
Coping with Noisy Search Experiences

Pierre-Antoine Champin, Peter Briggs, Maurice Coyle, and Barry Smyth

Abstract The so-called Social Web has helped to change the very nature of the
Internet by emphasising the role of our online experiences as new forms of content
and service knowledge. In this paper we describe an approach to improving main-
stream Web search by harnessing the search experiences of groups of like-minded
searchers. We focus on the HeyStaks system (www.heystaks.com) and look in partic-
ular at the experiential knowledge that drives its search recommendations. Specifi-
cally we describe how this knowledge can be noisy, and we describe and evaluate
a recommendation technique for coping with this noise and discuss how it may be
incorporated into HeyStaks as a useful feature.

Experience is the name everyone gives to their mistakes. —Oscar Wilde

1 Introduction

The now familiar Social Web reflects an important change in the nature of the Web
and its content. The development since 1999 of blogs, as a simple way for users to
express their views and opinions, ushered in this new era of user-generated content
(UGC) as many sites quickly began to offer a whole host of UGC alternatives in-
cluding the ability to leave comments and write reviews, as well as the ability to

Pierre-Antoine Champin
LIRIS, Université de Lyon, CNRS, UMR5205, Université Claude Bernard Lyon 1, F-69622,
Villeurbanne, France, e-mail: pchampin@liris.cnrs.fr

Peter Briggs, Maurice Coyle, and Barry Smyth
CLARITY: Centre for Sensor Web Technologies School of Computer Science and Informatics,
University College Dublin, Ireland, e-mail: {peter.briggs,maurice.coyle,Barry.Smyth}@ucd.ie

Acknowledgment
Based on works supported by Science Foundation Ireland, Grant No. 07/CE/I1147, the French
National Center for Scientific Research (CNRS), and HeyStaks Technologies Ltd.

M. Bramer et al. (eds.), Research and Development in Intelligent Systems XXVI,
DOI 10.1007/978-1-84882-983-1_1, © Springer-Verlag London Limited 2010

Pierre-Antoine Champin, Peter Briggs, Maurice Coyle, and Barry Smyth

rate or vote on the comments/opinions of others. The result has been an evolution
of the Web from a repository of information to a repository of experiences, and an
increased emphasis on people rather than content. In combination with social net-
working services, this has precipitated the growth of the Social Web as a platform
for communication, sharing, recommendation, and collaboration.

Web search has continued to play a vital role in this evolving online world and
there is no doubting the success of the mainstream Web search engines as a key
information tool for hundreds of millions of users everyday. Given the importance
of Web search it is no surprise that researchers continue to look for new ways to
improve upon the mainstream search engines. However, new tools are also needed
to gather, harness, reuse and share, in the most efficient and enjoyable way, the ex-
periences captured by UGC [4, 18]. One particular line of research has focused on
using recommendation technologies in an effort to make Web search more personal:
by learning about the preferences and interests of individual searchers, personalized
Web search systems can influence search results in a manner that better suits the
individual searcher [3, 21]. Recently, another complementary research direction has
seen researchers explore the collaborative potential of Web search by proposing
that the conventional solitary nature of Web search can be enhanced in many search
scenarios by recognising and supporting the sharing of search experiences to facil-
itate synchronous or asynchronous collaboration among searchers [14, 8]. Indeed,
the work of [16, 1] has shown that collaborative Web search can lead to a more
personalized search experience by harnessing recommendations from the search ex-
periences of communities of like-minded searchers.

Our recent work [17] has led to the development of a new system to support col-
laborative Web search. This system is called HeyStaks (heystaks.com) and it benefits
from providing a collaborative search experience that is fully integrated with main-
stream search engines such as Google. HeyStaks comes in the form of a browser
toolbar and, as users search as normal, HeyStaks captures their search experiences
and promotes results based on their past search experiences and the experiences of
friends, colleagues, and other like-minded searchers. HeyStaks introduces the key
concept of a search stak which serves as a repository for search experiences. Users
can create search staks to represent their search interests and they can share their
staks with others to create pools of focused search experiences.

