
Template Learning using Wavelet Domain
Statistical Models

Karthikeyan Natesan Ramamurthy, Jayaraman J. Thiagarajan and Andreas Spanias

Abstract Wavelets have been used with great success in applications such as sig-
nal denoising, compression, estimation and feature extraction. This is because of
their ability to capture singularities in the signal with a few coefficients. Applica-
tions that consider the statistical dependencies of wavelet coefficients have been
shown to perform better than those which assume the wavelet coefficients as in-
dependent. In this paper, a novel Gaussian mixture model, specifically suited for
template learning is proposed for modeling the marginal statistics of the wavelet co-
efficients. A Bayesian approach for inferring a low dimensional statistical template
with a set of training images, using the independent mixture and the hidden Markov
tree models extended to the template learning case, is developed. Results obtained
for template learning and pattern classification using the low dimensional templates
are presented. For training with a large data set, statistical templates generated us-
ing the proposed Bayesian approach are more robust than those generated using an
information-theoretic framework in the wavelet domain.

1 Introduction

Wavelet domain statistical models have found extensive applications in image de-
noising and coding. In this paper, the application of wavelet statistical models to the
problem of template learning for generating a low dimensional statistical template
in a Bayesian approach is addressed. There are two facets to this problem, one is to
provide an appropriate statistical model for exploiting the wavelet coefficient depen-
dencies, and the other is to use this statistical model for learning a low dimensional
template in the wavelet domain for synthesis and classification. A specific type of
Gaussian mixture modeling of the wavelet coefficients for a template learning ap-
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plication is described. The IM model proposed in [4] and wavelet HMT models
proposed in [1] are extended to the case of multiple training images. The Viterbi
algorithm for estimating the most likely states given a set of training images and the
estimated parameters of the statistical model is derived. The problem of registering a
set of training patterns to the template is also described in detail as a part of the tem-
plate learning procedure. The proposed Bayesian approach for template learning is
compared with the Template Learning from Atomic Representations (TEMPLAR),
which is an information-theoretic framework and the advantages that our procedure
has in terms of avoiding overfitting is demonstrated.

The relevant prior work on template learning and wavelet domain statistical
models is presented in Section 2. Section 3 presents the wavelet domain statisti-
cal models developed for the purpose of template learning. The proposed approach
for template learning, along with the Viterbi algorithm for estimating the states and
a method for registration of training images with the template are presented in Sec-
tion 4. Section 5 discusses the results for generating the low dimensional template
with the training images and pattern classification using the generated template. The
discussion concludes with comments in Section 6.

2 Prior Work

2.1 Template Learning

Template learning is the process of learning a representative pattern from the set
of training patterns under consideration. The need to register the training images is
inherent to the problem of template learning. Separation of background from the
pattern of interest and modeling the local deformations are also key problems asso-
ciated with template learning. An approach for template learning and classification
in the wavelet domain, TEMPLAR, has been proposed in [2]. In this framework [2],
the wavelet coefficients are assumed to follow a two-state Gaussian mixture distri-
bution locally and an independence assumption is imposed on the coefficients. In
general, edges represent the significant information in any pattern. Hence, TEM-
PLAR exploits the edge detection properties of the wavelet transform. The Min-
imum Description Length (MDL) principle, an information theoretic criterion, is
used to select the significant coefficients that represent the edges in an image.

2.2 Wavelet Domain Statistical Models

Wavelet coefficients have been assumed to be statistically independent in many
applications, because the wavelet transform approximately whitens a AR-1 pro-
cess. However, they exhibit significant statistical dependencies within a particular
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Fig. 1 (a) Parent-child relationship between wavelet coefficients across scale, (b) quad-tree struc-
ture of state connections between parents and children.

scale as well as across scales [3]. The marginal statistics of wavelet coefficients are
highly non-Gaussian in nature [4] and therefore any wavelet statistical model should
take the marginal statistics as well as the coefficient interdependencies into con-
sideration. The Independent Mixture (IM) model captures the highly non-Gaussian
marginal statistics of wavelet coefficients, using a two state Gaussian Mixture Model
(GMM) and considers the coefficients to be independent [4]. An intuitive and effec-
tive Hidden Markov Tree (HMT) model builds on the IM model and captures the
inter-scale dependencies between the coefficients [1], and this has been successfully
used in denoising. The wavelet coefficients of an image form a natural quad-tree
structure and a separate HMT model will be trained for the tree corresponding to
each of the three subbands. The parent-child relationship and the quad-tree struc-
ture of the wavelet coefficients across scales are shown in Figure 1.

