
Chapter 8

Dense motion estimation

8.1 Translational alignment . 337
8.1.1 Hierarchical motion estimation . 341
8.1.2 Fourier-based alignment . 341
8.1.3 Incremental refinement . 345

8.2 Parametric motion . 350
8.2.1 Application: Video stabilization . 354
8.2.2 Learned motion models . 354

8.3 Spline-based motion . 355
8.3.1 Application: Medical image registration 358

8.4 Optical flow . 360
8.4.1 Multi-frame motion estimation . 363
8.4.2 Application: Video denoising . 364
8.4.3 Application: De-interlacing . 364

8.5 Layered motion . 365
8.5.1 Application: Frame interpolation . 368
8.5.2 Transparent layers and reflections 368

8.6 Additional reading . 370
8.7 Exercises . 371

R. Szeliski, Computer Vision: Algorithms and Applications, Texts in Computer Science, 335
DOI 10.1007/978-1-84882-935-0_8, © Springer-Verlag London Limited 2011

336 8 Dense motion estimation

(a) (b)

flow initial layers final layers

layers with pixel assignments and flow
(c) (d)

(e) (f)

Figure 8.1 Motion estimation: (a–b) regularization-based optical flow (Nagel and Enkelmann 1986) c© 1986
IEEE; (c–d) layered motion estimation (Wang and Adelson 1994) c© 1994 IEEE; (e–f) sample image and ground
truth flow from evaluation database (Baker, Black, Lewis et al. 2007) c© 2007 IEEE.

8.1 Translational alignment 337

Algorithms for aligning images and estimating motion in video sequences are among the most
widely used in computer vision. For example, frame-rate image alignment is widely used in
camcorders and digital cameras to implement their image stabilization (IS) feature.

An early example of a widely used image registration algorithm is the patch-based trans-
lational alignment (optical flow) technique developed by Lucas and Kanade (1981). Variants
of this algorithm are used in almost all motion-compensated video compression schemes
such as MPEG and H.263 (Le Gall 1991). Similar parametric motion estimation algorithms
have found a wide variety of applications, including video summarization (Teodosio and
Bender 1993; Irani and Anandan 1998), video stabilization (Hansen, Anandan, Dana et al.
1994; Srinivasan, Chellappa, Veeraraghavan et al. 2005; Matsushita, Ofek, Ge et al. 2006),
and video compression (Irani, Hsu, and Anandan 1995; Lee, ge Chen, lung Bruce Lin et
al. 1997). More sophisticated image registration algorithms have also been developed for
medical imaging and remote sensing. Image registration techniques are surveyed by Brown
(1992), Zitov’aa and Flusser (2003), Goshtasby (2005), and Szeliski (2006a).

To estimate the motion between two or more images, a suitable error metric must first
be chosen to compare the images (Section 8.1). Once this has been established, a suitable
search technique must be devised. The simplest technique is to exhaustively try all possible
alignments, i.e., to do a full search. In practice, this may be too slow, so hierarchical coarse-
to-fine techniques (Section 8.1.1) based on image pyramids are normally used. Alternatively,
Fourier transforms (Section 8.1.2) can be used to speed up the computation.

To get sub-pixel precision in the alignment, incremental methods (Section 8.1.3) based
on a Taylor series expansion of the image function are often used. These can also be applied
to parametric motion models (Section 8.2), which model global image transformations such
as rotation or shearing. Motion estimation can be made more reliable by learning the typi-
cal dynamics or motion statistics of the scenes or objects being tracked, e.g., the natural gait
of walking people (Section 8.2.2). For more complex motions, piecewise parametric spline
motion models (Section 8.3) can be used. In the presence of multiple independent (and per-
haps non-rigid) motions, general-purpose optical flow (or optic flow) techniques need to be
used (Section 8.4). For even more complex motions that include a lot of occlusions, layered
motion models (Section 8.5), which decompose the scene into coherently moving layers, can
work well.

In this chapter, we describe each of these techniques in more detail. Additional details
can be found in review and comparative evaluation papers on motion estimation (Barron,
Fleet, and Beauchemin 1994; Mitiche and Bouthemy 1996; Stiller and Konrad 1999; Szeliski
2006a; Baker, Black, Lewis et al. 2007).

8.1 Translational alignment

The simplest way to establish an alignment between two images or image patches is to shift
one image relative to the other. Given a template image I0(x) sampled at discrete pixel
locations {xi = (xi, yi)}, we wish to find where it is located in image I1(x). A least squares
solution to this problem is to find the minimum of the sum of squared differences (SSD)
function

ESSD(u) =
∑

i

[I1(xi + u) − I0(xi)]2 =
∑

i

e2
i , (8.1)

338 8 Dense motion estimation

where u = (u, v) is the displacement and ei = I1(xi + u) − I0(xi) is called the residual
error (or the displaced frame difference in the video coding literature).1 (We ignore for the
moment the possibility that parts of I0 may lie outside the boundaries of I1 or be otherwise
not visible.) The assumption that corresponding pixel values remain the same in the two
images is often called the brightness constancy constraint.2

In general, the displacement u can be fractional, so a suitable interpolation function must
be applied to image I1(x). In practice, a bilinear interpolant is often used but bicubic inter-
polation can yield slightly better results (Szeliski and Scharstein 2004). Color images can be
processed by summing differences across all three color channels, although it is also possible
to first transform the images into a different color space or to only use the luminance (which
is often done in video encoders).

Robust error metrics. We can make the above error metric more robust to outliers by re-
placing the squared error terms with a robust function ρ(ei) (Huber 1981; Hampel, Ronchetti,
Rousseeuw et al. 1986; Black and Anandan 1996; Stewart 1999) to obtain

ESRD(u) =
∑

i

ρ(I1(xi + u) − I0(xi)) =
∑

i

ρ(ei). (8.2)

The robust norm ρ(e) is a function that grows less quickly than the quadratic penalty associ-
ated with least squares. One such function, sometimes used in motion estimation for video
coding because of its speed, is the sum of absolute differences (SAD) metric3 or L1 norm,
i.e.,

ESAD(u) =
∑

i

|I1(xi + u) − I0(xi)| =
∑

i

|ei|. (8.3)

However, since this function is not differentiable at the origin, it is not well suited to gradient-
descent approaches such as the ones presented in Section 8.1.3.

Instead, a smoothly varying function that is quadratic for small values but grows more
slowly away from the origin is often used. Black and Rangarajan (1996) discuss a variety of
such functions, including the Geman–McClure function,

ρGM(x) =
x2

1 + x2/a2
, (8.4)

where a is a constant that can be thought of as an outlier threshold. An appropriate value for
the threshold can itself be derived using robust statistics (Huber 1981; Hampel, Ronchetti,
Rousseeuw et al. 1986; Rousseeuw and Leroy 1987), e.g., by computing the median absolute
deviation, MAD = medi|ei|, and multiplying it by 1.4 to obtain a robust estimate of the
standard deviation of the inlier noise process (Stewart 1999).

1 The usual justification for using least squares is that it is the optimal estimate with respect to Gaussian noise.
See the discussion below on robust error metrics as well as Appendix B.3.

2 Brightness constancy (Horn 1974) is the tendency for objects to maintain their perceived brightness under
varying illumination conditions.

3 In video compression, e.g., the H.264 standard (http://www.itu.int/rec/T-REC-H.264), the sum of absolute trans-
formed differences (SATD), which measures the differences in a frequency transform space, e.g., using a Hadamard
transform, is often used since it more accurately predicts quality (Richardson 2003).

http://www.itu.int/rec/T-REC-H.264

8.1 Translational alignment 339

Spatially varying weights. The error metrics above ignore that fact that for a given
alignment, some of the pixels being compared may lie outside the original image boundaries.
Furthermore, we may want to partially or completely downweight the contributions of cer-
tain pixels. For example, we may want to selectively “erase” some parts of an image from
consideration when stitching a mosaic where unwanted foreground objects have been cut out.
For applications such as background stabilization, we may want to downweight the middle
part of the image, which often contains independently moving objects being tracked by the
camera.

All of these tasks can be accomplished by associating a spatially varying per-pixel weight
value with each of the two images being matched. The error metric then becomes the
weighted (or windowed) SSD function,

EWSSD(u) =
∑

i

w0(xi)w1(xi + u)[I1(xi + u) − I0(xi)]2, (8.5)

where the weighting functions w0 and w1 are zero outside the image boundaries.
If a large range of potential motions is allowed, the above metric can have a bias towards

smaller overlap solutions. To counteract this bias, the windowed SSD score can be divided
by the overlap area

A =
∑

i

w0(xi)w1(xi + u) (8.6)

to compute a per-pixel (or mean) squared pixel error EWSSD/A. The square root of this
quantity is the root mean square intensity error

RMS =
√

EWSSD/A (8.7)

often reported in comparative studies.

Bias and gain (exposure differences). Often, the two images being aligned were not
taken with the same exposure. A simple model of linear (affine) intensity variation between
the two images is the bias and gain model,

I1(x + u) = (1 + α)I0(x) + β, (8.8)

where β is the bias and α is the gain (Lucas and Kanade 1981; Gennert 1988; Fuh and
Maragos 1991; Baker, Gross, and Matthews 2003; Evangelidis and Psarakis 2008). The least
squares formulation then becomes

EBG(u) =
∑

i

[I1(xi + u) − (1 + α)I0(xi) − β]2 =
∑

i

[αI0(xi) + β − ei]2. (8.9)

Rather than taking a simple squared difference between corresponding patches, it becomes
necessary to perform a linear regression (Appendix A.2), which is somewhat more costly.
Note that for color images, it may be necessary to estimate a different bias and gain for each
color channel to compensate for the automatic color correction performed by some digital
cameras (Section 2.3.2). Bias and gain compensation is also used in video codecs, where it is
known as weighted prediction (Richardson 2003).

A more general (spatially varying, non-parametric) model of intensity variation, which is
computed as part of the registration process, is used in (Negahdaripour 1998; Jia and Tang

340 8 Dense motion estimation

2003; Seitz and Baker 2009). This can be useful for dealing with local variations such as
the vignetting caused by wide-angle lenses, wide apertures, or lens housings. It is also pos-
sible to pre-process the images before comparing their values, e.g., using band-pass filtered
images (Anandan 1989; Bergen, Anandan, Hanna et al. 1992), gradients (Scharstein 1994;
Papenberg, Bruhn, Brox et al. 2006), or using other local transformations such as histograms
or rank transforms (Cox, Roy, and Hingorani 1995; Zabih and Woodfill 1994), or to max-
imize mutual information (Viola and Wells III 1997; Kim, Kolmogorov, and Zabih 2003).
Hirschmüller and Scharstein (2009) compare a number of these approaches and report on
their relative performance in scenes with exposure differences.

Correlation. An alternative to taking intensity differences is to perform correlation, i.e.,
to maximize the product (or cross-correlation) of the two aligned images,

ECC(u) =
∑

i

I0(xi)I1(xi + u). (8.10)

At first glance, this may appear to make bias and gain modeling unnecessary, since the images
will prefer to line up regardless of their relative scales and offsets. However, this is actually
not true. If a very bright patch exists in I1(x), the maximum product may actually lie in that
area.

