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Figure 11.1 Stereo reconstruction techniques can convert (a–b) a pair of images into (c) a depth map (http:
//vision.middlebury.edu/stereo/data/scenes2003/) or (d–e) a sequence of images into (f) a 3D model (http://vision.
middlebury.edu/mview/data/). (g) An analytical stereo plotter, courtesy of Kenney Aerial Mapping, Inc., can
generate (h) contour plots.

http://vision.middlebury.edu/mview/data/
http://vision.middlebury.edu/mview/data/
http://vision.middlebury.edu/stereo/data/scenes2003/
http://vision.middlebury.edu/stereo/data/scenes2003/
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Stereo matching is the process of taking two or more images and estimating a 3D model of
the scene by finding matching pixels in the images and converting their 2D positions into
3D depths. In Chapters 6–7, we described techniques for recovering camera positions and
building sparse 3D models of scenes or objects. In this chapter, we address the question
of how to build a more complete 3D model, e.g., a sparse or dense depth map that assigns
relative depths to pixels in the input images. We also look at the topic of multi-view stereo
algorithms that produce complete 3D volumetric or surface-based object models.

Why are people interested in stereo matching? From the earliest inquiries into visual per-
ception, it was known that we perceive depth based on the differences in appearance between
the left and right eye.1 As a simple experiment, hold your finger vertically in front of your
eyes and close each eye alternately. You will notice that the finger jumps left and right relative
to the background of the scene. The same phenomenon is visible in the image pair shown in
Figure 11.1a–b, in which the foreground objects shift left and right relative to the background.

As we will shortly see, under simple imaging configurations (both eyes or cameras look-
ing straight ahead), the amount of horizontal motion or disparity is inversely proportional to
the distance from the observer. While the basic physics and geometry relating visual disparity
to scene structure are well understood (Section 11.1), automatically measuring this disparity
by establishing dense and accurate inter-image correspondences is a challenging task.

The earliest stereo matching algorithms were developed in the field of photogrammetry
for automatically constructing topographic elevation maps from overlapping aerial images.
Prior to this, operators would use photogrammetric stereo plotters, which displayed shifted
versions of such images to each eye and allowed the operator to float a dot cursor around con-
stant elevation contours (Figure 11.1g). The development of fully automated stereo matching
algorithms was a major advance in this field, enabling much more rapid and less expensive
processing of aerial imagery (Hannah 1974; Hsieh, McKeown, and Perlant 1992).

In computer vision, the topic of stereo matching has been one of the most widely stud-
ied and fundamental problems (Marr and Poggio 1976; Barnard and Fischler 1982; Dhond
and Aggarwal 1989; Scharstein and Szeliski 2002; Brown, Burschka, and Hager 2003; Seitz,
Curless, Diebel et al. 2006), and continues to be one of the most active research areas. While
photogrammetric matching concentrated mainly on aerial imagery, computer vision applica-
tions include modeling the human visual system (Marr 1982), robotic navigation and manip-
ulation (Moravec 1983; Konolige 1997; Thrun, Montemerlo, Dahlkamp et al. 2006), as well
as view interpolation and image-based rendering (Figure 11.2a–d), 3D model building (Fig-
ure 11.2e–f and h–j), and mixing live action with computer-generated imagery (Figure 11.2g).

In this chapter, we describe the fundamental principles behind stereo matching, following
the general taxonomy proposed by Scharstein and Szeliski (2002). We begin in Section 11.1
with a review of the geometry of stereo image matching, i.e., how to compute for a given
pixel in one image the range of possible locations the pixel might appear at in the other
image, i.e., its epipolar line. We describe how to pre-warp images so that corresponding
epipolar lines are coincident (rectification). We also describe a general resampling algorithm
called plane sweep that can be used to perform multi-image stereo matching with arbitrary
camera configurations.

1 The word stereo comes from the Greek for solid; stereo vision is how we perceive solid shape (Koenderink
1990).
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Figure 11.2 Applications of stereo vision: (a) input image, (b) computed depth map, and (c) new view generation
from multi-view stereo (Matthies, Kanade, and Szeliski 1989) c© 1989 Springer; (d) view morphing between two
images (Seitz and Dyer 1996) c© 1996 ACM; (e–f) 3D face modeling (images courtesy of Frédéric Devernay); (g)
z-keying live and computer-generated imagery (Kanade, Yoshida, Oda et al. 1996) c© 1996 IEEE; (h–j) building
3D surface models from multiple video streams in Virtualized Reality (Kanade, Rander, and Narayanan 1997).
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Figure 11.3 Epipolar geometry: (a) epipolar line segment corresponding to one ray; (b) corresponding set of
epipolar lines and their epipolar plane.

Next, we briefly survey techniques for the sparse stereo matching of interest points and
edge-like features (Section 11.2). We then turn to the main topic of this chapter, namely the
estimation of a dense set of pixel-wise correspondences in the form of a disparity map (Fig-
ure 11.1c). This involves first selecting a pixel matching criterion (Section 11.3) and then
using either local area-based aggregation (Section 11.4) or global optimization (Section 11.5)
to help disambiguate potential matches. In Section 11.6, we discuss multi-view stereo meth-
ods that aim to reconstruct a complete 3D model instead of just a single disparity image
(Figure 11.1d–f).

11.1 Epipolar geometry

Given a pixel in one image, how can we compute its correspondence in the other image? In
Chapter 8, we saw that a variety of search techniques can be used to match pixels based on
their local appearance as well as the motions of neighboring pixels. In the case of stereo
matching, however, we have some additional information available, namely the positions and
calibration data for the cameras that took the pictures of the same static scene (Section 7.2).

How can we exploit this information to reduce the number of potential correspondences,
and hence both speed up the matching and increase its reliability? Figure 11.3a shows how a
pixel in one image x0 projects to an epipolar line segment in the other image. The segment
is bounded at one end by the projection of the original viewing ray at infinity p∞ and at the
other end by the projection of the original camera center c0 into the second camera, which
is known as the epipole e1. If we project the epipolar line in the second image back into the
first, we get another line (segment), this time bounded by the other corresponding epipole
e0. Extending both line segments to infinity, we get a pair of corresponding epipolar lines
(Figure 11.3b), which are the intersection of the two image planes with the epipolar plane
that passes through both camera centers c0 and c1 as well as the point of interest p (Faugeras
and Luong 2001; Hartley and Zisserman 2004).
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(a) (b)
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Figure 11.4 The multi-stage stereo rectification algorithm of Loop and Zhang (1999) c© 1999 IEEE. (a) Original
image pair overlaid with several epipolar lines; (b) images transformed so that epipolar lines are parallel; (c)
images rectified so that epipolar lines are horizontal and in vertial correspondence; (d) final rectification that
minimizes horizontal distortions.

11.1.1 Rectification

As we saw in Section 7.2, the epipolar geometry for a pair of cameras is implicit in the
relative pose and calibrations of the cameras, and can easily be computed from seven or more
point matches using the fundamental matrix (or five or more points for the calibrated essential
matrix) (Zhang 1998a,b; Faugeras and Luong 2001; Hartley and Zisserman 2004). Once this
geometry has been computed, we can use the epipolar line corresponding to a pixel in one
image to constrain the search for corresponding pixels in the other image. One way to do this
is to use a general correspondence algorithm, such as optical flow (Section 8.4), but to only
consider locations along the epipolar line (or to project any flow vectors that fall off back onto
the line).

A more efficient algorithm can be obtained by first rectifying (i.e, warping) the input
images so that corresponding horizontal scanlines are epipolar lines (Loop and Zhang 1999;
Faugeras and Luong 2001; Hartley and Zisserman 2004).2 Afterwards, it is possible to match
horizontal scanlines independently or to shift images horizontally while computing matching
scores (Figure 11.4).

A simple way to rectify the two images is to first rotate both cameras so that they are
looking perpendicular to the line joining the camera centers c0 and c1. Since there is a de-
gree of freedom in the tilt, the smallest rotations that achieve this should be used. Next, to
determine the desired twist around the optical axes, make the up vector (the camera y axis)
perpendicular to the camera center line. This ensures that corresponding epipolar lines are

2 This makes most sense if the cameras are next to each other, although by rotating the cameras, rectification can
be performed on any pair that is not verged too much or has too much of a scale change. In those latter cases, using
plane sweep (below) or hypothesizing small planar patch locations in 3D (Goesele, Snavely, Curless et al. 2007) may
be preferable.
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Figure 11.5 Slices through a typical disparity space image (DSI) (Scharstein and Szeliski 2002) c© 2002
Springer: (a) original color image; (b) ground truth disparities; (c–e) three (x, y) slices for d = 10, 16, 21;
(f) an (x, d) slice for y = 151 (the dashed line in (b)). Various dark (matching) regions are visible in (c–e), e.g.,
the bookshelves, table and cans, and head statue, and three disparity levels can be seen as horizontal lines in (f).
The dark bands in the DSIs indicate regions that match at this disparity. (Smaller dark regions are often the result
of textureless regions.) Additional examples of DSIs are discussed by Bobick and Intille (1999).

horizontal and that the disparity for points at infinity is 0. Finally, re-scale the images, if nec-
essary, to account for different focal lengths, magnifying the smaller image to avoid aliasing.
(The full details of this procedure can be found in Fusiello, Trucco, and Verri (2000) and Ex-
ercise 11.1.) Note that in general, it is not possible to rectify an arbitrary collection of images
simultaneously unless their optical centers are collinear, although rotating the cameras so that
they all point in the same direction reduces the inter-camera pixel movements to scalings and
translations.

The resulting standard rectified geometry is employed in a lot of stereo camera setups and
stereo algorithms, and leads to a very simple inverse relationship between 3D depths Z and
disparities d,

d = f
B

Z
, (11.1)

where f is the focal length (measured in pixels), B is the baseline, and

x′ = x + d(x, y), y′ = y (11.2)

describes the relationship between corresponding pixel coordinates in the left and right im-
ages (Bolles, Baker, and Marimont 1987; Okutomi and Kanade 1993; Scharstein and Szeliski
2002).3 The task of extracting depth from a set of images then becomes one of estimating the
disparity map d(x, y).

After rectification, we can easily compare the similarity of pixels at corresponding lo-
cations (x, y) and (x′, y′) = (x + d, y) and store them in a disparity space image (DSI)
C(x, y, d) for further processing (Figure 11.5). The concept of the disparity space (x, y, d)
dates back to early work in stereo matching (Marr and Poggio 1976), while the concept of a
disparity space image (volume) is generally associated with Yang, Yuille, and Lu (1993) and
Intille and Bobick (1994).

3 The term disparity was first introduced in the human vision literature to describe the difference in location
of corresponding features seen by the left and right eyes (Marr 1982). Horizontal disparity is the most commonly
studied phenomenon, but vertical disparity is possible if the eyes are verged.
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Figure 11.6 Sweeping a set of planes through a scene (Szeliski and Golland 1999) c© 1999 Springer: (a) The
set of planes seen from a virtual camera induces a set of homographies in any other source (input) camera image.
(b) The warped images from all the other cameras can be stacked into a generalized disparity space volume
Ĩ(x, y, d, k) indexed by pixel location (x, y), disparity d, and camera k.

