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Figure 12.1 3D shape acquisition and modeling techniques: (a) shaded image (Zhang, Tsai, Cryer et al. 1999)
c© 1999 IEEE; (b) texture gradient (Garding 1992) c© 1992 Springer; (c) real-time depth from focus (Nayar,

Watanabe, and Noguchi 1996) c© 1996 IEEE; (d) scanning a scene with a stick shadow (Bouguet and Perona
1999) c© 1999 Springer; (e) merging range maps into a 3D model (Curless and Levoy 1996) c© 1996 ACM;
(f) point-based surface modeling (Pauly, Keiser, Kobbelt et al. 2003) c© 2003 ACM; (g) automated modeling of
a 3D building using lines and planes (Werner and Zisserman 2002) c© 2002 Springer; (h) 3D face model from
spacetime stereo (Zhang, Snavely, Curless et al. 2004) c© 2004 ACM; (i) person tracking (Sigal, Bhatia, Roth et
al. 2004) c© 2004 IEEE.
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As we saw in the previous chapter, a variety of stereo matching techniques have been de-
veloped to reconstruct high quality 3D models from two or more images. However, stereo
is just one of the many potential cues that can be used to infer shape from images. In this
chapter, we investigate a number of such techniques, which include not only visual cues such
as shading and focus, but also techniques for merging multiple range or depth images into 3D
models, as well as techniques for reconstructing specialized models, such as heads, bodies,
or architecture.

Among the various cues that can be used to infer shape, the shading on a surface (Fig-
ure 12.1a) can provide a lot of information about local surface orientations and hence overall
surface shape (Section 12.1.1). This approach becomes even more powerful when lights
shining from different directions can be turned on and off separately (photometric stereo).
Texture gradients (Figure 12.1b), i.e., the foreshortening of regular patterns as the surface
slants or bends away from the camera, can provide similar cues on local surface orientation
(Section 12.1.2). Focus is another powerful cue to scene depth, especially when two or more
images with different focus settings are used (Section 12.1.3).

3D shape can also be estimated using active illumination techniques such as light stripes
(Figure 12.1d) or time of flight range finders (Section 12.2). The partial surface models
obtained using such techniques (or passive image-based stereo) can then be merged into more
coherent 3D surface models (Figure 12.1e), as discussed in Section 12.2.1. Such techniques
have been used to construct highly detailed and accurate models of cultural heritage such as
historic sites (Section 12.2.2). The resulting surface models can then be simplified to support
viewing at different resolutions and streaming across the Web (Section 12.3.2). An alternative
to working with continuous surfaces is to represent 3D surfaces as dense collections of 3D
oriented points (Section 12.4) or as volumetric primitives (Section 12.5).

3D modeling can be more efficient and effective if we know something about the objects
we are trying to reconstruct. In Section 12.6, we look at three specialized but commonly
occurring examples, namely architecture (Figure 12.1g), heads and faces (Figure 12.1h), and
whole bodies (Figure 12.1i). In addition to modeling people, we also discuss techniques for
tracking them.

The last stage of shape and appearance modeling is to extract some textures to paint onto
our 3D models (Section 12.7). Some techniques go beyond this and actually estimate full
BRDFs (Section 12.7.1).

Because there exists such a large variety of techniques to perform 3D modeling, this
chapter does not go into detail on any one of these. Readers are encouraged to find more
information in the cited references or more specialized publications and conferences de-
voted to these topics, e.g., the International Symposium on 3D Data Processing, Visualiza-
tion, and Transmission (3DPVT), the International Conference on 3D Digital Imaging and
Modeling (3DIM), the International Conference on Automatic Face and Gesture Recognition
(FG), the IEEE Workshop on Analysis and Modeling of Faces and Gestures, and the Interna-
tional Workshop on Tracking Humans for the Evaluation of their Motion in Image Sequences
(THEMIS).
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Figure 12.2 Synthetic shape from shading (Zhang, Tsai, Cryer et al. 1999) c© 1999 IEEE: shaded images, (a–b)
with light from in front (0, 0, 1) and (c–d) with light the front right (1, 0, 1); (e–f) corresponding shape from
shading reconstructions using the technique of Tsai and Shah (1994).

12.1 Shape from X

In addition to binocular disparity, shading, texture, and focus all play a role in how we per-
ceive shape. The study of how shape can be inferred from such cues is sometimes called
shape from X, since the individual instances are called shape from shading, shape from tex-
ture, and shape from focus.1 In this section, we look at these three cues and how they can
be used to reconstruct 3D geometry. A good overview of all these topics can be found in the
collection of papers on physics-based shape inference edited by Wolff, Shafer, and Healey
(1992b).

12.1.1 Shape from shading and photometric stereo

When you look at images of smooth shaded objects, such as the ones shown in Figure 12.2,
you can clearly see the shape of the object from just the shading variation. How is this
possible? The answer is that as the surface normal changes across the object, the apparent
brightness changes as a function of the angle between the local surface orientation and the
incident illumination, as shown in Figure 2.15 (Section 2.2.2).

The problem of recovering the shape of a surface from this intensity variation is known as

1 We have already seen examples of shape from stereo, shape from profiles, and shape from silhouettes in Chap-
ter 11.
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shape from shading and is one of the classic problems in computer vision (Horn 1975). The
collection of papers edited by Horn and Brooks (1989) is a great source of information on
this topic, especially the chapter on variational approaches. The survey by Zhang, Tsai, Cryer
et al. (1999) not only reviews more recent techniques, but also provides some comparative
results.

Most shape from shading algorithms assume that the surface under consideration is of a
uniform albedo and reflectance, and that the light source directions are either known or can
be calibrated by the use of a reference object. Under the assumptions of distant light sources
and observer, the variation in intensity (irradiance equation) become purely a function of the
local surface orientation,

I(x, y) = R(p(x, y), q(x, y)), (12.1)

where (p, q) = (zx, zy) are the depth map derivatives and R(p, q) is called the reflectance
map. For example, a diffuse (Lambertian) surface has a reflectance map that is the (non-
negative) dot product (2.88) between the surface normal n̂ = (p, q, 1)/

√
1 + p2 + q2 and

the light source direction v = (vx, vy, vz),

R(p, q) = max

(
0, ρ

pvx + qvy + vz√
1 + p2 + q2

)
, (12.2)

where ρ is the surface reflectance factor (albedo).
In principle, Equations (12.1–12.2) can be used to estimate (p, q) using non-linear least

squares or some other method. Unfortunately, unless additional constraints are imposed, there
are more unknowns per pixel (p, q) than there are measurements (I). One commonly used
constraint is the smoothness constraint,

Es =
∫

p2
x + p2

y + q2
x + q2

y dx dy =
∫

‖∇p‖2 + ‖∇q‖2 dx dy, (12.3)

which we already saw in Section 3.7.1 (3.94). The other is the integrability constraint,

Ei =
∫

(py − qx)2 dx dy, (12.4)

which arises naturally, since for a valid depth map z(x, y) with (p, q) = (zx, zy), we have
py = zxy = zyx = qx.

Instead of first recovering the orientation fields (p, q) and integrating them to obtain a
surface, it is also possible to directly minimize the discrepancy in the image formation equa-
tion (12.1) while finding the optimal depth map z(x, y) (Horn 1990). Unfortunately, shape
from shading is susceptible to local minima in the search space and, like other variational
problems that involve the simultaneous estimation of many variables, can also suffer from
slow convergence. Using multi-resolution techniques (Szeliski 1991a) can help accelerate
the convergence, while using more sophisticated optimization techniques (Dupuis and Olien-
sis 1994) can help avoid local minima.

In practice, surfaces other than plaster casts are rarely of a single uniform albedo. Shape
from shading therefore needs to be combined with some other technique or extended in some
way to make it useful. One way to do this is to combine it with stereo matching (Fua and
Leclerc 1995) or known texture (surface patterns) (White and Forsyth 2006). The stereo and
texture components provide information in textured regions, while shape from shading helps
fill in the information across uniformly colored regions and also provides finer information
about surface shape.
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Figure 12.3 Synthetic shape from texture (Garding 1992) c© 1992 Springer: (a) regular texture wrapped onto
a curved surface and (b) the corresponding surface normal estimates. Shape from mirror reflections (Savarese,
Chen, and Perona 2005) c© 2005 Springer: (c) a regular pattern reflecting off a curved mirror gives rise to (d)
curved lines, from which 3D point locations and normals can be inferred.

Photometric stereo. Another way to make shape from shading more reliable is to use
multiple light sources that can be selectively turned on and off. This technique is called
photometric stereo, since the light sources play a role analogous to the cameras located at
different locations in traditional stereo (Woodham 1981).2 For each light source, we have a
different reflectance map, R1(p, q), R2(p, q), etc. Given the corresponding intensities I1, I2,
etc. at a pixel, we can in principle recover both an unknown albedo ρ and a surface orientation
estimate (p, q).

For diffuse surfaces (12.2), if we parameterize the local orientation by n̂, we get (for
non-shadowed pixels) a set of linear equations of the form

Ik = ρn̂ · vk, (12.5)

from which we can recover ρn̂ using linear least squares. These equations are well condi-
tioned as long as the (three or more) vectors vk are linearly independent, i.e., they are not
along the same azimuth (direction away from the viewer).

Once the surface normals or gradients have been recovered at each pixel, they can be
integrated into a depth map using a variant of regularized surface fitting (3.100). (Nehab,
Rusinkiewicz, Davis et al. (2005) and Harker and O’Leary (2008) have produced some recent
work in this area.)

When surfaces are specular, more than three light directions may be required. In fact,
the irradiance equation given in (12.1) not only requires that the light sources and camera be
distant from the surface, it also neglects inter-reflections, which can be a significant source
of the shading observed on object surfaces, e.g., the darkening seen inside concave structures
such as grooves and crevasses (Nayar, Ikeuchi, and Kanade 1991).

12.1.2 Shape from texture

The variation in foreshortening observed in regular textures can also provide useful informa-
tion about local surface orientation. Figure 12.3 shows an example of such a pattern, along

2 An alternative to turning lights on-and-off is to use three colored lights (Woodham 1994; Hernandez, Vogiatzis,
Brostow et al. 2007; Hernandez and Vogiatzis 2010).
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Figure 12.4 Real time depth from defocus (Nayar, Watanabe, and Noguchi 1996) c© 1996 IEEE: (a) the real-
time focus range sensor, which includes a half-silvered mirror between the two telecentric lenses (lower right), a
prism that splits the image into two CCD sensors (lower left), and an edged checkerboard pattern illuminated by
a Xenon lamp (top); (b–c) input video frames from the two cameras along with (d) the corresponding depth map;
(e–f) two frames (you can see the texture if you zoom in) and (g) the corresponding 3D mesh model.

with the estimated local surface orientations. Shape from texture algorithms require a number
of processing steps, including the extraction of repeated patterns or the measurement of local
frequencies in order to compute local affine deformations, and a subsequent stage to infer lo-
cal surface orientation. Details on these various stages can be found in the research literature
(Witkin 1981; Ikeuchi 1981; Blostein and Ahuja 1987; Garding 1992; Malik and Rosenholtz
1997; Lobay and Forsyth 2006).