For this reason, normalized cross-correlation is more commonly used,

ENCC(u) =
∑

i[I0(xi) − I0] [I1(xi + u) − I1]√∑
i[I0(xi) − I0]2

√∑
i[I1(xi + u) − I1]2

, (8.11)

where

I0 =
1
N

∑
i

I0(xi) and (8.12)

I1 =
1
N

∑
i

I1(xi + u) (8.13)

are the mean images of the corresponding patches and N is the number of pixels in the patch.
The normalized cross-correlation score is always guaranteed to be in the range [−1, 1], which
makes it easier to handle in some higher-level applications, such as deciding which patches
truly match. Normalized correlation works well when matching images taken with different
exposures, e.g., when creating high dynamic range images (Section 10.2). Note, however,
that the NCC score is undefined if either of the two patches has zero variance (and, in fact, its
performance degrades for noisy low-contrast regions).

A variant on NCC, which is related to the bias–gain regression implicit in the matching
score (8.9), is the normalized SSD score

ENSSD(u) =
1
2

∑
i

[
[I0(xi) − I0] − [I1(xi + u) − I1]

]2√∑
i[I0(xi) − I0]2 + [I1(xi + u) − I1]2

(8.14)

recently proposed by Criminisi, Shotton, Blake et al. (2007). In their experiments, they find
that it produces comparable results to NCC, but is more efficient when applied to a large
number of overlapping patches using a moving average technique (Section 3.2.2).

8.1 Translational alignment 341

8.1.1 Hierarchical motion estimation

Now that we have a well-defined alignment cost function to optimize, how can we find its
minimum? The simplest solution is to do a full search over some range of shifts, using ei-
ther integer or sub-pixel steps. This is often the approach used for block matching in motion
compensated video compression, where a range of possible motions (say, ±16 pixels) is ex-
plored.4

To accelerate this search process, hierarchical motion estimation is often used: an image
pyramid (Section 3.5) is constructed and a search over a smaller number of discrete pixels
(corresponding to the same range of motion) is first performed at coarser levels (Quam 1984;
Anandan 1989; Bergen, Anandan, Hanna et al. 1992). The motion estimate from one level
of the pyramid is then used to initialize a smaller local search at the next finer level. Al-
ternatively, several seeds (good solutions) from the coarse level can be used to initialize the
fine-level search. While this is not guaranteed to produce the same result as a full search, it
usually works almost as well and is much faster.

More formally, let
I
(l)
k (xj) ← Ĩ

(l−1)
k (2xj) (8.15)

be the decimated image at level l obtained by subsampling (downsampling) a smoothed ver-
sion of the image at level l−1. See Section 3.5 for how to perform the required downsampling
(pyramid construction) without introducing too much aliasing.

At the coarsest level, we search for the best displacement u(l) that minimizes the dif-
ference between images I

(l)
0 and I

(l)
1 . This is usually done using a full search over some

range of displacements u(l) ∈ 2−l[−S, S]2, where S is the desired search range at the finest
(original) resolution level, optionally followed by the incremental refinement step described
in Section 8.1.3.

Once a suitable motion vector has been estimated, it is used to predict a likely displace-
ment

û(l−1) ← 2u(l) (8.16)

for the next finer level.5 The search over displacements is then repeated at the finer level over
a much narrower range of displacements, say û(l−1) ± 1, again optionally combined with an
incremental refinement step (Anandan 1989). Alternatively, one of the images can be warped
(resampled) by the current motion estimate, in which case only small incremental motions
need to be computed at the finer level. A nice description of the whole process, extended to
parametric motion estimation (Section 8.2), is provided by Bergen, Anandan, Hanna et al.
(1992).

8.1.2 Fourier-based alignment

When the search range corresponds to a significant fraction of the larger image (as is the case
in image stitching, see Chapter 9), the hierarchical approach may not work that well, since

4 In stereo matching (Section 11.1.2), an explicit search over all possible disparities (i.e., a plane sweep) is almost
always performed, since the number of search hypotheses is much smaller due to the 1D nature of the potential
displacements.

5 This doubling of displacements is only necessary if displacements are defined in integer pixel coordinates,
which is the usual case in the literature (Bergen, Anandan, Hanna et al. 1992). If normalized device coordinates
(Section 2.1.5) are used instead, the displacements (and search ranges) need not change from level to level, although
the step sizes will need to be adjusted, to keep search steps of roughly one pixel.

342 8 Dense motion estimation

it is often not possible to coarsen the representation too much before significant features are
blurred away. In this case, a Fourier-based approach may be preferable.

Fourier-based alignment relies on the fact that the Fourier transform of a shifted signal
has the same magnitude as the original signal but a linearly varying phase (Section 3.4), i.e.,

F {I1(x + u)} = F {I1(x)} e−ju·ω = I1(ω)e−ju·ω, (8.17)

where ω is the vector-valued angular frequency of the Fourier transform and we use cal-
ligraphic notation I1(ω) = F {I1(x)} to denote the Fourier transform of a signal (Sec-
tion 3.4).

Another useful property of Fourier transforms is that convolution in the spatial domain
corresponds to multiplication in the Fourier domain (Section 3.4).6 Thus, the Fourier trans-
form of the cross-correlation function ECC can be written as

F {ECC(u)} = F
{∑

i

I0(xi)I1(xi + u)

}
= F {I0(u)∗̄I1(u)} = I0(ω)I∗

1 (ω), (8.18)

where
f(u)∗̄g(u) =

∑
i

f(xi)g(xi + u) (8.19)

is the correlation function, i.e., the convolution of one signal with the reverse of the other,
and I∗

1 (ω) is the complex conjugate of I1(ω). This is because convolution is defined as the
summation of one signal with the reverse of the other (Section 3.4).

Thus, to efficiently evaluate ECC over the range of all possible values of u, we take the
Fourier transforms of both images I0(x) and I1(x), multiply both transforms together (after
conjugating the second one), and take the inverse transform of the result. The Fast Fourier
Transform algorithm can compute the transform of an N × M image in O(NM log NM)
operations (Bracewell 1986). This can be significantly faster than the O(N2M2) operations
required to do a full search when the full range of image overlaps is considered.

While Fourier-based convolution is often used to accelerate the computation of image
correlations, it can also be used to accelerate the sum of squared differences function (and its
variants). Consider the SSD formula given in (8.1). Its Fourier transform can be written as

F {ESSD(u)} = F
{∑

i

[I1(xi + u) − I0(xi)]2
}

= δ(ω)
∑

i

[I2
0 (xi) + I2

1 (xi)] − 2I0(ω)I∗
1 (ω). (8.20)

Thus, the SSD function can be computed by taking twice the correlation function and sub-
tracting it from the sum of the energies in the two images.

Windowed correlation. Unfortunately, the Fourier convolution theorem only applies
when the summation over xi is performed over all the pixels in both images, using a cir-
cular shift of the image when accessing pixels outside the original boundaries. While this is

6 In fact, the Fourier shift property (8.17) derives from the convolution theorem by observing that shifting is
equivalent to convolution with a displaced delta function δ(x− u).

8.1 Translational alignment 343

acceptable for small shifts and comparably sized images, it makes no sense when the images
overlap by a small amount or one image is a small subset of the other.

In that case, the cross-correlation function should be replaced with a windowed (weighted)
cross-correlation function,

EWCC(u) =
∑

i

w0(xi)I0(xi) w1(xi + u)I1(xi + u), (8.21)

= [w0(x)I0(x)]∗̄[w1(x)I1(x)] (8.22)

where the weighting functions w0 and w1 are zero outside the valid ranges of the images
and both images are padded so that circular shifts return 0 values outside the original image
boundaries.

An even more interesting case is the computation of the weighted SSD function intro-
duced in Equation (8.5),

EWSSD(u) =
∑

i

w0(xi)w1(xi + u)[I1(xi + u) − I0(xi)]2. (8.23)

Expanding this as a sum of correlations and deriving the appropriate set of Fourier transforms
is left for Exercise 8.1.

The same kind of derivation can also be applied to the bias–gain corrected sum of squared
difference function EBG (8.9). Again, Fourier transforms can be used to efficiently compute
all the correlations needed to perform the linear regression in the bias and gain parameters in
order to estimate the exposure-compensated difference for each potential shift (Exercise 8.1).

Phase correlation. A variant of regular correlation (8.18) that is sometimes used for mo-
tion estimation is phase correlation (Kuglin and Hines 1975; Brown 1992). Here, the spec-
trum of the two signals being matched is whitened by dividing each per-frequency product in
(8.18) by the magnitudes of the Fourier transforms,

F {EPC(u)} =
I0(ω)I∗

1 (ω)
‖I0(ω)‖‖I1(ω)‖ (8.24)

before taking the final inverse Fourier transform. In the case of noiseless signals with perfect
(cyclic) shift, we have I1(x + u) = I0(x) and hence, from Equation (8.17), we obtain

F {I1(x + u)} = I1(ω)e−2πju·ω = I0(ω) and

F {EPC(u)} = e−2πju·ω. (8.25)

The output of phase correlation (under ideal conditions) is therefore a single spike (impulse)
located at the correct value of u, which (in principle) makes it easier to find the correct
estimate.

Phase correlation has a reputation in some quarters of outperforming regular correlation,
but this behavior depends on the characteristics of the signals and noise. If the original images
are contaminated by noise in a narrow frequency band (e.g., low-frequency noise or peaked
frequency “hum”), the whitening process effectively de-emphasizes the noise in these regions.
However, if the original signals have very low signal-to-noise ratio at some frequencies (say,
two blurry or low-textured images with lots of high-frequency noise), the whitening process
can actually decrease performance (see Exercise 8.1).

344 8 Dense motion estimation

Recently, gradient cross-correlation has emerged as a promising alternative to phase cor-
relation (Argyriou and Vlachos 2003), although further systematic studies are probably war-
ranted. Phase correlation has also been studied by Fleet and Jepson (1990) as a method for
estimating general optical flow and stereo disparity.

Rotations and scale. While Fourier-based alignment is mostly used to estimate transla-
tional shifts between images, it can, under certain limited conditions, also be used to estimate
in-plane rotations and scales. Consider two images that are related purely by rotation, i.e.,

I1(R̂x) = I0(x). (8.26)

If we re-sample the images into polar coordinates,

Ĩ0(r, θ) = I0(r cos θ, r sin θ) and Ĩ1(r, θ) = I1(r cos θ, r sin θ), (8.27)

we obtain
Ĩ1(r, θ + θ̂) = Ĩ0(r, θ). (8.28)

The desired rotation can then be estimated using a Fast Fourier Transform (FFT) shift-based
technique.

If the two images are also related by a scale,

I1(eŝR̂x) = I0(x), (8.29)

we can re-sample into log-polar coordinates,

Ĩ0(s, θ) = I0(es cos θ, es sin θ) and Ĩ1(s, θ) = I1(es cos θ, es sin θ), (8.30)

to obtain
Ĩ1(s + ŝ, θ + θ̂) = I0(s, θ). (8.31)

In this case, care must be taken to choose a suitable range of s values that reasonably samples
the original image.

