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Endorsements

“There is much to celebrate in Tony Hoare’s ideas and personal influence in the
theory of programming, which has benefitted several generations of computer
scientists. This volume collects papers from a network of collaborators, rivals
and disciples on contemporary topics to which Hoare has provided insight and
direction.”

Swansea University, UK John Tucker
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Sir Tony and Lady Jill Hoare





Preface

This volume has its origins in a meeting held at Microsoft Research, Cambridge, in
April 2009 to celebrate Tony Hoare’s 75th Birthday (actually 11 Jan 2009). All the
technical papers except for those written by Abramsky, Jackson, Jones and Meyer
are based – sometimes closely, sometimes not – on presentations given at that meet-
ing. The idea for the meeting arose in conversations between ourselves and Andrew
Herbert of Microsoft, who hosted a truly memorable and happy event.

The meeting was organised by ourselves and Ken Wood, with the financial sup-
port of Microsoft Research and Formal Systems (Europe) Ltd, and held over two
days. We would like to record particular thanks to Angela Still of Microsoft for
making all the local arrangements at Cambridge and much more: the meeting would
not have happened without her.

While the majority of the papers in this volume are technical, we asked authors to
reflect on the influence of Hoare’s work on their own fields and to make appropriate
remarks on it. All the technical papers were refereed.

Discussions with Wayne Wheeler of Springer inspired the two of us to write the
scientific biography of Hoare that is the first paper in this volume. Though we have
both known Tony well for many years, we were amazed at how many discoveries
about him we made during the process of writing this article.

We would like thank Wayne and his assistant Simon Rees for their help in prepar-
ing this volume as well as their patience. Much of the work in gathering the papers,
ensuring consistency of LaTeX styles, etc., was done by Lucy Li of Oxford Univer-
sity Computing Laboratory and we thank her warmly.

Tragically, Ken Wood’s wife Lisa died after a long illness in September 2009.
We dedicate this volume to her memory.

January 2010 Cliff Jones
Bill Roscoe
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Chapter 1
Insight, Inspiration and Collaboration

C.B. Jones and A.W. Roscoe

Abstract Tony Hoare’s many contributions to computing science are marked by
insight that was grounded in practical programming. Many of his papers have had a
profound impact on the evolution of our field; they have moreover provided a source
of inspiration to several generations of researchers. We examine the development of
his work through a review of the development of some of his most influential pieces
of work such as Hoare logic, CSP and Unifying Theories.

1.1 Introduction

To many who know Tony Hoare only through his publications, they must often
look like polished gems that come from a mind that rarely makes false steps, nor
even perhaps has to work at their creation. As so often, this impression is a further
compliment to someone who actually adds to very hard work and many discarded
attempts the final polish that makes complex ideas relatively easy for the reader
to comprehend. As indicated on page xi of [HJ89], his ideas typically go through
many revisions.

The two authors of the current paper each had the honour of Tony Hoare supervis-
ing their doctoral studies in Oxford. They know at first hand his kind and generous
style and will count it as an achievement if this paper can convey something of the
working methods of someone big enough to eschew competition and point scoring.
Indeed it will be apparent from the following sections how often, having started
some new way of thinking or exciting ideas, he happily leaves their exploration and
development to others. We have both benefited personally from this.

C.B. Jones (�)
School of Computing Science, Newcastle University, UK
e-mail: cliff.jones@ncl.ac.uk

A.W. Roscoe
Oxford University Computing Laboratory, UK
e-mail: Bill.Roscoe@comlab.ox.ac.uk

et al. (eds.), Reflections on the Work of C.A.R. Hoare,
DOI 10.1007/978-1-84882-912-1 1, c� Springer-Verlag London Limited 2010
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2 C.B. Jones and A.W. Roscoe

Tony retired from Oxford in 1999 and has had, as we write this, 10 extremely
active years at Microsoft, improving that company’s software development tech-
niques, engaging enthusiastically in the debates of the computer science and
software engineering world, promoting Grand Challenges such as the Verifying
Compiler, and taking renewed interests in programming logic thanks to topics such
as Separation Logic. We, however, have restricted ourselves to studying his work
up to 1999 on the grounds that 10 years is already too short a time to understand the
impact of academic work.

In writing about the various phases and topics of Tony’s career we have tried to
analyse the influences and developing themes that have run through it.

1.2 Education and Early Career

Charles Antony Richard Hoare, the eldest of five children (he has two brothers and
two sisters), was born of British parents on 11 January 1934 in Colombo in what
was then called Ceylon (now Sri Lanka). Ceylon was at that time part of the British
Empire. His father and maternal grandfather were both Englishmen engaged in the
business of Empire, and from somewhat upper-class backgrounds.1

After his family returned to England at the end of World War II, Tony attended the
Dragon School, Oxford and King’s School, Canterbury before going to Oxford Uni-
versity to study Greats (formally known as Literae Humaniores) at Merton College
between 1952 and 1956. Greats is Oxford’s classics course, in which students study
Latin and Greek for the first two years, and concentrate on philosophy, literature
and ancient history for the final two. Tony specialised in modern philosophy, being
taught by John Lucas, an expert on logic and Gödel in particular, who was then a
Junior Research Fellow2 at Merton. By the time the authors studied at Oxford from
the mid-1970s to early 1980s, Greats had gained the reputation of being one of the
best courses to do at Oxford if you wanted to become a computer programmer. So
perhaps the training Greats offered in systematic thinking, particularly given Lucas’
influence, was in fact the ideal education for an early computer scientist. There was
no undergraduate course in computer science at Oxford until about a decade after
Hoare returned as a professor.

In 1956 Tony was called up into the Royal Navy to do his “National Service”,
two years’ military service that was compulsory for young men in the UK until the
early 1960s. Perhaps thanks to his linguistic background, he went on a course on the
Russian language while in the Navy.

Tony returned for a further year at Oxford after completing his National Ser-
vice, studying Statistics. During that year he took a course in programming

1 See thepeerage.com, for example.
2 This is a a type of position given by Oxford Colleges to allow leading young academics to pursue
their research.
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(Mercury Autocode) from Leslie Fox, the founding Director of Oxford Univer-
sity Computing Laboratory, about two years after the Laboratory was founded. Fox,
one of the great figures of Numerical Analysis, remained Director until he retired in
1983, at which point Hoare took over this role.

In 1959, Tony went to Moscow State University as a graduate student and stud-
ied Machine Translation, along with probability in the school of the great Russian
Mathematician Andrey Kolmogorov. Tony states that it was there, in the context
of dictionary processing, that he invented Quicksort while unaware of any sorting
algorithms other than bubblesort, which he had rediscovered and decided was too
slow. At the same time he began translating Russian literature on computer science
into English.

On his return to England in 1960 he joined the small British computer company
Elliott Brothers, by whom he had been recruited while still in Moscow. One of the
first tasks he was given there was to implement Shellsort in Elliott 803 Autocode.
He remarks in [Hoa81b] that he then bet his manager that he had an algorithm
that would usually run faster. He remarks how difficult Quicksort was to explain
in the language of the time; but he won his sixpenny (£0.025) bet. He famously led
the team that wrote one of the first ALGOL 60 compilers, for the Elliott 503 (the
curiously numbered successor to the 803), a computer with 8K of 39-bit words and
which was advertised as being able to run “as many as 200 programs per day”.3 By
the time this compiler was released in 1963 Tony had married (in 1962) Jill Pym, a
member of his team. The ALGOL compiler was “one pass”: in other words it only
required a single pass through the source code tree of the object program.

There is no doubt that Tony’s work on ALGOL helped to define his understanding
of the nature of programming. Indeed, in [Hoa81b], he writes “It was there [an
ALGOL 60 course in Brighton by Naur, Dijkstra and Landin which inspired him to
choose this language for Elliott] that I first learned about recursive procedures and
saw how to program the sorting method which I had earlier found such difficulty in
explaining.”

In [Hoa81b] Tony goes on to explain how his understanding of programming and
the need for clear semantics of programming languages developed as the result of
the failure to deliver an operating system for the Elliott 503 Mark II, and how this,
in particular, inspired his work on concurrency:

I did not see why the design and implementation of an operating system should be so much
more difficult than that of a compiler. This is the reason why I have devoted my later re-
search to problems of parallel programming and language constructs which would assist
in clear structuring of operating systems–constructs such as monitors and communicating
processes.

Tony reached the position of Chief Engineer at Elliott Brothers, but decided to
leave because of the effects of the company being taken over in 1968. His academic
career therefore began after he saw an advertisement for the position of Professor at

3 According to [27] when the compiler was run on the much slower 803 a typical half-page ALGOL
program would take half an hour to compile and execute.
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the Queen’s University, Belfast. By this time his position in the developing subject
of computer science was secure thanks not only to Quicksort but, perhaps more
importantly, to the collaborations and contacts he obtained through his ALGOL
work and the work he was doing on the ALGOL Working Group (IFIP WG2.1). By
the time Tony was recruited to Oxford in 1977 no application was necessary: he was
simply contacted and told that he had been elected to the job.

1.3 Programming Languages

Hoare’s most explicit set of positive rules for designers of programming languages
was titled “Hints on Programming Language Design”. This was originally written
for the first (ACM SIGPLAN) POPL conference held in Boston in October 1973.
Sadly, the paper did not appear in the proceedings but has been reprinted several
times in slightly different forms – probably the most accessible electronic version
is [Hoa73a]. Rather than repeat the points in this important paper, can we encour-
age our readers to study it? This plea is most strongly addressed to anyone who is
thinking of designing a new language.

The importance that Tony Hoare attaches to programming languages is made
abundantly clear in his acceptance speech for the ACM Turing Award.4 This 1980
speech is published as [Hoa81b]. As mentioned in Section 1.2, he remarks there
how he could only express Quicksort elegantly after he had seen ALGOL.

Hoare also makes clear that he sees it “as the highest goal of programming lan-
guage design to enable good ideas to be elegantly expressed”. Later in the same
paper he observes the importance of “programming notations so as to maximise
the number of errors which cannot be made, or if made, can be reliably detected at
compile time.”

ALGOL 60 had been devised by a committee; but a committee of the highest
calibre. Hoare was invited to join IFIP WG 2.1 in August 1962. One of the proposals
on which he looked back with pride is the “switch” concept.

His work with Niklaus Wirth to clean up ALGOL 60 led to the elegant
ALGOL W proposal in [WH66] which in turn paved the way for Pascal.5 Sadly,
WG 2.1 saw fit to go another way and invent ALGOL 68 [Hoa68]: a language which
gives rise in [Hoa81b] to one of Tony’s most biting aphorisms

There are two ways of constructing a software design: one way is to make it so simple that
there are obviously no deficiencies and the other way is to make it so complicated that there
are no obvious deficiencies.

4 The Turing Award is often referred to as the “Nobel Prize for computing”. It is not clear that the
Kyoto Prize committee would concede this – but Tony Hoare has been awarded both.
5 Probably because of his respect for this language, Hoare outlined its defects in [WSH77].
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He recounts the final denouement at which a subset of the members of WG 2.1
submitted a minority report containing the comment “as a tool for reliable creation
of sophisticated programs, the language was a failure.”

The over-ambitiousness of the PL/I project is also described in [Hoa81b] from
the standpoint of the ECMA committee of which Tony was initially a member and
which he ultimately chaired. After listing an (extremely sobering) litany of failures,
Tony writes “I knew that it would be impossible to write a wholly reliable compiler
for a language of this complexity and impossible to write a wholly reliable program
. . . ”. Again, he ends his observations on this language with the withering observa-
tion “The price of reliability is the utmost simplicity. It is the price that the very rich
find most hard to pay.”

The obvious and then topical reason for selecting the theme of programming
language design for his Turing Award lecture was the evolution of the language
which became known as Ada. As he observes, Tony had offered advice and judge-
ment that largely went unheeded.

What he did instead was to lead by example. Mastering concurrency is still a
major challenge for designers of programming languages. Tony’s early work in this
area is described in Section 1.6.1, but once he saw the depth of the questions sur-
rounding communication, he took the radical step of studying it as “Communicating
Sequential Processes”: CSP is explored in Sections 1.6.2 and 1.6.3. This in turn led
to his work on occam (see Section 1.7), a language named after an earlier Oxford
philosopher whose famous principle Occam’s Razor was in harmony with Tony’s
views on programming languages: entia non sunt multiplicanda praeter necessi-
tatem, in other words “entities must not be multiplied more than necessary”.

1.4 Reasoning About Sequential Programs

Hoare’s “Axiomatic basis” paper [Hoa69] is one of the most influential in the
computing literature. It marks a transition from simply adding assertions to
programs towards a position that increasingly emphasised reasoning in entirely
non-operational terms about the claim that programs match their specifications.

To understand its contribution, it is essential to outline where most researchers
in the field stood in the 1960s. There are hints of the need to reason about programs
in [12] and Turing’s proposal in [35] for an approach that uses a clear notion of
assertions being added to a flow chart of a program. The latter paper went unnoticed
for decades and had no influence on the development of ideas. Furthermore, as the
only mention traced in his writing, one can only guess at the scope of what Turing
had in mind. Turing’s assertions appear to be limited to relational expressions be-
tween (values of) variables of the program. Far more influential than either of these
contributions from the 1940s was Bob Floyd’s paper [10]. Floyd again places his
assertions on a flow chart but the language in which the assertions are written here
is (first-order) predicate calculus. This means that Floyd could be, and was, much
more precise than Turing was about the validity of assertions; the fact that he was
using a higher-level programming language than his predecessor also helped.
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Somewhat before 1969 – in 1964 to be precise – there was an important meet-
ing in Baden-bei-Wien (Austria) organised by Heinz Zemanek of the IBM Vienna
Laboratory. This was, in fact, the first of many highly influential IFIP working
Conferences and led to the creation of IFIP Working Group 2.2. The proceedings
took some time to be published but [33] is invaluable in understanding scientific
opinion of the time and, specifically, in charting the development of Hoare’s think-
ing. From the conference proceedings, it is clear that considerable attention was
given to the need for, and challenges of, formally defining the semantics of pro-
gramming languages. McCarthy’s clarion call of [21] to define semantics formally
is backed up in [22] by an operational semantics of “Micro-ALGOL”. Both Stra-
chey and Landin discuss the connections between programming languages and
Church’s Lambda Calculus. On the other hand, Jan Garwick’s paper opens with
the provocative sentence: “No programming language for a given computer can be
better defined than by its compiler.”

Hoare did not present a formal contribution, but one of the helpfully recorded
discussion items [33, pp. 142–143] indicates his perception of “the need to leave
[aspects of] languages undefined”. At the following meeting of IFIP WG 2.1, Hoare
gave the example of fixing the meaning of functions like mod (modulus) by stating
their required properties.

The IBM Vienna group borrowed concepts from McCarthy, Landin and Cal Elgot
as the basis for the first version of the huge operational semantics for the language
PL/I. This approach was to be named “Vienna Definition Language” (VDL) – see
[20]. In 1965, Hoare attended a course in Vienna on VDL. The Vienna Lab at that
time tended to do things in style and the ECMA TC10 guests were booked into the
Hotel Imperial (where the British Queen stayed on her visit a few years later). On
paper of that imperious hotel, Tony Hoare wrote a sketch of his first attempt at an
axiomatic treatment of languages. Of the two-part draft dated December 1967, the
first axiomatised execution traces as a partial order on states. It is probably fair to
say that the objectives are clearer in the 1967 draft than the outcome. Hoare sent
these notes to (at least) Peter Lucas of the Vienna group.

Tony recalled years after the event that, on his arrival to take up his chair in
Belfast in October 1968, he “stumbled upon” the mimeographed draft (dated 20
May 1966) of Floyd’s paper [10]. Peter Lucas had sent this partly as a response
to Hoare’s 1967 draft. Floyd’s ideas on predicate calculus assertions had a major
impact on Hoare’s thinking and the debt is clearly acknowledged in [Hoa69]. Hoare
produced in December 1968 a further two-part draft that strongly resembles the
final Communications of the ACM paper. The first part addresses the thorny issue
that numbers stored in computers are not quite the same as those of mathematics – in
this Hoare was following van Wijngaarden’s lead in [36], which is again gratefully
acknowledged in the CACM paper. The second part of the 1968 draft contains the
core of what is today called “Hoare axioms”.

In this draft, Hoare followed Floyd’s original “forwards” assignment axiom,
which requires an existential quantifier in the postcondition of any assignment
statement. The now common “backwards” rule that only needs substitution was
first published in Jim King’s thesis [17], where he attributes it to his supervisor
Bob Floyd. Hoare uses this in the published version of “axiomatic basis” [Hoa69];
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he was made aware of the idea by David Cooper who gave a seminar at Belfast
on his return from a sabbatical in Pittsburgh. Hoare’s decision to use this version
possibly sparked the later development of “weakest precondition” thinking.

Hoare’s paper was quickly accepted by CACM and was far more approachable
than Floyd’s earlier paper. Where Floyd had bundled together many ideas including
early hints of what would later become known as “healthiness conditions” for proof
rules, Hoare limited what he covered even to the point of not handling termination.6

Much the most important step was the move away from Floyd’s flow charts to
a view of program texts decorated with axioms as part of a unified formal system.
It was this point that changed the way whole generations of researchers have been
persuaded to approach programming. Hoare’s decision to use postconditions of the
final state alone led to concise axioms, but it is fair to say that later he conceded the
value of using relational postconditions that link to the initial state as well.

As soon as a decade after the first appearance of the “axiomatic basis” paper,
Krzysztof Apt published a summary of its already significant impact in [2].7 Hoare’s
language had only sequential composition, conditional and a “while” repetitive con-
struct; attention soon turned to tackling other features commonly found in high-level
programming languages and relevant papers include [Hoa71a,Hoa72a,ACH76]. An
attempt at the whole of Pascal [HW73] was however incomplete but this is indica-
tive of the fact that formalism makes its largest contribution if used during – rather
than after – design. In fact, the only language with a complete Hoare axiom system
is probably “Turing” [13].

Given the unbridled enthusiasm of researchers to propose new languages, a far
more productive avenue was probably that of showing where clean axiomatisations
were consistent with subsets of languages. Peter Lauer did part of his PhD under
Tony Hoare in Belfast and Lauer’s thesis [18] is clearly summarised in their joint
paper [HL74]. A fuller discussion of the history and impact of research on reasoning
about programs can be found in [15].

1.5 Formal Program Development

Hoare’s axioms in [Hoa69] possessed a crucial property that was not exploited
within that paper: the given axioms are “compositional” in a sense that made it
possible to employ them to reason about combinations of yet-to-be-developed code
(e.g. one can prove that a while construct satisfies a specification even where its body
is so far only a specification). Technically, each axiom is monotonic in the satisfac-
tion ordering; practically, this opens the door to their use in a stepwise development.
Hoare first wrote his “Proof of a Program: Find” as a post facto proof of correctness

6 In terminology that some find unfortunate – but that has become ubiquitous – he limited himself
to “partial correctness” whereas Floyd treated “total correctness”.
7 The slightly enigmatic “Part I” sub-title indicates Apt’s strong interest in non-determinism which
he covered in [3].
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but revised it before publication as [Hoa71b] to describe a stepwise development.
The omission in not revising the title is surprising from a writer who takes such care
with the prose of each revision.

The final text in [Hoa71b] is far more readable than the first version and, more
importantly, it is also much more convincing. Recall that there were almost no pro-
grams available in the early 1970s to check (let alone help construct) such predicate
calculus proofs, so the move to a top-down development of Find decomposed the
proof into more manageable steps. Given the comments in Section 1.4, it will come
as no surprise that the termination proof (that Tony conceded “was more than usu-
ally complex”) had to be handled separately from that for correctness (see [Hoa71b,
�4]). Furthermore, the decision to use postconditions of only the final state left the
need for a section entitled “Reservation” ([Hoa71b, �5]) that concedes “one very
important aspect of correctness has not been treated, namely that the algorithm
merely rearranges the elements of array A without changing any of their values”;
postconditions of two states would have allowed the “permutation” property to have
been handled within the main proof.

One extremely important and far sighted point was the recognition of the way
that programs can be designed via their loop invariants.

Having developed the method, it was possible in fairly short order to apply it to
a range of problems:

� [FH71] returns to the Quicksort algorithm discussed in Section 1.2 and presents
its stepwise development.
� [Hoa72c] tackles finding primes using the “sieve of Eratosthenes” (a prob-

lem which is used to illustrate the development of concurrent implementations
in [Hoa75] and by other subsequent authors).
� [Hoa73b] nicely links to Hoare’s work on operating systems by tackling a

structured paging system.