When the original pattern is regular, it is possible to fit a regular but slightly deformed
grid to the image and use this grid for a variety of image replacement or analysis tasks (Liu,
Collins, and Tsin 2004; Liu, Lin, and Hays 2004; Hays, Leordeanu, Efros et al. 2006; Lin,
Hays, Wu et al. 2006; Park, Brocklehurst, Collins et al. 2009). This process becomes even
easier if specially printed textured cloth patterns are used (White and Forsyth 2006; White,
Crane, and Forsyth 2007).

The deformations induced in a regular pattern when it is viewed in the reflection of a
curved mirror, as shown in Figure 12.3c–d, can be used to recover the shape of the surface
(Savarese, Chen, and Perona 2005; Rozenfeld, Shimshoni, and Lindenbaum 2007). It is is
also possible to infer local shape information from specular flow, i.e., the motion of specu-
larities when viewed from a moving camera (Oren and Nayar 1997; Zisserman, Giblin, and
Blake 1989; Swaminathan, Kang, Szeliski et al. 2002).

12.1.3 Shape from focus

A strong cue for object depth is the amount of blur, which increases as the object’s surface
moves away from the camera’s focusing distance. As shown in Figure 2.19, moving the object
surface away from the focus plane increases the circle of confusion, according to a formula
that is easy to establish using similar triangles (Exercise 2.4).
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Figure 12.5 Range data scanning (Curless and Levoy 1996) c© 1996 ACM: (a) a laser dot on a surface is imaged
by a CCD sensor; (b) a laser stripe (sheet) is imaged by the sensor (the deformation of the stripe encodes the
distance to the object); (c) the resulting set of 3D points are turned into (d) a triangulated mesh.

A number of techniques have been developed to estimate depth from the amount of de-
focus (depth from defocus) (Pentland 1987; Nayar and Nakagawa 1994; Nayar, Watanabe,
and Noguchi 1996; Watanabe and Nayar 1998; Chaudhuri and Rajagopalan 1999; Favaro
and Soatto 2006). In order to make such a technique practical, a number issues need to be
addressed:

• The amount of blur increase in both directions as you move away from the focus plane.
Therefore, it is necessary to use two or more images captured with different focus
distance settings (Pentland 1987; Nayar, Watanabe, and Noguchi 1996) or to translate
the object in depth and look for the point of maximum sharpness (Nayar and Nakagawa
1994).

• The magnification of the object can vary as the focus distance is changed or the object is
moved. This can be modeled either explicitly (making correspondence more difficult)
or using telecentric optics, which approximate an orthographic camera and require an
aperture in front of the lens (Nayar, Watanabe, and Noguchi 1996).

• The amount of defocus must be reliably estimated. A simple approach is to average the
squared gradient in a region but this suffers from several problems, including the image
magnification problem mentioned above. A better solution is to use carefully designed
rational filters (Watanabe and Nayar 1998).

Figure 12.4 shows an example of a real-time depth from defocus sensor, which employs
two imaging chips at slightly different depths sharing a common optical path, as well as an
active illumination system that projects a checkerboard pattern from the same direction. As
you can see in Figure 12.4b–g, the system produces high-accuracy real-time depth maps for
both static and dynamic scenes.

12.2 Active rangefinding

As we have seen in the previous section, actively lighting a scene, whether for the purpose
of estimating normals using photometric stereo or for adding artificial texture for shape from
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Figure 12.6 Shape scanning using cast shadows (Bouguet and Perona 1999) c© 1999 Springer: (a) camera setup
with a point light source (a desk lamp without its reflector), a hand-held stick casting a shadow, and (b) the objects
being scanned in front of two planar backgrounds. (c) Real-time depth map using a pulsed illumination system
(Iddan and Yahav 2001) c© 2001 SPIE.

defocus, can greatly improve the performance of vision systems. This kind of active illu-
mination has been used from the earliest days of machine vision to construct highly reliable
sensors for estimating 3D depth images using a variety of rangefinding (or range sensing)
techniques (Besl 1989; Curless 1999; Hebert 2000).

One of the most popular active illumination sensors is a laser or light stripe sensor, which
sweeps a plane of light across the scene or object while observing it from an offset viewpoint,
as shown in Figure 12.5b (Rioux and Bird 1993; Curless and Levoy 1995). As the stripe falls
across the object, it deforms its shape according to the shape of the surface it is illuminating.
It is then a simple matter of using optical triangulation to estimate the 3D locations of all the
points seen in a particular stripe. In more detail, knowledge of the 3D plane equation of the
light stripe allows us to infer the 3D location corresponding to each illuminated pixel, as pre-
viously discussed in (2.70–2.71). The accuracy of light striping techniques can be improved
by finding the exact temporal peak in illumination for each pixel (Curless and Levoy 1995).
The final accuracy of a scanner can be determined using slant edge modulation techniques,
i.e., by imaging sharp creases in a calibration object (Goesele, Fuchs, and Seidel 2003).

An interesting variant on light stripe rangefinding is presented by Bouguet and Perona
(1999). Instead of projecting a light stripe, they simply wave a stick casting a shadow over a
scene or object illuminated by a point light source such as a lamp or the sun (Figure 12.6a).
As the shadow falls across two background planes whose orientation relative to the cam-
era is known (or inferred during pre-calibration), the plane equation for each stripe can be
inferred from the two projected lines, whose 3D equations are known (Figure 12.6b). The
deformation of the shadow as it crosses the object being scanned then reveals its 3D shape,
as with regular light stripe rangefinding (Exercise 12.2). This technique can also be used to
estimate the 3D geometry of a background scene and how its appearance varies as it moves
into shadow, in order to cast new shadows onto the scene (Chuang, Goldman, Curless et al.
2003) (Section 10.4.3).

The time it takes to scan an object using a light stripe technique is proportional to the
number of depth planes used, which is usually comparable to the number of pixels across
an image. A much faster scanner can be constructed by turning different projector pixels on
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Figure 12.7 Real-time dense 3D face capture using spacetime stereo (Zhang, Snavely, Curless et al. 2004) c©
2004 ACM: (a) set of five consecutive video frames from one of two stereo cameras (every fifth frame is free of
stripe patterns, in order to extract texture); (b) resulting high-quality 3D surface model (depth map visualized as a
shaded rendering).

and off in a structured manner, e.g., using a binary or Gray code (Besl 1989). For example,
let us assume that the LCD projector we are using has 1024 columns of pixels. Taking the
10-bit binary code corresponding to each column’s address (0 . . . 1023), we project the first
bit, then the second, etc. After 10 projections (e.g., a third of a second for a synchronized
30Hz camera-projector system), each pixel in the camera knows which of the 1024 columns
of projector light it is seeing. A similar approach can also be used to estimate the refractive
properties of an object by placing a monitor behind the object (Zongker, Werner, Curless et al.
1999; Chuang, Zongker, Hindorff et al. 2000) (Section 13.4). Very fast scanners can also be
constructed with a single laser beam, i.e., a real-time flying spot optical triangulation scanner
(Rioux, Bechthold, Taylor et al. 1987).

If even faster, i.e., frame-rate, scanning is required, we can project a single textured pat-
tern into the scene. Proesmans, Van Gool, and Defoort (1998) describe a system where a
checkerboard grid is projected onto an object (e.g., a person’s face) and the deformation of
the grid is used to infer 3D shape. Unfortunately, such a technique only works if the surface
is continuous enough to link all of the grid points.

A much better system can be constructed using high-speed custom illumination and sens-
ing hardware. Iddan and Yahav (2001) describe the construction of their 3DV Zcam video-
rate depth sensing camera, which projects a pulsed plane of light onto the scene and then
integrates the returning light for a short interval, essentially obtaining time-of-flight mea-
surement for the distance to individual pixels in the scene. A good description of earlier
time-of-flight systems, including amplitude and frequency modulation schemes for LIDAR,
can be found in (Besl 1989).

Instead of using a single camera, it is also possible to construct an active illumination
range sensor using stereo imaging setups. The simplest way to do this is to just project ran-
dom stripe patterns onto the scene to create synthetic texture, which helps match textureless
surfaces (Kang, Webb, Zitnick et al. 1995). Projecting a known series of stripes, just as in
coded pattern single-camera rangefinding, makes the correspondence between pixels unam-
biguous and allows for the recovery of depth estimates at pixels only seen in a single camera
(Scharstein and Szeliski 2003). This technique has been used to produce large numbers of
highly accurate registered multi-image stereo pairs and depth maps for the purpose of eval-
uating stereo correspondence algorithms (Scharstein and Szeliski 2002; Hirschmüller and
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Scharstein 2009) and learning depth map priors and parameters (Scharstein and Pal 2007).
While projecting multiple patterns usually requires the scene or object to remain still, ad-

ditional processing can enable the production of real-time depth maps for dynamic scenes.
The basic idea (Davis, Ramamoorthi, and Rusinkiewicz 2003; Zhang, Curless, and Seitz
2003) is to assume that depth is nearly constant within a 3D space–time window around
each pixel and to use the 3D window for matching and reconstruction. Depending on the
surface shape and motion, this assumption may be error-prone, as shown in (Davis, Nahab,
Ramamoorthi et al. 2005). To model shapes more accurately, Zhang, Curless, and Seitz
(2003) model the linear disparity variation within the space–time window and show that bet-
ter results can be obtained by globally optimizing disparity and disparity gradient estimates
over video volumes (Zhang, Snavely, Curless et al. 2004). Figure 12.7 shows the results of
applying this system to a person’s face; the frame-rate 3D surface model can then be used for
further model-based fitting and computer graphics manipulation (Section 12.6.2).

12.2.1 Range data merging

While individual range images can be useful for applications such as real-time z-keying or fa-
cial motion capture, they are often used as building blocks for more complete 3D object mod-
eling. In such applications, the next two steps in processing are the registration (alignment) of
partial 3D surface models and their integration into coherent 3D surfaces (Curless 1999). If
desired, this can be followed by a model fitting stage using either parametric representations
such as generalized cylinders (Agin and Binford 1976; Nevatia and Binford 1977; Marr and
Nishihara 1978; Brooks 1981), superquadrics (Pentland 1986; Solina and Bajcsy 1990; Ter-
zopoulos and Metaxas 1991), or non-parametric models such as triangular meshes (Boissonat
1984) or physically-based models (Terzopoulos, Witkin, and Kass 1988; Delingette, Hebert,
and Ikeuichi 1992; Terzopoulos and Metaxas 1991; McInerney and Terzopoulos 1993; Ter-
zopoulos 1999). A number of techniques have also been developed for segmenting range
images into simpler constituent surfaces (Hoover, Jean-Baptiste, Jiang et al. 1996).