3 Wavelet Domain Statistical Models in Template Learning

Explicitly modeling the coefficient statistics when there are multiple training im-
ages, is a problem that has not been well addressed in the literature. Therefore,
modeling the wavelet coefficient statistics is needed along with the statistical de-
pendencies they exhibit with the other coefficients.

3.1 Proposed Gaussian Mixture Model

GMMs used for modeling wavelet coefficients have the form that assumes two zero
mean Gaussians, one with a low variance and the other with a high variance [1].
For template learning, a different form of GMM needs to be used because the local
statistics of wavelet coefficients need to be taken into consideration. The pattern
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Fig. 2 Two state Gaussian mixture model for template learning. The low state (zero mean) models
the background and smooth regions, whereas the high state (non-zero mean) corresponds to the
pattern.

and background information need to be modeled efficiently, so that they can be
clearly distinguished. The GMM proposed is a two state model and for the wavelet
coefficient Wi, the density is given by,

fWi(wi) =
M

∑
m=1

pQi(m) fWi|Qi(wi|Qi = m). (1)

The conditional density of the wavelet coefficients are given as fWi|Qi(wi|Qi = m)∼
N (µi,m,σ2

i,m). The state Qi = 1 represents a zero mean Gaussian and the state Qi = 2
represents the Gaussian with non-zero mean.

Each wavelet coefficient Wi is assumed to have a separate µi,2 and σ2
i,2, whereas

µi,1 = 0 and σ2
i,1 is constrained to be the same for all the coefficients in a subband.

An illustration of this mixture model is shown in Figure 2. The state Qi = 1 models
the background and smooth regions with a zero mean and common variance across
the subband, whereas the state Qi = 2 corresponds to the pattern. For convenience,
Qi = 1 will be referred to as the low state for the coefficient i and Qi = 2 will
be referred to as the high state. This model also agrees with the intuition that less
parameters must be used to model the background and more parameters must be
used for the actual pattern itself.

3.2 Extending the IM Model

The wavelet coefficients can be modeled as independent Gaussian mixtures using
the prior density proposed in Section 3.1. It is assumed that there are T train-
ing images and the wavelet coefficient i of the training image t is given by wt

i .
wt

i are assumed to be independent realizations of the random variable Wi that fol-
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lows the GMM. wi is a vector that has all the T realizations wt
i of Wi. The EM

algorithm is used to compute the parameters of the IM model given by Θ IM =
{pQi(1),µi,1,µi,2,σ2

i,1,σ2
i,2}, where µi,1 = 0 and σ 2

i,1 is constrained to be the same
for all coefficients in a subband.

In the iteration l, the E-step computes the following conditional probability,

p(Qi = m|wt
i,Θ

(l)
IM) =

p(wt
i|Qi = m,Θ (l)

IM)pQi(m)
M

∑
m=1

p(wt
i|Qi = m,Θ (l)

IM)pQi(m)

. (2)

The M-Step estimates the parameters as,

pQi(m) =
1
T

T

∑
t=1

p(Qi = m|wt
i,Θ

(l)
IM), (3)

σ2
i,1 =

T

∑
t=1

∑
k∈SB(i)

(wt
k)

2 p(Qk = 1|wt
k,Θ

(l)
IM)

T

∑
t=1

∑
k∈SB(i)

p(Qk = 1|wt
k,Θ

(l)
IM)

, (4)

µi,2 =
T

∑
t=1

wt
i p(Qi = 2|wt

i,Θ
(l)
IM)�(T pQi(2)), (5)

σ2
i,2 =

T

∑
t=1

(wt
i−µi,2)2 p(Qi = 2|wt

k,Θ
(l)
IM)�(T pQi(2)), (6)

where SB(i) returns the indices of all the coefficients in the subband corresponding
to the coefficient i. The low state mean, µi,1 = 0 and the low state variance, σ2

i,1 is
the same for all coefficients in the subband.

