
Chapter 17
The Tokeneer Experiments

Jim Woodcock, Emine Gökçe Aydal, and Rod Chapman

For Tony Hoare, to celebrate his 75th birthday.

Abstract We describe an experiment conducted as part of a pilot project in the
Verified Software Initiative (VSI). We begin by recounting the background to the
VSI and its six initial pilot projects, and give an update on the current progress of
each project. We describe one of these, the Tokeneer ID Station in greater detail.
Tokeneer was developed by Praxis High Integrity Systems and SPRE for the US
National Security Agency, and it has been acclaimed by the US National Academies
as representing best practice in software development. To date, only five errors have
been found in Tokeneer, and the entire project archive has been released for ex-
perimentation within the VSI. We describe the first experiment using the Tokeneer
archive. Our objective is to investigate the dependability claims for Tokeneer as a
security-critical system. Our experiment uses a model-based testing technique that
exploits formal methods and tools to discover nine anomalous scenarios. We discuss
four of these in detail.

17.1 Introduction (by JW)

In 2002, I attended a colloquium in Lisbon to celebrate the UN Software Technology
Institute’s 10th Anniversary [1]. Tony Hoare gave a talk on the use of assertions
in current Microsoft practice, where they instrument programs as software testing

J. Woodcock (�)
Department of Computer Science, University of York, Heslington,
York YO10 5DD, Great Britain
e-mail: jim@cs.york.ac.uk

E.G. Aydal
Department of Computer Science, University of York
e-mail: aydal@ieee.org

R. Chapman
Altran Praxis Limited, 20 Manvers Street, Bath BA1 1PX, Great Britain
e-mail: rod.chapman@altran-praxis.com

DOI 10.1007/978-1-84882-912-1 17, c� Springer-Verlag London Limited 2010
405et al. (eds.), Reflections on the Work of C.A.R. Hoare,C.B. Jones

jim@cs.york.ac.uk
aydal@ieee.org
rod.chapman@altran-praxis.com

406 J. Woodcock et al.

probes [40]. He went on to describe the greater benefits that would follow from
using a tool to check a program’s adherence to its assertions: the Verifying Compiler.
He concluded by saying that building a verifying compiler would be a “splendid
opportunity for academic research” and “one of the major challenges of Computing
Science in the twenty-first century,” likening it to the Human Genome project.

Tony had invited me to lecture at that year’s Marktoberdorf Summer School.
During one of the excursions, he repeated to me his idea for the verifying compiler
as a way of galvanising the computer science community into a productive long-
term research programme: a Grand Challenge. This, Tony said, was the dream of
Jim King’s doctoral thesis [59], a dream abandoned in the 1970s as being well be-
yond current theorem-proving capabilities. But much progress had been made in the
following 30 years, both in hardware capacity and in the software technologies for
verification. Tony suggested that the renewed challenge of an automatic verifying
compiler could provide a focus for interaction, cross-fertilisation, advancement, and
experimental evaluation of all relevant verification technologies. Perhaps by a con-
certed international effort, we might be able to meet this challenge within 15–25
years. I was now recruited to the cause.

In November that year, there was a UK Grand Challenge Workshop in Edinburgh,
where more than 100 proposals were submitted [43]. These proposals were distilled
into just seven grand challenges, one of which included the verifying compiler:
GC6—Dependable Systems Evolution. As its name suggests, this challenge was
based on a very broad understanding of software correctness, and tried to include as
wide a community of researchers as possible, spanning the range of interests from
full functional correctness through to issues of dependability, where formalisation is
difficult, if at all possible. Three threads of activity were launched to progress GC6:
software verification, dependability, and evolution. Tony Hoare, Cliff Jones, and
Brian Randell tried to maintain the breadth of the grand challenge by emphasising
the importance of the work on dependability and evolution [44], but proposals like
this are shaped by the availability and enthusiasm of the individuals involved, and
the only thread that has so far really taken off was the one inspired by Tony’s orig-
inal idea of the verifying compiler. The main activity within this thread has been
experimental work on pilot verification projects, as reported in this paper.

The term “verifying compiler” is often misunderstood by researchers, who some-
times hear “verified compiler.” It is also often thought of as just a single tool for a
single programming language, probably an idealised academic one at that. But this
was never Tony’s intention. The verifying compiler was a cipher for an integrated
set of tools checking correctness, in a very broad sense, of a wide range of pro-
gramming artefacts. In promoting the grand challenge, Tony talked about things
that might have surprised his colleagues only a few years before. He talked not just
about full functional correctness, but about checking isolated properties and about
the subtler notions of robustness and dependability. He talked about tools that were
neither sound nor complete, about inter-operability of tools, and about the practical
programming languages used in industry. He even talked about testing.

GC6 has now transformed into an international grand challenge: the Verified
Software Initiative, led by Tony Hoare and Jay Misra, and its manifesto [42]

17 The Tokeneer Experiments 407

represents a consensus position that has emerged from a series of national and
international meetings, workshops, and conferences. Overviews of the background
and objectives may be found in [52, 77, 78]. Surveys of the state of the art are avail-
able [41], covering practice and experience in formal methods [8, 80], automated
deduction for verification [68], and software model checking [51].

Interest in the VSI’s research agenda has grown from just a few dedicated indi-
viduals in 2002 to a distinct community today. There are 55 different international
research groups working in the experimental strand alone. Many members of this
community are young researchers, making important contributions at early stages
of their career. They have their own conference series, Verified Software: Theories,
Tools, and Experiments (Zurich 2005 [64], Toronto 2008 [69], and Edinburgh 2010).
They have published a series of special journal issues (some are still in press): ACM
Computing Surveys, Formal Aspects of Computing [18, 54], Science of Computer
Programming [28], Journal of Object Technology, Journal of Universal Computer
Science [4], and Software Tools for Technology Transfer. They organise working
meetings at leading and specialist conferences: FM Symposium, FLoC, SBMF,
ICTAC, ICFEM, ICECCS, and SEFM. They represent six continents: North and
South America, Europe, Asia, Australia and Africa.

17.2 The Verified Software Repository

The main focus of the UK’s contribution to the VSI is on building a Verified
Software Repository [9, 75], which will eventually contain hundreds of programs
and components, amounting to several million lines of code. This will be accom-
panied by full or partial specifications, designs, test cases, assertions, evolution
histories, and other formal and informal documentation. Each program will be me-
chanically checked by at least one tool, although most will be analysed by a series of
tools in a comparative study. The Repository’s programs are selected by the research
community as realistically representing the wide diversity of computer applications,
including smartcards, embedded software, device drivers, a standard class library, an
embedded operating system, a compiler for a useful language (possibly Java Card),
and parts of the verifier itself, a program generator, a communications protocol (pos-
sibly TCP/IP), a desk-top application, parts of a web service (perhaps Apache). The
main purpose of the Repository is to advance science, but reusable verified compo-
nents may well be taken up in real-life application domains.

Verification of repository components already includes the wide spectrum of pro-
gram properties, from avoidance of specific exceptions like buffer overflow, general
structural integrity (crash-proofing), continuity of service, security against intru-
sion, safety, partial functional correctness, and (at the highest level) total functional
correctness [45]. The techniques used are similarly wide ranging: from unit test-
ing to partial verification, through bounded model checking to fully formal proof.
To understand exactly what has been achieved, each claim for a specific level of
correctness is accompanied by a clear informal statement of the assumptions and

408 J. Woodcock et al.

limitations of the proof, and the contribution that it makes to system dependability.
The progress of the project can be measured by the automation involved in reach-
ing each level of verification for each module in the Repository. Since the ultimate
goal of the project is scientific, the ultimate aim is for complete automation of every
property, higher than the expectations of a normal engineer or customer.

In the remainder of this introductory section, we describe the status of some early
pilot projects that are being used to populate the Repository. Mondex is a smartcard
for electronic finance. The Verified Filestore is inspired by a real space-flight ap-
plication. FreeRTOS is a real-time scheduler that is very widely used in embedded
systems. The Cardiac Pacemaker is a real system, and is representative of an impor-
tant class of medical devices. Microsoft’s Hypervisor is based on one of their future
products. Finally, Tokeneer is a security application involving biometrics. These six
pilot projects encompass a wide variety of application areas and each poses some
important challenges for verification.