For images that are also translated by a small amount,

I1(eŝR̂x + t) = I0(x), (8.32)

De Castro and Morandi (1987) propose an ingenious solution that uses several steps to esti-
mate the unknown parameters. First, both images are converted to the Fourier domain and
only the magnitudes of the transformed images are retained. In principle, the Fourier mag-
nitude images are insensitive to translations in the image plane (although the usual caveats
about border effects apply). Next, the two magnitude images are aligned in rotation and scale
using the polar or log-polar representations. Once rotation and scale are estimated, one of the
images can be de-rotated and scaled and a regular translational algorithm can be applied to
estimate the translational shift.

Unfortunately, this trick only applies when the images have large overlap (small transla-
tional motion). For more general motion of patches or images, the parametric motion estima-
tor described in Section 8.2 or the feature-based approaches described in Section 6.1 need to
be used.

8.1 Translational alignment 345

I

x

ei

u I0(xi)

I1(xi+u)
J1(xi+u)

I0I1

xi

Figure 8.2 Taylor series approximation of a function and the incremental computation of the optical flow cor-
rection amount. J1(xi + u) is the image gradient at (xi + u) and ei is the current intensity difference.

8.1.3 Incremental refinement

The techniques described up till now can estimate alignment to the nearest pixel (or poten-
tially fractional pixel if smaller search steps are used). In general, image stabilization and
stitching applications require much higher accuracies to obtain acceptable results.

To obtain better sub-pixel estimates, we can use one of several techniques described by
Tian and Huhns (1986). One possibility is to evaluate several discrete (integer or fractional)
values of (u, v) around the best value found so far and to interpolate the matching score to
find an analytic minimum.

A more commonly used approach, first proposed by Lucas and Kanade (1981), is to
perform gradient descent on the SSD energy function (8.1), using a Taylor series expansion
of the image function (Figure 8.2),

ELK−SSD(u + Δu) =
∑

i

[I1(xi + u + Δu) − I0(xi)]2 (8.33)

≈
∑

i

[I1(xi + u) + J1(xi + u)Δu − I0(xi)]2 (8.34)

=
∑

i

[J1(xi + u)Δu + ei]2, (8.35)

where
J1(xi + u) = ∇I1(xi + u) = (

∂I1

∂x
,
∂I1

∂y
)(xi + u) (8.36)

is the image gradient or Jacobian at (xi + u) and

ei = I1(xi + u) − I0(xi), (8.37)

first introduced in (8.1), is the current intensity error.7 The gradient at a particular sub-pixel
location (xi + u) can be computed using a variety of techniques, the simplest of which is
to simply take the horizontal and vertical differences between pixels x and x + (1, 0) or
x + (0, 1). More sophisticated derivatives can sometimes lead to noticeable performance
improvements.

The linearized form of the incremental update to the SSD error (8.35) is often called the
optical flow constraint or brightness constancy constraint equation

Ixu + Iyv + It = 0, (8.38)

7 We follow the convention, commonly used in robotics and by Baker and Matthews (2004), that derivatives with
respect to (column) vectors result in row vectors, so that fewer transposes are needed in the formulas.

346 8 Dense motion estimation

where the subscripts in Ix and Iy denote spatial derivatives, and It is called the temporal
derivative, which makes sense if we are computing instantaneous velocity in a video se-
quence. When squared and summed or integrated over a region, it can be used to compute
optic flow (Horn and Schunck 1981).

The above least squares problem (8.35) can be minimized by solving the associated nor-
mal equations (Appendix A.2),

AΔu = b (8.39)

where
A =

∑
i

JT
1 (xi + u)J1(xi + u) (8.40)

and
b = −

∑
i

eiJ
T
1 (xi + u) (8.41)

are called the (Gauss–Newton approximation of the) Hessian and gradient-weighted residual
vector, respectively.8 These matrices are also often written as

A =
[∑

I2
x

∑
IxIy∑

IxIy

∑
I2
y

]
and b = −

[∑
IxIt∑
IyIt

]
. (8.42)

The gradients required for J1(xi + u) can be evaluated at the same time as the image
warps required to estimate I1(xi + u) (Section 3.6.1 (3.89)) and, in fact, are often computed
as a side-product of image interpolation. If efficiency is a concern, these gradients can be
replaced by the gradients in the template image,

J1(xi + u) ≈ J0(xi), (8.43)

since near the correct alignment, the template and displaced target images should look sim-
ilar. This has the advantage of allowing the pre-computation of the Hessian and Jacobian
images, which can result in significant computational savings (Hager and Belhumeur 1998;
Baker and Matthews 2004). A further reduction in computation can be obtained by writing
the warped image I1(xi + u) used to compute ei in (8.37) as a convolution of a sub-pixel
interpolation filter with the discrete samples in I1 (Peleg and Rav-Acha 2006). Precomput-
ing the inner product between the gradient field and shifted version of I1 allows the iterative
re-computation of ei to be performed in constant time (independent of the number of pixels).

The effectiveness of the above incremental update rule relies on the quality of the Taylor
series approximation. When far away from the true displacement (say, 1–2 pixels), several
iterations may be needed. It is possible, however, to estimate a value for J1 using a least
squares fit to a series of larger displacements in order to increase the range of convergence
(Jurie and Dhome 2002) or to “learn” a special-purpose recognizer for a given patch (Avi-
dan 2001; Williams, Blake, and Cipolla 2003; Lepetit, Pilet, and Fua 2006; Hinterstoisser,
Benhimane, Navab et al. 2008; Özuysal, Calonder, Lepetit et al. 2010) as discussed in Sec-
tion 4.1.4.

A commonly used stopping criterion for incremental updating is to monitor the magnitude
of the displacement correction ‖u‖ and to stop when it drops below a certain threshold (say,

8 The true Hessian is the full second derivative of the error function E, which may not be positive definite—see
Section 6.1.3 and Appendix A.3.

8.1 Translational alignment 347

xxi

xi+u

u

i

(a) (b) (c)

Figure 8.3 Aperture problems for different image regions, denoted by the orange and red L-shaped structures,
overlaid in the same image to make it easier to diagram the flow. (a) A window w(xi) centered at xi (black
circle) can uniquely be matched to its corresponding structure at xi + u in the second (red) image. (b) A window
centered on the edge exhibits the classic aperture problem, since it can be matched to a 1D family of possible
locations. (c) In a completely textureless region, the matches become totally unconstrained.

1/10 of a pixel). For larger motions, it is usual to combine the incremental update rule with a
hierarchical coarse-to-fine search strategy, as described in Section 8.1.1.

Conditioning and aperture problems. Sometimes, the inversion of the linear system
(8.39) can be poorly conditioned because of lack of two-dimensional texture in the patch
being aligned. A commonly occurring example of this is the aperture problem, first identified
in some of the early papers on optical flow (Horn and Schunck 1981) and then studied more
extensively by Anandan (1989). Consider an image patch that consists of a slanted edge
moving to the right (Figure 8.3). Only the normal component of the velocity (displacement)
can be reliably recovered in this case. This manifests itself in (8.39) as a rank-deficient matrix
A, i.e., one whose smaller eigenvalue is very close to zero.9

When Equation (8.39) is solved, the component of the displacement along the edge is very
poorly conditioned and can result in wild guesses under small noise perturbations. One way
to mitigate this problem is to add a prior (soft constraint) on the expected range of motions
(Simoncelli, Adelson, and Heeger 1991; Baker, Gross, and Matthews 2004; Govindu 2006).
This can be accomplished by adding a small value to the diagonal of A, which essentially
biases the solution towards smaller Δu values that still (mostly) minimize the squared error.

However, the pure Gaussian model assumed when using a simple (fixed) quadratic prior,
as in (Simoncelli, Adelson, and Heeger 1991), does not always hold in practice, e.g., because
of aliasing along strong edges (Triggs 2004). For this reason, it may be prudent to add some
small fraction (say, 5%) of the larger eigenvalue to the smaller one before doing the matrix
inversion.

Uncertainty modeling. The reliability of a particular patch-based motion estimate can be
captured more formally with an uncertainty model. The simplest such model is a covariance
matrix, which captures the expected variance in the motion estimate in all possible directions.

9The matrix A is by construction always guaranteed to be symmetric positive semi-definite, i.e., it has real
non-negative eigenvalues.

348 8 Dense motion estimation

(a)

(b)

(c)

Figure 8.4 SSD surfaces corresponding to three locations (red crosses) in an image: (a) highly textured area,
strong minimum, low uncertainty; (b) strong edge, aperture problem, high uncertainty in one direction; (c) weak
texture, no clear minimum, large uncertainty.

8.1 Translational alignment 349

As discussed in Section 6.1.4 and Appendix B.6, under small amounts of additive Gaussian
noise, it can be shown that the covariance matrix Σu is proportional to the inverse of the
Hessian A,

Σu = σ2
nA−1, (8.44)

where σ2
n is the variance of the additive Gaussian noise (Anandan 1989; Matthies, Kanade,

and Szeliski 1989; Szeliski 1989).
For larger amounts of noise, the linearization performed by the Lucas–Kanade algorithm

in (8.35) is only approximate, so the above quantity becomes a Cramer–Rao lower bound on
the true covariance. Thus, the minimum and maximum eigenvalues of the Hessian A can now
be interpreted as the (scaled) inverse variances in the least-certain and most-certain directions
of motion. (A more detailed analysis using a more realistic model of image noise is given by
Steele and Jaynes (2005).) Figure 8.4 shows the local SSD surfaces for three different pixel
locations in an image. As you can see, the surface has a clear minimum in the highly textured
region and suffers from the aperture problem near the strong edge.

Bias and gain, weighting, and robust error metrics. The Lucas–Kanade update
rule can also be applied to the bias–gain equation (8.9) to obtain

ELK−BG(u + Δu) =
∑

i

[J1(xi + u)Δu + ei − αI0(xi) − β]2 (8.45)

(Lucas and Kanade 1981; Gennert 1988; Fuh and Maragos 1991; Baker, Gross, and Matthews
2003). The resulting 4 × 4 system of equations can be solved to simultaneously estimate the
translational displacement update Δu and the bias and gain parameters β and α.

A similar formulation can be derived for images (templates) that have a linear appearance
variation,

I1(x + u) ≈ I0(x) +
∑

j

λjBj(x), (8.46)

where the Bj(x) are the basis images and the λj are the unknown coefficients (Hager and
Belhumeur 1998; Baker, Gross, Ishikawa et al. 2003; Baker, Gross, and Matthews 2003).
Potential linear appearance variations include illumination changes (Hager and Belhumeur
1998) and small non-rigid deformations (Black and Jepson 1998).

A weighted (windowed) version of the Lucas–Kanade algorithm is also possible:

ELK−WSSD(u + Δu) =
∑

i

w0(xi)w1(xi + u)[J1(xi + u)Δu + ei]2. (8.47)

Note that here, in deriving the Lucas–Kanade update from the original weighted SSD function
(8.5), we have neglected taking the derivative of the w1(xi + u) weighting function with
respect to u, which is usually acceptable in practice, especially if the weighting function is a
binary mask with relatively few transitions.

