
Chapter 14

Recognition

14.1 Object detection . 578
14.1.1 Face detection . 578
14.1.2 Pedestrian detection . 585

14.2 Face recognition . 588
14.2.1 Eigenfaces . 589
14.2.2 Active appearance and 3D shape models 596
14.2.3 Application: Personal photo collections 601

14.3 Instance recognition . 602
14.3.1 Geometric alignment . 603
14.3.2 Large databases . 604
14.3.3 Application: Location recognition 609

14.4 Category recognition . 611
14.4.1 Bag of words . 612
14.4.2 Part-based models . 615
14.4.3 Recognition with segmentation . 620
14.4.4 Application: Intelligent photo editing 621

14.5 Context and scene understanding . 625
14.5.1 Learning and large image collections 627
14.5.2 Application: Image search . 630

14.6 Recognition databases and test sets . 631
14.7 Additional reading . 631
14.8 Exercises . 637

R. Szeliski, Computer Vision: Algorithms and Applications, Texts in Computer Science, 575
DOI 10.1007/978-1-84882-935-0_14, © Springer-Verlag London Limited 2011

576 14 Recognition

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 14.1 Recognition: face recognition with (a) pictorial structures (Fischler and Elschlager 1973) c© 1973
IEEE and (b) eigenfaces (Turk and Pentland 1991b); (c) real-time face detection (Viola and Jones 2004) c©
2004 Springer; (d) instance (known object) recognition (Lowe 1999) c© 1999 IEEE; (e) feature-based recognition
(Fergus, Perona, and Zisserman 2007); (f) region-based recognition (Mori, Ren, Efros et al. 2004) c© 2004 IEEE;
(g) simultaneous recognition and segmentation (Shotton, Winn, Rother et al. 2009) c© 2009 Springer; (h) location
recognition (Philbin, Chum, Isard et al. 2007) c© 2007 IEEE; (i) using context (Russell, Torralba, Liu et al. 2007).

14 Recognition 577

Of all the visual tasks we might ask a computer to perform, analyzing a scene and recog-
nizing all of the constituent objects remains the most challenging. While computers excel at
accurately reconstructing the 3D shape of a scene from images taken from different views,
they cannot name all the objects and animals present in a picture, even at the level of a two-
year-old child. There is not even any consensus among researchers on when this level of
performance might be achieved.

Why is recognition so hard? The real world is made of a jumble of objects, which all oc-
clude one another and appear in different poses. Furthermore, the variability intrinsic within
a class (e.g., dogs), due to complex non-rigid articulation and extreme variations in shape and
appearance (e.g., between different breeds), makes it unlikely that we can simply perform
exhaustive matching against a database of exemplars.1

The recognition problem can be broken down along several axes. For example, if we
know what we are looking for, the problem is one of object detection (Section 14.1), which
involves quickly scanning an image to determine where a match may occur (Figure 14.1c). If
we have a specific rigid object we are trying to recognize (instance recognition, Section 14.3),
we can search for characteristic feature points (Section 4.1) and verify that they align in a
geometrically plausible way (Section 14.3.1) (Figure 14.1d).

The most challenging version of recognition is general category (or class) recognition
(Section 14.4), which may involve recognizing instances of extremely varied classes such
as animals or furniture. Some techniques rely purely on the presence of features (known
as a “bag of words” model—see Section 14.4.1), their relative positions (part-based models
(Section 14.4.2)), Figure 14.1e, while others involve segmenting the image into semantically
meaningful regions (Section 14.4.3) (Figure 14.1f). In many instances, recognition depends
heavily on the context of surrounding objects and scene elements (Section 14.5). Woven into
all of these techniques is the topic of learning (Section 14.5.1), since hand-crafting specific
object recognizers seems like a futile approach given the complexity of the problem.

Given the extremely rich and complex nature of this topic, this chapter is structured to
build from simpler concepts to more complex ones. We begin with a discussion of face and
object detection (Section 14.1), where we introduce a number of machine-learning techniques
such as boosting, neural networks, and support vector machines. Next, we study face recogni-
tion (Section 14.2), which is one of the more widely known applications of recognition. This
topic serves as an introduction to subspace (PCA) models and Bayesian approaches to recog-
nition and classification. We then present techniques for instance recognition (Section 14.3),
building upon earlier topics in this book, such as feature detection, matching, and geomet-
ric alignment (Section 14.3.1). We introduce topics from the information and document re-
trieval communities, such as frequency vectors, feature quantization, and inverted indices
(Section 14.3.2). We also present applications of location recognition (Section 14.3.3).

In the second half of the chapter, we address the most challenging variant of recognition,
namely the problem of category recognition (Section 14.4). This includes approaches that use
bags of features (Section 14.4.1), parts (Section 14.4.2), and segmentation (Section 14.4.3).
We show how such techniques can be used to automate photo editing tasks, such as 3D mod-
eling, scene completion, and creating collages (Section 14.4.4). Next, we discuss the role
that context can play in both individual object recognition and more holistic scene under-

1 However, some recent research suggests that direct image matching may be feasible for large enough databases
(Russell, Torralba, Liu et al. 2007; Malisiewicz and Efros 2008; Torralba, Freeman, and Fergus 2008).

578 14 Recognition

standing (Section 14.5). We close this chapter with a discussion of databases and test sets for
constructing and evaluating recognition systems (Section 14.6).

While there is no comprehensive reference on object recognition, an excellent set of notes
can be found in the ICCV 2009 short course (Fei-Fei, Fergus, and Torralba 2009), Antonio
Torralba’s more comprehensive MIT course (Torralba 2008), and two recent collections of
papers (Ponce, Hebert, Schmid et al. 2006; Dickinson, Leonardis, Schiele et al. 2007) and a
survey on object categorization (Pinz 2005). An evaluation of some of the best performing
recognition algorithms can be found on the PASCAL Visual Object Classes (VOC) Challenge
Web site at http://pascallin.ecs.soton.ac.uk/challenges/VOC/.

14.1 Object detection

If we are given an image to analyze, such as the group portrait in Figure 14.2, we could try to
apply a recognition algorithm to every possible sub-window in this image. Such algorithms
are likely to be both slow and error-prone. Instead, it is more effective to construct special-
purpose detectors, whose job it is to rapidly find likely regions where particular objects might
occur.

We begin this section with face detectors, which are some of the more successful examples
of recognition. For example, such algorithms are built into most of today’s digital cameras to
enhance auto-focus and into video conferencing systems to control pan-tilt heads. We then
look at pedestrian detectors, as an example of more general methods for object detection.
Such detectors can be used in automotive safety applications, e.g., detecting pedestrians and
other cars from moving vehicles (Leibe, Cornelis, Cornelis et al. 2007).

14.1.1 Face detection

Before face recognition can be applied to a general image, the locations and sizes of any faces
must first be found (Figures 14.1c and 14.2). In principle, we could apply a face recognition
algorithm at every pixel and scale (Moghaddam and Pentland 1997) but such a process would
be too slow in practice.

Over the years, a wide variety of fast face detection algorithms have been developed.
Yang, Kriegman, and Ahuja (2002) provide a comprehensive survey of earlier work in this
field; Yang’s ICPR 2004 tutorial2 and the Torralba (2007) short course provide more recent
reviews.3

According to the taxonomy of Yang, Kriegman, and Ahuja (2002), face detection tech-
niques can be classified as feature-based, template-based, or appearance-based. Feature-
based techniques attempt to find the locations of distinctive image features such as the eyes,
nose, and mouth, and then verify whether these features are in a plausible geometrical ar-
rangement. These techniques include some of the early approaches to face recognition (Fis-
chler and Elschlager 1973; Kanade 1977; Yuille 1991), as well as more recent approaches
based on modular eigenspaces (Moghaddam and Pentland 1997), local filter jets (Leung,
Burl, and Perona 1995; Penev and Atick 1996; Wiskott, Fellous, Krüger et al. 1997), support

2 http://vision.ai.uiuc.edu/mhyang/face-detection-survey.html.
3 An alternative approach to detecting faces is to look for regions of skin color in the image (Forsyth and Fleck

1999; Jones and Rehg 2001). See Exercise 2.8 for some additional discussion and references.

http://vision.ai.uiuc.edu/mhyang/face-detection-survey.html
http://pascallin.ecs.soton.ac.uk/challenges/VOC/

14.1 Object detection 579

Figure 14.2 Face detection results produced by Rowley, Baluja, and Kanade (1998a) c© 1998 IEEE. Can you
find the one false positive (a box around a non-face) among the 57 true positive results?

vector machines (Heisele, Ho, Wu et al. 2003; Heisele, Serre, and Poggio 2007), and boosting
(Schneiderman and Kanade 2004).

Template-based approaches, such as active appearance models (AAMs) (Section 14.2.2),
can deal with a wide range of pose and expression variability. Typically, they require good
initialization near a real face and are therefore not suitable as fast face detectors.

Appearance-based approaches scan over small overlapping rectangular patches of the im-
age searching for likely face candidates, which can then be refined using a cascade of more
expensive but selective detection algorithms (Sung and Poggio 1998; Rowley, Baluja, and
Kanade 1998a; Romdhani, Torr, Schölkopf et al. 2001; Fleuret and Geman 2001; Viola and
Jones 2004). In order to deal with scale variation, the image is usually converted into a
sub-octave pyramid and a separate scan is performed on each level. Most appearance-based
approaches today rely heavily on training classifiers using sets of labeled face and non-face
patches.

Sung and Poggio (1998) and Rowley, Baluja, and Kanade (1998a) present two of the ear-
liest appearance-based face detectors and introduce a number of innovations that are widely
used in later work by others.

To start with, both systems collect a set of labeled face patches (Figure 14.2) as well as a
set of patches taken from images that are known not to contain faces, such as aerial images or
vegetation (Figure 14.3b). The collected face images are augmented by artificially mirroring,
rotating, scaling, and translating the images by small amounts to make the face detectors less
sensitive to such effects (Figure 14.3a).

After an initial set of training images has been collected, some optional pre-processing
can be performed, such as subtracting an average gradient (linear function) from the image
to compensate for global shading effects and using histogram equalization to compensate for

580 14 Recognition

(a) (b) (c)

Figure 14.3 Pre-processing stages for face detector training (Rowley, Baluja, and Kanade 1998a) c© 1998 IEEE:
(a) artificially mirroring, rotating, scaling, and translating training images for greater variability; (b) using images
without faces (looking up at a tree) to generate non-face examples; (c) pre-processing the patches by subtracting
a best fit linear function (constant gradient) and histogram equalizing.

varying camera contrast (Figure 14.3c).

Clustering and PCA. Once the face and non-face patterns have been pre-processed, Sung
and Poggio (1998) cluster each of these datasets into six separate clusters using k-means
and then fit PCA subspaces to each of the resulting 12 clusters (Figure 14.4). At detection
time, the DIFS and DFFS metrics first developed by Moghaddam and Pentland (1997) (see
Figure 14.14 and (14.14)) are used to produce 24 Mahalanobis distance measurements (two
per cluster). The resulting 24 measurements are input to a multi-layer perceptron (MLP),
which is a neural network with alternating layers of weighted summations and sigmoidal non-
linearities trained using the “backpropagation” algorithm (Rumelhart, Hinton, and Williams
1986).

Neural networks. Instead of first clustering the data and computing Mahalanobis dis-
tances to the cluster centers, Rowley, Baluja, and Kanade (1998a) apply a neural network
(MLP) directly to the 20 × 20 pixel patches of gray-level intensities, using a variety of dif-
ferently sized hand-crafted “receptive fields” to capture both large-scale and smaller scale
structure (Figure 14.5). The resulting neural network directly outputs the likelihood of a face
at the center of every overlapping patch in a multi-resolution pyramid. Since several over-
lapping patches (in both space and resolution) may fire near a face, an additional merging
network is used to merge overlapping detections. The authors also experiment with training
several networks and merging their outputs. Figure 14.2 shows a sample result from their
face detector.

To make the detector run faster, a separate network operating on 30×30 patches is trained
to detect both faces and faces shifted by ±5 pixels. This network is evaluated at every 10th
pixel in the image (horizontally and vertically) and the results of this “coarse” or “sloppy”
detector are used to select regions on which to run the slower single-pixel overlap technique.
To deal with in-plane rotations of faces, Rowley, Baluja, and Kanade (1998b) train a router

14.1 Object detection 581

Figure 14.4 Learning a mixture of Gaussians model for face detection (Sung and Poggio 1998) c© 1998 IEEE.
The face and non-face images (192-long vectors) are first clustered into six separate clusters (each) using k-means
and then analyzed using PCA. The cluster centers are shown in the right-hand columns.

Figure 14.5 A neural network for face detection (Rowley, Baluja, and Kanade 1998a) c© 1998 IEEE. Overlap-
ping patches are extracted from different levels of a pyramid and then pre-processed as shown in Figure 14.3b. A
three-layer neural network is then used to detect likely face locations.

582 14 Recognition

(a) (b)

Figure 14.6 Simple features used in boosting-based face detector (Viola and Jones 2004) c© 2004 Springer:
(a) difference of rectangle feature composed of 2–4 different rectangles (pixels inside the white rectangles are
subtracted from the gray ones); (b) the first and second features selected by AdaBoost. The first feature measures
the differences in intensity between the eyes and the cheeks, the second one between the eyes and the bridge of
the nose.

network to estimate likely rotation angles from input patches and then apply the estimated
rotation to each patch before running the result through their upright face detector.

Support vector machines. Instead of using a neural network to classify patches, Osuna,
Freund, and Girosi (1997) use a support vector machine (SVM) (Hastie, Tibshirani, and
Friedman 2001; Schölkopf and Smola 2002; Bishop 2006; Lampert 2008) to classify the same
preprocessed patches as Sung and Poggio (1998). An SVM searches for a series of maximum
margin separating planes in feature space between different classes (in this case, face and
non-face patches). In those cases where linear classification boundaries are insufficient, the
feature space can be lifted into higher-dimensional features using kernels (Hastie, Tibshirani,
and Friedman 2001; Schölkopf and Smola 2002; Bishop 2006). SVMs have been used by
other researchers for both face detection and face recognition (Heisele, Ho, Wu et al. 2003;
Heisele, Serre, and Poggio 2007) and are a widely used tool in object recognition in general.

Boosting. Of all the face detectors currently in use, the one introduced by Viola and Jones
(2004) is probably the best known and most widely used. Their technique was the first to
introduce the concept of boosting to the computer vision community, which involves train-
ing a series of increasingly discriminating simple classifiers and then blending their outputs
(Hastie, Tibshirani, and Friedman 2001; Bishop 2006).

In more detail, boosting involves constructing a classifier h(x) as a sum of simple weak
learners,

h(x) = sign

⎡
⎣m−1∑

j=0

αjhj(x)

⎤
⎦ , (14.1)

where each of the weak learners hj(x) is an extremely simple function of the input, and hence
is not expected to contribute much (in isolation) to the classification performance.

14.1 Object detection 583

Weak classifier 1 Weights increased Weak classifier 2 Weights increased Weak classifier 3 Final classifier

Figure 14.7 Schematic illustration of boosting, courtesy of Svetlana Lazebnik, after original illustrations from
Paul Viola and David Lowe. After each weak classifier (decision stump or hyperplane) is selected, data points that
are erroneously classified have their weights increased. The final classifier is a linear combination of the simple
weak classifiers.

In most variants of boosting, the weak learners are threshold functions,

hj(x) = aj [fj < θj] + bj [fj ≥ θj] =
{

aj if fj < θj

bj otherwise,
(14.2)

which are also known as decision stumps (basically, the simplest possible version of decision
trees). In most cases, it is also traditional (and simpler) to set aj and bj to ±1, i.e., aj = −sj ,
bj = +sj , so that only the feature fj , the threshold value θj , and the polarity of the threshold
sj ∈ ±1 need to be selected.4

In many applications of boosting, the features are simply coordinate axes xk, i.e., the
boosting algorithm selects one of the input vector components as the best one to threshold. In
Viola and Jones’ face detector, the features are differences of rectangular regions in the input
patch, as shown in Figure 14.6. The advantage of using these features is that, while they are
more discriminating than single pixels, they are extremely fast to compute once a summed
area table has been pre-computed, as described in Section 3.2.3 (3.31–3.32). Essentially, for
the cost of an O(N) pre-computation phase (where N is the number of pixels in the image),
subsequent differences of rectangles can be computed in 4r additions or subtractions, where
r ∈ {2, 3, 4} is the number of rectangles in the feature.

The key to the success of boosting is the method for incrementally selecting the weak
learners and for re-weighting the training examples after each stage (Figure 14.7). The Ad-
aBoost (Adaptive Boosting) algorithm (Hastie, Tibshirani, and Friedman 2001; Bishop 2006)
does this by re-weighting each sample as a function of whether it is correctly classified at each
stage, and using the stage-wise average classification error to determine the final weightings
αj among the weak classifiers, as described in Algorithm 14.1. While the resulting classi-
fier is extremely fast in practice, the training time can be quite slow (in the order of weeks),
because of the large number of feature (difference of rectangle) hypotheses that need to be
examined at each stage.

To further increase the speed of the detector, it is possible to create a cascade of classifiers,
where each classifier uses a small number of tests (say, a two-term AdaBoost classifier) to
reject a large fraction of non-faces while trying to pass through all potential face candidates

4Some variants, such as that of Viola and Jones (2004), use (aj , bj) ∈ [0, 1] and adjust the learning algorithm
accordingly.

584 14 Recognition

1. Input the positive and negative training examples along with their labels {(xi, yi)},
where yi = 1 for positive (face) examples and yi = −1 for negative examples.

2. Initialize all the weights to wi,1 ← 1
N , where N is the number of training exam-

ples. (Viola and Jones (2004) use a separate N1 and N2 for positive and negative
examples.)

3. For each training stage j = 1 . . . M :

(a) Renormalize the weights so that they sum up to 1 (divide them by their sum).