The key contribution of this paper is to focus on an important challenge faced
by HeyStaks and to propose a recommendation solution to meet this challenge. The
challenge concerns the basic stak selection task: prior to a search, a HeyStaks user
must select an active stak so that their search experiences can be correctly stored
and so that they can receive appropriate recommendations. Many users have built
this into their search workflow and HeyStaks does contain some simple techniques
for automatically switching to the right search stak at search time. However, many
users forget to choose a stak before they search and, as a result, search experiences
are often mis-filed in an incorrect stak. Ultimately this limits the effectiveness of
HeyStaks and contributes significant experience noise to search staks.

In what follows we will briefly introduce the HeyStaks system. Then we will
describe the development of a stak recommendation technique as part of HeyStaks’

6

Coping with Noisy Search Experiences

stak maintenance features, which allow stak owners to review and edit stak content.
In brief, our stak recommender is capable of highlighting potentially mis-filed ex-
periences and offers the user a suggested target stak that is expected to provide a
better fit. We will describe an evaluation on real-user search data to demonstrate the
effectiveness of this technique.

2 HeyStaks: an overview

HeyStaks is a collarative search systems, similar to those presented in [12, 9]. Our
primary goal in designing HeyStaks is to help improve upon the search experience
offered by mainstream search engines, while at the same time allowing searchers
to search as normal with their favourite engine. In this section we will outline the
basic HeyStaks system architecture and summarize how result recommendations
are made during search. In addition we will make this discussion more concrete by
briefly summarizing a worked example of HeyStaks in action.

Concepts and Architecture. HeyStaks adds two important collaboration features
to any mainstream search engine. First, it captures users’ experiences in using the
search engine, and store them in search staks. Staks are a type a of folder that users
can create to store search experiences related to a given topic of interest. Staks can
also be shared with others so that their own searches will also be added to the stak.
Second, HeyStaks uses staks to generate recommendations that are added to the
underlying search results that come from the mainstream search engine. These rec-
ommendations are results that stak members have previously found to be relevant
for similar queries in the context of this stak, and help the searcher to discover re-
sults that friends or colleagues have found relevant, results that may otherwise be
buried deep within the engine’s result-list.

HeyStaks takes the form of two basic components: a client-side browser tool-
bar and a back-end server. The toolbar allows users to create and share staks and
provides a range of ancillary services, such as the ability to tag or vote for pages.
The toolbar also captures search result click-thrus and manages the integration of
HeyStaks recommendations with the default result-list. The back-end server man-
ages the individual stak indexes (indexing individual pages against query/tag terms
and positive/negative votes), the stak database (stak titles, members, descriptions,
status, etc.), the HeyStaks social networking service and the recommendation en-
gine.

Running Example. To make things more concrete, consider the following exam-
ple. Pierre, Maurice and some colleagues are using the LaTeX typesetting system on
a regular basis, and Web search as a source of information about how to use it. Pierre
created a search stak called “LaTeX” and shared this with Maurice and colleagues,
encouraging them to use this stak for their LaTeX-related searches.

Fig. 1 shows Maurice selecting this stak as he embarks on a new search about the
tabular environment, and Fig. 2 shows the results of this search. The usual Google

7

Pierre-Antoine Champin, Peter Briggs, Maurice Coyle, and Barry Smyth

The Stak−List

The HeyStaks Toolbar

Tag, Share, Vote Actions

Create, Share, Remove Staks

Fig. 1 Selecting a new active stak.

results are shown, but in addition HeyStaks has made one promotion. This was pro-
moted because other members of the “LaTeX” stak had recently found these results
to be relevant; perhaps they selected them for similar queries, or voted for them, or
tagged them with related terms. These recommendations may have been promoted
from much deeper within the Google result-list, or they may not even be present in
Google’s default results. Other relevant results may also be highlighted by HeyStaks,
but left in their default Google position. In this way Pierre and Maurice benefit from
promotions that are based on their previous similar searches. In addition, HeyStaks
can recommend results from Pierre and Maurice’s other staks, helping them to ben-
efit from the search knowledge that other groups and communities have created.