17.2.1 Mondex

The following description is based on [81]. In the early 1990s, the National West-
minster Bank and Platform Seven (a UK software house) developed a smartcard-
based electronic cash system, Mondex, suitable for low-value cash-like transactions,
with no third-party involvement, and no cost per transaction. A discussion of the
security requirements can be found in [73,81]; a description of some wider require-
ments can be found in [2]. It was crucial that the card was secure, otherwise money
could be electronically counterfeited, so Platform Seven decided to certify Mondex
to one of the very highest standards available at the time: ITSEC Level E6 [46],
which approximates to Common Criteria Level EAL7 [14] (see the discussion in
Section 17.3). This mandates stringent requirements on software design, develop-
ment, testing, and documentation procedures. It also mandates the use of formal
methods to specify the high-level abstract security policy model and the lower-
level concrete architectural design. It requires a formal proof of correspondence
between the two, in order to show that the concrete design obeys the abstract secu-
rity properties. The evaluation was carried out by the Logica Commercial Licensed
Evaluation Facility, with key parts subcontracted to the University of York to ensure
independence.

The target platform smartcard had an 8-bit microprocessor, a low clock speed,
limited memory (256 bytes of dynamic RAM, and a few kilobytes of slower
EEPROM), and no built-in operating system support for tasks such as memory
management. Power could be withdrawn at any point during the processing of
a transaction. Logica was contracted to deliver the specification and proof using
Z [71, 79]. They had little difficulty in formalising the concrete architectural de-
sign from the existing semi-formal design documents, but the task of producing
an abstract security policy model that both captured the desired security properties
(in particular, that “no value is created” and that “all value is accounted for”) and

17 The Tokeneer Experiments 409

provably corresponded to the lower-level specification, was much harder. A very
small change in the design would have made the abstraction much easier, but was
thought to be too expensive to implement, as the parallel implementation work was
already well beyond that point. The 200-page proof was carried out by hand, and
revealed a small flaw in one of the minor protocols; this was presented to Platform
Seven in the form of a security-compromising scenario. Since this constituted a real
security problem, the design was changed to rectify it. The extensive proofs carried
out were done manually using some novel techniques [72]. The decision not to use
mechanical theorem proving was intended to keep costs under control. Recent work
(reported below) has shown that this was overly cautious, and that Moore’s Law has
swung the balance further in favour of cost-effective mechanical verification.

In 1999, Mondex achieved its ITSEC Level E6 certificate: the very first product
ever to do so. As a part of the ITSEC E6 process, the entire Mondex development
was additionally subjected to rigorous testing, which was itself evaluated. No errors
were found in any part of the system subjected to the use of formal methods.

Mondex was revived in 2006 as a pilot project for the Grand Challenge in Veri-
fied Software. The main objective was to test how the state of the art in mechanical
verification had moved on in 10 years. Eight groups took up the challenge using
the following formal methods (with references to a full discussion of the kinds of
analysis that were performed in each case): Alloy [67], ASM [39], Event-B [10],
OCL [60], PerfectDeveloper,1 �-calculus [53], Raise [36], and Z [32]. The cost of
mechanising the Z proofs of the original project was 10% of the original develop-
ment cost, and so did not dominate costs as initially believed. Interestingly, almost
all techniques used in the Mondex pilot achieved the same level of automation,
producing similar numbers of verification conditions and requiring similar effort
(see [54] for a discussion of these similarities).

17.2.2 Verified Filestore

At an early workshop on the Verifying Compiler, Amir Pnueli suggested that we
should choose the verification of the Linux kernel as a pilot project. It would
be a significant challenge, and would have a lasting impact. Joshi and Holzmann
suggested a more modest aim: the verification of the implementation of a sub-
set of the POSIX filestore interface suitable for flash-memory hardware with strict
fault-tolerance requirements to be used by forthcoming NASA missions [56]. They
required the system would prevent corruption in the presence of unexpected power-
loss, and that it would be able to recover from faults specific to flash hardware
(e.g., bad blocks, read errors, bit corruption, wear-levelling, etc.) [35] . The POSIX
file-system interface [55] was chosen for four reasons: (i) it is a clean, well-defined,

1 No paper is available on the PerfectDeveloper treatment of Mondex, but see [24] for a general
discussion of the PerfectDeveloper tool itself.

410 J. Woodcock et al.

and standard interface that has been stable for many years; (ii) the data structures and
algorithms required are well understood; (iii) although a small part of an operating
system, it is complex enough in terms of reliability guarantees, such as unexpected
power-loss, concurrent access, or data corruption; and (iv) modern information tech-
nology is massively dependent on reliable and secure information availability. An
initial subset of the POSIX standard has been chosen for the pilot project. There is no
support for: (i) file permissions; (ii) hard or symbolic-links; or (iii) entities other than
files and directories (e.g., pipes and sockets). Adding support for (i) is not difficult
and may be done later, whereas support for (ii) and (iii) is more difficult and might
be beyond the scope of the challenge. Existing flash-memory file-systems, such as
YAFFS2 [50], do not support these features, since they are not usually needed for
the functionality of an embedded system.

Freitas and Woodcock have mechanically verified existing Z models of the
POSIX API [33] and a higher-level transaction processing API [31, 34]. Freitas
has shown how to verify datatypes for the design of operating system kernels [30].
Butterfield, Freitas, and Woodcock have modelled the behaviour of flash memory
devices [11–13]. Butler has specified a tree-structured file system in Event-B [26],
and has specified some of the details of the flash file system itself [25]. Mühlberg
and Lüttgen have used model checking to verify compiled file-system code [65],
and Jackson has used Alloy to produce a relational model of aspects of a flash file
system [57]. Ferreira and Oliveira have integrated Alloy, VDMCC, and HOL into a
tool chain to verify parts of the Intel flash file system [29]. Finally, Kim has explored
the flash multi-sector read operation using concolic testing [58].

17.2.3 FreeRTOS

Richard Barry (Wittenstein High Integrity Systems) has proposed the correctness of
their open-source real-time mini-kernel as a pilot project. It runs on a wide range of
different architectures and is used in many commercial embedded systems. There
are over 5,000 downloads per month from SourceForge, putting it in the top 250 of
SourceForge’s 170,000 codes. It is less than 2,500 lines of pointer-rich code, which
makes it small, but very interesting. The first challenge is to analyse the program
for structural integrity properties, for example, to prove that its elaborate use of
pointers is safe. The second challenge is to make a rational reconstruction of the
development of the program, starting from an abstract specification, and refining
down to working code, with all verification conditions discharged with a high level
of automation. These challenges push the current state of the art in both program
analysis and refinement of pointer programs.

Déharbe has produced an abstract specification of FreeRTOS [27] and Machado
has shown how to generate tests automatically from the code [63]. Craig is working
on the formal specification and refinement in Z of more general operating system
kernels [22, 23]. Some of his models have been verified by Freitas and Woodcock.

17 The Tokeneer Experiments 411

17.2.4 Cardiac Pacemaker

Boston Scientific has released into the public domain the system specification for a
previous generation pacemaker, and is offering it as a challenge problem. They have
released a specification that defines functions and operating characteristics, iden-
tifies system environmental performance parameters, and characterises anticipated
uses. This challenge has multiple dimensions and levels. Participants may choose
to submit a complete version of the pacemaker software, designed to run on speci-
fied hardware, they may choose to submit just a formal requirements documents, or
anything in between. McMaster University’s Software Quality Research Laboratory
is putting in place a certification framework to simulate the concept of licensing.
This will enable the Challenge community to explore the concept of licensing ev-
idence and the role of standards in the production of such software. Furthermore,
it will provide a more objective basis for comparison between putative solutions to
the Challenge.

Lawson and his colleagues at McMaster University maintain a web page describ-
ing the state of the Pacemaker pilot project [61]. It gives details of the pacemaker
hardware reference platform, developed by students at the University of Minnesota,
based on an 8-bit PIC18F4520 microcontroller. Macedo, Fitzgerald and Larsen have
an incremental development of a distributed real-time model of a cardiac pacing sys-
tem using VDM [62]. Gomes and Oliveira have specified the Pacemaker in Z, and
carried out proofs of consistency of their specification using ProofPowerZ [37].

17.2.5 Microsoft Hypervisor

Schulte and Paul initiated work within Microsoft on a hypervisor (a kind of sepa-
ration kernel), and it has been proposed by Thomas Santen as a challenge project.
The European Microsoft Innovation Center is collaborating with German academic
partners and the Microsoft Research group for Programming Languages and Meth-
ods on the formal verification of the new Microsoft Hypervisor, to be released as
part of as new Windows Server. The Hypervisor will allow multiple guest operating
systems to run concurrently on a single hardware platform. By proving the mathe-
matical correctness of the Hypervisor, they will control the risks of malicious attack.
Cohen has briefly described the Microsoft Hypervisor project [17].

