
Parallel Rule Induction with Information 
Theoretic Pre-Pruning 

Frederic Stahl, Max Bramer and Mo Adda1 

Abstract   In a world where data is captured on a large scale the major challenge 
for data mining algorithms is to be able to scale up to large datasets. There are two 
main approaches to inducing classification rules, one is the divide and conquer 
approach, also known as the top down induction of decision trees; the other 
approach is called the separate and conquer approach. A considerable amount of 
work has been done on scaling up the divide and conquer approach. However, 
very little work has been conducted on scaling up the separate and conquer 
approach. In this work we describe a parallel framework that allows the 
parallelisation of a certain family of separate and conquer algorithms, the Prism 
family. Parallelisation helps the Prism family of algorithms to harvest additional 
computer resources in a network of computers in order to make the induction of 
classification rules scale better on large datasets. Our framework also incorporates 
a pre-pruning facility for parallel Prism algorithms. 

1 Introduction 

Induction of classification rules from data samples in order to predict previously 
unseen data can be traced back to the 1960s [1]. The two most popular approaches 
to classification rule induction are the divide and conquer approach and the 
separate and conquer approach. The divide and conquer approach induces 
classification rules by recursively breaking down the classification problem into 
sub-problems. The resulting rules are in the form of decision trees and thus divide 
and conquer is also known as the Top Down Induction of Decision Trees 
(TDIDT) [2]. TDIDT resulted in a wide range of classifiers such as the C4.5 and 
the C5.0 systems. The separate and conquer approach directly searches for a rule 
that explains a part of the training data, separates the part of the data that is 
covered by the rule and recursively searches for new rules on the remaining 
examples until there are no training instances left. Separate and conquer can be 
traced back to the 1960s to the AQ learning system [3]. Rule induction algorithms 
based on the separate and conquer approach often produce more general rules 
compared with decision trees on noisy training data. Notably the Prism algorithm 
[4] often produces qualitatively better rules than TDIDT especially on noisy data. 
                                                           

1 School of Computing, University of Portsmouth, PO1 3HE, UK 
{Frederic.Stahl; Max.Bramer; Mo.Adda}@port.ac.uk 

M. Bramer et al. (eds.), Research and Development in Intelligent Systems XXVI,  
DOI 10.1007/978-1-84882-983-1_11, © Springer-Verlag London Limited 2010 



Frederic Stahl, Max Bramer and Mo Adda 

The fast development in processing power, storage and sensor technology, notably 
CCTV cameras leads to the generation and storage of larger datasets. However, 
researchers still wish to apply data mining algorithms such as classification rule 
induction algorithms to large datasets. There are two general approaches to scaling 
up classification rule induction algorithms; sampling and the development of 
parallel classification rule induction algorithms. Sampling the data before the 
classification rule induction algorithm is applied has been criticised by Catlett [5] 
who showed that the accuracy of an induced classifier increases with an increasing 
size of the training sample. However, Catlett conducted his research 18 years ago 
and datasets that were considered to be large in his work are commonplace today. 
In 1999 Frey and Fisher justified sampling by showing that the rate of increase of 
the accuracy of the classifier slows down with the rate of increase of the training 
data. However, applications that demand high classification accuracy and 
applications that are concerned with the discovery of new knowledge or where the 
data size is simply so large that even sampled versions are massive in size still 
desire scalable classification rule induction technology. The development of 
parallel classification rule induction algorithms has been concentrated on the 
TDIDT approach, notably by the SLIQ algorithm [6] and its successor SPRINT 
[7]. SPRINT claims to achieve a linear scale up with the increase of the training 
data; however Srivastava pointed out that the breath first search approach that 
SPRINT uses might result in workload balancing problems during its execution 
[8]. In general concerning the predictive accuracy, only parallel versions of 
decision tree induction algorithms showed an acceptable performance. The only 
attempt to parallelise algorithms of the separate and conquer approach to date is 
the Parallel Modular Classification Rule Induction (PMCRI) project [9]. The 
PMCRI framework has been constructed to parallelise algorithms of the Prism 
family. In this paper we present an implementation of PMCRI with the extension 
of a pre-pruning facility. 