Baker, Gross, Ishikawa et al. (2003) only use the w0(x) term, which is reasonable if the
two images have the same extent and no (independent) cutouts in the overlap region. They
also discuss the idea of making the weighting proportional to ∇I(x), which helps for very
noisy images, where the gradient itself is noisy. Similar observations, formulated in terms
of total least squares (Van Huffel and Vandewalle 1991; Van Huffel and Lemmerling 2002),

350 8 Dense motion estimation

have been made by other researchers studying optical flow (Weber and Malik 1995; Bab-
Hadiashar and Suter 1998b; Mühlich and Mester 1998). Lastly, Baker, Gross, Ishikawa et al.
(2003) show how evaluating Equation (8.47) at just the most reliable (highest gradient) pixels
does not significantly reduce performance for large enough images, even if only 5–10% of
the pixels are used. (This idea was originally proposed by Dellaert and Collins (1999), who
used a more sophisticated selection criterion.)

The Lucas–Kanade incremental refinement step can also be applied to the robust error
metric introduced in Section 8.1,

ELK−SRD(u + Δu) =
∑

i

ρ(J1(xi + u)Δu + ei), (8.48)

which can be solved using the iteratively reweighted least squares technique described in
Section 6.1.4.

8.2 Parametric motion

Many image alignment tasks, for example image stitching with handheld cameras, require
the use of more sophisticated motion models, as described in Section 2.1.2. Since these
models, e.g., affine deformations, typically have more parameters than pure translation, a
full search over the possible range of values is impractical. Instead, the incremental Lucas–
Kanade algorithm can be generalized to parametric motion models and used in conjunction
with a hierarchical search algorithm (Lucas and Kanade 1981; Rehg and Witkin 1991; Fuh
and Maragos 1991; Bergen, Anandan, Hanna et al. 1992; Shashua and Toelg 1997; Shashua
and Wexler 2001; Baker and Matthews 2004).

For parametric motion, instead of using a single constant translation vector u, we use
a spatially varying motion field or correspondence map, x′(x; p), parameterized by a low-
dimensional vector p, where x′ can be any of the motion models presented in Section 2.1.2.
The parametric incremental motion update rule now becomes

ELK−PM(p + Δp) =
∑

i

[I1(x′(xi; p + Δp)) − I0(xi)]2 (8.49)

≈
∑

i

[I1(x′
i) + J1(x′

i)Δp − I0(xi)]2 (8.50)

=
∑

i

[J1(x′
i)Δp + ei]2, (8.51)

where the Jacobian is now

J1(x′
i) =

∂I1

∂p
= ∇I1(x′

i)
∂x′

∂p
(xi), (8.52)

i.e., the product of the image gradient ∇I1 with the Jacobian of the correspondence field,
Jx′ = ∂x′/∂p.

The motion Jacobians Jx′ for the 2D planar transformations introduced in Section 2.1.2
and Table 2.1 are given in Table 6.1. Note how we have re-parameterized the motion matrices
so that they are always the identity at the origin p = 0. This becomes useful later, when we
talk about the compositional and inverse compositional algorithms. (It also makes it easier to
impose priors on the motions.)

8.2 Parametric motion 351

For parametric motion, the (Gauss–Newton) Hessian and gradient-weighted residual vec-
tor become

A =
∑

i

JT
x′(xi)[∇IT

1 (x′
i)∇I1(x′

i)]Jx′(xi) (8.53)

and
b = −

∑
i

JT
x′(xi)[ei∇IT

1 (x′
i)]. (8.54)

Note how the expressions inside the square brackets are the same ones evaluated for the
simpler translational motion case (8.40–8.41).

Patch-based approximation. The computation of the Hessian and residual vectors for
parametric motion can be significantly more expensive than for the translational case. For
parametric motion with n parameters and N pixels, the accumulation of A and b takes
O(n2N) operations (Baker and Matthews 2004). One way to reduce this by a significant
amount is to divide the image up into smaller sub-blocks (patches) Pj and to only accumulate
the simpler 2 × 2 quantities inside the square brackets at the pixel level (Shum and Szeliski
2000),

Aj =
∑
i∈Pj

∇IT
1 (x′

i)∇I1(x′
i) (8.55)

bj =
∑
i∈Pj

ei∇IT
1 (x′

i). (8.56)

The full Hessian and residual can then be approximated as

A ≈
∑

j

JT
x′(x̂j)[

∑
i∈Pj

∇IT
1 (x′

i)∇I1(x′
i)]Jx′(x̂j) =

∑
j

JT
x′(x̂j)AjJx′(x̂j) (8.57)

and
b ≈ −

∑
j

JT
x′(x̂j)[

∑
i∈Pj

ei∇IT
1 (x′

i)] = −
∑

j

JT
x′(x̂j)bj , (8.58)

where x̂j is the center of each patch Pj (Shum and Szeliski 2000). This is equivalent to
replacing the true motion Jacobian with a piecewise-constant approximation. In practice,
this works quite well. The relationship of this approximation to feature-based registration is
discussed in Section 9.2.4.

Compositional approach. For a complex parametric motion such as a homography,
the computation of the motion Jacobian becomes complicated and may involve a per-pixel
division. Szeliski and Shum (1997) observed that this can be simplified by first warping the
target image I1 according to the current motion estimate x′(x; p),

Ĩ1(x) = I1(x′(x;p)), (8.59)

and then comparing this warped image against the template I0(x),

ELK−SS(Δp) =
∑

i

[Ĩ1(x̃(xi; Δp)) − I0(xi)]2 (8.60)

≈
∑

i

[J̃1(xi)Δp + ei]2 (8.61)

=
∑

i

[∇Ĩ1(xi)Jx̃(xi)Δp + ei]2. (8.62)

352 8 Dense motion estimation

Note that since the two images are assumed to be fairly similar, only an incremental para-
metric motion is required, i.e., the incremental motion can be evaluated around p = 0, which
can lead to considerable simplifications. For example, the Jacobian of the planar projective
transform (6.19) now becomes

Jx̃ =
∂x̃

∂p

∣∣∣∣
p=0

=
[

x y 1 0 0 0 −x2 −xy

0 0 0 x y 1 −xy −y2

]
. (8.63)

Once the incremental motion x̃ has been computed, it can be prepended to the previously
estimated motion, which is easy to do for motions represented with transformation matrices,
such as those given in Tables 2.1 and 6.1. Baker and Matthews (2004) call this the forward
compositional algorithm, since the target image is being re-warped and the final motion esti-
mates are being composed.

If the appearance of the warped and template images is similar enough, we can replace
the gradient of Ĩ1(x) with the gradient of I0(x), as suggested previously (8.43). This has po-
tentially a big advantage in that it allows the pre-computation (and inversion) of the Hessian
matrix A given in Equation (8.53). The residual vector b (8.54) can also be partially precom-
puted, i.e., the steepest descent images ∇I0(x)Jx̃(x) can precomputed and stored for later
multiplication with the e(x) = Ĩ1(x)−I0(x) error images (Baker and Matthews 2004). This
idea was first suggested by Hager and Belhumeur (1998) in what Baker and Matthews (2004)
call a inverse additive scheme.

Baker and Matthews (2004) introduce one more variant they call the inverse composi-
tional algorithm. Rather than (conceptually) re-warping the warped target image Ĩ1(x), they
instead warp the template image I0(x) and minimize

ELK−BM(Δp) =
∑

i

[Ĩ1(xi) − I0(x̃(xi; Δp))]2 (8.64)

≈
∑

i

[∇I0(xi)Jx̃(xi)Δp − ei]2. (8.65)

This is identical to the forward warped algorithm (8.62) with the gradients ∇Ĩ1(x) replaced
by the gradients ∇I0(x), except for the sign of ei. The resulting update Δp is the negative of
the one computed by the modified Equation (8.62) and hence the inverse of the incremental
transformation must be prepended to the current transform. Because the inverse composi-
tional algorithm has the potential of pre-computing the inverse Hessian and the steepest de-
scent images, this makes it the preferred approach of those surveyed by Baker and Matthews
(2004). Figure 8.5 (Baker, Gross, Ishikawa et al. 2003) beautifully shows all of the steps
required to implement the inverse compositional algorithm.

Baker and Matthews (2004) also discuss the advantage of using Gauss–Newton iteration
(i.e., the first-order expansion of the least squares, as above) compared to other approaches
such as steepest descent and Levenberg–Marquardt. Subsequent parts of the series (Baker,
Gross, Ishikawa et al. 2003; Baker, Gross, and Matthews 2003, 2004) discuss more advanced
topics such as per-pixel weighting, pixel selection for efficiency, a more in-depth discussion of
robust metrics and algorithms, linear appearance variations, and priors on parameters. They
make for invaluable reading for anyone interested in implementing a highly tuned imple-
mentation of incremental image registration. Evangelidis and Psarakis (2008) provide some
detailed experimental evaluations of these and other related approaches.

8.2 Parametric motion 353

Figure 8.5 A schematic overview of the inverse compositional algorithm (copied, with permission, from (Baker,
Gross, Ishikawa et al. 2003)). Steps 3–6 (light-colored arrows) are performed once as a pre-computation. The
main algorithm simply consists of iterating: image warping (Step 1), image differencing (Step 2), image dot
products (Step 7), multiplication with the inverse of the Hessian (Step 8), and the update to the warp (Step 9). All
of these steps can be performed efficiently.

354 8 Dense motion estimation

8.2.1 Application: Video stabilization

Video stabilization is one of the most widely used applications of parametric motion esti-
mation (Hansen, Anandan, Dana et al. 1994; Irani, Rousso, and Peleg 1997; Morimoto and
Chellappa 1997; Srinivasan, Chellappa, Veeraraghavan et al. 2005). Algorithms for stabiliza-
tion run inside both hardware devices, such as camcorders and still cameras, and software
packages for improving the visual quality of shaky videos.

In their paper on full-frame video stabilization, Matsushita, Ofek, Ge et al. (2006) give
a nice overview of the three major stages of stabilization, namely motion estimation, motion
smoothing, and image warping. Motion estimation algorithms often use a similarity trans-
form to handle camera translations, rotations, and zooming. The tricky part is getting these
algorithms to lock onto the background motion, which is a result of the camera movement,
without getting distracted by independent moving foreground objects. Motion smoothing al-
gorithms recover the low-frequency (slowly varying) part of the motion and then estimate
the high-frequency shake component that needs to be removed. Finally, image warping algo-
rithms apply the high-frequency correction to render the original frames as if the camera had
undergone only the smooth motion.

The resulting stabilization algorithms can greatly improve the appearance of shaky videos
but they often still contain visual artifacts. For example, image warping can result in missing
borders around the image, which must be cropped, filled using information from other frames,
or hallucinated using inpainting techniques (Section 10.5.1). Furthermore, video frames cap-
tured during fast motion are often blurry. Their appearance can be improved either using
deblurring techniques (Section 10.3) or stealing sharper pixels from other frames with less
motion or better focus (Matsushita, Ofek, Ge et al. 2006). Exercise 8.3 has you implement
and test some of these ideas.

