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Abstract Nature-inspired algorithms such as Particle Swarm Optimization and
Firefly Algorithm are among the most powerful algorithms for optimization. In this
paper, we intend to formulate a new metaheuristic algorithm by combining Lévy
flights with the search strategy via the Firefly Algorithm. Numerical studies and re-
sults suggest that the proposed Lévy-flight firefly algorithm is superior to existing
metaheuristic algorithms. Finally implications for further research and wider appli-
cations will be discussed.

1 Introduction

Nature-inspired metaheuristic algorithms are becoming powerful in solving mod-
ern global optimization problems [2, 3, 5, 7, 9, 18, 17], especially for the NP-hard
optimization such as the travelling salesman problem. For example, particle swarm
optimization (PSO) was developed by Kennedy and Eberhart in 1995 [8, 9], based
on the swarm behaviour such as fish and bird schooling in nature. It has now been
applied to find solutions for many optimization applications. Another example is the
Firefly Algorithm developed by the author [18] which has demonstrated promising
superiority over many other algorithms. The search strategies in these multi-agent
algorithms are controlled randomization, efficient local search and selection of the
best solutions. However, the randomization typically uses uniform distribution or
Gaussian distribution.

On the other hand, various studies have shown that flight behaviour of many
animals and insects has demonstrated the typical characteristics of Lévy flights
[4, 13, 11, 12]. A recent study by Reynolds and Frye shows that fruit flies or
Drosophila melanogaster, explore their landscape using a series of straight flight
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paths punctuated by a sudden 90ø turn, leading to a Lévy-flight-style intermittent
scale free search pattern. Studies on human behaviour such as the Ju/’hoansi hunter-
gatherer foraging patterns also show the typical feature of Lévy flights. Even light
can be related to Lévy flights [1]. Subsequently, such behaviour has been applied to
optimization and optimal search, and preliminary results show its promising capa-
bility [11, 13, 15, 16].

This paper aims to formulate a new Lévy-flight Firefly Algorithm (LFA) and to
provide the comparison study of the LFA with PSO and other relevant algorithms.
We will first outline the firefly algorithms, then formulate the Lévy-flight FA and
finally give the comparison about the performance of these algorithms. The LFA
optimization seems more promising than particle swarm optimization in the sense
that LFA converges more quickly and deals with global optimization more naturally.
In addition, particle swarm optimization is just a special class of the LFA as we will
demonstrate this in this paper.

2 Firefly Algorithm

2.1 Behaviour of Fireflies

The flashing light of fireflies is an amazing sight in the summer sky in the tropical
and temperate regions. There are about two thousand firefly species, and most fire-
flies produce short and rhythmic flashes. The pattern of flashes is often unique for a
particular species. The flashing light is produced by a process of bioluminescence,
and the true functions of such signaling systems are still debating. However, two
fundamental functions of such flashes are to attract mating partners (communica-
tion), and to attract potential prey. In addition, flashing may also serve as a protective
warning mechanism. The rhythmic flash, the rate of flashing and the amount of time
form part of the signal system that brings both sexes together. Females respond to
a male’s unique pattern of flashing in the same species, while in some species such
as photuris, female fireflies can mimic the mating flashing pattern of other species
so as to lure and eat the male fireflies who may mistake the flashes as a potential
suitable mate.

The flashing light can be formulated in such a way that it is associated with
the objective function to be optimized, which makes it possible to formulate new
optimization algorithms. In the rest of this paper, we will first outline the basic
formulation of the Firefly Algorithm (FA) and then discuss the implementation as
well as analysis in detail.
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2.2 Firefly Algorithm

Now we can idealize some of the flashing characteristics of fireflies so as to develop
firefly-inspired algorithms. For simplicity in describing our Firefly Algorithm (FA),
we now use the following three idealized rules: 1) all fireflies are unisex so that one
firefly will be attracted to other fireflies regardless of their sex; 2) Attractiveness is
proportional to their brightness, thus for any two flashing fireflies, the less brighter
one will move towards the brighter one. The attractiveness is proportional to the
brightness and they both decrease as their distance increases. If there is no brighter
one than a particular firefly, it will move randomly; 3) The brightness of a firefly is
affected or determined by the landscape of the objective function. For a maximiza-
tion problem, the brightness can simply be proportional to the value of the objective
function. Other forms of brightness can be defined in a similar way to the fitness
function in genetic algorithms or the bacterial foraging algorithm (BFA) [6, 10].