3.3 Extending the HMT Model

The HMT model proposed in [1] will be extended to the case of multiple training
images using the GMM proposed in the Section 3.1. Assuming that T is the number
of training images and each image is decomposed into maximum possible scales,
there are totally 3T independent wavelet trees. This is because of the assumption
that each of the three quad-trees in the wavelet decomposition of an image will
be considered independent of each other. In this discussion only one of the three
trees per wavelet decomposition is considered, as the generalization to the case of
multiple trees in an image is trivial.

The value of the wavelet coefficient at node i in a tree t is indicated by wt
i .

In the case of IM model, i indexes all the coefficients in the wavelet decomposi-

183



Karthikeyan Natesan Ramamurthy, Jayaraman J. Thiagarajan and Andreas Spanias

tion whereas in the HMT model, i indexes the coefficients in a tree correspond-
ing to one of the subbands. The posterior probabilities p(Qi = m|wt ,Θ (l)

HMT ) and
p(Qi = m,Qπ(i) = n|wt ,Θ (l)

HMT ) are computed using the relevant equations in [9].
The upward-downward step is equivalent to the E-step [9] and the parameter update
is equivalent to the M-step. The parameters of the HMT model at iteration l are then
computed using,

pQi(m) =
1
T

T

∑
t=1

p(Qi = m|wt ,Θ (l)
HMT ), (7)

amn
i,π(i) =

T

∑
t=1

p(Qi = m,Qπ(i) = n|wt ,Θ (l)
HMT )�(T pQπ(i)(n)), (8)

µi,2 =
T

∑
t=1

wt
i p(Qi = 2|wt ,Θ (l)

HMT )�(T pQi(2)), (9)

σ2
i,1 =

T

∑
t=1

∑
k∈SB(i)

(wt
k)

2 p(Qk = 1|wt ,Θ (l)
HMT )

T

∑
t=1

∑
k∈SB(i)

p(Qk = 1|wt ,Θ (l)
HMT )

, (10)

σ2
i,2 =

T

∑
t=1

(wt
i−µi,2)2 p(Qi = 2|wt ,Θ (l)

HMT )�(T pQi(2)). (11)

Note that σ2
i,1 is common for all coefficients in the subband and µi,1 = 0 as in the

case of IM model.
The EM procedure can be used to estimate the parameters of all the three quad-

trees in the wavelet decomposition of an image. The final set of parameters for the
three trees together is denoted by Θ A

HMT and it can be used to estimate the low
dimensional template Θ LD.

4 Proposed Approach

The Bayesian approach for learning the parameters of a low dimensional template
from a set of noisy observations using the IM and HMT wavelet domain statistical
models is presented in this section. It essentially combines the three steps of pa-
rameter estimation using the IM or HMT models proposed in the previous section,
state estimation using the Viterbi algorithm and registration of training images to
the current estimate of the template.
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4.1 Viterbi Algorithm for Estimating the Most Likely States

The Viterbi algorithm for a HMT model is presented in [5], where it is used for
thresholding the wavelet coefficients of an image to denoise and enhance the edges.
In this paper, we extend it to the case of multiple training images for the purpose
of estimating a low dimensional template from a set of noisy, training images. The
proposed Viterbi algorithm estimates the most likely states for the model using all
the training images. This, in essence, fixes the state pointwise in the template so that
conditional independence assumption can be imposed on the wavelet coefficients.

Given the observations of multiple trees of wavelet coefficients w1, ...,wT , the
problem is to estimate the set of most likely states q and this can be expressed as,

q̂ = argmax
q

p
(
q|w1, ...,wT ,Θ HMT

)
. (12)

Let Pt
i be the set of wavelet coefficients at the nodes in the shortest path on the tree

t, between the root node and the node i, and Qi be the states on the path. δi(q) is
defined as the highest likelihood along a single path that ends at node i in state q and
is calculated as,

δi(q) = max
Qπ(i)

f
(
P1

i , ...,PT
i ,Qπ(i),Qi = q|Θ HMT

)
. (13)

In order to find the best possible state sequence, the following steps are performed.