2 Modular Classification Rule Induction With Prism 

The development of Prism is a result of the main criticism of TDIDT, which is the 
intermediate representation of classification rules in the form of a tree [4]. A tree 
representation of classification rules does not directly allow the induction of 
modular rules such as: 

IF a = 1 and b = 1 then class = A 
IF c = 1 and d = 1 then class = B 

Such rules do not necessarily have common attributes in their rule terms unlike 
for the representation in tree format. Thus the induction of decision trees will 
produce unnecessarily large and confusing rule sets. Cendrowska’s Prism 
algorithm induces modular rules. In subsequent studies Prism has also been shown 
to be less vulnerable to clashes. However, the Prism algorithm does not scale well 

152



Parallel Rule Induction with Information Theoretic Pre-Pruning 

on large datasets. A version of Prism that attempts to scale up Prism to larger 
datasets is the PrismTCS (Prism with Target Class, Smallest first) algorithm [10] 
which has been developed by one of the authors. PrismTCS has a comparable 
level of predictive accuracy to Prism. The only difference between the two 
algorithms is that whereas in Prism, the above described separate-and-conquer 
approach is applied for each class value in turn, in PrismTCS it is only applied 
once. 

Our implementation of PrismTCS for continuous data only is summarised in 
the following pseudo code: 

(a) working dataset W = restore Dataset; 
    delete all records that match the rules       
    that have been derived so far; 
    target class i = class that covers the  
    fewest instances in W; 
(b) For each attribute A in W 
    - sort the data according to A; 
    - for each possible split value v of  
      attribute A calculate the probability  
      that the class is i for both subsets  
      A < v and A ≥ v; 
(c) Select the attribute that has the subset S  
    with the overall highest probability; 
(d) build a rule term describing S; 
(e) W = S; 
(f) Repeat b to e until the dataset contains  
    only records of class i. The induced rule  
    is then the conjunction of all the rule  
    terms built at step d; 
(g) restore Dataset = restore Dataset – W; 
    Repeat a to f until W only contains  
    instances of class i or is empty; 

However there is a whole family of Prism algorithms besides Prism and 
PrismTCS. There is also PrismTC, which differs from PrismTCS in that it selects 
as target class the class that covers the most instances, rather than the least [11].  

2.1 Pre-Pruning of Prism Classification Rules 

Classifiers are usually pruned in order to reduce overfitting of classification rules. 
There are two general types of pruning, post-pruning and pre-pruning. Post-
pruning methods are applied to the already trained classifier whereas pre-pruning 
is applied as the rules are being generated. Most parallel versions of TDIDT 
classifiers follow the post pruning approach with the reasoning that it takes only a 
small fraction of the overall induction time of the classifier [7, 8]. However, pre-
pruning generally leads to slimmer classifiers and thus reduces the number of 
iterations of the algorithm and thus the classification rule induction time. A pre-
pruning method introduced by Bramer [10] based on the J-measure of Smyth and 
Goodman [12] can be applied to both the TDIDT and the Prism family of 

153



Frederic Stahl, Max Bramer and Mo Adda 

algorithms and it shows on both families a good performance [10] with respect to 
predictive accuracy and the number of rule terms. Thus we will incorporate J-
pruning in our PMCRI framework.  

According to [12] a rule of the form IF Y=y, THEN X=x has the average 
information content of: 

);()();( yYJjypyYXJ =⋅==  
The J-measure is a product of two terms. The first term p(y) is the probability 

that the antecedent of the rule will occur. It is a measure of the hypothesis 
simplicity. The second term j(X;Y=y) is the j-measure or cross entropy. It is a 
measure of the goodness-of-fit of a rule and is defined by: 

)
))(1(

))|(1((log)).|(1()
)(

)|((log).|();( 22 xp
yxpyxp

xp
yxpyxpyYXj

−
−−+==  

For further reading we refer to [12]. For J-pruning it is assumed that a rule 
having a high J-value will tend to have a high predictive accuracy. So the J-
measure can be used to identify a point where a further specialisation of a rule is 
likely to become counter productive because of overfitting. In Prism J-pruning is 
performed by measuring the J-value of each rule after appending a rule term. If the 
J-value increases then the term is accepted otherwise the term is rejected and a 
clash handling procedure is invoked. If a rule is pruned Prism calculates the 
majority class in the subset. If it is not the target class then the entire rule is 
discarded and instances of the training subset that belong to the target class are 
deleted.  