1.5.1 “Structured Programming”

Many who know the literature on “Structured Programming” might be surprised
that the important book [Hoa72b] has not yet been mentioned. The book is widely
cited and the topic of its title has had major impact on software design. Like many
successful ideas, however, the term was abused to cover a range of things from
a narrow message of “avoiding goto statements” through to systematic, justified
design processes. Hoare’s solo chapter [DDH72]8 starts with the ringing

In the development of our understanding of complex phenomena, the most powerful tool
available to the human intellect is abstraction.

and goes on to provide a masterly description of concepts of data structuring for
programming languages.

8 The material had been presented in his Marktoberdorf lectures of 1970.
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1.5.2 Data Refinement

Another important contribution to the formal, stepwise, development of programs
was the recognition of the importance of using, in specifications, objects that are
abstract in the sense that they match the problem being described. Development by
data refinement can then bring in representations on which efficient programs can be
based as part of the design process. Hoare’s paper [Hoa72d] is widely cited as one
that recognised this aspect of formal program development. In common with other
authors, Hoare recognised later that the neat homomorphism rule does not cover all
situations and was a coauthor of [HHS86] which presents a more general rule.

An interesting success of Tony’s ability to inspire other scientific activity was
the way he brought Jean-Raymond Abrial and the first author together in Oxford.
In 1979, Abrial was working on ideas that were eventually developed into the “Z”
specification language. Jones had been a key member of the Vienna work on deno-
tational semantics which had been published in [4, 5] and had developed his earlier
ideas on program development to provide the other part of VDM: [14] was printed
in the famous “red and white” Prentice-Hall series edited by Hoare.

Tony thought it would be interesting for both Abrial and Jones to share an office
when they both arrived in Oxford in 1979 – at that time the “Programming Research
Group” (PRG) had rather cramped quarters in 45 Banbury Road. This was certainly
an inspired and inspiring idea. Often a discussion would result in a blackboard con-
taining a mixture of notations but the fact that the basic ideas of abstraction were
shared meant that the focus was on the underlying issues.9

The language known as “Z” continued to develop after Abrial and Jones left
Oxford and has become a widely used specification language with tool support. Its
use on IBM’s “CICS” system led to a Queen’s Award for Technological Achieve-
ment to the Oxford PRG group in 1992.

1.6 Concurrency

As shown by the quotation in Section 1.2, Hoare’s work on concurrency was in-
spired by the problems of operating system design. This influence is still very much
apparent in the text and examples in his 1985 book on CSP (Chapter 6, for example).

The driving theme in his work is the need to keep separate threads from interfer-
ing with each other in ways that are undesired or hard to understand. We can see this
in the evolution from work based on shared memory to CSP, in which all interaction
is via explicit communication over channels.

9 The development of Abrial’s ideas through to “B” [1] (and beyond) deserves separate discussion
elsewhere.
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1.6.1 Concurrency with Shared Variables

Before turning, as we do in the next section, to Tony’s most radical and influential
suggestion of communication-based concurrency, it is important to understand his
earlier attempts to tame its shared-variable cousin. It is easy to decry the use of
variables that can be changed by more than one thread, but at the machine interface
there is little else. There were various suggestions for programming constructs to
make this troublesome fact tolerable: the hope to extend the axiomatic approach
to concurrency was already there in [Hoa69]; in [Hoa72e], Hoare had tackled the
sort of disjoint parallelism that could be controlled by conditional critical sections.
In [Hoa75] he moves on to more general concurrency governed by his “monitor”
proposal [Hoa74].

In “Parallel Programming: An Axiomatic Approach”, Hoare carefully distin-
guishes:

� Disjoint processes: [Hoa75, �3] essentially reproduces the earlier “symmetric
parallel rule”, but the rule is still limited to partial correctness. In view of the
way parallelism is often used, this is perhaps more reasonable here.
� Competition ([Hoa75, �4]) clearly establishes the notion of ownership.10

� Cooperation ([Hoa75, �5]) recognises the importance of a commutativity
requirement between operations in the cooperating processes. It is here that
Hoare returns to the “sieve of Eratosthenes” from [Hoa72c]: he also concedes
that “when a variable is a large data structure . . . the apparently atomic operations
upon it may in practice require many actual atomic machine instructions”. The
atomicity issue is extremely important and has been pursued by other researchers
(e.g. [16]).
� The section on communication gives an insight into the way Hoare develops

ideas: Hoare ([Hoa75, �6]) recognises that communication does not fit the com-
mutativity property above; he introduces a notion of “semi-commutativity” that
clearly only handles uni-directional communication. One can see here the seeds
of CSP (see Section 1.6.2) whose realisation took several years of further hard
struggle, before it could be published.

1.6.2 Imperative CSP

Tony published two works entitled “Communicating Sequential Processes”, the
CACM paper from 1978 and the 1985 book. The languages in these publications
are very different from each other. In this section and the next we discuss the devel-
opment of the two versions, and try to understand why they are as they are. The first

10 At the April 2009 event to celebrate Tony’s 75th birthday, Peter O’Hearn linked this to his own
research on Separation Logic.
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version of the language is essentially Dijkstra’s language of guarded commands [8]
(a simple imperative language) with point-to-point communication added, so we
have termed it Imperative CSP.

Hoare states11 that the move from studying concurrency via shared variables and
monitors to explicit communication over channels was inspired by the advent of the
microprocessor and the thought (later realised in the transputer) of these “commu-
nicating with other microprocessors of a similar nature along wires”.

An Imperative CSP program is a parallel composition of named sequential pro-
cesses: the only parallelism is at the highest level. Thus this language fits the name
Communicating Sequential Processes much better than Algebraic CSP, where the
parallel operator would be on a par with all others, or even occam where the same
is true.

Hoare was clearly inspired by examples such as the sieve of Erastothenes, where
it was natural to create an array of processes with closely related structure, and
included explicit notation for addressing members of an indexed array of processes
in the language.

He specifies that communication between processes is synchronised (only taking
place when both outputter and inputter are ready) but gives little explanation of this
decision, which was to prove so important in the structure of the many languages
and theories that would be inspired by CSP. This clearly fits well with the intuition
of communication being direct from one process to another along a piece of wire,
and Hoare implies that where buffering is wanted it can be introduced explicitly via
buffer processes.

It is natural in contemplating communications between two processes to think of
one as outputting and one as inputting, and in this first version of CSP Hoare makes
this an important distinction. For example, as would later be the case in occam, only
the input end of a communication may appear with alternatives. He does, however,
discuss allowing outputs in guarded alternatives, and in doing so raises the possibil-
ity of proving the parallel program ŒXŠ2 k YŠ3� equivalent to a sequential one, while
commenting that this is not achieved by the program

Œtrue! XŠ2; YŠ3 � true! YŠ3; XŠ2�

in which the implementation is permitted to resolve the choice, thereby flagging
the importance of non-determinism in reasoning about CSP. This problem would be
solved by using outputs directly in the guards:

ŒXŠ2! YŠ3 � YŠ3! XŠ2�

This is one example and the motivation behind it is a powerful indication of
an inevitable move towards an algebra of communication, concurrency and non-
determinism.

11 In the interview with Bowen cited in Sources.
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1.6.3 Algebraic CSP

The language in the 1985 book started to develop even before the 1978 paper was
published. Indeed, by the time the second author joined Tony as a research student
in October 1978 the process algebra CSP (i.e. the one in the 1985 book) was almost
completely formed as a notation and Tony was working on his traces model.

The most obvious difference between the old and new CSPs is that the former is
a conventional programming language with point-to-point communication added in
a natural way, whereas the new one looks like some sort of abstract algebra, hence
our name Algebraic CSP. Indeed it is one of the first two developed examples (the
other being CCS) of what rapidly became known as a process algebra: a notation
for creating algebraic terms representing the interacting behaviour of a number of
distinct processes. These processes are themselves patterns of communication: it
would be wrong to call them threads since there is no guarantee that the processes
are sequential. Indeed, in both CSP and CCS and most subsequent process algebras,
there is no semantic distinction between sequential and parallel processes, and every
parallel process is equivalent to a sequential one.

From this discussion alone the reader will appreciate that the creation of these
first process algebras represented a huge intellectual step: that from a programming
language to calculi that attempt to attribute meaning to patterns of communication.

The need for such a meaning was clear from the fact that concurrent programs
behave so differently from sequential ones, with phenomena such as deadlock and
livelock to worry about, as well as the non-determinism caused by resource con-
tention (common in operating systems) and similar situations that are intrinsic
to concurrency. This led both Hoare and Milner down remarkably similar paths:
discarding almost all the things that programs do between communications, and
developing notations that allowed them to concentrate purely on the synchronised
communications between processes and the way in which patterns of these arise.

Whether CSP and CCS seem similar to a reader will depend on his or her
viewpoint, but certainly they are very similar when viewed from the standpoint of
Imperative CSP. Both Hoare and Milner were working on this convergent course
before either had a clear idea of what the other was doing. Milner, indeed, had been
looking at the semantics of interaction since the early 1970s. He had started off [23]
working on the semantics of shared-variable “transducers” and by 1977 was work-
ing on “flow graphs”, a partly graphical notation of parallel composition that was
not specific about the protocol used on channels. They only got a clear vision of each
other’s work at a meeting in Aarhus in June 1977, by which time Hoare had already
put considerable efforts into understanding the algebra of CSP. Hoare’s paper at that
workshop (which we have unfortunately been unable to locate) was entitled “A rela-
tional trace-oriented semantics for Communicating Sequential Processes”. W.P. de
Roever worked with Hoare in Belfast in 1977 on the semantics of CSP, the results of
which were reported in [FHLdR79]. Both this work and Milner’s initial thoughts on
concurrent semantics centred on domain theory. This was very natural in the con-
text of the times, given the success of Strachey, Scott and others in developing and
applying domain theory to the semantics of a wide range of programming language
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constructs in the preceding years. The main challenge to domain theory inherent in
giving semantics to communicating processes was the need to handle an interleaving
sequence of external choices and non-deterministic choice. External choices could
be handled with function spaces, which work extremely elegantly in domain theory.
But non-deterministic choice seemed to require powerdomains [26], in other words
a domain-theoretic analogue of the powerset operator.

There are two major problems with powerdomains. The first is that it proves very
difficult to combine the natural set theoretic order structure with the order of the
underlying domain in a satisfactory way, and none of the available orders (including
the strong Egli-Milner order of the Plotkin powerdomain and the angelic order of
the Hoare powerdomain12) produce equivalences between processes at a persuasive
level of abstraction. The second is that the powerdomains are in themselves difficult
to understand, meaning that any semantics based on them is unlikely to be useful in
explaining concurrency beyond a select group of researchers.

Of course the reason for needing domain theory for other “interesting” languages
is the quality of self-referentiality they have, in particular programs that accept other
programs as functional arguments, as exemplified by the �-calculus. A program in
Dijkstra’s guarded command language, without such constructs, can easily be given
a semantics as a relation on S � .S [ f?g/, where S is the set of states and ?
represents non-termination or divergence. So while concurrency is itself certainly
“interesting”, there is nothing in Imperative CSP that implies the need for domain
theory. And both Milner and Hoare, in turn, reacted against powerdomains. Indeed
Willem-Paul de Roever tells us this was evident during his 1977 visit: the powerdo-
main models were “not to Tony’s taste”, and Tony would regularly propose models
that were converging on the traces model.

Milner chose an operationally based theory in which equivalences are developed
between processes described as labelled transition systems. Hoare has stated that
his approach to process equivalence, based on algebraic laws relating processes and
behaviourally based models, was a reaction against Milner’s operational approach.
Both their philosophies, quite clearly, have been extremely successful. Of course
they have long since reconciled, for example by the development of operational
semantics for CSP and the testing equivalences for CCS. It was these constrasting
decisions, of course, which led to the different choice operators of CCS [25] and
CSP: the CCS “C” being the obvious operational version.

There are two other interesting contrasts between CCS and (Algebraic) CSP. The
first is that CSP contains a great many more operators than CCS, such as sequen-
tial composition, very general renaming and interrupt. Here, Hoare seems to have
been driven by the types of system he wished to model, for example ones previ-
ously described in Imperative CSP (with sequential composition, of course) whose
variables are now modelled as parallel processes, and operating systems where pro-
cesses are interrupted and checkpointed.

12 The powerdomain of downward-closed sets was not developed by Hoare, but named after him
by Plotkin, because of its close relationship to Tony’s important work on partial correctness.
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The second is the very different factorisation of the “natural” parallel construct
in which multiple processes communicate point-to-point over channels with these
communications internalised, or hidden. Here Hoare seems to have been inspired by
the algebra of synchronisation, interleaving and hiding, which required process al-
phabets to determine which events are synchronised. Milner, on the other hand, has
stated that he decided to avoid using alphabets, and he was able to do so by devising
an extremely clever device whereby (1) events synchronise not with themselves but
with duals, (2) dual events in parallel processes can either synchronise to become
� or happen independently, and (3) such “free radical” events are restricted out-
side the syntactic level where synchronisation can occur. This approach is already
evident in his flow-graph work, for example [24]. Milner’s trick makes multi-way
synchronisation unnatural (because of the duality), and in any case requires events
to be hidden once synchronised. So CSP ended up with much more flexible parallel
and hiding operators, at the expense of the need to declare (in one way or another)
the interfaces that parallel processes use to communicate with each other.

It is hard to overstate the importance of algebraic laws in guiding Hoare’s intu-
ition about what were the “right” models of CSP. In particular, his belief in the laws
of distribution over non-deterministic choice corresponds almost exactly, theoreti-
cally, to the decision to model processes as sets of linearly observable behaviours.
This means that each behaviour may be observed as time progresses forward on a
single execution of the process: in particular no branching behaviour is recorded.

The following few paragraphs describe the development, during 1979, of the
failures model. It was clear that the traces model was too weak: a model was required
that distinguished non-deterministic from external choice, and which captured the
phenomena of deadlock and livelock accurately.

The failures model started its life as the acceptances model, in which a process
was modelled as the set of pairs .s;A/ where s is a trace and A is a set of events from
which the process accepts. The meaning of this phrase is deliberately vague, since
HBR (Hoare, Brookes and Roscoe) spent some time experimenting with it. After a
few weeks working on this, they came to the conclusion that a good way to interpret
this was “the process can choose to restrict its next actions to being within A”. In
other words, P actually offers some subset of A. HBR realised the interesting fact
that this interpretation fails to distinguish between the processes13

STOP u .‹x W fa; bg ! STOP/ and
STOP u .a! STOP/ u .‹x W fa; bg ! STOP/

even though the first (unlike the second) has no state from which it actually accepts
fag. Nevertheless, the interpretation in which these two are equated was found to be
a congruence which, if one interprets livelock as the most non-deterministic process

13 P u Q is a non-deterministic process which is itself allowed to decide which of P and Q to run.
Thus the second of these two processes can opt to offer just the event a, while the first has to offer
nothing at all (STOP) or fa; bg.
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CHAOS, seemed to satisfy the better set of algebraic laws than did what is now
known as the acceptances, or ready sets congruence, which distinguishes these two
processes. In the latter, the algebraic law P D P � P does not hold, for example.14

That congruence was later developed by Hoare and Olderog [HO83].
Quickly after this, HBR decided to turn their somewhat convoluted acceptance

sets into refusal sets by the simple device of complementation: where A was an
acceptance set,˙ nA (˙ being the set of all visible events) was a refusal set, which
could be understood as being a set of events that the process might not accept a
member from, even if offered it for ever. Since HBR’s acceptance sets were upward
closed (if a process can accept from A, it can also accept from A0 � A), refusal sets
became downward closed, but somehow this seemed much more natural.

The result, a pair .s;X/ where s is a trace and X is one of these refusal sets,
was called a failure because it represents an experiment to which the process fails
to respond. The model of [HBR81, BHR84] is, of course, excellent at representing
non-determinism, and makes it very clear that P v Q (refinement modelled by
reverse containment) corresponds to P being more non-deterministic than Q. It is
worth noting that the healthiness conditions of this model were in effect a statement
of what a process should look like, rather than being derived from an operational
semantics, since none of these then existed and LTSs were not considered!

It was immediately apparent that the refinement maximal elements of this model
were in natural 1–1 correspondence with the traces model and were exactly the
deterministic processes, judged extensionally. Its refinement-minimum element
was CHAOS, the most non-deterministic process which contained every failure
imaginable.

The obvious choice for a least fixed point based semantics for recursion was
therefore based on the refinement order, but this was in any case appealing since it
meant iteration that corresponded to reduction of non-determinism and identified the
undefined recursion � p:p with the sort of divergence produced by hiding .� p:a!
p/ n fag.

Unsurprisingly, given the heritage we have described, the second author discov-
ered the fatal flaw in the original failures model by observing that a self-evident law
failed, namely

.P k Q/ n A D .P n A/ k .Q n A/ if A \ ˛P \ ˛Q D ;

This is the principle that, provided no synchronised events are hidden, one can dis-
tribute hiding over parallel. The fatal flaw is that the identification of divergence with
CHAOS is not robust enough to survive some of the operator definitions in CSP, so
the expression on the right above might have some of the behaviours introduced

14 P � Q means that the environment has the choice of the initial events offered by P and Q.
The counter-intuitive failure of this law comes about because in P � P the two copies of P might,
because they resolve non-determinism differently, choose to offer different sets, which the operator
combines into a single offer that P alone cannot make. This distinction is made in the acceptances
or ready-sets congruence, but not using the upwards-closed version of acceptances.
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from divergence removed by the parallel composition. This flaw was also discov-
ered by De Nicola and Hennessy [9]. Their work was communicated to Brookes,
who had recently moved to Pittsburgh with Dana Scott. The fix to this flaw, the
failures-divergences model in which the failure set was augmented, was thus dis-
covered separately by Brookes and the second author, appearing in [6, 7, 28]. This
model, consistently with the intuition about divergence in [BHR84], has explicitly
strict divergence: no attempt is made to see what goes on after a process might have
diverged.15

This brought the theory of CSP to the level that was presented in the 1985 book,
and since Hoare’s involvement in the development of its core theory since then has
been relatively small we will leave it here.16

This book was developed by Tony over a period of several years, parts of it having
appeared as a technical report in 1983, together with a separate set of exercises. Tony
was able to try it on numerous groups of students, for example those studying the
MSc in Computation which Tony had helped set up in Oxford in 1979.

In the early 1980s, Hoare developed techniques [Hoa81a,Hoa85a] both for spec-
ifying and giving semantics to CSP processes in the predicate calculus: a program or
specification is described as a predicate calculus formula over formal variables rep-
resenting a typical trace, a typical refusal set coupled with that trace, a divergence,
etc. By describing not the whole process, but a typical individual behaviour, in this
way, the resulting semantics – albeit just a recoding of the set-theory based ones
discussed above – gained much in elegance. For example, the specification that a
process P whose alphabet is in:T [ out:T is a buffer in terms of traces is just written
P sat tr # out � tr # in, with the quantification of tr over all traces of P being
implicit. This work was not restricted to CSP, as shown by the paper “Programs are
Predicates” [Hoa85b], which clearly links it with the earlier work on Hoare logic.

As part of this project he developed some new logical notations, such as x <I b>I y,
the infix version of if b then x else y. The point of the operator <I b>I , of course, is that
it puts conditional choice at the same linguistic level as the other choice operatorsu
and �, allowing it to be compared with these and reasoned about with similar laws.

By incorporating ideas such as these he made the 1985 book a masterpiece of
presentation: it succeeded in making material which in truth is really quite difficult
seem accessible, natural and elegant.

15 The intuition that divergence should be disastrous, derived from the first failures model, was very
strong at that time. It is interesting that neither Brookes nor the second author then discovered the
“stable failures model”, in which divergence is not recorded, so (as in the traces model) the simply
divergent process is top of the refinement order. The existence of that model was conjectured
by Albert Meyer and Lalita Jagadeesan in the late 1980s, and developed by the second author
following a conversation with them.
16 The second author’s paper elsewhere in this volume illustrates how well CSP has stood the test
of time. His 1997 book [31] and forthcoming book [32] both give extensive updates on CSP, its
theory, tools and applications.
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1.7 Occam and the Transputer

In 1978 the UK government sponsored the creation of a company called inmos, led
by Iann Barron, part of whose vision was to create components for parallel process-
ing systems. This would be a microchip company to rival the foreign giants, it was
hoped. Its design operations were based in Bristol and it had a fabrication plant in
Newport, South Wales. Barron’s vision of a network of components interacting via
serial links emerged from his work for the Science Research Council on its Dis-
tributed Computing Program. This brought him into contact with the ideas of Hoare
and Milner, and the more practically based work of David May at Warwick on the
design and implementation of distributed systems and languages to program them.

inmos’s early products were memory chips, but it was always anticipated by
Barron that its flagship product would be the transputer, a single chip that contained
a processor, cache memory and communications hardware. Barron hired Hoare and
May as consultants in 1978, and the latter joined inmos as full-time “Chief Technol-
ogist” in mid-1979. This team refined the concept of a transputer.