In situations where the camera is translating a lot in 3D, e.g., when the videographer is
walking, an even better approach is to compute a full structure from motion reconstruction
of the camera motion and 3D scene. A smooth 3D camera path can then be computed and
the original video re-rendered using view interpolation with the interpolated 3D point cloud
serving as the proxy geometry while preserving salient features (Liu, Gleicher, Jin et al.
2009). If you have access to a camera array instead of a single video camera, you can do even
better using a light field rendering approach (Section 13.3) (Smith, Zhang, Jin et al. 2009).

8.2.2 Learned motion models

An alternative to parameterizing the motion field with a geometric deformation such as an
affine transform is to learn a set of basis functions tailored to a particular application (Black,
Yacoob, Jepson et al. 1997). First, a set of dense motion fields (Section 8.4) is computed from
a set of training videos. Next, singular value decomposition (SVD) is applied to the stack of
motion fields ut(x) to compute the first few singular vectors vk(x). Finally, for a new test
sequence, a novel flow field is computed using a coarse-to-fine algorithm that estimates the
unknown coefficient ak in the parameterized flow field

u(x) =
∑

k

akvk(x). (8.66)

8.3 Spline-based motion 355

(a) (b)

Figure 8.6 Learned parameterized motion fields for a walking sequence (Black, Yacoob, Jepson et al. 1997) c©
1997 IEEE: (a) learned basis flow fields; (b) plots of motion coefficients over time and corresponding estimated
motion fields.

Figure 8.6a shows a set of basis fields learned by observing videos of walking motions.
Figure 8.6b shows the temporal evolution of the basis coefficients as well as a few of the
recovered parametric motion fields. Note that similar ideas can also be applied to feature
tracks (Torresani, Hertzmann, and Bregler 2008), which is a topic we discuss in more detail
in Sections 4.1.4 and 12.6.4.

8.3 Spline-based motion

While parametric motion models are useful in a wide variety of applications (such as video
stabilization and mapping onto planar surfaces), most image motion is too complicated to be
captured by such low-dimensional models.

Traditionally, optical flow algorithms (Section 8.4) compute an independent motion esti-
mate for each pixel, i.e., the number of flow vectors computed is equal to the number of input
pixels. The general optical flow analog to Equation (8.1) can thus be written as

ESSD−OF({ui}) =
∑

i

[I1(xi + ui) − I0(xi)]2. (8.67)

Notice how in the above equation, the number of variables {ui} is twice the number of
measurements, so the problem is underconstrained.

The two classic approaches to this problem, which we study in Section 8.4, are to perform
the summation over overlapping regions (the patch-based or window-based approach) or to
add smoothness terms on the {ui} field using regularization or Markov random fields (Sec-
tion 3.7). In this section, we describe an alternative approach that lies somewhere between
general optical flow (independent flow at each pixel) and parametric flow (a small number of
global parameters). The approach is to represent the motion field as a two-dimensional spline

356 8 Dense motion estimation

Figure 8.7 Spline motion field: the displacement vectors ui = (ui, vi) are shown as pluses (+) and are controlled
by the smaller number of control vertices ûj = (ûi, v̂j), which are shown as circles (◦).

controlled by a smaller number of control vertices {ûj} (Figure 8.7),

ui =
∑

j

ûjBj(xi) =
∑

j

ûjwi,j , (8.68)

where the Bj(xi) are called the basis functions and are only non-zero over a small finite sup-
port interval (Szeliski and Coughlan 1997). We call the wij = Bj(xi) weights to emphasize
that the {ui} are known linear combinations of the {ûj}. Some commonly used spline basis
functions are shown in Figure 8.8.

Substituting the formula for the individual per-pixel flow vectors ui (8.68) into the SSD
error metric (8.67) yields a parametric motion formula similar to Equation (8.50). The biggest
difference is that the Jacobian J1(x′

i) (8.52) now consists of the sparse entries in the weight
matrix W = [wij].

In situations where we know something more about the motion field, e.g., when the mo-
tion is due to a camera moving in a static scene, we can use more specialized motion models.
For example, the plane plus parallax model (Section 2.1.5) can be naturally combined with
a spline-based motion representation, where the in-plane motion is represented by a homog-
raphy (6.19) and the out-of-plane parallax d is represented by a scalar variable at each spline
control point (Szeliski and Kang 1995; Szeliski and Coughlan 1997).

In many cases, the small number of spline vertices results in a motion estimation problem
that is well conditioned. However, if large textureless regions (or elongated edges subject
to the aperture problem) persist across several spline patches, it may be necessary to add a
regularization term to make the problem well posed (Section 3.7.1). The simplest way to
do this is to directly add squared difference penalties between adjacent vertices in the spline
control mesh {ûj}, as in (3.100). If a multi-resolution (coarse-to-fine) strategy is being used,
it is important to re-scale these smoothness terms while going from level to level.

The linear system corresponding to the spline-based motion estimator is sparse and regu-
lar. Because it is usually of moderate size, it can often be solved using direct techniques such
as Cholesky decomposition (Appendix A.4). Alternatively, if the problem becomes too large
and subject to excessive fill-in, iterative techniques such as hierarchically preconditioned con-
jugate gradient (Szeliski 1990b, 2006b) can be used instead (Appendix A.5).

8.3 Spline-based motion 357

Figure 8.8 Sample spline basis functions (Szeliski and Coughlan 1997) c© 1997 Springer. The block (constant)
interpolator/basis corresponds to block-based motion estimation (Le Gall 1991). See Section 3.5.1 for more details
on spline functions.

358 8 Dense motion estimation

(a) (b) (c) (d)

Figure 8.9 Quadtree spline-based motion estimation (Szeliski and Shum 1996) c© 1996 IEEE: (a) quadtree spline
representation, (b) which can lead to cracks, unless the white nodes are constrained to depend on their parents;
(c) deformed quadtree spline mesh overlaid on grayscale image; (d) flow field visualized as a needle diagram.

Because of its robustness, spline-based motion estimation has been used for a number
of applications, including visual effects (Roble 1999) and medical image registration (Sec-
tion 8.3.1) (Szeliski and Lavallée 1996; Kybic and Unser 2003).

One disadvantage of the basic technique, however, is that the model does a poor job
near motion discontinuities, unless an excessive number of nodes is used. To remedy this
situation, Szeliski and Shum (1996) propose using a quadtree representation embedded in the
spline control grid (Figure 8.9a). Large cells are used to present regions of smooth motion,
while smaller cells are added in regions of motion discontinuities (Figure 8.9c).

To estimate the motion, a coarse-to-fine strategy is used. Starting with a regular spline
imposed over a lower-resolution image, an initial motion estimate is obtained. Spline patches
where the motion is inconsistent, i.e., the squared residual (8.67) is above a threshold, are
subdivided into smaller patches. In order to avoid cracks in the resulting motion field (Fig-
ure 8.9b), the values of certain nodes in the refined mesh, i.e., those adjacent to larger cells,
need to be restricted so that they depend on their parent values. This is most easily accom-
plished using a hierarchical basis representation for the quadtree spline (Szeliski 1990b) and
selectively setting some of the hierarchical basis functions to 0, as described in (Szeliski and
Shum 1996).

8.3.1 Application: Medical image registration

Because they excel at representing smooth elastic deformation fields, spline-based motion
models have found widespread use in medical image registration (Bajcsy and Kovacic 1989;
Szeliski and Lavallée 1996; Christensen, Joshi, and Miller 1997).10 Registration techniques
can be used both to track an individual patient’s development or progress over time (a lon-
gitudinal study) or to match different patient images together to find commonalities and de-
tect variations or pathologies (cross-sectional studies). When different imaging modalities
are being registered, e.g., computed tomography (CT) scans and magnetic resonance images
(MRI), mutual information measures of similarity are often necessary (Viola and Wells III
1997; Maes, Collignon, Vandermeulen et al. 1997).

10 In computer graphics, such elastic volumetric deformation are known as free-form deformations (Sederberg and
Parry 1986; Coquillart 1990; Celniker and Gossard 1991).

8.3 Spline-based motion 359

(a) (b) (c)

Figure 8.10 Elastic brain registration (Kybic and Unser 2003) c© 2003 IEEE: (a) original brain atlas and patient
MRI images overlaid in red–green; (b) after elastic registration with eight user-specified landmarks (not shown);
(c) a cubic B-spline deformation field, shown as a deformed grid.

(a) (b) (c)

Figure 8.11 Octree spline-based image registration of two vertebral surface models (Szeliski and Lavallée 1996)
c© 1996 Springer: (a) after initial rigid alignment; (b) after elastic alignment; (c) a cross-section through the

adapted octree spline deformation field.

Kybic and Unser (2003) provide a nice literature review and describe a complete working
system based on representing both the images and the deformation fields as multi-resolution
splines. Figure 8.10 shows an example of the Kybic and Unser system being used to register
a patient’s brain MRI with a labeled brain atlas image. The system can be run in a fully auto-
matic mode but more accurate results can be obtained by locating a few key landmarks. More
recent papers on deformable medical image registration, including performance evaluations,
include (Klein, Staring, and Pluim 2007; Glocker, Komodakis, Tziritas et al. 2008).

As with other applications, regular volumetric splines can be enhanced using selective
refinement. In the case of 3D volumetric image or surface registration, these are known as
octree splines (Szeliski and Lavallée 1996) and have been used to register medical surface
models such as vertebrae and faces from different patients (Figure 8.11).

360 8 Dense motion estimation

8.4 Optical flow

The most general (and challenging) version of motion estimation is to compute an indepen-
dent estimate of motion at each pixel, which is generally known as optical (or optic) flow. As
we mentioned in the previous section, this generally involves minimizing the brightness or
color difference between corresponding pixels summed over the image,

ESSD−OF({ui}) =
∑

i

[I1(xi + ui) − I0(xi)]2. (8.69)

Since the number of variables {ui} is twice the number of measurements, the problem is
underconstrained. The two classic approaches to this problem are to perform the summa-
tion locally over overlapping regions (the patch-based or window-based approach) or to
add smoothness terms on the {ui} field using regularization or Markov random fields (Sec-
tion 3.7) and to search for a global minimum.

The patch-based approach usually involves using a Taylor series expansion of the dis-
placed image function (8.35) in order to obtain sub-pixel estimates (Lucas and Kanade 1981).
Anandan (1989) shows how a series of local discrete search steps can be interleaved with
Lucas–Kanade incremental refinement steps in a coarse-to-fine pyramid scheme, which al-
lows the estimation of large motions, as described in Section 8.1.1. He also analyzes how the
uncertainty in local motion estimates is related to the eigenvalues of the local Hessian matrix
Ai (8.44), as shown in Figures 8.3–8.4.