17.3 Pilot project: Tokeneer ID Station

In this section, we describe one of the pilot projects in a lot more detail: the Tokeneer
ID Station (TIS), a project conducted by Praxis High Integrity Systems and SPRE
for the US National Security Agency. See [15] for an overview of the system, and [6]
for an account of how it was engineered. Tony Hoare has already recorded his opin-
ion of the work carried out: “The Tokeneer project is a milestone in the transfer of

412 J. Woodcock et al.

program verification technology into industrial application” [74]. A report from the
US National Academies [48] refers to several Praxis projects as examples of best
practice in software engineering, particularly in the areas of formal methods and
programming language design and verification.

The Tokeneer project was originally conceived to supply evidence about whether
it is economically feasible to develop systems that can be assured to the higher
levels of the Common Criteria Security Evaluation, the ISO/IEC 15408 standard for
computer security certification [14]. The standard defines seven levels for evaluating
information technology security:

� EAL7: formally verified design and tested
� EAL6: semi-formally verified design and tested
� EAL5: semi-formally designed and tested
� EAL4: methodically designed, tested, and reviewed
� EAL3: methodically tested and checked
� EAL2: structurally tested
� EAL1: functionally tested

Barnes et al. report that an evaluation in 1998 to what is now understood as EAL4
cost about US$2.5 million [6].

Numerous smartcard devices have been evaluated at EAL5, as have multilevel
secure devices such as the Tenix Interactive Link. XTS-400 (STOP 6) is a general-
purpose operating system, which has been evaluated at an augmented EAL5 level.
An example of an EAL6 certified system is the Green Hills Software INTEGRITY-
178B operating system, the only operating system to achieve EAL6 so far. The
Tenix Interactive Link Data Diode Device has been evaluated at EAL7 augmented,
the only product to achieve this.

The problem with these higher levels of the Common Criteria is that industry
believes that it is simply too expensive to develop systems to this standard. The argu-
ment is a familiar one. In 1997, the UK Government Communications Headquarters
held a workshop to discuss the view held in industry that it was too expensive to
use formal methods to achieve ITSEC Level E6 [76], approximately EAL7. The
Mondex project (see Section 17.2) provided evidence to the contrary.

So the objective of the Tokeneer project was to explore the feasibility of develop-
ing cost-effective, high-quality, low-defect EAL5 systems, and to provide evidence
for both EAL6 and EAL7. It was a rare and valuable opportunity to undertake the
controlled measurement of productivity and defect rates. Remarkably, the entire
project archive is openly available and may be downloaded from [74].

Praxis have a well-developed software engineering method that addresses not
only assurance, but also cost requirements. Their method starts from requirements
analysis using their REVEAL technique, continues with specification and develop-
ment, using formal methods where appropriate, until an implementation is reached
in SPARK, a high-level programming language and toolset designed for writing
software for high-integrity applications [7]. They have a successful record of using
their method to develop commercial applications of formal methods, with costs re-
portedly lower than traditional manual object-oriented methods.

17 The Tokeneer Experiments 413

Tokeneer was the subject of an earlier NSA research project investigating the use
of biometrics for physical access control to a secure room containing user worksta-
tions (the enclave). The Tokeneer ID Station contributed to a further development
of the original system. The key idea is that users have smartcard security tokens that
must be used both to gain access to the enclave and to use the workstations once
the user is inside. There are smartcard and biometric readers outside the enclave; if
a user passes their identity tests, then the door opens for entry. Authorisation infor-
mation is written onto the card for subsequent workstation access. This information
describes privileges the user can enjoy for this visit, including times of working,
security clearance and user roles.

In what follows, it is important to understand the Tokeneer ID Station security
target, in order to answer the question, “Is Tokeneer really secure?” The require-
ments assume that the enclave is situated in a high-security area, and so all the users
will have passed a stringent security clearance procedure, either as NSA employees
or as accredited visitors. As a consequence, it may be safely assumed that no user
will ever attempt a malicious attack on the enclave. Instead, the security measures
are intended to prevent accidents: unintentional, unauthorised access to the enclave
and the data provided by its workstations.

The overall functionality of the Tokeneer ID Station was formalised in a 100-
page Z specification. The code was developed in two parts. The core security-related
functionality was implemented in SPARK, and amounts to 9,939 lines of code, with
6,036 lines of flow annotations, 1,999 lines of proof annotations, and 8,529 lines of
comments. The remainder of the system was not security critical, and so was devel-
oped using Ada95, comprising 3,697 lines of code, no flow or poof annotations, and
2,240 lines of comments. The entire development required 260 man-days, provided
by three people working part-time over 9 months.

The task set by NSA was to conform to EAL5. The development actually ex-
ceeded EAL5 requirements in several areas, including configuration control, fault
management, and testing. The main body of the core development work was carried
out to EAL5. But the specification, design, implementation and proof of correspon-
dence were conducted to EAL6 and 7. So why would Praxis do more than they were
asked to do? Because they were told that, if they could produce evidence at these
higher levels within budget, then they should.

The Tokeneer project archive has been downloaded many hundreds of times.
Knight [38] has verified Tokeneer properties using the PVS theorem prover [66].
Jackson is working to broaden the range of properties of SPARK programs that are
automatically verifiable, thus speeding up verification and supporting use of richer
assertions [49]. Work is underway to re-implement Tokeneer using the PerfectDe-
veloper system (see [24] for details of PerfectDeveloper). Aydal and Woodcock have
been analysing the system to search for attacks [3], work reported below.

But how good was the original development of Tokeneer? In fact, only five de-
fects have been found in Tokeneer since it was deployed within NSA in 2004. We
describe each of the defects, reflecting on their causes and significance.

414 J. Woodcock et al.

17.3.1 Defect 1

This account is based on that in [15, Section 17.3]. When the Tokeneer code was
re-analysed in August 2008, in preparation for the public release of the entire
archive, the tool that summarised the proof obligations (the POGS tool) revealed a
single undischarged verification condition. Further investigation showed this to be
in the subprogram ConfigData.ValidateFile. ReadDuration. The code
in question concerns validation of an integer value that is read from a file, but is
expected to be in the range 0–200 s before it is converted into a number of tenths of
seconds in the range 0–2000. The offending undischarged VC is essentially:

H1: rawduration__1 >= - 2147483648 .
H2: rawduration__1 <= 2147483647 .

->
C1: success__1 ->

rawduration__1 * 10 >= - 2147483648 and
rawduration__1 * 10 <= 2147483647 .

The code is from line 222 of configdata.adb:

if Success and then
(RawDuration * 10 <= Integer(DurationT’Last) and
RawDuration * 10 >= Integer(DurationT’First)) then

This VC clearly has a counterexample. For instance, when RawDuration D 109,
H1 and H2 are true, but C1 is false. This reflects the possibility of an integer over-
flow when multiplying by 10 before the range of RawDuration is checked. The
correction to the code is trivial. If replaced by:

if Success and then
(RawDuration <= Integer(DurationT’Last) / 10 and
RawDuration >= Integer(DurationT’First) / 10) then

then all VCs discharge successfully.
Why was this defect not discovered and reported during the original develop-

ment? The original project used the SPARK Examiners “rtc” switch to generate
VCs, which it does for partial correctness and run-time errors, but omits those side-
conditions relating to Ada’s Overflow_Check. Previously, the SPARK toolset
was limited in its capability to discharge these VCs, so these were omitted from
the original project. Subsequently, the SPARK toolset has become far more capa-
ble with regard to overflow conditions, through the use of the compiler-dependent
configuration file, and the base-type assertion for integer types. Users can now gen-
erate VCs using the “vcg” switch, which does include VCs for overflow checks. It
is interesting to note that this defect was not discovered by any testing during the
original project, or any use or attempt to analyse the system since the initial delivery.

17 The Tokeneer Experiments 415

What about the security impact? First, there is a potential denial-of-service attack
resulting from this defect: a malicious user holding the “security officer” role can
deliberately terminate the TIS core software by supplying a malformed configura-
tion data file, rendering the system unusable. More seriously, the software can be
terminated in this fashion with the enclave door open.

17.3.2 Defect 2

The first defect was discovered by Spinellis in October 2008; see his blog [70],
where he reports the following. The Tokeneer function SystemFaultOccurred
is required to return true exactly when a critical system fault has occurred while
attempting to maintain the audit log. The code that implements this uses a global
variable, AuditSystemFault, which is set to true whenever a fault is detected.
Spinellis lists all the assignments to AuditSystemFault that he found in the
code (OK is a variable set by various system functions).