May, with input from Hoare, designed the occam programming language, which
is a low-level imperative language based on CSP, inheriting features both of Imper-
ative CSP and Algebraic CSP (the latter including the idea of parallel as a first-class
language construct). May has told us various respects, such as having the ALT con-
struct analogous to external choice � rather than explicit channel polling, in which
occam moved closer to CSP during its design process. This particular change –
lobbied for by Hoare – was doubtless in pursuit of the stated goal of giving occam
the cleanest possible semantics. The fact that occam was so cleanly defined and so
close to CSP meant that it had clean formal semantics. The second author and Hoare
each played a large role in defining these through papers such as [29] (denotational
semantics), [HR84] (logical semantics in the sense discussed above) and [RH86]
(algebraic semantics).

It was, of course, extremely bold (and some might put it stronger than that) of
inmos to base itself on such a novel product and a completely novel language.
The transputer’s primary market was intended, from a fairly early stage, to be in
embedded applications, but naturally it was the prospect of large parallel systems
composed of many transputers that caught the imagination. The first (16-bit) trans-
puters were delivered in 1985, with 32-bit ones following soon afterwards.

May and Hoare had extraordinary vision when it came to the use of occam,
and the language quickly became the main medium by which hardware was spec-
ified within inmos. They realised that the clean semantics of occam made this an
excellent vehicle for formal verification work. The first major exercise in this did
not involve occam’s parallel capabilities at all, but solely involved reasoning about
sequential occam programs: the microcoded instructions for the FPU of the T800
transputer. This project, which was conceived by Hoare and May, involved translat-
ing the IEEE 754 floating-point number standard into Z, developing correct occam
programs from that for its various operations, and proving these equivalent to highly
stylised occam programs representing the microcode programs designed for a spe-
cial data path. The translation of the specification was done by Geoff Barrett, as was
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the derivation of the top level programs from these. The proofs of equivalence were
performed by David Shepherd using the occam transformation system [11], a tool
that implemented the algebraic semantics for occam developed by Hoare and the
second author in [RH86].

The error-free FPU was developed at a considerable saving to what would have
been achieved with a traditional testing regime.17

The use of occam in hardware design at inmos was taken to entirely new levels
in the design of the T9000: a pipelined processor, executing RISC-style instruc-
tions that were automatically grouped into compound instructions, and with far
more advanced communications hardware. Associated formal methods work was
successful [30], but no longer involved Hoare closely.

Unfortunately it became apparent that a company of the size of inmos (by 1990
a branch SGS Thomson Microelectronics) could no longer compete with the invest-
ment put in by the giants in leading-edge microprocessors, so the transputer concept
and with it its implementation of CSP ceased to be developed in the early 1990s.

It is of course interesting that the lesson of how valuable formal methods are to
microprocessors was not learned by these giants until one of them had a problem
with a floating point unit some years after the successful Oxford/inmos collabora-
tion. These companies are now by far the biggest users of formal verification.

1.8 Unifying Theories of Programming

He Jifeng first came to work in Oxford in 1984, and he remained there, either full
or part time, until 1998: one year before Tony’s retirement. For most of this time,
he and Tony were a close working partnership. As Tony’s ideas stretched beyond
CSP to the idea of correctness in a completely general setting, Jifeng provided him
with mathematical support in a similar sense that Brookes and the second author
had done on CSP and occam.

One early project was “The laws of programming” [HHHC87], a project that
drew on earlier work on algebra for the more complex language occam [19] and
set out a programme for using algebraic laws for language definition and formal
methods. Part of this programme was the use of weakest prespecifications, as de-
fined in [HH86], the paper which began the serious Hoare/He effort to understand
programming and specification via the relational calculus.

They used the relational calculus to discover much about the nature of spec-
ification and implementation, using such tools as Galois connections to relate
programming and specification constructs. One important idea that emerged from
this work was that of an operational semantics defined in terms of algebraic trans-
formation towards normal form: see [HHS93], for example.

17 This work led to Oxford and inmos receiving the Queen’s Award for Technological Achievement
in 1990.
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Hoare and He took on the extremely ambitious project of creating a framework
in which one could give semantics, make specifications, reason about and relate a
wide range of programming languages such as imperative, logical and concurrent
languages. This led to the book Unifying Theories of Programming [HH98], and,
though the book makes few explicit references to the relational calculus, it is there
throughout as the mathematical foundation upon which this work is built.

In the book, we can see direct influences from all the previous joint work of
Hoare and He that we have discussed in this section as well as Hoare’s earlier
work on algebraic laws, coding semantics in predicate calculus, and logical nota-
tion. Certainly it is easy to see the roots of it in Hoare’s intuitions about CSP and
its presentation in the late 1970s and early 1980s. In this respect we are thinking
not only of the importance of algebraic laws and of the logical representation of
observable behaviour, but also about the problem of how to construct denotational
semantics without domain theory.

1.8.1 Sources

The main source we used on Tony’s research is, of course, his published work of
which we give a bibliography below. He has also written several articles containing
reminiscences, most notably [Hoa81b], and there are several published interviews
with him, of which we have used the following:

www.simple-talk.com/opinion/geek-of-the-week/
sir-tony-hoare-geek-of-the-week

archive.computerhistory.org/resources/text/
Oral_History/Hoare_Sir_Antony/102658017.05.01.pdf

This paper has two bibliographies. The first lists all of Hoare’s papers that we
have either cited above or which do not appear in the bibliography of his papers
to 1987 that appeared in Essays in computing science [HJ89], a book that arose
from discussions between the first author and Tony in Austin Texas. The second
bibliography consists of all those papers we have referred to that do not have Tony
as an author. To help the reader distinguish between the two, citations in the Hoare
bibliography (which is sorted into date order) are given thus [Hoa81b] while those
in the second (sorted alphabetically) are numerically labelled [7].
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[HMSW09b] Hoare, C.A.R., Möller, B., Struth, G., Wehrman, I.: Foundations of concurrent
Kleene algebra. In: RelMiCS, pp. 166–186 (2009).

[Hoa09] Hoare, C.A.R.: Viewpoint – retrospective: an axiomatic basis for computer program-
ming. Commun. ACM 52(10), 30–32 (2009).

[WHO09] Wehrman, I., Hoare, C.A.R., O’Hearn, P.W.: Graphical models of separation logic.
Inf. Process. Lett. 109(17), 1001–1004 (2009).

Bibliography 2: Papers by Other Authors

1. Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press,
Melbourne, Australia (1996).

2. Apt, K.R.: Ten years of Hoare’s logic: A survey – part I. ACM Trans. Programm. Languages
Systems 3, 431–483 (1981).

3. Apt, K.R.: Ten years of Hoare’s logic: A survey – part II: Nondeterminism. Theoret. Comput.
Sci., 28, 83–109 (1984).
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The Academic Family Tree of C.A.R. Hoare

We began this article with some remarks about Tony’s family background. We con-
clude it with as much as we have been able to piece together about his academic
family, of which we are both proud members, namely his doctoral students, their
doctoral students and so on. To become a member of the family below we asked
that a student had successfully completed his/her doctorate by the time this article
was finalised. This family is not entirely without incest, in that some students were
jointly supervised by two other members of the tree (sometimes including Tony
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himself). We have organised the tree below so that each student is given as short
a route to Tony as possible. Entries in italics (e.g. Roscoe’s supervision of Kong)
indicate that the student’s main entry is elsewhere. A joint supervisor (JS) in italics
is elsewhere in the tree.

In most cases, for brevity, we give here the topic or area of the thesis, rather than
its title.

We intend to supply our information, including titles where we have them, to the
Mathematics Genealogy Project18, from where, in turn, some of this information
was gathered. Therefore if you have any corrections or additions to this tree, we
encourage you to upload the details there.

C.A.R. Hoare

1 Peter Lauer, Belfast 1971, Axiomatic semantics

1.1 Eike Best19, Newcastle20 1981, Concurrency (JS Brian Randell)
1.1.1 Lucia Pomello, Milano and Torino 1988, Petri nets (JS Giorgio De

Michelis and Mariangiola Dezani-Ciancaglini)
1.1.1.1 Stefania Rombolà, Milano-Bicocca 2009, Concurrency

theory
(JS Luca Bernardinello)

1.1.2 Javier Esparza, Hildesheim 1993, Model checking
1.1.2.1 Richard Mayr, Munich 1998, Infinite state systems

1.1.2.1.1 Noomene Ben Henda, Uppsala 2008, Infinite-
state systems

1.1.2.2 Stephan Melzer, Munich 1998, Verifying distributed
systems

1.1.2.3 Stefan Römer, Munich 2000, Verification using unfoldings
1.1.2.4 Christine Röckl, Munich 2001, Validation of reactive and
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1.1.2.10 Dejvuth Suwimonteerabuth, Munich 2009, Pushdown
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1.1.2.11 Stefan Kiefer, Munich 2009, Positive polynomial equations

18 http://genealogy.math.ndsu.nodak.edu/
19 Esparza, Lavrov and Wimmel were Habilitation rather than doctoral students of Best.
20 University of Newcastle upon Tyne.
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Chapter 2
From CSP to Game Semantics

Samson Abramsky

Abstract In this short essay, we describe in informal terms how game semantics
can be seen to arise as a perturbation of process calculi such as CSP, by making an
explicit distinction between the rôles of the System and the Environment. Drawing
out the consequences of this distinction uncovers a wealth of mathematical struc-
ture, with Game intuitions entering in a natural and compelling fashion. This leads
ultimately to the elaboration of mathematically well-structured and behaviourally
expressive semantic universes for computation. These provide a basis for fully ab-
stract models of a wide range of programming languages, and lead on to algorithmic
methods, with applications to compositional model-checking and program analysis.

2.1 Introduction

Tony Hoare has been a major influence on me, as on so many of my generation
of computer scientists. Moreover, he has always shown a keen interest in the work
on game semantics by myself and others, and his remarks have often forced me to
sharpen my thinking. In this short note, a mini-essay rather than a paper, I will try to
present and motivate some key features of game semantics from the point of view of
CSP and other process calculi. I will try to convey how we can see game semantics
as arising from a small — but significant! — perturbation of the CSP paradigm.
We add one, apparently minor, piece of additional structure, and from this much
else follows.

2.2 Polarity

We shall assume some background in CSP [18, 32], or other process calculi such as
CCS [27]. We know that these calculi are designed to express communication, or
more generally interaction, between concurrent processes. This is achieved in each
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case by some form of synchronized communication which is built into the semantics
of the parallel composition operation.

Although CSP allows for value-passing idioms, at a more fundamental level,
these are “flattened out” or “compiled away” into pure atomic actions. Similar com-
ments can be made for CCS. In the case of CCS, a basic distinction is made between
actions and coactions (˛ and N̨ ), but this is purely formal, and its purpose is to sup-
port the particular form of binary “synchronization algebra” of CCS.1

In principle, then, all actions in process calculus are at the same level; each action
could, a priori, be performed by any process. In the language of logic, actions do
not have (positive or negative) polarities; in the language of category theory, they
do not have (co- or contra-) variance.

A basic starting point for game semantics is the recognition that introducing an
explicit notion of polarity of actions provides a modest-looking fulcrum which we
can use to lever up a great deal of structure. Moreover, this notion arises in a very
direct fashion from basic intuitions about interactive systems.

The basic idea flows naturally from the observation that our universe of study
in the arena of concurrent, distributed, mobile and pervasive processes is that of
open systems. That is, we study systems which must be seen as embedded in some
larger, and as yet not completely specified, system. (Just think of the Internet.) This
means that a key part of identifying and delimiting any system we study is that
we have a boundary between the system being considered, and the larger system
which contains it. We call the system under consideration simply the System; and
everything outside the boundary is the Environment. Actions can then be classified
as performed by the System (under its control) or by the Environment (not under
its control). The essence of the behaviour of the System is how it interacts with its
Environment across this boundary.

To specify a System in these terms is to specify how it will react in the presence of
an (unknown) Environment. Thus we must specify what the System will (or would)
do given any possible behaviour by the Environment. This assumes a natural nested
conditional or hypothetical form:

If the Environment initially does e1,
then the System responds with s1;

1 The input–output distinction does occur in a more fundamental way in the �-calculus [28–30].
However, even here there are symmetric variants such as the fusion calculus [31], and the �-
calculus does not seem to force a fundamental modification of the distinction we are making here.
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If the Environment then does e2,
then the System responds with s2;

:::

This apparently minor manoeuvre, of expressing the System/Environment
dichotomy directly in our classification of actions, releases much additional mathe-
matical structure, as we shall now see.

2.3 Games

With the introduction of polarized moves, the games metaphor becomes natural,
and indeed compelling. We think of the System and the Environment as the players
in a two-person game. The hypothetical specification of the actions of a System in
response to those of its Environment then exactly fits the game-theoretic notion of
strategy; so we have a natural reading of processes in this polarized framework as
strategies.

In this way, we start to use the basic notions of game theory to structure our
semantic universe, and we are well on the road to game semantics. But this is only
the first step.

One immediate consequence of adopting the game perspective is that we have a
natural “dynamic” take on negation and duality: as interchange of polarity (reversal
of rôles in the game) rather than interchange of truth-values.

Referring back to our intuitive reading, this corresponds to the fact that our
choice of point of view across the System–Environment boundary is conventional;
we could as well take the Environment as the System under consideration, and
vice versa. This ability to interchange between different points of view on the same
interaction is characteristic of game-theoretic reasoning.

2.4 Determinism

We now proceed to elaborate further structural consequences of our basic move to
polarization. We start in a low key, with a humble yet profoundly useful notion: that
of deterministic computation. The intuitive notion of a deterministic program or
computation is rather clear: at each step, what the program does next is uniquely
determined by the previous history of the computation. The lack of an explicit
distinction between the actions of the process and those of its environment means
that the notion of deterministic computation in this sense in the standard setting of
process calculi is a very limited one.2

2 These calculi do have notions of “deterministic” and “confluent” process as part of their the-
ory [27, 32], but these notions refer to the absence of non-observable branching in the system.



36 S. Abramsky

By contrast, in the polarized setting, the obvious notion of deterministic strategy
– one for which the System actions are uniquely determined by the preceding
Environment actions – easily and naturally cover the full sweep of deterministic
computation. Because of polarization, one can distinguish between the Environment
actions, which a strategy for System cannot control, and hence must be allowed
to branch arbitrarily; and the System actions, which in the case of a determinis-
tic strategy must be uniquely determined by what has gone before. In this way, a
large portion of what would usually be encoded as non-determinism in the process
calculus setting is simply referred to the Environment, while the strategy remains
perfectly deterministic.

2.5 Interaction

As we have already mentioned, each process algebra has its own hand-crafted
primitives and semantics for communication and synchronization. There are many
plausible variations, and different styles suggest different models and process equiv-
alences. This profusion of choices is something of an embarrassment – an instance
of the “next 700” syndrome [4, 20].

By contrast, the polarization structure of games entails an intrinsic notion of
interaction: namely the basic notion in extensive game theory of playing a strategy
(for System) off against a counter-strategy (for the Environment) (or “evaluating a
strategy profile”). The specification of a strategy for System, as we have already
seen, allows for arbitrary branching at Environment moves, while specifying what
the System then does in response. A counter-strategy works dually. Thus the strategy
and counter-strategy “fit” together, just by the logic of polarization, without need of
any synchronization algebra. Note in particular that in the case that the strategy and
the counter-strategy are both deterministic, the result of this interaction is a uniquely
determined computation trace.

This idea really becomes powerful when we combine it with types, to which we
now turn.

2.6 Types

Process calculus is fundamentally untyped, although sometimes a rudimentary sort-
ing by action alphabet is used. More elaborate type systems for process calculi have
been proposed and studied, but they are a kind of super-structure, motivated more by
specification and verification issues than by articulating the structure of the universe
of processes.

They do not directly correspond to the sense in which the computation of a standard functional or
imperative program is deterministic.
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Once again the game metaphor shows its ability to reveal significant additional
mathematical structure. We have already been led to a view of processes as strate-
gies, but for which games? If we constrain the moves which can be made by a player
(System or Environment) at each stage where it may perform an action, we are led
to the usual notion of a game tree (game in extensive form), and we can see that
games play the role of types in a very natural and intuitive fashion.

The real power of this step comes when we consider the possibility of build-
ing compound types expressing the behaviour of systems built hierarchically from
sub-systems. These compound types will be interpreted as constructions on games,
which build more complex games, e.g. by combining “game boards”. Indeed, it is
by virtue of this step to compound games that we can see why it is plausible to re-
strict ourselves to two-person games. System and Environment may each actually
comprehend a “team” of players; the important point is that we are drawing a bound-
ary between the teams, and distinguishing the actions of one team from the other.
A useful analogy is with the theory of functions. By using type constructions such
as cartesian product, it suffices to develop a theory of one-place functions, rather
than having to treat n-place functions as primitive for each n. Indeed, note that func-
tions can be seen as special cases of (deterministic) strategies; where the System
allows the Environment to branch on the input, and then produces the corresponding
output.

As a direct consequence of this idea of using structured types to build
specifications of complex systems, we shall show how the primitive form of
interaction intrinsically supported by games leads on to the fundamental notions of
composition and identity.

2.7 Identity and Composition

2.7.1 Copy-Cat Strategies

Consider the following little fable, illustrated by Fig. 2.1. The idea is to rely on logic,
rather than on any talent at Chess. We arrange to play two games of Chess with the
grandmaster, say Gary Kasparov, once as White and once as Black. Moreover, we
so arrange matters that we start with the game in which we play as Black. Kasparov
makes his opening move; we respond by playing the same move in the other game –
this makes sense, since we are playing as White there. Now Kasparov responds (as
Black) to our move in that game; and we copy that response back in the first game.
We simply proceed in this fashion, copying the moves that our opponent makes
in one board to the other board. The net effect is that we play the same game
twice – once as White, and once as Black. (We have essentially made Kasparov
play against himself.) Thus, whoever wins that game, we can claim a win in one of
our games against Kasparov! (Even if the game results in a stalemate, we have done
as well as Kasparov over the two games – surely still a good result!) Of course, this
idea has nothing particularly to do with Chess. It can be applied to any two-person
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How to beat an International Chess Grandmaster by the power of pure logic

Fig. 2.1 How to beat a Grandmaster

game of a very general form. The use of Chess-boards to illustrate the discussion
will continue, but this underlying generality should be kept in mind.

What are the salient features which can be extracted from this example?

A Dynamic Tautology There is a sense (which will shortly be made more precise)
in which the copy-cat strategy can be seen as a dynamic version of the tautology
A_:A. Note, indeed, that an essential condition for being able to play the copy-cat
is that the roles of the two players are inter-changed on one board as compared to the
other. Note also the disjunctive quality of the argument that we must win in one or
other of the two games. But the copy-cat strategy is a dynamic process: a two-way
channel which maintains the correlation between the plays in the two games.

Conservation of Information Flow The copy-cat strategy does not create any infor-
mation; it reacts to the environment in such a way that information is conserved. It
ensures that exactly the same information flows out to the environment as flows in
from it. Thus one gets a sense of logic appearing in the form of conservation laws
for information dynamics.

The Power of Copying Another theme which appears here, and of which more will
be seen later, concerns the surprising power of simple processes of copying informa-
tion from one place to another. Indeed, as shall eventually be seen, such processes
are computationally universal.

The Geometry of Information Flow From a dynamical point of view, the copy-cat
strategy realizes a channel between the two game boards, by performing the actions
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of copying moves. But there is also some implicit geometry here. Indeed, the very
idea of two boards laid out side by side appeals to some basic underlying spatial
structure. In these terms, the copy-cat channel can also be understood geometrically,
as creating a graphical link between these two spatial locations. These two points of
view are complementary, and link the logical perspective to powerful ideas arising
in modern geometry and mathematical physics.

Further evidence that the copy-cat strategy embodies more substantial ideas than
might at first be apparent, can be obtained by varying the scenario. Consider now
the case where we play against Kasparov on three boards; one as Black, two as
White.

Kasparov Kasparov Kasparov

B

W

W

B

W

B

�

������������

������������

����������������������������

Does the copy-cat strategy still work here? In fact, it can easily be seen that it does
not. Suppose Kasparov makes an opening move m1 in the left-hand board where
he plays as White; we copy it to the board where we play as White; he responds
with m2; and we copy m2 back to the board where Kasparov opened. So far, all has
proceeded as in our original scenario. But now Kasparov has the option of playing
a different opening move, m3 say, in the rightmost board. We have no idea how
to respond to this move; nor can we copy it anywhere, since the board where we
play as White is already “in use”. This shows that these simple ideas already lead
us naturally to the setting of a resource-sensitive logic, in which in particular the
Contraction Rule, which can be expressed as A ! A ^ A (or equivalently as :A _
.A ^ A/) cannot be assumed to be valid.