HeyStaks Promotion

Pop−up tag, share, vote icons

Fig. 2 Google search results with HeyStaks promotions.

8

Coping with Noisy Search Experiences

Separately from the toolbar, HeyStaks users also benefit from the HeyStaks
search portal, which provides a social networking service built around people’s
search histories. For example, Fig. 3 shows the portal page for the “LaTeX” stak.
It presents an activity feed of recent search history and a query cloud that makes it
easy for the user to find out about what others have been searching for. The search
portal also provides users with a wide range of features such as stak maintenance
(e.g., editing, moving, copying results in staks and between staks), various search
and filtering tools, and a variety of features to manage their own search profiles and
find new search partners.

S
ta

k
A

ct
iv

ity
 F

ee
d

S
tak Tag C

loud

Fig. 3 The HeyStaks search portal provides direct access to staks and past searches.

Generating Recommendations. In HeyStaks each search stak (S) serves as a
profile of the search activities of the stak members. Each stak is made up of a set of
result pages (S = {p1, ..., pk}) and each page is anonymously associated with a num-
ber of implicit and explicit interest indicators, including the total number of times a
result has been selected (sel), the query terms (q1, ...,qn) that led to its selection, the
number of times a result has been tagged (tag), the terms used to tag it (t1, ..., tm),
the votes it has received (v+,v−), and the number of people it has been shared with
(share).

In this way, each page is associated with a set of term data (query terms and/or tag
terms) and a set of usage data (the selection, tag, share, and voting counts). The term
data is stored as a Lucene (lucene.apache.org) index, with each page indexed under
its associated query and tag terms, and provides the basis for retrieving and ranking
promotion candidates. The usage data provides an additional source of evidence that
can be used to filter results and to generate a final set of recommendations. At search
time, recommendations are produced in a number of stages: first, relevant results
are retrieved and ranked from the stak index; next, these promotion candidates are
filtered based on the usage evidence to eliminate spurious recommendations; and,

9

Pierre-Antoine Champin, Peter Briggs, Maurice Coyle, and Barry Smyth

finally, the remaining results are added to the Google result-list according to a set of
presentation rules.

Briefly, HeyStaks uses a number of different recommendation rules to determine
how and where a promotion should be added. Space restrictions prevent a detailed
account of this component but, for example, up to 3 primary promotions are added
to the top of the Google result-list and labelled using the HeyStaks promotion icons.
If a remaining promotion is also in the default Google result-list then this is la-
beled in place. If there are still remaining promotions then these are added to the
secondary promotion list, which is sorted according to TF*IDF scores. These rec-
ommendations are then added to the Google result-list as an optional, expandable
list of recommendations. The interested reader can refer to [17] for more details.

It is worth noting that, unlike many other recommender systems, HeyStaks does
not filter information from a search stak in order to personalize recommendation
results. Personalization does however occurs in HeyStaks (unlike other systems such
as Google’s SearchWiki) by chosing the active stak from which recommendation
knowledge will be used. The focus is therefore on the task or context of the user,
rather than an ever-valid user profile that would not account for the diversity of their
search activity.

3 Stak recommendation

With the current version of HeyStaks the focus is very much on the recommendation
of results during search. However, in this section we will argue the need for a second
type of recommendation – the recommendation of staks to users at search time – as
a way to help ensure that the right search experiences are stored in the right staks.

The Problem of Stak Noise. One problem faced by HeyStaks, and many other
systems relying on users’ experiential knowledge, is that of reliably collecting that
knowledge. Explicitly requesting information from the user is often considered too
intrusive, and discourages many users from using the system in the first place. On
the other hand, implicitly collecting this information is error prone because in order
to interpret users’ actions in terms of reusable knowledge, the collection process
must be based on some idealized expectation of user behaviour.

