanation for why the treatment in question did not work as
anticipated, or concentrated on the reasons why the anomalous physiological effect
might have occurred in the patient.

Although this system is implemented in the ICU domain, the algorithms listed
below are believed to be generic and could be applied in other (medical) domains.
Due to page limitations, we are unable to discuss each algorithm in detail, however,
an example of the Drug Interaction algorithm is provided in Algorithm 1.
The following is the Drug Interaction algorithm expressed as a SWRL6 rule
to show how the concepts from the ontology are used:

Drug(?treatment) ∧ drugInteractions(?treatment, ?interaction) ∧ Drug Interaction(?interaction) ∧
interactsWith(?interaction, ?otherDrug) ∧ Timepoint(?t) ∧ hasTime(?t, ?time) ∧

hasReadings(?t, ?r) ∧ Reading(?r) ∧ readingParameter(?r, ?treatment)
⇒ DrugInteractionHypothesis(?hyp) ∧ hasDrug(?hyp, ?treatment) ∧

hasInteractingDrug(?hyp, otherDrug)

The algorithms are not dependent on each other, and all are executed in order to
generate all possible hypotheses. Below we summarise the implemented algorithms:

1. Conditional Drug Effects - Under some known conditions a drug may
have a different physiological effect on the patient than anticipated. For example,
under high doses, noradrenaline may increase a patient’s cardiac output, whereas
at normal or low doses this would not be expected.

2. Other Medical Conditions - This method identifies whether the patient
is suffering from another medical condition which has a symptom the same as
the observed anomalous effect.

5 Although the example given here concerns the anomaly time point, any time point in the data can
be used to detect an additional anomaly
6 http://www.w3.org/Submission/SWRL/
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Algorithm 1 IdentifyDrugInteractions
1: Response - The anomalous response
2: Treatment - The anomalous treatment
3: Time - Time (T) in the patient’s dataset at which the anomaly occurred
4: InteractingDrugs - Potential interacting drugs

5: Begin IdentifyDrugInteractions
6: Identify known drug interactions (DI) for Treatment
7: for Each DI do
8: Identify the other drug (Dint ) involved
9: Determine if the patient was being given Dint at T

10: if Dint was given at T then
11: Add Dint to InteractingDrugs
12: for Each Dint in InteractingDrugs do
13: return Hypothesis - Drug, Dint , may be interacting with Treatment

3. Other Medical Condition - Treatment - Identifies whether a treat-
ment given to the patient for another medical condition is not working as antici-
pated and hence is responsible for the anomalous effect.

4. Drugs - Identifies whether another drug that the patient is receiving at the
anomaly time could have the same effect (side effect or therapeutic effect) as the
anomalous effect (and hence this further drug explains the observed anomaly).

5. Patient Improvement - An improvement in the patient may be the cause of
the anomalous effect. This can be split into the following areas of improvement7:

a. Overall Patient Improvement - Identifies whether the anomalous
effect may be explained by a patient’s overall clinical condition improving.
For example, in the ICU a severity score is often associated with a patient’s
overall condition. This score can be calculated from the patient’s physiological
data. If the severity score has shown an improvement at the anomaly time
point, then it can be concluded that generally the patient is improving.

b. Improving Organ - Establishes whether one of the patient’s organs could
be spontaneously improving/recovering and hence could explain what other-
wise would appear as an anomalous effect. For example, noradrenaline does
not usually increase a patient’s cardiac output, however, cardiac output is a
measurement reflecting the condition of a patient’s heart; if the majority of
the other measurements of a patient’s heart (e.g. heart rate) are also improv-
ing, it is possible that an improvement in a patient’s cardiac performance may
explain the anomalous effect (and not the noradrenaline).

c. Specific Condition Improvement - Ascertains if a patient could be
recovering from a specific previous clinical event and the anomalous effect can
be explained as a consequence of this improvement. For example, an observed
increase in cardiac output seen when noradrenaline is administered could be

7 Improving Organ and Specific Condition Improvement can be considered as
conceptually similar, however, they require distinct implementations and hence have been listed
separately.
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attributed to the patient recovering from sepsis. Unlike Improving Organ
we cannot say that the heart has improved, only that one of the measurements
of the heart has improved.