What about the other obvious variation, where we play on two boards as White,
and one as Black?

Kasparov Kasparov Kasparov

B

W

B

W

W

B

�

���������������������������

������������

������������



40 S. Abramsky

It seems that the copy-cat strategy does still work here, since we can simply ignore
one of the boards where we play as White. However, a geometrical property of
the original copy-cat strategy has been lost, namely a connectedness property, that
information flows to every part of the system. This at least calls the corresponding
logical principle of Weakening, which can be expressed as A^A! A, into question.

These remarks indicate that we are close to the realm of Linear Logic and
its variants, and, mathematically, to the world of monoidal (rather than cartesian)
categories.

2.7.2 Composition as Interaction

We also show how interaction can be explained in the same terms: Construc-
tors create “potentials” for interaction; the operation of plugging modules together
so that they can communicate with each other releases this potential into actual
computation.

A?

&

B � A � B B?

&

C � B � C

Here we see two separate sub-systems, each with a compound structure,
expressed by the logical types of their interfaces. What these types tell us is
that these systems are composable; in particular, the output type of the first sys-
tem, namely B, matches the input type of the second system. Note that this “logical
plug-compatibility” makes essential use of the duality, just as the copy-cat strategy
did. What makes Gary (the player for the first system) a fit partner for interaction
with Nigel (the player for the second system) is that they have complementary
views of their locus of interaction, namely B. Gary will play in this type “posi-
tively”, as Player (he sees it as B), while Nigel will play “negatively”, as Opponent
(he sees it as B?). Thus each will become part of the environment of the other – part
of the potential environment of each will be realized by the other, and hence part of
the potential behaviour of each will become actual interaction.
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This leads to a dynamical interpretation of the fundamental operation of
composition, in mathematical terms:

A
Gary � B

Nigel � C

A
Gary; Nigel � C

or of the Cut rule, in logical terms:

Cut:
` 	; A ` A?; 


	; 


: : :


	

: : :

A?A

QP

Composition as Interaction

The picture here shows the new system formed by plugging together the two
sub-systems. The “external interface” to the environment now shows just the left-
hand board A as input, and the right-hand board C as output. The Cut formula B
is hidden from the environment, and becomes the locus of interaction inside the
black box of the system. Suppose that the Environment makes some move m in C.
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This is visible only to Nigel, who as a strategy for B� C has a response. Suppose
this response m1 is in B. This is a move by Nigel as Player in B?, hence appears
to Gary as a move by Opponent in B. Gary as a strategy for A � B has a response
m2 to this move. If this response is again in B, Nigel sees it as a response by the
environment to his move, and will have a response again; and so on. Thus there is
a sequence of moves m1; : : : ;mk in B, ping-ponging back and forth between Nigel
and Gary. If, eventually, Nigel responds to Gary’s last move by playing in C, or Gary
responds to Nigel’s last move by playing in A, then this provides the response of the
composed strategy Gary; Nigel to the original move m. Indeed, all that is visible
to the Environment is that it played m, and eventually some response appeared, in
A or C.3

Summarizing, the two strategies are played off against each other in the shared
part of their interfaces (where one plays as White and the other as Black –
corresponding to matching of logical polarities), leaving a residual interface to
the environment. Note the “duality” between this operation and the copy-cat (Iden-
tity and Cut): the copy-cat strategy makes the same thing happen in two different
places, while composition makes two different things (with opposite polarities,
hence non-conflicting) happen in the same place.

2.8 Categories: the “Objective Structure” of Interaction

Putting together the various ingredients we have developed from the basic idea of
polarization, we now have a mathematical universe in which we have:

� Games as types or objects
� Strategies as morphisms
� Composition of strategies by playing them off against each other in the common

subgame
� Copy-cat strategies as identities for this composition

This means that the games and strategies naturally organize themselves into a cate-
gory. This immediately moves us onto a higher plane of mathematical organization.
Recall that once we have fixed a category, any constructions defined by universal
properties therein are already fixed up to unique isomorphism. For example, if a cat-
egory is cartesian closed, and hence provides a model of higher-order computation,
this is uniquely determined by the bare structure of arrows under composition in the
category. This example is highly relevant, since the successful application of game
semantics to providing fully abstract models for a wide range of �-calculus based

3 It is also easy to show that if Nigel and Gary are both playing winning strategies, meaning that
they always have a response to the Environment’s actions, and that the infinite plays which may
arise from following these strategies satisfy some given liveness specifications, then the composed
strategy will again be a winning strategy, with respect to a liveness specification defined composi-
tionally in a natural fashion from the given ones. See [1] for details and a proof of this.
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programming languages rests upon the construction of suitable cartesian closed
categories of games and strategies. The mathematical structure present in a category
is objectively there, it is not a matter of one of “700 choices”.

In fact, categories of games and strategies have fascinating mathematical
structure. They give rise to:

� Constructions of free categories with structure of various kinds.
� Full completeness results characterizing the “space of proofs” for various logical

systems.
� There are even connections with geometry, e.g. Temperley-Lieb and other dia-

gram algebras [5].

2.9 Developments: The Game Semantics Landscape

Over the past 15 years, there has been an extensive development of Game Seman-
tics in Computer Science.4 One major area of application has been to the semantics
of programming languages, where it has led to major progress in the construction
of fully abstract models for programming languages embodying a wide range of
computational effects, and starting with the first semantic construction of a fully
abstract model for PCF, thus addressing a famous open problem in the field. It has
been possible to give crisp characterizations of the “shapes” of computations carried
out within certain programming disciplines: including purely functional program-
ming [2, 19], stateful programming [9], general references [7, 33], programming
with non-local jumps and exceptions [21, 22], non-determinism [16], probability
[11], concurrency [15], names [6], and more. In many cases, game semantics have
yielded the first, and often still the only, semantic construction of a fully abstract
model for the language in question.

There has also been a parallel line of development of giving full completeness
results for a range of logics and type theories, characterizing the “space of proofs”
for a logic in terms of informatic or geometric constraints which pick out those
processes which are proofs for that logic [8, 10, 12, 13, 25]. This enables a new look
at such issues as the boundaries between classical and constructive logic, or the fine
structure of polymorphism and second-order quantification.

More recently, there has been an algorithmic turn, and some striking applications
to verification and program analysis [3, 6, 14, 24].

4 A key quality of this form of game semantics, as compared to earlier work in the logical literature,
such as the Game-Theoretical Semantics of Hintikka [17] and the Dialogical game semantics of
Lorenzen and his school [26], is its syntax-independence and compositionality. Here composi-
tionality refers, crucially, to the level of strategies as well as merely to the games.
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2.10 Concluding Remarks

It should be emphasized that game semantics cannot be said to subsume CSP or
other process calculi. Indeed, by imposing more structure, it makes it harder to
achieve the same breadth of expressive power. Game semantics has been extended
to concurrent languages with some success [15, 23], but the treatment to date is far
from comprehensive. Moreover, in the course of modelling concurrent programming
languages, some of the familiar issues of a proliferation of models and equivalences
tend to recur, albeit in a considerably reduced form, as the setting is much more
constrained.

Nevertheless, it seems fair to say that game semantics has found a fruitful path,
combining the mathematical structure of denotational semantics with much of the
behavioural expressiveness of process calculi. We hope to have conveyed something
of how this trend in semantics arises naturally as a refinement of the CSP and process
calculus point of view. It is a tribute to Tony Hoare’s vision that many of his insights
persist in this new guise, and combine gracefully with other structures, seemingly
of quite a different character.

Acknowledgements My thanks to Bill Roscoe and Paul Levy for their comments on an earlier
version of this paper, which led to several clarifications. The remaining obscurities and inaccuracies
are entirely my responsibility.
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(1961).
27. Milner, R.: Communication and Concurrency. Prentice Hall, New Jersey (1989).
28. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I Inf. Comput. 100(1), 1–40

(1992).
29. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, II Inf. Comput. 100(1),

41–77 (1992).
30. Milner, R.: Communicating and Mobile Systems: The Pi Calculus. Cambridge University

Press, Cambridge (1999).
31. Parrow, J., Victor, B.: The Fusion Calculus: Expressiveness and Symmetry in Mobile Processes

LICS 1998: 176–185.
32. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall (1997).
33. Tzevelekos, N.: Full abstraction for nominal general references. In: Proceedings LICS pp. 399–

410 (2007).



Chapter 3
On Mereologies in Computing Science

Dines Bjørner

Abstract In this paper we solve the following problems:

� We give a formal model of a large class of mereologies, with simple entities
modelled as parts and their relations by connectors.
� We show that class applies to a wide variety of societal infrastructure component

domains.
� We show that there is a class of CSP channel and process structures that corre-

spond to the class of mereologies where mereology parts become CSP processes
and connectors become channels; and where simple entity attributes become pro-
cess states.

We have yet to prove to what extent the models satisfy the axiom systems for mere-
ologies of, for example, [12] and a calculus of individuals [13]. Mereology is the
study, knowledge and practice of part-hood relations: of the relations of part to
whole and the relations of part to part within a whole. By parts we shall here under-
stand simple entities – of the kind illustrated in this paper.

Manifest simple entities of domains are either continuous (fluid, gaseous) or dis-
crete (solid, fixed), and if the latter, then either atomic or composite. It is how the
sub-entities of a composite entity are “put together” that “makes up” a mereology
of that composite entity – at least such as we shall study the mereology concept.
In this paper, we shall study some ways of modelling the mereology of composite
entities. One way of modelling mereologies is using sorts, observer functions and
axioms (McCarthy style), another is using CSP.

IFIP WG2.3: A Laudatio and a Memory

This paper is in honour of Sir Tony Hoare. And the paper is in memory of
Douglas Taylor Ross (1929–2007). The latter speculated quite a lot about
mereologies at many IFIP WG 2.3 meetings; not quite all members and

D. Bjørner (�)
Fredsvej 11, DK-2840 Holte, Denmark
e-mail: bjorner@gmail.com, URL: www.imm.dtu.dk/˜db

DOI 10.1007/978-1-84882-912-1 3, c� Springer-Verlag London Limited 2010
47et al. (eds.), Reflections on the Work of C.A.R. Hoare,C.B. Jones

bjorner@gmail.com


48 D. Bjørner

observers understood everything; certainly not I. But I somehow knew it was
a relevant issue. I think I now understand what Doug was saying. Here then,
in this paper, is my interpretation of Doug’s discourses. The former, today’s
celebrant, has given us many deep, yet simple, hence elegant, concepts.
CSP is one of them. Therefore CSP will be applied, at the end of the paper,
to express mereologies. IFIP WG 2.3 meetings in my days certainly weren’t
boring. I think that today I present a simple explanation of what then ap-
peared as a not so simple concept. And I think that I can relate it to CSP.

3.1 Introduction

3.1.1 Physics and Societal Infrastructures

Physicists study that of nature which can be measured within us, around us and
between “within” and “around”! To make mathematical models of physics phe-
nomena, physics has helped develop and uses mathematics, notably calculus and
statistics.

Domain engineers primarily studies societal infrastructure components which can
be reasoned about, built and manipulated by humans. To make domain models of
infrastructure components, domain engineering makes use of formal specification
languages, their reasoning systems: formal testing, model checking and verification,
and their tools.

Physicists turns to algebra in order to handle structures in nature. Algebra appears
to be useful in a number of applications, to wit: the abstract modelling of chemical
compounds. But there seem to be many structures in nature that cannot be cap-
tured in a satisfactory way by mathematics, including algebra and when captured
in discrete mathematical disciplines such as sets, graph theory and combinatorics
the “integration” of these mathematically represented structures with calculus (etc.)
becomes awkward; it seems so much so that I know of no successful attempts.

Domain engineers turn to discrete mathematics – as embodied in formal specifi-
cation languages and as “implementable” in programming languages – in order to
handle structures in societal infrastructure components. These languages allow (a)
the expression of arbitrarily complicated structures, (b) the evaluation of properties
over such structures, (c) the “building & demolition” of such structures, and (d) the
reasoning over such structures. They also allow the expression of dynamically vary-
ing structures – something mathematics is “not so good at” ! But the specification
languages have two problems: (1) they do not easily, if at all, hhhhhandle continuity,
that is, they do not embody calculus, or, for example, statistical concepts, etc., and
(2) they handle actual structures of societal infrastructure components and attributes
of atomic and composite entities of these – usually by identical techniques thereby
blurring what we think is an important distinction.
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3.1.2 From Simple Entities to Processes

We shall first consider the structural components of societal infrastructures as sim-
ple entities, without considering any operations on these entities. In fact, in this
paper, we shall not consider operations on entities at all. This is possible, we claim,
and in a sense in clear defiance of algebraic approaches – say as embodied in OO-
methodologies – since, as we are claiming, that “world” of societal infrastructure
components can be understood to quite some depth without considering their oper-
ations.

We shall then “map” parts and wholes into processes ! By an “ontological trick”
we re-interpret simple entities as processes and their connections, i.e., how they are
put together, as channels between processes.

It is all very simple, or, at least, we need to first make it simple before we com-
plicate things. In this paper, we will only present the easy picture.

3.1.3 Structure of This Paper

The rest of the paper is organised as follows. In Sect. 3.2 we give a first main, a meta-
example, of syntactic aspects of a class of mereologies. It narrates and formalises
an abstraction of what is here called “parts”: “assemblies” and “units”. That is,
structures of units with connectors that may be used to provide connections between
parts. So an assembly has a mereology represented by units and sub-assemblies and
their actual connections.

In Sect. 3.3 we informally show that the assembly/unit structures of Sect. 3.2
indeed model structures of a variety of infrastructure components.

Then, in Sect. 3.4, we discuss concepts of atomic and composite simple entities.
With atomic simple entities we associate attributes, and these may exhibit con-
ceptual structures, and with composite simple entities we associate attributes, any
number of simple sub-entities and their mereology. We discuss notational and se-
mantic means of expressing attributes and their possible structures, and sub-entities,
and their mereologies. And we relate our presentation to the wider concept of
mereology.

Section 3.5 “performs” the ontological trick of mapping the assembly and unit
entities and their connections exemplified in Sect. 3.2 into CSP processes and chan-
nels, respectively – the second and last main – meta-example and now of semantic
aspects of a class of mereologies.

The paper does not discuss relations between what is presented here and other
approaches. As such we have renounced on the paper being a proper attempt at a
proper scientific paper. We apologise.
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3.2 A Syntactic Model of a Class of Mereologies

3.2.1 Systems, Assemblies, Units

We speak of systems as assemblies. From an assembly we can immediately observe
a set of parts. Parts are either assemblies or units. We do not further define what
assemblies and units are.

type
S D A, A, U, P D A j U

value
obs Ps: (SjA)! P-set

Parts observed from an assembly are said to be immediately embedded in, i.e.,
within, that assembly. Two or more different parts of an assembly are said to be
immediately adjacent to one another.

A system includes its environment. And we do not worry, so far, about the semi-
otics of all this !

Embeddedness and adjacency generalise to transitive relations.
Given obs Ps we can define a function, xtr Ps, which applies to an assembly a

and which extracts all parts embedded in a and including a. The functions obs Ps
and xtr Ps define the meaning of embeddedness.
value

xtr Ps: (SjA)! P-set
xtr Ps(a)�

let psD fag [ obs Ps(a) in ps [ unionfxtr Ps(a0)ja0:A�a0 2 psg end
union is the distributed union operator. Parts have unique identifiers. All parts ob-
servable from a system are distinct.
type

AUI
value

obs AUI: P! AUI
axiom
8 a:A �

let psD obs Ps(a) in
8 p0,p00:P � fp0,p00g�ps ^ p0¤p00) obs AUI(p0)¤obs AUI(p00) ^
8 a0,a00:A � fa0,a00g�ps ^ a0¤a00) xtr Ps(a0)\ xtr Ps(a00)Dfg end

3.2.2 “Adjacency” and “Within” Relations

Two parts, p,p0, are said to be immediately next to, i.e., i next to(p,p0)(a), one
another in an assembly a if there exists an assembly, a0, equal to or embedded in a
such that p and p0 are observable in that assembly a0.
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value
i next to: P � P! A

�! Bool, pre i next to(p,p0)(a): p¤p0
i next to(p,p0)(a)� 9 a0:A � a0Da _ a0 2 xtr Ps(a) � fp,p0g�obs Ps(a0)

One part, p, is said to be immediately within another part, p0, in an assembly a if
there exists an assembly, a0, equal to or embedded in a such that p is observable
in a0.

value
i within: P � P! A

�! Bool
i within(p,p0)(a)�
9 a0:A � (aDa0 _ a0 2 xtr Ps(a)) � p0Da0 ^ p 2 obs Ps(a0)

We can generalise the immediate “within” property. A part, p, is (transitively) within
a part p0, within(p,p0)(a), of an assembly, a, either if p is immediately within p0 of
that assembly, a, or if there exists a (proper) part p00 of p0 such that within(p00,p)(a).

value
within: P � P! A

�! Bool
within(p,p0)(a)�

i within(p,p0)(a) _ 9 p00:P � p00 2 obs Ps(p) ^ within(p00,p0)(a)

The function within can be defined, alternatively, using xtr Ps and i within instead
of obs Ps and within:

value
within0: P � P! A

�! Bool
within0(p,p0)(a)�

i within(p,p0)(a) _ 9 p00:P � p00 2 xtr Ps(p) ^ i within(p00,p0)(a)

lemma: within� within0

We can generalise the immediate “next to” property. Two parts p, p0 of an assembly,
a, are adjacent if they are either “next to” one another or if there are two parts po,
p0o such that p, p0 are embedded in respectively po and p0o and such that po, p0o are
immediately next to one another.

value
adjacent: P � P! A

�! Bool
adjacent(p,p0)(a)�

i next to(p,p0)(a) _
9 p00,p000:P � fp00,p000g�xtr Ps(a) ^ i next to(p00,p000)(a) ^

((pDp00)_within(p,p00)(a)) ^ ((p0Dp000)_within(p0,p000)(a))
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3.2.3 Mereology, Part I

So far we have built a ground mereology model, MGround. Letv denote parthood,
x is part of y, x v y.

8 x.x v x/1 (3.1)
8 x; y.x v y/ ^ .y v x/) .x D y/ (3.2)
8 x; y; z.x v y/ ^ .y v z/) .x v z/ (3.3)

Let � denote proper parthood, x is part of y, x � y. Formula 3.4 defines x � y.
Equivalence 3.5 can be proven to hold:

8 x � y Ddef x.x v y/ ^ :.x D y/ (3.4)
88 x; y.x v y/ , .x � y/ _ .x D y/ (3.5)

The proper part (x � y) relation is a strict partial ordering:

8 x:.x � x/ (3.6)
8 x; y.x � y/) :.y � x/ (3.7)

8 x; y; z.x � y/ ^ .y � z/) .x � z/ (3.8)

Overlap, �, is also a relation of parts: Two individuals overlap if they have parts in
common:

x � y Ddef 9 z.z � x/ ^ .z � y/ (3.9)
8 x.x � x/ (3.10)

8 x; y.x � y/) .y � x/ (3.11)

Proper overlap, ı, can be defined:

x ı y Ddef .x � x/ ^ :.x v y/ ^ :.y v x/ (3.12)

Whereas Formulas 3.1–3.11 hold of the model of mereology we have shown so far,
Formula 3.12 does not. In the next section we shall repair that situation.

The proper part relation, �, reflects the within relation. The disjoint relation,
H

,
reflects the adjacency relation

x
I

y Ddef :.x � y/ (3.13)

Disjointness is symmetric:

8 x; y.x
I

y/) .y
I

x/ (3.14)

1 Our notation now is not RSL but some conventional first-order predicate logic notation.
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The weak supplementation relation, Formula 3.15, expresses that if y is a proper
part of x then there exists a part z such that z is a proper part of x and z and y are
disjoint That is, whenever an individual has one proper part, then it has more than
one.

8 x; y.y � x/ ) 9 z.z � x/ ^ .z
I

y/ (3.15)

Formulas 3.1–3.3 and 3.15 together determine the minimal mereology,MMinimal.
Formula 3.15 does not hold of the model of mereology we have shown so far. We
shall comment on this in Sect. 3.4.2.

3.2.4 Connectors

So far we have only covered notions of parts being next to other parts or within one
another. We shall now add to this a rather general notion of parts being otherwise
related. That notion is one of connectors.

Connectors provide for connections between parts. A connector is an ability to
be connected. A connection is the actual fulfillment of that ability. Connections are
relations between pairs of parts. Connections “cut across” the “classical” parts being
part of the (or a) whole and parts being related by embeddedness or adjacency.