(b) Select the best classifier hj(x; fj , θj , sj) by finding the one that minimizes
the weighted classification error

ej =
N−1∑
i=0

wi,jei,j , (14.3)

ei,j = 1 − δ(yi, hj(xi; fj , θj , sj)). (14.4)

For any given fj function, the optimal values of (θj , sj) can be found in
linear time using a variant of weighted median computation (Exercise 14.2).

(c) Compute the modified error rate βj and classifier weight αj ,

βj =
ej

1 − ej
and αj = − log βj . (14.5)

(d) Update the weights according to the classification errors ei,j

wi,j+1 ← wi,jβ
1−ei,j

j , (14.6)

i.e., downweight the training samples that were correctly classified in pro-
portion to the overall classification error.

4. Set the final classifier to

h(x) = sign

⎡
⎣m−1∑

j=0

αjhj(x)

⎤
⎦ . (14.7)

Algorithm 14.1 The AdaBoost training algorithm, adapted from Hastie, Tibshirani, and Friedman (2001), Viola
and Jones (2004), and Bishop (2006).

14.1 Object detection 585

(a) (b) (c) (d) (e) (f) (g)

Figure 14.8 Pedestrian detection using histograms of oriented gradients (Dalal and Triggs 2005) c© 2005 IEEE:
(a) the average gradient image over the training examples; (b) each “pixel” shows the maximum positive SVM
weight in the block centered on the pixel; (c) likewise, for the negative SVM weights; (d) a test image; (e) the
computed R-HOG (rectangular histogram of gradients) descriptor; (f) the R-HOG descriptor weighted by the
positive SVM weights; (g) the R-HOG descriptor weighted by the negative SVM weights.

(Fleuret and Geman 2001; Viola and Jones 2004). An even faster algorithm for performing
cascade learning has recently been developed by Brubaker, Wu, Sun et al. (2008).

14.1.2 Pedestrian detection

While a lot of the research on object detection has focused on faces, the detection of other
objects, such as pedestrians and cars, has also received widespread attention (Gavrila and
Philomin 1999; Gavrila 1999; Papageorgiou and Poggio 2000; Mohan, Papageorgiou, and
Poggio 2001; Schneiderman and Kanade 2004). Some of these techniques maintain the same
focus as face detection on speed and efficiency. Others, however, focus instead on accuracy,
viewing detection as a more challenging variant of generic class recognition (Section 14.4)
in which the locations and extents of objects are to be determined as accurately as possible.
(See, for example, the PASCAL VOC detection challenge, http://pascallin.ecs.soton.ac.uk/
challenges/VOC/.)

An example of a well-known pedestrian detector is the algorithm developed by Dalal
and Triggs (2005), who use a set of overlapping histogram of oriented gradients (HOG) de-
scriptors fed into a support vector machine (Figure 14.8). Each HOG has cells to accumulate
magnitude-weighted votes for gradients at particular orientations, just as in the scale invariant
feature transform (SIFT) developed by Lowe (2004), which we discussed in Section 4.1.2 and
Figure 4.18. Unlike SIFT, however, which is only evaluated at interest point locations, HOGs
are evaluated on a regular overlapping grid and their descriptor magnitudes are normalized
using an even coarser grid; they are only computed at a single scale and a fixed orientation. In
order to capture the subtle variations in orientation around a person’s outline, a large number
of orientation bins is used and no smoothing is performed in the central difference gradi-
ent computation—see the work of Dalal and Triggs (2005) for more implementation details.
Figure 14.8d shows a sample input image, while Figure 14.8e shows the associated HOG
descriptors.

Once the descriptors have been computed, a support vector machine (SVM) is trained

http://pascallin.ecs.soton.ac.uk/challenges/VOC/
http://pascallin.ecs.soton.ac.uk/challenges/VOC/

586 14 Recognition

(a) (b) (c) (d)

Figure 14.9 Part-based object detection (Felzenszwalb, McAllester, and Ramanan 2008) c© 2008 IEEE: (a) An
input photograph and its associated person (blue) and part (yellow) detection results. (b) The detection model is
defined by a coarse template, several higher resolution part templates, and a spatial model for the location of each
part. (c) True positive detection of a skier and (d) false positive detection of a cow (labeled as a person).

on the resulting high-dimensional continuous descriptor vectors. Figures 14.8b–c show a
diagram of the (most) positive and negative SVM weights in each block, while Figures 14.8f–
g show the corresponding weighted HOG responses for the central input image. As you can
see, there are a fair number of positive responses around the head, torso, and feet of the
person, and relatively few negative responses (mainly around the middle and the neck of the
sweater).

The fields of pedestrian and general object detection have continued to evolve rapidly
over the last decade (Belongie, Malik, and Puzicha 2002; Mikolajczyk, Schmid, and Zis-
serman 2004; Leibe, Seemann, and Schiele 2005; Opelt, Pinz, and Zisserman 2006; Tor-
ralba 2007; Andriluka, Roth, and Schiele 2009, 2010; Dollàr, Belongie, and Perona 2010).
Munder and Gavrila (2006) compare a number of pedestrian detectors and conclude that
those based on local receptive fields and SVMs perform the best, with a boosting-based ap-
proach coming close. Maji, Berg, and Malik (2008) improve on the best of these results using
non-overlapping multi-resolution HOG descriptors and a histogram intersection kernel SVM
based on a spatial pyramid match kernel from Lazebnik, Schmid, and Ponce (2006).

When detectors for several different classes are being constructed simultaneously, Tor-
ralba, Murphy, and Freeman (2007) show that sharing features and weak learners between
detectors yields better performance, both in terms of faster computation times and fewer
training examples. To find the features and decision stumps that work best in a shared man-
ner, they introduce a novel joint boosting algorithm that optimizes, at each stage, a summed
expected exponential loss function using the “gentleboost” algorithm of Friedman, Hastie,
and Tibshirani (2000).

In more recent work, Felzenszwalb, McAllester, and Ramanan (2008) extend the his-
togram of oriented gradients person detector to incorporate flexible parts models (Section 14.4.2).
Each part is trained and detected on HOGs evaluated at two pyramid levels below the overall
object model and the locations of the parts relative to the parent node (the overall bounding
box) are also learned and used during recognition (Figure 14.9b). To compensate for inac-
curacies or inconsistencies in the training example bounding boxes (dashed white lines in
Figure 14.9c), the “true” location of the parent (blue) bounding box is considered a latent
(hidden) variable and is inferred during both training and recognition. Since the locations

14.1 Object detection 587

Figure 14.10 Part-based object detection results for people, bicycles, and horses (Felzenszwalb, McAllester,
and Ramanan 2008) c© 2008 IEEE. The first three columns show correct detections, while the rightmost column
shows false positives.

of the parts are also latent, the system can be trained in a semi-supervised fashion, without
needing part labels in the training data. An extension to this system (Felzenszwalb, Girshick,
McAllester et al. 2010), which includes among its improvements a simple contextual model,
was among the two best object detection systems in the 2008 Visual Object Classes detection
challenge. Other recent improvements to part-based person detection and pose estimation in-
clude the work by Andriluka, Roth, and Schiele (2009) and Kumar, Zisserman, and H.S.Torr
(2009).

An even more accurate estimate of a person’s pose and location is presented by Rogez,
Rihan, Ramalingam et al. (2008), who compute both the phase of a person in a walk cycle and
the locations of individual joints, using random forests built on top of HOGs (Figure 14.11).
Since their system produces full 3D pose information, it is closer in its application domain to
3D person trackers (Sidenbladh, Black, and Fleet 2000; Andriluka, Roth, and Schiele 2010),
which we discussed in Section 12.6.4.

One final note on person and object detection. When video sequences are available, the
additional information present in the optic flow and motion discontinuities can greatly aid in
the detection task, as discussed by Efros, Berg, Mori et al. (2003), Viola, Jones, and Snow
(2003), and Dalal, Triggs, and Schmid (2006).

588 14 Recognition

Figure 14.11 Pose detection using random forests (Rogez, Rihan, Ramalingam et al. 2008) c© 2008 IEEE. The
estimated pose (state of the kinematic model) is drawn over each input frame.

Figure 14.12 Humans can recognize low-resolution faces of familiar people (Sinha, Balas, Ostrovsky et al.
2006) c© 2006 IEEE.

14.2 Face recognition

Among the various recognition tasks that computers might be asked to perform, face recog-
nition is the one where they have arguably had the most success.5 While computers cannot
pick out suspects from thousands of people streaming in front of video cameras (even people
cannot readily distinguish between similar people with whom they are not familiar (O’Toole,
Jiang, Roark et al. 2006; O’Toole, Phillips, Jiang et al. 2009)), their ability to distinguish
among a small number of family members and friends has found its way into consumer-level
photo applications, such as Picasa and iPhoto. Face recognition can also be used in a variety
of additional applications, including human–computer interaction (HCI), identity verification
(Kirovski, Jojic, and Jancke 2004), desktop login, parental controls, and patient monitoring
(Zhao, Chellappa, Phillips et al. 2003).

Today’s face recognizers work best when they are given full frontal images of faces under
relatively uniform illumination conditions, although databases that include large amounts
of pose and lighting variation have been collected (Phillips, Moon, Rizvi et al. 2000; Sim,

5Instance recognition, i.e., the re-recognition of known objects such as locations or planar objects, is the other
most successful application of general image recognition. In the general domain of biometrics, i.e., identity recogni-
tion, specialized images such as irises and fingerprints perform even better (Jain, Bolle, and Pankanti 1999; Pankanti,
Bolle, and Jain 2000; Daugman 2004).

14.2 Face recognition 589

(a) (b) (c) (d)

Figure 14.13 Face modeling and compression using eigenfaces (Moghaddam and Pentland 1997) c© 1997 IEEE:
(a) input image; (b) the first eight eigenfaces; (c) image reconstructed by projecting onto this basis and compress-
ing the image to 85 bytes; (d) image reconstructed using JPEG (530 bytes).

Baker, and Bsat 2003; Gross, Shi, and Cohn 2005; Huang, Ramesh, Berg et al. 2007; Phillips,
Scruggs, O’Toole et al. 2010). (See Table 14.1 in Section 14.6 for more details.)

Some of the earliest approaches to face recognition involved finding the locations of
distinctive image features, such as the eyes, nose, and mouth, and measuring the distances
between these feature locations (Fischler and Elschlager 1973; Kanade 1977; Yuille 1991).
More recent approaches rely on comparing gray-level images projected onto lower dimen-
sional subspaces called eigenfaces (Section 14.2.1) and jointly modeling shape and appear-
ance variations (while discounting pose variations) using active appearance models (Sec-
tion 14.2.2).

Descriptions of additional face recognition techniques can be found in a number of sur-
veys and books on this topic (Chellappa, Wilson, and Sirohey 1995; Zhao, Chellappa, Phillips
et al. 2003; Li and Jain 2005) as well as the Face Recognition Web site.6 The survey on face
recognition by humans by Sinha, Balas, Ostrovsky et al. (2006) is also well worth reading; it
includes a number of surprising results, such as humans’ ability to recognize low-resolution
images of familiar faces (Figure 14.12) and the importance of eyebrows in recognition.

14.2.1 Eigenfaces

Eigenfaces rely on the observation first made by Kirby and Sirovich (1990) that an arbitrary
face image x can be compressed and reconstructed by starting with a mean image m (Fig-
ure 14.1b) and adding a small number of scaled signed images ui,7

x̃ = m +
M−1∑
i=0

aiui, (14.8)

where the signed basis images (Figure 14.13b) can be derived from an ensemble of train-
ing images using principal component analysis (also known as eigenvalue analysis or the
Karhunen–Loève transform). Turk and Pentland (1991a) recognized that the coefficients ai

in the eigenface expansion could themselves be used to construct a fast image matching algo-
rithm.

6 http://www.face-rec.org/.
7 In previous chapters, we used I to indicate images; in this chapter, we use the more abstract quantities x and u

to indicate collections of pixels in an image turned into a vector.

http://www.face-rec.org/

590 14 Recognition

x

DFFS

DIFS

x
x

x
xx x

x

x
x

x
xx x

x

x
x

x
xx x

x

x
x

x
xx x

x

F

F
_

m

~x

Figure 14.14 Projection onto the linear subspace spanned by the eigenface images (Moghaddam and Pentland
1997) c© 1997 IEEE. The distance from face space (DFFS) is the orthogonal distance to the plane, while the
distance in face space (DIFS) is the distance along the plane from the mean image. Both distances can be turned
into Mahalanobis distances and given probabilistic interpretations.

In more detail, let us start with a collection of training images {xj}, from which we can
compute the mean image m and a scatter or covariance matrix

C =
1
N

N−1∑
j=0

(xj − m)(xj − m)T . (14.9)

We can apply the eigenvalue decomposition (A.6) to represent this matrix as

C = UΛUT =
N−1∑
i=0

λiuiu
T
i , (14.10)

where the λi are the eigenvalues of C and the ui are the eigenvectors. For general im-
ages, Kirby and Sirovich (1990) call these vectors eigenpictures; for faces, Turk and Pentland
(1991a) call them eigenfaces (Figure 14.13b).8

Two important properties of the eigenvalue decomposition are that the optimal (best ap-
proximation) coefficients ai for any new image x can be computed as

ai = (x − m) · ui, (14.11)

and that, assuming the eigenvalues {λi} are sorted in decreasing order, truncating the ap-
proximation given in (14.8) at any point M gives the best possible approximation (least er-
ror) between x̃ and x. Figure 14.13c shows the resulting approximation corresponding to
Figure 14.13a and shows how much better it is at compressing a face image than JPEG.

Truncating the eigenface decomposition of a face image (14.8) after M components is
equivalent to projecting the image onto a linear subspace F , which we can call the face space
(Figure 14.14). Because the eigenvectors (eigenfaces) are orthogonal and of unit norm, the

8 In actual practice, the full P ×P scatter matrix (14.9) is never computed. Instead, a smaller N ×N matrix con-
sisting of the inner products between all the signed deviations (xi−m) is accumulated instead. See Appendix A.1.2
(A.13–A.14) for details.

14.2 Face recognition 591

distance of a projected face x̃ to the mean face m can be written as

DIFS = ‖x̃ − m‖ =

√√√√M−1∑
i=0

a2
i , (14.12)

where DIFS stands for distance in face space (Moghaddam and Pentland 1997). The re-
maining distance between the original image x and its projection onto face space x̃, i.e., the
distance from face space (DFFS), can be computed directly in pixel space and represents the
“faceness” of a particular image.9 It is also possible to measure the distance between two
different faces in face space as

DIFS(x, y) = ‖x̃ − ỹ‖ =

√√√√M−1∑
i=0

(ai − bi)2, (14.13)

where the bi = (y − m) · ui are the eigenface coefficients corresponding to y.
Computing such distances in Euclidean vector space, however, does not exploit the ad-

ditional information that the eigenvalue decomposition of our covariance matrix (14.10) pro-
vides. If we interpret the covariance matrix C as the covariance of a multi-variate Gaussian
(Appendix B.1.1),10 we can turn the DIFS into a log likelihood by computing the Maha-
lanobis distance

DIFS′ = ‖x̃ − m‖C−1 =

√√√√M−1∑
i=0

a2
i /λ2

i . (14.14)

Instead of measuring the squared distance along each principal component in face space F ,
the Mahalanobis distance measures the ratio between the squared distance and the corre-
sponding variance σ2

i = λi and then sums these squared ratios (per-component log-likelihoods).
An alternative way to implement this is to pre-scale each eigenvector by the inverse square
root of its corresponding eigenvalue,

Û = UΛ−1/2. (14.15)

This whitening transformation then means that Euclidean distances in feature (face) space
now correspond directly to log likelihoods (Moghaddam, Jebara, and Pentland 2000). (This
same whitening approach can also be used in feature-based matching algorithms, as discussed
in Section 4.1.3.)

If the distribution in eigenface space is very elongated, the Mahalanobis distance properly
scales the components to come up with a sensible (probabilistic) distance from the mean.
A similar analysis can be performed for computing a sensible difference from face space
(DFFS) (Moghaddam and Pentland 1997) and the two terms can be combined to produce an
estimate of the likelihood of being a true face, which can be useful in doing face detection
(Section 14.1.1). More detailed explanations of probabilistic and Bayesian PCA can be found
in textbooks on statistical learning (Hastie, Tibshirani, and Friedman 2001; Bishop 2006),
which also discuss techniques for selecting the optimum number of components M to use in
modeling a distribution.

9 This can be used to form a simple face detector, as mentioned in Section 14.1.1.
10 The ellipse shown in Figure 14.14 denotes an equi-probability contour of this multi-variate Gaussian.

592 14 Recognition

Figure 14.15 Images from the Harvard database used by Belhumeur, Hespanha, and Kriegman (1997) c© 1997
IEEE. Note the wide range of illumination variation, which can be more dramatic than inter-personal variations.

One of the biggest advantages of using eigenfaces is that they reduce the comparison
of a new face image x to a prototype (training) face image xk (one of the colored xs in
Figure 14.14) from a P -dimensional difference in pixel space to an M -dimensional difference
in face space,

‖x − xk‖ = ‖a − ak‖, (14.16)

where a = UT (x − m) (14.11) involves computing a dot product between the signed
difference-from-mean image (x − m) and each of the eigenfaces ui. Once again, however,
this Euclidean distance ignores the fact that we have more information about face likelihoods
available in the distribution of training images.

Consider the set of images of one person taken under a wide range of illuminations shown
in Figure 14.15. As you can see, the intrapersonal variability within these images is much
greater than the typical extrapersonal variability between any two people taken under the
same illumination. Regular PCA analysis fails to distinguish between these two sources of
variability and may, in fact, devote most of its principal components to modeling the intrap-
ersonal variability.

