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Abstract   A new population-based search algorithm, which we call Group 
Counseling Optimizer (GCO), is presented. It mimics the group counseling 
behavior of humans in solving their problems. The algorithm is tested using seven 
known benchmark functions: Sphere, Rosenbrock, Griewank, Rastrigin, Ackley, 
Weierstrass, and Schwefel functions. A comparison is made with the recently 
published comprehensive learning particle swarm optimizer (CLPSO).  The results 
demonstrate the efficiency and robustness of the proposed algorithm. 

1 Introduction 

One of the most fundamental principles in our world is the search for an optimal 
situation. Many scientific, engineering, and economic problems involve the 
optimization of particular objective functions. These problems include examples 
like minimizing the losses in a power grid by finding the optimal configuration of 
the components, or training a neural network to recognize images of people’s 
faces. Numerous optimization algorithms have been proposed, with varying 
degrees of success.   

Over the decades, traditional optimization techniques, such as linear 
programming and steepest-decent methods, are used. Because of certain 
drawbacks of these techniques and the increasing complexity of real-world 
optimization problems, there is an urgent need for better optimization algorithms. 
Many heuristic algorithms are therefore developed to solve various optimization 
problems. These algorithms combine rules and randomness to mimic natural 
phenomena. Examples are: the Genetic Algorithm [9,11], Evolution Strategies 
[18] such as Differential Evolution  [22], Ant Colony Optimization [4], Particle 
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Swarm Optimization [5,6,12], Bees  Colony Optimization [17], Memetic 
Algorithms [16], and Cultural Algorithms [20]. 

The Genetic Algorithm mimics natural selection and genetic recombination. 
The algorithm works by choosing solutions from the current population and then 
applying genetic operators – referred to as mutation and crossover – to create a 
new population. Crossover is the partial swap between two parent strings to 
produce two offspring strings. Mutation is the occasional random inversion of bit 
values, generating non-recursive offspring. 

The Evolution strategies are heuristics-based optimization techniques exploiting 
the ideas of adaptation and evolution. The essential idea behind Differential 
Evolution is the way the (ternary) recombination operator ‘deRecombination’ is 
defined for creating new solution candidates. The difference x1−x2 of two vectors 
x1 and x2 is weighted with a weighted and added to a third vector x3 in the 
population. 

The Ant Colony Optimizer is based on the metaphor of ants seeking for food. It 
imitates the behavior of ants in laying a trail of pheromone to find the shortest 
path from the food source to their nest. Each ant that finds the food will excrete 
some pheromone on the path. By time, the pheromone density of the path will 
increase and more and more ants will follow it to the food and back to the nest. 
The higher the pheromone density, the more likely will an ant stay on a trail. The 
probability that a passing stray ant will follow this trail depends on the quantity of 
pheromone laid. 

The Particle Swarm Optimizer emulates a biological social system like a flock 
of birds or a school of fish. When a swarm looks for food, its individuals will 
spread in the environment and when one of them finds food, it announces this to 
its neighbors. These neighbors can then approach the source of food, too. 

The Bees Colony Optimization is inspired from the natural foraging behavior of 
honeybees to find the optimal solution in nectar collection [17]. The algorithm 
performs a kind of neighborhood search combined with random search. 

The Memetic Algorithms are population-based approaches for heuristic search 
in optimization problems. They have been shown to be orders of magnitude faster 
than traditional genetic algorithms for some problem domains. Basically, they 
combine local search heuristics with crossover operators. For this reason, some 
researchers have viewed them as hybrid genetic algorithms. 

The Cultural Algorithms are a branch of evolutionary computation where there 
is a knowledge component that is called the belief space in addition to the 
population component. In this sense, cultural algorithms can be seen as an 
extension to conventional genetic algorithms. 

In this paper, we propose a new optimization approach that emulates the human 
behavior in problem solving through counseling within a group. The approach is 
called a Group Counseling Optimizer (GCO). The iterations involved in the 
solution algorithm are visualized as counseling sessions. Candidate solutions are 
progressively improved by either counseling with other members in the group or 
by self-counseling. This line of thinking, we believe, holds much promise since 
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the human’s behavior has, or should have, the highest quality when compared with 
the behavior of other (lower-class) creatures. 