For now, we do not “ask” for the meaning of connectors !
Figure 3.2 on the facing page “adds” connectors to Fig. 3.1. The idea is that

connectors allow an assembly to be connected to any embedded part, and allow two
adjacent parts to be connected.

"outermost" Assembly

A

D311 D312

C31

B3

C12

B1

Units

Assemblies

B4

C11

C21

C32

B2

C33

System = Environment

Fig. 3.1 Assemblies and units “embedded” in an Environment
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A

D311 D312

C31

B3

C12

B1

Units

Assemblies

B4

C11

C21

C32

K2

B2

C33

K1

System = Environment
"outermost" Assembly

Fig. 3.2 Assembly and unit connectors: internal and external

In Fig. 3.2 the environment is connected, by K2 (without, as we shall later see,
interfering with assemblies A and B1), to part C11; the “external world” is con-
nected, by K1, to B1; etc. Later we shall discuss more general forms of connectors.

From a system we can observe all its connectors. From a connector we can ob-
serve its unique connector identifier and the set of part identifiers of the parts that
the connector connects. All part identifiers of system connectors identify parts of
the system. All observable connector identifiers of parts identify connectors of the
system.

type
K

value
obs Ks: S! K-set
obs KI: K! KI
obs Is: K! AUI-set
obs KIs: P! KI-set

axiom
8 k:K � card obs Is(k)D2,
8 s:S,k:K � k 2 obs Ks(s))
9 p:P � p 2 xtr Ps(s)) obs AUI(p) 2 obs Is(k),

8 s:S,p:P � 8 ki:KI � ki 2 obs KIs(p))
9! k:K � k 2 obs Ks(s) ^ kiDobs KI(k)
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This model allows for a rather “free-wheeling” notion of connectors: one that allows
internal connectors to “cut across” embedded and adjacent parts; and one that allows
external connectors to “penetrate” from an outside to any embedded part.

We need to define an auxiliary function. xtr8KIs(p) applies to a system and
yields all its connector identifiers.

value
xtr8KIs: S! KI-set
xtr8Ks(s) � fobs KI(k)jk:K�k 2 obs Ks(s)g

3.2.5 Mereology, Part II

We shall interpret connections as follows: A connection between parts pi and pj that
enjoy a pi adjacent to pj relationship means pi ı pj, i.e., although parts pi and pj

are adjacent they do share “something”, i.e., have something in common. What
that “something” is we shall comment on in Sect. 3.5.4. A connection between parts
pi and pj that enjoy a pi within pj relationship, does not add other meaning than
commented upon in Sect. 3.5.4.

With the above interpretation we may arrive at the following, perhaps somewhat
“awkward-looking” case: a connection connects two adjacent parts pi and pj where
part pi is within part pio and part pj is within part pjo where parts pio and pjo are
adjacent but not otherwise connected. How are we to explain that ! Since we have
not otherwise interpreted the meaning of parts, we can just postulate that “so it is” !
We shall, in Sect. 3.5.4, more satisfactory explanation.

In Sect. 3.2.3 we introduced the following operators: v;�; �; ı; and
H

. In some
of the mereology literature [12–14] these operators are symbolised with caligraphic
letters: vW P : part, �W PP: proper part, � W O: overlap and

H W U : underlap.

3.2.6 Discussion

3.2.6.1 Summary

This ends our first model of a concept of mereology. The parts are those of assem-
blies and units. The relations between parts and the whole are, on one hand, those
of embeddedness, i.e., within, and adjacency, i.e., adjacent, and on the other hand,
those expressed by connectors: relations between arbitrary parts and between arbi-
trary parts and the exterior.
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Fig. 3.3 Mobile parts and free connectors

3.2.6.2 Extensions

A number of extensions are possible: one can add “mobile” parts and “free” con-
nectors, and one can further add operations that allow such mobile parts to move
from one assembly to another along routes of connectors. Free connectors and mo-
bility assumes static versus dynamic parts and connectors: a free connector is one
which allows a mobile part to be connected to another part, fixed or mobile; and the
potentiality of a move of a mobile part introduces a further dimension of dynamics
of 3.2.6.3 comments a mereology.

We shall leave the modelling of free connectors and mobile parts to another time.
Suffice it now to indicate that the mereology model given so far is relevant: that it
applies to a somewhat wide range of application domain structures, and that it thus
affords a uniform treatment of proper formal models of these application domain
structures.

3.3 Discussion & Interpretation

Before a semantic treatment of the concept of mereology let us review what we have
done and let us interpret our abstraction (i.e., relate it to actual societal infrastructure
components).
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3.3.1 What We Have Done So Far ?

We have presented a model that is claimed to abstract essential mereological prop-
erties of machine assemblies, railway nets, the oil industry, oil pipelines, buildings
and their with installations, hospitals, etc.

3.3.2 Six Interpretations

Let us substantiate the claims made in the previous paragraph. We will do so, albeit
informally, in the next many paragraphs. Our substantiation is a form of diagram-
matic reasoning. Subsets of diagrams will be claimed to represent parts, while other
subsets will be claimed to represent connectors. The reasoning is incomplete.

3.3.2.1 Air Traffic

Figure 3.4 shows nine (9) boxes and eighteen (18) lines. Together they form an
assembly. Individually boxes and lines represent units. The rounded corner boxes
denote buildings. The sharp corner box denotes an aircraft. Lines denote radio
telecommunication. Only where lines touch boxes do we have connections. These
are shown as red horizontal or vertical boxes at both ends of the double-headed
arrows, overlapping both the arrows and the boxes. The index ranges shown at-
tached to, i.e., labelling each unit, shall indicate that there are a multiple of the
“single” (thus representative) unit shown. Notice that the “box” units are fixed in-
stallations and that the double-headed arrows designate the ether where radio waves
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Control
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Control
Tower
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Fig. 3.4 An air traffic system. Black boxes and lines are units; red boxes are connections
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Fig. 3.5 A building plan
with installation
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may propagate. We could, for example, assume that each such line is characterised
by a combination of location and (possibly encrypted) radio communication fre-
quency. That would allow us to consider all line for not overlapping. And if they
were overlapping, then that must have been a decision of the air traffic system.

3.3.2.2 Buildings

Figure 3.5 shows a building plan – as an assembly of two neighbouring, com-
mon wall-sharing buildings, A and H, probably built at different times; with room
sections B, C, D and E contained within A, and room sections I, J and K within H;
with room sections L and M within K; and F and G within C. Connector � provides
means of a connection between A and B. Connection � provides “access” between
B and F. Connectors  and ! enable input, respectively, output adaptors (receptor,
resp. outlet) for electricity (or water, or oil), connection � allow electricity (or water,
or oil) to be conducted through a wall, etc.

3.3.2.3 Financial Service Industry

Figure 3.6 shows seven (7) larger boxes (six of which are shown by dashed lines) and
twelve (12) double-arrowed lines. Where double-arrowed lines touch upon (dashed)
boxes we have connections (also to inner boxes). Six (6) of the boxes, the dashed
line boxes, are assemblies, five (5) of them consisting of a variable number of units;
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Fig. 3.7 An air pump, i.e.,
a physical mechanical system
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five (5) are here shown as having three units each with bullets “between” them to
designate “variability”. People, not shown, access the outermost (and hence the “in-
nermost” boxes, but the latter is not shown) through connectors, shown by bullets, �.

3.3.2.4 Machine Assemblies

Figure 3.7 shows a machine assembly. Square boxes show assemblies or units. Bul-
lets, �, show connectors. Strands of two or three bullets on a thin line, encircled by a
rounded box, show connections. The full, i.e., the level 0, assembly consists of four
parts and three internal and three external connections. The pump unit is an assem-
bly of six (6) parts, five (5) internal connections and three (3) external connectors,
etc. One connector and some connections afford “transmission” of electrical power.
Other connections convey torque. Two connectors convey input air, respectively,
output air.
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3.3.2.5 Oil Industry

Figure 3.8 shows an assembly consisting of fourteen (14) assemblies, left-to-right:
one oil field, a crude oil pipeline system, two refineries and one, say, gasoline dis-
tribution network, two seaports, an ocean (with oil and ethanol tankers and their sea
lanes), three (more) seaports, and three, say gasoline and ethanol distribution net-
works. Between all of the assembly units there are connections, and from some of
the assembly units there are connectors (to an external environment). The crude oil
pipeline system assembly unit will be concretised next.

A Concretised Assembly Unit

Figure 3.9 on the following page shows a pipeline system. It consists of 32 units:
fifteen (15) pipe units (shown as directed arrows and labelled p1–p15), four (4)
input node units (shown as small circles, ı, and labelled ini–in`), four (4) flow pump
units (shown as small circles, ı, and labelled fpa–fpd), five (5) valve units (shown as

Oil
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Refinery Port

Port Ocean

Port
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Port
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Fig. 3.8 A Schematic of an oil industry
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small circles, ı, and labelled vx–vw), and four (4) output node units (shown as small
circles, ı, and labelled onp–ons). In this example the routes through the pipeline
system start with node units and end with node units, alternates between node units
and pipe units, and are connected as shown by fully filled-out red2 disc connections.
Input and output nodes have input, respectively, output connectors, one each, and
shown with green.3

3.3.2.6 Railway Nets

Figure 3.10 on the next page diagrams four rail units, each with their two, three or
four connectors. Multiple instances of these rail units can be assembled as shown
on Fig. 3.11 on the facing page into proper rail nets.

Figure 3.11 on the next page diagrams an example of a proper rail net. It is
assembled from the kind of units shown in Fig. 3.10. In Fig. 3.11 consider just the
four dashed boxes: The dashed boxes are assembly units. Two designate stations,
two designate lines (tracks) between stations. We refer to the caption four line text
of Fig. 3.10 on the facing page for more “statistics”. We could have chosen to show,
instead, for each of the four “dangling” connectors, a composition of a connection,
a special “end block” rail unit and a connector.

3.3.3 Discussion

It requires a somewhat more laborious effort, than just “flashing” and comment-
ing on these diagrams, to show that the modelling of essential aspects of their
structures can indeed be done by simple instantiation of the model given in the

Fig. 3.10 Four example rail
units

Turnout / Point
/ Switch Unit

Track / Line / Segment
/ Linear Unit

Switchable Crossover
Unit / Double Slip

Connectors − in−between are Units

Simple Crossover Unit
/ Rigid Crossing

2 This paper is most likely not published with colours, so red will be shown as darker colour.
3 Shown as lighter coloured connections.
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Fig. 3.11 A “model” railway
net. An assembly of four
Assemblies: two stations and
two lines; lines here consist
of linear rail units; stations of
all the kinds of units shown in
Fig. 3.10. There are 66
connections and four
“dangling” connectors
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previous section. We can refer to a number of documents which give rather detailed
domain models of air traffic [1], container line industry [9],4, financial service indus-
try (banks, credit card companies, brokers, traders and securities and commodities
exchanges, insurance companies, etc.),5 health-care [16, Sects. 10.2.2C 10.4.2], IT
security [17], “the market” (consumers, retailers, wholesalers, producers and distri-
bution chains) [2], “the” oil industry,6 transportation nets,7 railways [3,4,32,33,39]
and [16, Sect. 10.6],8 etc. Seen in the perspective of the present paper we claim
that much of the modelling work done in those references can now be considerably
shortened and trust in these models correspondingly increased.

3.4 Simple Entities

The reason for our interest in “simple entities” is that assemblies and units of sys-
tems possess static and dynamic properties which become contexts and states of the
processes into which we shall “transform” simple entities.

3.4.1 Observable Phenomena

We shall just consider “simple entities”. 9 By a simple entity we shall here under-
stand a phenomenon that we can designate, viz. see, touch, hear, smell or taste, or

4 http://www2.imm.dtu.dk/˜db/container-paper.pdf
5 http://www2.imm.dtu.dk/˜db/fsi.pdf
6 http://www2.imm.dtu.dk/˜db/pipeline.pdf
7 http://www2.imm.dtu.dk/˜db/transport.pdf
8 http://www.railwaydomain.org/
9 We use the name “simple entities” in contrast to “entities” which we see as comprising all of
simple entities, functions, events and behaviours. “Interesting” functions and normal events involve
all forms of entities.
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measure by some instrument (of physics, incl. chemistry). A simple entity thus has
properties. A simple entity is either continuous or is discrete, and then it is either
atomic or composite.

3.4.1.1 Attributes: Types and Values

By an attribute we mean a simple property of an entity. A simple entity has proper-
ties pi; pj; : : : ; pk. Typically we express attributes by a pair of a type designator: the
attribute is of type V , and a value: the attribute has value v (of type V , i.e., v W V).
A simple entity may have many simple properties. A continuous entity, like “oil”,
may have the following attributes: type: petroleum, kind: Brent-crude, amount: 6
barrels, price: 45 US $/barrel. An atomic entity, like a “person”, may have the fol-
lowing attributes: gender: male, name: Dines Bjørner, birth date: 4. Oct. 1937,
marital status: married. A composite entity, like a railway system, may have the
following attributes: country: Denmark, name: DSB, electrified: partly, owner:
independent public enterprise owned by Danish Ministry of Transport.

3.4.1.2 Continuous Simple Entities

A simple entity is said to be continuous if, within limits, reasonably sizable amounts
of the simple entity can be arbitrarily decomposed into smaller parts each of which
still remain simple continuous entities of the same simple entity kind. Examples
of continuous entities are: oil, i.e., any fluid, air, i.e., any gas, time period and a
measure of fabric.

3.4.1.3 Discrete Simple Entities

A simple entity is said to be discrete if its immediate structure is not continuous.
A simple discrete entity may, however, contain continuous sub-entities. Examples
of discrete entities are: persons, rail units, oil pipes, a group of persons, a railway
line and an oil pipeline.

Atomic Simple Entities

A simple entity is said to be atomic if it cannot be meaningfully decomposed into
parts where these parts have a useful “value” in the context in which the simple
entity is viewed and while still remaining an instantiation of that entity. Thus a
“physically able person”, which we consider atomic, can, from the point of physical
ability, not be decomposed into meaningful parts: a leg, an arm, a head, etc. Other
atomic entities could be a rail unit, an oil pipe, or a hospital bed. The only thing
characterising an atomic entity are its attributes.
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Composite Simple Entities

A simple entity, c, is said to be composite if it can be meaningfully decomposed
into sub-entities that have separate meaning in the context in which c is viewed. We
exemplify some composite entities. (1) A railway net can be decomposed into a set
of one or more train lines and a set of two or more train stations. Lines and sta-
tions are themselves composite entities. (2) An Oil industry whose decomposition
includes: one or more oil fields, one or more pipeline systems, one or more oil re-
fineries and one or more one or more oil product distribution systems. Each of these
sub-entities are also composite. Composite simple entities are thus characterisable
by their attributes, their sub-entities, and the mereology of how these sub-entities
are put together.

3.4.2 Mereology, Part III

Formula 3.15 on page 53 expresses that whenever an individual has one proper part
then it has more than one. We mentioned there, Page 53, that we would comment on
the fact that our model appears to allow that assemblies may have just one proper
part. We now do so. We shall still allow assemblies to have just one proper part
– in the sense of a sub-assembly or a unit – but we shall interpret the fact that an
assembly always has at least one attribute. Therefore we shall “generously” interpret
the set of attributes of an assembly to constitute a part. In Sect. 3.5 we shall see how
attributes of both units and assemblies of the interpreted mereology contribute to the
state components of the unit and assembly processes.

3.4.3 Discussion

In Sect. 3.3.2 we interpreted the model of mereology in six examples. The units
of Sect. 3.2 which in that section were left uninterpreted now got individuality – in
the form of aircraft, building rooms, rail units and oil pipes. Similarly for the assem-
blies of Sect. 3.2. They became pipeline systems, oil refineries, train stations, banks,
etc. In conventional modelling the mereology of an infrastructure component, of
the kinds exemplified in Sect. 3.3.2, was modelled by modelling that infrastructure
component’s special mereology together, “in line”, with the modelling of unit and
assembly attributes. With the model of Sect. 3.2 now available we do not have to
model the mereological aspects, but can, instead, instantiate the model of Sect. 3.2
appropriately. We leave that to be reported upon elsewhere. In many conventional
infrastructure component models it was often difficult to separate what was mereol-
ogy from what were attributes.
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3.5 A Semantic Model of a Class of Mereologies

3.5.1 The Mereology Entities � Processes

The model of mereology presented in Sect. 3.2 (Pages 50–56) focused on the fol-
lowing simple entities (1) the assemblies, (2) the units and (3) the connectors. To
assemblies and units we associate CSP processes, and to connectors we associate
a CSP channels, one-by-one [28, 29, 34, 36]. The connectors form the mereological
attributes of the model.

3.5.2 Channels

The CSP channels are each “anchored” into two parts: if a part is a unit then in “its
corresponding” unit process, and if a part is an assembly then in “its corresponding”
assembly process. From a system assembly we can extract all connector identifiers.
They become indexes into an array of channels. Each of the connector channel iden-
tifiers is mentioned in exactly two unit or assembly processes.

value
s:S
kis:KI-setD xtr8KIs(s)

type
ChMapD AUI !m KI-set

value
cm:ChMapD Œ obs AUI(p) 7!obs KIs(p)jp:P�p 2 xtr Ps(s) �

channel
chŒ iji:KI�i 2 kis � MSG

3.5.3 Process Definitions

value
system: S! Process
system(s)� assembly(s)

assembly: a:A!in,out fchŒ cm(i) �ji:KI�i 2 cm(obs AUI(a))g process
assembly(a)�

MA(a)(obs A˙(a)) k
k fassembly(a0)ja0:A�a0 2 obs Ps(a)g k
k funit(u)ju:U�u 2 obs Ps(a)g

obs A˙ : A! A˙
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MA: a:A!A˙!in,out fchŒ cm(i) �ji:KI�i 2 cm(obs AUI(a))g process
MA(a)(a�)�MA(a)(AF (a)(a�))

AF : a:A! A˙ ! in,out fchŒ em(i) �ji:KI�i 2
cm(obs AUI(a))g�A˙

unit: u:U! in,out fchŒ cm(i) �ji:KI�i 2 cm(obs UI(u))g process
unit(u)�MU (u)(obs U˙(u))
obs U˙ : U! U˙

MU : u:U! U˙ ! in,out fchŒ cm(i) �ji:KI�i 2 cm(obs UI(u))g process
MU (u)(u�)�MU (u)(UF (u)(u�))

UF : U! U˙ ! in,out fchŒ em(i) �ji:KI � i 2 cm(obs AUI(u))g U˙

The meaning processes MA and MU are generic. Their sole purpose is to provide
a never ending recursion. “In-between” they “make use” of assembly, respectively,
unit specific functions here symbolised by UA, respectively, UF .

3.5.4 Mereology, Part IV

A little more meaning has been added to the notions of parts and connections. The
within and adjacent to relations between parts (assemblies and units) reflects a
phenomenological world of geometry, and the connected relation between parts
(assemblies and units) reflects both physical and conceptual world understandings:
physical world in that, for example, radio waves cross geometric “boundaries”, and
conceptual world in that ontological classifications typically reflect lattice orderings
where overlaps likewise cross geometric “boundaries”.

3.5.5 Discussion

3.5.5.1 Partial Evaluation

The assembly function “first” “functions” as a compiler. The “compiler” translates
an assembly structure into three process expressions: the MA.a/.a�/ invocation,
the parallel composition of assembly processes, a0, one for each sub-assembly of
a, and the parallel composition of unit processes, one for each unit of assembly
a – with these three process expressions “being put in parallel”. The recursion in
assembly ends when a sub-. . . -assembly consists of no sub-sub-. . . -assemblies.
Then the compiling task ends and the many generated MA.a/.a�/ and MU.u/.u�/
process expressions are invoked.
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3.5.6 Generalised Channel Processes

We can refine the meaning of connectors. Each connector, so far, was modelled by
a CSP channel. CSP channels serve both as a synchronisation and as a commu-
nication medium. We now suggest to model it by a process. A channel process
can be thought of as having four channels and a buffering process. Connector,
�:K, may connect parts �i; �j. The four channels could be thought of as indexed
by .�; �i/; .�i; �/; .�; �j/ and .�j; �/. The process buffer could, depending on parts
pi; pj, be either queues, sets, bags, stacks or other.

3.6 Conclusion

3.6.1 Summary

We have proposed a simple model which we claim captures a large variety of struc-
tures of societal infrastructure components (Sect. 3.2). The model focused on parts,
their within and next to one another relation as well as connections between parts.
We have, rather briefly, held that model up against a variety of diagrammatic ren-
ditions of specific societal infrastructure components (Sect. 3.3) and claimed that
the model is relevant for their formalisation. We have then reviewed the concepts of
continuous (fluid, gaseous) and discrete (fixed, solid) simple entities and espe-
cially discussed the discrete atomic and composite simple entities (Sect. 3.4) and
their attributes and sub-entities. We have done so in order first to [again] single
out the topic of the mereology of composite (discrete) entities, and then to prepare
for the next section’s process states (and environments) – modelled from simple
entity attributes. We have finally shown how one can relate simple entities to CSP
processes and connectors to CSP channels (Sect. 3.5).