In the firefly algorithm, there are two important issues: the variation of light in-
tensity and formulation of the attractiveness. For simplicity, we can always assume
that the attractiveness of a firefly is determined by its brightness which in turn is
associated with the encoded objective function.

In the simplest case for maximum optimization problems, the brightness I of a
firefly at a particular location x can be chosen as I(x) ∝ f (x). However, the attrac-
tiveness β is relative, it should be seen in the eyes of the beholder or judged by the
other fireflies. Thus, it will vary with the distance ri j between firefly i and firefly j.
In addition, light intensity decreases with the distance from its source, and light is
also absorbed in the media, so we should allow the attractiveness to vary with the
degree of absorption. In the simplest form, the light intensity I(r) varies according
to the inverse square law I(r) = Is

r2 where Is is the intensity at the source. For a given
medium with a fixed light absorption coefficient γ , the light intensity I varies with
the distance r. That is

I = I0e−γr, (1)

where I0 is the original light intensity.
As a firefly’s attractiveness is proportional to the light intensity seen by adjacent

fireflies, we can now define the attractiveness β of a firefly by

β = β0e−γr2
, (2)

where β0 is the attractiveness at r = 0.

3 Lévy-Flight Firefly Algorithm

If we combine the three idealized rules with the characteristics of Lévy flights, we
can formulate a new Lévy-flight Firefly Algorithm (LFA) which can be summarized
as the pseudo code shown in Fig. 1.
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Lévy-Flight Firefly Algorithm
begin

Objective function f (x), x = (x1, ...,xd)T

Generate initial population of fireflies xi (i = 1,2, ...,n)
Light intensity Ii at xi is determined by f (xi)
Define light absorption coefficient γ
while (t <MaxGeneration)
for i = 1 : n all n fireflies

for j = 1 : i all n fireflies
if (I j > Ii)
Move firefly i towards j in d-dimension via Lévy flights
end if
Attractiveness varies with distance r via exp[−γr]
Evaluate new solutions and update light intensity

end for j
end for i
Rank the fireflies and find the current best
end while
Postprocess results and visualization

end

Fig. 1 Pseudo code of the Lévy-Flight Firefly Algorithm (LFA).

In the implementation, the actual form of attractiveness function β (r) can be any
monotonically decreasing functions such as the following generalized form

β (r) = β0e−γrm
, (m≥ 1). (3)

For a fixed γ , the characteristic length becomes Γ = γ−1/m → 1 as m → ∞. Con-
versely, for a given length scale Γ in an optimization problem, the parameter γ can
be used as a typical initial value. That is γ = 1

Γ m .
The distance between any two fireflies i and j at xi and x j, respectively, is the

Cartesian distance

ri j = ||xi−x j||=
√√√√ d

∑
k=1

(xi,k− x j,k)2, (4)

where xi,k is the kth component of the spatial coordinate xi of ith firefly. For other
applications such as scheduling, the distance can be time delay or any suitable forms.

The movement of a firefly i is attracted to another more attractive (brighter) firefly
j is determined by

xi = xi +β0e−γr2
i j(x j−xi)+α sign[rand− 1

2
]⊕Lévy, (5)

where the second term is due to the attraction while the third term is randomization
via Lévy flights with α being the randomization parameter. The product ⊕ means
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entrywise multiplications. The sign[rand- 1
2 ] where rand ∈ [0,1] essentially pro-

vides a random sign or direction while the random step length is drawn from a Lévy
distribution

Lévy∼ u = t−λ , (1 < λ ≤ 3), (6)

which has an infinite variance with an infinite mean. Here the steps of firefly motion
is essentially a random walk process with a power-law step-length distribution with
a heavy tail.