2.2 Scalability of Prism 

We derived the theoretical complexity of Prism based on the number of 
calculations of the probability for a possible split value of an attribute contained in 
step b in the PrismTCS pseudo code above. We will call this number the number 
of cutpoints. In the best case scenario there would be only one attribute that 
determines the class of any data instance or all data instances would simply belong 
to the same class. It is difficult to describe an average case for the algorithm as the 
outcome is strongly dependent on the underlying pattern in the data. However, it is 
possible to describe the worse case. Let N be the number of data instances and M 
the number of attributes. A categorical attribute will at most occur once in a rule 
whereas a continuous one may occur twice, as with two rule terms it would be 
possible to describe any interval of values of a continuous attribute. Thus there 
will be a maximum number of 2M rule terms per rule. The maximum number of 
rules is N-1, meaning that each training instance except one is described by a 
separate rule. The -1 is because if there is only one instance left in the training 
data we do not need to generate a further rule for it. The complexity of inducing 
the kth rule is 2M(N-k). For example if we induce the very first rule (k=1) we 

154



Parallel Rule Induction with Information Theoretic Pre-Pruning 

would have N instances available thus we would have (N-1) cutpoint calculations 
per rule term. As there are a maximum of 2M rule terms there would be altogether 
2M(N-1) cutpoint calculations. Summing this up for all possible rules leads to: 

)(
2

)1(2)()2( 2
1

1
MNONNMkNM

N

k
=

−⋅
⋅=−⋅∑

−

=

 

A complexity of )( 2MNO  is very pessimistic and seems to be very unlikely to 
happen. In practice larger datasets may well contain fewer rule terms than smaller 
ones. Also J-pruning will reduce the number or rule terms induced as shown in 
[10].  

 
Fig. 1. Relative number of rule terms induced versus the size of the training data. 

We ran PrismTCS with J-Pruning on several datasets. For each dataset we built 
samples of different sizes and measured the number of rule terms induced. We 
plotted the relative number of rule terms versus sample size in figure 1. The 
Statlog (Shuttle) dataset is from the UCI repository [13] and the infobiotics 1 and 
2 datasets were retrieved from the infobiotics data repository which comprises 
large real world datasets for benchmark tests for machine learning tasks [14]. The 
Statlog dataset samples ranged from 1000 to 40000 instances and comprised 9 
attributes and 5 classes; infobiotics 1 ranged from 1000 to 100000 instances 
comprising 20 attributes and 5 classes, infobiotics 2 also ranged from 1000 to 
100000 instances but comprised 100 attributes and 5 classes. Figure 1 also 
contains the relative number and theoretical linear relative number of rule terms 
plotted versus the number of training instances and shows that there is no linear 
behaviour of the increase of the number of rule terms recognizable. The scaling 
results obtained in [9] strongly suggest a linear scaling behaviour of the Prism 
family with respect to the number of training instances while the number of rules 
and rule terms remains constant.  

155



Frederic Stahl, Max Bramer and Mo Adda 

3 J-PMCRI: Parallel Modular Classification Rule Induction 
With J-Pruning 

The basic idea is to distribute the workload of Prism over a network of computers 
by distributing the training data. Each computer in the network does its part in 
inducing the classifier. To realise such a loosely coupled system no special 
hardware is required. In PMCRI the classifier induced is exactly the same as 
would be induced from the serial version of the Prism algorithm. 