11.1.2 Plane sweep

An alternative to pre-rectifying the images before matching is to sweep a set of planes through
the scene and to measure the photoconsistency of different images as they are re-projected
onto these planes (Figure 11.6). This process is commonly known as the plane sweep algo-
rithm (Collins 1996; Szeliski and Golland 1999; Saito and Kanade 1999).

As we saw in Section 2.1.5, where we introduced projective depth (also known as plane
plus parallax (Kumar, Anandan, and Hanna 1994; Sawhney 1994; Szeliski and Coughlan
1997)), the last row of a full-rank 4 × 4 projection matrix P̃ can be set to an arbitrary plane
equation p3 = s3[n̂0|c0]. The resulting four-dimensional projective transform (collineation)
(2.68) maps 3D world points p = (X, Y, Z, 1) into screen coordinates xs = (xs, ys, 1, d),
where the projective depth (or parallax) d (2.66) is 0 on the reference plane (Figure 2.11).

Sweeping d through a series of disparity hypotheses, as shown in Figure 11.6a, corre-
sponds to mapping each input image into the virtual camera P̃ defining the disparity space
through a series of homographies (2.68–2.71),

x̃k ∼ P̃ kP̃
−1

xs = H̃kx̃ + tkd = (H̃k + tk[0 0 d])x̃, (11.3)

as shown in Figure 2.12b, where x̃k and x̃ are the homogeneous pixel coordinates in the
source and virtual (reference) images (Szeliski and Golland 1999). The members of the fam-
ily of homographies H̃k(d) = H̃k + tk[0 0 d], which are parametererized by the addition of
a rank-1 matrix, are related to each other through a planar homology (Hartley and Zisserman
2004, A5.2).

The choice of virtual camera and parameterization is application dependent and is what
gives this framework a lot of its flexibility. In many applications, one of the input cameras
(the reference camera) is used, thus computing a depth map that is registered with one of the
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input images and which can later be used for image-based rendering (Sections 13.1 and 13.2).
In other applications, such as view interpolation for gaze correction in video-conferencing
(Section 11.4.2) (Ott, Lewis, and Cox 1993; Criminisi, Shotton, Blake et al. 2003), a camera
centrally located between the two input cameras is preferable, since it provides the needed
per-pixel disparities to hallucinate the virtual middle image.

The choice of disparity sampling, i.e., the setting of the zero parallax plane and the scaling
of integer disparities, is also application dependent, and is usually set to bracket the range of
interest, i.e., the working volume, while scaling disparities to sample the image in pixel (or
sub-pixel) shifts. For example, when using stereo vision for obstacle avoidance in robot
navigation, it is most convenient to set up disparity to measure per-pixel elevation above the
ground (Ivanchenko, Shen, and Coughlan 2009).

As each input image is warped onto the current planes parameterized by disparity d, it
can be stacked into a generalized disparity space image Ĩ(x, y, d, k) for further processing
(Figure 11.6b) (Szeliski and Golland 1999). In most stereo algorithms, the photoconsistency
(e.g., sum of squared or robust differences) with respect to the reference image Ir is calculated
and stored in the DSI

C(x, y, d) =
∑

k

ρ(Ĩ(x, y, d, k) − Ir(x, y)). (11.4)

However, it is also possible to compute alternative statistics such as robust variance, focus,
or entropy (Section 11.3.1) (Vaish, Szeliski, Zitnick et al. 2006) or to use this representation
to reason about occlusions (Szeliski and Golland 1999; Kang and Szeliski 2004). The gen-
eralized DSI will come in particularly handy when we come back to the topic of multi-view
stereo in Section 11.6.

Of course, planes are not the only surfaces that can be used to define a 3D sweep through
the space of interest. Cylindrical surfaces, especially when coupled with panoramic photog-
raphy (Chapter 9), are often used (Ishiguro, Yamamoto, and Tsuji 1992; Kang and Szeliski
1997; Shum and Szeliski 1999; Li, Shum, Tang et al. 2004; Zheng, Kang, Cohen et al. 2007).
It is also possible to define other manifold topologies, e.g., ones where the camera rotates
around a fixed axis (Seitz 2001).

Once the DSI has been computed, the next step in most stereo correspondence algorithms
is to produce a univalued function in disparity space d(x, y) that best describes the shape of
the surfaces in the scene. This can be viewed as finding a surface embedded in the disparity
space image that has some optimality property, such as lowest cost and best (piecewise)
smoothness (Yang, Yuille, and Lu 1993). Figure 11.5 shows examples of slices through a
typical DSI. More figures of this kind can be found in the paper by Bobick and Intille (1999).

11.2 Sparse correspondence

Early stereo matching algorithms were feature-based, i.e., they first extracted a set of poten-
tially matchable image locations, using either interest operators or edge detectors, and then
searched for corresponding locations in other images using a patch-based metric (Hannah
1974; Marr and Poggio 1979; Mayhew and Frisby 1980; Baker and Binford 1981; Arnold
1983; Grimson 1985; Ohta and Kanade 1985; Bolles, Baker, and Marimont 1987; Matthies,
Kanade, and Szeliski 1989; Hsieh, McKeown, and Perlant 1992; Bolles, Baker, and Hannah
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Figure 11.7 Surface reconstruction from occluding contours (Szeliski and Weiss 1998) c© 2002 Springer: (a)
circular arc fitting in the epipolar plane; (b) synthetic example of an ellipsoid with a truncated side and elliptic
surface markings; (c) partially reconstructed surface mesh seen from an oblique and top-down view; (d) real-
world image sequence of a soda can on a turntable; (e) extracted edges; (f) partially reconstructed profile curves;
(g) partially reconstructed surface mesh. (Partial reconstructions are shown so as not to clutter the images.)

1993). This limitation to sparse correspondences was partially due to computational resource
limitations, but was also driven by a desire to limit the answers produced by stereo algorithms
to matches with high certainty. In some applications, there was also a desire to match scenes
with potentially very different illuminations, where edges might be the only stable features
(Collins 1996). Such sparse 3D reconstructions could later be interpolated using surface fit-
ting algorithms such as those discussed in Sections 3.7.1 and 12.3.1.

More recent work in this area has focused on first extracting highly reliable features and
then using these as seeds to grow additional matches (Zhang and Shan 2000; Lhuillier and
Quan 2002). Similar approaches have also been extended to wide baseline multi-view stereo
problems and combined with 3D surface reconstruction (Lhuillier and Quan 2005; Strecha,
Tuytelaars, and Van Gool 2003; Goesele, Snavely, Curless et al. 2007) or free-space reasoning
(Taylor 2003), as described in more detail in Section 11.6.

11.2.1 3D curves and profiles

Another example of sparse correspondence is the matching of profile curves (or occluding
contours), which occur at the boundaries of objects (Figure 11.7) and at interior self occlu-
sions, where the surface curves away from the camera viewpoint.

The difficulty in matching profile curves is that in general, the locations of profile curves
vary as a function of camera viewpoint. Therefore, matching curves directly in two images
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and then triangulating these matches can lead to erroneous shape measurements. Fortunately,
if three or more closely spaced frames are available, it is possible to fit a local circular arc to
the locations of corresponding edgels (Figure 11.7a) and therefore obtain semi-dense curved
surface meshes directly from the matches (Figures 11.7c and g). Another advantage of match-
ing such curves is that they can be used to reconstruct surface shape for untextured surfaces,
so long as there is a visible difference between foreground and background colors.

Over the years, a number of different techniques have been developed for reconstructing
surface shape from profile curves (Giblin and Weiss 1987; Cipolla and Blake 1992; Vaillant
and Faugeras 1992; Zheng 1994; Boyer and Berger 1997; Szeliski and Weiss 1998). Cipolla
and Giblin (2000) describe many of these techniques, as well as related topics such as in-
ferring camera motion from profile curve sequences. Below, we summarize the approach
developed by Szeliski and Weiss (1998), which assumes a discrete set of images, rather than
formulating the problem in a continuous differential framework.

Let us assume that the camera is moving smoothly enough that the local epipolar geometry
varies slowly, i.e., the epipolar planes induced by the successive camera centers and an edgel
under consideration are nearly co-planar. The first step in the processing pipeline is to extract
and link edges in each of the input images (Figures 11.7b and e). Next, edgels in successive
images are matched using pairwise epipolar geometry, proximity and (optionally) appearance.
This provides a linked set of edges in the spatio-temporal volume, which is sometimes called
the weaving wall (Baker 1989).

To reconstruct the 3D location of an individual edgel, along with its local in-plane normal
and curvature, we project the viewing rays corresponding to its neighbors onto the instanta-
neous epipolar plane defined by the camera center, the viewing ray, and the camera velocity,
as shown in Figure 11.7a. We then fit an osculating circle to the projected lines, parameteriz-
ing the circle by its centerpoint c = (xc, yc) and radius r,

cixc + siyc + r = di, (11.5)

where ci = t̂i · t̂0 and si = −t̂i · n̂0 are the cosine and sine of the angle between viewing ray
i and the central viewing ray 0, and di = (qi −q0) · n̂0 is the perpendicular distance between
viewing ray i and the local origin q0, which is a point chosen on the central viewing ray close
to the line intersections (Szeliski and Weiss 1998). The resulting set of linear equations can
be solved using least squares, and the quality of the solution (residual error) can be used to
check for erroneous correspondences.

The resulting set of 3D points, along with their spatial (in-image) and temporal (between-
image) neighbors, form a 3D surface mesh with local normal and curvature estimates (Fig-
ures 11.7c and g). Note that whenever a curve is due to a surface marking or a sharp crease
edge, rather than a smooth surface profile curve, this shows up as a 0 or small radius of curva-
ture. Such curves result in isolated 3D space curves, rather than elements of smooth surface
meshes, but can still be incorporated into the 3D surface model during a later stage of surface
interpolation (Section 12.3.1).

11.3 Dense correspondence

While sparse matching algorithms are still occasionally used, most stereo matching algo-
rithms today focus on dense correspondence, since this is required for applications such as
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image-based rendering or modeling. This problem is more challenging than sparse corre-
spondence, since inferring depth values in textureless regions requires a certain amount of
guesswork. (Think of a solid colored background seen through a picket fence. What depth
should it be?)

In this section, we review the taxonomy and categorization scheme for dense correspon-
dence algorithms first proposed by Scharstein and Szeliski (2002). The taxonomy consists
of a set of algorithmic “building blocks” from which a large set of algorithms can be con-
structed. It is based on the observation that stereo algorithms generally perform some subset
of the following four steps:

1. matching cost computation;

2. cost (support) aggregation;

3. disparity computation and optimization; and

4. disparity refinement.