Complementary to the above analyses the following algorithms have been imple-
mented to suggest hypotheses which may explain why the treatment has not worked
as anticipated.

6. Conditions Affecting Treatment - Identifies whether the patient has
a co-existing medical condition which can affect how well the treatment associ-
ated with the anomaly is working. For example, if a patient is an alcoholic, they
can have a high cellular tolerance for the drug propofol i.e. they require a higher
amount of the drug for an effect to be seen than with a non-alcoholic patient.

7. Drug Interactions - Establishes if the treatment associated with the anoma-
lous effect has not worked as expected because of an interaction occurring with
another treatment the patient is receiving. The secondary treatment may in some
cases increase, decrease, or negate the expected effect of the primary treatment.

8. Low Dose of Treatment - Too low a dose of a drug may have been given
to the patient and hence the intended effects have not been observed. This al-
gorithm determines whether the dose of the drug associated with the anomalous
effect is a ‘low dose’ (a low dose is taken to be the lower quartile (25%) of a
drug’s specified dose range).

9. Overall Condition Deterioration - Establishes if the patient’s over-
all condition has deteriorated. If the patient’s condition has deteriorated, the pa-
tient, in general, would require a higher dose of a drug for its intended effect to be
observed. In some instances a patient can become too ill to respond to treatment.
The overall condition of the patient is based on a severity score calculated from
the patient’s physiological data. If the severity score has worsened at the anomaly
time point then it is inferred that the patient’s overall condition has worsened.

10. Resistance to Treatment - Identifies if the patient could have become
resistant to the treatment. When certain drugs are administered over a long period
of time and/or at a high dose, a patient can become resistant to them and hence
the drug has very little or no effect on the patient.

For each individual anomaly (from the set consisting of the original anomaly
and any additionally identified anomalies), EIRA systematically works through each
of the algorithms. At the end of the process the hypotheses for each anomaly are
presented to the clinician. Figure 5 shows a segment of a sample output from EIRA.
The numbers next to a hypothesis correspond to the numbered strategies above.

4.3 Evaluation

To evaluate the effectiveness of the hypothesis generation mechanisms, test cases
were extracted from the interviews held with ICU clinicians. The test cases were
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Fig. 5 Example Output

formed from the anomalies identified from the first group of interviews and the
subsequent hypotheses provided by the clinicians in the second group of interviews
(as detailed in section 3). In total, 15 test cases were selected with 25 hypotheses (in
some test cases clinicians suggested multiple hypotheses). Each test case comprised:
the time and date of the identified anomaly, details of the anomalous effect observed,
the associated treatment, the hypotheses given by a clinician to explain this anomaly,
and the patient’s data for their complete stay (containing physiological readings e.g.
Heart Rate and information about the drugs administered). During testing, each test
case anomaly was entered into EIRA and we recorded whether the tool generated
the same hypotheses as the ICU clinicians. A note was also made of whether the
system detected the same additional anomalies that the ICU clinician had identified.
Table 1 shows the comparison between the hypotheses suggest by the clinicians and
by EIRA for the same anomaly.
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Test Cases
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Total

No. of Hypotheses
(Interview)

4 2 3 1 2 2 1 1 1 1 2 1 1 2 1 25

No. of Hypotheses
(EIRA)

2 2 2 1 0 1 1 0 0 0 1 1 1 1 0 13

Table 1 Test Case Results

A total of 13 hypotheses were matched by EIRA. The explanation for EIRA not
identifying the remaining 12 hypotheses is that the clinician’s hypothesis were not
captured in the patient’s data or the clinician’s hypothesis was not reflected in the
knowledge base. These points are discussed in some more detail below:

4.3.1 Patient Data

For 8 of the hypotheses, the patient’s physiological data did not support the hypoth-
esis given by a clinician. For example, in test case 15, the clinician suggested that
a low heart rate observed in the patient in response to adrenaline and noradrenaline
could be explained by the patient suffering from severe sepsis. The “severe sepsis”
condition in the knowledge base requires a patient to have both a high MAP and
either a low or high temperature. These conditions, however, were not observed in
the patient’s data and so the tool did not suggest that the patient may have severe
sepsis.