AuditSystemFault := AuditSystemFault or not OK;
AuditSystemFault := AuditSystemFault or not OK;
AuditSystemFault := AuditSystemFault or not OK;
AuditSystemFault := AuditSystemFault or not OK;
AuditSystemFault := True;
AuditSystemFault := True;
AuditSystemFault := True;
AuditSystemFault := True;
AuditSystemFault := not OK;
AuditSystemFault := AuditSystemFault and not OK;

But there is an anomaly in the last assignment, which is used when a log file is
deleted. The conjunction used instead of a disjunction has the effect of clearing the
AuditSystemFault flag if the deletion is successful, and failing to set it if the
deletion fails, but no fault was detected before. Spinellis found this bug by inspection
in less than an hour of browsing. In fact, it was in the second file he looked at, the
first being very short.

17.3.3 Defect 3

The second defect was found by the CodePeer tool on or about 24 August 2009.
CodePeer (developed jointly by AdaCore and SofCheck) statically analyses Ada
programs for a wide range of flaws, including: pointer misuse, buffer overflows,
numeric overflow or wraparound, division by zero, dead code, unused variables,
and race conditions. The tool detected the following error.

416 J. Woodcock et al.

The procedure KeyStore.DoFind contains the following code sequence:

Interface.FindObjectsInit(Template => Template,
ReturnValue => RetValIni);

if RetValIni = Interface.Ok then
Interface.FindObjects(HandleCount => HandleCount,

ObjectHandles => Handles,
ReturnValue => RetValDo);

if RetValIni = Interface.Ok then
Interface.FindObjectsFinal(ReturnValue =>

RetValFin);
end if;

end if;

The test in the second conditional statement is wrong: it should be

if RetValDo = Interface.Ok then

of course. This is almost certainly a cut-and-paste error from the enclosing con-
ditional statements, but why was it not detected during the original verification
process? The procedure call above the offending test assigns to RetValDo, but
unfortunately, there is a meaningful reference to RetValDo later in the subpro-
gram, so the SPARK flow-analyser fails to spot this as an ineffective assignment, as
might have been expected. The offending code also gives rise to several dead paths
through the code, since there are paths with traversal condition

(RetValIni = Interface.Ok) and
-- then branch of outer if statement
(RetValIni /= Interface.Ok)
-- erroneous else branch of inner if statement

But the verification conditions arising from this code are all trivially true, since this
procedure has an implicitly true postcondition. Therefore, the SPARK Simplifier
does not bother with proof-by-contradiction and so fails to spot the dead paths.

The discovery of this error has led to the development of a new tool, Zombie-
Scope, to detect dead code. It is similar to the SPARK Simplifier, except that but it
looks only for contradictory hypotheses, ignoring the conclusions of all VCs. Any
VCs that are found to have contradictory hypotheses are flagged up as indicating
dead paths. The security impact of this bug is not known, as it has yet to be analysed
closely enough.

17.3.4 Defect 4

The third defect was found using the most recent GNAT compiler, a free, high-
quality, complete compiler for Ada95, integrated into the GCC compiler system.

17 The Tokeneer Experiments 417

The defect was found in AuditLog.AddElementToFile. NameOfType,
using the -gnatwa flag (all warnings mode). The offending code is:

function NameOfType (E : AuditTypes.ElementT)
return ElementTextT
is

--# hide NameOfType;
ElementText : ElementTextT := NoElement;

begin
ElementText(1..

AuditTypes.ElementT’Image(ElementID)’Last)
:= AuditTypes.ElementT’Image(ElementID);

return ElementText;
end NameOfType;

GNAT reports that the formal parameter E is not referenced, which is of course
quite right: there is no reference to E in the body of that function. The reference to
ElementID, which is a global variable that is visible from that scope, should be E
here, so it should read:

ElementText(1..
AuditTypes.ElementT’Image(E)’Last)
:= AuditTypes.ElementT’Image(E);

Why was this defect not found before? It would have been difficult to detect the error
during development using the tools available at the time. When the code was first
written, the much earlier version of GNAT used did not implement this warning. The
code in question is not even SPARK, but actually Ada, since it uses a feature that is
not part of SPARK (an array-slice in the assignment), and the code has to be hidden
from the analyser, which would otherwise reject it. Consequently no flow analysis
was conducted at all. The original decision to hide this code was almost certainly
a mistake. Bugs like this can creep in without the rigour of the SPARK tools. This
bug was also missed in code-review, suggesting that the reviewing of hidden units
should have been given more attention. If the code were SPARK, the tools would
certainly have spotted it: an unreferenced formal parameter is always reported by
the SPARK Examiner.

What is the impact on correctness and security? Curiously, none. There is exactly
one call to this function, which reads:

File.PutString(TheFile => TheFile,
Text => NameOfType (ElementID),
Stop => 0);

So, in this single call E (the formal parameter) is synonymous with ElementID
(the global variable), so there is no foul. But it is a bug waiting to happen if this
code were ever called again with a different parameter, and the developers would fix
it given the chance, so it still qualifies as a defect [16].

418 J. Woodcock et al.

17.3.5 Defect 5

The fourth defect was also found by SofCheck’s CodePeer tool, in September 2009,
in TokenReader.Poll.CheckCardState. CodePeer reports that the final
branch of the case statement

when Interface.InvalidCardState =>
MarkTokenBad;

is dead—telling us that CardState can never have the value

InvalidCardState

CodePeer (through some surprisingly clever inter-procedural value propagation) is
able to determine that the RawCardState value returned from

TokenReader.Interface.Status

is always in the range 1–6, not 0–6. This can be verified by inspection by
following the sequence of calls down the call tree into the support software
(in support/tokenapi.adb). The SPARK tools did not detect this, since
the dead-path analysis is intra-procedural and based on the contracts of the called
units alone.

Is this a bug? Well, not really, but it is an interesting observation that the analysis
of the use of subtypes in the code could be improved.

17.4 A Token Experiment

In this section, we report on an experiment that we performed on Tokeneer. Our mo-
tivation was to take a system that has been developed using best practice and to see
if there is anything more that we can say about it. In particular, since it is a security-
critical system, can we break it? One way of proceeding in our experiment would
have been to search for undischarged verification conditions and proof obligations,
hoping to find that at least one of them would turn out not to be true.

But a second motivation for the experiment was to revisit the original goals of
GC6, and to make a small contribution towards understanding not just the functional
correctness of Tokeneer (Does it correctly implement its specification?), but to say
something about its dependability (Is it really secure?). For this reason, we decided
to try to validate the system against its requirements, and in particular, the security
requirement of no accidental access to the enclave or to its workstations.

To do this, we used a novel model-based testing technique that exploits for-
mal methods and tools: assertion-guided model-based robustness testing. The main
hypothesis of this study was:

17 The Tokeneer Experiments 419

Applying robustness testing in a model-based manner with the use of a separate test model
may reveal requirements-related faults that may not necessarily be detected by formal
verification techniques.

In addition to this hypothesis, we assumed two test hypotheses that helped us define
the test oracle and the test selection algorithm. These hypotheses are valid for very
specific kinds of system, and their usefulness must be judged by the quality of the
results: have they uncovered any genuine failures? We revisit this point at the end of
the paper. We consider first the Redundant Models Hypothesis:

If there are two different specifications of the same System under Test (SuT) that conform
to the same set of requirements, then their fault domains must match with respect to some
test set T.

By using two models of the same system that are independently produced from the
requirements of the SuT, and a test suite generated by using one of these models,
we tried to reveal faults within these models by finding inconsistent behaviours in
their fault domains. Having one model for code generation and a separate model
for test case generation not only introduces the redundancy required for the testing
process, but also separates concerns whilst producing these models. Additionally,
there may be situations where the design model of the system may not be available
due to confidentiality reasons (e.g., in security-critical systems) or the testing of the
system may be completely outsourced. For such cases, being able to generate test
cases from a separate test model brings flexibility to the testing process.

We used a test selection algorithm based on the satisfaction of assertions char-
acterising the operations of the SuT. In order to make the satisfaction of these
assertions more concrete, we introduced the Alternative Scenarios Hypothesis:

For any operation of the SuT, if s satisfies the precondition but t does not, then their corre-
sponding post-states must be different.

This hypothesis is relevant to robust systems, where we want to find situations where
the Operation under Test (OuT) has incorrect fault-handling. In general, robustness
testing checks that a system can handle unexpected user input or software failures
by testing the software outside its expected input range. Thus, by feeding the soft-
ware with classified unexpected input that fails one precondition at a time, the faults
for different situations are uncovered. For the Tokeneer Experiment, a separate test
model of the high integrity variant of the Tokeneer was produced in the Alloy mod-
elling language [47]. The test case specifications were produced by falsifying the
assertions of the operations modelled in some order. The test case specifications
were then fed into Alloy Analyzer, and the test cases generated automatically as
counterexamples using SAT-solving technology.