3.1 Architecture of PMCRI 

The architecture of PMCRI is based on the Cooperating Data Mining model 
(CDM) [15]. The CDM model can be divided into three layers; the first comprises 
a sample selection procedure; in the second layer learning algorithms work on the 
local training data and communicate in order to get a global view of the state of 
the classifier; the third layer is a combining procedure that assembles the final 
classifier using rule terms induced locally on all machines. In the first layer a 
workload balance is achieved by building attribute lists out of each attribute in the 
training data similar to those in the SPRINT [7] algorithm. Attribute Lists are of 
the structure <record id, attribute value, class value>. These attribute lists are 
then distributed evenly over n processors. Unlike SPRINT, which achieves a 
workload balance by splitting each attribute list into n chunks and distributes them 
evenly over n processors we distribute entire attribute lists evenly over n 
processors. Distributing parts of the attribute lists may achieve a better workload 
balance at the very beginning. However it is likely that it will result in a 
considerable workload imbalance later on in the algorithm as part attribute lists 
may not evenly decrease in size [8]. Distributing entire attribute lists may only 
impose a slight workload imbalance at the beginning of the algorithm in PMCRI. 
However the relative workload on each processor will approximately stay the 
same. Now having distributed the entire training data in the form of attribute lists, 
each processor will be able to induce a rule term, which is locally the best rule 
term for the attribute lists it holds in memory. Once each rule term is induced the 
participating machines need to exchange information in order to find out which 
one induced the globally best rule term. For this purpose we use a distributed 
blackboard architecture as in [16]. A blackboard architecture can be seen as a 
physical blackboard, that is observed and used by several experts with different 
knowledge domains that have a common problem to solve. Each expert will use its 
own knowledge plus information written on the blackboard by other experts in 
order to derive new information and in turn write it on the blackboard. As a 
software model this principle can be represented by a client server architecture. 
The basic architecture of PMCRI is shown in figure 2 [17]. The attribute lists are 
distributed over k machines in the network. The blackboard system is partitioned 

156



Parallel Rule Induction with Information Theoretic Pre-Pruning 

into two logical partitions, one for information about local rule terms on experts 
and one for global information.  

 
Fig. 2. The architecture of the PMCRI framework using a distributed blackboard architecture in 
order to parallelise any member of the Prism Family.  

Every expert is hosted on a separate machine in the network and is able to 
induce the rule term that is locally the best one for the attribute lists it holds. It 
then writes information about the induced rule term on the local rule term 
information partition and awaits the global information it needs in order to induce 
the next rule term. The information submitted is basically the covering probability 
with which the induced rule term covers the target class on the local attribute list 
collection and the number of instances this rule term covers. If the local rule term 
information is submitted from all k expert machines the moderator program on the 
blackboard server will collect this information and use it in order to determine the 
globally best rule term. The moderator advertises the winning expert to all experts 
by writing the winning expert’s name on the global information partition. The 
winning expert then will communicate the ids of the instances that are uncovered 
by this rule term to the other waiting experts using the blackboard system. Now 
the next rule term can be induced in the same way.  

 

 
Fig. 3.  Combining Procedure in PMCRI 

157



Frederic Stahl, Max Bramer and Mo Adda 

At the end of the PMCRI execution each expert machine will hold a set of 
terms for each rule. The implementation of the combining procedure in layer three 
in the CDM model is realised by communicating all the rule terms locally stored at 
the expert machines to the blackboard. Each rule term is associated with 
information about the rule and the class for which the terms were induced. The 
moderator program then simply appends each rule term to its corresponding rule 
as illustrated in figure 3. 

3.2 Parallel J-Pruning in PMCRI 

The following steps listed below describe how PMCRI induces one rule [18] 
based on the Prism algorithm: 

Step 1 Moderator (Prism) writes on “Global Information Partition” the 

command to induce locally best rule terms. 

Step 2 All Experts induce the locally best rule term and write the 

rule terms plus its covering probability and the number of list 

records covered on the “local Rule Term Partition” 

Step 3 Moderator (Prism) compares all rule terms written on the 

“Local Rule Term Partition”; adds best term to the current rule; 

writes the name of the Expert that induced the best rule term on 

the Global Information Partition 

Step 4 Expert retrieves name of winning expert. 

IF Expert is winning expert {  

   derive by last induced rule term uncovered ids and write  

   them on the “Global Information Partition” and delete  

   uncovered list records 

} 

ELSE IF Expert is not winning expert { 

    wait for by best rule term uncovered ids being available  

    on the “Global Information Partition”, download them and  

    delete list records matching the retrieved ids. 

}  

In order to induce the next rule term, PMCRI would loop back to step one. For 
PMCRI to know when to stop the rule, it needs to know when the remaining list 
records on the expert machines are either empty or consist only of instances of the 
current target class. This information is communicated between the winning 
expert and the moderator program using the Global Information Partition. 