1. At the coarsest scale compute δ1(q), for q ∈S , where S = {1,2} is the set of
possible states.

δ1(q) = pQ1(q)
T

∏
t=1

g
(
wt

1|µ1,q,σ2
1,q

)
(14)

2. Moving down the tree compute the following for each node in a subband

δi(q) = max
z∈S

(
δπ(i)a

qz
i,π(i)

) T

∏
t=1

g
(
wt

i|µi,q,σ2
i,q

)
(15)

ξπ(i)(C ) = argmax
z∈S

(
δπ(i)a

qz
i,π(i)a

sz
i,π(i)a

uz
i,π(i)a

vz
i,π(i)

)
, (16)

for q ∈S and C = {q,s,u,v}, where each quantity in C , takes a value from the
set S . ξπ(i)(C ) is the most likely state at node π(i) to have the four children C .

3. Compute the best possible state for each coefficient in the finest scale,

q̂i = argmax
z∈S

(δi(z)) . (17)

4. Estimate q̂i for the coefficients at node i, moving up the scale and backtracking
the tree,

q̂i = ξi
(
q̂c(i)

)
. (18)
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With the estimated state sequence q̂ for all the three trees, the nodes at which
q̂i = 1, are called as insignificant and the nodes at which q̂i = 2 are called significant.
For generating a low dimensional statistical template, the significant coefficients in
a particular location across the training images are modeled individually with a non-
zero mean Gaussian. All the insignificant coefficients in a subband across the train-
ing images are modeled together using a zero-mean Gaussian. The sets Nins and Nsig
contain the indices corresponding to the insignificant and significant coefficients re-
spectively and N = |Nsig∪Nins|. The low dimensional template is parameterized by
Θ LD = {µi,σ2

i }N
i=1. If i ∈ Nsig, then Θ LD is estimated as,

µi =
1
T

T

∑
t=1

wt
i and σ2

i =
1
T

T

∑
t=1

(wt
i−µi)2. (19)

If i ∈ Nins, then the parameters are given by,

µi = 0 and σ2
i =

1
T |Nins|

T

∑
t=1

∑
k∈Nins

(wt
k)

2. (20)

This low dimensional template estimated using the Viterbi can be compared with
that of TEMPLAR. TEMPLAR uses an information-theoretic criterion to estimate
the template, whereas a Bayesian approach is used here. For the IM case also, an
algorithm similar to the Viterbi algorithm provided above can be used to infer the
best possible states and (19) and (20) can be used to estimate Θ LD.

4.2 Registration with the Low Dimensional Template

The problem of registering training observations to the template is a key step in
template learning. From the parameters of the low dimensional template, Θ LD, the
equivalent spatial domain parameters, Θ LDS = {µ ,Σ} can be computed using Gaus-
sian algebra and the orthonormality of wavelet basis functions [10]. Registration of
a training observation u can be performed using the Maximum Likelihood (ML)
approach as,

ˆ̀= argmax
`

log p(DΓ `u|µ,Σ), (21)

where D and Γ ` are the Discrete Wavelet Transform (DWT) matrix and translation
matrix respectively. This means that the estimation of the most likely transformation
of the training observation to the template is done using a likelihood measure in the
wavelet domain.
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4.3 Learning the Template Parameters

Learning the parameters of the low dimensional template is done as an alternating
maximization problem as done with TEMPLAR. The three steps of the iterative
procedure for learning the template parameters with the HMT based algorithm are:

1. Parameter Estimation: The parameters of the HMT model, Θ A
HMT , are estimated

as per Section 3.3 using the wavelet coefficients of the registered images at the
current iteration.

2. State Estimation: The most likely states, q, of the nodes are computed using the
Viterbi algorithm given in Section 4.1. The parameters of the low dimensional
template Θ LD are also estimated in this step using (19) to (20).

3. Registration: The registration of images to the low dimensional template in the
wavelet domain, Θ LD, is performed as per Section 4.2.