If we are going to approximate faces by a linear subspace, it is more useful to have a
space that discriminates between different classes (people) and is less sensitive to within-class
variations (Belhumeur, Hespanha, and Kriegman 1997). Consider the three classes shown as
different colors in Figure 14.16. As you can see, the distributions within a class (indicated
by the tilted colored axes) are elongated and tilted with respect to the main face space PCA,
which is aligned with the black x and y axes. We can compute the total within-class scatter
matrix as

SW =
K−1∑
k=0

Sk =
K−1∑
k=0

∑
i∈Ck

(xi − mk)(xi − mk)T , (14.17)

14.2 Face recognition 593

-2

-1

0

1

2

-3 -2 -1 0 1 2 3

Figure 14.16 Simple example of Fisher linear discriminant analysis. The samples come from three different
classes, shown in different colors along with their principal axes, which are scaled to 2σi. (The intersections of
the tilted axes are the class means mk.) The dashed line is the (dominant) Fisher linear discriminant direction and
the dotted lines are the linear discriminants between the classes. Note how the discriminant direction is a blend
between the principal directions of the between-class and within-class scatter matrices.

where mk is the mean of class k and Sk is its within-class scatter matrix.11 Similarly, we
can compute the between-class scatter as

SB =
K−1∑
k=0

Nk(mk − m)(mk − m)T , (14.18)

where Nk are the number of exemplars in each class and m is the overall mean. For the three
distributions shown in Figure 14.16, we have

SW = 3N

[
0.246 0.183
0.183 0.457

]
and SB = N

[
6.125 0

0 0.375

]
, (14.19)

where N = Nk = 13 is the number of samples in each class.
To compute the most discriminating direction, Fisher’s linear discriminant (FLD) (Bel-

humeur, Hespanha, and Kriegman 1997; Hastie, Tibshirani, and Friedman 2001; Bishop
2006), which is also known as linear discriminant analysis (LDA), selects the direction u

that results in the largest ratio between the projected between-class and within-class varia-
tions

u∗ = arg max
u

uT SBu

uT SWu
, (14.20)

11 To be consistent with Belhumeur, Hespanha, and Kriegman (1997), we use SW and SB to denote the scatter
matrices, even though we use C elsewhere (14.9).

594 14 Recognition

which is equivalent to finding the eigenvector corresponding to the largest eigenvalue of the
generalized eigenvalue problem

SBu = λSWu or λu = S−1
W SBu. (14.21)

For the problem shown in Figure 14.16,

S−1
W SB =

[
11.796 −0.289
−4.715 0.3889

]
and u =

[
0.926
−0.379

]
(14.22)

As you can see, using this direction results in a better separation between the classes than
using the dominant PCA direction, which is the horizontal axis. In their paper, Belhumeur,
Hespanha, and Kriegman (1997) show that Fisherfaces significantly outperform the original
eigenfaces algorithm, especially when faces have large amounts of illumination variation, as
in Figure 14.15.

An alternative for modeling within-class (intrapersonal) and between-class (extraper-
sonal) variations is to model each distribution separately and then use Bayesian techniques
to find the closest exemplar (Moghaddam, Jebara, and Pentland 2000). Instead of computing
the mean for each class and then the within-class and between-class distributions, consider
evaluating the difference images

Δij = xi − xj (14.23)

between all pairs of training images (xi, xj). The differences between pairs that are in the
same class (the same person) are used to estimate the intrapersonal covariance matrix ΣI ,
while differences between different people are used to estimate the extrapersonal covariance
ΣE .12 The principal components (eigenfaces) corresponding to these two classes are shown
in Figure 14.17.

At recognition time, we can compute the distance Δi between a new face x and a stored
training image xi and evaluate its intrapersonal likelihood as

pI(Δi) = pN (Δi;ΣI) =
1

|2πΣI |1/2
exp−‖Δi‖2

Σ−1
I

, (14.24)

where pN is a normal (Gaussian) distribution with covariance ΣI and

|2πΣI |1/2 = (2π)M/2
M∏

j=1

λ
1/2
j (14.25)

is its volume. The Mahalanobis distance

‖Δi‖2

Σ−1
I

= ΔT
i Σ−1

I Δi = ‖aI − aI
i ‖2 (14.26)

can be computed more efficiently by first projecting the new image x into the whitened in-
trapersonal face space (14.15)

aI = Û Ix (14.27)

and then computing a Euclidean distance to the training image vector aI
i , which can be pre-

computed offline. The extrapersonal likelihood pE(Δi) can be computed in a similar fashion.

12 Note that the difference distributions are zero mean because for every Δij there corresponds a negative Δji.

14.2 Face recognition 595

(a)

(b)

Figure 14.17 “Dual” eigenfaces (Moghaddam, Jebara, and Pentland 2000) c© 2000 Elsevier: (a) intrapersonal
and (b) extrapersonal.

Once the intrapersonal and extrapersonal likelihoods have been computed, we can com-
pute the Bayesian likelihood of a new image x matching a training image xi as

p(Δi) =
pI(Δi)lI

pI(Δi)lI + pE(Δi)lE
, (14.28)

where lI and lE are the prior probabilities of two images being in the same or in different
classes (Moghaddam, Jebara, and Pentland 2000). A simpler approach, which does not re-
quire the evaluation of extrapersonal probabilities, is to simply choose the training image with
the highest likelihood pI(Δi). In this case, nearest neighbor search techniques in the space
spanned by the precomputed {aI

i } vectors could be used to speed up finding the best match.13

Another way to improve the performance of eigenface-based approaches is to break up
the image into separate regions such as the eyes, nose, and mouth (Figure 14.18) and to match
each of these modular eigenspaces independently (Moghaddam and Pentland 1997; Heisele,
Ho, Wu et al. 2003; Heisele, Serre, and Poggio 2007). The advantage of such a modular
approach is that it can tolerate a wider range of viewpoints, because each part can move
relative to the others. It also supports a larger variety of combinations, e.g., we can model one
person as having a narrow nose and bushy eyebrows, without requiring the eigenfaces to span
all possible combinations of nose, mouth, and eyebrows. (If you remember the cardboard
children’s books where you can select different top and bottom faces, or Mr. Potato Head,
you get the idea.)

Another approach to dealing with large variability in appearance is to create view-based
(view-specific) eigenspaces, as shown in Figure 14.19 (Moghaddam and Pentland 1997). We
can think of these view-based eigenspaces as local descriptors that select different axes de-
pending on which part of the face space you are in. Note that such approaches, however,

13 Note that while the covariance matrices ΣI and ΣE are computed by looking at differences between all pairs of
images, the run-time evaluation selects the nearest image to determine the facial identity. Whether this is statistically
correct is explored in Exercise 14.4.

596 14 Recognition

(a) (b)

Figure 14.18 Modular eigenspace for face recognition (Moghaddam and Pentland 1997) c© 1997 IEEE. (a) By
detecting separate features in the faces (eyes, nose, mouth), separate eigenspaces can be estimated for each one.
(b) The relative positions of each feature can be detected at recognition time, thus allowing for more flexibility in
viewpoint and expression.

potentially require large amounts of training data, i.e., pictures of every person in every pos-
sible pose or expression. This is in contrast to the shape and appearance models we study in
Section 14.2.2, which can learn deformations across all individuals.

It is also possible to generalize the bilinear factorization implicit in PCA and SVD ap-
proaches to multilinear (tensor) formulations that can model several interacting factors si-
multaneously (Vasilescu and Terzopoulos 2007). These ideas are related to currently active
topics in machine learning such as subspace learning (Cai, He, Hu et al. 2007), local distance
functions (Frome, Singer, Sha et al. 2007), and metric learning (Ramanan and Baker 2009).
Learning approaches play an increasingly important role in face recognition, e.g., in the work
of Sivic, Everingham, and Zisserman (2009) and Guillaumin, Verbeek, and Schmid (2009).

14.2.2 Active appearance and 3D shape models

The need to use modular or view-based eigenspaces for face recognition is symptomatic of
a more general observation, i.e., that facial appearance and identifiability depend as much
on shape as they do on color or texture (which is what eigenfaces capture). Furthermore,
when dealing with 3D head rotations, the pose of a person’s head should be discounted when
performing recognition.

In fact, the earliest face recognition systems, such as those by Fischler and Elschlager
(1973), Kanade (1977), and Yuille (1991), found distinctive feature points on facial images
and performed recognition on the basis of their relative positions or distances. Newer tech-
niques such as local feature analysis (Penev and Atick 1996) and elastic bunch graph match-
ing (Wiskott, Fellous, Krüger et al. 1997) combine local filter responses (jets) at distinctive
feature locations together with shape models to perform recognition.

A visually compelling example of why both shape and texture are important is the work
of Rowland and Perrett (1995), who manually traced the contours of facial features and then

14.2 Face recognition 597

(a) (b)

Figure 14.19 View-based eigenspace (Moghaddam and Pentland 1997) c© 1997 IEEE. (a) Comparison between
a regular (parametric) eigenspace reconstruction (middle column) and a view-based eigenspace reconstruction
(right column) corresponding to the input image (left column). The top row is from a training image, the bottom
row is from the test set. (b) A schematic representation of the two approaches, showing how each view computes
its own local basis representation.

(a) (b) (c) (d) (e)

Figure 14.20 Manipulating facial appearance through shape and color (Rowland and Perrett 1995) c© 1995
IEEE. By adding or subtracting gender-specific shape and color characteristics to (b) an input image, different
amounts of gender variation can be induced. The amounts added (from the mean) are: (a) +50% (gender enhance-
ment), (c) -50% (near “androgyny”), (d) -100% (gender switched), and (e) -150% (opposite gender attributes
enhanced).

598 14 Recognition

(a) (b) (c)

Figure 14.21 Active Appearance Models (Cootes, Edwards, and Taylor 2001) c© 2001 IEEE: (a) input image
with registered feature points; (b) the feature points (shape vector s); (c) the shape-free appearance image (texture
vector t).

used these contours to normalize (warp) each image to a canonical shape. After analyzing
both the shape and color images for deviations from the mean, they were able to associate
certain shape and color deformations with personal characteristics such as age and gender
(Figure 14.20). Their work demonstrates that both shape and color have an important influ-
ence on the perception of such characteristics.

Around the same time, researchers in computer vision were beginning to use simultane-
ous shape deformations and texture interpolation to model the variability in facial appearance
caused by identity or expression (Beymer 1996; Vetter and Poggio 1997), developing tech-
niques such as Active Shape Models (Lanitis, Taylor, and Cootes 1997), 3D Morphable Mod-
els (Blanz and Vetter 1999), and Elastic Bunch Graph Matching (Wiskott, Fellous, Krüger et
al. 1997).14

Of all these techniques, the active appearance models (AAMs) of Cootes, Edwards, and
Taylor (2001) are among the most widely used for face recognition and tracking. Like other
shape and texture models, an AAM models both the variation in the shape of an image s,
which is normally encoded by the location of key feature points on the image (Figure 14.21b),
as well as the variation in texture t, which is normalized to a canonical shape before being
analyzed (Figure 14.21c).15

Both shape and texture are represented as deviations from a mean shape s̄ and texture t̄,

s = s̄ + U sa (14.29)

t = t̄ + U ta, (14.30)

where the eigenvectors in U s and U t have been pre-scaled (whitened) so that unit vectors in
a represent one standard deviation of variation observed in the training data. In addition to
these principal deformations, the shape parameters are transformed by a global similarity to
match the location, size, and orientation of a given face. Similarly, the texture image contains
a scale and offset to best match novel illumination conditions.

As you can see, the same appearance parameters a in (14.29–14.30) simultaneously con-
trol both the shape and texture deformations from the mean, which makes sense if we believe

14 We have already seen the application of PCA to 3D head and face modeling and animation in Section 12.6.3.
15 When only the shape variation is being captured, such models are called active shape models (ASMs) (Cootes,

Cooper, Taylor et al. 1995; Davies, Twining, and Taylor 2008). These were already discussed in Section 5.1.1
(5.13–5.17).

14.2 Face recognition 599

(a) (b)

(c) (d)

Figure 14.22 Principal modes of variation in active appearance models (Cootes, Edwards, and Taylor 2001) c©
2001 IEEE. The four images show the effects of simultaneously changing the first four modes of variation in
both shape and texture by ±σ from the mean. You can clearly see how the shape of the face and the shading are
simultaneously affected.

them to be correlated. Figure 14.22 shows how moving three standard deviations along each
of the first four principal directions ends up changing several correlated factors in a person’s
appearance, including expression, gender, age, and identity.

In order to fit an active appearance model to a novel image, Cootes, Edwards, and Taylor
(2001) pre-compute a set of “difference decomposition” images, using an approach related to
other fast techniques for incremental tracking, such as those we discussed in Sections 4.1.4,
8.1.3, and 8.2 (Gleicher 1997; Hager and Belhumeur 1998), which often learn a discrimi-
native mapping between matching errors and incremental displacements (Avidan 2001; Jurie
and Dhome 2002; Liu, Chen, and Kumar 2003; Sclaroff and Isidoro 2003; Romdhani and
Vetter 2003; Williams, Blake, and Cipolla 2003).

In more detail, Cootes, Edwards, and Taylor (2001) compute the derivatives of a set of
training images with respect to each of the parameters in a using finite differences and then
compute a set of displacement weight images

W =
[
∂xT

∂a

∂x

∂a

]−1
∂xT

∂a
, (14.31)

which can be multiplied by the current error residual to produce an update step in the pa-
rameters, δa = −Wr. Matthews and Baker (2004) use their inverse compositional method,
which they first developed for parametric optical flow (8.64–8.65), to further speed up active
appearance model fitting and tracking. Examples of AAMs being fitted to two input images
are shown in Figure 14.23.

Although active appearance models are primarily designed to accurately capture the vari-
ability in appearance and deformation that are characteristic of faces, they can be adapted to
face recognition by computing an identity subspace that separates variation in identity from
other sources of variability such as lighting, pose, and expression (Costen, Cootes, Edwards
et al. 1999). The basic idea, which is modeled after similar work in eigenfaces (Belhumeur,

600 14 Recognition

Figure 14.23 Multiresolution model fitting (search) in active appearance models (Cootes, Edwards, and Taylor
2001) c© 2001 IEEE. The columns show the initial model, the results after 3, 8, and 11 iterations, and the final
convergence. The rightmost column shows the input image.

Figure 14.24 Head tracking with 3D AAMs (Matthews, Xiao, and Baker 2007) c© 2007 Springer. Each image
shows a video frame along with the estimate yaw, pitch, and roll parameters and the fitted 3D deformable mesh.

Hespanha, and Kriegman 1997; Moghaddam, Jebara, and Pentland 2000), is to compute sep-
arate statistics for intrapersonal and extrapersonal variation and then find discriminating di-
rections in these subspaces. While AAMs have sometimes been used directly for recognition
(Blanz and Vetter 2003), their main use in the context of recognition is to align faces into
a canonical pose (Liang, Xiao, Wen et al. 2008) so that more traditional methods of face
recognition (Penev and Atick 1996; Wiskott, Fellous, Krüger et al. 1997; Ahonen, Hadid,
and Pietikäinen 2006; Zhao and Pietikäinen 2007; Cao, Yin, Tang et al. 2010) can be used.
AAMs (or, actually, their simpler version, Active Shape Models (ASMs)) can also be used to
align face images to perform automated morphing (Zanella and Fuentes 2004).

Active appearance models continue to be an active research area, with enhancements to
deal with illumination and viewpoint variation (Gross, Baker, Matthews et al. 2005) as well
as occlusions (Gross, Matthews, and Baker 2006). One of the most significant extensions is
to construct 3D models of shape (Matthews, Xiao, and Baker 2007), which are much better at
capturing and explaining the full variability of facial appearance across wide changes in pose.

14.2 Face recognition 601

(a)

(b)

Figure 14.25 Person detection and re-recognition using a combined face, hair, and torso model (Sivic, Zitnick,
and Szeliski 2006) c© 2006 Springer. (a) Using face detection alone, several of the heads are missed. (b) The
combined face and clothing model successfully re-finds all the people.

Such models can be constructed either from monocular video sequences (Matthews, Xiao,
and Baker 2007), as shown in Figure 14.24, or from multi-view video sequences (Ramnath,
Koterba, Xiao et al. 2008), which provide even greater reliability and accuracy in reconstruc-
tion and tracking. (For a recent review of progress in head pose estimation, please see the
survey paper by Murphy-Chutorian and Trivedi (2009).)

14.2.3 Application: Personal photo collections

In addition to digital cameras automatically finding faces to aid in auto-focusing and video
cameras finding faces in video conferencing to center on the speaker (either mechanically
or digitally), face detection has found its way into most consumer-level photo organization
packages, such as iPhoto, Picasa, and Windows Live Photo Gallery. Finding faces and al-
lowing users to tag them makes it easier to find photos of selected people at a later date or to
automatically share them with friends. In fact, the ability to tag friends in photos is one of the
more popular features on Facebook.

Sometimes, however, faces can be hard to find and recognize, especially if they are small,
turned away from the camera, or otherwise occluded. In such cases, combining face recog-
nition with person detection and clothes recognition can be very effective, as illustrated in
Figure 14.25 (Sivic, Zitnick, and Szeliski 2006). Combining person recognition with other
kinds of context, such as location recognition (Section 14.3.3) or activity or event recognition,
can also help boost performance (Lin, Kapoor, Hua et al. 2010).

602 14 Recognition

Figure 14.26 Recognizing objects in a cluttered scene (Lowe 2004) c© 2004 Springer. Two of the training
images in the database are shown on the left. They are matched to the cluttered scene in the middle using SIFT
features, shown as small squares in the right image. The affine warp of each recognized database image onto the
scene is shown as a larger parallelogram in the right image.

14.3 Instance recognition

General object recognition falls into two broad categories, namely instance recognition and
class recognition. The former involves re-recognizing a known 2D or 3D rigid object, poten-
tially being viewed from a novel viewpoint, against a cluttered background, and with partial
occlusions. The latter, which is also known as category-level or generic object recognition
(Ponce, Hebert, Schmid et al. 2006), is the much more challenging problem of recognizing
any instance of a particular general class such as “cat”, “car”, or “bicycle”.