Bergen, Anandan, Hanna et al. (1992) develop a unified framework for describing both
parametric (Section 8.2) and patch-based optic flow algorithms and provide a nice introduc-
tion to this topic. After each iteration of optic flow estimation in a coarse-to-fine pyramid,
they re-warp one of the images so that only incremental flow estimates are computed (Sec-
tion 8.1.1). When overlapping patches are used, an efficient implementation is to first com-
pute the outer products of the gradients and intensity errors (8.40–8.41) at every pixel and
then perform the overlapping window sums using a moving average filter.11

Instead of solving for each motion (or motion update) independently, Horn and Schunck
(1981) develop a regularization-based framework where (8.69) is simultaneously minimized
over all flow vectors {ui}. In order to constrain the problem, smoothness constraints, i.e.,
squared penalties on flow derivatives, are added to the basic per-pixel error metric. Because
the technique was originally developed for small motions in a variational (continuous func-
tion) framework, the linearized brightness constancy constraint corresponding to (8.35), i.e.,
(8.38), is more commonly written as an analytic integral

EHS =
∫

(Ixu + Iyv + It)2 dx dy, (8.70)

where (Ix, Iy) = ∇I1 = J1 and It = ei is the temporal derivative, i.e., the brightness
change between images. The Horn and Schunck model can also be viewed as the limiting
case of spline-based motion estimation as the splines become 1x1 pixel patches.

It is also possible to combine ideas from local and global flow estimation into a single
framework by using a locally aggregated (as opposed to single-pixel) Hessian as the bright-
ness constancy term (Bruhn, Weickert, and Schnörr 2005). Consider the discrete analog

11Other smoothing or aggregation filters can also be used at this stage (Bruhn, Weickert, and Schnörr 2005).

8.4 Optical flow 361

(8.35) to the analytic global energy (8.70),

EHSD =
∑

i

uT
i [J iJ

T
i]ui + 2eiJ

T
i ui + e2

i . (8.71)

If we replace the per-pixel (rank 1) Hessians Ai = [J iJ
T
i] and residuals bi = J iei with area-

aggregated versions (8.40–8.41), we obtain a global minimization algorithm where region-
based brightness constraints are used.

Another extension to the basic optic flow model is to use a combination of global (para-
metric) and local motion models. For example, if we know that the motion is due to a camera
moving in a static scene (rigid motion), we can re-formulate the problem as the estimation of
a per-pixel depth along with the parameters of the global camera motion (Adiv 1989; Hanna
1991; Bergen, Anandan, Hanna et al. 1992; Szeliski and Coughlan 1997; Nir, Bruckstein,
and Kimmel 2008; Wedel, Cremers, Pock et al. 2009). Such techniques are closely related to
stereo matching (Chapter 11). Alternatively, we can estimate either per-image or per-segment
affine motion models combined with per-pixel residual corrections (Black and Jepson 1996;
Ju, Black, and Jepson 1996; Chang, Tekalp, and Sezan 1997; Mémin and Pérez 2002). We
revisit this topic in Section 8.5.

Of course, image brightness may not always be an appropriate metric for measuring ap-
pearance consistency, e.g., when the lighting in an image is varying. As discussed in Sec-
tion 8.1, matching gradients, filtered images, or other metrics such as image Hessians (sec-
ond derivative measures) may be more appropriate. It is also possible to locally compute the
phase of steerable filters in the image, which is insensitive to both bias and gain transforma-
tions (Fleet and Jepson 1990). Papenberg, Bruhn, Brox et al. (2006) review and explore such
constraints and also provide a detailed analysis and justification for iteratively re-warping
images during incremental flow computation.

Because the brightness constancy constraint is evaluated at each pixel independently,
rather than being summed over patches where the constant flow assumption may be violated,
global optimization approaches tend to perform better near motion discontinuities. This is
especially true if robust metrics are used in the smoothness constraint (Black and Anandan
1996; Bab-Hadiashar and Suter 1998a).12 One popular choice for robust metrics in the L1

norm, also known as total variation (TV), which results in a convex energy whose global
minimum can be found (Bruhn, Weickert, and Schnörr 2005; Papenberg, Bruhn, Brox et
al. 2006). Anisotropic smoothness priors, which apply a different smoothness in the direc-
tions parallel and perpendicular to the image gradient, are another popular choice (Nagel and
Enkelmann 1986; Sun, Roth, Lewis et al. 2008; Werlberger, Trobin, Pock et al. 2009). It
is also possible to learn a set of better smoothness constraints (derivative filters and robust
functions) from a set of paired flow and intensity images (Sun, Roth, Lewis et al. 2008). Ad-
ditional details on some of these techniques are given by Baker, Black, Lewis et al. (2007)
and Baker, Scharstein, Lewis et al. (2009).

Because of the large, two-dimensional search space in estimating flow, most algorithms
use variations of gradient descent and coarse-to-fine continuation methods to minimize the
global energy function. This contrasts starkly with stereo matching (which is an “easier”
one-dimensional disparity estimation problem), where combinatorial optimization techniques
have been the method of choice for the last decade.

12 Robust brightness metrics (Section 8.1, (8.2)) can also help improve the performance of window-based ap-
proaches (Black and Anandan 1996).

362 8 Dense motion estimation

Figure 8.12 Evaluation of the results of 24 optical flow algorithms, October 2009, http://vision.middlebury.edu/
flow/, (Baker, Scharstein, Lewis et al. 2009). By moving the mouse pointer over an underlined performance score,
the user can interactively view the corresponding flow and error maps. Clicking on a score toggles between the
computed and ground truth flows. Next to each score, the corresponding rank in the current column is indicated
by a smaller blue number. The minimum (best) score in each column is shown in boldface. The table is sorted by
the average rank (computed over all 24 columns, three region masks for each of the eight sequences). The average
rank serves as an approximate measure of performance under the selected metric/statistic.

http://vision.middlebury.edu/flow/
http://vision.middlebury.edu/flow/

8.4 Optical flow 363

Fortunately, combinatorial optimization methods based on Markov random fields are be-
ginning to appear and tend to be among the better-performing methods on the recently re-
leased optical flow database (Baker, Black, Lewis et al. 2007).13

Examples of such techniques include the one developed by Glocker, Paragios, Komodakis
et al. (2008), who use a coarse-to-fine strategy with per-pixel 2D uncertainty estimates, which
are then used to guide the refinement and search at the next finer level. Instead of using gra-
dient descent to refine the flow estimates, a combinatorial search over discrete displacement
labels (which is able to find better energy minima) is performed using their Fast-PD algorithm
(Komodakis, Tziritas, and Paragios 2008).

Lempitsky, Roth, and Rother. (2008) use fusion moves (Lempitsky, Rother, and Blake
2007) over proposals generated from basic flow algorithms (Horn and Schunck 1981; Lucas
and Kanade 1981) to find good solutions. The basic idea behind fusion moves is to replace
portions of the current best estimate with hypotheses generated by more basic techniques
(or their shifted versions) and to alternate them with local gradient descent for better energy
minimization.

The field of accurate motion estimation continues to evolve at a rapid pace, with signif-
icant advances in performance occurring every year. The optical flow evaluation Web site
(http://vision.middlebury.edu/flow/) is a good source of pointers to high-performing recently
developed algorithms (Figure 8.12).

8.4.1 Multi-frame motion estimation

So far, we have looked at motion estimation as a two-frame problem, where the goal is to
compute a motion field that aligns pixels from one image with those in another. In practice,
motion estimation is usually applied to video, where a whole sequence of frames is available
to perform this task.

One classic approach to multi-frame motion is to filter the spatio-temporal volume using
oriented or steerable filters (Heeger 1988), in a manner analogous to oriented edge detec-
tion (Section 3.2.3). Figure 8.13 shows two frames from the commonly used flower garden
sequence, as well as a horizontal slice through the spatio-temporal volume, i.e., the 3D vol-
ume created by stacking all of the video frames together. Because the pixel motion is mostly
horizontal, the slopes of individual (textured) pixel tracks, which correspond to their horizon-
tal velocities, can clearly be seen. Spatio-temporal filtering uses a 3D volume around each
pixel to determine the best orientation in space–time, which corresponds directly to a pixel’s
velocity.

Unfortunately, in order to obtain reasonably accurate velocity estimates everywhere in
an image, spatio-temporal filters have moderately large extents, which severely degrades the
quality of their estimates near motion discontinuities. (This same problem is endemic in
2D window-based motion estimators.) An alternative to full spatio-temporal filtering is to
estimate more local spatio-temporal derivatives and use them inside a global optimization
framework to fill in textureless regions (Bruhn, Weickert, and Schnörr 2005; Govindu 2006).

Another alternative is to simultaneously estimate multiple motion estimates, while also
optionally reasoning about occlusion relationships (Szeliski 1999). Figure 8.13c shows schemat-
ically one potential approach to this problem. The horizontal arrows show the locations of

13 http://vision.middlebury.edu/flow/.

http://vision.middlebury.edu/flow/
http://vision.middlebury.edu/flow/

364 8 Dense motion estimation

(a) (b) (c)

Figure 8.13 Slice through a spatio-temporal volume (Szeliski 1999) c© 1999 IEEE: (a–b) two frames from the
flower garden sequence; (c) a horizontal slice through the complete spatio-temporal volume, with the arrows
indicating locations of potential key frames where flow is estimated. Note that the colors for the flower garden
sequence are incorrect; the correct colors (yellow flowers) are shown in Figure 8.15.

keyframes s where motion is estimated, while other slices indicate video frames t whose
colors are matched with those predicted by interpolating between the keyframes. Motion es-
timation can be cast as a global energy minimization problem that simultaneously minimizes
brightness compatibility and flow compatibility terms between keyframes and other frames,
in addition to using robust smoothness terms.

The multi-view framework is potentially even more appropriate for rigid scene motion
(multi-view stereo) (Section 11.6), where the unknowns at each pixel are disparities and
occlusion relationships can be determined directly from pixel depths (Szeliski 1999; Kol-
mogorov and Zabih 2002). However, it may also be applicable to general motion, with the
addition of models for object accelerations and occlusion relationships.

8.4.2 Application: Video denoising

Video denoising is the process of removing noise and other artifacts such as scratches from
film and video (Kokaram 2004). Unlike single image denoising, where the only information
available is in the current picture, video denoisers can average or borrow information from
adjacent frames. However, in order to do this without introducing blur or jitter (irregular
motion), they need accurate per-pixel motion estimates.

Exercise 8.7 lists some of the steps required, which include the ability to determine if the
current motion estimate is accurate enough to permit averaging with other frames. Gai and
Kang (2009) describe their recently developed restoration process, which involves a series of
additional steps to deal with the special characteristics of vintage film.

8.4.3 Application: De-interlacing

Another commonly used application of per-pixel motion estimation is video de-interlacing,
which is the process of converting a video taken with alternating fields of even and odd
lines to a non-interlaced signal that contains both fields in each frame (de Haan and Bellers
1998). Two simple de-interlacing techniques are bob, which copies the line above or below
the missing line from the same field, and weave, which copies the corresponding line from
the field before or after. The names come from the visual artifacts generated by these two
simple techniques: bob introduces an up-and-down bobbing motion along strong horizontal

8.5 Layered motion 365

Intensity map Alpha map Velocity map

Intensity map Alpha map Velocity map

Frame 1 Frame 2 Frame 3

Figure 8.14 Layered motion estimation framework (Wang and Adelson 1994) c© 1994 IEEE: The top two rows
describe the two layers, each of which consists of an intensity (color) image, an alpha mask (black=transparent),
and a parametric motion field. The layers are composited with different amounts of motion to recreate the video
sequence.

lines; weave can lead to a “zippering” effect along horizontally translating edges. Replacing
these copy operators with averages can help but does not completely remove these artifacts.