For example, HeyStaks relies on users selecting an appropriate stak for their
search experiences, prior to selecting, tagging or voting for pages. Those actions are
therefore considered as evidence that the page is relevant to the stak currently active
in the HeyStaks toolbar, and to the query, in the case of a selection. The relevance
to the query is not guaranteed, though, since the page may prove less interesting
than its title suggested. More important for HeyStaks, the relevance to the selected
stak is not guaranteed either, for it is common occurence that users forget to select a
stak those actions. Many pages are then filed by default in the users “My Searches”
stak (which is not shared with other users), or even in an unrelated stak. The point
is that this limits the quality of search knowledge contained within the staks, hence
the quality of the recommendations made by the system.

10

Coping with Noisy Search Experiences

Coping with Stak Noise. A solution to break that vicious circle would be for
HeyStaks to automatically select, or at least suggest, the appropriate stak when the
user starts a query. This is a meta-recommendation problem [15] (selecting the stak
from which search results will be recommended). We therefore face two challenges:
using a repository of recommendation knowledge (search experiences) for another
purpose than the one it was designed for (meta-recommendation), and using it de-
spite the significant amount of noise it contains. Should we succeed, the quality of
the collected experiences would increase thanks to the stak recommendation, which
in turn would itself be improved.

We envision two different uses of the stak recommender system. The first one, the
on-line phase, has already been described above: at query time, in order to ensure
that the selected stak corresponds to the focus of the user’s search. The second use
is an off-line phase: whenever they want, the owner of a stak can visit a maintenance
page, where the system will present them with a) pages in that stak which could be
moved or copied to one or several other staks, and b) pages from other staks which
could be moved or copied to this stak. Though the off-line phase is more demanding,
we believe that some stak owners will have an incentive to improve the quality of
their staks (or “curate” them); e.g. for staks shared by a community of knoweldge
workers with a strong need for accurate experience sharing. In the rest of this paper,
we will focus on the off-line phase.

4 Noise-Robust Classifier

We consider the off-line stak recommendation problem as a classification problem:
our goal is to train a classifier to find the “correct” stak for each page stored in the
HeyStaks repository. More precisely, the recommender system will use this classi-
fier to find the three most likely staks for each page, and submit them to the stak
owner for validation.

The problem is of course to correctly train and evaluate that classifier despite
the noise in the available data. Since manually tagging a significant set of pages as
relevant or noisy is not feasible, we first propose a measure that we will use as a
proxy for relevance. Then we will show how this measure can be used to evaluate
and improve our classifier.

In the following, we will represent the search experience stored in each stak S as
a hit matrix hS where hS

i j is the number of times that term t j has been related to page
pi, either as a query term or a tag. Since we use pseudo-terms to represent votes, this
matrix captures in a synthetic way all the term and usage data used by HeyStaks.
Each line hS

i of the hit matrix, the hit vector of page pi, is how that page will be
represented in our classifier.

Predicting Relevance with Popularity. An immediate approach to predict the
relevance of a page or a term to a particular stak is to consider its popularity, pop,
measured as the total number of hits accounted for by this page or term in the stak’s
hit matrix hS:

11

Pierre-Antoine Champin, Peter Briggs, Maurice Coyle, and Barry Smyth

pop(pi)=̇∑
j

hS
i j pop(t j)=̇∑

i
hS

i j (1)

The rationale is that a page or a term may be added to a stak once or twice by
accident, but if it has been repeatedly selected for that stak, it is probably relevant
to it. The problem with these two measures, though, is that they are independent of
each other. We would also like to take into account the fact that a page may benefit
from the popularity of the terms for which it was selected: hence, we propose a
second measure of popularity, pop2, for pages, defined as follows:

pop2(pi)=̇∑
j

pop(t j)×hS
i j (2)

This is illustrated by Fig. 4, which shows that a page like p1 with a high number
of hits will still be popular, but a set of pages sharing the same terms will “inherit”
the popularity of that term, even if each one of them has a low number of hits (see
p2, p3, p4).