Over the years, many different algorithms have been developed for instance recognition.
Mundy (2006) surveys earlier approaches, which focused on extracting lines, contours, or
3D surfaces from images and matching them to known 3D object models. Another popu-
lar approach was to acquire images from a large set of viewpoints and illuminations and to
represent them using an eigenspace decomposition (Murase and Nayar 1995). More recent
approaches (Lowe 2004; Rothganger, Lazebnik, Schmid et al. 2006; Ferrari, Tuytelaars, and
Van Gool 2006b; Gordon and Lowe 2006; Obdržálek and Matas 2006; Sivic and Zisserman
2009) tend to use viewpoint-invariant 2D features, such as those we saw in Section 4.1.2. Af-
ter extracting informative sparse 2D features from both the new image and the images in the
database, image features are matched against the object database, using one of the sparse fea-
ture matching strategies described in Section 4.1.3. Whenever a sufficient number of matches
have been found, they are verified by finding a geometric transformation that aligns the two
sets of features (Figure 14.26).

Below, we describe some of the techniques that have been proposed for representing the
geometric relationships between such features (Section 14.3.1). We also discuss how to make
the feature matching process more efficient using ideas from text and information retrieval
(Section 14.3.2).

14.3 Instance recognition 603

(a) (b) (c) (d)

Figure 14.27 3D object recognition with affine regions (Rothganger, Lazebnik, Schmid et al. 2006) c© 2006
Springer: (a) sample input image; (b) five of the recognized (reprojected) objects along with their bounding
boxes; (c) a few of the local affine regions; (d) local affine region (patch) reprojected into a canonical (square)
frame, along with its geometric affine transformations.

14.3.1 Geometric alignment

To recognize one or more instances of some known objects, such as those shown in the left
column of Figure 14.26, the recognition system first extracts a set of interest points in each
database image and stores the associated descriptors (and original positions) in an indexing
structure such as a search tree (Section 4.1.3). At recognition time, features are extracted
from the new image and compared against the stored object features. Whenever a sufficient
number of matching features (say, three or more) are found for a given object, the system then
invokes a match verification stage, whose job is to determine whether the spatial arrangement
of matching features is consistent with those in the database image.

Because images can be highly cluttered and similar features may belong to several objects,
the original set of feature matches can have a large number of outliers. For this reason, Lowe
(2004) suggests using a Hough transform (Section 4.3.2) to accumulate votes for likely geo-
metric transformations. In his system, he uses an affine transformation between the database
object and the collection of scene features, which works well for objects that are mostly pla-
nar, or where at least several corresponding features share a quasi-planar geometry.16

Since SIFT features carry with them their own location, scale, and orientation, Lowe uses
a four-dimensional similarity transformation as the original Hough binning structure, i.e.,
each bin denotes a particular location for the object center, scale, and in-plane rotation. Each
matching feature votes for the nearest 24 bins and peaks in the transform are then selected for
a more careful affine motion fit. Figure 14.26 (right image) shows three instances of the two
objects on the left that were recognized by the system. Obdržálek and Matas (2006) general-
ize Lowe’s approach to use feature descriptors with full local affine frames and evaluate their
approach on a number of object recognition databases.

Another system that uses local affine frames is the one developed by Rothganger, Lazeb-
nik, Schmid et al. (2006). In their system, the affine region detector of Mikolajczyk and
Schmid (2004) is used to rectify local image patches (Figure 14.27d), from which both a
SIFT descriptor and a 10 × 10 UV color histogram are computed and used for matching
and recognition. Corresponding patches in different views of the same object, along with

16 When a larger number of features is available, a full fundamental matrix can be used (Brown and Lowe 2002;
Gordon and Lowe 2006). When image stitching is being performed (Brown and Lowe 2007), the motion models
discussed in Section 9.1 can be used instead.

604 14 Recognition

(a) (b)

Figure 14.28 Visual words obtained from elliptical normalized affine regions (Sivic and Zisserman 2009) c©
2009 IEEE. (a) Affine covariant regions are extracted from each frame and clustered into visual words using k-
means clustering on SIFT descriptors with a learned Mahalanobis distance. (b) The central patch in each grid
shows the query and the surrounding patches show the nearest neighbors.

their local affine deformations, are used to compute a 3D affine model for the object using
an extension of the factorization algorithm of Section 7.3, which can then be upgraded to a
Euclidean reconstruction (Tomasi and Kanade 1992).

At recognition time, local Euclidean neighborhood constraints are used to filter potential
matches, in a manner analogous to the affine geometric constraints used by Lowe (2004) and
Obdržálek and Matas (2006). Figure 14.27 shows the results of recognizing five objects in a
cluttered scene using this approach.

While feature-based approaches are normally used to detect and localize known objects in
scenes, it is also possible to get pixel-level segmentations of the scene based on such matches.
Ferrari, Tuytelaars, and Van Gool (2006b) describe such a system for simultaneously recog-
nizing objects and segmenting scenes, while Kannala, Rahtu, Brandt et al. (2008) extend this
approach to non-rigid deformations. Section 14.4.3 re-visits this topic of joint recognition
and segmentation in the context of generic class (category) recognition.

14.3.2 Large databases

As the number of objects in the database starts to grow large (say, millions of objects or video
frames being searched), the time it takes to match a new image against each database image
can become prohibitive. Instead of comparing the images one at a time, techniques are needed
to quickly narrow down the search to a few likely images, which can then be compared using
a more detailed and conservative verification stage.

The problem of quickly finding partial matches between documents is one of the cen-
tral problems in information retrieval (IR) (Baeza-Yates and Ribeiro-Neto 1999; Manning,
Raghavan, and Schütze 2008). The basic approach in fast document retrieval algorithms is to
pre-compute an inverted index between individual words and the documents (or Web pages
or news stories) where they occur. More precisely, the frequency of occurrence of particular
words in a document is used to quickly find documents that match a particular query.

Sivic and Zisserman (2009) were the first to adapt IR techniques to visual search. In their
Video Google system, affine invariant features are first detected in all the video frames they
are indexing using both shape adapted regions around Harris feature points (Schaffalitzky
and Zisserman 2002; Mikolajczyk and Schmid 2004) and maximally stable extremal regions
(Matas, Chum, Urban et al. 2004), (Section 4.1.1), as shown in Figure 14.28a. Next, 128-

14.3 Instance recognition 605

(a) (b)

Figure 14.29 Matching based on visual words (Sivic and Zisserman 2009) c© 2009 IEEE. (a) Features in the
query region on the left are matched to corresponding features in a highly ranked video frame. (b) Results after
removing the stop words and filtering the results using spatial consistency.

dimensional SIFT descriptors are computed from each normalized region (i.e., the patches
shown in Figure 14.28b). Then, an average covariance matrix for these descriptors is es-
timated by accumulating statistics for features tracked from frame to frame. The feature
descriptor covariance Σ is then used to define a Mahalanobis distance between feature de-
scriptors,

d(x0, x1) = ‖x0 − x1‖Σ−1 =
√

(x0 − x1)T Σ−1(x0 − x1). (14.32)

In practice, feature descriptors are whitened by pre-multiplying them by Σ−1/2 so that Eu-
clidean distances can be used.17

In order to apply fast information retrieval techniques to images, the high-dimensional
feature descriptors that occur in each image must first be mapped into discrete visual words.
Sivic and Zisserman (2003) perform this mapping using k-means clustering, while some of
newer methods discussed below (Nistér and Stewénius 2006; Philbin, Chum, Isard et al.
2007) use alternative techniques, such as vocabulary trees or randomized forests. To keep the
clustering time manageable, only a few hundred video frames are used to learn the cluster
centers, which still involves estimating several thousand clusters from about 300,000 descrip-
tors. At visual query time, each feature in a new query region (e.g., Figure 14.28a, which is
a cropped region from a larger video frame) is mapped to its corresponding visual word. To
keep very common patterns from contaminating the results, a stop list of the most common
visual words is created and such words are dropped from further consideration.

Once a query image or region has been mapped into its constituent visual words, likely
matching images or video frames must then be retrieved from the database. Information
retrieval systems do this by matching word distributions (term frequencies) nid/nd between
the query and target documents, where nid is how many times word i occurs in document d,
and nd is the total number of words in document d. In order to downweight words that occur
frequently and to focus the search on rarer (and hence, more informative) terms, an inverse
document frequency weighting log N/Ni is applied, where Ni is the number of documents
containing word i, and N is the total number of documents in the database. The combination
of these two factors results in the term frequency-inverse document frequency (tf-idf) measure,

ti =
nid

nd
log

N

Ni
. (14.33)

17 Note that the computation of feature covariances from matched feature points is much more sensible than simply
performing a PCA on the descriptor space (Winder and Brown 2007). This corresponds roughly to the within-class
scatter matrix (14.17) we studied in Section 14.2.1.

606 14 Recognition

1. Vocabulary construction (off-line)

(a) Extract affine covariant regions from each database image.

(b) Compute descriptors and optionally whiten them to make Euclidean dis-
tances meaningful (Sivic and Zisserman 2009).

(c) Cluster the descriptors into visual words, either using k-means (Sivic and
Zisserman 2009), hierarchical clustering (Nistér and Stewénius 2006), or
randomized k-d trees (Philbin, Chum, Isard et al. 2007).

(d) Decide which words are too common and put them in the stop list.

2. Database construction (off-line)

(a) Compute term frequencies for the visual word in each image, document fre-
quencies for each word, and normalized tf-idf vectors for each document.

(b) Compute inverted indices from visual words to images (with word counts).

3. Image retrieval (on-line)

(a) Extract regions, descriptors, and visual words, and compute a tf-idf vector
for the query image or region.

(b) Retrieve the top image candidates, either by exhaustively comparing sparse
tf-idf vectors (Sivic and Zisserman 2009) or by using inverted indices to ex-
amine only a subset of the images (Nistér and Stewénius 2006).

(c) Optionally re-rank or verify all the candidate matches, using either spatial
consistency (Sivic and Zisserman 2009) or an affine (or simpler) transforma-
tion model (Philbin, Chum, Isard et al. 2007).

(d) Optionally expand the answer set by re-submitting highly ranked matches as
new queries (Chum, Philbin, Sivic et al. 2007).

Algorithm 14.2 Image retrieval using visual words (Sivic and Zisserman 2009; Nistér and Stewénius 2006;
Philbin, Chum, Isard et al. 2007; Chum, Philbin, Sivic et al. 2007; Philbin, Chum, Sivic et al. 2008).

14.3 Instance recognition 607

At match time, each document (or query region) is represented by its tf-idf vector,

t = (t1, . . . , ti, . . . tm). (14.34)

The similarity between two documents is measured by the dot product between their corre-
sponding normalized vectors t̂ = t/‖t‖, which means that their dissimilarity is proportional
to their Euclidean distance. In their journal paper, Sivic and Zisserman (2009) compare this
simple metric to a dozen other metrics and conclude that it performs just about as well as
more complicated metrics. Because the number of non-zero ti terms in a typical query or
document is small (M ≈ 200) compared to the number of visual words (V ≈ 20, 000), the
distance between pairs of (sparse) tf-idf vectors can be computed quite quickly.

After retrieving the top Ns = 500 documents based on word frequencies, Sivic and Zis-
serman (2009) re-rank these results using spatial consistency. This step involves taking every
matching feature and counting the number of k = 15 nearest adjacent features that also match
between the two documents. (This latter process is accelerated using inverted files, which we
discuss in more detail below.) As shown in Figure 14.29, this step helps remove spurious false
positive matches and produces a better estimate of which frames and regions in the video are
actually true matches. Algorithm 14.2 summarizes the processing steps involved in image
retrieval using visual words.

While this approach works well for tens of thousand of visual words and thousands of
keyframes, as the size of the database continues to increase, both the time to quantize each
feature and to find potential matching frames or images can become prohibitive. Nistér and
Stewénius (2006) address this problem by constructing a hierarchical vocabulary tree, where
feature vectors are hierarchically clustered into a k-way tree of prototypes. (This technique is
also known as tree-structured vector quantization (Gersho and Gray 1991).) At both database
construction time and query time, each descriptor vector is compared to several prototypes
at a given level in the vocabulary tree and the branch with the closest prototype is selected
for further refinement (Figure 14.30). In this way, vocabularies with millions (106) of words
can be supported, which enables individual words to be far more discriminative, while only
requiring 10 · 6 comparisons for quantizing each descriptor.

At query time, each node in the vocabulary tree keeps its own inverted file index, so that
features that match a particular node in the tree can be rapidly mapped to potential matching
images. (Interior leaf nodes just use the inverted indices of their corresponding leaf-node
descendants.) To score a particular query tf-idf vector tq against all document vectors {tj}
using an Lp metric,18 the non-zero tiq entries in tq are used to fetch corresponding non-zero
tij entries, and the Lp norm is efficiently computed as

‖tq − tj‖p
p = 2 +

∑
i|tiq>0∧tij>0

(|tiq − tij |p − |tiq|p − |tij |p). (14.35)

In order to mitigate quantization errors due to noise in the descriptor vectors, Nistér and
Stewénius (2006) not only score leaf nodes in the vocabulary tree (corresponding to visual
words), but also score interior nodes in the tree, which correspond to clusters of similar visual
words.

Because of the high efficiency in both quantizing and scoring features, their vocabulary-
tree-based recognition system is able to process incoming images in real time against a

18 In their actual implementation, Nistér and Stewénius (2006) use an L1 metric.

608 14 Recognition

(a) (b)

Figure 14.30 Scalable recognition using a vocabulary tree (Nistér and Stewénius 2006) c© 2006 IEEE. (a) Each
MSER elliptical region is converted into a SIFT descriptor, which is then quantized by comparing it hierarchically
to some prototype descriptors in a vocabulary tree. Each leaf node stores its own inverted index (sparse list of
non-zero tf-idf counts) into images that contain that feature. (b) A recognition result, showing a query image (top
row) being indexed into a database of 6000 test images and correctly finding the corresponding four images.

database of 40,000 CD covers and at 1Hz when matching a database of one million frames
taken from six feature-length movies. Figure 14.30b shows some typical images from the
database of objects taken under varying viewpoints and illumination that was used to train
and test the vocabulary tree recognition system.

The state of the art in instance recognition continues to improve rapidly. Philbin, Chum,
Isard et al. (2007) have shown that randomized forest of k-d trees perform better than vocabu-
lary trees on a large location recognition task (Figure 14.31). They also compare the effects of
using different 2D motion models (Section 2.1.2) in the verification stage. In follow-on work,
Chum, Philbin, Sivic et al. (2007) apply another idea from information retrieval, namely
query expansion, which involves re-submitting top-ranked images from the initial query as
additional queries to generate additional candidate results, to further improve recognition
rates for difficult (occluded or oblique) examples. Philbin, Chum, Sivic et al. (2008) show
how to mitigate quantization problems in visual words selection using soft assignment, where
each feature descriptor is mapped to a number of visual words based on its distance from the
cluster prototypes. The soft weights derived from these distances are used, in turn, to weight
the counts used in the tf-idf vectors and to retrieve additional images for later verification.

14.3 Instance recognition 609

Figure 14.31 Location or building recognition using randomized trees (Philbin, Chum, Isard et al. 2007) c©
2007 IEEE. The left image is the query, the other images are the highest-ranked results.

Taken together, these recent advances hold the promise of extending current instance recog-
nition algorithms to performing Web-scale retrieval and matching tasks (Agarwal, Snavely,
Simon et al. 2009; Agarwal, Furukawa, Snavely et al. 2010; Snavely, Simon, Goesele et al.
2010).

14.3.3 Application: Location recognition

One of the most exciting applications of instance recognition today is in the area of location
recognition, which can be used both in desktop applications (where did I take this holiday
snap?) and in mobile (cell-phone) applications. The latter case includes not only finding out
your current location based on a cell-phone image but also providing you with navigation
directions or annotating your images with useful information, such as building names and
restaurant reviews (i.e., a portable form of augmented reality).

Some approaches to location recognition assume that the photos consist of architectural
scenes for which vanishing directions can be used to pre-rectify the images for easier match-
ing (Robertson and Cipolla 2004). Other approaches use general affine covariant interest
points to perform wide baseline matching (Schaffalitzky and Zisserman 2002). The Photo
Tourism system of Snavely, Seitz, and Szeliski (2006) (Section 13.1.2) was the first to apply
these kinds of ideas to large-scale image matching and (implicit) location recognition from
Internet photo collections taken under a wide variety of viewing conditions.

The main difficulty in location recognition is in dealing with the extremely large commu-
nity (user-generated) photo collections on Web sites such as Flickr (Philbin, Chum, Isard et
al. 2007; Chum, Philbin, Sivic et al. 2007; Philbin, Chum, Sivic et al. 2008; Turcot and Lowe
2009) or commercially captured databases (Schindler, Brown, and Szeliski 2007). The preva-
lence of commonly appearing elements such as foliage, signs, and common architectural ele-
ments further complicates the task. Figure 14.31 shows some results on location recognition
from community photo collections, while Figure 14.32 shows sample results from denser
commercially acquired datasets. In the latter case, the overlap between adjacent database
images can be used to verify and prune potential matches using “temporal” filtering, i.e., re-
quiring the query image to match nearby overlapping database images before accepting the
match.

Another variant on location recognition is the automatic discovery of landmarks, i.e.,

610 14 Recognition

(a) (b) (c)

Figure 14.32 Feature-based location recognition (Schindler, Brown, and Szeliski 2007) c© 2007 IEEE: (a) three
typical series of overlapping street photos; (b) handheld camera shots and (c) their corresponding database photos.

Figure 14.33 Automatic mining, annotation, and localization of community photo collections (Quack, Leibe,
and Van Gool 2008) c© 2008 ACM. This figure does not show the textual annotations or corresponding Wikipedia
entries, which are also discovered.

frequently photographed objects and locations. Simon, Snavely, and Seitz (2007) show how
these kinds of objects can be discovered simply by analyzing the matching graph constructed
as part of the 3D modeling process in Photo Tourism. More recent work has extended this
approach to larger data sets using efficient clustering techniques (Philbin and Zisserman 2008;
Li, Wu, Zach et al. 2008; Chum, Philbin, and Zisserman 2008; Chum and Matas 2010) as well
as combining meta-data such as GPS and textual tags with visual search (Quack, Leibe, and
Van Gool 2008; Crandall, Backstrom, Huttenlocher et al. 2009), as shown in Figure 14.33.
It is now even possible to automatically associate object tags with images based on their co-
occurrence in multiple loosely tagged images (Simon and Seitz 2008; Gammeter, Bossard,
Quack et al. 2009).