Bearing in mind the high quality of the system under test, including the fact that
only five errors have previously been found in Tokeneer since its release, we wish to
report a small success in our experiment. We detected nine anomalous behaviours,
and we describe four representative scenarios in the rest of this section (see [3] for
a more detailed account of how we found the anomalies and for a description of the
other scenarios). In Section 17.6, we consider whether these anomalous scenarios
really compromise the security of the enclave and its workstations.

420 J. Woodcock et al.

17.4.1 Scenario 1

Our first scenario concerns tailgating. The Tokeneer system should be seen as more
than the sum of its software and hardware peripherals. It is a socio-technical system,
and there are interactions between people and their procedures and the hardware and
software, and these have to be considered to get a picture of the entire system. We
understand that users must undertake not to “tailgate,” that is, to follow an authorised
user into the enclave without being separately authorised themselves. So we can
rule out the possibility of deliberate tailgating, since users agree not to do it, and
no one has any malicious intent. But we found a scenario that can be explained by
accidental tailgating. Consider the following sequence of events.

1. Miss Moneypenny, an NSA employee, inserts her smartcard into the reader,
which checks its validity.

2. She places her thumb on the fingerprint reader, which checks her identity.
3. The system authorises Miss Moneypenny, unlocking the door.
4. Miss Moneypenny enters the enclave, and the door closes behind her.
5. I am a new NSA employee. Since I have not started to work on a project that

needs access to the enclave area, my card does not have access to the enclave,
but I am not told which areas my card has access to. I assume that my card has
access to all areas.

6. I have eyes only for Miss Moneypenny, and as a result I look anxiously at the
door to get a glimpse of her.

7. I insert my card into the reader.
8. The screen says

ENTRY DENIED

but I am not paying attention. There is no provision for audible alarms.
9. I place my thumb on the fingerprint reader, but again I miss the error message.

10. Anyone watching my actions would be satisfied that I appear to be following
authorised procedures, and so would have no reason to be suspicious.

11. The door is still unlocked following Miss Moneypenny’s entry, and it stays
unlocked for a period known as the latch-unlock duration. I enter the enclave
during this period, and there is no way of detecting my unauthorised entry.

The scenario may be thought rather far-fetched and scarcely credible. It relies on
two mistakes: me not noticing either of the error messages. But it does show how
I could accidentally gain access to the enclave, even though this appears to be an
unlikely occurrence. Perhaps more interestingly, it reveals something about the im-
plementation of the system.

1. Audible alarms could profitably be used to draw attention to the authorisation
failures of the card and fingerprint readers.

2. The no-tailgating rule could be enforced with hardware (a physical turnstile or a
pair of “airlock” doors), or checked with a video entry-detection system.

17 The Tokeneer Experiments 421

3. There is a vulnerability offered by the door being unlocked during the
latch-unlock duration. There are two issues here.

(a) The duration must be long enough to allow Miss Moneypenny to enter, but
not so long as to give others the possibility to tailgate; this seems impossible
to get right.

(b) Errors triggered during attempted authorisations do not prematurely end the
latch-unlock duration. This is a missed opportunity.

17.4.2 Scenario 2

Suppose now that the security officer decides to shorten the latch-unlock duration,
perhaps as a result of discovering my antics in Scenario 1. The security officer needs
to update a configuration file on one of the workstations within the enclave, and
suppose that he wants to decrease the duration from 30s to 15s.

1. The security officer modifies the configuration file, prepares the configuration
data, and writes it to a floppy disk.

2. The security officer successfully authorises his entry and then enters the enclave.
3. He successfully authorises his use of a workstation.
4. He logs in, inserts the floppy disk, and enters the update command, but then

he sees the following:

read/write error

5. The security officer is uncertain what this means, so he then checks the screen
showing the new configuration file. It says very clearly:

Latch-Unlock Duration = 15s

and he is satisfied that the update really has taken place.
6. Working hours currently stop at 17:00, and entry to the enclave should be for-

bidden after this time.
7. But I accidentally misread the time, thinking it to be 16:45, when it is really

17:45. This is probably due to my having returned from a foreign trip, and having
made a mistake adjusting between time zones.

8. I successfully authorise my entry at 17:45 and enter the enclave.
9. I work until 18:00, 1 h later than permitted.

This scenario is rather puzzling at first sight: how could I have been authorised to
enter the enclave in Step 8, clearly outside working hours? To answer this, we need
to know a little bit more about how Tokeneer works. There is a default configuration
file on the system that is used in case of an update failure. When the system detects
a read/write errorwhile trying to read the floppy disk or when the file on the
floppy disk is incorrectly formatted, it is forced to use this default configuration file.
The default file is inaccessible, presumably to prevent accidental interference. It just

422 J. Woodcock et al.

so happens in our scenario that the default value for the latch-unlock duration is the
same as that required by the security officer (15s), and this coincidence persuades
him in Step 5 that the update has taken place correctly. But of course, all the other
settings now assume their default values. In our scenario, this gives the later working
time of 18:00, and so explains my entry in Step 8.

So I have gained accidental entry to the enclave and accidental access to a work-
station. Is this an unlikely scenario? It depends on how carefully the configuration
data file is prepared and whether or not the floppy disk drive is working properly, and
it may well be an ageing device with reliability problems. But if a failure does occur,
then it is made worse by a human–computer interface problem: the consequences of
the error are not made clear to the security officer.

17.4.3 Scenario 3

The third scenario also concerns configuration data. The system logs information
about workstation usage in an audit file, and an alarm is signalled when the file
reaches the minimum log-size for sounding the alarm.

1. The number of users and tasks increases, with the audit log filling up rapidly.
2. The audit manager visits the enclave several times a day to archive the log.
3. The security officer agrees to raise the threshold to reduce the number of alarms.
4. He copies new configuration data to a floppy disk, authorises his entry and enters

the enclave.
5. He logs in to a workstation and updates the system.
6. To check that the update has occurred properly, he logs out, logs back in again

and checks the minimum audit-log size. It has the value he requires, so he logs
out and leaves the enclave.

7. But the alarm is triggered once more by the old threshold.
8. He discovers later that the update seems to take effect only after the system is

rebooted, following a public holiday.

The triggering of the alarm in Step 7 is puzzling. The security officer assured himself
in Step 6 that the update had taken place satisfactorily, but later discovers that this
doesn’t seem to be the case. Again, we need to know more about how Tokeneer
works. Although a new file is introduced to the system, and when requested, it can be
viewed on the screen, the actual configuration data used for alerting stays the same
till the next system start-up. The same thing also happens when a disk is inserted
into the system drive for an admin operation. If the disk is not inserted at the start-up
time, then the system does not recognise the disk.

This scenario affects the usability of the system, as too many alarms deny proper
users the service they require from the system. It is a rather surprising behaviour,
and may constitute an accidental denial-of-service attack.

17 The Tokeneer Experiments 423

17.4.4 Scenario 4

Our final scenario also concerns configuration files.

1. The security officer wants to change the closing time from 17:00 to 16:00.
2. He prepares a configuration file and writes it to a floppy disk.
3. But he accidentally forgets to erase an old configuration file.
4. He enters the enclave and updates system.
5. I enter the enclave at 16:30, half an hour after the new closing time.

Again the scenario is puzzling, and to explain it we need to know how Tokeneer
deals with configuration files. The update function checks the validity of configura-
tion files in the order it finds them on the floppy disk. As there was an older file, this
is the one that is used. In our scenario, it was the older file that had a later closing
time, creating the problem. Once more, I have gained accidental access to both the
enclave and its workstations.

17.5 Analysis

All these stories are revealed by testing 12 operations. The operations realise their
intended functionality when all the preconditions are satisfied, at least for one pre-
state. However, it is only when the test cases exercise system behaviour beyond the
anticipated operational envelope that the stories such as the ones given in the previ-
ous sections are uncovered. The next section discusses these scenarios in the context
of the documentation produced by Praxis-HIS and SPRE during the development of
the high-integrity variant of Tokeneer IDS.

To understand the relevance and validity of these stories, we must analyse them
with respect to the documentation provided, which explains expected system be-
haviour and expected security properties. Section 17.5.1 provides information about
the security model of the TIS, and evaluates the findings accordingly.

17.5.1 Comparison with Security Model and Requirements

This section compares the scenarios with the system requirements document [19,21]
and the security model of the re-developed version of TIS [20]. In [20], the security
model of the TIS is identified with the following six security properties.