The remainder of the paper is organized as follows: Sect. 2 introduces 
counseling among humans as a problem-solving approach. In Sect. 3, the proposed 
algorithm, based on group counseling, is explained. In Sect. 4, the results of the 
experiments conducted on seven benchmark functions are given. The conclusions 
are finally discussed in Sect. 5. 

2 Counseling as a Problem-Solving Approach 

People with problems often seek out another person as a sounding board: someone 
with whom they can talk over their problems, experiment with various solutions 
and finally reach some resolution. Examples of this approach are seen when 
people have relationship difficulties or want to change jobs or places of residence. 
The person, for instance, who wants to change his or her job may be advised by 
another person who has experience of job opportunities that exist in related careers 
[2]. Hence, people start to seek help when they should make a decision or solve a 
problem. 

Counseling can be thought of as a process of problem solving [3]. Individual 
counseling is an activity in which one person is helping (counselor) and one is 
receiving help (counselee) and in which the emphasis of that help is on enabling 
the other person to find solutions to problems [2]. 

However, individuals function most of their lives within groups. So, instead of 
the individual counseling there is another kind of counseling called group 
counseling that offers the unique advantages of providing group members with the 
opportunity to discover that their peers also have problems and to learn new ways 
of resolving problems by observing other members in the group deal with those 
problems. Unlike individual counseling relationships, a group provides each 
individual the opportunity to give as well as to receive help. 

 In the group, the members can discover that they are capable of understanding, 
accepting, and helping their peers, and that they can contribute to another person’s 
life. Thus, members gradually begin to understand and accept themselves. The 
emerging trust in self and others facilitates the sharing of ideas and behaviors in a 
safe testing ground before applying those ideas and behaviors in relationships 
outside the group.  

Group members come to function not merely as counselees, but they practically 
behave as counselees at certain times in the sessions and as counselors at other 
times.  Unlike individual counseling, where information and care flow in a single 
direction, in a group, the flow of information and care is multi-directional, where 
each member participates in the giving and receiving of advice. 
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A list of rules exists for the group members [1]: 

1. Let others know what your ideas are. What every member has to say is 
important. Sharing your thoughts and reactions with the group will stimulate 
other members and will help them to share what they are thinking. 

2. Ask your questions. If you have a question or you want to know more about 
something, do not hesitate to ask.  

3. Do not do all the talking. Others want to participate also, and they cannot if you 
take too long to express your ideas. 

4. Help other members to participate. If someone looks as though he or she wants 
to say something but has not, encourage that person to do so.  

5. Listen carefully to other members. Give a chance to the ideas of other persons, 
and try to understand what he or she is saying. Listen to other members in the 
way you would want them to listen to you.  

6. Group members are here to help. Problems can be solved by working 
cooperatively together. In the process of helping others, you can help yourself. 
The information you have can be helpful to others. Suggesting alternatives or 
causes can help other members to make better decisions. This suggesting 
process of many alternatives is called brainstorming. In a brainstorming 
process, good ideas may be combined to form a new better idea [13]. 

7. Be willing to accept other viewpoints. Do not insist that you are right and 
everyone else is wrong. The other person just might be thinking the same thing. 
Try to help other members to understand rather than trying to make them 
understand. 

8. Keep up with the discussion. If the discussion is confusing to you, say so. 
9. In this group, to talk about your feelings and reactions is admissible. 

In addition, individuals learn best when they become involved as participating 
and contributing members to the group. Each member needs to actively share in 
the group’s decision making. Undoubtedly, group members will contribute to 
solving of the problem only by the best of their experiences. 

Counseling can help some but not all people. Also, we should not assume that 
counseling can help in every situation [2]. 

In case when people depend on themselves in solving their problems, they 
exploit the best of their past experiences with some kind of modification seeking 
for a better, satisfactory solution.  

The group counseling optimization approach developed here mimics the main 
ideas of human group counseling behavior illuminated above, without making use 
of all its details. This metaphor deserves utmost attention. The present paper, we 
hope, opens an avenue. 
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3 The proposed GCO Algorithm 

The problem at hand is a single-objective, unconstrained, continuous optimization 
problem. Given a scalar function f(X), where X denotes a set of D parameters dx , 
d=1,2,…D, it is required to optimize f(X) through appropriate values of dx ; 
optimization means either minimization or maximization. 