The concept of organizing the world’s photo collections by location has even been re-
cently extended to organizing all of the universe’s (astronomical) photos in an application
called astrometry, http://astrometry.net/. The technique used to match any two star fields is

http://astrometry.net/

14.4 Category recognition 611

A

B

C
D

(a) (b)

Figure 14.34 Locating star fields using astrometry, http://astrometry.net/. (a) Input star field and some selected
star quads. (b) The 2D coordinates of stars C and D are encoded relative to the unit square defined by A and B.

to take quadruplets of nearby stars (a pair of stars and another pair inside their diameter) to
form a 30-bit geometric hash by encoding the relative positions of the second pair of points
using the inscribed square as the reference frame, as shown in Figure 14.34. Traditional in-
formation retrieval techniques (k-d trees built for different parts of a sky atlas) are then used
to find matching quads as potential star field location hypotheses, which can then be verified
using a similarity transform.

14.4 Category recognition

While instance recognition techniques are relatively mature and are used in commercial ap-
plications, such as Photosynth (Section 13.1.2), generic category (class) recognition is still
a largely unsolved problem. Consider for example the set of photographs in Figure 14.35,
which shows objects taken from 10 different visual categories. (I’ll leave it up to you to name
each of the categories.) How would you go about writing a program to categorize each of
these images into the appropriate class, especially if you were also given the choice “none of
the above”?

As you can tell from this example, visual category recognition is an extremely challenging
problem; no one has yet constructed a system that approaches the performance level of a two-
year-old child. However, the progress in the field has been quite dramatic, if judged by how
much better today’s algorithms are compared to those of a decade ago.

Figure 14.54 shows a sample image from each of the 20 categories used in the 2008
PASCAL Visual Object Classes Challenge. The yellow boxes represent the extent of each of
the objects found in a given image. On such closed world collections where the task is to
decide among 20 categories, today’s classification algorithms can do remarkably well.

In this section, we look at a number of approaches to solving category recognition. While
historically, part-based representations and recognition algorithms (Section 14.4.2) were the
preferred approach (Fischler and Elschlager 1973; Felzenszwalb and Huttenlocher 2005;
Fergus, Perona, and Zisserman 2007), we begin by describing simpler bag-of-features ap-
proaches (Section 14.4.1) that represent objects and images as unordered collections of fea-
ture descriptors. We then look at the problem of simultaneously segmenting images while
recognizing objects (Section 14.4.3) and also present some applications of such techniques to
photo manipulation (Section 14.4.4). In Section 14.5, we look at how context and scene un-

http://astrometry.net/

612 14 Recognition

Figure 14.35 Sample images from the Xerox 10 class dataset (Csurka, Dance, Perronnin et al. 2006) c© 2007
Springer. Imagine trying to write a program to distinguish such images from other photographs.

derstanding, as well as machine learning, can improve overall recognition results. Additional
details on the techniques presented in this section can be found in (Pinz 2005; Ponce, Hebert,
Schmid et al. 2006; Dickinson, Leonardis, Schiele et al. 2007; Fei-Fei, Fergus, and Torralba
2009).

14.4.1 Bag of words

One of the simplest algorithms for category recognition is the bag of words (also known as
bag of features or bag of keypoints) approach (Csurka, Dance, Fan et al. 2004; Lazebnik,
Schmid, and Ponce 2006; Csurka, Dance, Perronnin et al. 2006; Zhang, Marszalek, Lazeb-
nik et al. 2007). As shown in Figure 14.36, this algorithm simply computes the distribu-
tion (histogram) of visual words found in the query image and compares this distribution
to those found in the training images. We have already seen elements of this approach in
Section 14.3.2, Equations (14.33–14.35) and Algorithm 14.2. The biggest difference from
instance recognition is the absence of a geometric verification stage (Section 14.3.1), since
individual instances of generic visual categories, such as those shown in Figure 14.35, have
relatively little spatial coherence to their features (but see the work by Lazebnik, Schmid, and
Ponce (2006)).

Csurka, Dance, Fan et al. (2004) were the first to use the term bag of keypoints to describe
such approaches and among the first to demonstrate the utility of frequency-based techniques
for category recognition. Their original system used affine covariant regions and SIFT de-

14.4 Category recognition 613

Figure 14.36 A typical processing pipeline for a bag-of-words category recognition system (Csurka, Dance,
Perronnin et al. 2006) c© 2007 Springer. Features are first extracted at keypoints and then quantized to get a
distribution (histogram) over the learned visual words (feature cluster centers). The feature distribution histogram
is used to learn a decision surface using a classification algorithm, such as a support vector machine.

scriptors, k-means visual vocabulary construction, and both a naı̈ve Bayesian classifier and
support vector machines for classification. (The latter was found to perform better.) Their
newer system (Csurka, Dance, Perronnin et al. 2006) uses regular (non-affine) SIFT patches,
boosting instead of SVMs, and incorporates a small amount of geometric consistency infor-
mation.

Zhang, Marszalek, Lazebnik et al. (2007) perform a more detailed study of such bag of
features systems. They compare a number of feature detectors (Harris–Laplace (Mikolajczyk
and Schmid 2004) and Laplacian (Lindeberg 1998b)), descriptors (SIFT, RIFT, and SPIN
(Lazebnik, Schmid, and Ponce 2005)), and SVM kernel functions. To estimate distances for
the kernel function, they form an image signature

S = ((t1,m1), . . . , (tm, mm)), (14.36)

analogous to the tf-idf vector t in (14.34), where the cluster centers mi are made explicit.
They then investigate two different kernels for comparing such image signatures. The first is
the earth mover’s distance (EMD) (Rubner, Tomasi, and Guibas 2000),

EMD(S, S′) =

∑
i

∑
j fijd(mi, m

′
j)∑

i

∑
j fij

, (14.37)

where fij is a flow value that can be computed using a linear program and d(mi, m
′
j) is the

ground distance (Euclidean distance) between mi and m′
j . Note that the EMD can be used

to compare two signatures of different lengths, where the entries do not need to correspond.
The second is a χ2 distance

χ2(S, S′) =
1
2

∑
i

(ti − t′i)
2

ti + t′i
, (14.38)

which measures the likelihood that the two signatures were generated from consistent random
processes. These distance metrics are then converted into SVM kernels using a generalized
Gaussian kernel

K(S, S′) = exp
(
− 1

A
D(S, S′)

)
, (14.39)

where A is a scaling parameter set to the mean distance between training images. In their
experiments, they find that the EMD works best for visual category recognition and the χ2

measure is best for texture recognition.

614 14 Recognition

+

+
++

+

+

+ + +

+
+

++

+
++

+

+

+ + +

+
+

++

+
++

+

+

+ + +

+
+

+
level 2level 1level 0

� 1/4 � 1/4 � 1/2

++ +

(a) (b)

Figure 14.37 Comparing collections of feature vectors using pyramid matching. (a) The feature-space pyramid
match kernel (Grauman and Darrell 2007b) constructs a pyramid in high-dimensional feature space and uses it to
compute distances (and implicit correspondences) between sets of feature vectors. (b) Spatial pyramid matching
(Lazebnik, Schmid, and Ponce 2006) c© 2006 IEEE divides the image into a pyramid of pooling regions and
computes separate visual word histograms (distributions) inside each spatial bin.

Instead of quantizing feature vectors to visual words, Grauman and Darrell (2007b) de-
velop a technique for directly computing an approximate distance between two variably sized
collections of feature vectors. Their approach is to bin the feature vectors into a multi-
resolution pyramid defined in feature space (Figure 14.37a) and count the number of features
that land in corresponding bins Bil and B′

il (Figure 14.38a–c). The distance between the two
sets of feature vectors (which can be thought of as points in a high-dimensional space) is
computed using histogram intersection between corresponding bins

Cl =
∑

i

min(Bil, B
′
il) (14.40)

(Figure 14.38d). These per-level counts are then summed up in a weighted fashion

DΔ =
∑

l

wlNl with Nl = Cl − Cl−1 and wl =
1

d2l
(14.41)

(Figure 14.38e), which discounts matches already found at finer levels while weighting finer
matches more heavily. (d is the dimension of the embedding space, i.e., the length of the
feature vectors.) In follow-on work, Grauman and Darrell (2007a) show how an explicit
construction of the pyramid can be avoided using hashing techniques.

Inspired by this work, Lazebnik, Schmid, and Ponce (2006) show how a similar idea
can be employed to augment bags of keypoints with loose notions of 2D spatial location
analogous to the pooling performed by SIFT (Lowe 2004) and “gist” (Torralba, Murphy,
Freeman et al. 2003). In their work, they extract affine region descriptors (Lazebnik, Schmid,
and Ponce 2005) and quantize them into visual words. (Based on previous results by Fei-Fei
and Perona (2005), the feature descriptors are extracted densely (on a regular grid) over the
image, which can be helpful in describing textureless regions such as the sky.) They then form

14.4 Category recognition 615

(a) (b) (c) (d) (e)

Figure 14.38 A one-dimensional illustration of comparing collections of feature vectors using the pyramid match
kernel (Grauman and Darrell 2007b): (a) distribution of feature vectors (point sets) into the pyramidal bins; (b–c)
histogram of point counts in bins Bil and B′

il for the two images; (d) histogram intersections (minimum values);
(e) per-level similarity scores, which are weighted and summed to form the final distance/similarity metric.

a spatial pyramid of bins containing word counts (histograms), as shown in Figure 14.37b, and
use a similar pyramid match kernel to combine histogram intersection counts in a hierarchical
fashion.

The debate about whether to use quantized feature descriptors or continuous descriptors
and also whether to use sparse or dense features continues to this day. Boiman, Shechtman,
and Irani (2008) show that if query images are compared to all the features representing a
given class, rather than just each class image individually, nearest-neighbor matching fol-
lowed by a naı̈ve Bayes classifier outperforms quantized visual words (Figure 14.39). In-
stead of using generic feature detectors and descriptors, some authors have been investigat-
ing learning class-specific features (Ferencz, Learned-Miller, and Malik 2008), often using
randomized forests (Philbin, Chum, Isard et al. 2007; Moosmann, Nowak, and Jurie 2008;
Shotton, Johnson, and Cipolla 2008) or combining the feature generation and image classi-
fication stages (Yang, Jin, Sukthankar et al. 2008). Others, such as Serre, Wolf, and Poggio
(2005) and Mutch and Lowe (2008) use hierarchies of dense feature transforms inspired by
biological (visual cortical) processing combined with SVMs for final classification.

14.4.2 Part-based models

Recognizing an object by finding its constituent parts and measuring their geometric rela-
tionships is one of the oldest approaches to object recognition (Fischler and Elschlager 1973;
Kanade 1977; Yuille 1991). We have already seen examples of part-based approaches being
used for face recognition (Figure 14.18) (Moghaddam and Pentland 1997; Heisele, Ho, Wu

616 14 Recognition

Figure 14.39 “Image-to-Image” vs. “Image-to-Class” distance comparison (Boiman, Shechtman, and Irani
2008) c© 2008 IEEE. The query image on the upper left may not match the feature distribution of any of the
database images in the bottom row. However, if each feature in the query is matched to its closest analog in all
the class images, a good match can be found.

et al. 2003; Heisele, Serre, and Poggio 2007) and pedestrian detection (Figure 14.9) (Felzen-
szwalb, McAllester, and Ramanan 2008).

In this section, we look more closely at some of the central issues in part-based recog-
nition, namely, the representation of geometric relationships, the representation of individ-
ual parts, and algorithms for learning such descriptions and recognizing them at run time.
More details on part-based models for recognition can be found in the course notes of Fergus
(2007b, 2009).

The earliest approaches to representing geometric relationships were dubbed pictorial
structures by Fischler and Elschlager (1973) and consisted of spring-like connections between
different feature locations (Figure 14.1a). To fit a pictorial structure to an image, an energy
function of the form

E =
∑

i

Vi(li) +
∑
ij∈E

Vij(li, lj) (14.42)

is minimized over all potential part locations or poses {li} and pairs of parts (i, j) for which
an edge (geometric relationship) exists in E. Note how this energy is closely related to
that used with Markov random fields (3.108–3.109), which can be used to embed pictorial
structures in a probabilistic framework that makes parameter learning easier (Felzenszwalb
and Huttenlocher 2005).

Part-based models can have different topologies for the geometric connections between
the parts (Figure 14.41). For example, Felzenszwalb and Huttenlocher (2005) restrict the
connections to a tree (Figure 14.41d), which makes learning and inference more tractable. A
tree topology enables the use of a recursive Viterbi (dynamic programming) algorithm (Pearl
1988; Bishop 2006), in which leaf nodes are first optimized as a function of their parents, and
the resulting values are then plugged in and eliminated from the energy function—see Ap-
pendix B.5.2. The Viterbi algorithm computes an optimal match in O(N2|E| + NP) time,

14.4 Category recognition 617

Figure 14.40 Using pictorial structures to locate and track a person (Felzenszwalb and Huttenlocher 2005) c©
2005 Springer. The structure consists of articulated rectangular body parts (torso, head, and limbs) connected in
a tree topology that encodes relative part positions and orientations. To fit a pictorial structure model, a binary
silhouette image is first computed using background subtraction.

where N is the number of potential locations or poses for each part, |E| is the number of
edges (pairwise constraints), and P = |V | is the number of parts (vertices in the graphical
model, which is equal to |E| + 1 in a tree). To further increase the efficiency of the infer-
ence algorithm, Felzenszwalb and Huttenlocher (2005) restrict the pairwise energy functions
Vij(li, lj) to be Mahalanobis distances on functions of location variables and then use fast
distance transform algorithms to minimize each pairwise interaction in time that is closer to
linear in N .

Figure 14.40 shows the results of using their pictorial structures algorithm to fit an articu-
lated body model to a binary image obtained by background segmentation. In this application
of pictorial structures, parts are parameterized by the locations, sizes, and orientations of their
approximating rectangles. Unary matching potentials Vi(li) are determined by counting the
percentage of foreground and background pixels inside and just outside the tilted rectangle
representing each part.

Over the last decade, a large number of different graphical models have been proposed
for part-based recognition, as shown in Figure 14.41. Carneiro and Lowe (2006) discuss
a number of these models and propose one of their own, which they call a sparse flexible
model; it involves ordering the parts and having each part’s location depend on at most k of
its ancestor locations.

The simplest models, which we saw in Section 14.4.1, are bags of words, where there are
no geometric relationships between different parts or features. While such models can be very
efficient, they have a very limited capacity to express the spatial arrangement of parts. Trees
and stars (a special case of trees where all leaf nodes are directly connected to a common root)
are the most efficient in terms of inference and hence also learning (Felzenszwalb and Hutten-
locher 2005; Fergus, Perona, and Zisserman 2005; Felzenszwalb, McAllester, and Ramanan
2008). Directed acyclic graphs (Figure 14.41f–g) come next in terms of complexity and can
still support efficient inference, although at the cost of imposing a causal structure on the
part model (Bouchard and Triggs 2005; Carneiro and Lowe 2006). k-fans, in which a clique
of size k forms the root of a star-shaped model (Figure 14.41c) have inference complexity
O(Nk+1), although with distance transforms and Gaussian priors, this can be lowered to

618 14 Recognition

X1

X2 X3

X4 X5

X6

X1

X2 X3

X4 X5

X6 X4

X5X3

X6

X2 X1 X1

X2 X3 X4

X5 X6

(a) (b) (c) (d)

X2 X3

X4 X5

X6

X1 g

h1 hg

l1 l2 lK

X1 X3X2 X5 X6 X7

. . .

. . .

Center

Part

Subpart

. . .

X1

X2

X3

X4

X5
X6

X1

X2

X3

X4

X5
X6

k=1 k=2

(e) (f) (g)

Figure 14.41 Graphical models for geometric spatial priors (Carneiro and Lowe 2006) c© 2006 Springer: (a)
constellation (Fergus, Perona, and Zisserman 2007); (b) star (Crandall, Felzenszwalb, and Huttenlocher 2005;
Fergus, Perona, and Zisserman 2005); (c) k-fan (k = 2) (Crandall, Felzenszwalb, and Huttenlocher 2005); (d)
tree (Felzenszwalb and Huttenlocher 2005); (e) bag of features (Csurka, Dance, Fan et al. 2004); (f) hierarchy
(Bouchard and Triggs 2005); (g) sparse flexible model (Carneiro and Lowe 2006).

O(Nk) (Crandall, Felzenszwalb, and Huttenlocher 2005; Crandall and Huttenlocher 2006).
Finally, fully connected constellation models (Figure 14.41a) are the most general, but the
assignment of features to parts becomes intractable for moderate numbers of parts P , since
the complexity of such an assignment is O(NP) (Fergus, Perona, and Zisserman 2007).

The original constellation model was developed by Burl, Weber, and Perona (1998) and
consists of a number of parts whose relative positions are encoded by their mean locations
and a full covariance matrix, which is used to denote not only positional uncertainty but also
potential correlations (covariance) between different parts (Figure 14.42a). Weber, Welling,
and Perona (2000) extended this technique to a weakly supervised setting, where both the
appearance of each part and its locations are automatically learned given only whole image
labels. Fergus, Perona, and Zisserman (2007) further extend this approach to simultaneous
learning of appearance and shape models from scale-invariant keypoint detections.

Figure 14.42a shows the shape model learned for the motorcycle class. The top figure
shows the mean relative locations for each part along with their position covariances (inter-
part covariances are not shown) and likelihood of occurrence. The bottom curve shows the
Gaussian PDFs for the relative log-scale of each part with respect to the “landmark” feature.
Figure 14.42b shows the appearance model learned for each part, visualized as the patches
around detected features in the training database that best match the appearance model. Fig-
ure 14.42c shows the features detected in the test database (pink dots) along with the corre-
sponding parts that they were assigned to (colored circles). As you can see, the system has
successfully learned and then used a fairly complex model of motorcycle appearance.