J-pruning in Prism can be integrated in step 2 and 3 in the algorithm above and 
thus no further synchronisation is needed. That is because the attribute list from 
which the local rule term on an expert was induced contains enough information 
to calculate the J-value for the term concerned. The information needed to 
calculate the J-value is the count of how many data instances (list instances) the 

158



Parallel Rule Induction with Information Theoretic Pre-Pruning 

rule term covers, the count of how many instances covered by the rule term that 
are assigned with the target class, the total number of instances and the total 
number of instances covering the target class. Each expert calculates the J-value in 
step 2 and writes it on the blackboard. Then in step 3 of the moderator program 
the best rule term location can be determined by the following procedure if p is the 
covering probability, c the number of instances covered assigned with the target 
class, j being the rule terms J-value: 
bestJ=0; bestProb=0; bestCov=0; ExpertInfo; 

for each submitted rule term do{ 

  IF(t.p>bestProb OR (t.p==bestProb AND t.c>bestCov)){ 

     if(t.j>bestJ){ 

        ExpertInfo = “Best term induced on “ t.ExpertName;} 

     else{ 

        ExpertInfo = “prune rule”;} 

   } 

} 

  The Moderator will write the content of “ExpertInfo” to the Global Information 
Partition on the blackboard. If the message contains the name of the winning 
expert the algorithm will continue with step 4, if it contains the info “prune rule” 
then each expert will invoke the clash resolution procedure outlined in section 2.1 
and start the next rule. 

4 Evaluation of the PMCRI Framework 

In order to evaluate PMCRI we used the diabetes and yeast datasets from the UCI 
repository [13]. To create a larger and thus more challenging workload for 
PMCRI, we appended each dataset to itself in either a horizontal or a vertical 
direction. The base diabetes and yeast datasets each comprise roughly 100,000 
data records and 48 attributes. Please note that in these experiments PMCRI’s 
learning algorithm is based on PrismTCS and produces exactly the same rules as 
the serial version of PrismTCS would induce. Therefore there is no concern with 
issues relating to the comparative quality of rules generated by different 
algorithms. As all datasets were based on either the yeast or the diabetes dataset 
the induced classifiers were identical for all dataset sizes based on yeast and also 
for all datasets sizes based on diabetes. In particular the classifier induced on yeast 
produces 467 rules and the classifier on diabetes 110 rules. However, as all 
datasets comprised 48 attributes we will have imposed a slight workload 
imbalance for 10 processors as we only assign complete attribute lists to each 
processor. Thus, for the 10 expert configuration, two expert machines were 
holding 4 and eight experts were holding 5 attribute lists. The machines we used 
for all experiments in this section had a CPU speed of 2.8 GHz and a memory of 1 
GB. The operating system used was XUbuntu. In general when we talk about 
processors in this section we in fact mean expert machines. 

159



Frederic Stahl, Max Bramer and Mo Adda 

4.1 Size up And Capability Barriers of PMCRI  

In size-up experiments a system’s performance is examined on a fixed processor 
configuration on an increasing workload. In PMCRI the workload is equivalent to 
the number of data records that are used to train a Prism classifier. In general we 
hope to achieve a linear size-up meaning that the runtime is a linear function of 
the data set size.  

 
Fig. 4. Size up behaviour of PMCRI on portrait formatted yeast and diabetes dataset  

The left hand side of figure 4 shows the runtimes plotted versus the number of 
yeast and diabetes dataset instances for PMCRI using different numbers of expert 
machines. In general we observe a linear behaviour for all configurations. What 
we can also read on the left hand side in figure 4 are the capability barriers of 
PMCRI. In a particular configuration of PMCRI the capability barrier is 
equivalent to the amount of data the framework can cope with. If we load too 
many attribute lists into the memory of the expert machines then the operating 
system on the expert machines will buffer parts of the lists to the swap memory on 
the hard drive in order to avoid a memory overflow. This buffering would cause a 
considerable overhead, thus a too large workload has to be avoided. We can see 
that the capability barrier of PrismTCS with PMCRI with 2 experts was reached 
after roughly 166000 data records and for PrismTCS with PMCRI with four 
machines after roughly 322000 data records. In PMCRI the capability barriers can 
be widened by adding more machines and thus more memory. Figure 6 shows that 
for PMCRI if the amount of memory is doubled the capability barriers will also 
double in size. We took a closer look into the size up behaviour of PMCRI. The 
right hand side of figure 4 represents the same data as the left hand side with the 
difference that both axes have been normalised. Now the ideal scaling behaviour 

160



Parallel Rule Induction with Information Theoretic Pre-Pruning 

for all processor configurations would be a straight line through the points (1,1), 
(2,2), (3,3) as displayed in figure 4. We can see that except for the serial version of 
PrismTCS all data points are below the ideal behaviour and thus indicate a slightly 
better behaviour than linear for PrismTCS parallelised using PMCRI. This can be 
explained by the fact that the communication does not increase linearly with the 
number of data records. There are two types of communication.  