For example, local (window-based) algorithms (Section 11.4), where the disparity com-
putation at a given point depends only on intensity values within a finite window, usually
make implicit smoothness assumptions by aggregating support. Some of these algorithms
can cleanly be broken down into steps 1, 2, 3. For example, the traditional sum-of-squared-
differences (SSD) algorithm can be described as:

1. The matching cost is the squared difference of intensity values at a given disparity.

2. Aggregation is done by summing the matching cost over square windows with constant
disparity.

3. Disparities are computed by selecting the minimal (winning) aggregated value at each
pixel.

Some local algorithms, however, combine steps 1 and 2 and use a matching cost that is based
on a support region, e.g. normalized cross-correlation (Hannah 1974; Bolles, Baker, and Han-
nah 1993) and the rank transform (Zabih and Woodfill 1994) and other ordinal measures (Bhat
and Nayar 1998). (This can also be viewed as a preprocessing step; see (Section 11.3.1).)

Global algorithms, on the other hand, make explicit smoothness assumptions and then
solve a a global optimization problem (Section 11.5). Such algorithms typically do not per-
form an aggregation step, but rather seek a disparity assignment (step 3) that minimizes a
global cost function that consists of data (step 1) terms and smoothness terms. The main dis-
tinctions among these algorithms is the minimization procedure used, e.g., simulated anneal-
ing (Marroquin, Mitter, and Poggio 1987; Barnard 1989), probabilistic (mean-field) diffusion
(Scharstein and Szeliski 1998), expectation maximization (EM) (Birchfield, Natarajan, and
Tomasi 2007), graph cuts (Boykov, Veksler, and Zabih 2001), or loopy belief propagation
(Sun, Zheng, and Shum 2003), to name just a few.

In between these two broad classes are certain iterative algorithms that do not explicitly
specify a global function to be minimized, but whose behavior mimics closely that of iterative
optimization algorithms (Marr and Poggio 1976; Zitnick and Kanade 2000). Hierarchical
(coarse-to-fine) algorithms resemble such iterative algorithms, but typically operate on an
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image pyramid where results from coarser levels are used to constrain a more local search at
finer levels (Witkin, Terzopoulos, and Kass 1987; Quam 1984; Bergen, Anandan, Hanna et
al. 1992).

11.3.1 Similarity measures

The first component of any dense stereo matching algorithm is a similarity measure that
compares pixel values in order to determine how likely they are to be in correspondence. In
this section, we briefly review the similarity measures introduced in Section 8.1 and mention a
few others that have been developed specifically for stereo matching (Scharstein and Szeliski
2002; Hirschmüller and Scharstein 2009).

The most common pixel-based matching costs include sums of squared intensity differ-
ences (SSD) (Hannah 1974) and absolute intensity differences (SAD) (Kanade 1994). In
the video processing community, these matching criteria are referred to as the mean-squared
error (MSE) and mean absolute difference (MAD) measures; the term displaced frame dif-
ference is also often used (Tekalp 1995).

More recently, robust measures (8.2), including truncated quadratics and contaminated
Gaussians, have been proposed (Black and Anandan 1996; Black and Rangarajan 1996;
Scharstein and Szeliski 1998). These measures are useful because they limit the influence
of mismatches during aggregation. Vaish, Szeliski, Zitnick et al. (2006) compare a number
of such robust measures, including a new one based on the entropy of the pixel values at a
particular disparity hypothesis (Zitnick, Kang, Uyttendaele et al. 2004), which is particularly
useful in multi-view stereo.

Other traditional matching costs include normalized cross-correlation (8.11) (Hannah
1974; Bolles, Baker, and Hannah 1993; Evangelidis and Psarakis 2008), which behaves
similarly to sum-of-squared-differences (SSD), and binary matching costs (i.e., match or no
match) (Marr and Poggio 1976), based on binary features such as edges (Baker and Binford
1981; Grimson 1985) or the sign of the Laplacian (Nishihara 1984). Because of their poor
discriminability, simple binary matching costs are no longer used in dense stereo matching.

Some costs are insensitive to differences in camera gain or bias, for example gradient-
based measures (Seitz 1989; Scharstein 1994), phase and filter-bank responses (Marr and
Poggio 1979; Kass 1988; Jenkin, Jepson, and Tsotsos 1991; Jones and Malik 1992), filters
that remove regular or robust (bilaterally filtered) means (Ansar, Castano, and Matthies 2004;
Hirschmüller and Scharstein 2009), dense feature descriptor (Tola, Lepetit, and Fua 2010),
and non-parametric measures such as rank and census transforms (Zabih and Woodfill 1994),
ordinal measures (Bhat and Nayar 1998), or entropy (Zitnick, Kang, Uyttendaele et al. 2004;
Zitnick and Kang 2007). The census transform, which converts each pixel inside a moving
window into a bit vector representing which neighbors are above or below the central pixel,
was found by Hirschmüller and Scharstein (2009) to be quite robust against large-scale, non-
stationary exposure and illumination changes.

It is also possible to correct for differing global camera characteristics by performing
a preprocessing or iterative refinement step that estimates inter-image bias–gain variations
using global regression (Gennert 1988), histogram equalization (Cox, Roy, and Hingorani
1995), or mutual information (Kim, Kolmogorov, and Zabih 2003; Hirschmüller 2008). Lo-
cal, smoothly varying compensation fields have also been proposed (Strecha, Tuytelaars, and
Van Gool 2003; Zhang, McMillan, and Yu 2006).
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Figure 11.8 Shiftable window (Scharstein and Szeliski 2002) c© 2002 Springer. The effect of trying all 3 × 3
shifted windows around the black pixel is the same as taking the minimum matching score across all centered
(non-shifted) windows in the same neighborhood. (For clarity, only three of the neighboring shifted windows are
shown here.)

In order to compensate for sampling issues, i.e., dramatically different pixel values in
high-frequency areas, Birchfield and Tomasi (1998) proposed a matching cost that is less sen-
sitive to shifts in image sampling. Rather than just comparing pixel values shifted by integral
amounts (which may miss a valid match), they compare each pixel in the reference image
against a linearly interpolated function of the other image. More detailed studies of these
and additional matching costs are explored in (Szeliski and Scharstein 2004; Hirschmüller
and Scharstein 2009). In particular, if you expect there to be significant exposure or appear-
ance variation between images that you are matching, some of the more robust measures
that performed well in the evaluation by Hirschmüller and Scharstein (2009), such as the
census transform (Zabih and Woodfill 1994), ordinal measures (Bhat and Nayar 1998), bi-
lateral subtraction (Ansar, Castano, and Matthies 2004), or hierarchical mutual information
(Hirschmüller 2008), should be used.

11.4 Local methods

Local and window-based methods aggregate the matching cost by summing or averaging
over a support region in the DSI C(x, y, d).4 A support region can be either two-dimensional
at a fixed disparity (favoring fronto-parallel surfaces), or three-dimensional in x-y-d space
(supporting slanted surfaces). Two-dimensional evidence aggregation has been implemented
using square windows or Gaussian convolution (traditional), multiple windows anchored at
different points, i.e., shiftable windows (Arnold 1983; Fusiello, Roberto, and Trucco 1997;
Bobick and Intille 1999), windows with adaptive sizes (Okutomi and Kanade 1992; Kanade
and Okutomi 1994; Kang, Szeliski, and Chai 2001; Veksler 2001, 2003), windows based on
connected components of constant disparity (Boykov, Veksler, and Zabih 1998), or the re-
sults of color-based segmentation (Yoon and Kweon 2006; Tombari, Mattoccia, Di Stefano
et al. 2008). Three-dimensional support functions that have been proposed include limited
disparity difference (Grimson 1985), limited disparity gradient (Pollard, Mayhew, and Frisby
1985), Prazdny’s coherence principle (Prazdny 1985), and the more recent work (which in-
cludes visibility and occlusion reasoning) by Zitnick and Kanade (2000).

4 For two recent surveys and comparisons of such techniques, please see the work of Gong, Yang, Wang et al.
(2007) and Tombari, Mattoccia, Di Stefano et al. (2008).
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(a) (b) (c) (d)

Figure 11.9 Aggregation window sizes and weights adapted to image content (Tombari, Mattoccia, Di Stefano et
al. 2008) c© 2008 IEEE: (a) original image with selected evaluation points; (b) variable windows (Veksler 2003);
(c) adaptive weights (Yoon and Kweon 2006); (d) segmentation-based (Tombari, Mattoccia, and Di Stefano 2007).
Notice how the adaptive weights and segmentation-based techniques adapt their support to similarly colored
pixels.

Aggregation with a fixed support region can be performed using 2D or 3D convolution,

C(x, y, d) = w(x, y, d) ∗ C0(x, y, d), (11.6)

or, in the case of rectangular windows, using efficient moving average box-filters (Sec-
tion 3.2.2) (Kanade, Yoshida, Oda et al. 1996; Kimura, Shinbo, Yamaguchi et al. 1999).
Shiftable windows can also be implemented efficiently using a separable sliding min-filter
(Figure 11.8) (Scharstein and Szeliski 2002, Section 4.2). Selecting among windows of dif-
ferent shapes and sizes can be performed more efficiently by first computing a summed area
table (Section 3.2.3, 3.30–3.32) (Veksler 2003). Selecting the right window is important,
since windows must be large enough to contain sufficient texture and yet small enough so
that they do not straddle depth discontinuities (Figure 11.9). An alternative method for ag-
gregation is iterative diffusion, i.e., repeatedly adding to each pixel’s cost the weighted values
of its neighboring pixels’ costs (Szeliski and Hinton 1985; Shah 1993; Scharstein and Szeliski
1998).

Of the local aggregation methods compared by Gong, Yang, Wang et al. (2007) and
Tombari, Mattoccia, Di Stefano et al. (2008), the fast variable window approach of Vek-
sler (2003) and the locally weighting approach developed by Yoon and Kweon (2006) con-
sistently stood out as having the best tradeoff between performance and speed.5 The local
weighting technique, in particular, is interesting because, instead of using square windows
with uniform weighting, each pixel within an aggregation window influences the final match-
ing cost based on its color similarity and spatial distance, just as in bilinear filtering (Fig-
ure 11.9c). (In fact, their aggregation step is closely related to doing a joint bilateral filter
on the color/disparity image, except that it is done symmetrically in both reference and target
images.) The segmentation-based aggregation method of Tombari, Mattoccia, and Di Stefano
(2007) did even better, although a fast implementation of this algorithm does not yet exist.

In local methods, the emphasis is on the matching cost computation and cost aggregation
steps. Computing the final disparities is trivial: simply choose at each pixel the disparity
associated with the minimum cost value. Thus, these methods perform a local “winner-
take-all” (WTA) optimization at each pixel. A limitation of this approach (and many other

5 More recent and extensive results from Tombari, Mattoccia, Di Stefano et al. (2008) can be found at http:
//www.vision.deis.unibo.it/spe/SPEHome.aspx.

http://www.vision.deis.unibo.it/spe/SPEHome.aspx
http://www.vision.deis.unibo.it/spe/SPEHome.aspx
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correspondence algorithms) is that uniqueness of matches is only enforced for one image
(the reference image), while points in the other image might match multiple points, unless
cross-checking and subsequent hole filling is used (Fua 1993; Hirschmüller and Scharstein
2009).