The most widely used 3D registration technique is the iterated closest point (ICP) algo-
rithm, which alternates between finding the closest point matches between the two surfaces
being aligned and then solving a 3D absolute orientation problem (Section 6.1.5, (6.31–6.32)
(Besl and McKay 1992; Chen and Medioni 1992; Zhang 1994; Szeliski and Lavallée 1996;
Gold, Rangarajan, Lu et al. 1998; David, DeMenthon, Duraiswami et al. 2004; Li and Hart-
ley 2007; Enqvist, Josephson, and Kahl 2009).3 Since the two surfaces being aligned usually
only have partial overlap and may also have outliers, robust matching criteria (Section 6.1.4
and Appendix B.3) are typically used. In order to speed up the determination of the closest
point, and also to make the distance-to-surface computation more accurate, one of the two
point sets (e.g., the current merged model) can be converted into a signed distance function,
optionally represented using an octree spline for compactness (Lavallée and Szeliski 1995).
Variants on the basic ICP algorithm can be used to register 3D point sets under non-rigid de-
formations, e.g., for medical applications (Feldmar and Ayache 1996; Szeliski and Lavallée
1996). Color values associated with the points or range measurements can also be used as
part of the registration process to improve robustness (Johnson and Kang 1997; Pulli 1999).

3 Some techniques, such as the one developed by Chen and Medioni (1992), use local surface tangent planes to
make this computation more accurate and to accelerate convergence.
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Figure 12.8 Range data merging (Curless and Levoy 1996) c© 1996 ACM: (a) two signed distance functions
(top left) are merged with their (weights) bottom left to produce a combined set of functions (right column) from
which an isosurface can be extracted (green dashed line); (b) the signed distance functions are combined with
empty and unseen space labels to fill holes in the isosurface.

Unfortunately, the ICP algorithm and its variants can only find a locally optimal alignment
between 3D surfaces. If this is not known a priori, more global correspondence or search
techniques, based on local descriptors invariant to 3D rigid transformations, need to be used.
An example of such a descriptor is the spin image, which is a local circular projection of a
3D surface patch around the local normal axis (Johnson and Hebert 1999). Another (earlier)
example is the splash representation introduced by Stein and Medioni (1992).

Once two or more 3D surfaces have been aligned, they can be merged into a single model.
One approach is to represent each surface using a triangulated mesh and combine these
meshes using a process that is sometimes called zippering (Soucy and Laurendeau 1992;
Turk and Levoy 1994). Another, now more widely used, approach is to compute a signed
distance function that fits all of the 3D data points (Hoppe, DeRose, Duchamp et al. 1992;
Curless and Levoy 1996; Hilton, Stoddart, Illingworth et al. 1996; Wheeler, Sato, and Ikeuchi
1998).

Figure 12.8 shows one such approach, the volumetric range image processing (VRIP)
technique developed by Curless and Levoy (1996), which first computes a weighted signed
distance function from each range image and then merges them using a weighted averaging
process. To make the representation more compact, run-length coding is used to encode
the empty, seen, and varying (signed distance) voxels, and only the signed distance values
near each surface are stored.4 Once the merged signed distance function has been computed,
a zero-crossing surface extraction algorithm, such as marching cubes (Lorensen and Cline
1987), can be used to recover a meshed surface model. Figure 12.9 shows an example of the
complete range data merging and isosurface extraction pipeline.

Volumetric range data merging techniques based on signed distance or characteristic
(inside–outside) functions are also widely used to extract smooth well-behaved surfaces from
oriented or unoriented sets of points (Hoppe, DeRose, Duchamp et al. 1992; Ohtake, Belyaev,

4 An alternative, even more compact, representation could be to use octrees (Lavallée and Szeliski 1995).
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(a) (b) (c) (d) (e)

Figure 12.9 Reconstruction and hardcopy of the “Happy Buddha” statuette (Curless and Levoy 1996) c© 1996
ACM: (a) photograph of the original statue after spray painting with matte gray; (b) partial range scan; (c) merged
range scans; (d) colored rendering of the reconstructed model; (e) hardcopy of the model constructed using
stereolithography.

Alexa et al. 2003; Kazhdan, Bolitho, and Hoppe 2006; Lempitsky and Boykov 2007; Zach,
Pock, and Bischof 2007b; Zach 2008), as discussed in more detail in Section 12.5.1.

12.2.2 Application: Digital heritage

Active rangefinding technologies, combined with surface modeling and appearance model-
ing techniques (Section 12.7), are widely used in the fields of archeological and historical
preservation, which often also goes under the name digital heritage (MacDonald 2006). In
such applications, detailed 3D models of cultural objects are acquired and later used for ap-
plications such as analysis, preservation, restoration, and the production of duplicate artwork
(Rioux and Bird 1993).

A more recent example of such an endeavor is the Digital Michelangelo project of Levoy,
Pulli, Curless et al. (2000), which used Cyberware laser stripe scanners and high-quality
digital SLR cameras mounted on a large gantry to obtain detailed scans of Michelangelo’s
David and other sculptures in Florence. The project also took scans of the Forma Urbis
Romae, an ancient stone map of Rome that had shattered into pieces, for which new matches
were obtained using digital techniques. The whole process, from initial planning, to software
development, acquisition, and post-processing, took several years (and many volunteers), and
produced a wealth of 3D shape and appearance modeling techniques as a result.

Even larger-scale projects are now being attempted, for example, the scanning of com-
plete temple sites such as Angkor-Thom (Ikeuchi and Sato 2001; Ikeuchi and Miyazaki 2007;
Banno, Masuda, Oishi et al. 2008). Figure 12.10 shows details from this project, including a
sample photograph, a detailed 3D (sculptural) head model scanned from ground level, and an
aerial overview of the final merged 3D site model, which was acquired using a balloon.
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(a) (b) (c)

Figure 12.10 Laser range modeling of the Bayon temple at Angkor-Thom (Banno, Masuda, Oishi et al. 2008)
c© 2008 Springer: (a) sample photograph from the site; (b) a detailed head model scanned from the ground; (c)

final merged 3D model of the temple scanned using a laser range sensor mounted on a balloon.

12.3 Surface representations

In previous sections, we have seen different representations being used to integrate 3D range
scans. We now look at several of these representations in more detail. Explicit surface
representations, such as triangle meshes, splines (Farin 1992, 1996), and subdivision sur-
faces (Stollnitz, DeRose, and Salesin 1996; Zorin, Schröder, and Sweldens 1996; Warren and
Weimer 2001; Peters and Reif 2008), enable not only the creation of highly detailed models
but also processing operations, such as interpolation (Section 12.3.1), fairing or smoothing,
and decimation and simplification (Section 12.3.2). We also examine discrete point-based
representations (Section 12.4) and volumetric representations (Section 12.5).

12.3.1 Surface interpolation

One of the most common operations on surfaces is their reconstruction from a set of sparse
data constraints, i.e. scattered data interpolation. When formulating such problems, surfaces
may be parameterized as height fields f(x), as 3D parametric surfaces f(x), or as non-
parametric models such as collections of triangles.

In the section on image processing, we saw how two-dimensional function interpolation
and approximation problems {di} → f(x) could be cast as energy minimization problems
using regularization (Section 3.7.1 (3.94–3.98).5 Such problems can also specify the locations
of discontinuities in the surface as well as local orientation constraints (Terzopoulos 1986b;
Zhang, Dugas-Phocion, Samson et al. 2002).

One approach to solving such problems is to discretize both the surface and the energy
on a discrete grid or mesh using finite element analysis (3.100–3.102) (Terzopoulos 1986b).
Such problems can then be solved using sparse system solving techniques, such as multigrid
(Briggs, Henson, and McCormick 2000) or hierarchically preconditioned conjugate gradient
(Szeliski 2006b). The surface can also be represented using a hierarchical combination of
multilevel B-splines (Lee, Wolberg, and Shin 1996).

5 The difference between interpolation and approximation is that the former requires the surface or function to
pass through the data while the latter allows the function to pass near the data, and can therefore be used for surface
smoothing as well.
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An alternative approach is to use radial basis (or kernel) functions (Boult and Kender
1986; Nielson 1993). To interpolate a field f(x) through (or near) a number of data values
di located at xi, the radial basis function approach uses

f(x) =
∑

i wi(x)di∑
i wi(x)

, (12.6)

where the weights,

wi(x) = K(‖x − xi‖), (12.7)

are computed using a radial basis (spherically symmetrical) function K(r).

If we want the function f(x) to exactly interpolate the data points, the kernel functions
must either be singular at the origin, limr→0 K(r) → ∞ (Nielson 1993), or a dense linear
system must be solved to determine the magnitude associated with each basis function (Boult
and Kender 1986). It turns out that, for certain regularized problems, e.g., (3.94–3.96), there
exist radial basis functions (kernels) that give the same results as a full analytical solution
(Boult and Kender 1986). Unfortunately, because the dense system solving is cubic in the
number of data points, basis function approaches can only be used for small problems such
as feature-based image morphing (Beier and Neely 1992).

When a three-dimensional parametric surface is being modeled, the vector-valued func-
tion f in (12.6) or (3.94–3.102) encodes 3D coordinates (x, y, z) on the surface and the
domain x = (s, t) encodes the surface parameterization. One example of such surfaces are
symmetry-seeking parametric models, which are elastically deformable versions of general-
ized cylinders6 (Terzopoulos, Witkin, and Kass 1987). In these models, s is the parameter
along the spine of the deformable tube and t is the parameter around the tube. A variety of
smoothness and radial symmetry forces are used to constrain the model while it is fitted to
image-based silhouette curves.

It is also possible to define non-parametric surface models such as general triangulated
meshes and to equip such meshes (using finite element analysis) with both internal smooth-
ness metrics and external data fitting metrics (Sander and Zucker 1990; Fua and Sander 1992;
Delingette, Hebert, and Ikeuichi 1992; McInerney and Terzopoulos 1993). While most of
these approaches assume a standard elastic deformation model, which uses quadratic inter-
nal smoothness terms, it is also possible to use sub-linear energy models in order to better
preserve surface creases (Diebel, Thrun, and Brünig 2006). Triangle meshes can also be aug-
mented with either spline elements (Sullivan and Ponce 1998) or subdivision surfaces (Stoll-
nitz, DeRose, and Salesin 1996; Zorin, Schröder, and Sweldens 1996; Warren and Weimer
2001; Peters and Reif 2008) to produce surfaces with better smoothness control.

Both parametric and non-parametric surface models assume that the topology of the sur-
face is known and fixed ahead of time. For more flexible surface modeling, we can either rep-
resent the surface as a collection of oriented points (Section 12.4) or use 3D implicit functions
(Section 12.5.1), which can also be combined with elastic 3D surface models (McInerney and
Terzopoulos 1993).
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(a) (b) (c) (d)

Figure 12.11 Progressive mesh representation of an airplane model (Hoppe 1996) c© 1996 ACM: (a) base mesh
M0 (150 faces); (b) mesh M175 (500 faces); (c) mesh M425 (1000 faces); (d) original mesh M = Mn (13,546
faces).