The main idea of the proposed approach is as follows. Like other heuristics-
based approaches, we begin with a certain number, m, of initial candidate solution 
vectors Xi in the D-dimensional search space, mixxxX i

D
iii ,...,2,1;),....,( 21 == . 

These solution vectors are then improved through successive iterations. We regard 
such m solution vectors in (each of) the different iterations as m members 
(persons) in a group. Member i is represented by the vector X i, which in turn 
contains D components i

dx , d=1,2,…D, designating what we consider the best 
experiences of the member. Note that the representation of a specific member 
generally varies from iteration to iteration. A new value of each component in a 
vector is produced by invoking the current values (experiences) of corresponding 
components in other vectors or by modifying the current value of the component 
itself. These are two strategies, each having distinct behavior properties as will be 
soon discussed. The situation is interestingly analogous to what happens in group 
counseling, where a person - in solving a problem - asks other people for help or, 
sometimes, depends on himself only. 

Each iteration is visualized as a group counseling session, with m members. We 
obtain m candidate solutions X i from each session (except the last one) which are 
improved successively in subsequent sessions. The final session is the decision-
making session. It receives the eventual m candidate solutions and compares them 
with each other so that the best solution is determined, the solution X* that 
optimizes the objective function f(X). 

The proposed group counseling optimizer (GCO) is a search algorithm inspired 
by the group counseling approach to solve problems. The algorithm requires a 
number of parameters to be set, namely: number of group members representing 
the population size (m), number of group members used as counselors (c), 
counseling probability (cp), maximum value of modification (mdf_max), and 
transition rate from exploration to exploitation (tr). The significance of these 
parameters will become apparent as we proceed.  

The algorithm is executed through the following steps: 
Step 1 
 The algorithm starts with m initial candidate solutions mixxxX i

D
iii ,...,2,1;),....,( 21 == , 

being placed randomly in the search space. We choose to locate the values of 
i
dx in accordance with a beta distribution. As Fig. 1 shows, the beta probability 

density function g(x), with its two parameters a and b being equal and less than 
unity, is of a symmetric U-shaped form. This implies that, most probably, the 
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candidate solutions lie near the boundaries of the search space and that the global 
optimum is within this candidate solution set. For details of the beta distribution, 
see [8,10].  

 
Fig. 1  U-shaped, symmetric beta probability density function 

Step 2 
The solution vectors X i are substituted respectively into the objective function 
f(X), yielding m values for f (X i), called fitness values. 
Step 3 
This is the first iterative step. For each solution X i, we produce an alternative 
solution ),....,( 21

i
D

iii xxxX ′′′=′ . The production process is carried out 

component-wise. Each component i
dx' is obtained through one of two counseling 

strategies; namely, 
(a) Other-members counseling 
(b) Self-counseling 

For each component i
dx' , we start with generation of a random number, in the 

range [0,1], according to a uniform distribution. This number is here called a 
counseling decisive coefficient (cdc). If cdc is less than or equal to cp (set in the 
range [0,1]), we do other-members counseling; otherwise, we do self-counseling. 
In the following, we explain how to calculate i

dx'  in each of these strategies.  
Step 3a: Other-members counseling (cdc ≤ cp) 
In this strategy, member i (X i) is regarded as a counselee. It counsels c other 
members (counselors), chosen randomly out of the population, so that another 
(hopefully better) alternative component i

dx'  is obtained. The value of i
dx'  is 

calculated by summing weighted values of the corresponding components (best 
experiences) of the c counselors. These are the contributions of the relevant 
counselors, in a brainstorming process. 