11.4.1 Sub-pixel estimation and uncertainty

Most stereo correspondence algorithms compute a set of disparity estimates in some dis-
cretized space, e.g., for integer disparities (exceptions include continuous optimization tech-
niques such as optical flow (Bergen, Anandan, Hanna et al. 1992) or splines (Szeliski and
Coughlan 1997)). For applications such as robot navigation or people tracking, these may be
perfectly adequate. However for image-based rendering, such quantized maps lead to very
unappealing view synthesis results, i.e., the scene appears to be made up of many thin shear-
ing layers. To remedy this situation, many algorithms apply a sub-pixel refinement stage after
the initial discrete correspondence stage. (An alternative is to simply start with more discrete
disparity levels (Szeliski and Scharstein 2004).)

Sub-pixel disparity estimates can be computed in a variety of ways, including iterative
gradient descent and fitting a curve to the matching costs at discrete disparity levels (Ryan,
Gray, and Hunt 1980; Lucas and Kanade 1981; Tian and Huhns 1986; Matthies, Kanade,
and Szeliski 1989; Kanade and Okutomi 1994). This provides an easy way to increase the
resolution of a stereo algorithm with little additional computation. However, to work well,
the intensities being matched must vary smoothly, and the regions over which these estimates
are computed must be on the same (correct) surface.

Recently, some questions have been raised about the advisability of fitting correlation
curves to integer-sampled matching costs (Shimizu and Okutomi 2001). This situation may
even be worse when sampling-insensitive dissimilarity measures are used (Birchfield and
Tomasi 1998). These issues are explored in more depth by Szeliski and Scharstein (2004).

Besides sub-pixel computations, there are other ways of post-processing the computed
disparities. Occluded areas can be detected using cross-checking, i.e., comparing left-to-
right and right-to-left disparity maps (Fua 1993). A median filter can be applied to clean
up spurious mismatches, and holes due to occlusion can be filled by surface fitting or by
distributing neighboring disparity estimates (Birchfield and Tomasi 1999; Scharstein 1999;
Hirschmüller and Scharstein 2009).

Another kind of post-processing, which can be useful in later processing stages, is to asso-
ciate confidences with per-pixel depth estimates (Figure 11.10), which can be done by looking
at the curvature of the correlation surface, i.e., how strong the minimum in the DSI image is
at the winning disparity. Matthies, Kanade, and Szeliski (1989) show that under the assump-
tion of small noise, photometrically calibrated images, and densely sampled disparities, the
variance of a local depth estimate can be estimated as

V ar(d) =
σ2

I

a
, (11.7)

where a is the curvature of the DSI as a function of d, which can be measured using a local
parabolic fit or by squaring all the horizontal gradients in the window, and σ2

I is the vari-
ance of the image noise, which can be estimated from the minimum SSD score. (See also
Section 6.1.4, (8.44), and Appendix B.6.)
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(a) (b) (c)

Figure 11.10 Uncertainty in stereo depth estimation (Szeliski 1991b): (a) input image; (b) estimated depth
map (blue is closer); (c) estimated confidence(red is higher). As you can see, more textured areas have higher
confidence.

11.4.2 Application: Stereo-based head tracking

A common application of real-time stereo algorithms is for tracking the position of a user
interacting with a computer or game system. The use of stereo can dramatically improve
the reliability of such a system compared to trying to use monocular color and intensity
information (Darrell, Gordon, Harville et al. 2000). Once recovered, this information can
be used in a variety of applications, including controlling a virtual environment or game,
correcting the apparent gaze during video conferencing, and background replacement. We
discuss the first two applications below and defer the discussion of background replacement
to Section 11.5.3.

The use of head tracking to control a user’s virtual viewpoint while viewing a 3D object
or environment on a computer monitor is sometimes called fish tank virtual reality, since the
user is observing a 3D world as if it were contained inside a fish tank (Ware, Arthur, and
Booth 1993). Early versions of these systems used mechanical head tracking devices and
stereo glasses. Today, such systems can be controlled using stereo-based head tracking and
stereo glasses can be replaced with autostereoscopic displays. Head tracking can also be used
to construct a “virtual mirror”, where the user’s head can be modified in real-time using a
variety of visual effects (Darrell, Baker, Crow et al. 1997).

Another application of stereo head tracking and 3D reconstruction is in gaze correction
(Ott, Lewis, and Cox 1993). When a user participates in a desktop video-conference or video
chat, the camera is usually placed on top of the monitor. Since the person is gazing at a
window somewhere on the screen, it appears as if they are looking down and away from the
other participants, instead of straight at them. Replacing the single camera with two or more
cameras enables a virtual view to be constructed right at the position where they are looking
resulting in virtual eye contact. Real-time stereo matching is used to construct an accurate 3D
head model and view interpolation (Section 13.1) is used to synthesize the novel in-between
view (Criminisi, Shotton, Blake et al. 2003).
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11.5 Global optimization

Global stereo matching methods perform some optimization or iteration steps after the dis-
parity computation phase and often skip the aggregation step altogether, because the global
smoothness constraints perform a similar function. Many global methods are formulated in
an energy-minimization framework, where, as we saw in Sections 3.7 (3.100–3.102) and 8.4,
the objective is to find a solution d that minimizes a global energy,

E(d) = Ed(d) + λEs(d). (11.8)

The data term, Ed(d), measures how well the disparity function d agrees with the input image
pair. Using our previously defined disparity space image, we define this energy as

Ed(d) =
∑
(x,y)

C(x, y, d(x, y)), (11.9)

where C is the (initial or aggregated) matching cost DSI.
The smoothness term Es(d) encodes the smoothness assumptions made by the algorithm.

To make the optimization computationally tractable, the smoothness term is often restricted
to measuring only the differences between neighboring pixels’ disparities,

Es(d) =
∑
(x,y)

ρ(d(x, y) − d(x + 1, y)) + ρ(d(x, y) − d(x, y + 1)), (11.10)

where ρ is some monotonically increasing function of disparity difference. It is also possi-
ble to use larger neighborhoods, such as N8, which can lead to better boundaries (Boykov
and Kolmogorov 2003), or to use second-order smoothness terms (Woodford, Reid, Torr et
al. 2008), but such terms require more complex optimization techniques. An alternative to
smoothness functionals is to use a lower-dimensional representation such as splines (Szeliski
and Coughlan 1997).

In standard regularization (Section 3.7.1), ρ is a quadratic function, which makes d smooth
everywhere and may lead to poor results at object boundaries. Energy functions that do not
have this problem are called discontinuity-preserving and are based on robust ρ functions
(Terzopoulos 1986b; Black and Rangarajan 1996). The seminal paper by Geman and Ge-
man (1984) gave a Bayesian interpretation of these kinds of energy functions and proposed a
discontinuity-preserving energy function based on Markov random fields (MRFs) and addi-
tional line processes, which are additional binary variables that control whether smoothness
penalties are enforced or not. Black and Rangarajan (1996) show how independent line pro-
cess variables can be replaced by robust pairwise disparity terms.

The terms in Es can also be made to depend on the intensity differences, e.g.,

ρd(d(x, y) − d(x + 1, y)) · ρI(‖I(x, y) − I(x + 1, y)‖), (11.11)

where ρI is some monotonically decreasing function of intensity differences that lowers
smoothness costs at high-intensity gradients. This idea (Gamble and Poggio 1987; Fua 1993;
Bobick and Intille 1999; Boykov, Veksler, and Zabih 2001) encourages disparity discontinu-
ities to coincide with intensity or color edges and appears to account for some of the good
performance of global optimization approaches. While most researchers set these functions
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heuristically, Scharstein and Pal (2007) show how the free parameters in such conditional
random fields (Section 3.7.2, (3.118)) can be learned from ground truth disparity maps.

Once the global energy has been defined, a variety of algorithms can be used to find a
(local) minimum. Traditional approaches associated with regularization and Markov random
fields include continuation (Blake and Zisserman 1987), simulated annealing (Geman and
Geman 1984; Marroquin, Mitter, and Poggio 1987; Barnard 1989), highest confidence first
(Chou and Brown 1990), and mean-field annealing (Geiger and Girosi 1991).

More recently, max-flow and graph cut methods have been proposed to solve a special
class of global optimization problems (Roy and Cox 1998; Boykov, Veksler, and Zabih 2001;
Ishikawa 2003). Such methods are more efficient than simulated annealing and have produced
good results, as have techniques based on loopy belief propagation (Sun, Zheng, and Shum
2003; Tappen and Freeman 2003). Appendix B.5 and a recent survey paper on MRF inference
(Szeliski, Zabih, Scharstein et al. 2008) discuss and compare such techniques in more detail.

While global optimization techniques currently produce the best stereo matching results,
there are some alternative approaches worth studying.

Cooperative algorithms. Cooperative algorithms, inspired by computational models of
human stereo vision, were among the earliest methods proposed for disparity computation
(Dev 1974; Marr and Poggio 1976; Marroquin 1983; Szeliski and Hinton 1985; Zitnick and
Kanade 2000). Such algorithms iteratively update disparity estimates using non-linear op-
erations that result in an overall behavior similar to global optimization algorithms. In fact,
for some of these algorithms, it is possible to explicitly state a global function that is being
minimized (Scharstein and Szeliski 1998).

Coarse-to-fine and incremental warping. Most of today’s best algorithms first enu-
merate all possible matches at all possible disparities and then select the best set of matches
in some way. Faster approaches can sometimes be obtained using methods inspired by classic
(infinitesimal) optical flow computation. Here, images are successively warped and disparity
estimates incrementally updated until a satisfactory registration is achieved. These techniques
are most often implemented within a coarse-to-fine hierarchical refinement framework (Quam
1984; Bergen, Anandan, Hanna et al. 1992; Barron, Fleet, and Beauchemin 1994; Szeliski
and Coughlan 1997).