3.1 Choice of Parameters

For most cases in our implementation, we can take β0 = 1, α ∈ [0,1], γ = 1, and
λ = 1.5. In addition, if the scales vary significantly in different dimensions such as
−105 to 105 in one dimension while, say, −0.001 to 0.01 along the other, it is a
good idea to replace α by αSk where the scaling parameters Sk(k = 1, ...,d) in the
d dimensions should be determined by the actual scales of the problem of interest.

The parameter γ now characterizes the variation of the attractiveness, and its
value is crucially important in determining the speed of the convergence and how
the FA algorithm behaves. In theory, γ ∈ [0,∞), but in practice, γ = O(1) is deter-
mined by the characteristic length Γ of the system to be optimized. Thus, in most
applications, it typically varies from 0.01 to 100.

3.2 Asymptotic Cases

There are two important limiting cases when γ → 0 and γ → ∞. For γ → 0, the
attractiveness is constant β = β0 and Γ → ∞, this is equivalent to say that the light
intensity does not decrease in an idealized sky. Thus, a flashing firefly can be seen
anywhere in the domain. Thus, a single (usually global) optimum can easily be
reached. This corresponds to a special case of particle swarm optimization (PSO)
discussed earlier. Subsequently, the efficiency of this special case is the same as that
of PSO.

On the other hand, the limiting case γ →∞ leads to Γ → 0 and β (r)→ δ (r) (the
Dirac delta function), which means that the attractiveness is almost zero in the sight
of other fireflies or the fireflies are short-sighted. This is equivalent to the case where
the fireflies fly in a very foggy region randomly. No other fireflies can be seen, and
each firefly roams in a completely random way. Therefore, this corresponds to the
completely random search method.

As the Lévy-flight firefly algorithm is usually in somewhere between these two
extremes, it is possible to adjust the parameters γ , λ and α so that it can outperform
both the random search and PSO. In fact, LFA can find the global optima as well as
all the local optima simultaneously in a very effective manner.
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4 Simulations and Results

4.1 Validation

In order to validate the proposed algorithm, we have implemented it in Matlab.
In our simulations, the values of the parameters are α = 0.2, γ = 1, λ = 1.5, and
β0 = 1. As an example, we now use the LFA to find the global optimum of the
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Fig. 2 Ackley function for two independent variables with a global minimum f∗ = 0 at (0,0).

Ackley function

f (x) =−20exp
[
− 1

5

√√√√1
d

d

∑
i=1

x2
i

]
− exp[

1
d

d

∑
i=1

cos(2πxi)]+20+ e, (7)

which has a global minimum f∗ = 0 at (0,0, ...,0). The 2D Ackley function is shown
in Fig. 2, and this global minimum can be found after about 200 evaluations for 40
fireflies after 5 iterations as shown in Fig. 3.

Now let us use the LFA to find the optima of some tougher test functions. For
example, the author introduced a forest function [19]

f (x) =
( d

∑
i=1
|xi|

)
exp

[
−

d

∑
i=1

sin(x2
i )

]
, −2π ≤ xi ≤ 2π, (8)

which has a global minimum f∗ = 0 at (0,0, ...,0). The 2D Yang’s forest function
is shown in Fig. 4. However, an important feature of this test function is that it is
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non-smooth and its derivative is not well defined at the optima (0,0, ...,0) as shown
in Fig. 5.

4.2 Comparison of LFA with PSO and GA
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Fig. 3 The initial locations of the 40 fireflies (left) and their locations after 5 iterations (right).