Fig. 4 Popularity measure pop2 illustrated.

We now want to normalize this popularity measure, in order to make it compa-
rable across staks, regardless of the span and skew of their popularity distributions.
First, we bring it between 0 and 1 (addressing the span problem), then we center the
mean popularity to 0.5 (addressing the skew problem). The normalized popularity
np is computed as follows:

np(pi)=̇(
pop2(pi)

max j pop2(p j)
)

log0.5
logmeank pop2(pk) (3)

In order to evaluate the validity of our popularity measure as a predictor of page
relevance, we performed a small user evaluation. We limited our study to the 20
biggest shared staks (smaller staks having potentially not reached a critical mass
for efficient recommendation). For each of those 20 staks, we picked the 15 most

12

Coping with Noisy Search Experiences

popular pages and the 15 least popular pages. We presented them to the stak owner
in a random order, and asked them if each page was relevant or not to that stak.
Since other stak users are supposed to join a stak because they share the stak owner’s
interest in its topic, we assume that the owner’s opinion is representative of the user
community of that stak.

The results of this evaluations are shown in Fig. 5. We see that pages with a high
popularity are almost always considered relevant by users. Unpopular pages, on the
other hand, are uncertain: about half of them are relevant, while the other half are
not. This is not a big surprise since our popularity measure relies on the number of
times a page has been selected; an unpopular page may be relevant but too recent
to have become popular yet. We are however encouraged to consider that the noisy
experience is located in the unpopular part of our experience repositories.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

n
u
m

b
e
r

o
f
d
o
c
u
m

e
n
ts

popularity

Irelevant
I don’t know

Relevant

Fig. 5 Poll results. For each
stak, the 15 most popular
pages and the 15 least popular
pages have been manually
evaluated by the stack owner.

A Weighted Stak Classifier. Confident in our popularity measure, we have de-
cided to use it for training our classifier. The popularity measure can be used to
weight the training instances, so that the classifier learns more from popular pages
(more likely to be reliable) than from less popular ones. This weighting is also used
to compute the accuracy of the classifier: indeed, the fact that the classifier disagrees
with the experience repository for a page with a low weight (i.e. considered unreli-
able) should not have the same importance as a disagreement on a highly weighted
(hence reliable) page. The weighted accuracy that we use is then computed by di-
viding the sum of the weights of the “correctly” classified2 pages by the sum of the
weights of all the pages.

Our first training set comprises all pages from the 20 largest shared staks in
HeyStaks. Each instance represents a page pi from a stak S by its hit vector hS

i ,
its class is the stak identifier, and its weight is np(pi). We use three classifiers: a
ZeroR random classifier (always predicting the more frequent class), a J48 decision

2 Where “correctly” actually means “in agreement with the available data”, which is known to be
partially inaccurate.

13

Pierre-Antoine Champin, Peter Briggs, Maurice Coyle, and Barry Smyth

tree [13] and a naive bayesian classifier. We tested those three classifiers with a stan-
dard 10-fold cross-validation. The resulting weighted accuracies are 17%, 74% and
66% respectively.

These first results were encouraging. However, we wanted to measure the benefit
of weighting the training instance with our popularity measure. We did the same test,
but with unweighted instances. The results are only marginally worse: 17%, 73%
and 64% respectively. We then trained the classifiers with boolean vectors instead
of hit vectors (i.e. replacing any non-null number of hits by 1), thus removing even
more information about the popularity (np is computed using the number of hits).
The results are still very similar (and even slightly better for the NaiveBayes), as
shown on Fig.. 6

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

J48 NaiveBayes ZeroR

w
e
ig

h
te

d
 a

c
c
u
ra

c
y

weighted
unweighted

boolean unweighted

Fig. 6 The weighted accuracy
is only slightly influenced by
the use of popularity in the
training set.