11.5.1 Dynamic programming

A different class of global optimization algorithm is based on dynamic programming. While
the 2D optimization of Equation (11.8) can be shown to be NP-hard for common classes
of smoothness functions (Veksler 1999), dynamic programming can find the global mini-
mum for independent scanlines in polynomial time. Dynamic programming was first used
for stereo vision in sparse, edge-based methods (Baker and Binford 1981; Ohta and Kanade
1985). More recent approaches have focused on the dense (intensity-based) scanline match-
ing problem (Belhumeur 1996; Geiger, Ladendorf, and Yuille 1992; Cox, Hingorani, Rao et
al. 1996; Bobick and Intille 1999; Birchfield and Tomasi 1999). These approaches work by
computing the minimum-cost path through the matrix of all pairwise matching costs between
two corresponding scanlines, i.e., through a horizontal slice of the DSI. Partial occlusion is
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Figure 11.11 Stereo matching using dynamic programming, as illustrated by (a) Scharstein and Szeliski (2002)
c© 2002 Springer and (b) Kolmogorov, Criminisi, Blake et al. (2006). c© 2006 IEEE. For each pair of correspond-

ing scanlines, a minimizing path through the matrix of all pairwise matching costs (DSI) is selected. Lowercase
letters (a–k) symbolize the intensities along each scanline. Uppercase letters represent the selected path through
the matrix. Matches are indicated by M, while partially occluded points (which have a fixed cost) are indicated by
L or R, corresponding to points only visible in the left or right images, respectively. Usually, only a limited dispar-
ity range is considered (0–4 in the figure, indicated by the non-shaded squares). The representation in (a) allows
for diagonal moves while the representation in (b) does not. Note that these diagrams, which use the Cyclopean
representation of depth, i.e., depth relative to a camera between the two input cameras, show an “unskewed” x-d
slice through the DSI.

handled explicitly by assigning a group of pixels in one image to a single pixel in the other
image. Figure 11.11 schematically shows how DP works, while Figure 11.5f shows a real
DSI slice over which the DP is applied.

To implement dynamic programming for a scanline y, each entry (state) in a 2D cost
matrix D(m, n) is computed by combining its DSI value

C ′(m, n) = C(m + n, m − n, y) (11.12)

with one of its predecessor cost values. Using the representation shown in Figure 11.11a,
which allows for “diagonal” moves, the aggregated match costs can be recursively computed
as

D(m, n,M) = min(D(m−1, n−1, M), D(m−1, n, L), D(m−1, n−1, R))

+ C ′(m, n)

D(m, n,L) = min(D(m−1, n−1, M), D(m−1, n, L)) + O (11.13)

D(m, n,R) = min(D(m, n−1, M), D(m, n−1, R)) + O,

where O is a per-pixel occlusion cost. The aggregation rules corresponding to Figure 11.11b
are given by Kolmogorov, Criminisi, Blake et al. (2006), who also use a two-state foreground–
background model for bi-layer segmentation.

Problems with dynamic programming stereo include the selection of the right cost for
occluded pixels and the difficulty of enforcing inter-scanline consistency, although several



11.5 Global optimization 487

(a) (b) (c) (d) (e)

Figure 11.12 Segmentation-based stereo matching (Zitnick, Kang, Uyttendaele et al. 2004) c© 2004 ACM:
(a) input color image; (b) color-based segmentation; (c) initial disparity estimates; (d) final piecewise-smoothed
disparities; (e) MRF neighborhood defined over the segments in the disparity space distribution (Zitnick and Kang
2007) c© 2007 Springer.

methods propose ways of addressing the latter (Ohta and Kanade 1985; Belhumeur 1996;
Cox, Hingorani, Rao et al. 1996; Bobick and Intille 1999; Birchfield and Tomasi 1999;
Kolmogorov, Criminisi, Blake et al. 2006). Another problem is that the dynamic program-
ming approach requires enforcing the monotonicity or ordering constraint (Yuille and Poggio
1984). This constraint requires that the relative ordering of pixels on a scanline remain the
same between the two views, which may not be the case in scenes containing narrow fore-
ground objects.

An alternative to traditional dynamic programming, introduced by Scharstein and Szeliski
(2002), is to neglect the vertical smoothness constraints in (11.10) and simply optimize in-
dependent scanlines in the global energy function (11.8), which can easily be done using a
recursive algorithm,

D(x, y, d) = C(x, y, d) + min
d′

{D(x − 1, y, d′) + ρd(d − d′)} . (11.14)

The advantage of this scanline optimization algorithm is that it computes the same represen-
tation and minimizes a reduced version of the same energy function as the full 2D energy
function (11.8). Unfortunately, it still suffers from the same streaking artifacts as dynamic
programming.

A much better approach is to evaluate the cumulative cost function (11.14) from multiple
directions, e.g, from the eight cardinal directions, N, E, W, S, NE, SE, SW, NW (Hirschmüller
2008). The resulting semi-global optimization performs quite well and is extremely efficient
to implement.

Even though dynamic programming and scanline optimization algorithms do not gen-
erally produce the most accurate stereo reconstructions, when combined with sophisticated
aggregation strategies, they can produce very fast and high-quality results.

11.5.2 Segmentation-based techniques

While most stereo matching algorithms perform their computations on a per-pixel basis, some
of the more recent techniques first segment the images into regions and then try to label each
region with a disparity.

For example, Tao, Sawhney, and Kumar (2001) segment the reference image, estimate
per-pixel disparities using a local technique, and then do local plane fits inside each segment
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(a) (b)

Figure 11.13 Stereo matching with adaptive over-segmentation and matting (Taguchi, Wilburn, and Zitnick
2008) c© 2008 IEEE: (a) segment boundaries are refined during the optimization, leading to more accurate results
(e.g., the thin green leaf in the bottom row); (b) alpha mattes are extracted at segment boundaries, which leads to
visually better compositing results (middle column).

before applying smoothness constraints between neighboring segments. Zitnick, Kang, Uyt-
tendaele et al. (2004) and Zitnick and Kang (2007) use over-segmentation to mitigate initial
bad segmentations. After a set of initial cost values for each segment has been stored into
a disparity space distribution (DSD), iterative relaxation (or loopy belief propagation, in the
more recent work of Zitnick and Kang (2007)) is used to adjust the disparity estimates for
each segment, as shown in Figure 11.12. Taguchi, Wilburn, and Zitnick (2008) refine the
segment shapes as part of the optimization process, which leads to much improved results, as
shown in Figure 11.13.

Even more accurate results are obtained by Klaus, Sormann, and Karner (2006), who first
segment the reference image using mean shift, run a small (3 × 3) SAD plus gradient SAD
(weighted by cross-checking) to get initial disparity estimates, fit local planes, re-fit with
global planes, and then run a final MRF on plane assignments with loopy belief propagation.
When the algorithm was first introduced in 2006, it was the top ranked algorithm on the
evaluation site at http://vision.middlebury.edu/stereo; in early 2010, it still had the top rank
on the new evaluation datasets.

The highest ranked algorithm, by Wang and Zheng (2008), follows a similar approach of
segmenting the image, doing local plane fits, and then performing cooperative optimization
of neighboring plane fit parameters. Another highly ranked algorithm, by Yang, Wang, Yang
et al. (2009), uses the color correlation approach of Yoon and Kweon (2006) and hierarchical
belief propagation to obtain an initial set of disparity estimates. After left–right consistency
checking to detect occluded pixels, the data terms for low-confidence and occluded pixels
are recomputed using segmentation-based plane fits and one or more rounds of hierarchical
belief propagation are used to obtain the final disparity estimates.

Another important ability of segmentation-based stereo algorithms, which they share with
algorithms that use explicit layers (Baker, Szeliski, and Anandan 1998; Szeliski and Golland
1999) or boundary extraction (Hasinoff, Kang, and Szeliski 2006), is the ability to extract
fractional pixel alpha mattes at depth discontinuities (Bleyer, Gelautz, Rother et al. 2009).
This ability is crucial when attempting to create virtual view interpolation without clinging
boundary or tearing artifacts (Zitnick, Kang, Uyttendaele et al. 2004) and also to seamlessly
insert virtual objects (Taguchi, Wilburn, and Zitnick 2008), as shown in Figure 11.13b.

http://vision.middlebury.edu/stereo
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Figure 11.14 Background replacement using z-keying with a bi-layer segmentation algorithm (Kolmogorov,
Criminisi, Blake et al. 2006) c© 2006 IEEE.

Since new stereo matching algorithms continue to be introduced every year, it is a good
idea to periodically check the Middlebury evaluation site at http://vision.middlebury.edu/
stereo for a listing of the most recent algorithms to be evaluated.

11.5.3 Application: Z-keying and background replacement

Another application of real-time stereo matching is z-keying, which is the process of seg-
menting a foreground actor from the background using depth information, usually for the
purpose of replacing the background with some computer-generated imagery, as shown in
Figure 11.2g.

Originally, z-keying systems required expensive custom-built hardware to produce the
desired depth maps in real time and were, therefore, restricted to broadcast studio applica-
tions (Kanade, Yoshida, Oda et al. 1996; Iddan and Yahav 2001). Off-line systems were also
developed for estimating 3D multi-viewpoint geometry from video streams (Section 13.5.4)
(Kanade, Rander, and Narayanan 1997; Carranza, Theobalt, Magnor et al. 2003; Zitnick,
Kang, Uyttendaele et al. 2004; Vedula, Baker, and Kanade 2005). Recent advances in highly
accurate real-time stereo matching, however, now make it possible to perform z-keying on
regular PCs, enabling desktop videoconferencing applications such as those shown in Fig-
ure 11.14 (Kolmogorov, Criminisi, Blake et al. 2006).

11.6 Multi-view stereo

While matching pairs of images is a useful way of obtaining depth information, matching
more images can lead to even better results. In this section, we review not only techniques for
creating complete 3D object models, but also simpler techniques for improving the quality of
depth maps using multiple source images.

As we saw in our discussion of plane sweep (Section 11.1.2), it is possible to resample
all neighboring k images at each disparity hypothesis d into a generalized disparity space

http://vision.middlebury.edu/stereo
http://vision.middlebury.edu/stereo
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Figure 11.15 Epipolar plane image (EPI) (Gortler, Grzeszczuk, Szeliski et al. 1996) c© 1996 ACM and a
schematic EPI (Kang, Szeliski, and Chai 2001) c© 2001 IEEE. (a) The Lumigraph (light field) (Section 13.3)
is the 4D space of all light rays passing through a volume of space. Taking a 2D slice results in all of the light rays
embedded in a plane and is equivalent to a scanline taken from a stacked EPI volume. Objects at different depths
move sideways with velocities (slopes) proportional to their inverse depth. Occlusion (and translucency) effects
can easily be seen in this representation. (b) The EPI corresponding to Figure 11.16 showing the three images
(middle, left, and right) as slices through the EPI volume. The spatially and temporally shifted window around
the black pixel is indicated by the rectangle, showing the right image is not being used in matching.

volume Ĩ(x, y, d, k). The simplest way to take advantage of these additional images is to sum
up their differences from the reference image Ir as in (11.4),

C(x, y, d) =
∑

k

ρ(Ĩ(x, y, d, k) − Ir(x, y)). (11.15)

This is the basis of the well-known sum of summed-squared-difference (SSSD) and SSAD
approaches (Okutomi and Kanade 1993; Kang, Webb, Zitnick et al. 1995), which can be ex-
tended to reason about likely patterns of occlusion (Nakamura, Matsuura, Satoh et al. 1996).
More recent work by Gallup, Frahm, Mordohai et al. (2008) show how to adapt the base-
lines used to the expected depth in order to get the best tradeoff between geometric accuracy
(wide baseline) and robustness to occlusion (narrow baseline). Alternative multi-view cost
metrics include measures such as synthetic focus sharpness and the entropy of the pixel color
distribution (Vaish, Szeliski, Zitnick et al. 2006).