1. If the latch is unlocked by the TIS, then the TIS must be in possession of either a
User Token or an Admin Token. The User Token must have valid ID, Privilege,
and I&A Certificates, and either have a valid Authorisation Certificate or have
a template that allowed the TIS to successfully validate the user’s fingerprint.
Or, if the User Token does not meet this, the Admin Token must have a valid
Authorisation Certificate, with role of guard.

424 J. Woodcock et al.

2. If the latch is unlocked automatically by the TIS, then the current time must be
close to being within the allowed entry period defined for the User requesting
access. The term close needs to be defined, but is intended to allow a period of
grace between checking that access is allowed and actually unlocking the latch.
Automatically refers to the latch being unlocked by the system in response to a
user token insertion, rather than being manually unlocked by the guard.

3. An alarm will be raised whenever the door/latch is insecure. Insecure is defined
to mean the latch is locked, the door is open, and too much time has passed since
the last explicit request to lock the latch.

4. No audit data is lost without an audit alarm being raised.
5. The presence of an audit record of one type (e.g. recording the unlocking of

the latch) will always be preceded by certain other audit records (e.g., recording
the successful checking of certificates, fingerprints, etc.). Such a property would
need to be defined in detail, explaining the data relationship rules exactly for
each case.

6. The configuration data will be changed, or information written to the floppy, only
if there is an administrator logged on to the TIS.

The first and second properties do not prevent the TIS from situations such as the
one given in Scenario 1. Here are some of the root causes of these stories:

� None of these properties imposes the condition that the owner of the card shall be
the person entering the enclave.

� There is no way of checking whether the person who is authorised outside the en-
clave actually enters the enclave after removing his/her card from the card reader.

� It is difficult to keep track of users using the enclave without the exit point, which
was included in the actual Tokeneer system specification, but excluded in the re-
developed version of TIS.

� No action is taken after an access denial, even if the door is open.

One might argue that some of these statements are not set as the requirements of
the high-integrity variant of the TIS, and some of them are even explicitly excluded
in the documentation. However, this does not affect the validity of the stories men-
tioned above. Therefore, if any of them is taken under investigation in the future,
one of the root causes listed above must be considered whilst looking for a solution.

Another discussion item relevant to one of the stories is Security Property 6. The
property states that the configuration data will be changed by an administrator (more
specifically by a Security Officer), and the information (log files) will be written to
the floppy by an administrator (more specifically by the Audit Manager). As shown
in Scenario 2, in the case of an invalid configuration file, the system replaces the
current configuration file with a default one. In other words, if the security officer
attempts to update the configuration file with an invalid file by mistake, it is the
system that updates the file with some default file without the control of the security
officer. By taking such an action without the approval of the security officer, the
system actually breaks one of the security properties stated earlier. In the Security
Properties Document of the TIS [19], it is declared that the proof of this security
property is missed, therefore we will not discuss this item any further. However, it

17 The Tokeneer Experiments 425

is open to discussion whether more attention should be given to the correctness of
a file that determines how long the door to a secure enclave can be kept open, the
latch of this door can be kept unlocked, the enclave is available to users, etc.

Regarding system faults and the alarms raised, in [5] it is stated that the system
faults are warnings, with the exception of critical faults listed as failure to control
the latch, failure to monitor the door and failure to write to the Audit Log. It is also
mentioned as a requirement that the system shall continue to function following a
system fault categorised as a warning, and raise an alarm following a critical fault.
During the test case execution process, it was not possible to concretise the test cases
that require a critical fault, therefore we are not in a position to state the behaviour of
the system under these circumstances. However, there were test cases that required
the alarm to be raised due to other causes such as the door being kept open more
than allowed or the audit file size exceeding the limit specified in the configuration
file. The system continues to perform normally for such cases even though an alarm
is raised. Our concern is that the system may behave similarly for the critical faults
mentioned above since the only requirement specified following a critical fault is
to raise an alarm. The security of the system may not be compromised if the log
file is too large, but a failure to control the latch would certainly create a risk, and
therefore we believe that the measures taken for the latter case should be more than
just raising an alarm.

The next section explains the system-level testing carried out by SPRE Inc pre-
viously, and compares the test results of this testing activity with that explained in
this report.

17.6 Conclusions

Is Tokeneer really secure? Of course it is! It seems very unlikely that any of the
accidents described by our scenarios could really happen and compromise the se-
curity of the enclave and its workstations, particularly as an administrator is needed
for three of the four scenarios. But these are interesting scenarios nonetheless, and
they have been overlooked both by the formal development and by system testing.
In fact, the system testing performed by SPRE detected Scenario 2, and the case
is closed as solved; however, in our tests, it persisted, using tests generated by a
completely different technique.

Additionally, these scenarios may be useful in designing similar systems in the
future, as they raise questions about configuration files, audit logs, and alarms that
may have been overlooked this time. Perhaps they might be useful if the system
were to evolve to include stronger security guarantees, including malicious intent.

The lesson of our experiment is that there is value in diversity: an alternative
approach gives us an opportunity to think laterally. De Bono’s lateral thinking is
about judging the correctness of a statement (in this case the correctness of To-
keneer), and seeking errors that contradict that claim of correctness. Even when a
considerable amount of effort has been invested in one approach, in this case the

426 J. Woodcock et al.

application of formal methods, lateral thinking, provided by using a completely dif-
ferent, but principled set of techniques and tools, can still challenge the claim of
correctness.

Acknowledgements First, thanks must go to all those involved in the Tokeneer project for re-
leasing into the public domain such a useful project archive. It is incredibly valuable and has
done the research community a very great service. The work on Tokeneer reported in this paper
was carried out as part of Emine Gökçe Aydal’s Ph.D. thesis [3], under the supervision of Jim
Woodcock. We also received helpful comments during the development of this work from Andrew
Butterfield, Behzad Bordbar, Néstor Cataño, Ana Cavalcanti, John Clarke, John Fitzgerald, Leo
Freitas, Rob Hierons, Tony Hoare, Randolph Johnson, Cliff Jones, Bertrand Meyer, Yannick Moy,
Marcel Oliveira, Richard Paige, Brian Randell, Shankar and Angela Wallenberg. We presented
the results of our experiment to Marie-Claude Gaudel’s research group during a sabbatical
visit to Université de Paris-Sud, and to audiences in seminars and workshops at the University
of Birmingham, Trinity College Dublin, the University of Madeira, Microsoft Research Asia,
Microsoft Research Cambridge, the Federal University of Rio Grande do Norte, the University
of York and ETH Zurich. We are grateful for all the encouragement we received.

References

1. Aichernig B.K., Maibaum, T.S.E. (eds.): Formal Methods at the Crossroads. From Panacea to
Foundational Support, 10th Anniversary Colloquium of UNU/IIST, the International Institute
for Software Technology of The United Nations University, Lisbon, Portugal, March 18–20,
2002, Revised Papers, volume 2757 of Lecture Notes in Computer Science. Springer (2003).

2. Aydal, E.G., Paige, R.F., Woodcock, J.: Evaluation of OCL for large-scale modelling: A dif-
ferent view of the Mondex purse. In: Giese, H. (ed.) MoDELS Workshops, volume 5002 of
Lecture Notes in Computer Science, pp. 194–205. Springer, Berlin, Heidelberg (2007).

3. Aydal, E.G.: Model-Based Robustness Testing of Black-box Systems. PhD thesis, Department
of Computer Science, University of York (November 2009).

4. Banach, R.: Formal Methods: Guest editorial. J. UCS, 13(5), 593–601 (2007).
5. Barnes, J.: Tokeneer ID Station informed design. Technical Report S.P1229.50.2, Praxis High

Integrity Systems. Available from tinyurl.com/tokeneer (2008)
6. Barnes, J., Chapman, R., Johnson, R., Widmaier, J., Cooper, D., Everett, B.: Engineering the

Tokeneer enclave protection system. In Proceedings of the 1st International Symposium on
Secure Software Engineering, Arlington, VA. IEEE (March 2006).

7. Barnes, J.: High Integrity Ada: The SPARK Approach to Safety and Security. Addison-Wesley,
Reading, MA. (2003).

8. Bicarregui, J., Fitzgerald, J.S., Larsen, P.G., Woodcock, J.C.P.: Industrial practice in Formal
Methods: A review. In: A. Cavalcanti and D. Dams (eds.) FM, volume 5850 of Lecture Notes
in Computer Science, pp. 810–813. Springer (2009).