A wide variety of improved techniques have been developed for this process, which is
often embedded in specialized DSP chips found inside video digitization boards in computers
(since broadcast video is often interlaced, while computer monitors are not). A large class
of these techniques estimates local per-pixel motions and interpolates the missing data from
the information available in spatially and temporally adjacent fields. Dai, Baker, and Kang
(2009) review this literature and propose their own algorithm, which selects among seven
different interpolation functions at each pixel using an MRF framework.

8.5 Layered motion

In many situation, visual motion is caused by the movement of a small number of objects
at different depths in the scene. In such situations, the pixel motions can be described more
succinctly (and estimated more reliably) if pixels are grouped into appropriate objects or
layers (Wang and Adelson 1994).

Figure 8.14 shows this approach schematically. The motion in this sequence is caused by
the translational motion of the checkered background and the rotation of the foreground hand.
The complete motion sequence can be reconstructed from the appearance of the foreground
and background elements, which can be represented as alpha-matted images (sprites or video
objects) and the parametric motion corresponding to each layer. Displacing and compositing

366 8 Dense motion estimation

color image (input frame)

flow initial layers final layers

layers with pixel assignments and flow

Figure 8.15 Layered motion estimation results (Wang and Adelson 1994) c© 1994 IEEE.

these layers in back to front order (Section 3.1.3) recreates the original video sequence.
Layered motion representations not only lead to compact representations (Wang and

Adelson 1994; Lee, ge Chen, lung Bruce Lin et al. 1997), but they also exploit the infor-
mation available in multiple video frames, as well as accurately modeling the appearance of
pixels near motion discontinuities. This makes them particularly suited as a representation
for image-based rendering (Section 13.2.1) (Shade, Gortler, He et al. 1998; Zitnick, Kang,
Uyttendaele et al. 2004) as well as object-level video editing.

To compute a layered representation of a video sequence, Wang and Adelson (1994) first
estimate affine motion models over a collection of non-overlapping patches and then cluster
these estimates using k-means. They then alternate between assigning pixels to layers and
recomputing motion estimates for each layer using the assigned pixels, using a technique
first proposed by Darrell and Pentland (1991). Once the parametric motions and pixel-wise
layer assignments have been computed for each frame independently, layers are constructed
by warping and merging the various layer pieces from all of the frames together. Median
filtering is used to produce sharp composite layers that are robust to small intensity variations,
as well as to infer occlusion relationships between the layers. Figure 8.15 shows the results
of this process on the flower garden sequence. You can see both the initial and final layer
assignments for one of the frames, as well as the composite flow and the alpha-matted layers
with their corresponding flow vectors overlaid.

In follow-on work, Weiss and Adelson (1996) use a formal probabilistic mixture model
to infer both the optimal number of layers and the per-pixel layer assignments. Weiss (1997)
further generalizes this approach by replacing the per-layer affine motion models with smooth
regularized per-pixel motion estimates, which allows the system to better handle curved and
undulating layers, such as those seen in most real-world sequences.

The above approaches, however, still make a distinction between estimating the motions
and layer assignments and then later estimating the layer colors. In the system described by
Baker, Szeliski, and Anandan (1998), the generative model illustrated in Figure 8.14 is gen-
eralized to account for real-world rigid motion scenes. The motion of each frame is described
using a 3D camera model and the motion of each layer is described using a 3D plane equation
plus per-pixel residual depth offsets (the plane plus parallax representation (Section 2.1.5)).
The initial layer estimation proceeds in a manner similar to that of Wang and Adelson (1994),

8.5 Layered motion 367

Figure 8.16 Layered stereo reconstruction (Baker, Szeliski, and Anandan 1998) c© 1998 IEEE: (a) first and
(b) last input images; (c) initial segmentation into six layers; (d) and (e) the six layer sprites; (f) depth map for
planar sprites (darker denotes closer); front layer (g) before and (h) after residual depth estimation. Note that the
colors for the flower garden sequence are incorrect; the correct colors (yellow flowers) are shown in Figure 8.15.

o

except that rigid planar motions (homographies) are used instead of affine motion models.
The final model refinement, however, jointly re-optimizes the layer pixel color and opacity
values Ll and the 3D depth, plane, and motion parameters zl, nl, and P t by minimizing the
discrepancy between the re-synthesized and observed motion sequences (Baker, Szeliski, and
Anandan 1998).

Figure 8.16 shows the final results obtained with this algorithm. As you can see, the
motion boundaries and layer assignments are much crisper than those in Figure 8.15. Because
of the per-pixel depth offsets, the individual layer color values are also sharper than those
obtained with affine or planar motion models. While the original system of Baker, Szeliski,
and Anandan (1998) required a rough initial assignment of pixels to layers, Torr, Szeliski,
and Anandan (2001) describe automated Bayesian techniques for initializing this system and
determining the optimal number of layers.

Layered motion estimation continues to be an active area of research. Representative pa-
pers in this area include (Sawhney and Ayer 1996; Jojic and Frey 2001; Xiao and Shah 2005;
Kumar, Torr, and Zisserman 2008; Thayananthan, Iwasaki, and Cipolla 2008; Schoenemann
and Cremers 2008).

Of course, layers are not the only way to introduce segmentation into motion estimation.

368 8 Dense motion estimation

A large number of algorithms have been developed that alternate between estimating optic
flow vectors and segmenting them into coherent regions (Black and Jepson 1996; Ju, Black,
and Jepson 1996; Chang, Tekalp, and Sezan 1997; Mémin and Pérez 2002; Cremers and
Soatto 2005). Some of the more recent techniques rely on first segmenting the input color
images and then estimating per-segment motions that produce a coherent motion field while
also modeling occlusions (Zitnick, Kang, Uyttendaele et al. 2004; Zitnick, Jojic, and Kang
2005; Stein, Hoiem, and Hebert 2007; Thayananthan, Iwasaki, and Cipolla 2008).

8.5.1 Application: Frame interpolation

Frame interpolation is another widely used application of motion estimation, often imple-
mented in the same circuitry as de-interlacing hardware required to match an incoming video
to a monitor’s actual refresh rate. As with de-interlacing, information from novel in-between
frames needs to be interpolated from preceding and subsequent frames. The best results can
be obtained if an accurate motion estimate can be computed at each unknown pixel’s lo-
cation. However, in addition to computing the motion, occlusion information is critical to
prevent colors from being contaminated by moving foreground objects that might obscure a
particular pixel in a preceding or subsequent frame.

In a little more detail, consider Figure 8.13c and assume that the arrows denote keyframes
between which we wish to interpolate additional images. The orientations of the streaks
in this figure encode the velocities of individual pixels. If the same motion estimate u0 is
obtained at location x0 in image I0 as is obtained at location x0 + u0 in image I1, the flow
vectors are said to be consistent. This motion estimate can be transferred to location x0 + tu0

in the image It being generated, where t ∈ (0, 1) is the time of interpolation. The final color
value at pixel x0 + tu0 can be computed as a linear blend,

It(x0 + tu0) = (1 − t)I0(x0) + tI1(x0 + u0). (8.72)

If, however, the motion vectors are different at corresponding locations, some method must
be used to determine which is correct and which image contains colors that are occluded.
The actual reasoning is even more subtle than this. One example of such an interpolation
algorithm, based on earlier work in depth map interpolation (Shade, Gortler, He et al. 1998;
Zitnick, Kang, Uyttendaele et al. 2004) which is the one used in the flow evaluation paper of
Baker, Black, Lewis et al. (2007); Baker, Scharstein, Lewis et al. (2009). An even higher-
quality frame interpolation algorithm, which uses gradient-based reconstruction, is presented
by Mahajan, Huang, Matusik et al. (2009).

8.5.2 Transparent layers and reflections

A special case of layered motion that occurs quite often is transparent motion, which is usu-
ally caused by reflections seen in windows and picture frames (Figures 8.17 and 8.18).

Some of the early work in this area handles transparent motion by either just estimating
the component motions (Shizawa and Mase 1991; Bergen, Burt, Hingorani et al. 1992; Darrell
and Simoncelli 1993; Irani, Rousso, and Peleg 1994) or by assigning individual pixels to
competing motion layers (Darrell and Pentland 1995; Black and Anandan 1996; Ju, Black,
and Jepson 1996), which is appropriate for scenes partially seen through a fine occluder
(e.g., foliage). However, to accurately separate truly transparent layers, a better model for

8.5 Layered motion 369

Figure 8.17 Light reflecting off the transparent glass of a picture frame: (a) first image from the input sequence;
(b) dominant motion layer min-composite; (c) secondary motion residual layer max-composite; (d–e) final esti-
mated picture and reflection layers The original images are from Black and Anandan (1996), while the separated
layers are from Szeliski, Avidan, and Anandan (2000) c© 2000 IEEE.

motion due to reflections is required. Because of the way that light is both reflected from
and transmitted through a glass surface, the correct model for reflections is an additive one,
where each moving layer contributes some intensity to the final image (Szeliski, Avidan, and
Anandan 2000).

If the motions of the individual layers are known, the recovery of the individual layers is
a simple constrained least squares problem, with the individual layer images are constrained
to be positive. However, this problem can suffer from extended low-frequency ambiguities,
especially if either of the layers lacks dark (black) pixels or the motion is uni-directional. In
their paper, Szeliski, Avidan, and Anandan (2000) show that the simultaneous estimation of
the motions and layer values can be obtained by alternating between robustly computing the
motion layers and then making conservative (upper- or lower-bound) estimates of the layer
intensities. The final motion and layer estimates can then be polished using gradient descent
on a joint constrained least squares formulation similar to (Baker, Szeliski, and Anandan
1998), where the over compositing operator is replaced with addition.

Figures 8.17 and 8.18 show the results of applying these techniques to two different pic-
ture frames with reflections. Notice how, in the second sequence, the amount of reflected light
is quite low compared to the transmitted light (the picture of the girl) and yet the algorithm is
still able to recover both layers.

Unfortunately, the simple parametric motion models used in (Szeliski, Avidan, and Anan-
dan 2000) are only valid for planar reflectors and scenes with shallow depth. The extension of
these techniques to curved reflectors and scenes with significant depth has also been studied
(Swaminathan, Kang, Szeliski et al. 2002; Criminisi, Kang, Swaminathan et al. 2005), as has
the extension to scenes with more complex 3D depth (Tsin, Kang, and Szeliski 2006).

370 8 Dense motion estimation

Figure 8.18 Transparent motion separation (Szeliski, Avidan, and Anandan 2000) c© 2000 IEEE: (a) first im-
age from input sequence; (b) dominant motion layer min-composite; (c) secondary motion residual layer max-
composite; (d–e) final estimated picture and reflection layers. Note that the reflected layers in (c) and (e) are
doubled in intensity to better show their structure.

8.6 Additional reading

Some of the earliest algorithms for motion estimation were developed for motion-compen-
sated video coding (Netravali and Robbins 1979) and such techniques continue to be used
in modern coding standards such as MPEG, H.263, and H.264 (Le Gall 1991; Richardson
2003).14 In computer vision, this field was originally called image sequence analysis (Huang
1981). Some of the early seminal papers include the variational approaches developed by
Horn and Schunck (1981) and Nagel and Enkelmann (1986), and the patch-based translational
alignment technique developed by Lucas and Kanade (1981). Hierarchical (coarse-to-fine)
versions of such algorithms were developed by Quam (1984), Anandan (1989), and Bergen,
Anandan, Hanna et al. (1992), although they have also long been used in motion estimation
for video coding.