A useful way to visualize the multi-frame stereo estimation problem is to examine the
epipolar plane image (EPI) formed by stacking corresponding scanlines from all the images,
as shown in Figures 8.13c and 11.15 (Bolles, Baker, and Marimont 1987; Baker and Bolles
1989; Baker 1989). As you can see in Figure 11.15, as a camera translates horizontally (in a
standard horizontally rectified geometry), objects at different depths move sideways at a rate
inversely proportional to their depth (11.1).6 Foreground objects occlude background objects,

6 The four-dimensional generalization of the EPI is the light field, which we study in Section 13.3. In principle,
there is enough information in a light field to recover both the shape and the BRDF of objects (Soatto, Yezzi, and Jin
2003), although relatively little progress has been made to date on this topic.
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Figure 11.16 Spatio-temporally shiftable windows (Kang, Szeliski, and Chai 2001) c© 2001 IEEE: A simple
three-image sequence (the middle image is the reference image), which has a moving frontal gray square (marked
F) and a stationary background. Regions B, C, D, and E are partially occluded. (a) A regular SSD algorithm
will make mistakes when matching pixels in these regions (e.g. the window centered on the black pixel in region
B) and in windows straddling depth discontinuities (the window centered on the white pixel in region F). (b)
Shiftable windows help mitigate the problems in partially occluded regions and near depth discontinuities. The
shifted window centered on the white pixel in region F matches correctly in all frames. The shifted window
centered on the black pixel in region B matches correctly in the left image, but requires temporal selection to
disable matching the right image. Figure 11.15b shows an EPI corresponding to this sequence and describes in
more detail how temporal selection works.

which can be seen as EPI-strips (Criminisi, Kang, Swaminathan et al. 2005) occluding other
strips in the EPI. If we are given a dense enough set of images, we can find such strips and
reason about their relationships in order to both reconstruct the 3D scene and make inferences
about translucent objects (Tsin, Kang, and Szeliski 2006) and specular reflections (Swami-
nathan, Kang, Szeliski et al. 2002; Criminisi, Kang, Swaminathan et al. 2005). Alternatively,
we can treat the series of images as a set of sequential observations and merge them using
Kalman filtering (Matthies, Kanade, and Szeliski 1989) or maximum likelihood inference
(Cox 1994).

When fewer images are available, it becomes necessary to fall back on aggregation tech-
niques such as sliding windows or global optimization. With additional input images, how-
ever, the likelihood of occlusions increases. It is therefore prudent to adjust not only the best
window locations using a shiftable window approach, as shown in Figure 11.16a, but also to
optionally select a subset of neighboring frames in order to discount those images where the
region of interest is occluded, as shown in Figure 11.16b (Kang, Szeliski, and Chai 2001).
Figure11.15b shows how such spatio-temporal selection or shifting of windows corresponds
to selecting the most likely un-occluded volumetric region in the epipolar plane image vol-
ume.

The results of applying these techniques to the multi-frame flower garden image sequence
are shown in Figure 11.17, which compares the results of using regular (non-shifted) SSSD
with spatially shifted windows and full spatio-temporal window selection. (The task of
applying stereo to a rigid scene filmed with a moving camera is sometimes called motion
stereo). Similar improvements from using spatio-temporal selection are reported by (Kang
and Szeliski 2004) and are evident even when local measurements are combined with global
optimization.

While computing a depth map from multiple inputs outperforms pairwise stereo match-
ing, even more dramatic improvements can be obtained by estimating multiple depth maps
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Figure 11.17 Local (5 × 5 window-based) matching results (Kang, Szeliski, and Chai 2001) c© 2001 IEEE: (a)
window that is not spatially perturbed (centered); (b) spatially perturbed window; (c) using the best five of 10
neighboring frames; (d) using the better half sequence. Notice how the results near the tree trunk are improved
using temporal selection.

simultaneously (Szeliski 1999; Kang and Szeliski 2004). The existence of multiple depth
maps enables more accurate reasoning about occlusions, as regions which are occluded in
one image may be visible (and matchable) in others. The multi-view reconstruction problem
can be formulated as the simultaneous estimation of depth maps at key frames (Figure 8.13c)
while maximizing not only photoconsistency and piecewise disparity smoothness but also the
consistency between disparity estimates at different frames. While Szeliski (1999) and Kang
and Szeliski (2004) use soft (penalty-based) constraints to encourage multiple disparity maps
to be consistent, Kolmogorov and Zabih (2002) show how such consistency measures can
be encoded as hard constraints, which guarantee that the multiple depth maps are not only
similar but actually identical in overlapping regions. Newer algorithms that simultaneously
estimate multiple disparity maps include papers by Maitre, Shinagawa, and Do (2008) and
Zhang, Jia, Wong et al. (2008).

A closely related topic to multi-frame stereo estimation is scene flow, in which multiple
cameras are used to capture a dynamic scene. The task is then to simultaneously recover the
3D shape of the object at every instant in time and to estimate the full 3D motion of every
surface point between frames. Representative papers in this area include those by Vedula,
Baker, Rander et al. (2005), Zhang and Kambhamettu (2003), Pons, Keriven, and Faugeras
(2007), Huguet and Devernay (2007), and Wedel, Rabe, Vaudrey et al. (2008). Figure 11.18a
shows an image of the 3D scene flow for the tango dancer shown in Figure 11.2h–j, while
Figure 11.18b shows 3D scene flows captured from a moving vehicle for the purpose of
obstacle avoidance. In addition to supporting mensuration and safety applications, scene
flow can be used to support both spatial and temporal view interpolation (Section 13.5.4), as
demonstrated by Vedula, Baker, and Kanade (2005).

11.6.1 Volumetric and 3D surface reconstruction

According to Seitz, Curless, Diebel et al. (2006):

The goal of multi-view stereo is to reconstruct a complete 3D object model from
a collection of images taken from known camera viewpoints.

The most challenging but potentially most useful variant of multi-view stereo reconstruc-
tion is to create globally consistent 3D models. This topic has a long history in computer
vision, starting with surface mesh reconstruction techniques such as the one developed by
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(a) (b)

Figure 11.18 Three-dimensional scene flow: (a) computed from a multi-camera dome surrounding the dancer
shown in Figure 11.2h–j (Vedula, Baker, Rander et al. 2005) c© 2005 IEEE; (b) computed from stereo cameras
mounted on a moving vehicle (Wedel, Rabe, Vaudrey et al. 2008) c© 2008 Springer.

Fua and Leclerc (1995) (Figure 11.19a). A variety of approaches and representations have
been used to solve this problem, including 3D voxel representations (Seitz and Dyer 1999;
Szeliski and Golland 1999; De Bonet and Viola 1999; Kutulakos and Seitz 2000; Eisert, Stein-
bach, and Girod 2000; Slabaugh, Culbertson, Slabaugh et al. 2004; Sinha and Pollefeys 2005;
Vogiatzis, Hernandez, Torr et al. 2007; Hiep, Keriven, Pons et al. 2009), level sets (Faugeras
and Keriven 1998; Pons, Keriven, and Faugeras 2007), polygonal meshes (Fua and Leclerc
1995; Narayanan, Rander, and Kanade 1998; Hernandez and Schmitt 2004; Furukawa and
Ponce 2009), and multiple depth maps (Kolmogorov and Zabih 2002). Figure 11.19 shows
representative examples of 3D object models reconstructed using some of these techniques.

In order to organize and compare all these techniques, Seitz, Curless, Diebel et al. (2006)
developed a six-point taxonomy that can help classify algorithms according to the scene rep-
resentation, photoconsistency measure, visibility model, shape priors, reconstruction algo-
rithm, and initialization requirements they use. Below, we summarize some of these choices
and list a few representative papers. For more details, please consult the full survey paper
(Seitz, Curless, Diebel et al. 2006) and the evaluation Web site, http://vision.middlebury.edu/
mview/, which contains pointers to even more recent papers and results.

Scene representation. One of the more popular 3D representations is a uniform grid
of 3D voxels,7 which can be reconstructed using a variety of carving (Seitz and Dyer 1999;
Kutulakos and Seitz 2000) or optimization (Sinha and Pollefeys 2005; Vogiatzis, Hernandez,
Torr et al. 2007; Hiep, Keriven, Pons et al. 2009) techniques. Level set techniques (Sec-
tion 5.1.4) also operate on a uniform grid but, instead of representing a binary occupancy
map, they represent the signed distance to the surface (Faugeras and Keriven 1998; Pons,
Keriven, and Faugeras 2007), which can encode a finer level of detail. Polygonal meshes
are another popular representation (Fua and Leclerc 1995; Narayanan, Rander, and Kanade
1998; Isidoro and Sclaroff 2003; Hernandez and Schmitt 2004; Furukawa and Ponce 2009;
Hiep, Keriven, Pons et al. 2009). Meshes are the standard representation used in computer
graphics and also readily support the computation of visibility and occlusions. Finally, as we
discussed in the previous section, multiple depth maps can also be used (Szeliski 1999; Kol-
mogorov and Zabih 2002; Kang and Szeliski 2004). Many algorithms also use more than a
single representation, e.g., they may start by computing multiple depth maps and then merge

7 For outdoor scenes that go to infinity, a non-uniform gridding of space may be preferable (Slabaugh, Culbertson,
Slabaugh et al. 2004).

http://vision.middlebury.edu/mview/
http://vision.middlebury.edu/mview/
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Figure 11.19 Multi-view stereo algorithms: (a) surface-based stereo (Fua and Leclerc 1995); (b) voxel coloring
(Seitz and Dyer 1999) c© 1999 Springer; (c) depth map merging (Narayanan, Rander, and Kanade 1998); (d) level
set evolution (Faugeras and Keriven 1998) c© 1998 IEEE; (e) silhouette and stereo fusion (Hernandez and Schmitt
2004) c© 2004 Elsevier; (f) multi-view image matching (Pons, Keriven, and Faugeras 2005) c© 2005 IEEE; (g)
volumetric graph cut (Vogiatzis, Torr, and Cipolla 2005) c© 2005 IEEE; (h) carved visual hulls (Furukawa and
Ponce 2009) c© 2009 Springer.

them into a 3D object model (Narayanan, Rander, and Kanade 1998; Furukawa and Ponce
2009; Goesele, Curless, and Seitz 2006; Goesele, Snavely, Curless et al. 2007; Furukawa,
Curless, Seitz et al. 2010).