12.3.2 Surface simplification

Once a triangle mesh has been created from 3D data, it is often desirable to create a hierarchy
of mesh models, for example, to control the displayed level of detail (LOD) in a computer
graphics application. (In essence, this is a 3D analog to image pyramids (Section 3.5).) One
approach to doing this is to approximate a given mesh with one that has subdivision connec-
tivity, over which a set of triangular wavelet coefficients can then be computed (Eck, DeRose,
Duchamp et al. 1995). A more continuous approach is to use sequential edge collapse opera-
tions to go from the original fine-resolution mesh to a coarse base-level mesh (Hoppe 1996).
The resulting progressive mesh (PM) representation can be used to render the 3D model at
arbitrary levels of detail, as shown in Figure 12.11.

12.3.3 Geometry images

While multi-resolution surface representations such as (Eck, DeRose, Duchamp et al. 1995;
Hoppe 1996) support level of detail operations, they still consist of an irregular collection of
triangles, which makes them more difficult to compress and store in a cache-efficient manner.7

To make the triangulation completely regular (uniform and gridded), Gu, Gortler, and
Hoppe (2002) describe how to create geometry images by cutting surface meshes along well-
chosen lines and “flattening” the resulting representation into a square. Figure 12.12a shows
the resulting (x, y, z) values of the surface mesh mapped over the unit square, while Fig-
ure 12.12b shows the associated (nx, ny, nz) normal map, i.e., the surface normals associ-
ated with each mesh vertex, which can be used to compensate for loss in visual fidelity if the
original geometry image is heavily compressed.

6 A generalized cylinder (Brooks 1981) is a solid of revolution, i.e., the result of rotating a (usually smooth) curve
around an axis. It can also be generated by sweeping a slowly varying circular cross-section along the axis. (These
two interpretations are equivalent.)

7 Subdivision triangulations, such as those in (Eck, DeRose, Duchamp et al. 1995), are semi-regular, i.e., regular
(ordered and nested) within each subdivided base triangle.
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(x, y, z)

+

(nx, ny, nz)

=⇒

(a) (b) (c)

Figure 12.12 Geometry images (Gu, Gortler, and Hoppe 2002) c© 2002 ACM: (a) the 257×257 geometry image
defines a mesh over the surface; (b) the 512 × 512 normal map defines vertex normals; (c) final lit 3D model.

(a) (b) (c) (d) (e)

Figure 12.13 Point-based surface modeling with moving least squares (MLS) (Pauly, Keiser, Kobbelt et al. 2003)
c© 2003 ACM: (a) a set of points (black dots) is turned into an implicit inside–outside function (black curve); (b)

the signed distance to the nearest oriented point can serve as an approximation to the inside–outside distance; (c)
a set of oriented points with variable sampling density representing a 3D surface (head model); (d) local estimate
of sampling density, which is used in the moving least squares; (e) reconstructed continuous 3D surface.

12.4 Point-based representations

As we mentioned previously, triangle-based surface models assume that the topology (and
often the rough shape) of the 3D model is known ahead of time. While it is possible to
re-mesh a model as it is being deformed or fitted, a simpler solution is to dispense with an
explicit triangle mesh altogether and to have triangle vertices behave as oriented points, or
particles, or surface elements (surfels) (Szeliski and Tonnesen 1992).

In order to endow the resulting particle system with internal smoothness constraints, pair-
wise interaction potentials can be defined that approximate the equivalent elastic bending
energies that would be obtained using local finite-element analysis.8 Instead of defining the
finite element neighborhood for each particle (vertex) ahead of time, a soft influence function
is used to couple nearby particles. The resulting 3D model can change both topology and par-
ticle density as it evolves and can therefore be used to interpolate partial 3D data with holes
(Szeliski, Tonnesen, and Terzopoulos 1993b). Discontinuities in both the surface orientation
and crease curves can also be modeled (Szeliski, Tonnesen, and Terzopoulos 1993a).

8 As mentioned before, an alternative is to use sub-linear interaction potentials, which encourage the preservation
of surface creases (Diebel, Thrun, and Brünig 2006).
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To render the particle system as a continuous surface, local dynamic triangulation heuris-
tics (Szeliski and Tonnesen 1992) or direct surface element splatting (Pfister, Zwicker, van
Baar et al. 2000) can be used. Another alternative is to first convert the point cloud into an
implicit signed distance or inside–outside function, using either minimum signed distances
to the oriented points (Hoppe, DeRose, Duchamp et al. 1992) or by interpolating a charac-
teristic (inside–outside) function using radial basis functions (Turk and O’Brien 2002; Dinh,
Turk, and Slabaugh 2002). Even greater precision over the implicit function fitting, including
the ability to handle irregular point densities, can be obtained by computing a moving least
squares (MLS) estimate of the signed distance function (Alexa, Behr, Cohen-Or et al. 2003;
Pauly, Keiser, Kobbelt et al. 2003), as shown in Figure 12.13. Further improvements can
be obtained using local sphere fitting (Guennebaud and Gross 2007), faster and more accu-
rate re-sampling (Guennebaud, Germann, and Gross 2008), and kernel regression to better
tolerate outliers (Oztireli, Guennebaud, and Gross 2008).

12.5 Volumetric representations

A third alternative for modeling 3D surfaces is to construct 3D volumetric inside–outside
functions. We already saw examples of this in Section 11.6.1, where we looked at voxel color-
ing (Seitz and Dyer 1999), space carving (Kutulakos and Seitz 2000), and level set (Faugeras
and Keriven 1998; Pons, Keriven, and Faugeras 2007) techniques for stereo matching, and
Section 11.6.2, where we discussed using binary silhouette images to reconstruct volumes.

In this section, we look at continuous implicit (inside–outside) functions to represent 3D
shape.

12.5.1 Implicit surfaces and level sets

While polyhedral and voxel-based representations can represent three-dimensional shapes
to an arbitrary precision, they lack some of the intrinsic smoothness properties available
with continuous implicit surfaces, which use an indicator function (characteristic function)
F (x, y, z) to indicate which 3D points are inside F (x, y, z) < 0 or outside F (x, y, z) > 0
the object.

An early example of using implicit functions to model 3D objects in computer vision are
superquadrics, which are a generalization of quadric (e.g., ellipsoidal) parametric volumetric
models,

F (x, y, z) =

((
x

a1

)2/ε2

+
(

y

a2

)2/ε2
)ε2/ε1

+
(

x

a1

)2/ε1

− 1 = 0 (12.8)

(Pentland 1986; Solina and Bajcsy 1990; Waithe and Ferrie 1991; Leonardis, Jaklič, and
Solina 1997). The values of (a1, a2, a3) control the extent of model along each (x, y, z) axis,
while the values of (ε1, ε2) control how “square” it is. To model a wider variety of shapes,
superquadrics are usually combined with either rigid or non-rigid deformations (Terzopoulos
and Metaxas 1991; Metaxas and Terzopoulos 2002). Superquadric models can either be fit to
range data or used directly for stereo matching.

A different kind of implicit shape model can be constructed by defining a signed distance
function over a regular three-dimensional grid, optionally using an octree spline to represent
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this function more coarsely away from its surface (zero-set) (Lavallée and Szeliski 1995;
Szeliski and Lavallée 1996; Frisken, Perry, Rockwood et al. 2000; Ohtake, Belyaev, Alexa
et al. 2003). We have already seen examples of signed distance functions being used to
represent distance transforms (Section 3.3.3), level sets for 2D contour fitting and tracking
(Section 5.1.4), volumetric stereo (Section 11.6.1), range data merging (Section 12.2.1), and
point-based modeling (Section 12.4). The advantage of representing such functions directly
on a grid is that it is quick and easy to look up distance function values for any (x, y, z)
location and also easy to extract the isosurface using the marching cubes algorithm (Lorensen
and Cline 1987). The work of Ohtake, Belyaev, Alexa et al. (2003) is particularly notable
since it allows for several distance functions to be used simultaneously and then combined
locally to produce sharp features such as creases.

Poisson surface reconstruction (Kazhdan, Bolitho, and Hoppe 2006) uses a closely related
volumetric function, namely a smoothed 0/1 inside–outside (characteristic) function, which
can be thought of as a clipped signed distance function. The gradients for this function are
set to lie along oriented surface normals near known surface points and 0 elsewhere. The
function itself is represented using a quadratic tensor-product B-spline over an octree, which
provides a compact representation with larger cells away from the surface or in regions of
lower point density, and also admits the efficient solution of the related Poisson equations
(3.100–3.102), see Section 9.3.4 (Pérez, Gangnet, and Blake 2003).

It is also possible to replace the quadratic penalties used in the Poisson equations with
L1 (total variation) constraints and still obtain a convex optimization problem, which can be
solved using either continuous (Zach, Pock, and Bischof 2007b; Zach 2008) or discrete graph
cut (Lempitsky and Boykov 2007) techniques.

Signed distance functions also play an integral role in level-set evolution equations ((Sec-
tions 5.1.4 and 11.6.1), where the values of distance transforms on the mesh are updated as
the surface evolves to fit multi-view stereo photoconsistency measures (Faugeras and Keriven
1998).

12.6 Model-based reconstruction

When we know something ahead of time about the objects we are trying to model, we can
construct more detailed and reliable 3D models using specialized techniques and representa-
tions. For example, architecture is usually made up of large planar regions and other para-
metric forms (such as surfaces of revolution), usually oriented perpendicular to gravity and
to each other (Section 12.6.1). Heads and faces can be represented using low-dimensional,
non-rigid shape models, since the variability in shape and appearance of human faces, while
extremely large, is still bounded (Section 12.6.2). Human bodies or parts, such as hands, form
highly articulated structures, which can be represented using kinematic chains of piecewise
rigid skeletal elements linked by joints (Section 12.6.4).

In this section, we highlight some of the main ideas, representations, and modeling algo-
rithms used for these three cases. Additional details and references can be found in special-
ized conferences and workshops devoted to these topics, e.g., the International Symposium on
3D Data Processing, Visualization, and Transmission (3DPVT), the International Conference
on 3D Digital Imaging and Modeling (3DIM), the International Conference on Automatic
Face and Gesture Recognition (FG), the IEEE Workshop on Analysis and Modeling of Faces
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Figure 12.14 Interactive architectural modeling using the Façade system (Debevec, Taylor, and Malik 1996) c©
1996 ACM: (a) input image with user-drawn edges shown in green; (b) shaded 3D solid model; (c) geometric
primitives overlaid onto the input image; (d) final view-dependent, texture-mapped 3D model.

and Gestures, and the International Workshop on Tracking Humans for the Evaluation of their
Motion in Image Sequences (THEMIS).

12.6.1 Architecture

Architectural modeling, especially from aerial photography, has been one of the longest stud-
ied problems in both photogrammetry and computer vision (Walker and Herman 1988). Re-
cently, the development of reliable image-based modeling techniques, as well as the preva-
lence of digital cameras and 3D computer games, has spurred renewed interest in this area.