The part-based approach to recognition has also been extended to learning new categories
from small numbers of examples, building on recognition components developed for other
classes (Fei-Fei, Fergus, and Perona 2006). More complex hierarchical part-based models can

14.4 Category recognition 619

(a) (b)

Correct Correct INCORRECT Correct Correct

Correct Correct Correct Correct Correct

Correct Correct Correct Correct Correct

Correct Correct Correct INCORRECT INCORRECT

Correct INCORRECT Correct Correct Correct

(c)

Figure 14.42 Part-based recognition (Fergus, Perona, and Zisserman 2007) c© 2007 Springer: (a) locations and
covariance ellipses for each part, along with their occurrence probabilities (top) and relative log-scale densities
(bottom); (b) part examples drawn from the training images that best match the average appearance; (c) recogni-
tion results for the motorcycle class, showing detected features (pink dots) and parts (colored circles).

620 14 Recognition

Figure 14.43 Interleaved recognition and segmentation (Leibe, Leonardis, and Schiele 2008) c© 2008 Springer.
The process starts by re-recognizing visual words (codebook entries) in a new image (scene) and having each
part vote for likely locations and size in a 3D (x, y, s) voting space (top row). Once a maximum has been
found, the parts (features) corresponding to this instance are determined by backprojecting the contributing votes.
The foreground–background segmentation for each object can be found by backprojecting probabilistic masks
associated with each codebook entry. The whole recognition and segmentation process can then be repeated.

be developed using the concept of grammars (Bouchard and Triggs 2005; Zhu and Mumford
2006). A simpler way to use parts is to have keypoints that are recognized as being part of
a class vote for the estimated part locations, as shown in the top row of Figure 14.43 (Leibe,
Leonardis, and Schiele 2008). (Implicitly, this corresponds to having a star-shaped geometric
model.)

14.4.3 Recognition with segmentation

The most challenging version of generic object recognition is to simultaneously perform
recognition with accurate boundary segmentation (Fergus 2007a). For instance recognition
(Section 14.3.1), this can sometimes be achieved by backprojecting the object model into
the scene (Lowe 2004), as shown in Figure 14.1d, or matching portions of the new scene to
pre-learned (segmented) object models (Ferrari, Tuytelaars, and Van Gool 2006b; Kannala,
Rahtu, Brandt et al. 2008).

For more complex (flexible) object models, such as those for humans Figure 14.1f, a
different approach is to pre-segment the image into larger or smaller pieces (Chapter 5) and
then match such pieces to portions of the model (Mori, Ren, Efros et al. 2004; Mori 2005;
He, Zemel, and Ray 2006; Gu, Lim, Arbelaez et al. 2009).

An alternative approach by Leibe, Leonardis, and Schiele (2008), which we introduced
in the previous section, votes for potential object locations and scales based on the detec-
tion of features corresponding to pre-clustered visual codebook entries (Figure 14.43). To
support segmentation, each codebook entry has an associated foreground–background mask,
which is learned as part of the codebook clustering process from pre-labeled object segmen-
tation masks. During recognition, once a maximum in the voting space is found, the masks

14.4 Category recognition 621

associated with the entries that voted for this instance are combined to obtain an object seg-
mentation, as shown on the left side of Figure 14.43.

A more holistic approach to recognition and segmentation is to formulate the problem as
one of labeling every pixel in an image with its class membership, and to solve this prob-
lem using energy minimization or Bayesian inference techniques, i.e., conditional random
fields (Section 3.7.2, (3.118)) (Kumar and Hebert 2006; He, Zemel, and Carreira-Perpiñán
2004). The TextonBoost system of Shotton, Winn, Rother et al. (2009) uses unary (pixel-
wise) potentials based on image-specific color distributions (Section 5.5) (Boykov and Jolly
2001; Rother, Kolmogorov, and Blake 2004), location information (e.g., foreground objects
are more likely to be in the middle of the image, sky is likely to be higher, and road is likely
to be lower), and novel texture-layout classifiers trained using shared boosting. It also uses
traditional pairwise potentials that look at image color gradients (Veksler 2001; Boykov and
Jolly 2001; Rother, Kolmogorov, and Blake 2004). The texton-layout features first filter the
image with a series of 17 oriented filter banks and then cluster the responses to classify each
pixel into 30 different texton classes (Malik, Belongie, Leung et al. 2001). The responses
are then filtered using offset rectangular regions trained with joint boosting (Viola and Jones
2004) to produce the texton-layout features used as unary potentials.

Figure 14.44a shows some examples of images successfully labeled and segmented using
TextonBoost, while Figure 14.44b shows examples where it does not do as well. As you can
see, this kind of semantic labeling can be extremely challenging.

The TextonBoost conditional random field framework has been extended to LayoutCRFs
by Winn and Shotton (2006), who incorporate additional constraints to recognize multiple
object instances and deal with occlusions (Figure 14.45), and even more recently by Hoiem,
Rother, and Winn (2007) to incorporate full 3D models.

Conditional random fields continue to be widely used and extended for simultaneous
recognition and segmentation applications (Kumar and Hebert 2006; He, Zemel, and Ray
2006; Levin and Weiss 2006; Verbeek and Triggs 2007; Yang, Meer, and Foran 2007; Rabi-
novich, Vedaldi, Galleguillos et al. 2007; Batra, Sukthankar, and Chen 2008; Larlus and Jurie
2008; He and Zemel 2008; Kumar, Torr, and Zisserman 2010), producing some of the best
results on the difficult PASCAL VOC segmentation challenge (Shotton, Johnson, and Cipolla
2008; Kohli, Ladický, and Torr 2009). Approaches that first segment the image into unique
or multiple segmentations (Borenstein and Ullman 2008; He, Zemel, and Ray 2006; Russell,
Efros, Sivic et al. 2006) (potentially combined with CRF models) also do quite well: Csurka
and Perronnin (2008) have one of the top algorithms in the VOC segmentation challenge.
Hierarchical (multi-scale) and grammar (parsing) models are also sometimes used (Tu, Chen,
Yuille et al. 2005; Zhu, Chen, Lin et al. 2008).

14.4.4 Application: Intelligent photo editing

Recent advances in object recognition and scene understanding have greatly increased the
power of intelligent (semi-automated) photo editing applications. One example is the Photo
Clip Art system of Lalonde, Hoiem, Efros et al. (2007), which recognizes and segments
objects of interest, such as pedestrians, in Internet photo collections and then allows users to
paste them into their own photos. Another is the scene completion system of Hays and Efros
(2007), which tackles the same inpainting problem we studied in Section 10.5. Given an
image in which we wish to erase and fill in a large section (Figure 14.46a–b), where do you

622 14 Recognition

(a)

(b)

Figure 14.44 Simultaneous recognition and segmentation using TextonBoost (Shotton, Winn, Rother et al. 2009)
c© 2009 Springer: (a) successful recognition results; (b) less successful results.

14.4 Category recognition 623

Figure 14.45 Layout consistent random field (Winn and Shotton 2006) c© 2006 IEEE. The numbers indicate
the kind of neighborhood relations that can exist between pixels assigned to the same or different classes. Each
pairwise relationship carries its own likelihood (energy penalty).

(a) (b) (c) (d)

Figure 14.46 Scene completion using millions of photographs (Hays and Efros 2007) c© 2007 ACM: (a) orig-
inal image; (b) after unwanted foreground removal; (c) plausible scene matches, with the one the user selected
highlighted in red; (d) output image after replacement and blending.

get the pixels to fill in the gaps in the edited image? Traditional approaches either use smooth
continuation (Bertalmio, Sapiro, Caselles et al. 2000) or borrowing pixels from other parts of
the image (Efros and Leung 1999; Criminisi, Pérez, and Toyama 2004; Efros and Freeman
2001). With the advent of huge repositories of images on the Web (a topic we return to in
Section 14.5.1), it often makes more sense to find a different image to serve as the source of
the missing pixels.

In their system, Hays and Efros (2007) compute the gist of each image (Oliva and Tor-
ralba 2001; Torralba, Murphy, Freeman et al. 2003) to find images with similar colors and
composition. They then run a graph cut algorithm that minimizes image gradient differences
and composite the new replacement piece into the original image using Poisson image blend-
ing (Section 9.3.4) (Pérez, Gangnet, and Blake 2003). Figure 14.46d shows the resulting
image with the erased foreground rooftops region replaced with sailboats.

A different application of image recognition and segmentation is to infer 3D structure
from a single photo by recognizing certain scene structures. For example, Criminisi, Reid,
and Zisserman (2000) detect vanishing points and have the user draw basic structures, such
as walls, in order infer the 3D geometry (Section 6.3.3). Hoiem, Efros, and Hebert (2005a)
on the other hand, work with more “organic” scenes such as the one shown in Figure 14.47.

624 14 Recognition

(a) (b) (c) (d) (e)

Figure 14.47 Automatic photo pop-up (Hoiem, Efros, and Hebert 2005a) c© 2005 ACM: (a) input image; (b)
superpixels are grouped into (c) multiple regions; (d) labelings indicating ground (green), vertical (red), and sky
(blue); (e) novel view of resulting piecewise-planar 3D model.

Their system uses a variety of classifiers and statistics learned from labeled images to classify
each pixel as either ground, vertical, or sky (Figure 14.47d). To do this, they begin by com-
puting superpixels (Figure 14.47b) and then group them into plausible regions that are likely
to share similar geometric labels (Figure 14.47c). After all the pixels have been labeled, the
boundaries between the vertical and ground pixels can be used to infer 3D lines along which
the image can be folded into a “pop-up” (after removing the sky pixels), as shown in Fig-
ure 14.47e. In related work, Saxena, Sun, and Ng (2009) develop a system that directly infers
the depth and orientation of each pixel instead of using just three geometric class labels.

Face detection and localization can also be used in a variety of photo editing applications
(in addition to being used in-camera to provide better focus, exposure, and flash settings).
Zanella and Fuentes (2004) use active shape models (Section 14.2.2) to register facial features
for creating automated morphs. Rother, Bordeaux, Hamadi et al. (2006) use face and sky
detection to determine regions of interest in order to decide which pieces from a collection
of images to stitch into a collage. Bitouk, Kumar, Dhillon et al. (2008) describe a system
that matches a given face image to a large collection of Internet face images, which can
then be used (with careful relighting algorithms) to replace the face in the original image.
Applications they describe include de-identification and getting the best possible smile from
everyone in a “burst mode” group shot. Leyvand, Cohen-Or, Dror et al. (2008) show how
accurately locating facial features using an active shape model (Cootes, Edwards, and Taylor
2001; Zhou, Gu, and Zhang 2003) can be used to warp such features (and hence the image)
towards configurations resembling those found in images whose facial attractiveness was
highly rated, thereby “beautifying” the image without completely losing a person’s identity.

Most of these techniques rely either on a set of labeled training images, which is an
essential component of all learning techniques, or the even more recent explosion in images
available on the Internet. The assumption in some of this work (and in recognition systems
based on such very large databases (Section 14.5.1)) is that as the collection of accessible (and
potentially partially labeled) images gets larger, finding a close match gets easier. As Hays
and Efros (2007) state in their abstract “Our chief insight is that while the space of images is
effectively infinite, the space of semantically differentiable scenes is actually not that large.”
In an interesting commentary on their paper, Levoy (2008) disputes this assertion, claiming
that “features in natural scenes form a heavy-tailed distribution, meaning that while some
features in photographs are more common than others, the relative occurrence of less common
features drops slowly. In other words, there are many unusual photographs in the world.” He
does, however agree that in computational photography, as in many other applications such

14.5 Context and scene understanding 625

(a) (b) (c) (d) (e)

Figure 14.48 The importance of context (images courtesy of Antonio Torralba). Can you name all of the objects
in images (a–b), especially those that are circled in (c–d). Look carefully at the circled objects. Did you notice
that they all have the same shape (after being rotated), as shown in column (e)?

as speech recognition, synthesis, and translation, “simple machine learning algorithms often
outperform more sophisticated ones if trained on large enough databases.” He also goes on
to point out both the potential advantages of such systems, such as better automatic color
balancing, and potential issues and pitfalls with the kind of image fakery that these new
approaches enable.

For additional examples of photo editing and computational photography applications
enabled by Internet computer vision, please see recent workshops on this topic,19 as well as
the special journal issue (Avidan, Baker, and Shan 2010), and the course on Internet Vision
by Tamara Berg (2008).

14.5 Context and scene understanding

Thus far, we have mostly considered the task of recognizing and localizing objects in isolation
from that of understanding the scene (context) in which the object occur. This is a severe
limitation, as context plays a very important role in human object recognition (Oliva and
Torralba 2007). As we will see in this section, it can greatly improve the performance of
object recognition algorithms (Divvala, Hoiem, Hays et al. 2009), as well as providing useful
semantic clues for general scene understanding (Torralba 2008).

Consider the two photographs in Figure 14.48a–b. Can you name all of the objects,
especially those circled in images (c–d)? Now have a closer look at the circled objects.
Do see any similarity in their shapes? In fact, if you rotate them by 90◦, they are all the
same as the “blob” shown in Figure 14.48e. So much for our ability to recognize object by
their shape! Another (perhaps more artificial) example of recognition in context is shown in
Figure 14.49. Try to name all of the letters and numbers, and then see if you guessed right.

Even though we have not addressed context explicitly earlier in this chapter, we have
already seen several instances of this general idea being used. A simple way to incorporate
spatial information into a recognition algorithm is to compute feature statistics over different
regions, as in the spatial pyramid system of Lazebnik, Schmid, and Ponce (2006). Part-based
models (Section 14.4.2, Figures 14.40–14.43), use a kind of local context, where various parts
need to be arranged in a proper geometric relationship to constitute an object.

19 http://www.internetvisioner.org/.

http://www.internetvisioner.org/

626 14 Recognition

Figure 14.49 More examples of context: read the letters in the first group, the numbers in the second, and the
letters and numbers in the third. (Images courtesy of Antonio Torralba.)

The biggest difference between part-based and context models is that the latter combine
objects into scenes and the number of constituent objects from each class is not known in
advance. In fact, it is possible to combine part-based and context models into the same
recognition architecture (Murphy, Torralba, and Freeman 2003; Sudderth, Torralba, Freeman
et al. 2008; Crandall and Huttenlocher 2007).

Consider the street and office scenes shown in Figure 14.50a–b. If we have enough train-
ing images with labeled regions, such as buildings, cars, and roads or monitors, keyboards,
and mice, we can develop a geometric model for describing their relative positions. Sud-
derth, Torralba, Freeman et al. (2008) develop such a model, which can be thought of as a
two-level constellation model. At the top level, the distributions of objects relative to each
other (say, buildings with respect to cars) is modeled as a Gaussian (Figure 14.50c, upper
right corners). At the bottom level, the distribution of parts (affine covariant features) with
respect to the object center is modeled using a mixture of Gaussians (Figure 14.50c, lower
two rows). However, since the number of objects in the scene and parts in each object is
unknown, a latent Dirichlet process (LDP) is used to model object and part creation in a gen-
erative framework. The distributions for all of the objects and parts are learned from a large
labeled database and then later used during inference (recognition) to label the elements of a
scene.

Another example of context is in simultaneous segmentation and recognition (Section 14.4.3)
(Figures 14.44–14.45), where the arrangements of various objects in a scene are used as part
of the labeling process. Torralba, Murphy, and Freeman (2004) describe a conditional random
field where the estimated locations of building and roads influence the detection of cars, and
where boosting is used to learn the structure of the CRF. Rabinovich, Vedaldi, Galleguillos
et al. (2007) use context to improve the results of CRF segmentation by noting that certain
adjacencies (relationships) are more likely than others, e.g., a person is more likely to be on
a horse than on a dog.

Context also plays an important role in 3D inference from single images (Figure 14.47),
using computer vision techniques for labeling pixels as belonging to the ground, vertical
surfaces, or sky (Hoiem, Efros, and Hebert 2005a,b). This line of work has been extended to
a more holistic approach that simultaneously reasons about object identity, location, surface
orientations, occlusions, and camera viewing parameters (Hoiem, Efros, and Hebert 2008a,b).

A number of approaches use the gist of a scene (Torralba 2003; Torralba, Murphy, Free-
man et al. 2003) to determine where instances of particular objects are likely to occur. For
example, Murphy, Torralba, and Freeman (2003) train a regressor to predict the vertical loca-

14.5 Context and scene understanding 627

(a)

(b) (c)

Figure 14.50 Contextual scene models for object recognition (Sudderth, Torralba, Freeman et al. 2008) c©
2008 Springer: (a) some street scenes and their corresponding labels (magenta = buildings, red = cars, green =
trees, blue = road); (b) some office scenes (red = computer screen, green = keyboard, blue = mouse); (c) learned
contextual models built from these labeled scenes. The top row shows a sample label image and the distribution
of the objects relative to the center red (car or screen) object. The bottom rows show the distributions of parts that
make up each object.

tions of objects such as pedestrians, cars, and buildings (or screens and keyboard for indoor
office scenes) based on the gist of an image. These location distributions are then used with
classic object detectors to improve the performance of the detectors. Gists can also be used to
directly match complete images, as we saw in the scene completion work of Hays and Efros
(2007).

Finally, some of the most recent work in scene understanding exploits the existence of
large numbers of labeled (or even unlabeled) images to perform matching directly against
whole images, where the images themselves implicitly encode the expected relationships
between objects (Figure 14.51) (Russell, Torralba, Liu et al. 2007; Malisiewicz and Efros
2008). We discuss such techniques in the next section, where we look at the influence that
large image databases have had on object recognition and scene understanding.

14.5.1 Learning and large image collections

Given how learning techniques are widely used in recognition algorithms, you may wonder
whether the topic of learning deserves its own section (or even chapter), or whether it is just
part of the basic fabric of all recognition tasks. In fact, trying to build a recognition system
without lots of training data for anything other than a basic pattern such as a UPC code has
proven to be a dismal failure.