9. Bicarregui, J., Hoare, C.A.R., Woodcock, J.C.P.: The Verified Software Repository: A step
towards the verifying compiler. Formal Asp. Comput. 18(2), 143–151 (2006).

10. Butler, M., Yadav, D.: An incremental development of the Mondex system in Event-B. Formal
Asp. Comput. 20(1), 61–77 (2008).

11. Butterfield, A., Freitas, L., Woodcock, J.: Mechanising a formal model of flash memory. Sci.
Comput. Program. 74(4), 219–237 (2009).

12. Butterfield, A. O’Cathain, A.: Concurrent models of flash memory device behaviour. In
M. Oliveira and J. Woodcock, editors, Brazilian Symposium on Formal Methods (SBMF 2009),
19–21 August 2009, Gramado, Brazil, Lecture Notes in Computer Science, in press. Springer
(2009).

tinyurl.com/tokeneer

17 The Tokeneer Experiments 427

13. Butterfield, A., Woodcock. J.: Formalising flash memory: First steps. In 12th International
Conference on Engineering of Complex Computer Systems (ICECCS 2007), 10–14 July 2007,
Auckland, New Zealand, pp. 251–260. IEEE Computer Society (2007).

14. CCRA.: Common criteria for information technology security evaluation. Part 1: Introduction
and general model. Technical Report CCMB-2006-09-001, Version 3.1, Revision 1, Common
Criteria Recognition Agreement September (2006).

15. Chapman, R.: Tokeneer ID Station overview and reader’s guide. Technical Report
S.P1229.81.8, Issue 1.0, Praxis High Integrity Systems. Available from tinyurl.com/tokeneer
(2008)

16. Chapman, R.: Private communication. Email, 16 December 2009.
17. Cohen, E.: Validating the Microsoft Hypervisor. In: Misra, JV., Nipkow, T., Sekerinski, E. (eds.)

FM 2006: Formal Methods, 14th International Symposium on Formal Methods, Hamilton,
Canada, August 21–27, 2006, Proceedings, volume 4085 of Lecture Notes in Computer Sci-
ence, pp. 81–81. Springer (2006).

18. Cooke, J.: Editorial (VSTTE special issue). Formal Asp. Comput. 19(2), 137–138 (2007).
19. Cooper, D., Tokeneer ID Station security properties. Technical Report S.P1229.40.4, Praxis

High Integrity Systems. Available from tinyurl.com/tokeneer (2008)
20. Cooper, D.: Tokeneer ID Station security target. Technical Report S.P1229.40.1, Praxis High

Integrity Systems. Available from tinyurl.com/tokeneer (2008)
21. Cooper, D.: Tokeneer ID Station system requirements specification. Technical Report

S.P1229.41.1, Praxis High Integrity Systems. Available from tinyurl.com/tokeneer (2008)
22. Craig, I.D.: Formal Models of Operating System Kernels. Springer (2006).
23. Craig, I.D.: Formal Refinement For Operating System Kernels. Springer (2007).
24. Crocker, D., Carlton, J.: Verification of C programs using automated reasoning. In Fifth IEEE

International Conference on Software Engineering and Formal Methods (SEFM 2007), 10–14
September 2007, London, England, UK, pages 7–14. IEEE Computer Society (2007).

25. Damchoom, K., Butler, M.: Applying event and machine decomposition to a flash-based
filestore in Event-B. In: Oliveira, M., Woodcock, J. (eds,) Brazilian Symposium on Formal
Methods (SBMF 2009), 19–21 August 2009, Gramado, Brazil, Lecture Notes in Computer
Science, in press. Springer (2009).

26. Damchoom, K., Butler, MJ., Abrial, J-R.: Modelling and proof of a tree-structured file system
in Event-B and Rodin. In Liu, S., Maibaum, T.S.E.. Araki, K. (eds,) Formal Methods and
Software Engineering, 10th International Conference on Formal Engineering Methods, ICFEM
2008, Kitakyushu-City, Japan, October 27–31, 2008. Proceedings, volume 5256 of Lecture
Notes in Computer Science, 25–44. Springer (2008).

27. Deharbe, D: Modelling FreeRTOS with B. In Oliveira, M., Woodcock, J. (eds,) Brazilian Sym-
posium on Formal Methods (SBMF 2009), 19–21 August 2009, Gramado, Brazil, Lecture
Notes in Computer Science, in press. Springer (2009).

28. Dong, J.S., Sun, J.: SCP special issue on the Grand Challenge—Preface. Sci. Comput. Pro-
gram. 74(4), 167 (2009).

29. Ferreira, M.A., Oliveira J.N.: Towards tool integration and interoperability in the GC: The Intel
flash file store case study. In Marcel Oliveira and Jim Woodcock, editors, Brazilian Symposium
on Formal Methods (SBMF 2009), 19–21 August 2009, Gramado, Brazil, Lecture Notes in
Computer Science, in press. Springer (2009).

30. Freitas, L.: Mechanising data-types for kernel design in Z. In: Oliveira M., Woodcock, J.
(eds,) Brazilian Symposium on Formal Methods (SBMF 2009), 19–21 August 2009, Gramado,
Brazil, Lecture Notes in Computer Science, in press. Springer (2009).

31. Freitas, L., Fu, Z., Woodcock, J.: POSIX file store in Z/Eves: an experiment in the Verified
Software Repository. In 12th International Conference on Engineering of Complex Computer
Systems (ICECCS 2007), 10–14 July 2007, Auckland, New Zealand, 3–14. IEEE Computer
Society (2007).

32. Freitas, L., Woodcock, J.: Mechanising Mondex with Z/Eves. Formal Asp. Comput., 20(1),
117–139 (2008).

33. Freitas, L., Woodcock, J., Fu, Z.: POSIX file store in Z/Eves: An experiment in the Verified
Software Repository. Sci. Comput. Program., 74(4), 238–257 (2009).

tinyurl.com/tokeneer
tinyurl.com/tokeneer
tinyurl.com/tokeneer
tinyurl.com/tokeneer

428 J. Woodcock et al.

34. Freitas, L., Woodcock, J., Zhang, Y.: Verifying the CICS File Control API with Z/Eves:
An experiment in the Verified Software Repository. Sci. Comput. Program., 74(4), 197–218
(2009).

35. Gal, E., Toledo, S.: Algorithms and data structures for flash memories. ACM Comput. Surv.,
37(2), 138–163 (2005).

36. George, C, Haxthausen, A.E.: Specification, proof, and model checking of the Mondex elec-
tronic purse using RAISE. Formal Asp. Comput. 20(1), 101–116 (2008).

37. Gomes, A O Oliveira, M.V.M: Formal specification of a Cardiac Pacing System. In
A. Cavalcanti and D. Dams, editors, Formal Methods Symposium (FM 2009), 31 October–
6 November 2009, Eindhoven, Lecture Notes in Computer Science, in press. Springer, (2009).

38. Graydon, P.J., Knight, J.C., Strunk, E.A.: Achieving dependable systems by synergistic de-
velopment of architectures and assurance cases. In R. de Lemos, C. Gacek, and A. B.
Romanovsky, editors, WADS, volume 4615 of Lecture Notes in Computer Science, pp. 362–
382. Springer (2006).

39. Haneberg, D., Schellhorn, G., Grandy, H., Reif, W.: Verification of Mondex electronic purses
with KIV: from transactions to a security protocol. Formal Asp. Comput., 20(1), 41–59 (2008).

40. Hoare, C.A.R.: Towards the verifying compiler. In Aichernig and Maibaum [1], pp. 151–160
(2003).

41. Hoare C.A.R., Misra, J.: Preface to special issue on software verification. ACM Comput. Surv.
41(4) (2009).

42. Hoare, C.A.R., Misra, J., Leavens, G T., Shankar, N.: The verified software initiative: a mani-
festo. ACM Comput. Surv. 41(4) (2009).

43. Hoare, T., Atkinson, M., Bundy, A., Crowcroft, J., Crowcroft, J., Milner, R., Moore, J., Rodden,
T., Thomas, M.: The Grand Challenges Exercise of the UKCRC. report to the UKCRC from
the programme committee. tiny.cc/gcreport (29 May 2003).

44. Hoare, T., Jones, C., Randell, B.: Extending the horizons of DSE. In Grand Challenges.
UKCRC, 2004. tinyurl.com/ExtendingDSE (2004)

45. Hoare, T., Misra, J.: Verified software: Theories, tools, and experiments: Vision of a Grand
Challenge project. In: Meyer, B. and Woodcock, J. (eds,) Verified Software: Theories, Tools,
and Experiments. First IFIP TC2/EG2.3 Conference, Zurich, October 2005, volume 4171 of
Lecture Notes in Computer Science, pp. 1–18. Springer, Berlin, Heidelberg (2008).