3.6.2 What Have We Achieved?

There is, as we indicated, in Sect. 3.3, a bewildering variety of societal infrastruc-
ture component and “gadget” structures – and these structures must be modelled.
We claim that the mereology model (of Sect. 3.2) provides a common denominator
for all of these: that the model is generic and can be simply instantiated for each
of the shown, and, we again claim for many other domain examples. We claim that
the model (of Sect. 3.2) can serve as a basis for investigating the axiom systems
proposed for mereology [12] and a calculus of individuals [13]. We thus claim to
have a simple model for the kind of mereologies presented in the literature.
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3.6.3 Open Points

We have yet to carefully demonstrate two classes of things: (1) to properly refine
our mereology model into models for the sub-entity structures of specific societal
infrastructure components, etc.; and (2) to identify the exact relations between our
model of mereology and the axiom systems presented in the literature [12, 13].

3.6.4 The Memorial and The Laudatio

On Douglas Taylor Ross:

It is possible his work in that direction became too pioneering or too advanced for his
colleagues, including us. Who knows, the future may prove him right. At any rate, his
reflections regularly made me think.

Michel Sintzoff, 2007

Acknowledgements I thank University of Saarland for hosting me during some of the time when
I wrote this paper.
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32. Pěnička, M. and Bjørner, D.: From railway resource planning to train operation — a brief sur-
vey of complementary formalisations. In: Jacquart, R. (ed.) Building the Information Society,
IFIP 18th World Computer Congress, Topical Sessions, 22–27 August, 2004, Toulouse, France,
pp. 629–636. Kluwer Academic Publishers (August 2004).
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Chapter 4
Roles, Stacks, Histories: A Triple for Hoare

Johannes Borgström, Andrew D. Gordon, and Riccardo Pucella

Abstract Behavioural type and effect systems regulate properties such as
adherence to object and communication protocols, dynamic security policies, avoid-
ance of race conditions, and many others. Typically, each system is based on some
specific syntax of constraints, and is checked with an ad hoc solver. Instead, we ad-
vocate types refined with first-order logic formulas as a basis for behavioural type
systems, and general purpose automated theorem provers as an effective means
of checking programs. To illustrate this approach, we define a triple of security-
related type systems: for role-based access control, for stack inspection, and for
history-based access control. The three are all instances of a refined state monad.
Our semantics allows a precise comparison of the similarities and differences of
these mechanisms. In our examples, the benefit of behavioural type-checking is to
rule out the possibility of unexpected security exceptions, a common problem with
code-based access control.

4.1 Introduction

4.1.1 Behavioural Type Systems

Type-checkers for behavioural type systems are an effective programming language
technology, aimed at verifying various classes of program properties. We consider
type and effect systems, typestate analyses, and various security analyses as being
within the class of behavioural type systems. A few examples include memory man-
agement [28], adherence to object and communication protocols [16, 53], dynamic
security policies [44], authentication properties of security protocols [30], avoidance
of race conditions [23], and many more.
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While the proliferation of behavioural type systems is a good thing – evidence
of their applicability to a wide range of properties – it leads to the problem of
fragmentation of both theory and implementation techniques. Theories of differ-
ent behavioural type systems are based on a diverse range of formalisms, such as
calculi of objects, classes, processes, functions, and so on. Checkers for behavioural
type systems often make use of specialised proof engines for ad hoc constraint lan-
guages. The fragmentation into multiple theories and implementations hinders both
the comparison of different systems, and also the sharing of proof engines between
implementations.

We address this fragmentation. We show three examples of security-related be-
havioural type systems that are unified within a single logic-based framework.
Moreover, they may be checked by invoking the current generation of automated
theorem provers, rather than by building ad hoc solvers.

4.1.2 Refinement Types and Automated Theorem Proving

The basis for our work is the recent development of automatic type-checkers for pure
functional languages equipped with refinement types. A refinement type fx W TjCg
consists of the values x of type T such that the formula C holds. Since values may
occur within the formula, refinement types are a particular form of dependent type.
Variants of this construction are referred to as refinement types in the setting of
ML-like languages [22, 27, 56], but also as subset types [41] or set types [14] in
the context of constructive type theory, and predicate subtypes in the setting of the
interactive theorem prover PVS [50].

In principle, type-checking with refinement types may generate logical verifica-
tion conditions requiring arbitrarily sophisticated proof. In PVS, for example, some
verification conditions are implicitly discharged via automated reasoning, but often
the user needs to suggest an explicit proof tactic.

Still, some recent type-checkers for these types use external solvers to discharge
automatically the proof obligations associated with refinement formulas. These
solvers take as input a formula in the syntax of first-order logic, including equal-
ity and linear arithmetic, and attempt to show that the formula is satisfiable. This
general problem is known as satisfiability modulo theories (SMT) [47]; it is undecid-
able, and hence the solvers are incomplete, but remarkable progress is being made.

Three examples of type-checkers for refinement types are SAGE [22, 31], F7
[10], and Dsolve [49]. These type-checkers rely on the SMT solvers Simplify [17],
Z3 [15], and Yices [18].

Our implementation experiments are based on the F7 type-checker, which
checks programs in a subset of the Objective Caml and F# dialects of ML against
a type system enhanced with refinements. The theoretical foundation for F7 and
its type system is RCF, which is the standard Fixpoint Calculus (FPC, a typed
call-by-value �-calculus with sums, pairs, and iso-recursive types) [32, 45] aug-
mented with message-passing concurrency and refinement types with formulas in
first-order logic.
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4.1.3 RIF: Refinement Types Meet the State Monad

Moggi [38] pioneered the state monad as a basis for the semantics of imperative
programming. Wadler [54] advocated its use to obtain imperative effects within
pure functional programming, as in Haskell, for instance. The state monad can be
written as the following function type, parametric in a type state, of global impera-
tive state.

M.T/ � state! .T � state/

The idea is that M.T/ is the type of a computation that, if it terminates on a given
input state, returns an answer of type T, paired with an output state.

With the goal of full verification of imperative computations, various authors,
including Filliâtre [21] and Nanevski et al. [39], consider the state monad of the
form below, where P and Q are assertions about state. (We elide some details of
variable binding.)

MP;Q.T/ � .state j P/! .T � .state j Q//

The idea here is that MP;Q.T/ is the type of a computation returning T, with pre-
condition P and postcondition Q. More precisely, it is a computation that, if it
terminates on an input state satisfying the precondition P, returns an answer of type
T, paired with an output state satisfying the postcondition Q. Hence, one can build
frameworks for Hoare-style reasoning about imperative programs [20, 40], where
MP;Q.T/ is interpreted so that .state j P/ and .state j Q/ are dependent pairs con-
sisting of a state together with proofs of P and Q. (The recent paper by Régis-Gianas
and Pottier [48] on Hoare logic reasoning for pure functional programs has a com-
prehensive literature survey on formalizations of Hoare logic.)

In this paper, we consider an alternative reading: let the refined state monad be
the interpretation of MP;Q.T/ where .state j P/ and .state j Q/ are refinement types
populated by states known to satisfy P and Q. In this reading, MP;Q.T/ is simply
a computation that accepts a state known to satisfy P and returns a state known to
satisfy Q, as opposed to a computation that passes around states paired with proof
objects for the predicates P and Q.

This paper introduces and studies an imperative calculus in which computations
are modelled as Fixpoint Calculus expressions in the refined state monad MP;Q.T/.
More precisely, our calculus, which we refer to as Refined Imperative FPC, or RIF
for short, is a generalization of FPC with dependent types, subtyping, global state
accessed by get and set operations, and computation types refined with precondi-
tions and postconditions. To specify correctness properties, we include assumptions
and assertions as expressions. The expression assume.s/C adds the formula CfM=sg,
where M is the current state, to the log, a collection of formulas assumed to hold.
The expression assert.s/C always returns at once, but we say it succeeds when the
formula CfM=sg, where M is the current state, follows from the log, and otherwise
it fails. We define the syntax, operational semantics, and type system for RIF, and
give a safety result, Theorem 1, which asserts that safety (the lack of all assertion
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failures) follows by type-checking. This theorem follows from a direct encoding of
RIF within RCF, together with appeal to a safety theorem for RCF itself. For the
sake of brevity, we relegate the direct encoding of RIF into RCF to a companion
technical report [12], which contains various details and proofs omitted from this
version of the paper.

Our calculus is similar in spirit to HTT [39] and YNot [40], although we use re-
finement types for states instead of dependent pairs, and we use formulas in classical
first-order logic suitable for direct proof with SMT solvers, instead of constructive
higher-order logic. Another difference is that RIF has a subtype relation, which may
be applied to computation types to, for example, strengthen preconditions or weaken
postconditions. A third difference is that we are not pursuing full program verifica-
tion, which typically requires some human interaction, but instead view RIF as a
foundation for automatic type-checkers for behavioural type systems.

If we ignore variable binding, both our refined type MP;Q.T/ and the construc-
tive types in the work of Filliâtre and Marché [20] and Nanevski et al. [40] are
instances of Atkey’s [5] parameterised state monad, where the parameterization is
over the formulas concerning the type state. When variable binding is included, the
type MP;Q.T/ is no longer a parameterized monad, since the preconditions and post-
conditions are of different types as the postcondition can mention the initial state.

4.1.4 Unifying Behavioural Types for Roles, Stacks, and Histories

Our purpose in introducing RIF is to show that the refined state monad can unify
and extend several automatically checked behavioural type systems. RIF is paramet-
ric in the choice of the type of imperative state. We show that by making suitable
choices of the type state, and by deriving suitable programming interfaces, we re-
cover several existing behavioural type systems, and uncover some new ones.

We focus on security-related examples where run-time security mechanisms –
based on roles, stacks, and histories – are used by trusted library code to protect
themselves against less trusted callers. Unwarranted access requests result in secu-
rity exceptions.

First, we consider role-based access control (RBAC) [19, 52] where the current
state is a set of activated roles. Each activated role confers access rights to particular
objects.

Second, we consider permission-based access control, where the current state
includes a set of permissions available to running code. We examine two standard
variants: stack-based access control (SBAC) [24, 29, 55] and history-based access
control (HBAC) [2]. We implement each of the three access control mechanisms as
an application programming interface (API) within RIF.

In each case, checking application code against the API amounts to behavioural
typing, and ensures that application code causes no security exceptions. Hence,
static checking prevents accidental programming errors in trusted code and both
accidental and malicious programming errors in untrusted code.
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Our results show the theoretical feasibility of our approach. We have type-
checked all of the example code in this paper by first running a tool that implements
a state-passing translation (described in Borgström et al. [12]) into RCF, and then
type-checking the translated code with F7 and Z3.

The contents of the paper are as follows. Section 4.2 considers access control
with roles. Section 4.3 considers access control with permissions, based either on
stack inspection or a history variable. We use our typed calculus in these sections but
postpone the formal definition to Section 4.4. Finally, Section 4.5 discusses related
work and Section 4.6 offers some conclusions, and a dedication.

4.2 Types for Role-Based Access Control

In general, access control policies regulate access to resources based on information
about both the resource and the entity requesting access to the resource, as well as
information about the context of the request. In particular, RBAC policies base their
decisions on the actions that an entity is allowed to perform within an organization –
their role. Without loss of generality, we can identify resources with operations to
access these resources, and therefore RBAC decisions concern whether a user can
perform a given operation based on the role that the user plays. Thus, roles are a
device for indirection: instead of assigning access rights directly to users, we assign
roles to users, and access rights to roles.

In this section, we illustrate the use of our calculus by showing how to express
RBAC policies, and demonstrate the usefulness of refinements on state by showing
how to statically enforce that the appropriate permissions are in place before con-
trolled operations are invoked. This appears to be the first-type system for RBAC
properties – most existing studies on verifying RBAC properties in the literature use
logic programming to reason about policies independently from code [8, 9, 36]. We
build on the typeful approach to access control introduced by Fournet et al. [25]
where the access policy is expressed as a set of logical assumptions; relative to that
work, the main innovation is the possibility of de-activating as well as activating
access rights.

As we mentioned in the introduction, our calculus is a generalization of FPC
with dependent types and subtyping. As such, we will use an ML-like syntax for
expressions in the calculus. The calculus also uses a global state to track security
information, and computation types refined with preconditions and postconditions
to express properties of that global state. The security information recorded in the
global state may vary depending on the kind of security guarantees we want to pro-
vide. Therefore, our calculus is parameterized by the security information recorded
in the global state and the operations that manipulate that information.

To use our calculus, we need to instantiate it with an extension API module that
implements the security information tracked in the global state, and the operations to
manipulate that information. The extension API needs to define a concrete state type
that captures the information recorded in the global state. Functions in the extension
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API are the only functions that can explicitly manipulate the state via the primitives
get() and set(). Moreover, the extension API defines predicates by assuming logical
formulas; this is the only place where assumptions are allowed.

We present an extension API for RBAC. In the simplest form of RBAC, permis-
sions are associated with roles, and therefore we assume a type role representing the
class of roles. The model we have in mind is that roles can be active or not. To be
able to use the permissions associated with a role, that role must be active. There-
fore, the security information to be tracked during computation is the set of roles
that are currently active.

RBAC API

type state = role list

val activate : r:role!f(s)Trueg unit f(s’)Add(s’,s,r)g
val deactivate : r:role!f(s)Trueg unit f(s’)Rem(s’,s,r)g

assume 8ts,x. Mem(x,ts), (9y, vs. ts = y::vs ^ (x = y _Mem (x,vs)))
assume 8rs,ts,x. Add(rs,ts,x), (8y. Mem(y,rs), (Mem(y,ts) _ x=y))
assume 8rs,ts,x. Rem(rs,ts,x), (8y. Mem(y,rs), (Mem(y,ts) ^:(x = y)))
assume 8s. CurrentState(s)) (8r. Active(r),Mem(r,s))

An extension API supplies three kinds of information. First, it fixes a type for the
global state. Based on the discussion above, the global state of a computation is the
set of roles that are active, hence state � role list, where role is the type for roles,
which is a parameter to the API.

Second, an extension API gives functions to manipulate the global state. The
extension API for primitive RBAC has two functions only: activate to add a role to
the state of active roles, and deactivate to remove a role from the state of active roles.

We use val f:T to give a type to a function in an API. Expressions get computa-
tion types of the form f.s0/C0g xWT f.s1/C1g. Such a computation type is interpreted
semantically using the refined state monad mentioned in Section 4.1.3, where it cor-
responds to the type M.s0/C0;.s1/C1

.T/. In particular, a computation type states that
an expression starts its evaluation with a state satisfying C0 (in which s0 is bound to
that state in C0) and yields a value of type T and a final state satisfying C1 (in which
s0 is bound to the initial state of the computation in C1, s1 is bound to the final state
of the computation, and x is bound to the value returned by the computation). Thus,
for instance, activate is a function that takes role r as input and computes a value of
type unit. That computation takes an unconstrained state (that is, satisfying True), and
returning a state that is the union of the initial state and the newly activated role r –
recall that a state here is a list of roles. Similarly, deactivate is a function that takes
a role as input and computes a unit value in the presence of an unconstrained state
and producing a final state that is simply the initial state minus the deactivated role.

The third kind of information contained in an API are logical axioms. Ob-
serve that the postconditions for activate and deactivate use predicates such as Add
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and Rem. We define such predicates using assumptions, which let us assume ar-
bitrary formulas in our assertion logic, formulas that will be taken to be valid in
any code using the API. Ideally, these assumed formulas would be proved sound
in some external proof assistant, in terms of some suitable model, but here we fol-
low an axiomatic approach. For the purposes of RBAC, we assume not only some
set-theoretic predicates (using lists as a representation for sets), but also a predicate
Active true exactly when a given role is currently active. To define Active, we rely on
a predicate CurrentState, where CurrentState(s) captures the assumptions that s is the
current set of active roles; Active then amounts to membership in the set of active
roles. We can only reason about Active under the assumption of some CurrentState(s).
We shall see that our formulas for reasoning about roles will always be of the form
CurrentState(s)) ..., where s is the current state.

RBAC API Implementation

// Set-theoretic operations (provided by a library)
val add: l:˛ list! e:˛ !f(s)Trueg r:˛ list f(s’)s=s’ ^Add(r,l,e)g
val remove : l:˛ list! e:˛ !f(s)Trueg r:˛ list f(s’)s=s’ ^Rem(r,l,e)g

let activate r = let rs = get() in let rs’ = add rs r in set(rs’)
let deactivate r = let rs = get() in let rs’ = remove rs r in set(rs’)

The implementation of activate and deactivate use primitive operations get() and
set() to respectively get and set the state of the computation. We make the assump-
tion that get() and set() may only be used in the implementation of API functions;
in particular, user code cannot use those operations to arbitrarily manipulate the
state. The API functions are meant to encapsulate all state manipulation. Beyond
the use of get() and set(), the implementation of the API functions above also use
set-theoretic operations add and remove to manipulate the content of the state. We
only give the types of these operations – their implementations are the standard
list-based implementations.

We associate permissions to roles via an access control policy expressed as logi-
cal assumptions. We illustrate this with a simple example, that of modelling access
control in a primitive file system. We assume two kinds of roles: the superuser, and
friends of normal users (represented by their login names):
� �

type role = SuperUser j FriendOf of string
� �

In this scenario, permissions concern which users can read which files. For simplic-
ity, we consider a policy where a superuser can read all files, while other users can
access specific files, as expressed in the policy. A predicate CanRead(f) expresses
the “file f can be read” permission, given the currently active roles. Here is a simple
policy in line with this description:
� �

assume 8file. Active(SuperUser))CanRead(file)
assume Active(FriendOf("Andy")))CanRead("andy.log")

� �
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This policy, aside from stating that the superuser can read all files, also states that if
the role FriendOf("Andy") is active, then the file andy.log can be read. For simplicity,
we consider only read permissions here. It is straightforward to extend the example
to include write permissions or execute permissions.

The main function we seek to restrict access to is readFile, which intuitively re-
quires that the currently active roles suffice to derive that the file to be read can in
fact be read.
� �

val readFile: file:string!f(rs) CurrentState(rs))CanRead(file)g string f(s)s=rsg
let readFile file =

assert (rs)(CurrentState(rs))CanRead(file));
primReadFile file

� �

We express this requirement by writing an assertion in the code of readFile, before
the call to the underlying system call primReadFile. The assert expression checks
that the current state (bound to variable rs) proves that CanRead(file) holds, under
the assumption that CurrentState(rs). Such an assertion succeeds if the formula is
provable, and fails otherwise. The main property of our language is given by a safety
theorem: if a program type-checks, then all assertions succeed. In other words, if a
program that uses readFile type-checks, then we are assured that by the time we call
primReadFile, we are permitted to read file, at least according to the access control
policy. The type system, somewhat naturally, forces the precondition of readFile to
ensure that the state can derive CanRead for the file under consideration.

Intuitively, the following expression type-checks:
� �

activate(SuperUser); readFile "andy.log"
� �

The expression first adds role SuperUser to the state, and the postcondition of
activate notes that the resulting state is the union of the initial state (of which
nothing is known) with SuperUser. When readFile is invoked, the precondition
states that the current state must be able to prove CanRead("andy.log"). Because
SuperUser is active and Active(SuperUser) implies CanRead(file) for any file, we
get CanRead("andy.log"), and we can invoke readFile. The following examples
type-check for similar reasons, since Active(FriendOf "Andy") can prove the formula
CanRead("andy.log"):
� �

activate(FriendOf "Andy"); readFile "andy.log"
activate(FriendOf "Andy"); deactivate(FriendOf "Jobo");

readFile "andy.log"
� �

In contrast, the following example fails to activate any role that gives a CanRead
permission on file "andy.log", and therefore fails to type-check:
� �

activate(FriendOf "Ric"); readFile "andy.log" // Does not type-check
� �

After activating FriendOf "Ric", the postcondition of activate expresses that the
state contains whatever was in the initial state along with the role FriendOf "Ric".
When invoking readFile, the type system tries to establish the precondition, but it
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only knows that Active(FriendOf "Ric"), and the policy cannot derive the formula
CanRead("andy.log") from it. Therefore, the type system fails to satisfy the pre-
condition of readFile "andy.log", and reports a type error.