This surprising result may be explained by considering how the accuracy varies
for pages with different weights. This is shown in Fig. 7, where each point repre-
sents the accuracy of the classifiers (trained with unweighted boolean vectors) when
considering only their results for pages with a minimum np. We see that both the
J48 and NaiveBayes are better at classifying popular pages, and that this is not a bias
in the data, since the random classifier does not share this property3. We suggest that
there is a correlation between popularity and purely structural similarity, which may
account for the fact that weighting the instances does not significantly improve the
accuracy – since this is information that the classifiers learn anyway.

Stak Kernels. Another interesting thing that Fig. 7 teaches us is that the evolution
of the accuracy against popularity is not linear. Accuracy first stagnates when con-
sidering pages with np ≥ 0.3, then increases steadily until around np ≥ 0.6, then
stabilizes again. This seems to indicate that np = 0.6 is a threshold below which

3 As a matter of fact, the random classifier performs worse when considering only popular pages.
This indicates that the popular pages are not distributed within staks like other pages, or conversely,
that the distribution of popularity is not the same in all staks. This should be investigated as an
indicator of stak “maturity”.

14

Coping with Noisy Search Experiences

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

w
e
ig

h
te

d
 a

c
c
u
ra

c
y

minimum normalized popularity

J48
NaiveBayes

ZeroR

Fig. 7 J48 and NaiveBayes
classifiers are better at classi-
fying popular pages.

pages are harder to predict, hence presumably also harder to learn. Since we already
know from our user evaluation that pages above this threshold are highly reliable,
we might expect to improve the accuracy of the classifier by training it only with
them. We call this subset of reliable pages in each stak the stak kernel.

We compared the accuracy (computed with 10-fold cross-validation) of kernel-
trained classifiers (using unweighted boolean vectors) with some of our previous
classifiers, trained with the whole set of pages. More precisely, we compared it with
the less informed (i.e. using unweighted boolean vectors) and the most informed
one (i.e. using weighted hit vectors).

The results are reported in Fig. 8. We see that NaiveBayes becomes better when
kernel-trained. The outcome is not as definitive with J48, where the kernel-trained
classifier is essentially equivalent to the most informed whole-trained classifier. Our
intuition here is that J48 manages to learn from the unpopular relevant pages. The
loss of those pages, in kernel-training, is not compensated by the lowering of the
noise. This is not the case for NaiveBayes, however. Although this difference needs
to be investigated, the fact that NaiveBayes outperforms, when kernel-trained, all
of our previous classifiers (including J48) makes us confident in the value of kernel
training.

Off-line Stak Recommendation. The accuracy of the kernel-trained NaiveBayes
classifier makes it the best candidate for implementing the off-line phase of our
stak recommendation system, as described in Section 3. In this phase, unpopular
pages will be candidates for moving or copying to the the three most likely staks
according to the classifier. Those pages will also appear as candidates for inclusion
on the maintenance pages of those three staks. It is worth noting that in the cross-
validation test, the correct stak is present in the top three guesses in 97% of the
cases, which makes us very confident in the relevance of this phase for stak owners.

Furthermore, assigning a page to a stak during the maintenance phase is an ex-
plicit indication from the user that this page is relevant to the stak, unlike the im-
plicit actions mainly used by HeyStaks to fill its experience repository. Such pages
can then be considered as part of the stak kernel, regardless of their popularity –

15

Pierre-Antoine Champin, Peter Briggs, Maurice Coyle, and Barry Smyth

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

J48 NaiveBayes ZeroR

w
e
ig

h
te

d
 a

c
c
u
ra

c
y
 f
o
r

n
p
 >

 0
.6

whole-trained, unweighted boolean vectors
whole-trained, weighted hit vectors

kernel-trained, unweighted boolean vectors
Fig. 8 Comparing kernel- and
whole-trained classifiers.

recall that unpopular pages are still relevant in 50% of the cases, according to our
user evaluation. This may in turn improve the quality of the classifier, reversing the
vicious circle introduced in Section 3.