Another hypothesis was not produced due to an error in the patient dataset (no-
radrenaline was recorded in mls/hr instead of mg/hr). This has been corrected.

Discrepancies between the clinician’s hypothesis and the patient’s data are not
entirely unexpected. Studies [5][9] have shown that when considering potential ex-
planations for an anomaly the expert’s domain knowledge can influence hypothe-
sis testing when dealing with inconsistent evidence. Chinn & Brewer[5] found that
when the subject’s background knowledge was not consistent with the evidence (in
this case the patient’s data), subjects largely discount the data. It is possible that this
phenomena is being observed in some of the situations here. Further, the expert may
also be reporting patient states which are partially supported by the data.

4.3.2 Knowledge Base Content

For 3 hypotheses, the knowledge base did not have the required facts to create the
same hypothesis as the clinician. For example, in test case 3, in response to no-
radrenaline given, the patient’s systemic vascular resistance (SVR) decreased. The
clinician suggested that sepsis may be responsible for the decrease in SVR. EIRA
did not suggest sepsis because the knowledge base did not have a decrease in SVR
identified as a symptom, however, it did contain a low SVR as a symptom of sepsis.
It is suggested that in these cases, the knowledge base does not accurately reflect
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the clinicians’ domain knowledge and clearly refinement of the knowledge base is
required. This facility is suggested as an extension to EIRA in section 5.

Of the additional anomalies identified by the clinicians, 2 of the 3 were also
identified by EIRA. The one case where the anomaly was not identified can be
considered as a partial match; the clinician identified a low heart rate in response to
the drug, propofol, as being anomalous whilst EIRA identified a decrease in heart
rate as anomalous in response to propofol. EIRA did not use the term ‘low heart
rate’ because the knowledge base only contained for that drug an ‘increase in heart
rate’ as an expected effect relating to the patient’s heart rate when administering
propofol. If the knowledge base had also had a ‘high heart rate’ as an expected
effect, EIRA would have identified the same anomaly as the clinician.

EIRA also produced a number of ‘new’ hypotheses for each test case (in addition
to the hypotheses suggested by the clinician). These ‘new’ hypotheses haven’t been
evaluated but a planned future evaluation will involve an ICU clinician evaluating
the ‘new’ hypotheses produced by EIRA for their clinical relevancy. In summary,
the initial evaluation of EIRA is encouraging; in the majority of cases EIRA can
adequately reproduce the precise hypotheses suggested by expert ICU clinicians.

5 Conclusions and Future Work

This paper outlines several interviews held with ICU clinicians to identify and pro-
vide hypotheses to explain anomalous patient responses to treatment. Further, a tool
based on the processes captured from these interviews has been developed; addi-
tionally an evaluation of the system has produced promising results. Generally the
hypotheses suggested by the clinicians are reproduced by the system; further the
reasons why the remaining hypotheses were not reproduced have been adequately
explained and will be addressed subsequently. Plans for future work include:

• Further Evaluation - The additional hypotheses produced by EIRA require
evaluation by a domain expert for their clinical relevancy, further, upon com-
pletion of planned future stages of development, EIRA will be tested on a larger
number of test cases.

• Knowledge Base Refinement - It would be beneficial to allow a clinician using
EIRA to refine the domain ontologies. To enable this refinement, it is proposed
that when a hypothesis is presented to the clinician, the clinician will be able to
reject the hypothesis and provide a reason for its rejection. The relevant instances
of the ontology will then be updated to reflect this ‘feedback’ from the clinician.

• Inferring Information from the Knowledge Base - As shown in the evaluation
of the system, occasionally the domain knowledge has ‘gaps’ in it, which in some
cases have prevented hypotheses from being suggested by the system. It would
be useful to extend EIRA to make assumptions based on other instances in the
ontology. For example, if property P has been observed for D1 of drug class D
then it is reasonable to infer that all sibling drugs of D1 also have property P.
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