The access control policy need not be limited to a statically known set of files.
Having a full predicate logic at hand affords us much flexibility. To express, for
instance, that any file with extension .txt can be read by anyone, we can use a
predicate Match:
� �

assume 8file.Match(file,"*.txt"))CanRead(file)
� �

Rather than axiomatizing the Match predicate, we rely on a function glob that does
a dynamic check to see if a file name matches the provided pattern, and in its post-
condition fixes the truth value of the Match predicate on those arguments:
� �

val glob : file:string! pat:string!
f(rs) Trueg r:bool f(rs’) rs=rs’ ^ (r=true)Match(file,pat))g

let glob file pat = if (	 ... code for globbing ... 	)
then assume Match(file,path); true

else false
� �

The following code therefore type-checks, even when all the activated roles do
not by themselves suffice to give a CanRead permission:
� �

activate(FriendOf "Ric");
let f = "log.txt" in

if (glob f "*.txt") then readFile f else "skipped"
� �

Similarly, not only can we specify which roles give CanRead permissions for
which files by saying so explicitly in the policy (as above), we can also dynamically
check that a friend of some user can read a file by querying the physical file system
through a primitive function primReadFSPerm(f,u) that checks whether a given user
u (and therefore their friends) can access a given file f, and reflect the result of that
dynamic check into the type system:
� �

val hasFSReadPermission : f:string! u:string!f(rs) Trueg
r:bool f(rs’) rs=rs’ ^ (r=True) (Active(FriendOf(u)))CanRead(f)))g

let hasFSReadPermission f u =
if primReadFSPerm (f,u)

then assume Active(FriendOf(u)))CanRead(f); true
else false

� �

The following code now type-checks:
� �

activate(FriendOf "Andy");
if (hasFSReadPermission "somefile" "Andy")

then readFile "somefile"
else "cannot read file"

� �
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The code first activates the role FriendOf "Andy", and then dynamically checks,
by querying the physical file system, that user "Andy" (and therefore his friends)
can in fact read file "somefile". The type of hasFSReadPermission is such that
if the result of the check is true, the new formula Active(FriendOf("Andy")))
CanRead("somefile") can be used in subsequent expressions – in particular, when
calling readFile "somefile". FriendOf "Andy" is active at that point, and therefore
CanRead("somefile") holds.

4.3 Types for Permission-Based Access Control

The RBAC systems of the previous section are most applicable in an interactive
setting, where principals inhabiting different roles can influence the computation as
it is running. Without interaction, we can instead work with a static division of the
program code based on its provenance. We assume that each function is assigned
a set of static permissions that enable it to perform certain side effects, such as file
system IO. A classical problem in this setting is the Confused Deputy [33], where
untrusted code performs unauthorized side effects through exploiting a trusted API.
This problem has been addressed through various mechanisms. In this section, we
consider SBAC [29, 55] and HBAC [2].

The purpose of SBAC is to protect trusted functions from untrusted callers. Un-
less explicitly requested, a permission only holds at run-time if all callers on the call
stack statically hold the permission.

HBAC also intends to protect trusted code from the untrusted code it may call,
by ensuring that the run-time permissions depend on the static permissions of every
function called so far in the entire program. In particular, when a function returns,
the current run-time permissions can never be greater than the static permissions of
that function. HBAC can be seen as a refinement of SBAC, in the sense that the run-
time permissions at any point when using the HBAC calling conventions are less
than those when using SBAC.

In this section, we show how the RIF calculus supports type-checking of both
SBAC and HBAC policies. There are several formalizations of SBAC, some of
which include type systems, Previous type systems for SBAC took a rather simple
view of permissions. To quote Pottier et al. [46]: “In our model, privileges are iden-
tifiers, and expressions cannot compute privileges. It would be desirable to extend
the static framework to at least handle first-class parameters of privileges, so for ex-
ample, a Java FilePermission, which takes a parameter that is a specific file, could
be modeled.” Having both computation types and dependent types in our impera-
tive calculus lets us treat not only parameters to privileges, but also have a general
theory of partially ordered privileges. We can also type-check code that computes
privileges, crucially including the privilege-manipulating API functions defined in
Section 4.3.2.
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As a side-effect, we can also investigate the differences between SBAC and
HBAC as implemented in our framework. We show one (previously known) ex-
ample where switching from SBAC to HBAC resolves a security hole by throwing a
run-time exception; additionally, static type-checking discovers that the code is not
safe to run under HBAC.

The use of type-checkers allows authors of trusted code to statically exclude
run-time security exceptions relating to lack of privileges. As discussed above, we
provide a more sensitive analysis than previous work, which facilitates the use of
the principle of least privilege. Type-checking can also be applied to untrusted code
before loading it, ensuring the lack of run-time security exceptions.

4.3.1 A Lattice of Permission Sets

As a running example, we introduce the following permissions. The ScreenIO per-
mission is atomic. A FileIO permission is a tuple of an access right of type RW and
a file scope of type Wildcard. The access rights are partially ordered: the owner of a
file can both read and write it. The scope Any extends to any file in the system.

Partially Ordered Permissions

type ˛Wildcard = Any j Just of ˛
type RW = Read j Write j Owns
type Permission = ScreenIO j FileIO of RW 	 (string Wildcard)
type Perms = Permission list

When generalizing HBAC and SBAC to the setting where permissions are par-
tially ordered, we run into a problem. Both HBAC and SBAC are built on taking
unions and intersections of sets of atomic permissions. In our setting permissions
are not atomic, but are built from partially ordered components, which makes
set-theoretic union and (especially) intersection unsuitable. As an example, the
greatest permission implied by both FileIO(Owns,Just(logFile)) and FileIO(Read,Any)
is FileIO(Read,Just(logFile)), rather than the empty permission.

We encode the partial order on permissions as a predicate Holds(p,ps) that checks
if a permission p is in the downward closure of the permission set ps. We define
the predicate Subsumed in terms of Holds. The greatest lower bound (glb) of two
permission sets ps and qs subsumes precisely those sets subsumed by both ps and
qs. Dually, the least upper bound (lub) of two permission sets ps and qs is the small-
est set subsuming both ps and qs. In the technical report [12], we show that these
operations are well defined1 on the poset of finite permission sets in this example.

1 The general condition is that every pair of permissions must have a finite glb. This holds if the
poset of permissions has no infinite subchains or if it forms a tree, where the latter is the case here.
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Predicate Symbols and Their Definitions

assume 8x,y,xs. Holds(FileIO(Owns,y),xs))Holds(FileIO(x,y),xs)
assume 8x,y,xs. Holds(FileIO(x,Any),xs))Holds(FileIO(x,Just(y)),xs)
assume 8x,xs. Holds(x,x::xs)
assume 8x,y,xs. Holds(x,xs))Holds(x,y::xs)
assume 8xs. Subsumed(xs,xs) ^Subsumed([],xs)
assume 8x,xs,ys. Holds(x,ys) ^Subsumed(xs,ys))Subsumed(x::xs,ys)

We also define predicates for Lub and Glb, and assume the standard lattice axioms
relating these to each other and to Subsumed (not shown). We then assume functions
lub, glb, and subsumed that compute the corresponding operations for the permission
language defined above, with the following types.

Types for Lattice Operations

val lub: ps:Perms! qs:Perms!f(s) Trueg res:Perms f(t) s=t ^ Lub(res,ps,qs)g
val glb: ps:Perms! qs:Perms!f(s) Trueg res:Perms f(t) s=t ^Glb(res,ps,qs)g
val subsumed: ps:Perms! qs:Perms!
f(s) Trueg x:bool f(t) s=t ^ (x=True,Subsumed(ps,qs))g

4.3.2 Stack-Based Access Control

In order to compare history- and stack-based access control in the same framework,
we begin by implementing API functions for requesting and testing permissions.
We let state be a record type with two fields: state � fast:Perms; dy:Permsg.
The ast field contains the current static permissions, which are used only when re-
questing additional dynamic permissions (see request below). The dy field contains
the current dynamically requested permissions. Computations have type (˛ ;req)
SBACcomp, for some return type ˛ and required initial dynamic permissions req.
An SBACthunk wraps a computation in a function with unit argument type.

The API functions have the following types and implementations. The become
function is used (notionally by the run-time system) when calling a function that
may have different static permissions from its caller. It first sets the static permis-
sions to those of the called code. Then, since the called function may be untrusted,
it reduces the dynamic permissions to the greatest lower bound of the current dy-
namic permissions and the static permissions of the called function. Dually, upon
return the run-time system calls sbacReturn with the original permissions returned
by become, restoring them. The request function augments the dynamic permissions,
after checking that the static context (Subsumed(ps,st)) permits it. We check that the
permissions ps dynamically hold using the function demand; it has type ps:Perms
! (unit;ps)SBACcomp.
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SBAC API and Calling Convention

type (˛ ;req:Perms) SBACcomp = f(s) Subsumed(req,s.dy)g ˛ f(t) s=tg
type (˛ ;req:Perms) SBACthunk = unit! (˛ ;req) SBACcomp
val become: ps:Perms!f(s)Truegs’:Statef(t) s=s’ ^ t.ast = ps ^Glb(t.dy,ps,s.dy)g
val sbacReturn: olds:State!f(s) Trueg unit f(t) t=oldsg
val permitOnly: ps:Perms!f(s) Truegunitf(t) s.ast = t.ast ^Glb(t.dy,ps,s.dy)g
val request: ps:Perms!
f(s) Subsumed(ps,s.ast)g unit f(t) s.ast = t.ast ^ Lub(t.dy,ps,s.dy)g

val demand: ps:Perms! (unit;ps) SBACcomp

The postcondition of an SBACcomp is that the state is unchanged. In order to re-
cover formulas that hold about the state, we use subtyping. As usual, a subtype of a
function type may return a subtype of the original computation type. In a subtype G
of a computation type F, we can strengthen the precondition. The postcondition of G
must also be weaker than (implied by) the precondition of G together with the post-
condition of F. As an example, f.s/Cg˛ f.t/Cft=sgg is a subtype of (˛ ;[])SBACcomp
for every C, since ` C ) True and ` .C ^ s D t/ ) Cft=sg. Subtyping is used to
ensure that pre- and postconditions match up when sequencing computations using
let. We also use subtyping to propagate assumptions that do not mention the state,
such as the definitions of predicates.

In the implementations of request and demand below, we assert that subsumed
always returns true. This corresponds to requiring that the caller has sufficient per-
missions. Since no assert fails in a well-typed program, any execution of such a
program always has sufficient run-time permissions.

SBAC API Implementation

let sbacReturn s = set s

let become ps =
let fast=st;dy=dyg = get() in let dz = glb ps dy in
set fast=ps;dy=dzg; fast=st;dy=dyg

let permitOnly ps =
let fast=st;dy=dyg = get() in let dz = glb ps dy in
set (fast=st;dy=dzg)

let request ps =
let fast=st;dy=dyg = get() in let x = subsumed ps st in
if x then let dz = lub ps dy in set fast=st; dy=dzg
else assert False ; failwith "SecurityException: request"

let demand ps =
let fast= ; dy=dyg = get() in let x = subsumed ps dy in
if x then() else assert False; failwith "SecurityException:
demand"
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To exercise this framework, we work in a setting with two principals. Agent is
untrusted, and can perform screen IO, read a version file and owns a temporary file.
System can read and write every file. We define three trusted functions, that either
run primitive (non-refined) functions or run as System. Function readFile demands
that the read permission for its argument holds dynamically. Similarly deleteFile
requires a write permission. Finally cleanupSBAC takes a function returning a file-
name, and then deletes the file returned by the function.
� �

let Applet = [ScreenIO;FileIO(Read,Just(version));FileIO(Owns,Just (tempFile))]
let System = [ScreenIO;FileIO(Write,Any);FileIO(Read,Any)]

val readFile: a:string! (string;[FileIO(Read,Just(a))]) SBACcomp
let readFile n = let olds = become System in demand [FileIO(Read,Just(n))];

let res = "Content of "ˆn in sbacReturn olds; res

val deleteFile: a:string! (string;[FileIO(Write,Just(a))]) SBACcomp
let deleteFile n = let olds = become System in demand [FileIO(Write,Just(n))];

let res = primitiveDelete n in sbacReturn olds; res

val cleanupSBAC: (string;[]) SBACthunk! (unit;[]) SBACcomp
let cleanupSBAC f = let olds = become System in request [FileIO(Write,Any)];

let s = f () in let res = deleteFile s in sbacReturn olds; res
� �

We now give some examples of untrusted code using these trusted functions and
the SBAC calling conventions. In SBAC1, an applet attempts to read the version
file. Since Applet has the necessary permission, this function is well typed at type
unit SBACcomp. In SBAC2, the applet attempts to delete a password file. Since the
applet does not have the necessary permissions, a run-time exception is thrown when
executing the code – and we cannot type the function SBAC2 at type unit SBACcomp.

However, in SBAC3, the SBAC abstraction fails to protect the password file. Here
the applet instead passes an untrusted function to cleanup. Since the permissions are
reset after returning from the untrusted function, the cleanup function deletes the
password file. Moreover, SBAC3 type-checks.
� �

let SBAC1: (unit;[]) SBACthunk = fun ()! let olds = become Applet in
request [FileIO(Read,Just(version))]; readFile version; sbacReturn olds

//Does not typecheck
let SBAC2 = fun ()! let olds = become Applet in

request [FileIO(Read,Just("passwd"))]; deleteFile "passwd";
sbacReturn olds

let aFunSBAC: (string;[]) SBACthunk = fun ()! let olds = become Applet in
let res = "passwd" in sbacReturn olds; res

let SBAC3: (unit;[]) SBACthunk = fun ()! let olds = become Applet in
cleanupSBAC aFunSBAC; sbacReturn olds

� �
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4.3.3 History-Based Access Control

The HBAC calling convention was defined [2] to protect against the kind of attack
that SBAC fails to prevent in SBAC3 above. To protect callers from untrusted func-
tions, HBAC reduces the dynamic permissions after calling an untrusted function.
A computation in HBAC of type (˛ ;req,pres) HBACcomp returning type ˛ preserves
the static permissions and does not increase the dynamic permissions. It also re-
quires permissions req and preserves permissions pres. As above, a HBACthunk is a
function from unit returning an HBACcomp. The HBAC calling convention is imple-
mented by the function hbacReturn, whic resets the static condition and reduces the
dynamic conditions to at most the initial ones.

The HBAC API extends the SBAC API with two functions for structured control
of permissions, grant and accept, which can be seen as scoped versions of request.
We use grant to run a subcomputation with augmented permissions. The second ar-
gument to grant ps is a (˛ ;ps,[]) HBACthunk, which may assume that the permissions
ps hold upon entry. We can only call grant itself if the current static permissions
subsume ps. Dually, accept allows us to recover permissions that might have been
lost when running a subcomputation. accept ps takes an arbitrary HBACthunk, and
guarantees that at least the glb (intersection) between ps and the initial dynamic
permissions holds upon exit. As before, we can only call accept if the current static
permissions subsume ps.

HBAC API and Calling Convention

type (˛ ;req:Perms,pres:Perms) HBACcomp =
f(s) Subsumed(req,s.dy) g ˛ f(t) s.ast = t.ast ^Subsumed(t.dy,s.dy)
^ (8qs. Subsumed(qs,pres) ^Subsumed(qs,s.dy))Subsumed(qs,t.dy))g

type (˛ ;req:Perms,pres:Perms) HBACthunk = unit! (˛ ;req,pres) HBACcomp
val hbacReturn: os:State!f(s) Trueg unit f(t) t.ast=os.ast ^Glb(t.dy,s.dy,os.dy)g
val grant: ps:Perms! (˛ ;ps,[]) HBACthunk!
f(s0) Subsumed(ps,s0.ast)g ˛ f(s3) s3.ast=s0.ast ^Subsumed(s3.dy,s0.dy)g

val accept: ps:Perms! (˛ ;[],[]) HBACthunk!
f(s) Subsumed(ps,s.ast)g ˛ f(t)s.ast = t.ast ^
(8qs. Subsumed(qs,ps) ^Subsumed(qs,s.dy))Subsumed(qs,t.dy))g

Here (˛ ;req) SBACcomp is a subtype of (˛ ;req,pres) HBACcomp for every pres.

HBAC API Implementation

let hbacReturn s = let fast=oldst; dy=oldyg = s in let fast=st;dy=dyg = get() in
let dz = glb dy oldy in set fast=oldst;dy=dzg

private val getDy: unit!f(s) Trueg dy:Perms f(t) t = s ^ t.dy = dyg
let getDy () = let fast= ;dy=dyg = get() in dy

let grant ps a = let dy = getDy () in request ps; let res = a () in permitOnly dy; res

let accept ps a = let dy = getDy () in let res = a () in request ps; permitOnly dy; res
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As seen above, the postcondition of an hbacComp does not set a lower bound
for the dynamic permissions. Because of this, we cannot type-check the cleanup
function with argument type string HBACcomp. Indeed, in this example, the dynamic
permissions are reduced to at most Applet, which is not sufficient to delete the pass-
word file.

In example HBAC1 we instead use cleanup grant. This function prudently checks
the return value of its untrusted argument, and uses grant to give precisely the re-
quired permission to deleteFile. If the check fails, we instead give an error message
(not to be confused with a security exception). For this reason, HBAC1 type-checks.
� �

let cleanupHBAC f = let olds = become System in
request [FileIO(Write,Any)]; let s = f () in deleteFile s ; hbacReturn olds

let cleanup grant : (string;[],[]) HBACthunk! (unit;[],[]) HBACcomp =
fun f! let olds = become System; let s = f () in
(if (s = tempFile) then let h = deleteFile s in grant [FileIO(Write,Just(s))] h
else print "Check of untrusted return value failed.");

hbacReturn olds

let aFunHBAC: (string;[],[]) HBACthunk = fun ()!
let olds = become Applet in let res = "passwd" in hbacReturn olds ; res

let HBAC1: (unit;[],[]) HBACthunk = fun ()!
let olds = become Applet in cleanup grant Applet fun ; hbacReturn olds

� �

However, cleanupHBAC will delete the given file if the function it calls preserves
the relevant write permission. This can cause a vulnerability. For instance, assume
a library function expand that (notionally) expands environment variables in its
argument. Such a library function would be statically trusted, and passing it to
cleanup HBAC will result in the sensitive file being deleted. Moreover, we can type-
check expand at type string! cleanupArg, where a cleanupArg preserves all System
permissions, including FileIO(Write,Just("passwd")), when run.
� �

type cleanupArg: (string;[],System) HBACthunk

val cleanupHBAC: cleanupArg! (unit;[],System) HBACthunk

//Does not type-check, since aFunHBAC is not a cleanupArg
let HBAC2 = fun ()! let olds = become Applet in

cleanupHBAC aFunHBAC ; hbacReturn olds

let expand:string! cleanupArg = fun n! fun ()!
let olds = become System in let res = n in hbacReturn olds ; n

let HBAC3:(unit;[],[]) HBACthunk = fun ()! let olds = become Applet in
cleanup HBAC (expand "passwd") ; hbacReturn olds

� �
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Here HBAC provides a middle ground when compared to SBAC on the one hand
and taint-tracking systems on the other, in regard to accuracy and complexity.

In the examples above, well-typed code does not depend on the actual state in
which it is run. Indeed, we could dispense with the state-passing entirely. However,
we can also introduce a function which lets us check if we hold certain run-time
permissions. When this function is part of the API, we need to keep an explicit
permission state (in the general case).

API Function for Checking Run-Time Permissions

val check: ps:Perms!f(s)Trueg b:bool f(t)s=t ^ (b=true)Subsumed(ps,t.dy))g
let check ps = let dy = getDy () in subsumed ps dy

We can use this function in the following (type-safe) way:
� �

let HBAC4:(unit;[],[]) HBACthunk = fun ()! let olds = become Applet in
(if check [FileIO(Write,Just("passwd"))]
then deleteFile "passwd"
else print "Not enough permissions: giving up.");

hbacReturn olds
� �

4.4 A Calculus for the Refined State Monad

In this section, we present the formal definition of RIF, the calculus we have been
using to model security mechanisms based on roles, stacks, and histories. We begin
with its syntax and operational semantics in Sections 4.4.1 and 4.4.2. Section 4.4.3
describes the type system of RIF and its soundness with respect to the operational
semantics. Finally, Section 4.4.4 describes how the calculus may be instantiated by
suitable choice of the state type.

4.4.1 Syntax

Our starting point is the Fixpoint Calculus (FPC) [32, 45], a deterministic call-by-
value �-calculus with sums, pairs, and iso-recursive data structures.