5 Related works

In this paper, we have focused on one kind of noise that we call mis-interpretation:
experience is incorrectly filed, mostly because it is implicitly collected and because
the user’s behaviour is not always consistent with the idealized behaviour on which
the collection process is based. This problem has long been studied in the case-based
reasoning literature [19, 20], where experience is also collected in a more or less
implicit way. With case-base maintenance, however, existing techniques are usually
designed to manage case bases with relatively low amounts of noise and work best
when relying on an objective measure of when a case can be used to correctly solve
some target problem. The same kind of approach, applied to recommender systems,
is used by [11], using the predictions of the system itself as a measure of likelihood.
Hence, it relies on a “pristine” system, not yet polluted by noisy data, to train the
initial classifier. [10], on the other hand, introduce a notion of trust to cope with
noisy data (associated in this case with untrustworthy users).

Another kind of noise is malicious noise: unscrupulous users try to lure the sys-
tem into recommending items for their own benefit [6]. Our notion of popularity
is vulnerable to this kind of attack because hits in HeyStaks are anonymous: the
popularity of a page can not be traced back to the (potentially malicious) users who
selected it. It would seem safer to limit the influence of an individual user on the
popularity of each page (even more in the standard workflow of HeyStaks where
pages, not staks, are recommended).

16

Coping with Noisy Search Experiences

A third kind of noise is opinion drift. Over time, people may change their mind
about their experiences [5, 7]. Furthermore, in HeyStaks, once-relevant pages may
become outdated, or be modified in a way that makes them less relevant. The prob-
lem with our popularity measure is that, once it has become popular, a page will be
considered relevant for ever. This can easily be changed though, by applying ageing
to our measure: the popularity of a page fades out as its last selection becomes older.

6 Conclusion and discussion

As the Web evolves to accommodate experiences as well as pure content it will
become increasingly important to develop systems and services that help users to
manage and harness their online experiences and those of others. In this paper we
have focused on experience management in Web search by describing a case-study
using the HeyStaks social search engine. HeyStaks is a browser toolbar that works
with mainstream search engines such as Google and that allows users to create and
share repositories of search experiences (search staks) which then act as a source of
search result recommendation.

The main contribution of this work has focused on the nature of the search expe-
riences that HeyStaks harnesses. We have argued that these experiences can be noisy
and that this limits the effectiveness of its search recommendations. As a solution
we have argued the need for a meta-recommender system which is designed to rec-
ommend search staks, and we have argued that such a recommender can play a key
role in supporting stak maintenance and selection. We have described a technique
for identifying so-called stak kernels, as the non-noisy essence of stak knowledge
– and described and evaluated a classification-based approach to stak recommenda-
tion that harnesses these kernels to make accurate stak recommendations.

We have shown that our kernel-trained classifier can be used to implement the
off-line stak recommender system described in Section 3. The problem in the case
of the online phase, on the other hand, is that we have to deal with queries rather
than full term vectors. A query is similar to a term vector describing a page, but
is a boolean vector (no number of hits, each term is either present or absent), and
much sparser (vectors describing pages in HeyStaks combine all the queries used
to select the page). Our classifier is already trained with boolean vectors, but we
need to perform more tests to determine how well it deals with sparsity, a common
problem for recommender systems [2].

We believe that our approach, although quite specific to HeyStaks, can be gen-
eralized to other recommender systems facing the problem of a noisy knowledge
base. Transposing the notion of kernel may not be trivial, since many such systems
have a knowledge base reflecting diverse points of view —while in HeyStaks, each
stak is relevant to a given topic. However, as each stak has a single kernel, other
recommender systems could have, for their single knowledge base, one kernel per
user or group of users, allowing them to classify noise in a personnalized way.

17

Pierre-Antoine Champin, Peter Briggs, Maurice Coyle, and Barry Smyth

References

1. P. Briggs and B. Smyth. Provenance, trust, and sharing in peer-to-peer case-based web search.
In ECCBR, pages 89–103, 2008.

2. R. Burke. Hybrid recommender systems: Survey and experiments. User Modeling and User-
Adapted Interaction, 12(4):331–370, 2002.