The work by Debevec, Taylor, and Malik (1996) was one of the earliest hybrid geometry-
and image-based modeling and rendering systems. Their Façade system combines an inter-
active image-guided geometric modeling tool with model-based (local plane plus parallax)
stereo matching and view-dependent texture mapping. During the interactive photogrammet-
ric modeling phase, the user selects block elements and aligns their edges with visible edges
in the input images (Figure 12.14a). The system then automatically computes the dimensions
and locations of the blocks along with the camera positions using constrained optimization
(Figure 12.14b–c). This approach is intrinsically more reliable than general feature-based
structure from motion, because it exploits the strong geometry available in the block primi-
tives. Related work by Becker and Bove (1995), Horry, Anjyo, and Arai (1997), and Crimin-
isi, Reid, and Zisserman (2000) exploits similar information available from vanishing points.
In the interactive, image-based modeling system of Sinha, Steedly, Szeliski et al. (2008),
vanishing point directions are used to guide the user drawing of polygons, which are then
automatically fitted to sparse 3D points recovered using structure from motion.

Once the rough geometry has been estimated, more detailed offset maps can be com-
puted for each planar face using a local plane sweep, which Debevec, Taylor, and Malik
(1996) call model-based stereo. Finally, during rendering, images from different viewpoints
are warped and blended together as the camera moves around the scene, using a process (re-
lated to light field and Lumigraph rendering, see Section 13.3) called view-dependent texture
mapping (Figure 12.14d).

For interior modeling, instead of working with single pictures, it is more useful to work
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(a) (b)

Figure 12.15 Interactive 3D modeling from panoramas (Shum, Han, and Szeliski 1998) c© 1998 IEEE: (a)
wide-angle view of a panorama with user-drawn vertical and horizontal (axis-aligned) lines; (b) single-view re-
construction of the corridors.

with panoramas, since you can see larger extents of walls and other structures. The 3D mod-
eling system developed by Shum, Han, and Szeliski (1998) first constructs calibrated panora-
mas from multiple images (Section 7.4) and then has the user draw vertical and horizontal
lines in the image to demarcate the boundaries of planar regions. The lines are initially used
to establish an absolute rotation for each panorama and are later used (along with the inferred
vertices and planes) to optimize the 3D structure, which can be recovered up to scale from
one or more images (Figure 12.15). 360◦ high dynamic range panoramas can also be used for
outdoor modeling, since they provide highly reliable estimates of relative camera orientations
as well as vanishing point directions (Antone and Teller 2002; Teller, Antone, Bodnar et al.
2003).

While earlier image-based modeling systems required some user authoring, Werner and
Zisserman (2002) present a fully automated line-based reconstruction system. As described
in Section 7.5.1, they first detect lines and vanishing points and use them to calibrate the
camera; then they establish line correspondences using both appearance matching and tri-
focal tensors, which enables them to reconstruct families of 3D line segments, as shown in
Figure 12.16a. They then generate plane hypotheses, using both co-planar 3D lines and a
plane sweep (Section 11.1.2) based on cross-correlation scores evaluated at interest points.
Intersections of planes are used to determine the extent of each plane, i.e., an initial coarse ge-
ometry, which is then refined with the addition of rectangular or wedge-shaped indentations
and extrusions (Figure 12.16c). Note that when top-down maps of the buildings being mod-
eled are available, these can be used to further constrain the 3D modeling process (Robertson
and Cipolla 2002, 2009). The idea of using matched 3D lines for estimating vanishing point
directions and dominant planes continues to be used in a number of recent fully automated
image-based architectural modeling systems (Zebedin, Bauer, Karner et al. 2008; Mičušı́k
and Košecká 2009; Furukawa, Curless, Seitz et al. 2009b; Sinha, Steedly, and Szeliski 2009).

Another common characteristic of architecture is the repeated use of primitives such as
windows, doors, and colonnades. Architectural modeling systems can be designed to search
for such repeated elements and to use them as part of the structure inference process (Dick,
Torr, and Cipolla 2004; Mueller, Zeng, Wonka et al. 2007; Schindler, Krishnamurthy, Lublin-
erman et al. 2008; Sinha, Steedly, Szeliski et al. 2008).

The combination of all these techniques now makes it possible to reconstruct the structure
of large 3D scenes (Zhu and Kanade 2008). For example, the Urbanscan system of Polle-
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(a) (b) (c) (d)

Figure 12.16 Automated architectural reconstruction using 3D lines and planes (Werner and Zisserman 2002)
c© 2002 Springer: (a) reconstructed 3D lines, color coded by their vanishing directions; (b) wire-frame model

superimposed onto an input image; (c) triangulated piecewise-planar model with windows; (d) final texture-
mapped model.

feys, Nistér, Frahm et al. (2008) reconstructs texture-mapped 3D models of city streets from
videos acquired with a GPS-equipped vehicle. To obtain real-time performance, they use
both optimized on-line structure-from-motion algorithms, as well as GPU implementations
of plane-sweep stereo aligned to dominant planes and depth map fusion. Cornelis, Leibe,
Cornelis et al. (2008) present a related system that also uses plane-sweep stereo (aligned to
vertical building façades) combined with object recognition and segmentation for vehicles.
Mičušı́k and Košecká (2009) build on these results using omni-directional images and super-
pixel-based stereo matching along dominant plane orientations. Reconstruction directly from
active range scanning data combined with color imagery that has been compensated for ex-
posure and lighting variations is also possible (Chen and Chen 2008; Stamos, Liu, Chen et
al. 2008; Troccoli and Allen 2008).

12.6.2 Heads and faces

Another area in which specialized shape and appearance models are extremely helpful is in
the modeling of heads and faces. Even though the appearance of people seems at first glance
to be infinitely variable, the actual shape of a person’s head and face can be described rea-
sonably well using a few dozen parameters (Pighin, Hecker, Lischinski et al. 1998; Guenter,
Grimm, Wood et al. 1998; DeCarlo, Metaxas, and Stone 1998; Blanz and Vetter 1999; Shan,
Liu, and Zhang 2001).

Figure 12.17 shows an example of an image-based modeling system, where user-specified
keypoints in several images are used to fit a generic head model to a person’s face. As you
can see in Figure 12.17c, after specifying just over 100 keypoints, the shape of the face has
become quite adapted and recognizable. Extracting a texture map from the original images
and then applying it to the head model results in an animatable model with striking visual
fidelity (Figure 12.18a).

A more powerful system can be built by applying principal component analysis (PCA) to
a collection of 3D scanned faces, which is a topic we discuss in Section 12.6.3. As you can
see in Figure 12.19, it is then possible to fit morphable 3D models to single images and to
use such models for a variety of animation and visual effects (Blanz and Vetter 1999). It is
also possible to design stereo matching algorithms that optimize directly for the head model
parameters (Shan, Liu, and Zhang 2001; Kang and Jones 2002) or to use the output of real-
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(a)

(b) (c) (d)

Figure 12.17 3D model fitting to a collection of images: (Pighin, Hecker, Lischinski et al. 1998) c© 1998 ACM:
(a) set of five input images along with user-selected keypoints; (b) the complete set of keypoints and curves; (c)
three meshes—the original, adapted after 13 keypoints, and after an additional 99 keypoints; (d) the partition of
the image into separately animatable regions.

(a) (b)

Figure 12.18 Head and expression tracking and re-animation using deformable 3D models. (a) Models fit
directly to five input video streams (Pighin, Szeliski, and Salesin 2002) c© 2002 Springer: The bottom row shows
the results of re-animating a synthetic texture-mapped 3D model with pose and expression parameters fitted to
the input images in the top row. (b) Models fit to frame-rate spacetime stereo surface models (Zhang, Snavely,
Curless et al. 2004) c© 2004 ACM: The top row shows the input images with synthetic green markers overlaid,
while the bottom row shows the fitted 3D surface model.
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time stereo with active illumination (Zhang, Snavely, Curless et al. 2004) (Figures 12.7 and
12.18b).

As the sophistication of 3D facial capture systems evolves, so does the detail and realism
in the reconstructed models. Newer systems can capture (in real-time) not only surface details
such as wrinkles and creases, but also accurate models of skin reflection, translucency, and
sub-surface scattering (Weyrich, Matusik, Pfister et al. 2006; Golovinskiy, Matusik, ster et al.
2006; Bickel, Botsch, Angst et al. 2007; Igarashi, Nishino, and Nayar 2007).

Once a 3D head model has been constructed, it can be used in a variety of applications,
such as head tracking (Toyama 1998; Lepetit, Pilet, and Fua 2004; Matthews, Xiao, and Baker
2007), as shown in Figures 4.29 and 14.24, and face transfer, i.e., replacing one person’s
face with another in a video (Bregler, Covell, and Slaney 1997; Vlasic, Brand, Pfister et al.
2005). Additional applications include face beautification by warping face images toward a
more attractive “standard” (Leyvand, Cohen-Or, Dror et al. 2008), face de-identification for
privacy protection (Gross, Sweeney, De la Torre et al. 2008), and face swapping (Bitouk,
Kumar, Dhillon et al. 2008).

12.6.3 Application: Facial animation

Perhaps the most widely used application of 3D head modeling is facial animation. Once
a parameterized 3D model of shape and appearance (surface texture) has been constructed,
it can be used directly to track a person’s facial motions (Figure 12.18a) and to animate a
different character with these same motions and expressions (Pighin, Szeliski, and Salesin
2002).

An improved version of such a system can be constructed by first applying principal com-
ponent analysis (PCA) to the space of possible head shapes and facial appearances. Blanz
and Vetter (1999) describe a system where they first capture a set of 200 colored range scans
of faces (Figure 12.19a), which can be represented as a large collection of (X, Y, Z,R, G,B)
samples (vertices).9 In order for 3D morphing to be meaningful, corresponding vertices in
different people’s scans must first be put into correspondence (Pighin, Hecker, Lischinski et
al. 1998). Once this is done, PCA can be applied to more naturally parameterize the 3D mor-
phable model. The flexibility of this model can be increased by performing separate analyses
in different subregions, such as the eyes, nose, and mouth, just as in modular eigenspaces
(Moghaddam and Pentland 1997).

After computing a subspace representation, different directions in this space can be as-
sociated with different characteristics such as gender, facial expressions, or facial features
(Figure 12.19a). As in the work of Rowland and Perrett (1995), faces can be turned into
caricatures by exaggerating their displacement from the mean image.

3D morphable models can be fitted to a single image using gradient descent on the error
between the input image and the re-synthesized model image, after an initial manual place-
ment of the model in an approximately correct pose, scale, and location (Figures 12.19b–c).
The efficiency of this fitting process can be increased using inverse compositional image
alignment (8.64–8.65), as described by Romdhani and Vetter (2003).