46. ITSEC. Information technology security evaluation criteria (ITSEC): Preliminary harmonised
criteria. Technical Report Document COM(90) 314, Version 1.2, Commission of the European
Communities June (1991).

47. Jackson, D.: Alloy: A lightweight object modelling notation. ACM Trans. Softw. Eng.
Methodol. 11(2), 256–290 (2002).

48. Jackson, D., Thomas, M., Millett, L.I., (eds.): Software for Dependable Systems: Sufficient Ev-
idence? Committee on Certifiably Dependable Software Systems, National Research Council.
The National Academies Press (2007).

49. Jackson, P., Passmore, G.O.: Improved automation for SPARK verification conditions. tiny.cc/
jacksonspark (1 August 2009).

50. Jackson, P., Passmore, G.O.: YAFFS (Yet Another Flash File System). www.yaffs.net/
(1 August 2009).

51. Jhala, R., Majumdar, R.: Software model checking. ACM Comput. Surv. 41(4) (2009).
52. Jones, C.B., O’Hearn, P.W., Woodcock, J.: Verified software: A Grand Challenge. IEEE Com-

puter 39(4), 93–95 (2006).
53. Jones, C.B., Pierce, K.G.: What can the �-calculus tell us about the Mondex purse system? In

12th International Conference on Engineering of Complex Computer Systems (ICECCS 2007),
Auckland, New Zealand, 10–14 July 2007, pages 300–306. IEEE Computer Society (2007).

54. Jones, C.B., Woodcock, J.: Editorial. Formal Asp. Comput. 20(1), 1–3 (2008).
55. Josey, A.: The Single UNIX Specification Version 3. Open Group, San Francisco, CA (2004.)

ISBN: 193162447X.
56. Joshi, R., Holzmann, G.J.: A mini challenge: Build a verifiable filesystem. Formal Asp.

Comput. 19(2), 269–272 (2007).

tiny.cc/gcreport
tinyurl.com/ExtendingDSE
tiny.cc/jacksonspark
tiny.cc/jacksonspark
www.yaffs.net/

17 The Tokeneer Experiments 429

57. Kang, E., Jackson, D.: Formal modeling and analysis of a flash filesystem in Alloy. In E.
Börger, M. Butler, J. P. Bowen, and P. Boca, editors, ABZ2008: Abstract State Machines, B
and Z, First International Conference, ABZ 2008, London, September 16–18, 2008, volume
5238 of Lecture Notes in Computer Science, pp. 294–308. Springer, Berlin, Heidelberg (2008).

58. Kim, M.: Concolic testing of the multisector read operation for a flash memory. In M. Oliveira
and J. Woodcock (eds.) Brazilian Symposium on Formal Methods (SBMF 2009), 19–21
August 2009, Gramado, Brazil, Lecture Notes in Computer Science, in press. Springer (2009).

59. King., J.C.: A Program Verifier. Ph.D. thesis, School of Computer Science, Carnegie Mellon
University, (1969).

60. Kuhlmann, M., Gogolla, M.: Modeling and validating Mondex scenarios described in UML
and OCL with USE. Formal Asp. Comput. 20(1), 79–100 (2008).

61. Lawford, M.: Pacemaker Formal Methods Challenge. tiny.cc/pacemaker, 1 (August 2009).
62. Macedo, H.D., Larsen, P.G., Fitzgerald, J.S.: Incremental development of a distributed real-

time model of a cardiac pacing system using VDM. In: Cuéllar, J., Maibaum, T. and Sere, K.
(eds.) FM 2008: Formal Methods, 15th International Symposium on Formal Methods, Turku,
Finland, May 26–30, 2008, Proceedings, volume 5014 of Lecture Notes in Computer Science,
pp. 181–197. Springer, (2008).

63. Machado, P.: Automatic test case generation of embedded real-time systems with interruptions
for FreeRTOS. In: Oliveira, M. and Woodcock, J. (eds.) Brazilian Symposium on Formal Meth-
ods (SBMF 2009), 19–21 August 2009, Gramado, Brazil, Lecture Notes in Computer Science,
in press. Springer, (2009).

64. Meyer, B., Woodcock, J., (eds.): Verified Software: Theories, Tools, Experiments, First IFIP
TC 2/WG 2.3 Conference, VSTTE 2005, Zurich, Switzerland, October 10–13, 2005, Revised
Selected Papers and Discussions, volume 4171 of Lecture Notes in Computer Science. Springer
(2008).

65. Mühlberg, J.T., Lüttgen, G.: Verifying compiled file system code. In M. Oliveira and
J. Woodcock, editors, Brazilian Symposium on Formal Methods (SBMF 2009), 19–21 August
2009, Gramado, Brazil, Lecture Notes in Computer Science, in press. Springer (2009).

66. Owre, S., Rushby, J.M., Shankar, N.: PVS: A prototype verification system. In CADE-
11, 11th International Conference on Automated Deduction, Saratoga Springs, Juny 15–18
1992, volume 607 of Lecture Notes in Computer Science, pages 748–752, Springer, Berlin,
Heidelberg (1992).

67. Ramananandro, T.: Mondex, an electronic purse: Specification and refinement checks with the
Alloy model-finding method. Formal Asp. Comput. 20(1), 21–39 (2008).

68. Shankar, N.: Automated deduction for verification. ACM Comput. Surv. 41(4) (2009).
69. Shankar, N., Woodcock, J., (eds.): Verified Software: Theories, Tools, Experiments, Second

International Conference, VSTTE 2008, Toronto, Canada, October 6–9, 2008. Proceedings,
volume 5295 of Lecture Notes in Computer Science. Springer (2008).

70. Spinellis, D.: A look at zero-defect code. tinyurl.com/spinellisblog (18 October 2008).
71. Spivey, J.M.: The Z Notation: a Reference Manual. International Series in Computer Science.

Prentice Hall (1989).
72. Stepney, S., Cooper, D., Woodcock, J.: More powerful Z data refinement: Pushing the state

of the art in industrial refinement. In: Bowen, J. P., Fett, A. and Hinchey, M. G. (eds.) ZUM,
volume 1493 of Lecture Notes in Computer Science, pp. 284–307. Springer (1998).

73. Stepney, S., Cooper, D., Woodcock, J.: An electronic purse: Specification, refinement, and
proof. Technical Monograph PRG-126, Oxford University Computing Laboratory July (2000).

74. Tokeneer, tinyurl.com/tokeneer (2009).
75. VSR.: Verified Software Repository. vsr.sourceforge.net/fmsurvey.htm (2009).
76. Woodcock, J.: E6: Use of formality, Video Tape G3A, Tape No. 68. Technical report, Govern-

ment Communications Headquarters, Communications-Electronics Security Group (October
1997).

77. Woodcock, J.: First steps in the Verified Software Grand Challenge. IEEE Computer 39(10),
57–64 (2006).

78. Woodcock, J., Banach, R.: The Verification Grand Challenge. J. UCS 13(5), 661–668 (2007).

tiny.cc/pacemaker
tinyurl.com/spinellisblog
tinyurl.com/tokeneer
vsr.sourceforge.net/fmsurvey.htm

430 J. Woodcock et al.

79. Woodcock, J., Davies, J.: Using Z: Specification, Refinement, and Proof. International Series
in Computer Science. Prentice Hall (1996).

80. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.S.: Formal Methods: Practice and
experience. ACM Comput. Surv. 41(4) (2009).

81. Woodcock, J., Stepney, S., Cooper, D., Clark, J A., Jacob, J.: The certification of the Mondex
electronic purse to ITSEC Level E6. Formal Asp. Comput. 20(1), 5–19 (2008).

	Chapter 17:The Tokeneer Experiments
	17.1 Introduction (by JW)
	17.2 The Verified Software Repository
	17.2.1 Mondex
	17.2.2 Verified Filestore
	17.2.3 FreeRTOS
	17.2.4 Cardiac Pacemaker
	17.2.5 Microsoft Hypervisor

	17.3 Pilot project: Tokeneer ID Station
	17.3.1 Defect 1
	17.3.2 Defect 2
	17.3.3 Defect 3
	17.3.4 Defect 4
	17.3.5 Defect 5

	17.4 A Token Experiment
	17.4.1 Scenario 1
	17.4.2 Scenario 2
	17.4.3 Scenario 3
	17.4.4 Scenario 4

	17.5 Analysis
	17.5.1 Comparison with Security Model and Requirements

	17.6 Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