Translational motion models were generalized to affine motion by Rehg and Witkin (1991),
Fuh and Maragos (1991), and Bergen, Anandan, Hanna et al. (1992) and to quadric refer-
ence surfaces by Shashua and Toelg (1997) and Shashua and Wexler (2001)—see Baker and
Matthews (2004) for a nice review. Such parametric motion estimation algorithms have found
widespread application in video summarization (Teodosio and Bender 1993; Irani and Anan-
dan 1998), video stabilization (Hansen, Anandan, Dana et al. 1994; Srinivasan, Chellappa,
Veeraraghavan et al. 2005; Matsushita, Ofek, Ge et al. 2006), and video compression (Irani,
Hsu, and Anandan 1995; Lee, ge Chen, lung Bruce Lin et al. 1997). Surveys of parametric
image registration include those by Brown (1992), Zitov’aa and Flusser (2003), Goshtasby
(2005), and Szeliski (2006a).

Good general surveys and comparisons of optic flow algorithms include those by Ag-
garwal and Nandhakumar (1988), Barron, Fleet, and Beauchemin (1994), Otte and Nagel
(1994), Mitiche and Bouthemy (1996), Stiller and Konrad (1999), McCane, Novins, Cran-
nitch et al. (2001), Szeliski (2006a), and Baker, Black, Lewis et al. (2007). The topic of
matching primitives, i.e., pre-transforming images using filtering or other techniques before
matching, is treated in a number of papers (Anandan 1989; Bergen, Anandan, Hanna et al.
1992; Scharstein 1994; Zabih and Woodfill 1994; Cox, Roy, and Hingorani 1995; Viola and

14 http://www.itu.int/rec/T-REC-H.264.

http://www.itu.int/rec/T-REC-H.264

8.7 Exercises 371

Wells III 1997; Negahdaripour 1998; Kim, Kolmogorov, and Zabih 2003; Jia and Tang 2003;
Papenberg, Bruhn, Brox et al. 2006; Seitz and Baker 2009). Hirschmüller and Scharstein
(2009) compare a number of these approaches and report on their relative performance in
scenes with exposure differences.

The publication of a new benchmark for evaluating optical flow algorithms (Baker, Black,
Lewis et al. 2007) has led to rapid advances in the quality of estimation algorithms, to the
point where new datasets may soon become necessary. According to their updated techni-
cal report (Baker, Scharstein, Lewis et al. 2009), most of the best performing algorithms use
robust data and smoothness norms (often L1 TV) and continuous variational optimization
techniques, although some techniques use discrete optimization or segmentations (Papen-
berg, Bruhn, Brox et al. 2006; Trobin, Pock, Cremers et al. 2008; Xu, Chen, and Jia 2008;
Lempitsky, Roth, and Rother. 2008; Werlberger, Trobin, Pock et al. 2009; Lei and Yang 2009;
Wedel, Cremers, Pock et al. 2009).

8.7 Exercises

Ex 8.1: Correlation Implement and compare the performance of the following correlation
algorithms:

• sum of squared differences (8.1)

• sum of robust differences (8.2)

• sum of absolute differences (8.3)

• bias–gain compensated squared differences (8.9)

• normalized cross-correlation (8.11)

• windowed versions of the above (8.22–8.23)

• Fourier-based implementations of the above measures (8.18–8.20)

• phase correlation (8.24)

• gradient cross-correlation (Argyriou and Vlachos 2003).

Compare a few of your algorithms on different motion sequences with different amounts of
noise, exposure variation, occlusion, and frequency variations (e.g., high-frequency textures,
such as sand or cloth, and low-frequency images, such as clouds or motion-blurred video).
Some datasets with illumination variation and ground truth correspondences (horizontal mo-
tion) can be found at http://vision.middlebury.edu/stereo/data/ (the 2005 and 2006 datasets).

Some additional ideas, variants, and questions:

1. When do you think that phase correlation will outperform regular correlation or SSD?
Can you show this experimentally or justify it analytically?

2. For the Fourier-based masked or windowed correlation and sum of squared differences,
the results should be the same as the direct implementations. Note that you will have
to expand (8.5) into a sum of pairwise correlations, just as in (8.22). (This is part of the
exercise.)

http://vision.middlebury.edu/stereo/data/

372 8 Dense motion estimation

3. For the bias–gain corrected variant of squared differences (8.9), you will also have
to expand the terms to end up with a 3 × 3 (least squares) system of equations. If
implementing the Fast Fourier Transform version, you will need to figure out how all
of these entries can be evaluated in the Fourier domain.

4. (Optional) Implement some of the additional techniques studied by Hirschmüller and
Scharstein (2009) and see if your results agree with theirs.

Ex 8.2: Affine registration Implement a coarse-to-fine direct method for affine and pro-
jective image alignment.

1. Does it help to use lower-order (simpler) models at coarser levels of the pyramid
(Bergen, Anandan, Hanna et al. 1992)?

2. (Optional) Implement patch-based acceleration (Shum and Szeliski 2000; Baker and
Matthews 2004).

3. See the Baker and Matthews (2004) survey for more comparisons and ideas.

Ex 8.3: Stabilization Write a program to stabilize an input video sequence. You should
implement the following steps, as described in Section 8.2.1:

1. Compute the translation (and, optionally, rotation) between successive frames with ro-
bust outlier rejection.

2. Perform temporal high-pass filtering on the motion parameters to remove the low-
frequency component (smooth the motion).

3. Compensate for the high-frequency motion, zooming in slightly (a user-specified amount)
to avoid missing edge pixels.

4. (Optional) Do not zoom in, but instead borrow pixels from previous or subsequent
frames to fill in.

5. (Optional) Compensate for images that are blurry because of fast motion by “stealing”
higher frequencies from adjacent frames.

Ex 8.4: Optical flow Compute optical flow (spline-based or per-pixel) between two im-
ages, using one or more of the techniques described in this chapter.

1. Test your algorithms on the motion sequences available at http://vision.middlebury.
edu/flow/ or http://people.csail.mit.edu/celiu/motionAnnotation/ and compare your re-
sults (visually) to those available on these Web sites. If you think your algorithm is
competitive with the best, consider submitting it for formal evaluation.

2. Visualize the quality of your results by generating in-between images using frame in-
terpolation (Exercise 8.5).

3. What can you say about the relative efficiency (speed) of your approach?

http://people.csail.mit.edu/celiu/motionAnnotation/
http://vision.middlebury.edu/flow/
http://vision.middlebury.edu/flow/

8.7 Exercises 373

Ex 8.5: Automated morphing / frame interpolation Write a program to automatically morph
between pairs of images. Implement the following steps, as sketched out in Section 8.5.1 and
by Baker, Scharstein, Lewis et al. (2009):

1. Compute the flow both ways (previous exercise). Consider using a multi-frame (n > 2)
technique to better deal with occluded regions.

2. For each intermediate (morphed) image, compute a set of flow vectors and which im-
ages should be used in the final composition.

3. Blend (cross-dissolve) the images and view with a sequence viewer.

Try this out on images of your friends and colleagues and see what kinds of morphs you get.
Alternatively, take a video sequence and do a high-quality slow-motion effect. Compare your
algorithm with simple cross-fading.

Ex 8.6: Motion-based user interaction Write a program to compute a low-resolution mo-
tion field in order to interactively control a simple application (Cutler and Turk 1998). For
example:

1. Downsample each image using a pyramid and compute the optical flow (spline-based
or pixel-based) from the previous frame.

2. Segment each training video sequence into different “actions” (e.g., hand moving in-
wards, moving up, no motion) and “learn” the velocity fields associated with each one.
(You can simply find the mean and variance for each motion field or use something
more sophisticated, such as a support vector machine (SVM).)

3. Write a recognizer that finds successive actions of approximately the right duration and
hook it up to an interactive application (e.g., a sound generator or a computer game).

4. Ask your friends to test it out.

Ex 8.7: Video denoising Implement the algorithm sketched in Application 8.4.2. Your al-
gorithm should contain the following steps:

1. Compute accurate per-pixel flow.

2. Determine which pixels in the reference image have good matches with other frames.

3. Either average all of the matched pixels or choose the sharpest image, if trying to
compensate for blur. Don’t forget to use regular single-frame denoising techniques as
part of your solution, (see Section 3.4.4, Section 3.7.3, and Exercise 3.11).

4. Devise a fall-back strategy for areas where you don’t think the flow estimates are accu-
rate enough.

Ex 8.8: Motion segmentation Write a program to segment an image into separately mov-
ing regions or to reliably find motion boundaries.

Use the human-assisted motion segmentation database at http://people.csail.mit.edu/celiu/
motionAnnotation/ as some of your test data.

http://people.csail.mit.edu/celiu/motionAnnotation/
http://people.csail.mit.edu/celiu/motionAnnotation/

374 8 Dense motion estimation

Ex 8.9: Layered motion estimation Decompose into separate layers (Section 8.5) a video
sequence of a scene taken with a moving camera:

1. Find the set of dominant (affine or planar perspective) motions, either by computing
them in blocks or finding a robust estimate and then iteratively re-fitting outliers.

2. Determine which pixels go with each motion.

3. Construct the layers by blending pixels from different frames.

4. (Optional) Add per-pixel residual flows or depths.

5. (Optional) Refine your estimates using an iterative global optimization technique.

6. (Optional) Write an interactive renderer to generate in-between frames or view the
scene from different viewpoints (Shade, Gortler, He et al. 1998).

7. (Optional) Construct an unwrap mosaic from a more complex scene and use this to do
some video editing (Rav-Acha, Kohli, Fitzgibbon et al. 2008).

Ex 8.10: Transparent motion and reflection estimation Take a video sequence looking
through a window (or picture frame) and see if you can remove the reflection in order to
better see what is inside.

The steps are described in Section 8.5.2 and by Szeliski, Avidan, and Anandan (2000).
Alternative approaches can be found in work by Shizawa and Mase (1991), Bergen, Burt,
Hingorani et al. (1992), Darrell and Simoncelli (1993), Darrell and Pentland (1995), Irani,
Rousso, and Peleg (1994), Black and Anandan (1996), and Ju, Black, and Jepson (1996).

	Chapter 8 Dense motion estimation
	8.1 Translational alignment
	8.1.1 Hierarchical motion estimation
	8.1.2 Fourier-based alignment
	8.1.3 Incremental refinement

	8.2 Parametric motion
	8.2.1 Application: Video stabilization
	8.2.2 Learned motion models

	8.3 Spline-based motion
	8.3.1 Application: Medical image registration

	8.4 Optical flow
	8.4.1 Multi-frame motion estimation
	8.4.2 Application: Video denoising
	8.4.3 Application: De-interlacing

	8.5 Layered motion
	8.5.1 Application: Frame interpolation
	8.5.2 Transparent layers and reflections

	8.6 Additional reading
	8.7 Exercises