The weight, denoted by kω , of component d in counselor k (k=1,2,….c) is a 
random number in the range [0, 1] with a uniform distribution, 

 )1,0(randk =ω  (1) 

g(x) 

x
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Bear in mind that counselor k is some member i. 
The c weights should sum to unity, 

 ∑
=

=
c

k
k

1
1ω  (2) 

The form of i
dx'  is expressed as 

 
),1(int_

1
.*

mkrand
dx

c

k
k

i
dx ∑

=
=′ ω  (3) 

where the superscript rand_int(1,m) is an integer random number in the range 

[1,m] with a uniform distribution, and 
),1(int_ mkrand

dx  is  the value of 

component d of counselor k. Note particularly that set of c counselors in general 
varies from component to component (as d varies from 1 to D). It should also be 
clear that kω and rand_int(1,m) are both dependent on the values of  i and d; these 
symbols are not superimposed on Eq.(3) for notational simplicity. 
Step 3b: Self-counseling (cdc > cp) 
In this strategy, an alternative component i

dx'  is obtained through modification of 
the current component i

dx . This situation may be interpreted as follows. Member i, 
being involved in the counseling group, discovers that it is capable of suggesting a 
new component i

dx'  depending on its own best experience i
dx  with some specific 

modification. The value i
dx is modified by adding a term ),( mdfmdfi

drand − . 

Here, mdf and –mdf are the greatest positive and negative values of modification, 
respectively. That is, the value of i

dx  will change in the range [-mdf,mdf]. The 
value of mdf plays a central role in whether the optimization algorithm performs 
‘exploration’ or ‘exploitation’. An equation which can be used to estimate mdf is 

 tr
itr

itrmdfmdf )
max_

1(*max_ −=  (4) 

where mdf_max, as stated previously, is a set value, itr is the iteration number, and 
itr_max is the total number of iterations. The exponent tr in Eq.(4) refers to a 
transition rate at which the search method changes from exploration to 
exploitation. Consequently, the form of i

dx' is given by 

 ),( mdfmdfi
drandi

dxi
dx −+=′  (5) 
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As a further illustration, Fig. 2 shows the variation of mdf from mdf_max (at the 
very beginning of iterations) to zero (at itr_max) for different values of tr. It is 
evident that at a certain iteration, the value of mdf decreases as tr increases. In 
other words, as tr increases, exploration tends to exploitation in a smaller number 
of iterations. It is well known that all optimization algorithms have to compromise 
between exploration to exploitation so that the global optimum is eventually 
attained. 

 
Fig. 2 Effect of transition rate (tr) on modification 

The result of Step 3 is a set of m solution vectors iX ′ . We emphasize the fact that, 
in general, some of the components i

dx' of iX ′ are produced by other-members 
counseling while the remaining components (of the same vector) are produced by 
self-counseling. 
Step 4 
Step 2 is repeated for iX ′  (instead of iX ) and the fitness value, )( iXf ′ , is 

evaluated. If )( iXf ′  is better than )( iXf , then iX ′  replaces iX ( ii XX ′← ); 

otherwise, iX ′  is ignored and iX  remains for possible subsequent improvement. 
Repetition Steps (iterations) 
Step 3 and 4 are repeated until a stopping criterion is met. 
Final Step 
This is a decision-making step. The m solutions, resulting from the last repetition 
step, are compared with each other based on the fitness values of the objective 
function. The best solution is taken as the optimum solution X* (with acceptable 
error). 
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4 Experiments 

The proposed GCO algorithm is tested in minimization problems using seven 
benchmark functions: two unimodal functions (Sphere and Rosenbrock) and five 
multimodal functions (Griewank, Rastrigin, Ackley, Weierstrass, and Schwefel) 
[7,14]. Also, it is compared with the comprehensive learning particle swarm 
optimizer (CLPSO) developed by Liang et al. [15]. 

4.1 Test Functions 

The definitions of the benchmark functions used for testing are as follows: 
1) Sphere function 

 ∑
=

=
D

i
ixxf

1

2
1 )(  

2) Rosenbrock function 

 ∑
−

=
+ −+−=

1

1

22
1

2
2 ))1()(100()(

D

i
iii xxxxf  

3) Ackley function 
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4) Griewanks function 

 ∏∑
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5) Weierstrass function 
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6) Rastrigin function 

 ∑
=

+⋅−=
D

i
ii xxxf

1

2
6 )10)2cos(10()( π  

7) Schwefel function 

 ∑
=

⋅+⋅=
D

i
ii xxDxf

1
7 )sin(9829.418)(  

All the above functions are tested for dimension D=30. The global optima X*, 
fitness values *)( Xf , and search ranges are given in Table 1. 