Various studies show that PSO algorithms can outperform genetic algorithms
(GA) [7] and other conventional algorithms for solving many optimization prob-
lems. This is partially due to that fact that the broadcasting ability of the current
best estimates gives better and quicker convergence towards the optimality. A gen-
eral framework for evaluating statistical performance of evolutionary algorithms has
been discussed in detail by Shilane et al. [14]. Various test functions for optimization
algorithms have been developed over many years, and a relatively comprehensive
review of these test functions can be found in [2].

Now we will compare the LFA with PSO, and genetic algorithms for various
standard test functions. We will use the same population size of n = 40 for all al-
gorithms in all our simulations. The PSO used is the standard version without any
inertia function, while the implemented genetic algorithm has a mutation probability
of 0.05 and a crossover probability of 0.95 without use of elitism. After implement-
ing these algorithms using Matlab, we have carried out extensive simulations and
each algorithm has been run at least 100 times so as to carry out meaningful statis-
tical analysis. The algorithms stop when the variations of function values are less
than a given tolerance ε ≤ 10−5. The results are summarized in the following table
(see Table 1) where the global optima are reached. The numbers are in the format:
average number of evaluations (success rate), so 6922± 537(98%) means that the
average number (mean) of function evaluations is 6922 with a standard deviation of
537. The success rate of finding the global optima for this algorithm is 98%.
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Fig. 5 Non-smoothness of Yang’s forest function near the global minimum (0,0).

We can see that the LFA is much more efficient in finding the global optima with
higher success rates. Each function evaluation is virtually instantaneous on modern
personal computer. For example, the computing time for 10,000 evaluations on a
3GHz desktop is about 5 seconds. Even with graphics for displaying the locations
of the particles and fireflies, it usually takes less than a few minutes. Furthermore,
we have used various values of the population size n or the number of fireflies.
We found that for most problems n = 15 to 50 would be sufficient. For tougher
problems, larger n can be used, though excessively large n should not be used unless
there is no better alternative, as it is more computationally extensive.
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Fig. 4 Yang’s forest function for two independent variables with a global minimum f∗ = 0 at (0,0).
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Table 1 Comparison of algorithm performance

Functions/Algorithms GA PSO LFA
Michalewicz (d=16) 89325±7914(95%) 6922±537(98%) 2889±719(100%)
Rosenbrock (d=16) 55723±8901(90%) 32756±5325(98%) 6040±535(100%)
De Jong (d=256) 25412±1237(100%) 17040±1123(100%) 5657±730(100%)
Schwefel (d=128) 227329±7572(95%) 14522±1275(97%) 7923±524(100%)
Ackley (d=128) 32720±3327(90%) 23407±4325(92%) 4392±2710(100%)

Rastrigin 110523±5199(77%) 79491±3715(90%) 12075±3750(100%)
Easom 19239±3307(92%) 17273±2929(90%) 6082±1690(100%)

Griewank 70925±7652(90%) 55970±4223(92%) 10790±2977(100%)
Yang 37079±8920(88%) 19725±3204(98%) 5152±2493(100%)

Shubert (18 minima) 54077±4997(89%) 23992±3755(92%) 9925±2504(100%)

5 Conclusions

In this paper, we have formulated a new Lévy-flight firefly algorithm and analysed
its similarities and differences with particle swarm optimization. We then imple-
mented and compared these algorithms. Our simulation results for finding the global
optima of various test functions suggest that particle swarm often outperforms tradi-
tional algorithms such as genetic algorithms, while LFA is superior to both PSO and
GA in terms of both efficiency and success rate. This implies that LFA is potentially
more powerful in solving NP-hard problems which will be investigated further in
future studies.

The basic Lévy-flight firefly algorithm is very efficient. A further improvement
on the convergence of the algorithm is to carry out sensitivity studies by varying
various parameters such as β0, γ , α and more interestingly λ . These could form
important topics for further research. In addition, further studies on the application
of FLA in combination with other algorithms may form an exciting area for further
research in optimization.
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