The resulting texture-mapped 3D model can then be modified to produce a variety of vi-

9 A cylindrical coordinate system provides a natural two-dimensional embedding for this collection, but such an
embedding is not necessary to perform PCA.
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(a) (b)

(c)

Figure 12.19 3D morphable face model (Blanz and Vetter 1999) c© 1999 ACM: (a) original 3D face model with
the addition of shape and texture variations in specific directions: deviation from the mean (caricature), gender,
expression, weight, and nose shape; (b) a 3D morphable model is fit to a single image, after which its weight
or expression can be manipulated; (c) another example of a 3D reconstruction along with a different set of 3D
manipulations such as lighting and pose change.
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sual effects, including changing a person’s weight or expression, or three-dimensional effects
such as re-lighting or 3D video-based animation (Section 13.5.1). Such models can also be
used for video compression, e.g., by only transmitting a small number of facial expression
and pose parameters to drive a synthetic avatar (Eisert, Wiegand, and Girod 2000; Gao, Chen,
Wang et al. 2003).

3D facial animation is often matched to the performance of an actor, in what is known
as performance-driven animation (Section 4.1.5) (Williams 1990). Traditional performance-
driven animation systems use marker-based motion capture (Ma, Jones, Chiang et al. 2008),
while some newer systems use video footage to control the animation (Buck, Finkelstein,
Jacobs et al. 2000; Pighin, Szeliski, and Salesin 2002; Zhang, Snavely, Curless et al. 2004;
Vlasic, Brand, Pfister et al. 2005).

An example of the latter approach is the system developed for the film Benjamin Button,
in which Digital Domain used the CONTOUR system from Mova10 to capture actor Brad
Pitt’s facial motions and expressions (Roble and Zafar 2009). CONTOUR uses a combina-
tion of phosphorescent paint and multiple high-resolution video cameras to capture real-time
3D range scans of the actor. These 3D models were then translated into Facial Action Cod-
ing System (FACS) shape and expression parameters (Ekman and Friesen 1978) to drive a
different (older) synthetically animated computer-generated imagery (CGI) character.

12.6.4 Whole body modeling and tracking

The topics of tracking humans, modeling their shape and appearance, and recognizing their
activities, are some of the most actively studied areas of computer vision. Annual confer-
ences11 and special journal issues (Hilton, Fua, and Ronfard 2006) are devoted to this sub-
ject, and two recent surveys (Forsyth, Arikan, Ikemoto et al. 2006; Moeslund, Hilton, and
Krüger 2006) each list over 400 papers devoted to these topics.12 The HumanEva database
of articulated human motions13 contains multi-view video sequences of human actions along
with corresponding motion capture data, evaluation code, and a reference 3D tracker based on
particle filtering. The companion paper by Sigal, Balan, and Black (2010) not only describes
the database and evaluation but also has a nice survey of important work in this field.

Given the breadth of this area, it is difficult to categorize all of this research, especially
since different techniques usually build on each other. Moeslund, Hilton, and Krüger (2006)
divide their survey into initialization, tracking (which includes background modeling and
segmentation), pose estimation, and action (activity) recognition. Forsyth, Arikan, Ikemoto et
al. (2006) divide their survey into sections on tracking (background subtraction, deformable
templates, flow, and probabilistic models), recovering 3D pose from 2D observations, and
data association and body parts. They also include a section on motion synthesis, which is
more widely studied in computer graphics (Arikan and Forsyth 2002; Kovar, Gleicher, and
Pighin 2002; Lee, Chai, Reitsma et al. 2002; Li, Wang, and Shum 2002; Pullen and Bregler

10 http://www.mova.com.
11 International Conference on Automatic Face and Gesture Recognition (FG), IEEE Workshop on Analysis and

Modeling of Faces and Gestures, and International Workshop on Tracking Humans for the Evaluation of their Motion
in Image Sequences (THEMIS).

12 Older surveys include those by Gavrila (1999) and Moeslund and Granum (2001). Some surveys on gesture
recognition, which we do not cover in this book, include those by Pavlović, Sharma, and Huang (1997) and Yang,
Ahuja, and Tabb (2002).

13 http://vision.cs.brown.edu/humaneva/.

http://vision.cs.brown.edu/humaneva/
http://www.mova.com
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2002), see Section 13.5.2. Another potential taxonomy for work in this field would be along
the lines of whether 2D or 3D (or multi-view) images are used as input and whether 2D or
3D kinematic models are used.

In this section, we briefly review some of the more seminal and widely cited papers in the
areas of background subtraction, initialization and detection, tracking with flow, 3D kinematic
models, probabilistic models, adaptive shape modeling, and activity recognition. We refer the
reader to the previously mentioned surveys for other topics and more details.

Background subtraction. One of the first steps in many (but certainly not all) human
tracking systems is to model the background in order to extract the moving foreground ob-
jects (silhouettes) corresponding to people. Toyama, Krumm, Brumitt et al. (1999) review
several difference matting and background maintenance (modeling) techniques and provide a
good introduction to this topic. Stauffer and Grimson (1999) describe some techniques based
on mixture models, while Sidenbladh and Black (2003) develop a more comprehensive treat-
ment, which models not only the background image statistics but also the appearance of the
foreground objects, e.g., their edge and motion (frame difference) statistics.

Once silhouettes have been extracted from one or more cameras, they can then be mod-
eled using deformable templates or other contour models (Baumberg and Hogg 1996; Wren,
Azarbayejani, Darrell et al. 1997). Tracking such silhouettes over time supports the analysis
of multiple people moving around a scene, including building shape and appearance models
and detecting if they are carrying objects (Haritaoglu, Harwood, and Davis 2000; Mittal and
Davis 2003; Dimitrijevic, Lepetit, and Fua 2006).

Initialization and detection. In order to track people in a fully automated manner, it is
necessary to first detect (or re-acquire) their presence in individual video frames. This topic
is closely related to pedestrian detection, which is often considered as a kind of object recog-
nition (Mori, Ren, Efros et al. 2004; Felzenszwalb and Huttenlocher 2005; Felzenszwalb,
McAllester, and Ramanan 2008), and is therefore treated in more depth in Section 14.1.2.
Additional techniques for initializing 3D trackers based on 2D images include those described
by Howe, Leventon, and Freeman (2000), Rosales and Sclaroff (2000), Shakhnarovich, Viola,
and Darrell (2003), Sminchisescu, Kanaujia, Li et al. (2005), Agarwal and Triggs (2006), Lee
and Cohen (2006), Sigal and Black (2006), and Stenger, Thayananthan, Torr et al. (2006).

Single-frame human detection and pose estimation algorithms can sometimes be used by
themselves to perform tracking (Ramanan, Forsyth, and Zisserman 2005; Rogez, Rihan, Ra-
malingam et al. 2008; Bourdev and Malik 2009), as described in Section 4.1.4. More often,
however, they are combined with frame-to-frame tracking techniques to provide better relia-
bility (Fossati, Dimitrijevic, Lepetit et al. 2007; Andriluka, Roth, and Schiele 2008; Ferrari,
Marin-Jimenez, and Zisserman 2008).

Tracking with flow. The tracking of people and their pose from frame to frame can be
enhanced by computing optic flow or matching the appearance of their limbs from one frame
to another. For example, the cardboard people model of Ju, Black, and Yacoob (1996) mod-
els the appearance of each leg portion (upper and lower) as a moving rectangle, and uses
optic flow to estimate their location in each subsequent frame. Cham and Rehg (1999) and
Sidenbladh, Black, and Fleet (2000) track limbs using optical flow and templates, along with
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(a) (b) (c) (d)

Figure 12.20 Tracking 3D human motion: (a) kinematic chain model for a human hand (Rehg, Morris, and
Kanade 2003) c© 2003, reprinted by permission of SAGE; (b) tracking a kinematic chain blob model in a video
sequence (Bregler, Malik, and Pullen 2004) c© 2004 Springer; (c–d) probabilistic loose-limbed collection of body
parts (Sigal, Bhatia, Roth et al. 2004)

techniques for dealing with multiple hypotheses and uncertainty. Bregler, Malik, and Pullen
(2004) use a full 3D model of limb and body motion, as described below. It is also possible to
match the estimated motion field itself to some prototypes in order to identify the particular
phase of a running motion or to match two low-resolution video portions in order to perform
video replacement (Efros, Berg, Mori et al. 2003).

3D kinematic models. The effectiveness of human modeling and tracking can be greatly
enhanced using a more accurate 3D model of a person’s shape and motion. Underlying such
representations, which are ubiquitous in 3D computer animation in games and special effects,
is a kinematic model or kinematic chain, which specifies the length of each limb in a skeleton
as well as the 2D or 3D rotation angles between the limbs or segments (Figure 12.20a–b).
Inferring the values of the joint angles from the locations of the visible surface points is
called inverse kinematics (IK) and is widely studied in computer graphics.

Figure 12.20a shows the kinematic model for a human hand used by Rehg, Morris, and
Kanade (2003) to track hand motion in a video. As you can see, the attachment points between
the fingers and the thumb have two degrees of freedom, while the finger joints themselves
have only one. Using this kind of model can greatly enhance the ability of an edge-based
tracker to cope with rapid motion, ambiguities in 3D pose, and partial occlusions.

Kinematic chain models are even more widely used for whole body modeling and tracking
(O’Rourke and Badler 1980; Hogg 1983; Rohr 1994). One popular approach is to associate
an ellipsoid or superquadric with each rigid limb in the kinematic model, as shown in Fig-
ure 12.20b. This model can then be fitted to each frame in one or more video streams either
by matching silhouettes extracted from known backgrounds or by matching and tracking the
locations of occluding edges (Gavrila and Davis 1996; Kakadiaris and Metaxas 2000; Bre-
gler, Malik, and Pullen 2004; Kehl and Van Gool 2006). Note that some techniques use 2D
models coupled to 2D measurements, some use 3D measurements (range data or multi-view
video) with 3D models, and some use monocular video to infer and track 3D models directly.

It is also possible to use temporal models to improve the tracking of periodic motions,
such as walking, by analyzing the joint angles as functions of time (Polana and Nelson 1997;
Seitz and Dyer 1997; Cutler and Davis 2000). The generality and applicability of such tech-
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Figure 12.21 Estimating human shape and pose from a single image using a parametric 3D model (Guan, Weiss,
Bǎlan et al. 2009) c© 2009 IEEE.

niques can be improved by learning typical motion patterns using principal component anal-
ysis (Sidenbladh, Black, and Fleet 2000; Urtasun, Fleet, and Fua 2006).

Probabilistic models. Because tracking can be such a difficult task, sophisticated prob-
abilistic inference techniques are often used to estimate the likely states of the person being
tracked. One popular approach, called particle filtering (Isard and Blake 1998), was origi-
nally developed for tracking the outlines of people and hands, as described in Section 5.1.2
(Figures 5.6–5.8). It was subsequently applied to whole-body tracking (Deutscher, Blake,
and Reid 2000; Sidenbladh, Black, and Fleet 2000; Deutscher and Reid 2005) and continues
to be used in modern trackers (Ong, Micilotta, Bowden et al. 2006). Alternative approaches
to handling the uncertainty inherent in tracking include multiple hypothesis tracking (Cham
and Rehg 1999) and inflated covariances (Sminchisescu and Triggs 2001).