In this chapter, we have already seen lots of techniques borrowed from the machine learn-
ing, statistics, and pattern recognition communities. These include principal component, sub-
space, and discriminant analysis (Section 14.2.1) and more sophisticated discriminative clas-

628 14 Recognition

(a) (b) (c)

Figure 14.51 Recognition by scene alignment (Russell, Torralba, Liu et al. 2007): (a) input image; (b) matched
images with similar scene configurations; (c) final labeling of the input image.

sification algorithms such as neural networks, support vector machines, and boosting (Sec-
tion 14.1.1). Some of the best-performing techniques on challenging recognition benchmarks
(Varma and Ray 2007; Felzenszwalb, McAllester, and Ramanan 2008; Fritz and Schiele 2008;
Vedaldi, Gulshan, Varma et al. 2009) rely heavily on the latest machine learning techniques,
whose development is often being driven by challenging vision problems (Freeman, Perona,
and Schölkopf 2008).

A distinction sometimes made in the recognition community is between problems where
most of the variables of interest (say, parts) are already (partially) labeled and systems that
learn more of the problem structure with less supervision (Fergus, Perona, and Zisserman
2007; Fei-Fei, Fergus, and Perona 2006). In fact, recent work by Sivic, Russell, Zisserman et
al. (2008) has demonstrated the ability to learn visual hierarchies (hierarchies of object parts
with related visual appearance) and scene segmentations in a totally unsupervised framework.

Perhaps the most dramatic change in the recognition community has been the appearance
of very large databases of training images.20 Early learning-based algorithms, such as those
for face and pedestrian detection (Section 14.1), used relatively few (in the hundreds) labeled
examples to train recognition algorithm parameters (say, the thresholds used in boosting). To-
day, some recognition algorithms use databases such as LabelMe (Russell, Torralba, Murphy
et al. 2008), which contain tens of thousands of labeled examples.

The existence of such large databases opens up the possibility of matching directly against
the training images rather than using them to learn the parameters of recognition algorithms.
Russell, Torralba, Liu et al. (2007) describe a system where a new image is matched against
each of the training images, from which a consensus labeling for the unknown objects in
the scene can be inferred, as shown in Figure 14.51. Malisiewicz and Efros (2008) start
by over-segmenting each image and then use the LabelMe database to search for similar
images and configurations in order to obtain per-pixel category labelings. It is also possible
to combine feature-based correspondence algorithms with large labeled databases to perform
simultaneous recognition and segmentation (Liu, Yuen, and Torralba 2009).

When the database of images becomes large enough, it is even possible to directly match
complete images with the expectation of finding a good match. Torralba, Freeman, and Fergus
(2008) start with a database of 80 million tiny (32× 32) images and compensate for the poor
accuracy in their image labels, which are collected automatically from the Internet, by using

20 We have already seen some computational photography applications of such databases in Section 14.4.4.

14.5 Context and scene understanding 629

(a) (b) (c) (d)

Figure 14.52 Recognition using tiny images (Torralba, Freeman, and Fergus 2008) c© 2008 IEEE: columns (a)
and (c) show sample input images and columns (b) and (d) show the corresponding 16 nearest neighbors in the
database of 80 million tiny images.

a semantic taxonomy (Wordnet) to infer the most likely labels for a new image. Somewhere
in the 80 million images, there are enough examples to associate some set of images with
each of the 75,000 non-abstract nouns in Wordnet that they use in their system. Some sample
recognition results are shown in Figure 14.52.

Another example of a large labeled database of images is ImageNet (Deng, Dong, Socher
et al. 2009), which is collecting images for the 80,000 nouns (synonym sets) in WordNet
(Fellbaum 1998). As of April 2010, about 500–1000 carefully vetted examples for 14841
synsets have been collected (Figure 14.53). The paper by Deng, Dong, Socher et al. (2009)
also has a nice review of related databases.

As we mentioned in Section 14.4.3, the existence of large databases of partially labeled
Internet imagery has given rise to a new sub-field of Internet computer vision, with its own
workshops21 and a special journal issue (Avidan, Baker, and Shan 2010).

21 http://www.internetvisioner.org/.

http://www.internetvisioner.org/

630 14 Recognition

Figure 14.53 ImageNet (Deng, Dong, Socher et al. 2009) c© 2009 IEEE. This database contains over 500
carefully vetted images for each of 14,841 (as of April, 2010) nouns from the WordNet hierarchy.

14.5.2 Application: Image search

Even though visual recognition algorithms are by some measures still in their infancy, they
are already starting to have some impact on image search, i.e., the retrieval of images from the
Web using combinations of keywords and visual similarity. Today, most image search engines
rely mostly on textual keywords found in captions, nearby text, and filenames, augmented by
user click-through data (Craswell and Szummer 2007). As recognition algorithms continue
to improve, however, visual features and visual similarity will start being used to recognize
images with missing or erroneous keywords.

The topic of searching by visual similarity has a long history and goes by a variety of
names, including content-based image retrieval (CBIR) (Smeulders, Worring, Santini et al.
2000; Lew, Sebe, Djeraba et al. 2006; Vasconcelos 2007; Datta, Joshi, Li et al. 2008) and
query by image content (QBIC) (Flickner, Sawhney, Niblack et al. 1995). Original publica-
tions in these fields were based primarily on simple whole-image similarity metrics, such as
color and texture (Swain and Ballard 1991; Jacobs, Finkelstein, and Salesin 1995; Manjunathi
and Ma 1996).

In more recent work, Fergus, Perona, and Zisserman (2004) use a feature-based learning
and recognition algorithm to re-rank the outputs from a traditional keyword-based image
search engine. In follow-on work, Fergus, Fei-Fei, Perona et al. (2005) cluster the results
returned by image search using an extension of probabilistic latest semantic analysis (PLSA)
(Hofmann 1999) and then select the clusters associated with the highest ranked results as the
representative images for that category.

Even more recent work relies on carefully annotated image databases such as LabelMe
(Russell, Torralba, Murphy et al. 2008). For example, Malisiewicz and Efros (2008) describe
a system that, given a query image, can find similar LabelMe images, whereas Liu, Yuen, and
Torralba (2009) combine feature-based correspondence algorithms with the labeled database
to perform simultaneous recognition and segmentation.

14.6 Recognition databases and test sets 631

14.6 Recognition databases and test sets

In addition to rapid advances in machine learning and statistical modeling techniques, one
of the key ingredients in the continued improvement of recognition algorithms has been the
increased availability and quality of image recognition databases.

Tables 14.1 and 14.2, which are based on similar tables in Fei-Fei, Fergus, and Torralba
(2009), updated with more recent entries and URLs, show some of the mostly widely used
recognition databases. Some of these databases, such as the ones for face recognition and
localization, date back over a decade. The most recent ones, such as the PASCAL database,
are refreshed annually with ever more challenging problems. Table 14.1 shows examples of
databases used primarily for (whole image) recognition while Table 14.2 shows databases
where more accurate localization or segmentation information is available and expected.

Ponce, Berg, Everingham et al. (2006) discuss some of the problems with earlier datasets
and describe how the latest PASCAL Visual Object Classes Challenge aims to overcome
these. Some examples of the 20 visual classes in the 2008 challenge are shown in Fig-
ure 14.54. The slides from the VOC workshops,22 are a great source for pointers to the
best recognition techniques currently available.

Two of the most recent trends in recognition databases are the emergence of Web-based
annotation and data collection tools, and the use of search and recognition algorithms to build
up databases (Ponce, Berg, Everingham et al. 2006). Some of the most interesting work in
human annotation of images comes from a series of interactive multi-person games such as
ESP (von Ahn and Dabbish 2004) and Peekaboom (von Ahn, Liu, and Blum 2006). In these
games, people help each other guess the identity of a hidden image by giving textual clues
as to its contents, which implicitly labels either the whole image or just regions. A more
“serious” volunteer effort is the LabelMe database, in which vision researchers contribute
manual polygonal region annotations in return for gaining access to the database (Russell,
Torralba, Murphy et al. 2008).

The use of computer vision algorithms for collecting recognition databases dates back to
the work of Fergus, Fei-Fei, Perona et al. (2005), who cluster the results returned by Google
image search using an extension of PLSA and then select the clusters associated with the
highest ranked results. More recent examples of related techniques include the work of Berg
and Forsyth (2006) and Li and Fei-Fei (2010).

Whatever methods are used to collect and validate recognition databases, they will con-
tinue to grow in size, utility, and difficulty from year to year. They will also continue to be
an essential component of research into the recognition and scene understanding problems,
which remain, as always, the grand challenges of computer vision.

14.7 Additional reading

Although there are currently no specialized textbooks on image recognition and scene un-
derstanding, some surveys (Pinz 2005) and collections of papers (Ponce, Hebert, Schmid et
al. 2006; Dickinson, Leonardis, Schiele et al. 2007) can be found that describe the latest ap-
proaches. Other good sources of recent research are courses on this topic, such as the ICCV

22 http://pascallin.ecs.soton.ac.uk/challenges/VOC/.

http://pascallin.ecs.soton.ac.uk/challenges/VOC/

632 14 Recognition

Name / URL Extents Contents / Reference

Face and person recognition

Yale face database Centered face images Frontal faces
http://www1.cs.columbia.edu/∼belhumeur/ Belhumeur, Hespanha, and Kriegman (1997)

Resources for face detection Various databases Faces in various poses
http://vision.ai.uiuc.edu/mhyang/face-detection-survey.html Yang, Kriegman, and Ahuja (2002)

FERET Centered face images Frontal faces
http://www.frvt.org/FERET Phillips, Moon, Rizvi et al. (2000)

FRVT Centered face images Faces in various poses
http://www.frvt.org/ Phillips, Scruggs, O’Toole et al. (2010)

CMU PIE database Centered face image Faces in various poses
http://www.ri.cmu.edu/projects/project 418.html Sim, Baker, and Bsat (2003)

CMU Multi-PIE database Centered face image Faces in various poses
http://multipie.org Gross, Matthews, Cohn et al. (2010)

Faces in the Wild Internet images Faces in various poses
http://vis-www.cs.umass.edu/lfw/ Huang, Ramesh, Berg et al. (2007)

Consumer image person DB Complete images People
http://chenlab.ece.cornell.edu/people/Andy/GallagherDataset.html Gallagher and Chen (2008)

Object recognition

Caltech 101 Segmentation masks 101 categories
http://www.vision.caltech.edu/Image Datasets/Caltech101/ Fei-Fei, Fergus, and Perona (2006)

Caltech 256 Centered objects 256 categories and clutter
http://www.vision.caltech.edu/Image Datasets/Caltech256/ Griffin, Holub, and Perona (2007)

COIL-100 Centered objects 100 instances
http://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php Nene, Nayar, and Murase (1996)

ETH-80 Centered objects 8 instances, 10 views
http://www.mis.tu-darmstadt.de/datasets Leibe and Schiele (2003)

Instance recognition benchmark Objects in various poses 2550 objects
http://vis.uky.edu/∼stewe/ukbench/ Nistér and Stewénius (2006)

Oxford buildings dataset Pictures of buildings 5062 images
http://www.robots.ox.ac.uk/∼vgg/data/oxbuildings/ Philbin, Chum, Isard et al. (2007)

NORB Bounding box 50 toys
http://www.cs.nyu.edu/∼ylclab/data/norb-v1.0/ LeCun, Huang, and Bottou (2004)

Tiny images Complete images 75,000 (Wordnet) things
http://people.csail.mit.edu/torralba/tinyimages/ Torralba, Freeman, and Fergus (2008)

ImageNet Complete images 14,000 (Wordnet) things
http://www.image-net.org/ Deng, Dong, Socher et al. (2009)

Table 14.1 Image databases for recognition, adapted and expanded from Fei-Fei, Fergus, and Torralba (2009).

http://www.image-net.org/
http://people.csail.mit.edu/torralba/tinyimages/
http://www.cs.nyu.edu/~ylclab/data/norb-v1.0/
http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/
http://vis.uky.edu/~stewe/ukbench/
http://www.mis.tu-darmstadt.de/datasets
http://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://chenlab.ece.cornell.edu/people/Andy/GallagherDataset.html
http://vis-www.cs.umass.edu/lfw/
http://multipie.org
http://www.ri.cmu.edu/projects/project_418.html
http://www.frvt.org/
http://www.frvt.org/FERET
http://vision.ai.uiuc.edu/mhyang/face-detection-survey.html
http://www1.cs.columbia.edu/~belhumeur/

14.7 Additional reading 633

Name / URL Extents Contents / Reference

Object detection / localization

CMU frontal faces Patches Frontal faces
http://vasc.ri.cmu.edu/idb/html/face/frontal images Rowley, Baluja, and Kanade (1998a)

MIT frontal faces Patches Frontal faces
http://cbcl.mit.edu/software-datasets/FaceData2.html Sung and Poggio (1998)

CMU face detection databases Multiple faces Faces in various poses
http://www.ri.cmu.edu/research project detail.html?project id=419 Schneiderman and Kanade (2004)

UIUC Image DB Bounding boxes Cars
http://l2r.cs.uiuc.edu/∼cogcomp/Data/Car/ Agarwal and Roth (2002)

Caltech Pedestrian Dataset Bounding boxes Pedestrians
http://www.vision.caltech.edu/Image Datasets/CaltechPedestrians/ Dollàr, Wojek, Schiele et al. (2009)

Graz-02 Database Segmentation masks Bikes, cars, people
http://www.emt.tugraz.at/∼pinz/data/GRAZ 02/ Opelt, Pinz, Fussenegger et al. (2006)

ETHZ Toys Cluttered images Toys, boxes, magazines
http://www.vision.ee.ethz.ch/∼calvin/datasets.html Ferrari, Tuytelaars, and Van Gool (2006b)

TU Darmstadt DB Segmentation masks Motorbikes, cars, cows
http://www.vision.ee.ethz.ch/∼bleibe/data/datasets.html Leibe, Leonardis, and Schiele (2008)

MSR Cambridge Segmentation masks 23 classes
http://research.microsoft.com/en-us/projects/objectclassrecognition/ Shotton, Winn, Rother et al. (2009)

LabelMe dataset Polygonal boundary >500 categories
http://labelme.csail.mit.edu/ Russell, Torralba, Murphy et al. (2008)

Lotus Hill Segmentation masks Scenes and hierarchies
http://www.imageparsing.com/ Yao, Yang, Lin et al. (2010)

On-line annotation tools

ESP game Image descriptions Web images
http://www.gwap.com/gwap/ von Ahn and Dabbish (2004)

Peekaboom Labeled regions Web images
http://www.gwap.com/gwap/ von Ahn, Liu, and Blum (2006)

LabelMe Polygonal boundary High-resolution images
http://labelme.csail.mit.edu/ Russell, Torralba, Murphy et al. (2008)

Collections of challenges

PASCAL Segmentation, boxes Various
http://pascallin.ecs.soton.ac.uk/challenges/VOC/ Everingham, Van Gool, Williams et al. (2010)

Table 14.2 Image databases for detection and localization, adapted and expanded from Fei-Fei, Fergus, and
Torralba (2009).

http://pascallin.ecs.soton.ac.uk/challenges/VOC/
http://labelme.csail.mit.edu/
http://www.gwap.com/gwap/
http://www.gwap.com/gwap/
http://www.imageparsing.com/
http://labelme.csail.mit.edu/
http://research.microsoft.com/en-us/projects/objectclassrecognition/
http://www.vision.ee.ethz.ch/~bleibe/data/datasets.html
http://www.vision.ee.ethz.ch/~calvin/datasets.html
http://www.emt.tugraz.at/~pinz/data/GRAZ_02/
http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/
http://l2r.cs.uiuc.edu/~cogcomp/Data/Car/
http://www.ri.cmu.edu/research_project_detail.html?project_id=419
http://cbcl.mit.edu/software-datasets/FaceData2.html
http://vasc.ri.cmu.edu/idb/html/face/frontal_images

634 14 Recognition

airplane bicycle bird boat bottle

bus car cat chair cow

diningtable dog horse motorbike person

pottedplant sheep sofa train tvmonitor

Figure 14.54 Sample images from the PASCAL Visual Object Classes Challenge 2008 (VOC2008) database
(Everingham, Van Gool, Williams et al. 2008). The original images were obtained from flickr (http://www.flickr.
com/) and the database rights are explained on http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2008/.

2009 short course (Fei-Fei, Fergus, and Torralba 2009) and Antonio Torralba’s more com-
prehensive MIT course (Torralba 2008). The PASCAL VOC Challenge Web site contains
workshop slides that summarize today’s best performing algorithms.

The literature on face, pedestrian, car, and other object detection is quite extensive. Sem-
inal papers in face detection include those by Osuna, Freund, and Girosi (1997), Sung and
Poggio (1998), Rowley, Baluja, and Kanade (1998a), and Viola and Jones (2004), with Yang,
Kriegman, and Ahuja (2002) providing a comprehensive survey of early work in this field.
More recent examples include (Heisele, Ho, Wu et al. 2003; Heisele, Serre, and Poggio 2007).

Early work in pedestrian and car detection was carried out by Gavrila and Philomin
(1999), Gavrila (1999), Papageorgiou and Poggio (2000), Mohan, Papageorgiou, and Pog-
gio (2001), and Schneiderman and Kanade (2004). More recent examples include the work
of Belongie, Malik, and Puzicha (2002), Mikolajczyk, Schmid, and Zisserman (2004), Dalal
and Triggs (2005), Leibe, Seemann, and Schiele (2005), Dalal, Triggs, and Schmid (2006),
Opelt, Pinz, and Zisserman (2006), Torralba (2007), Andriluka, Roth, and Schiele (2008),
Felzenszwalb, McAllester, and Ramanan (2008), Rogez, Rihan, Ramalingam et al. (2008),
Andriluka, Roth, and Schiele (2009), Kumar, Zisserman, and H.S.Torr (2009), Dollàr, Be-
longie, and Perona (2010). and Felzenszwalb, Girshick, McAllester et al. (2010).