Photoconsistency measure. As we discussed in (Section 11.3.1), a variety of similar-
ity measures can be used to compare pixel values in different images, including measures that
try to discount illumination effects or be less sensitive to outliers. In multi-view stereo, algo-
rithms have a choice of computing these measures directly on the surface of the model, i.e., in
scene space, or projecting pixel values from one image (or from a textured model) back into
another image, i.e., in image space. (The latter corresponds more closely to a Bayesian ap-
proach, since input images are noisy measurements of the colored 3D model.) The geometry
of the object, i.e., its distance to each camera and its local surface normal, when available, can
be used to adjust the matching windows used in the computation to account for foreshortening
and scale change (Goesele, Snavely, Curless et al. 2007).
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Visibility model. A big advantage that multi-view stereo algorithms have over single-
depth-map approaches is their ability to reason in a principled manner about visibility and
occlusions. Techniques that use the current state of the 3D model to predict which surface
pixels are visible in each image (Kutulakos and Seitz 2000; Faugeras and Keriven 1998;
Vogiatzis, Hernandez, Torr et al. 2007; Hiep, Keriven, Pons et al. 2009) are classified as
using geometric visibility models in the taxonomy of Seitz, Curless, Diebel et al. (2006).
Techniques that select a neighboring subset of image to match are called quasi-geometric
(Narayanan, Rander, and Kanade 1998; Kang and Szeliski 2004; Hernandez and Schmitt
2004), while techniques that use traditional robust similarity measures are called outlier-
based. While full geometric reasoning is the most principled and accurate approach, it can
be very slow to evaluate and depends on the evolving quality of the current surface estimate
to predict visibility, which can be a bit of a chicken-and-egg problem, unless conservative
assumptions are used, as they are by Kutulakos and Seitz (2000).

Shape priors. Because stereo matching is often underconstrained, especially in texture-
less regions, most matching algorithms adopt (either explicitly or implicitly) some form of
prior model for the expected shape. Many of the techniques that rely on optimization use a
3D smoothness or area-based photoconsistency constraint, which, because of the natural ten-
dency of smooth surfaces to shrink inwards, often results in a minimal surface prior (Faugeras
and Keriven 1998; Sinha and Pollefeys 2005; Vogiatzis, Hernandez, Torr et al. 2007). Ap-
proaches that carve away the volume of space often stop once a photoconsistent solution is
found (Seitz and Dyer 1999; Kutulakos and Seitz 2000), which corresponds to a maximal sur-
face bias, i.e., these techniques tend to over-estimate the true shape. Finally, multiple depth
map approaches often adopt traditional image-based smoothness (regularization) constraints.

Reconstruction algorithm. The details of how the actual reconstruction algorithm pro-
ceeds is where the largest variety—and greatest innovation—in multi-view stereo algorithms
can be found.

Some approaches use global optimization defined over a three-dimensional photoconsis-
tency volume to recover a complete surface. Approaches based on graph cuts use polynomial
complexity binary segmentation algorithms to recover the object model defined on the voxel
grid (Sinha and Pollefeys 2005; Vogiatzis, Hernandez, Torr et al. 2007; Hiep, Keriven, Pons
et al. 2009). Level set approaches use a continuous surface evolution to find a good mini-
mum in the configuration space of potential surfaces and therefore require a reasonably good
initialization (Faugeras and Keriven 1998; Pons, Keriven, and Faugeras 2007). In order for
the photoconsistency volume to be meaningful, matching costs need to be computed in some
robust fashion, e.g., using sets of limited views or by aggregating multiple depth maps.

An alternative approach to global optimization is to sweep through the 3D volume while
computing both photoconsistency and visibility simultaneously. The voxel coloring algorithm
of Seitz and Dyer (1999) performs a front-to-back plane sweep. On every plane, any voxels
that are sufficiently photoconsistent are labeled as part of the object. The corresponding
pixels in the source images can then be “erased”, since they are already accounted for, and
therefore do not contribute to further photoconsistency computations. (A similar approach,
albeit without the front-to-back sweep order, is used by Szeliski and Golland (1999).) The
resulting 3D volume, under noise- and resampling-free conditions, is guaranteed to produce
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Figure 11.20 The multi-view stereo data sets captured by Seitz, Curless, Diebel et al. (2006) c© 2006 Springer.
Only (a) and (b) are currently used for evaluation.

both a photoconsistent 3D model and to enclose whatever true 3D object model generated the
images.

Unfortunately, voxel coloring is only guaranteed to work if all of the cameras lie on the
same side of the sweep planes, which is not possible in general ring configurations of cameras.
Kutulakos and Seitz (2000) generalize voxel coloring to space carving, where subsets of
cameras that satisfy the voxel coloring constraint are iteratively selected and the 3D voxel
grid is alternately carved away along different axes.

Another popular approach to multi-view stereo is to first independently compute multiple
depth maps and then merge these partial maps into a complete 3D model. Approaches to
depth map merging, which are discussed in more detail in Section 12.2.1, include signed
distance functions (Curless and Levoy 1996), used by Goesele, Curless, and Seitz (2006),
and Poisson surface reconstruction (Kazhdan, Bolitho, and Hoppe 2006), used by Goesele,
Snavely, Curless et al. (2007). It is also possible to reconstruct sparser representations, such
as 3D points and lines, and to interpolate them to full 3D surfaces (Section 12.3.1) (Taylor
2003).

Initialization requirements. One final element discussed by Seitz, Curless, Diebel et
al. (2006) is the varying degrees of initialization required by different algorithms. Because
some algorithms refine or evolve a rough 3D model, they require a reasonably accurate (or
overcomplete) initial model, which can often be obtained by reconstructing a volume from
object silhouettes, as discussed in Section 11.6.2. However, if the algorithm performs a global
optimization (Kolev, Klodt, Brox et al. 2009; Kolev and Cremers 2009), this dependence on
initialization is not an issue.

Empirical evaluation. In order to evaluate the large number of design alternatives in
multi-view stereo, Seitz, Curless, Diebel et al. (2006) collected a dataset of calibrated images
using a spherical gantry. A representative image from each of the six datasets is shown in
Figure 11.20, although only the first two datasets have as yet been fully processed and used
for evaluation. Figure 11.21 shows the results of running seven different algorithms on the
temple dataset. As you can see, most of the techniques do an impressive job of capturing
the fine details in the columns, although it is also clear that the techniques employ differing
amounts of smoothing to achieve these results.

Since the publication of the survey by Seitz, Curless, Diebel et al. (2006), the field of
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Figure 11.21 Reconstruction results (details) for seven algorithms (Hernandez and Schmitt 2004; Furukawa and
Ponce 2009; Pons, Keriven, and Faugeras 2005; Goesele, Curless, and Seitz 2006; Vogiatzis, Torr, and Cipolla
2005; Tran and Davis 2002; Kolmogorov and Zabih 2002) evaluated by Seitz, Curless, Diebel et al. (2006) on
the 47-image Temple Ring dataset. The numbers underneath each detail image are the accuracy of each of these
techniques measured in millimeters.

multi-view stereo has continued to advance at a rapid pace (Strecha, Fransens, and Van
Gool 2006; Hernandez, Vogiatzis, and Cipolla 2007; Habbecke and Kobbelt 2007; Furukawa
and Ponce 2007; Vogiatzis, Hernandez, Torr et al. 2007; Goesele, Snavely, Curless et al.
2007; Sinha, Mordohai, and Pollefeys 2007; Gargallo, Prados, and Sturm 2007; Merrell, Ak-
barzadeh, Wang et al. 2007; Zach, Pock, and Bischof 2007b; Furukawa and Ponce 2008;
Hornung, Zeng, and Kobbelt 2008; Bradley, Boubekeur, and Heidrich 2008; Zach 2008;
Campbell, Vogiatzis, Hernández et al. 2008; Kolev, Klodt, Brox et al. 2009; Hiep, Keriven,
Pons et al. 2009; Furukawa, Curless, Seitz et al. 2010). The multi-view stereo evaluation site,
http://vision.middlebury.edu/mview/, provides quantitative results for these algorithms along
with pointers to where to find these papers.

11.6.2 Shape from silhouettes

In many situations, performing a foreground–background segmentation of the object of in-
terest is a good way to initialize or fit a 3D model (Grauman, Shakhnarovich, and Darrell
2003; Vlasic, Baran, Matusik et al. 2008) or to impose a convex set of constraints on multi-
view stereo (Kolev and Cremers 2008). Over the years, a number of techniques have been
developed to reconstruct a 3D volumetric model from the intersection of the binary silhou-
ettes projected into 3D. The resulting model is called a visual hull (or sometimes a line hull),
analogous with the convex hull of a set of points, since the volume is maximal with respect

http://vision.middlebury.edu/mview/
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Figure 11.22 Volumetric octree reconstruction from binary silhouettes (Szeliski 1993) c© 1993 Elsevier: (a)
octree representation and its corresponding (b) tree structure; (c) input image of an object on a turntable; (d)
computed 3D volumetric octree model.

to the visual silhouettes and surface elements are tangent to the viewing rays (lines) along
the silhouette boundaries (Laurentini 1994). It is also possible to carve away a more accu-
rate reconstruction using multi-view stereo (Sinha and Pollefeys 2005) or by analyzing cast
shadows (Savarese, Andreetto, Rushmeier et al. 2007).

Some techniques first approximate each silhouette with a polygonal representation and
then intersect the resulting faceted conical regions in three-space to produce polyhedral mod-
els (Baumgart 1974; Martin and Aggarwal 1983; Matusik, Buehler, and McMillan 2001),
which can later be refined using triangular splines (Sullivan and Ponce 1998). Other ap-
proaches use voxel-based representations, usually encoded as octrees (Samet 1989), because
of the resulting space–time efficiency. Figures 11.22a–b show an example of a 3D octree
model and its associated colored tree, where black nodes are interior to the model, white
nodes are exterior, and gray nodes are of mixed occupancy. Examples of octree-based re-
construction approaches include those by Potmesil (1987), Noborio, Fukada, and Arimoto
(1988), Srivasan, Liang, and Hackwood (1990), and Szeliski (1993).

The approach of Szeliski (1993) first converts each binary silhouette into a one-sided
variant of a distance map, where each pixel in the map indicates the largest square that is
completely inside (or outside) the silhouette. This makes it fast to project an octree cell
into the silhouette to confirm whether it is completely inside or outside the object, so that
it can be colored black, white, or left as gray (mixed) for further refinement on a smaller
grid. The octree construction algorithm proceeds in a coarse-to-fine manner, first building an
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octree at a relatively coarse resolution, and then refining it by revisiting and subdividing all
the input images for the gray (mixed) cells whose occupancy has not yet been determined.
Figure 11.22d shows the resulting octree model computed from a coffee cup rotating on a
turntable.

More recent work on visual hull computation borrows ideas from image-based rendering,
and is hence called an image-based visual hull (Matusik, Buehler, Raskar et al. 2000). Instead
of precomputing a global 3D model, an image-based visual hull is recomputed for each new
viewpoint, by successively intersecting viewing ray segments with the binary silhouettes in
each image. This not only leads to a fast computation algorithm but also enables fast texturing
of the recovered model with color values from the input images. This approach can also
be combined with high-quality deformable templates to capture and re-animate whole body
motion (Vlasic, Baran, Matusik et al. 2008).