3. P. A. Chirita, W. Nejdl, R. Paiu, and C. Kohlschütter. Using odp metadata to personalize
search. In SIGIR ’05: Proceedings of the 28th annual international ACM SIGIR conference
on Research and development in information retrieval, pages 178–185, New York, NY, USA,
2005. ACM.

4. A. Cordier, B. Mascret, and A. Mille. Extending Case-Based reasoning with traces. In Grand
Challenges for reasoning from experiences, Workshop at IJCAI’09, July 2009.

5. I. Koychev and I. Schwab. Adaptation to drifting user’s interests. In Proceedings of
ECML2000 Workshop: Machine Learning in New Information Age, pages 39–46, 2000.

6. S. K. Lam and J. Riedl. Shilling recommender systems for fun and profit. In Proceedings of
the 13th international conference on World Wide Web, pages 393–402, New York, NY, USA,
2004. ACM.

7. S. Ma, X. Li, Y. Ding, M. E. Orlowska, B. Benatallah, F. Casati, D. Georgakopoulos, C. Bar-
tolini, W. Sadiq, and C. Godart. A recommender system with Interest-Drifting. LECTURE
NOTES IN COMPUTER SCIENCE, 4831:633, 2007.

8. M. R. Morris. A survey of collaborative web search practices. In CHI, pages 1657–1660,
2008.

9. M. R. Morris and E. Horvitz. SearchTogether: an interface for collaborative web search. In
Proceedings of the 20th annual ACM symposium on User interface software and technology,
pages 3–12, Newport, Rhode Island, USA, 2007. ACM.

10. J. O’Donovan and B. Smyth. Trust in recommender systems. In Proceedings of the 10th
international conference on Intelligent user interfaces, pages 167–174, San Diego, California,
USA, 2005. ACM.

11. M. P. O’Mahony, N. J. Hurley, and G. C. Silvestre. Detecting noise in recommender system
databases. In Proceedings of the 11th international conference on Intelligent user interfaces,
pages 109–115, Sydney, Australia, 2006. ACM.

12. J. Pujol, R. Sanguesa, and J. Bermudez. Porqpine: A distributed and collaborative search
engine. In Proc. 12th Intl. World Wide Web Conference, 2003.

13. J. R. Quinlan. C4. 5: programs for machine learning. Morgan Kaufmann, 1993.
14. M. C. Reddy and P. R. Spence. Collaborative information seeking: A field study of a multi-

disciplinary patient care team. Inf. Process. Manage., 44(1):242–255, 2008.
15. J. B. Schafer, J. A. Konstan, and J. Riedl. Meta-recommendation systems: user-controlled

integration of diverse recommendations. In Proceedings of the eleventh international confer-
ence on Information and knowledge management, pages 43–51. ACM New York, NY, USA,
2002.

16. B. Smyth. A community-based approach to personalizing web search. IEEE Computer,
40(8):42–50, 2007.

17. B. Smyth, P. Briggs, M. Coyle, and M. O’Mahony. Google? shared! a case-study in social
web search. In Proceedings of the 1st and 17th International Conference on User Modeling,
Adaptation and Personalization (UMAP ’09), Trento, Italy, 2009. Springer.

18. B. Smyth and P. Champin. The experience web: A Case-Based reasoning perspective. In
Grand Challenges for reasoning from experiences, Workshop at IJCAI’09, July 2009.

19. B. Smyth and M. T. Keane. Remembering to forget: A Competence-Preserving case deletion
policy for Case-Based reasoning systems. In IJCAI, pages 377–383, 1995. Best paper award.

20. B. Smyth and E. McKenna. Competence models and the maintenance problem. Computa-
tional Intelligence, 17(2):235–249, 2001.

21. J.-T. Sun, H.-J. Zeng, H. Liu, Y. Lu, and Z. Chen. Cubesvd: a novel approach to personalized
web search. In WWW ’05: Proceedings of the 14th international conference on World Wide
Web, pages 382–390, New York, NY, USA, 2005. ACM Press.

18