While some of the earliest approaches to face recognition involved finding the distinc-

http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2008/
http://www.flickr.com/
http://www.flickr.com/

14.7 Additional reading 635

tive image features and measuring the distances between them (Fischler and Elschlager 1973;
Kanade 1977; Yuille 1991), more recent approaches rely on comparing gray-level images,
often projected onto lower dimensional subspaces (Turk and Pentland 1991a; Belhumeur,
Hespanha, and Kriegman 1997; Moghaddam and Pentland 1997; Moghaddam, Jebara, and
Pentland 2000; Heisele, Ho, Wu et al. 2003; Heisele, Serre, and Poggio 2007). Additional
details on principal component analysis (PCA) and its Bayesian counterparts can be found in
Appendix B.1.1 and books and articles on this topic (Hastie, Tibshirani, and Friedman 2001;
Bishop 2006; Roweis 1998; Tipping and Bishop 1999; Leonardis and Bischof 2000; Vidal,
Ma, and Sastry 2010). The topics of subspace learning, local distance functions, and metric
learning are covered by Cai, He, Hu et al. (2007), Frome, Singer, Sha et al. (2007), Guil-
laumin, Verbeek, and Schmid (2009), Ramanan and Baker (2009), and Sivic, Everingham,
and Zisserman (2009). An alternative to directly matching gray-level images or patches is to
use non-linear local transforms such as local binary patterns (Ahonen, Hadid, and Pietikäinen
2006; Zhao and Pietikäinen 2007; Cao, Yin, Tang et al. 2010).

In order to boost the performance of what are essentially 2D appearance-based models,
a variety of shape and pose deformation models have been developed (Beymer 1996; Vet-
ter and Poggio 1997), including Active Shape Models (Lanitis, Taylor, and Cootes 1997;
Cootes, Cooper, Taylor et al. 1995; Davies, Twining, and Taylor 2008), Elastic Bunch Graph
Matching (Wiskott, Fellous, Krüger et al. 1997), 3D Morphable Models (Blanz and Vetter
1999), and Active Appearance Models (Costen, Cootes, Edwards et al. 1999; Cootes, Ed-
wards, and Taylor 2001; Gross, Baker, Matthews et al. 2005; Gross, Matthews, and Baker
2006; Matthews, Xiao, and Baker 2007; Liang, Xiao, Wen et al. 2008; Ramnath, Koterba,
Xiao et al. 2008). The topic of head pose estimation, in particular, is covered in a recent
survey by Murphy-Chutorian and Trivedi (2009).

Additional information about face recognition can be found in a number of surveys and
books on this topic (Chellappa, Wilson, and Sirohey 1995; Zhao, Chellappa, Phillips et al.
2003; Li and Jain 2005) as well as on the Face Recognition Web site.23 Databases for face
recognition are discussed by Phillips, Moon, Rizvi et al. (2000), Sim, Baker, and Bsat (2003),
Gross, Shi, and Cohn (2005), Huang, Ramesh, Berg et al. (2007), and Phillips, Scruggs,
O’Toole et al. (2010).

Algorithms for instance recognition, i.e., the detection of static man-made objects that
only vary slightly in appearance but may vary in 3D pose, are mostly based on detecting
2D points of interest and describing them using viewpoint-invariant descriptors (Lowe 2004;
Rothganger, Lazebnik, Schmid et al. 2006; Ferrari, Tuytelaars, and Van Gool 2006b; Gordon
and Lowe 2006; Obdržálek and Matas 2006; Kannala, Rahtu, Brandt et al. 2008; Sivic and
Zisserman 2009).

As the size of the database being matched increases, it becomes more efficient to quantize
the visual descriptors into words (Sivic and Zisserman 2003; Schindler, Brown, and Szeliski
2007; Sivic and Zisserman 2009; Turcot and Lowe 2009), and to then use information-
retrieval techniques, such as inverted indices (Nistér and Stewénius 2006; Philbin, Chum,
Isard et al. 2007; Philbin, Chum, Sivic et al. 2008), query expansion (Chum, Philbin, Sivic
et al. 2007; Agarwal, Snavely, Simon et al. 2009), and min hashing (Philbin and Zisserman
2008; Li, Wu, Zach et al. 2008; Chum, Philbin, and Zisserman 2008; Chum and Matas 2010)
to perform efficient retrieval and clustering.

23 http://www.face-rec.org/.

http://www.face-rec.org/

636 14 Recognition

A number of surveys, collections of papers, and course notes have been written on the
topic of category recognition (Pinz 2005; Ponce, Hebert, Schmid et al. 2006; Dickinson,
Leonardis, Schiele et al. 2007; Fei-Fei, Fergus, and Torralba 2009). Some of the seminal
papers on the bag of words (bag of keypoints) approach to whole-image category recognition
have been written by Csurka, Dance, Fan et al. (2004), Lazebnik, Schmid, and Ponce (2006),
Csurka, Dance, Perronnin et al. (2006), Grauman and Darrell (2007b), and Zhang, Marszalek,
Lazebnik et al. (2007). Additional and more recent papers in this area include Sivic, Russell,
Efros et al. (2005), Serre, Wolf, and Poggio (2005), Opelt, Pinz, Fussenegger et al. (2006),
Grauman and Darrell (2007a), Torralba, Murphy, and Freeman (2007), Boiman, Shechtman,
and Irani (2008), Ferencz, Learned-Miller, and Malik (2008), and Mutch and Lowe (2008).
It is also possible to recognize objects based on their contours, e.g., using shape contexts
(Belongie, Malik, and Puzicha 2002) or other techniques (Jurie and Schmid 2004; Shotton,
Blake, and Cipolla 2005; Opelt, Pinz, and Zisserman 2006; Ferrari, Tuytelaars, and Van Gool
2006a).

Many object recognition algorithms use part-based decompositions to provide greater in-
variance to articulation and pose. Early algorithms focused on the relative positions of the
parts (Fischler and Elschlager 1973; Kanade 1977; Yuille 1991) while newer algorithms use
more sophisticated models of appearance (Felzenszwalb and Huttenlocher 2005; Fergus, Per-
ona, and Zisserman 2007; Felzenszwalb, McAllester, and Ramanan 2008). Good overviews
on part-based models for recognition can be found in the course notes of Fergus 2007b; 2009.

Carneiro and Lowe (2006) discuss a number of graphical models used for part-based
recognition, which include trees and stars (Felzenszwalb and Huttenlocher 2005; Fergus, Per-
ona, and Zisserman 2005; Felzenszwalb, McAllester, and Ramanan 2008), k-fans (Crandall,
Felzenszwalb, and Huttenlocher 2005; Crandall and Huttenlocher 2006), and constellations
(Burl, Weber, and Perona 1998; Weber, Welling, and Perona 2000; Fergus, Perona, and Zis-
serman 2007). Other techniques that use part-based recognition include those developed by
Dorkó and Schmid (2003) and Bar-Hillel, Hertz, and Weinshall (2005).

Combining object recognition with scene segmentation can yield strong benefits. One
approach is to pre-segment the image into pieces and then match the pieces to portions of
the model (Mori, Ren, Efros et al. 2004; Mori 2005; He, Zemel, and Ray 2006; Russell,
Efros, Sivic et al. 2006; Borenstein and Ullman 2008; Csurka and Perronnin 2008; Gu, Lim,
Arbelaez et al. 2009). Another is to vote for potential object locations and scales based on
object detection (Leibe, Leonardis, and Schiele 2008). One of the currently most popular
approaches is to use conditional random fields (Kumar and Hebert 2006; He, Zemel, and
Carreira-Perpiñán 2004; He, Zemel, and Ray 2006; Levin and Weiss 2006; Winn and Shotton
2006; Hoiem, Rother, and Winn 2007; Rabinovich, Vedaldi, Galleguillos et al. 2007; Verbeek
and Triggs 2007; Yang, Meer, and Foran 2007; Batra, Sukthankar, and Chen 2008; Larlus
and Jurie 2008; He and Zemel 2008; Shotton, Winn, Rother et al. 2009; Kumar, Torr, and
Zisserman 2010), which produce some of the best results on the difficult PASCAL VOC seg-
mentation challenge (Shotton, Johnson, and Cipolla 2008; Kohli, Ladický, and Torr 2009).

More and more recognition algorithms are starting to use scene context as part of their
recognition strategy. Representative papers in this area include those by Torralba (2003),
Torralba, Murphy, Freeman et al. (2003), Murphy, Torralba, and Freeman (2003), Torralba,
Murphy, and Freeman (2004), Crandall and Huttenlocher (2007), Rabinovich, Vedaldi, Gal-
leguillos et al. (2007), Russell, Torralba, Liu et al. (2007), Hoiem, Efros, and Hebert (2008a),

14.8 Exercises 637

Hoiem, Efros, and Hebert (2008b), Sudderth, Torralba, Freeman et al. (2008), and Divvala,
Hoiem, Hays et al. (2009).

Sophisticated machine learning techniques are also becoming a key component of suc-
cessful object detection and recognition algorithms (Varma and Ray 2007; Felzenszwalb,
McAllester, and Ramanan 2008; Fritz and Schiele 2008; Sivic, Russell, Zisserman et al.
2008; Vedaldi, Gulshan, Varma et al. 2009), as is exploiting large human-labeled databases
(Russell, Torralba, Liu et al. 2007; Malisiewicz and Efros 2008; Torralba, Freeman, and Fer-
gus 2008; Liu, Yuen, and Torralba 2009). Rough three-dimensional models are also making
a comeback for recognition, as evidenced in some recent papers (Savarese and Fei-Fei 2007,
2008; Sun, Su, Savarese et al. 2009; Su, Sun, Fei-Fei et al. 2009). As always, the latest con-
ferences on computer vision are your best reference for the newest algorithms in this rapidly
evolving field.

14.8 Exercises

Ex 14.1: Face detection Build and test one of the face detectors presented in Section 14.1.1.

1. Download one or more of the labeled face detection databases in Table 14.2.

2. Generate your own negative examples by finding photographs that do not contain any
people.

3. Implement one of the following face detectors (or devise one of your own):

• boosting (Algorithm 14.1) based on simple area features, with an optional cascade
of detectors (Viola and Jones 2004);

• PCA face subspace (Moghaddam and Pentland 1997);

• distances to clustered face and non-face prototypes, followed by a neural network
(Sung and Poggio 1998) or SVM (Osuna, Freund, and Girosi 1997) classifier;

• a multi-resolution neural network trained directly on normalized gray-level patches
(Rowley, Baluja, and Kanade 1998a).

4. Test the performance of your detector on the database by evaluating the detector at ev-
ery location in a sub-octave pyramid. Optionally retrain your detector on false positive
examples you get on non-face images.

Ex 14.2: Determining the threshold for AdaBoost Given a set of function evaluations on
the training examples xi, fi = f(xi) ∈ ±1, training labels yi ∈ ±1, and weights wi ∈ (0, 1),
as explained in Algorithm 14.1, devise an efficient algorithm to find values of θ and s = ±1
that maximize ∑

i

wiyih(sfi, θ), (14.43)

where h(x, θ) = sign(x − θ).

Ex 14.3: Face recognition using eigenfaces Collect a set of facial photographs and then
build a recognition system to re-recognize the same people.

638 14 Recognition

1. Take several photos of each of your classmates and store them.

2. Align the images by automatically or manually detecting the corners of the eyes and
using a similarity transform to stretch and rotate each image to a canonical position.

3. Compute the average image and a PCA subspace for the face images

4. Take a new set of photographs a week later and use them as your test set.

5. Compare each new image to each database image and select the nearest one as the
recognized identity. Verify that the distance in PCA space is close to the distance
computed with a full SSD (sum of squared difference) measure.

6. (Optional) Compute different principal components for identity and expression, and
use them to improve your recognition results.

Ex 14.4: Bayesian face recognition Moghaddam, Jebara, and Pentland (2000) compute
separate covariance matrices ΣI and ΣE by looking at differences between all pairs of im-
ages. At run time, they select the nearest image to determine the facial identity. Does it make
sense to estimate statistics for all pairs of images and use them for testing the distance to the
nearest exemplar? Discuss whether this is statistically correct.

How is the all-pair intrapersonal covariance matrix ΣI related to the within-class scatter
matrix SW? Does a similar relationship hold between ΣE and SB?

Ex 14.5: Modular eigenfaces Extend your face recognition system to separately match the
eye, nose, and mouth regions, as shown in Figure 14.18.

1. After normalizing face images to a canonical scale and location, manually segment out
some of the eye, nose, and face regions.

2. Build separate detectors for these three (or four) kinds of region, either using a subspace
(PCA) approach or one of the techniques presented in Section 14.1.1.

3. For each new image to be recognized, first detect the locations of the facial features.

4. Then, match the individual features against your database and note the locations of
these features.

5. Train and test a classifier that uses the individual feature matching IDs as well as (op-
tionally) the feature locations to perform face recognition.

Ex 14.6: Recognition-based color balancing Build a system that recognizes the most im-
portant color areas in common photographs (sky, grass, skin) and color balances the image
accordingly. Some references and ideas for skin detection are given in Exercise 2.8 and
by Forsyth and Fleck (1999), Jones and Rehg (2001), Vezhnevets, Sazonov, and Andreeva
(2003), and Kakumanu, Makrogiannis, and Bourbakis (2007). These may give you ideas
for how to detect other regions or you can try more sophisticated MRF-based approaches
(Shotton, Winn, Rother et al. 2009).

Ex 14.7: Pedestrian detection Build and test one of the pedestrian detectors presented in
Section 14.1.2.

14.8 Exercises 639

Ex 14.8: Simple instance recognition Use the feature detection, matching, and alignment
algorithms you developed in Exercises 4.1–4.4 and 9.2 to find matching images given a query
image or region (Figure 14.26).

Evaluate several feature detectors, descriptors, and robust geometric verification strate-
gies, either on your own or by comparing your results with those of classmates.

Ex 14.9: Large databases and location recognition Extend the previous exercise to larger
databases using quantized visual words and information retrieval techniques, as described in
Algorithm 14.2.

Test your algorithm on a large database, such as the one used by Nistér and Stewénius
(2006) or Philbin, Chum, Sivic et al. (2008), which are listed in Table 14.1. Alternatively,
use keyword search on the Web or in a photo sharing site (e.g., for a city) to create your own
database.

Ex 14.10: Bag of words Adapt the feature extraction and matching pipeline developed in
Exercise 14.8 to category (class) recognition, using some of the techniques described in Sec-
tion 14.4.1.

1. Download the training and test images from one or more of the databases listed in
Tables 14.1 and 14.2, e.g., Caltech 101, Caltech 256, or PASCAL VOC.

2. Extract features from each of the training images, quantize them, and compute the tf-idf
vectors (bag of words histograms).

3. As an option, consider not quantizing the features and using pyramid matching (14.40–
14.41) (Grauman and Darrell 2007b) or using a spatial pyramid for greater selectivity
(Lazebnik, Schmid, and Ponce 2006).

4. Choose a classification algorithm (e.g., nearest neighbor classification or support vector
machine) and “train” your recognizer, i.e., build up the appropriate data structures (e.g.,
k-d trees) or set the appropriate classifier parameters.

5. Test your algorithm on the test data set using the same pipeline you developed in steps
2–4 and compare your results to the best reported results.

6. Explain why your results differ from the previously reported ones and give some ideas
for how you could improve your system.

You can find a good synopsis of the best-performing classification algorithms and their ap-
proaches in the report of the PASCAL Visual Object Classes Challenge found on their Web
site (http://pascallin.ecs.soton.ac.uk/challenges/VOC/).

Ex 14.11: Object detection and localization Extend the classification algorithm developed
in the previous exercise to localize the objects in an image by reporting a bounding box around
each detected object. The easiest way to do this is to use a sliding window approach. Some
pointers to recent techniques in this area can be found in the workshop associated with the
PASCAL VOC 2008 Challenge.

http://pascallin.ecs.soton.ac.uk/challenges/VOC/

640 14 Recognition

Ex 14.12: Part-based recognition Choose one or more of the techniques described in Sec-
tion 14.4.2 and implement a part-based recognition system. Since these techniques are fairly
involved, you will need to read several of the research papers in this area, select which gen-
eral approach you want to follow, and then implement your algorithm. A good starting point
could be the paper by Felzenszwalb, McAllester, and Ramanan (2008), since it performed
well in the PASCAL VOC 2008 detection challenge.

Ex 14.13: Recognition and segmentation Choose one or more of the techniques described
in Section 14.4.3 and implement a simultaneous recognition and segmentation system. Since
these techniques are fairly involved, you will need to read several of the research papers in this
area, select which general approach you want to follow, and then implement your algorithm.
Test your algorithm on one or more of the segmentation databases in Table 14.2.

Ex 14.14: Context Implement one or more of the context and scene understanding sys-
tems described in Section 14.5 and report on your experience. Does context or whole scene
understanding perform better at naming objects than stand-alone systems?

Ex 14.15: Tiny images Download the tiny images database from http://people.csail.mit.
edu/torralba/tinyimages/ and build a classifier based on comparing your test images directly
against all of the labeled training images. Does this seem like a promising approach?

http://people.csail.mit.edu/torralba/tinyimages/
http://people.csail.mit.edu/torralba/tinyimages/

	Chapter 14 Recognition
	14.1 Object detection
	14.1.1 Face detection
	14.1.2 Pedestrian detection

	14.2 Face recognition
	14.2.1 Eigenfaces
	14.2.2 Active appearance and 3D shape models
	14.2.3 Application: Personal photo collections

	14.3 Instance recognition
	14.3.1 Geometric alignment
	14.3.2 Large databases
	14.3.3 Application: Location recognition

	14.4 Category recognition
	14.4.1 Bag of words
	14.4.2 Part-based models
	14.4.3 Recognition with segmentation
	14.4.4 Application: Intelligent photo editing

	14.5 Context and scene understanding
	14.5.1 Learning and large image collections
	14.5.2 Application: Image search

	14.6 Recognition databases and test sets
	14.7 Additional reading
	14.8 Exercises