The three steps are repeated in sequence, till convergence is reached. The al-
gorithm is said to have converged when the training images are perfectly aligned
to the low dimensional template. Although a theoretical proof for convergence is
not provided, in the experiments performed, convergence has always happened. An-
other important consideration is that, registration is performed using a robust and
fast multiresolution approach from coarse to fine scale.

The complexity of parameter estimation using the HMT or IM algorithm for T
training images of size N is order NT . State estimation using the Viterbi procedure
and estimation of the low dimensional template, detailed in Section 4.1 are also of
order NT complexity. The registration of training images to the low dimensional
template is the most expensive procedure and for the set L of all possible transfor-
mations, the complexity is of order |L|NT . A low complexity procedure of order
|L|T logN was developed for registering the training images to the template and
reported in [10].

5 Results and Discussion

In this section, we provide the results for generating statistical low dimensional
templates using the training data sets and pattern classification using the templates
learned from the training sets.

5.1 Template Generation from the Training Sets

For the purpose of template generation three data sets are considered. The training
data set A contains images from the MNIST database available online [6]. A total of
500 samples of each are chosen for training. Training data sets B and C are chosen
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Fig. 3 Training data set B -
First subject chosen from the
Yale face database. 8 images
are chosen from a set of 11
and they are cropped to re-
move most of the background.

Fig. 4 Training data set C -
Fifteenth subject chosen from
the Yale face database. The 8
images chosen are cropped to
remove the background.

Fig. 5 Spatial mean of the
template for training data set
A with additive i.i.d. Gaussian
noise (a) using IM based
template learning, (b) using
HMT based template learning,
(c) using TEMPLAR.

from the Yale face database available online [7] and are shown in Figures 3 and 4
respectively.

IM and wavelet HMT based template learning algorithms are used to infer the
parameters of the low dimensional statistical template Θ LD. The existing MATLAB
implementation for the TEMPLAR algorithm was used to generate statistical tem-
plates using the same training data sets for comparison [8]. The images in all training
sets are grayscale and have pixel values between 0 and 255. For the training data set
A, the original digits of size 28×28 are scaled to 32×32 and i.i.d. Gaussian noise
with standard deviation 25.5 is added. The training images are Haar wavelet trans-
form is used for decomposing the images into maximum possible levels. All the
500 samples of each digits are used for training. The mean parameter of Θ LD are
transformed to the spatial domain and the mean templates for the digits are given in
Figure 5.

The spatial mean of the templates under conditions of no noise show that the IM
and HMT based template learning have performed automatic registration and the
mean templates are comparable with that of TEMPLAR. The number of significant
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Table 1 NUMBER OF SIGNIFICANT COEFFICIENTS ESTIMATED BY THE THREE ALGORITHMS
FOR TRAINING DATA SET A

Digit IM Based HMT Based TEMPLAR
With Noise No Noise With Noise No Noise With Noise No Noise

0 588 499 492 688 696 882
1 328 281 280 520 385 860
2 518 483 464 584 627 880
3 524 477 468 632 648 884
4 467 454 426 594 616 882
5 475 466 443 663 624 880
6 495 462 427 574 562 869
7 436 381 340 557 555 844
8 574 512 469 589 572 879
9 459 453 424 615 589 848

coefficients chosen by each algorithm for a given digit are given in Table 1. TEM-
PLAR chooses the lowest number of significant states in each case and the IM based
algorithm chooses the highest. From the table it can also be seen that, for some cases
the number of significant states estimated by the HMT based algorithm is quite close
to that of TEMPLAR. But the IM based algorithm always does a overestimate. HMT
based significant state estimation is the framework proposed for template learning
using Bayesian approach and it performs comparably with the information theoretic
approach of TEMPLAR using MDL principle for state estimation, in certain cases.