 

Fig. 5. Size up behaviour of PMCRI on landscape formatted yeast and diabetes dataset 

The first type of communication are indices of list records that are covered or 
uncovered by the currently induced rule term, which increases linearly with the 
number of data records. However, for each rule term induced, PMCRI will 
broadcast information about the relevant rule term using the blackboard system. 
This second type of communication consists of only two values: the covering 
probability and the count with which the induced rule term covers the target class. 
This second type of communication is dependent on the total number of rule terms 
induced and not on the number of data records. As for all sizes of the diabetes 
dataset we induce the same amount of rule terms, this second type of 
communication stays constant and is the reason for a size-up being slightly better 
than linear. Figure 5 illustrates similar experiments as described above for figure 
4. The difference is that this time ‘landscape’ versions of the yeast and diabetes 
datasets were taken into account. Again we observe a linear behaviour but this 
time for the runtimes of PMCRI with respect to the number of attributes rather 
than the number of data instances. We also observe the same behaviour for the 
capability barriers as for portrait data. We can see that the capability barrier of 
PrismTCS with PMCRI with 2 experts was reached after 768 attribute lists and for 
PrismTCS with PMCRI with four machines after roughly 1488  attribute lists. 
Again we took a closer look into the size-up behaviour of PMCRI. And again we 
normalised both the axes of the data of the left hand side of figure 5 and plotted 

161



Frederic Stahl, Max Bramer and Mo Adda 

them as shown on the right hand side of figure 5. Once more we observed a size 
up behaviour better than linear for the same reasons as stated above for the data in 
portrait format. This time even the first type of communication will stay constant 
as by adding more attributes the number of indices of list records that are covered 
or uncovered by the currently induced rule term stays constant as well.  

4.2 Speed up of PMCRI 

With the speed up factors we compare how much the parallel version of an 
algorithm is faster using p processors compared with one processor. 

R
RS

p
p

1= (1) 

Formula 1 represents the speedup factors Sp. R1 is the runtime of the algorithm 
on a single machine and Rp is the runtime on p machines. In the ideal case the 
speedup factors are the same as the number of processors used. For example if two 
processors were used then a speedup factor of 2 means that we gained 100% 
benefit from using an additional processor. In reality this speedup factor will be 
below the number of processors for various reasons such as a communication 
overhead imposed by each processor, which would be in our case caused by 
communication of information about rule terms and indices of list records. Then 
there is also the synchronization overhead. For example in the case of PMCRI if a 
processor has induced the locally best rule term it has to wait for the remaining 
machines to finish their rule term induction in order to receive or derive the 
indices that are covered from the globally best rule term. However, as stated in 
section 3 the relative workload of each processor stays constant thus a 
synchronisation overhead will not be overwhelming. Figure 6 shows the speed up 
factors of PrismTCS parallelised using PMCRI for different sizes of diabetes and 
yeast datasets. The left hand side of figure 6 shows the speedup factors for the data 
with different numbers of instances and the right hand side of figure 6 for the data 
with different numbers of attributes. We ran configurations of 2, 4, 6, 8, 10 and 12 
processors against the serial version of PrismTCS. We can observe a general 
tendency that for a fixed dataset size with an increasing number of processors the 
speedup factors increase until they reach a maximum and then start to decrease 
again. We can also observe that the larger the dataset size the more processors are 
needed in order to reach the maximum speedup. Thus in general we can say the 
larger the amount of training data the more benefit we gain from using more 
expert machines. 

162



Parallel Rule Induction with Information Theoretic Pre-Pruning 

 
Fig. 6. Speedup behaviour of PMCRI. 