11.7 Additional reading

The field of stereo correspondence and depth estimation is one of the oldest and most widely
studied topics in computer vision. A number of good surveys have been written over the years
(Marr and Poggio 1976; Barnard and Fischler 1982; Dhond and Aggarwal 1989; Scharstein
and Szeliski 2002; Brown, Burschka, and Hager 2003; Seitz, Curless, Diebel et al. 2006) and
they can serve as good guides to this extensive literature.

Because of computational limitations and the desire to find appearance-invariant cor-
respondences, early algorithms often focused on finding sparse correspondences (Hannah
1974; Marr and Poggio 1979; Mayhew and Frisby 1980; Baker and Binford 1981; Arnold
1983; Grimson 1985; Ohta and Kanade 1985; Bolles, Baker, and Marimont 1987; Matthies,
Kanade, and Szeliski 1989; Hsieh, McKeown, and Perlant 1992; Bolles, Baker, and Hannah
1993).

The topic of computing epipolar geometry and pre-rectifying images is covered in Sec-
tions 7.2 and 11.1 and is also treated in textbooks on multi-view geometry (Faugeras and
Luong 2001; Hartley and Zisserman 2004) and articles specifically on this topic (Torr and
Murray 1997; Zhang 1998a,b). The concepts of the disparity space and disparity space im-
age are often associated with the seminal work by Marr (1982) and the papers of Yang, Yuille,
and Lu (1993) and Intille and Bobick (1994). The plane sweep algorithm was first popular-
ized by Collins (1996) and then generalized to a full arbitrary projective setting by Szeliski
and Golland (1999) and Saito and Kanade (1999). Plane sweeps can also be formulated using
cylindrical surfaces (Ishiguro, Yamamoto, and Tsuji 1992; Kang and Szeliski 1997; Shum
and Szeliski 1999; Li, Shum, Tang et al. 2004; Zheng, Kang, Cohen et al. 2007) or even more
general topologies (Seitz 2001).

Once the topology for the cost volume or DSI has been set up, we need to compute the
actual photoconsistency measures for each pixel and potential depth. A wide range of such
measures have been proposed, as discussed in Section 11.3.1. Some of these are compared in
recent surveys and evaluations of matching costs (Scharstein and Szeliski 2002; Hirschmüller
and Scharstein 2009).

To compute an actual depth map from these costs, some form of optimization or selection
criterion must be used. The simplest of these are sliding windows of various kinds, which
are discussed in Section 11.4 and surveyed by Gong, Yang, Wang et al. (2007) and Tombari,
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Mattoccia, Di Stefano et al. (2008). More commonly, global optimization frameworks are
used to compute the best disparity field, as described in Section 11.5. These techniques
include dynamic programming and truly global optimization algorithms, such as graph cuts
and loopy belief propagation. Because the literature on this is so extensive, it is described in
more detail in Section 11.5. A good place to find pointers to the latest results in this field is
the Middlebury Stereo Vision Page at http://vision.middlebury.edu/stereo.

Algorithms for multi-view stereo typically fall into two categories. The first include al-
gorithms that compute traditional depth maps using several images for computing photocon-
sistency measures (Okutomi and Kanade 1993; Kang, Webb, Zitnick et al. 1995; Nakamura,
Matsuura, Satoh et al. 1996; Szeliski and Golland 1999; Kang, Szeliski, and Chai 2001;
Vaish, Szeliski, Zitnick et al. 2006; Gallup, Frahm, Mordohai et al. 2008). Optionally, some
of these techniques compute multiple depth maps and use additional constraints to encourage
the different depth maps to be consistent (Szeliski 1999; Kolmogorov and Zabih 2002; Kang
and Szeliski 2004; Maitre, Shinagawa, and Do 2008; Zhang, Jia, Wong et al. 2008).

The second category consists of papers that compute true 3D volumetric or surface-based
object models. Again, because of the large number of papers published on this topic, rather
than citing them here, we refer you to the material in Section 11.6.1, the survey by Seitz,
Curless, Diebel et al. (2006), and the on-line evaluation Web site at http://vision.middlebury.
edu/mview/.

11.8 Exercises

Ex 11.1: Stereo pair rectification Implement the following simple algorithm (Section 11.1.1):

1. Rotate both cameras so that they are looking perpendicular to the line joining the two
camera centers c0 and c1. The smallest rotation can be computed from the cross prod-
uct between the original and desired optical axes.

2. Twist the optical axes so that the horizontal axis of each camera looks in the direction
of the other camera. (Again, the cross product between the current x-axis after the first
rotation and the line joining the cameras gives the rotation.)

3. If needed, scale up the smaller (less detailed) image so that it has the same resolution
(and hence line-to-line correspondence) as the other image.

Now compare your results to the algorithm proposed by Loop and Zhang (1999). Can you
think of situations where their approach may be preferable?

Ex 11.2: Rigid direct alignment Modify your spline-based or optical flow motion estima-
tor from Exercise 8.4 to use epipolar geometry, i.e. to only estimate disparity.

(Optional) Extend your algorithm to simultaneously estimate the epipolar geometry (with-
out first using point correspondences) by estimating a base homography corresponding to a
reference plane for the dominant motion and then an epipole for the residual parallax (mo-
tion).

Ex 11.3: Shape from profiles Reconstruct a surface model from a series of edge images
(Section 11.2.1).

http://vision.middlebury.edu/mview/
http://vision.middlebury.edu/mview/
http://vision.middlebury.edu/stereo
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1. Extract edges and link them (Exercises 4.7–4.8).

2. Based on previously computed epipolar geometry, match up edges in triplets (or longer
sets) of images.

3. Reconstruct the 3D locations of the curves using osculating circles (11.5).

4. Render the resulting 3D surface model as a sparse mesh, i.e., drawing the reconstructed
3D profile curves and links between 3D points in neighboring images with similar
osculating circles.

Ex 11.4: Plane sweep Implement a plane sweep algorithm (Section 11.1.2).
If the images are already pre-rectified, this consists simply of shifting images relative to

each other and comparing pixels. If the images are not pre-rectified, compute the homography
that resamples the target image into the reference image’s coordinate system for each plane.

Evaluate a subset of the following similarity measures (Section 11.3.1) and compare their
performance by visualizing the disparity space image (DSI), which should be dark for pixels
at correct depths:

• squared difference (SD);

• absolute difference (AD);

• truncated or robust measures;

• gradient differences;

• rank or census transform (the latter usually performs better);

• mutual information from a pre-computed joint density function.

Consider using the Birchfield and Tomasi (1998) technique of comparing ranges between
neighboring pixels (different shifted or warped images). Also, try pre-compensating images
for bias or gain variations using one or more of the techniques discussed in Section 11.3.1.

Ex 11.5: Aggregation and window-based stereo Implement one or more of the matching
cost aggregation strategies described in Section 11.4:

• convolution with a box or Gaussian kernel;

• shifting window locations by applying a min filter (Scharstein and Szeliski 2002);

• picking a window that maximizes some match-reliability metric (Veksler 2001, 2003);

• weighting pixels by their similarity to the central pixel (Yoon and Kweon 2006).

Once you have aggregated the costs in the DSI, pick the winner at each pixel (winner-take-
all), and then optionally perform one or more of the following post-processing steps:

1. compute matches both ways and pick only the reliable matches (draw the others in
another color);

2. tag matches that are unsure (whose confidence is too low);
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3. fill in the matches that are unsure from neighboring values;

4. refine your matches to sub-pixel disparity by either fitting a parabola to the DSI values
around the winner or by using an iteration of Lukas–Kanade.

Ex 11.6: Optimization-based stereo Compute the disparity space image (DSI) volume us-
ing one of the techniques you implemented in Exercise 11.4 and then implement one (or more)
of the global optimization techniques described in Section 11.5 to compute the depth map.
Potential choices include:

• dynamic programming or scanline optimization (relatively easy);

• semi-global optimization (Hirschmüller 2008), which is a simple extension of scanline
optimization and performs well;

• graph cuts using alpha expansions (Boykov, Veksler, and Zabih 2001), for which you
will need to find a max-flow or min-cut algorithm (http://vision.middlebury.edu/stereo);

• loopy belief propagation (Appendix B.5.3).

Evaluate your algorithm by running it on the Middlebury stereo data sets.
How well does your algorithm do against local aggregation (Yoon and Kweon 2006)?

Can you think of some extensions or modifications to make it even better?

Ex 11.7: View interpolation, revisited Compute a dense depth map using one of the tech-
niques you developed above and use it (or, better yet, a depth map for each source image) to
generate smooth in-between views from a stereo data set.

Compare your results against using the ground truth depth data (if available).
What kinds of artifacts do you see? Can you think of ways to reduce them?
More details on implementing such algorithms can be found in Section 13.1 and Exercises

13.1–13.4.

Ex 11.8: Multi-frame stereo Extend one of your previous techniques to use multiple input
frames (Section 11.6) and try to improve the results you obtained with just two views.

If helpful, try using temporal selection (Kang and Szeliski 2004) to deal with the increased
number of occlusions in multi-frame data sets.

You can also try to simultaneously estimate multiple depth maps and make them consis-
tent (Kolmogorov and Zabih 2002; Kang and Szeliski 2004).

Test your algorithms out on some standard multi-view data sets.

Ex 11.9: Volumetric stereo Implement voxel coloring (Seitz and Dyer 1999) as a simple
extension to the plane sweep algorithm you implemented in Exercise 11.4.

1. Instead of computing the complete DSI all at once, evaluate each plane one at a time
from front to back.

2. Tag every voxel whose photoconsistency is below a certain threshold as being part of
the object and remember its average (or robust) color (Seitz and Dyer 1999; Eisert,
Steinbach, and Girod 2000; Kutulakos 2000; Slabaugh, Culbertson, Slabaugh et al.
2004).

http://vision.middlebury.edu/stereo
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3. Erase the input pixels corresponding to tagged voxels in the input images, e.g., by
setting their alpha value to 0 (or to some reduced number, depending on occupancy).

4. As you evaluate the next plane, use the source image alpha values to modify your
photoconsistency score, e.g., only consider pixels that have full alpha or weight pixels
by their alpha values.

5. If the cameras are not all on the same side of your plane sweeps, use space carving
(Kutulakos and Seitz 2000) to cycle through different subsets of source images while
carving away the volume from different directions.

Ex 11.10: Depth map merging Use the technique you developed for multi-frame stereo in
Exercise 11.8 or a different technique, such as the one described by Goesele, Snavely, Curless
et al. (2007), to compute a depth map for every input image.

Merge these depth maps into a coherent 3D model, e.g., using Poisson surface reconstruc-
tion (Kazhdan, Bolitho, and Hoppe 2006).

Ex 11.11: Shape from silhouettes Build a silhouette-based volume reconstruction algo-
rithm (Section 11.6.2). Use an octree or some other representation of your choosing.
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