Figure 12.20c–d shows an example of a sophisticated spatio-temporal probabilistic graph-
ical model called loose-limbed people, which models not only the geometric relationship be-
tween various limbs, but also their likely temporal dynamics (Sigal, Bhatia, Roth et al. 2004).
The conditional probabilities relating various limbs and time instances are learned from train-
ing data, and particle filtering is used to perform the final pose inference.
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Adaptive shape modeling. Another essential component of whole body modeling and
tracking is the fitting of parameterized shape models to visual data. As we saw in Sec-
tion 12.6.3 (Figure 12.19), the availability of large numbers of registered 3D range scans can
be used to create morphable models of shape and appearance (Allen, Curless, and Popović
2003). Building on this work, Anguelov, Srinivasan, Koller et al. (2005) develop a sophis-
ticated system called SCAPE (Shape Completion and Animation for PEople), which first
acquires a large number of range scans of different people and of one person in different
poses, and then registers these scans using semi-automated marker placement. The registered
datasets are used to model the variation in shape as a function of personal characteristics and
skeletal pose, e.g., the bulging of muscles as certain joints are flexed (Figure 12.21, top row).
The resulting system can then be used for shape completion, i.e., the recovery of a full 3D
mesh model from a small number of captured markers, by finding the best model parameters
in both shape and pose space that fit the measured data.

Because it is constructed completely from scans of people in close-fitting clothing and
uses a parametric shape model, the SCAPE system cannot cope with people wearing loose-
fitting clothing. Bălan and Black (2008) overcome this limitation by estimating the body
shape that fits within the visual hull of the same person observed in multiple poses, while
Vlasic, Baran, Matusik et al. (2008) adapt an initial surface mesh fitted with a parametric
shape model to better match the visual hull.

While the preceding body fitting and pose estimation systems use multiple views to esti-
mate body shape, even more recent work by Guan, Weiss, Bǎlan et al. (2009) can fit a human
shape and pose model to a single image of a person on a natural background. Manual ini-
tialization is used to estimate a rough pose (skeleton) and height model, and this is then used
to segment the person’s outline using the Grab Cut segmentation algorithm (Section 5.5).
The shape and pose estimate are then refined using a combination of silhouette edge cues
and shading information (Figure 12.21). The resulting 3D model can be used to create novel
animations.

Activity recognition. The final widely studied topic in human modeling is motion, ac-
tivity, and action recognition (Bobick 1997; Hu, Tan, Wang et al. 2004; Hilton, Fua, and
Ronfard 2006). Examples of actions that are commonly recognized include walking and run-
ning, jumping, dancing, picking up objects, sitting down and standing up, and waving. Recent
representative papers on these topics have been written by Robertson and Reid (2006), Smin-
chisescu, Kanaujia, and Metaxas (2006), Weinland, Ronfard, and Boyer (2006), Yilmaz and
Shah (2006), and Gorelick, Blank, Shechtman et al. (2007).

12.7 Recovering texture maps and albedos

After a 3D model of an object or person has been acquired, the final step in modeling is
usually to recover a texture map to describe the object’s surface appearance. This first requires
establishing a parameterization for the (u, v) texture coordinates as a function of 3D surface
position. One simple way to do this is to associate a separate texture map with each triangle
(or pair of triangles). More space-efficient techniques involve unwrapping the surface onto
one or more maps, e.g., using a subdivision mesh (Section 12.3.2) (Eck, DeRose, Duchamp
et al. 1995) or a geometry image (Section 12.3.3) (Gu, Gortler, and Hoppe 2002).
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(a) (b) (c)

Figure 12.22 Estimating the diffuse albedo and reflectance parameters for a scanned 3D model (Sato, Wheeler,
and Ikeuchi 1997) c© 1997 ACM: (a) set of input images projected onto the model; (b) the complete diffuse
reflection (albedo) model; (c) rendering from the reflectance model including the specular component.

Once the (u, v) coordinates for each triangle have been fixed, the perspective projec-
tion equations mapping from texture (u, v) to an image j’s pixel (uj , vj) coordinates can be
obtained by concatenating the affine (u, v) → (X,Y, Z) mapping with the perspective ho-
mography (X, Y, Z) → (uj , vj) (Szeliski and Shum 1997). The color values for the (u, v)
texture map can then be re-sampled and stored, or the original image can itself be used as the
texture source using projective texture mapping (OpenGL-ARB 1997).

The situation becomes more involved when more than one source image is available for
appearance recovery, which is the usual case. One possibility is to use a view-dependent
texture map (Section 13.1.1), in which a different source image (or combination of source
images) is used for each polygonal face based on the angles between the virtual camera, the
surface normals, and the source images (Debevec, Taylor, and Malik 1996; Pighin, Hecker,
Lischinski et al. 1998). An alternative approach is to estimate a complete Surface Light Field
for each surface point (Wood, Azuma, Aldinger et al. 2000), as described in Section 13.3.2.

In some situations, e.g., when using models in traditional 3D games, it is preferable to
merge all of the source images into a single coherent texture map during pre-processing.
Ideally, each surface triangle should select the source image where it is seen most directly
(perpendicular to its normal) and at the resolution best matching the texture map resolution.14

This can be posed as a graph cut optimization problem, where the smoothness term encour-
ages adjacent triangles to use similar source images, followed by blending to compensate
for exposure differences (Lempitsky and Ivanov 2007; Sinha, Steedly, Szeliski et al. 2008).
Even better results can be obtained by explicitly modeling geometric and photometric mis-
alignments between the source images (Shum and Szeliski 2000; Gal, Wexler, Ofek et al.
2010).

These kinds of approaches produce good results when the lighting stays fixed with respect
to the object, i.e., when the camera moves around the object or space. When the lighting is
strongly directional, however, and the object is being moved relative to this lighting, strong
shading effects or specularities may be present, which will interfere with the reliable recov-
ery of a texture (albedo) map. In this case, it is preferable to explicitly undo the shading
effects (Section 12.1) by modeling the light source directions and estimating the surface re-
flectance properties while recovering the texture map (Sato and Ikeuchi 1996; Sato, Wheeler,
and Ikeuchi 1997; Yu and Malik 1998; Yu, Debevec, Malik et al. 1999). Figure 12.22 shows

14 When surfaces are seen at oblique viewing angles, it may be necessary to blend different images together to
obtain the best resolution (Wang, Kang, Szeliski et al. 2001).
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the results of one such approach, where the specularities are first removed while estimat-
ing the matte reflectance component (albedo) and then later re-introduced by estimating the
specular component ks in a Torrance–Sparrow reflection model (2.91).

12.7.1 Estimating BRDFs

A more ambitious approach to the problem of view-dependent appearance modeling is to
estimate a general bidirectional reflectance distribution function (BRDF) for each point on an
object’s surface. Dana, van Ginneken, Nayar et al. (1999), Jensen, Marschner, Levoy et al.
(2001), and Lensch, Kautz, Goesele et al. (2003) present different techniques for estimating
such functions, while Dorsey, Rushmeier, and Sillion (2007) and Weyrich, Lawrence, Lensch
et al. (2008) present more recent surveys of the topics of BRDF modeling, recovery, and
rendering.

As we saw in Section 2.2.2 (2.81), the BRDF can be written as

fr(θi, φi, θr, φr; λ), (12.9)

where (θi, φi) and (θr, φr) are the angles the incident v̂i and reflected v̂r light ray directions
make with the local surface coordinate frame (d̂x, d̂y, n̂) shown in Figure 2.15. When mod-
eling the appearance of an object, as opposed to the appearance of a patch of material, we
need to estimate this function at every point (x, y) on the object’s surface, which gives us the
spatially varying BRDF, or SVBRDF (Weyrich, Lawrence, Lensch et al. 2008),

fv(x, y, θi, φi, θr, φr; λ). (12.10)

If sub-surface scattering effects are being modeled, such as the long-range transmission
of light through materials such as alabaster, the eight-dimensional bidirectional scattering-
surface reflectance-distribution function (BSSRDF) is used instead,

fe(xi, yi, θi, φi, xe, ye, θe, φe; λ), (12.11)

where the e subscript now represents the emitted rather than the reflected light directions.
Weyrich, Lawrence, Lensch et al. (2008) provide a nice survey of these and related topics,

including basic photometry, BRDF models, traditional BRDF acquisition using gonio reflec-
tometry (the precise measurement of visual angles and reflectances), multiplexed illumination
(Schechner, Nayar, and Belhumeur 2009), skin modeling (Debevec, Hawkins, Tchou et al.
2000; Weyrich, Matusik, Pfister et al. 2006), and image-based acquisition techniques, which
simultaneously recover an object’s 3D shape and reflectometry from multiple photographs.

A nice example of this latter approach is the system developed by Lensch, Kautz, Goesele
et al. (2003), who estimate locally varying BRDFs and refine their shape models using local
estimates of surface normals. To build up their models, they first associate a lumitexels, which
contains a 3D position, a surface normal, and a set of sparse radiance samples, with each
surface point. Next, they cluster such lumitexels into materials that share common properties,
using a Lafortune reflectance model (Lafortune, Foo, Torrance et al. 1997) and a divisive
clustering approach (Figure 12.23a). Finally, in order to model detailed spatially varying
appearance, each lumitexel (surface point) is projected onto the basis of clustered appearance
models (Figure 12.23b).
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(a) (b)

Figure 12.23 Image-based reconstruction of appearance and detailed geometry (Lensch, Kautz, Goesele et al.
2003) c© 2003 ACM. (a) Appearance models (BRDFs) are re-estimated using divisive clustering. (b) In order to
model detailed spatially varying appearance, each lumitexel is projected onto the basis formed by the clustered
materials.

While most of the techniques discussed in this section require large numbers of views
to estimate surface properties, a challenging future direction will be to take these techniques
out of the lab and into the real world, and to combine them with regular and Internet photo
image-based modeling approaches.

12.7.2 Application: 3D photography

The techniques described in this chapter for building complete 3D models from multiple im-
ages and then recovering their surface appearance have opened up a whole new range of
applications that often go under the name 3D photography. Pollefeys and Van Gool (2002)
provide a nice introduction to this field, including the processing steps of feature matching,
structure from motion recovery,15 dense depth map estimation, 3D model building, and tex-
ture map recovery. A complete Web-based system for automatically performing all of these
tasks, called ARC3D, is described by Vergauwen and Van Gool (2006) and Moons, Van Gool,
and Vergauwen (2010). The latter paper provides not only an in-depth survey of this whole
field but also a detailed description of their complete end-to-end system.