The number of significant coefficients for the cases when the training set A is
not corrupted with noise is given in Table 1. It can be seen that TEMPLAR severely
overfits the data in every case because it estimates a large number of significant co-
efficients for all the templates. Large number of significant coefficients mean that
most of the coefficients are treated as edges, whereas this is not the actual case.
When overfitting happens, the generalization error increases and hence the template
will not generalize well to the patterns outside the training set. IM and HMT based
algorithms have much reduced overfitting when compared to TEMPLAR. When a
large number of similar data are available, as in this case, a simple model such as
TEMPLAR will overfit, whereas complex models such as IM and HMT will have a
lesser chance of overfitting. This is because, complex models reliably estimate their
parameters using the large training data set. In cases where the data set contains data
with high similarity, additive noise tends to regularize and improves the generaliza-
tion, as could be observed from the results of the previous experiment given in Table
1. Additive noise is also used to extend small training sets in order to prevent over-
fitting and improve generalization. This idea is used in the next experiment where
the data sets B and C are extended by adding noise.

The templates generated for the training images of the data sets B and C are given
in Figures 6 and 7 respectively. Each training data set is extended to 500 images and
each image in the data set is scaled to 128×128 with i.i.d. Gaussian noise of stan-
dard deviation 25.5 added. For training set B, IM based algorithm estimates a total
of 3776 significant states, HMT based algorithm estimates 2781 significant states
and TEMPLAR estimates 3819 states. For the training data set C, 4124 significant
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Fig. 6 Training data set B
with additive i.i.d Gaussian
noise: (a) and (b) State map
and mean template using IM
based template learning, (c)
and (d) state map and mean
template using HMT based
template learning, (e) and (f)
state map and mean template
using TEMPLAR.

Fig. 7 Training data set C
with additive i.i.d Gaussian
noise: (a) and (b) State map
and mean template using IM
based template learning, (c)
and (d) state map and mean
template using HMT based
template learning, (e) and (f)
state map and mean template
using TEMPLAR.

states are estimated by the IM based algorithm, 2993 by the HMT based algorithm
and 15497 by TEMPLAR. It can be clearly seen that for the training data set C,
TEMPLAR significantly overfits the data. However HMT and IM, being more com-
plex models, do not overfit the data. Therefore, the proposed HMT and IM based
models have a significant advantage over the existing TEMPLAR algorithm. Fur-
thermore, the use of Viterbi state estimation to compute significant states and a low
dimensional template guards against overfitting.

5.2 Pattern Classification using Learned Templates

The classification of test data using the generated templates is performed using an
ML approach. The wavelet domain and its corresponding spatial domain template,
denoted by Θ k

LD and Θ k
LDS respectively, are generated for each class k of the training

data. Classification of the test data u is performed by registering the test data to each
spatial domain class template Θ k

LDS and finding the most likely class k̂ using an ML
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Fig. 8 (a) and (b) Original
plane images, (c) and (d)
spatial mean templates using
IM based algorithm, (e) and
(f) spatial mean templates
using HMT based algorithm.

approach. The corresponding optimization problem can be posed as,

k̂ = argmax
k

[
max

`k
p(u|Θ k

LDS,N
k
sig,−`k)

]
. (22)

The complexity of this step is linear with the number of transformations |L|. A low
complexity version of this procedure is described in [10].

Two images of a plane [2] as given in Figures 8 (a) and (b) were used for classi-
fication. Each image was translated randomly to ±3 pixels and corrupted with i.i.d.
Gaussian noise of standard deviation 25.5. A total of 500 realizations of each image
were used to form the template for each class using both the IM and the HMT based
template learning algorithms. The templates generated with the IM based algorithm
are given in Figures 8 (c) and (d) and with the HMT based algorithm are given in
Figures 8 (e) and (f) respectively. Similarly, 500 realizations of each image were
generated and were classified using the templates generated with no classification
errors.

6 Conclusions

In this paper, we proposed a novel form of the Gaussian mixture model suited for the
purpose of template learning. This was used along with the IM and HMT models,
that were extended for the case of multiple training images. A Bayesian approach
for learning a low dimensional template from a set of training observations using
wavelet domain statistical models is the key contribution of this paper. Results show
that models learned using the proposed approach are more robust when compared to
models learned using an information theoretic framework, in cases of large training
data sets. We can extend this framework to handle affine transformations of training
images using our low-complexity framework for image registration [10]. Though
this framework based on the wavelet transform provides good results in template
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learning and classification, sophisticated transforms such as the complex wavelet
transform can be used to learn templates that are more robust to spatial transforma-
tions of the training images.
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