Table 1. Global Optima and Search Ranges of Test Functions 

f  *X  *)(Xf  Search Range 

1f  [0,0,……..,0] 0 [-100,100]D 

2f  [1,1,……..,1] 0 [-2.048,2.048]D 

3f  [0,0,……..,0] 0 [-30,30]D 

4f  [0,0,……..,0] 0 [-600,600]D 

5f  [0,0,……..,0] 0 [-0.5,0.5]D 

6f  [0,0,……..,0] 0 [-5.12,5.12]D 

7f  [420,420,……..,420] 0 [-500,500]D 

4.2 Parameter Settings  

In conducting the experiments, we use the following parameter values for the 
GCO algorithm: number of group members m=40; parameters of beta distribution: 
a=b=0.25; number of counselors c=2; maximum number of fitness evaluations 
FEs=200,000. All experiments are run 30 times. The three parameters cp, tr, and 
mdf_max are set differently for the test functions, as indicated in Table 2. The 
parameters of the CLPSO algorithm are taken as specified in [15]. 
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Table 2. Parameter settings for test functions 

f  cp tr mdf_max 

1f  0.01 30.0 10.0 

2f  0.008 1.0 0.01 

3f  0.12 20.0 3.0 

4f  0.025 15.0 50.0 

5f  0.07 30.0 0.1 

6f  0.018 15.0 1.0 

7f  0.04 18.0 100.0 

4.3 Results  

Table 3 gives the mean values and standard deviations of the 30 runs of the test 
functions for the GCO algorithm, together with the CLPSO algorithm. Figure 3 
illustrates the convergence characteristics, for the two algorithms, through the 
variation of the best function value as a function of FEs. The comparison 
demonstrates the success and effectiveness of the proposed GCO algorithm. 
Specifically, in the experiments conducted, the GCO outperforms the CLPSO for 
the first six benchmark functions and is well comparable to it for the seventh 
function (Schwefel). 

Table 3. Mean and standard deviation of GCO and CLPSO algorithms 

f  GCO CLPSO 

1f  1.48881e-020  ±   8.05893e-020 2.3060e-019 ± 1.4236e-019 

2f  2.60961e-3  ±  3.20126e-3 19.0364  ±  3.2650 

3f  7.10543e-015  ± 0.0 1.367e-10  ±  5.389e-11 

4f  0.0  ±   0.0 7.785e-12 ±  3.076e-11 

5f  0.0  ±  0.0 5.095e-13  ±  2.176e-13 

6f  0.0  ±   0.0 2.823e-10  ±  3.513e-10 

7f  7.27596e-013  ±  9.06353e-013 1.819e-13  ±  5.55029e-13 
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Fig. 3 Convergence characteristics of test functions 
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5 Conclusions 

This paper introduces a novel heuristics-based, derivative-free optimization 
approach for single-objective functions, which we call a group counseling 
optimizer (GCO). Instead of mimicking the behavior of living organisms such as 
birds, fish, ants, and bees, we choose to emulate the behavior of the humans in 
solving their problems through group counseling. This is motivated by the fact 
that the human’s thinking is, or should be, the most reasonable and influential, and 
group counseling is in essence a problem-solving technique. 

The algorithmic iterations are visualized as counseling sessions, with 
counselees and counselors. Candidate solutions are progressively improved by 
means of one of two strategies: (a) other-members counseling or (b) self-
counseling. 

The approach is successfully applied to seven benchmark functions: two 
unimodal functions (Sphere and Rosenbrock) and five multimodal functions 
(Griewank, Rastrigin, Ackley, Weierstrass, and Schwefel). Global optima are 
reached without being trapped at local optima. Convergence characteristics are 
empirically studied in terms of the best function values versus fitness evaluations. 
Furthermore, a comparison is made with the comprehensive learning particle 
swarm optimizer (CLPSO). It is demonstrated that the GCO outperforms the 
CLPSO for six benchmark functions and is well comparable to it for the seventh 
function (Schwefel). 

The proposed algorithm is seen to be interesting, promising, and readily 
applicable to many vital areas of optimization. We are currently investigating 
extension of the GCO to rotated benchmark functions [21] and multi-objective 
optimization problems [19]. 
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