An alternative to such fully automated systems is to put the user in the loop in what is
sometimes called interactive computer vision. van den Hengel, Dick, Thormhlen et al. (2007)
describe their VideoTrace system, which performs automated point tracking and 3D structure
recovery from video and then lets the user draw triangles and surfaces on top of the resulting
point cloud, as well as interactively adjusting the locations of model vertices. Sinha, Steedly,
Szeliski et al. (2008) describe a related system that uses matched vanishing points in multiple
images (Figure 4.45) to infer 3D line orientations and plane normals. These are then used to
guide the user drawing axis-aligned planes, which are automatically fitted to the recovered
3D point cloud. Fully automated variants on these ideas are described by Zebedin, Bauer,
Karner et al. (2008), Furukawa, Curless, Seitz et al. (2009a), Furukawa, Curless, Seitz et al.
(2009b), Mičušı́k and Košecká (2009), and Sinha, Steedly, and Szeliski (2009).

As the sophistication and reliability of these techniques continues to improve, we can ex-
pect to see even more user-friendly applications for photorealistic 3D modeling from images
(Exercise 12.8).

15 These earlier steps are also discussed in Section 7.4.4.
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12.8 Additional reading

Shape from shading is one of the classic problems in computer vision (Horn 1975). Some
representative papers in this area include those by Horn (1977), Ikeuchi and Horn (1981),
Pentland (1984), Horn and Brooks (1986), Horn (1990), Szeliski (1991a), Mancini and Wolff
(1992), Dupuis and Oliensis (1994), and Fua and Leclerc (1995). The collection of papers
edited by Horn and Brooks (1989) is a great source of information on this topic, especially
the chapter on variational approaches. The survey by Zhang, Tsai, Cryer et al. (1999) not
only reviews more recent techniques but also provides some comparative results.

Woodham (1981) wrote the seminal paper of photometric stereo. Shape from texture
techniques include those by Witkin (1981), Ikeuchi (1981), Blostein and Ahuja (1987), Gard-
ing (1992), Malik and Rosenholtz (1997), Liu, Collins, and Tsin (2004), Liu, Lin, and Hays
(2004), Hays, Leordeanu, Efros et al. (2006), Lin, Hays, Wu et al. (2006), Lobay and Forsyth
(2006), White and Forsyth (2006), White, Crane, and Forsyth (2007), and Park, Brockle-
hurst, Collins et al. (2009). Good papers and books on depth from defocus have been written
by Pentland (1987), Nayar and Nakagawa (1994), Nayar, Watanabe, and Noguchi (1996),
Watanabe and Nayar (1998), Chaudhuri and Rajagopalan (1999), and Favaro and Soatto
(2006). Additional techniques for recovering shape from various kinds of illumination ef-
fects, including inter-reflections (Nayar, Ikeuchi, and Kanade 1991), are discussed in the
book on shape recovery edited by Wolff, Shafer, and Healey (1992b).

Active rangefinding systems, which use laser or natural light illumination projected into
the scene, have been described by Besl (1989), Rioux and Bird (1993), Kang, Webb, Zit-
nick et al. (1995), Curless and Levoy (1995), Curless and Levoy (1996), Proesmans, Van
Gool, and Defoort (1998), Bouguet and Perona (1999), Curless (1999), Hebert (2000), Id-
dan and Yahav (2001), Goesele, Fuchs, and Seidel (2003), Scharstein and Szeliski (2003),
Davis, Ramamoorthi, and Rusinkiewicz (2003), Zhang, Curless, and Seitz (2003), Zhang,
Snavely, Curless et al. (2004), and Moons, Van Gool, and Vergauwen (2010). Individual
range scans can be aligned using 3D correspondence and distance optimization techniques
such as iterated closest points and its variants (Besl and McKay 1992; Zhang 1994; Szeliski
and Lavallée 1996; Johnson and Kang 1997; Gold, Rangarajan, Lu et al. 1998; Johnson
and Hebert 1999; Pulli 1999; David, DeMenthon, Duraiswami et al. 2004; Li and Hartley
2007; Enqvist, Josephson, and Kahl 2009). Once they have been aligned, range scans can
be merged using techniques that model the signed distance of surfaces to volumetric sam-
ple points (Hoppe, DeRose, Duchamp et al. 1992; Curless and Levoy 1996; Hilton, Stoddart,
Illingworth et al. 1996; Wheeler, Sato, and Ikeuchi 1998; Kazhdan, Bolitho, and Hoppe 2006;
Lempitsky and Boykov 2007; Zach, Pock, and Bischof 2007b; Zach 2008).

Once constructed, 3D surfaces can be modeled and manipulated using a variety of three-
dimensional representations, which include triangle meshes (Eck, DeRose, Duchamp et al.
1995; Hoppe 1996), splines (Farin 1992, 1996; Lee, Wolberg, and Shin 1996), subdivision
surfaces (Stollnitz, DeRose, and Salesin 1996; Zorin, Schröder, and Sweldens 1996; Warren
and Weimer 2001; Peters and Reif 2008), and geometry images (Gu, Gortler, and Hoppe
2002). Alternatively, they can be represented as collections of point samples with local ori-
entation estimates (Hoppe, DeRose, Duchamp et al. 1992; Szeliski and Tonnesen 1992; Turk
and O’Brien 2002; Pfister, Zwicker, van Baar et al. 2000; Alexa, Behr, Cohen-Or et al. 2003;
Pauly, Keiser, Kobbelt et al. 2003; Diebel, Thrun, and Brünig 2006; Guennebaud and Gross
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2007; Guennebaud, Germann, and Gross 2008; Oztireli, Guennebaud, and Gross 2008). They
can also be modeled using implicit inside–outside characteristic or signed distance functions
sampled on regular or irregular (octree) volumetric grids (Lavallée and Szeliski 1995; Szeliski
and Lavallée 1996; Frisken, Perry, Rockwood et al. 2000; Dinh, Turk, and Slabaugh 2002;
Kazhdan, Bolitho, and Hoppe 2006; Lempitsky and Boykov 2007; Zach, Pock, and Bischof
2007b; Zach 2008).

The literature on model-based 3D reconstruction is extensive. For modeling architecture
and urban scenes, both interactive and fully automated systems have been developed. A
special journal issue devoted to the reconstruction of large-scale 3D scenes (Zhu and Kanade
2008) is a good source of references and Robertson and Cipolla (2009) give a nice description
of a complete system. Lots of additional references can be found in Section 12.6.1.

Face and whole body modeling and tracking is a very active sub-field of computer vision,
with its own conferences and workshops, e.g., the International Conference on Automatic
Face and Gesture Recognition (FG), the IEEE Workshop on Analysis and Modeling of Faces
and Gestures, and the International Workshop on Tracking Humans for the Evaluation of their
Motion in Image Sequences (THEMIS). Recent survey articles on the topic of whole body
modeling and tracking include those by Forsyth, Arikan, Ikemoto et al. (2006), Moeslund,
Hilton, and Krüger (2006), and Sigal, Balan, and Black (2010).

12.9 Exercises

Ex 12.1: Shape from focus Grab a series of focused images with a digital SLR set to man-
ual focus (or get one that allows for programmatic focus control) and recover the depth of an
object.

1. Take some calibration images, e.g., of a checkerboard, so you can compute a mapping
between the amount of defocus and the focus setting.

2. Try both a fronto-parallel planar target and one which is slanted so that it covers the
working range of the sensor. Which one works better?

3. Now put a real object in the scene and perform a similar focus sweep.

4. For each pixel, compute the local sharpness and fit a parabolic curve over focus settings
to find the most in-focus setting.

5. Map these focus settings to depth and compare your result to ground truth. If you are
using a known simple object, such as sphere or cylinder (a ball or a soda can), it’s easy
to measure its true shape.

6. (Optional) See if you can recover the depth map from just two or three focus settings.

7. (Optional) Use an LCD projector to project artificial texture onto the scene. Use a pair
of cameras to compare the accuracy of your shape from focus and shape from stereo
techniques.

8. (Optional) Create an all-in-focus image using the technique of Agarwala, Dontcheva,
Agrawala et al. (2004).
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Ex 12.2: Shadow striping Implement the handheld shadow striping system of Bouguet
and Perona (1999). The basic steps include the following.

1. Set up two background planes behind the object of interest and calculate their orienta-
tion relative to the viewer, e.g., with fiducial marks.

2. Cast a moving shadow with a stick across the scene; record the video or capture the
data with a webcam.

3. Estimate each light plane equation from the projections of the cast shadow against the
two backgrounds.

4. Triangulate to the remaining points on each curve to get a 3D stripe and display the
stripes using a 3D graphics engine.

5. (Optional) remove the requirement for a known second (vertical) plane and infer its
location (or that of the light source) using the techniques described by Bouguet and
Perona (1999). The techniques from Exercise 10.9 may also be helpful here.

Ex 12.3: Range data registration Register two or more 3D datasets using either iterated
closest points (ICP) (Besl and McKay 1992; Zhang 1994; Gold, Rangarajan, Lu et al. 1998)
or octree signed distance fields (Szeliski and Lavallée 1996) (Section 12.2.1).

Apply your technique to narrow-baseline stereo pairs, e.g., obtained by moving a cam-
era around an object, using structure from motion to recover the camera poses, and using a
standard stereo matching algorithm.

Ex 12.4: Range data merging Merge the datasets that you registered in the previous exer-
cise using signed distance fields (Curless and Levoy 1996; Hilton, Stoddart, Illingworth et al.
1996). You can optionally use an octree to represent and compress this field if you already
implemented it in the previous registration step.

Extract a meshed surface model from the signed distance field using marching cubes and
display the resulting model.

Ex 12.5: Surface simplification Use progressive meshes (Hoppe 1996) or some other tech-
nique from Section 12.3.2 to create a hierarchical simplification of your surface model.

Ex 12.6: Architectural modeler Build a 3D interior or exterior model of some architec-
tural structure, such as your house, from a series of handheld wide-angle photographs.

1. Extract lines and vanishing points (Exercises 4.11–4.15) to estimate the dominant di-
rections in each image.

2. Use structure from motion to recover all of the camera poses and match up the vanish-
ing points.

3. Let the user sketch the locations of the walls by drawing lines corresponding to wall
bottoms, tops, and horizontal extents onto the images (Sinha, Steedly, Szeliski et al.
2008)—see also Exercise 6.9. Do something similar for openings (doors and windows)
and simple furniture (tables and countertops).
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4. Convert the resulting polygonal meshes into a 3D model (e.g., VRML) and optionally
texture-map these surfaces from the images.

Ex 12.7: Body tracker Download the video sequences from the HumanEva Web site.16

Either implement a human motion tracker from scratch or extend the code on that Web site
(Sigal, Balan, and Black 2010) in some interesting way.

Ex 12.8: 3D photography Combine all of your previously developed techniques to pro-
duce a system that takes a series of photographs or a video and constructs a photorealistic
texture-mapped 3D model.

16 http://vision.cs.brown.edu/humaneva/.

http://vision.cs.brown.edu/humaneva/
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