5 Conclusions 

We presented the work and results of the PMCRI framework, a Parallel Modular 
Classification Rule Induction framework. PMCRI harvests the computational 
power of a distributed network in order to make modular classification rule 
induction scale better on large datasets. We started the paper with a discussion of 
two general approaches to classification rule induction, the divide and conquer 
and separate and conquer approaches. There have been two general approaches to 
making the classification rule induction approach scale better on large datasets: 
sampling and parallelisation, but there has been no attempt to parallelise the 
separate and conquer approach. We continued the paper by discussing the Prism 
family of algorithms that follow the separate and conquer approach and discussed 
its quality and examined its scaling behaviour. We next discussed the suitability of 
Prism’s pre-pruning method, J-pruning, for scaling up algorithms of the Prism 
family to large datasets. Next we presented the PMCRI framework with an 
integrated J-Pruning facility that helps to parallelise separate and conquer 
algorithms of the Prism family and similar ones. We evaluated PMCRI 
experimentally on a parallel implementation of PrismTCS. First we performed 
size-up experiments in order to determine PMCRI’s scaling behaviour with 
respect to the number of data instances and attributes. In both cases we observed a 
size-up behaviour better than linear. Next we determined the speedup factors for 
several numbers of expert machines on several amounts of training data. We 
observed that the larger the amount of training data regarding the number of 
attributes and data instances the more processors are needed to achieve the 
maximum speedup.  

163



Frederic Stahl, Max Bramer and Mo Adda 

References 

1. Hunt E. B., Marin J., and Stone P. J., Experiments in Induction. 1966: Academic Press. 
2. Quinlan J. R., Induction of decision trees. Machine Learning. Vol. 1. 1986. 81-106. 
3. Michalski R.S., On the quasi-minimal solution of the general covering problem, in 

Proceedings of the Fifth International Symposium on Information Processing. 1969: Bled, 
Yugoslavia. p. 125-128. 

4. Cendrowska J., PRISM: an Algorithm for Inducing Modular Rules. International Journal of 
Man-Machine Studies, 1987. 27: p. 349-370. 

5. Catlett J., Megainduction: Machine learning on very large databases. 1991, University of 
Technology, Sydney. 

6. Metha M., Agrawal R., and Rissanen J., SLIQ: A Fast Scalable Classifier for Data Mining. 
International Conference on Extending Database Technology EDBT'96), 1996. 

7. Shafer J. C., Agrawal R., and Mehta M., SPRINT: A Scalable Parallel Classifier for Data 
Mining. Twenty-second International Conference on Very Large Data Bases, 1996. 

8. Srivastava, A., et al., Parallel Formulations of Decision-Tree Classification Algorithms. 
Data Mining and Knowledge Discovery, 1999. 3(3): p. 237-263. 

9. Stahl F., Bramer M., and A. M., PMCRI: A Parallel Modular Classification Rule Induction 
Framework., in Sixth International Conference on Machine Learning and Data Mining. In 
Press, Springer: Leipzig. 

10. Bramer M., An Information-Theoretic Approach to the Pre-pruning of Classification Rules. 
Proceedings of the IFIP Seventeenth World Computer Congress - TC12 Stream on 
Intelligent Information Processing. 2002: Kluwer, B.V. 201-212. 

11. Bramer M., Inducer: a public domain workbench for data mining. International Journal of 
Systems Science, 2005. 36(14): p. 909-919. 

12. Smyth, P. and R.M. Goodman, An Information Theoretic Approach to Rule Induction from 
Databases. IEEE Trans. on Knowledge and Data Eng, 1991. 4(4): p. 301-316. 

13. Blake C. L. and Merz C. J, UCI repository of machine learning databases. 1998, University 
of California, Irvine, Department of Information and Computer Sciences. 

14. Stout M., et al., Prediction of recursive convex hull class assignments for protein residues. 
Bioinformatics, 2008. 24(7): p. 916-923. 

15. Provost F., Distributed Data Mining: Scaling up and Beyond, in Advances in Distributed and 
Parallel Knowledge Discovery, P.C. H. Kargupta, Editor. 2000, AAAI Press / The MIT 
Press. 

16. Nolle L., Wong K. C. P., and Hopgood A., DARBS: A Distributed Blackboard System. 
Twenty-first SGES International Conference on Knowledge Based Systems, 2001. 

17. Stahl F. and Bramer M., P-Prism: A Computationally Efficient Approach to Scaling up 
Classification Rule Induction, in IFIP International Conference on Artificial Intelligence. 
2008, Springer: Milan. 

18. Stahl F. and Bramer M., Parallel Induction of Modular Classification Rules, in Twenty-
eighth SGAI International Conference on Innovative Techniques and Applications of 
Artificial Intelligence. 2008, Springer: Cambridge. 

 
 

164