Syntax of the Core Fixpoint Calculus

s; x; y; z variable
h WWD value constructor

inl left constructor of sum type
inr right constructor of sum type
fold constructor of recursive type

M;N WWD value
x variable
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./ unit
fun x! A function (scope of x is A)
.M;N/ pair
h M construction

A;B WWD expression
M value
M N application
M D N syntactic equality
let x D A in B let (scope of x is B)
let .x; y/ D M in A pair split (scope of x, y is A)
match M with h x! A else B constructor match (scope of x is A)

We identify all phrases of syntax up to the consistent renaming of bound vari-
ables. In general, we write �f =xg for the outcome of substituting the phrase  for
each free occurrence of the variable x in the phrase �. We write fv.�/ for the set of
variables occurring free in the phrase �.

A value may be a variable x, the unit value ./, a function fun x ! A, a pair
.M;N/, or a construction. The constructions inl M and inr M are the two sorts of
value of sum type, while the construction fold M is a value of an iso-recursive type.
A first-order value is any value not containing any instance of fun x! A.

In our formulation of FPC, the syntax of expressions is in a reduced form
in the style of A-normal form [51], where sequential composition of redexes is
achieved by inserting suitable let-expressions. The other expressions are function
application M N, equality M D N (which tests whether the values M and N are
syntactically identical), pair splitting let .x; y/ D M in A, and constructor matching
match M with h x! A else B.

To complete our calculus, we augment FPC with the following operations for
manipulating and writing assertions about a global state. The state is implicit and
is simply a value of the calculus. We also assume an untyped first-order logic with
equality over values, equipped with a deducibility relation S ` C, from finite multi-
sets of formulas to formulas.

Completing the Syntax
Adding Global State to the Fixpoint Calculus

A;B WWD expression
� � � expressions of the Fixpoint Calculus
get./ get current state
set.M/ set current state
assume .s/C assumption of formula C (scope of s is C)
assert .s/C assertion of formula C (scope of s is C)

C WWD formula
p.M1; : : : ;Mn/ predicate – p a predicate symbol
M D M0 equation
C ^ C0 j :C j 9 x:C standard connectives and quantification
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A formula C is first order if and only if it only contains first order values.
A collection S is first order if and only if it only contains first order formulas.

The expression get./ returns the current state as its value. The expression set.M/
updates the current state with the value M and returns the unit value ./.

We specify intended properties of programs by embedding assertions, which are
formulas expected to hold with respect to the log, a finite multiset of assumed for-
mulas. The expression assume .s/C adds the formula CfM=sg to the logged formulas,
where M is the current state, and returns ./. The expression assert .s/C immediately
returns ./; we say the assertion succeeds if the formula CfM=sg is deducible from the
logged formulas, and otherwise that it fails. This style of embedding assumptions
and assertions within expressions is in the spirit of the pioneering work of Floyd,
Hoare, and Dijkstra on imperative programs; the formal details are an imperative
extension of assumptions and assertions in RCF [10].

We use some syntactic sugar to make it easier to write and understand examples.
We write A; B for let D A in B. We define boolean values as false � inl ./ and
true � inr ./. Conditional statements can then be defined as if M then A else B �
match M with inr x ! A else B. We write let rec f x D A in B as an abbreviation
for defining a recursive function f , where the scope of f is A and B, and the scope of
x is A. When s does not occur in C, we simply write C for .s/C. In our examples, we
often use a more ML-like syntax, lessening the A-normal form restrictions of our
calculus. In particular, we use let f x D A for let f D funx! A, if A then B1 else B2
for let x D A in if x then B1 else B2 (where x 62 fv.B1;B2/), let .x; y/ D A in B
for let z D A in let .x; y/ D z in B (where z 62 fv.B/), and so on. See
Bengtson et al. [10], for example, for a discussion of how to recover standard
functional programming syntax and data types like Booleans and lists within the
core FPC.

4.4.2 Semantics

We formalize the semantics of our calculus as a small-step reduction relation on
configurations, each of which is a triple .A;N; S/ consisting of a closed expression
A, a state N, and a log S, which is a multiset of formulas generated by assumptions.
A configuration .A;N; S/ is first order if and only if N, S and all formulas occurring
in A are first order.

We present the rules for reduction in two groups. The rules in the first group are
independent of the current state, and correspond to the semantics of core FPC.

Reductions for the Core Calculus: .A;N; S/ 
! .A0;N0; S0/
R WWD Œ � j let x D R in A evaluation context

.RŒA�;N; S/ 
! .RŒA0�;N0; S0/
if .A;N; S/ 
! .A0;N0; S0/ (RED CTX)

..fun x! A/ M;N; S/ 
! .AfM=xg;N; S/ (RED FUN)

.M1 D M2;N; S/ 
! .true;N; S/ if M1 D M2 (RED EQ)

.M1 D M2;N; S/ 
! .false;N; S/ if M1 ¤ M2 (RED NEQ)
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.let x D M in A;N; S/ 
! .AfM=xg;N; S/ (RED LET)
.let .x; y/ D .M1;M2/ in A;N; S/

! .AfM1=xgfM2=yg;N; S/ (RED SPLIT)

.match .h M/ with h x! A else B;N; S/

! .AfM=xg;N; S/ (RED MATCH)

.match .h0 M/ with h x! A else B;N; S/

! .B;N; S/ if h ¤ h0 (RED MISMATCH)

The second group of rules formalizes the semantics of assumptions, assertions
and the get and set operators, described informally in the previous section.

Reductions Related to State: .A;N; S/ 
! .A0;N0; S0/
.get./;N; S/ 
! .N;N; S/ (RED GET)
.set.M/;N; S/ 
! ../;M; S/ (RED SET)
.assume .s/C;N; S/ 
! ../;N; S [ fCfN=sgg/ (RED ASSUME)
.assert .s/C;N; S/ 
! ../;N; S/ (RED ASSERT)

We say an expression is safe if none of its assertions may fail at runtime. A con-
figuration .A;N; S/ has failed when A D RŒassert .s/C� for some evaluation context
R, where S [ fCfN=sgg is not first order or we cannot derive S ` CfN=sg. A configu-
ration .A;N; S/ is safe if and only if there is no failed configuration reachable from
.A;N; S/, that is, for all .A0;N0; S0/, if .A;N; S/ 
!� .A0;N0; S0/ then .A0;N0; S0/
has not failed. The safety of a (first order) configuration can always be assured by
carefully chosen assumptions (for example, assume .s/False). For this reason, user
code should use assumptions with prudence (and possibly not at all).

The purpose of the type system in the next section is to establish safety by typing.

4.4.3 Types

There are two categories of type: value types characterize values, while computation
types characterize the imperative computations denoted by expressions. Computa-
tion types resemble Hoare triples, with preconditions and postconditions.

Syntax of Value Types and Computation Types

T;U;V WWD (value) type
˛ type variable
unit unit type
˘x W T �F dependent function type (scope of x is F)
˙x W T �U dependent pair type (scope of x is U)
T C U disjoint sum type
�˛:T iso-recursive type (scope of ˛ is T)

F;G WWD computation type
f.s0/C0g xWT f.s1/C1g (scope of s0 is C0;T;C1, and scope of s1; x is C1)
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Value types are based on the types of the FPC, except that function types ˘x W
T �F and pair types ˙x W T �U are dependent. In our examples we use the F7-style
notations x W T ! F and x W T 	U instead of˘x W T �F and˙x W T �U. If the bound
variable x is not used, these types degenerate to simple types. In particular, if x is
not free in U, we write T 	U for x W T 	U, and if x is not free in F, we write T ! F
for x W T ! F. A value type T is first order if and only if T contains no occurrences
of ˘x W U �F (and hence contains no computation types). For the type˘x W T �F to
be well formed, we require that either T is a first-order type or that x is not free in
F. Similarly, for the type ˙x W T �U to be well formed, we require that either T is a
first-order type or that x is not free in U.

A computation type f.s0/C0g xWT f.s1/C1g means the following: if an expression
has this type and it is started in an initial state s0 satisfying the precondition C0,
and it terminates in final state s1 with an answer x, then postcondition C1 holds. As
above, we write f.s0/C0g T f.s1/C1g for f.s0/C0g xWT f.s1/C1g if x is not free in C1.
If T is not first order, we require that x is not free in C1.

When we write a type T in a context where a computation type is expected,
we intend T as a shorthand for the computation type f.s0/Trueg T f.s1/s1 D s0g.
This is convenient for writing curried functions. Thus, the curried function type
x W T ! y W U ! F stands for ˘x W T � f.s00/Trueg˘y W U �F f.s01/s01 D s00g.

Our calculus is parameterized by a type state representing the type of data in the
state threaded through a computation, and which we take to be an abbreviation for
a closed RIF type not involving function types – that is, a closed first-order type.

Our typing rules are specified with respect to typing environments, given as fol-
lows, which contain value types of variables, temporary subtyping assumptions for
iso-recursive types, and the names of the state variables in scope.

Syntax of Typing Environments

� WWD environment entry
˛ <W ˛0 subtype (˛ ¤ ˛0)
s state variable
x W T variable

E WWD ∅ j E; � environment

dom.˛ <W ˛0/ D f˛; ˛0g dom.s/ D fsg dom.x W T/ D fxg
dom.E; �/ D dom.E/[ dom.�/ dom.∅/ D ∅

fov.E/ D fs 2 Eg [ fx 2 dom.E/ j .x W T/ 2 E; T is first-orderg

Our type system consists of several inductively defined judgments.

Judgments

E ` ˘ E is syntactically well-formed
E ` T in E, type T is syntactically well-formed
E ` F in E, type F is syntactically well-formed
E ` C fo in E, formula C is first-order
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E ` T <W U in E, type T is a subtype of type U
E ` F <W G in E, type F is a subtype of type G

E ` M W T in E, value M has type T
E ` A W F in E, expression A has computation type F

The rules defining these judgments are displayed in a series of groups. First,
we describe the rules defining when environments, formulas, and value and com-
putation types are well formed. An environment is well formed if its entries have
pair-wise disjoint domains. A formula is well formed if all its free variables have
first-order type in the environment. A type is well formed if its free variables have
first-order type in the environment.

Rules of Well-Formedness

(ENV EMPTY)

∅ ` ˘

(ENV ENTRY)
E ` ˘
fv.�/ � fov.E/
dom.�/\ dom.E/ D ∅

E; � ` ˘

(FORM)
E ` ˘
C is first-order
fv.C/ � fov.E/

E ` C fo

(ENV TYPE)
E ` ˘
fv.T/ � fov.E/

E ` T

First-order values may occur in types, but only within formulas; since our logic
is untyped, these well-formedness rules need not constrain values occurring within
types to be themselves well typed. We do constrain variables occurring in formulas
to have first-order types.

General Rules for Expressions

(EXP RETURN)
E; s0 ` M W T

E ` M W f.s0/Trueg WT f.s1/s0 D s1g
(STATEFUL EXP LET)

E ` A W f.s0/C0g x1WT1 f.s1/C1g
E; s0; x1 W T1 ` B W f.s1/C1g x2WT2 f.s2/C2g
fs1; x1g \ fv.T2;C2/ D ∅

E ` let x1 D A in B W f.s0/C0g x2WT2 f.s2/C2g
(EXP EQ)
E ` M W T E ` N W U x … fv.M;N/ E; s0; s1 ` C fo
C D .s0 D s1/ ^ .x D true, M D N/ T;U first-order

E ` M D N W f.s0/Trueg xWbool f.s1/Cg
In (EXP RETURN), when returning a value from a computation, the state is

unchanged. In (EXP EQ), the return value of an equality test is refined with the
logical formula expressing the test. The rule (STATEFUL EXP LET) glues together
two computation types if the postcondition of the first matches the precondition of
the second.
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Assumptions and Assertions

(EXP ASSUME)
E; s0; s1 ` ˘ E; s0 ` C fo

E ` assume .s0/C W f.s0/Trueg unit f.s1/..s0 D s1/ ^ C/g
(EXP ASSERT)

E; s0; s1 ` ˘ E; s0 ` C fo

E ` assert .s0/C W f.s0/Cg unit f.s1/s0 D s1g

In (EXP ASSUME), an assumption assume .s/C has C as postcondition, and does
not modify the state. Dually, in (EXP ASSERT), an assertion assert .s/C has C as
precondition.

Rules for State Manipulation

(STATEFUL GET)
E; s0; x1 W state; s1 ` ˘

E ` get./ W f.s0/Trueg x1Wstate f.s1/x1 D s0 ^ s1 D s0g
(STATEFUL SET)

E ` M W state E; s0; s1 ` ˘
E ` set.M/ W f.s0/Trueg unit f.s1/s1 D Mg

In (STATEFUL GET), the type of get./ records that the value read is the current
state. In (STATEFUL SET), the postcondition of set.M/ states that M is the new state.
The postcondition of set.M/ does not mention the initial state. We can recover this
information through subtyping, below.

Subtyping for Computations

(SUB COMP)
E; s0 ` C0 fo E; s0 ` C00 fo
E; s0; xWT; s1 ` C1 fo E; s0; xWT 0; s1 ` C01 fo
C00 ` C0 E; s0 ` T <W T 0 .C00 ^ C1/ ` C01

E ` f.s0/C0g xWT f.s1/C1g <W f.s0/C00g xWT 0 f.s1/C01g
(EXP SUBSUM)
E ` A W F E ` F <W F0

E ` A W F0

In (SUB COMP), when computing the supertype of a computation type, we may
strengthen the precondition, and weaken the postcondition relative to the strength-
ened precondition. For example, since .C0 ^ C1/ ` .C0 ^ C1/, we have

E ` f.s0/C0g xWT f.s1/C1g <W f.s0/C0g xWT f.s1/C0 ^ C1g
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Next, we present rules grouped by the different forms of value type. When type-
checking values, we may gain information about their structure. We record this
information by adding it to the precondition of the computation that uses the data,
but only if the value being type-checked is first order.

Augmenting the Precondition of a Computation Type

C �T F � f.s1/C ^ C1g xWU f.s2/C2g if T first-order
C �T F � F otherwise

where F D f.s1/C1g xWU f.s2/C2g and s1 … fv.C/

Rules for Unit and Variables

(VAL UNIT)
E ` ˘

E ` ./ W unit

(VAL VAR)
E ` ˘ .x W T/ 2 E

E ` x W T

The unit type has only one inhabitant ./. The rule (VAL VAR) looks up the type
of a variable in the environment.

Rules for Pairs

(VAL PAIR)
E ` M W T E ` N W UfM=xg
E ` .M;N/ W .˙x W T �U/

(STATEFUL EXP SPLIT)
E ` M W .˙x W T �U/
E; x W T; y W U ` A W ..x; y/ D M/ �˙xWT �U F
fx; yg \ fv.F/ D ∅

E ` let .x; y/ D M in A W F

In (STATEFUL EXP SPLIT), when splitting a pair, we strengthen the precondition
of the computation with the information derived from the pair split.

Rules for Sums and Recursive Types

inlW.T;TCU/ inrW.U;TCU/ foldW.Tf�˛:T=̨ g; � ˛:T/

(VAL INL INR FOLD)
h W .T;U/ E ` M W T E ` U

E ` h M W U

(STATEFUL EXP MATCH INL INR FOLD)
E ` M W T h W .U;T/ x … fv.F/
E; x W U ` A W .h x D M/ �T F
E ` B W .8 x:h x ¤ M/ �T F

E ` match M with h x! A else B W F

The typing rules for dependent functions are standard.

Rules for Functions

(STATEFUL VAL FUN)
E; x W T ` A W F

E ` fun x! A W .˘x W T �F/

(STATEFUL EXP APPL)
E ` M W .˘x W T �F/ E ` N W T

E ` M N W FfN=xg
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The rules for constructions h M depend on an auxiliary relation h W .T;U/ that
gives the argument T and result U of each constructor h. As in (STATEFUL EXP
SPLIT), the rule (STATEFUL EXP MATCH INL INR FOLD) strengthens the pre-
conditions of the different branches with information derived from the branching
condition.

We complete the system with the following rules of subtyping for value types.
Subtyping for Value Types

(SUB UNIT)
E ` ˘

E ` unit <W unit

(SUB SUM)
E ` T <W T 0 E ` U <W U0
E ` .T C U/ <W .T 0 CU0/

(STATEFUL SUB FUN)
E ` T 0 <W T E; x W T 0 ` F <W F0
E ` .˘x W T �F/ <W .˘x W T 0 �F0/

(SUB PAIR)
E ` T <W T 0 E; x W T ` U <W U0
E ` .˙x W T �U/ <W .˙x W T 0 �U0/

(SUB VAR)
E ` ˘ .˛ <W ˛0/ 2 E

E ` ˛ <W ˛0

(SUB REC)
E; ˛ <W ˛0 ` T <W T 0 ˛ … fv.T 0/ ˛0 … fv.T/

E ` .�˛:T/ <W .�˛0:T 0/
These rules are essentially standard [4, 13, 42]. In (SUB REC), when checking

subtyping of recursive types, we use the environment to keep track of assumptions
introduced when unfolding the types.

The main result of this section is that a well-typed expression run in a state sat-
isfying its precondition is safe, that is, no assertions fail. Using this result, we can
implement different type systems for reasoning about stateful computation in the
calculus.

Theorem 1 (Safety) If ∅ ` A W f.s/Cg W T f.s0/Trueg, ∅ ` CfM=sg and ∅ ` M W
state then the configuration .A;M;∅/ is safe.

The proof of this theorem uses a state-passing translation of RIF into RCF. In
particular, a computation type f.s0/C0g xWT f.s1/C1g is translated to the refined state
monad MC0;C1

.ŒŒT��/ described in the introduction, where ŒŒT�� is the translation of
the value type T. We prove the translation to preserve types, allowing us to appeal
to the safety theorem for well-typed RCF programs. The translation and the proof
can be found in the technical report [12].

4.4.4 Pragmatics

We find it useful to organize our code into modules. Rather than formalize mod-
ules in the syntax, we follow the conventions of Bengtson et al. [10]. A module
consists of a set of function names f1; : : : ; fk with corresponding implementations
M1; : : : ;Mk and associated types T1; : : : ;Tk. It may also include predicate sym-
bols p and an assumption assume .s/C. (Without loss of generality, we suppose
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there is a single such assume expression, but clearly multiple assume expres-
sions can be reduced to a single assume expression with a conjunction of the
assumed formulas.) A module is well formed if the functions type-check at the
declared function types, under the given assumptions, that is, if for all i 2 Œ1::k�:
f1 W T1; : : : ; fk W Tk ` let D assume .s/C in Mi W Ti. All modules used in this pa-
per are well formed. We use let f D M to define the implementation of a function in
a module, and val f W T for its associated type. We sometimes also use let f W T D M
to capture the same information.

Type-checking a computation A (at type F) in the context of a module with func-
tions f1; : : : ; fk with implementations M1; : : : ;Mk and types T1; : : : ;Tk corresponds
to type-checking f1 W T1; : : : ; fk W Tk ` let D assume .s/C in A W F and ex-
ecuting A in the context of that module corresponds to executing the expression
assume .s/C; let f1 D M1 in : : : let fn D Mn in A.

As illustrated in previous sections, to use our calculus, we first instantiate it with
an extension API module that embodies the behavioural type system that we want
to capture. In particular, functions in an extension API module perform all the re-
quired state manipulations. These extension API functions are written in the internal
language described earlier, using the state-manipulation primitives get() and set().
Moreover, the extension API defines a concrete state type.

4.5 Related Work

We discuss related work on type systems for access control. Pottier et al. [46] de-
velop a type and effect system for SBAC. As in our work, the goal is to prevent
security exceptions. Our work is intended to show that their type system may be
generalized so that effects are represented as formulas. Hence, our work is more
flexible in that we can deal with an arbitrary lattice of dependent permissions; their
system is limited to a finite set of permissions.

Besson et al. [11] develop a static analysis for .NET libraries, to discover anoma-
lies in the security policy implemented by stack inspection. The tool depends on a
flow analysis rather than a type system.

A separate line of work investigates the information flow properties of stack-
based and history-based access control [6, 7, 43]. We believe our type system could
be adapted to check information flow, but this remains future work. Another line of
future investigation is type inference; ideas from the study of refinement types may
be helpful [35, 49].

Abadi et al. [3] initiated the study of logic for access control in distributed
systems; they propose a propositional logic with a says-modality to indicate the in-
tentions of different principals. This logic is used by Wallach et al. [55] to provide
a logical semantics of stack inspection. Abadi [1] develops an approach to access
control in which the formulas of a constructive version of the logic are interpreted
as types. AURA Jia et al. [34] is a language that is based, in part, on this idea.

Fournet et al. [25] introduced the idea of type-checking code to ensure confor-
mance to a logic-based authorization policy. A series of papers develops the idea for
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distributed systems modelled with process calculi [26, 37]. In this line of work, ac-
cess rights may be granted but not retracted. Our approach in Section 4.2 is different
in that we deal with roles that may be activated and deactivated.

4.6 Conclusion

We described a higher-order imperative language whose semantics is based on the
state monad, refined with preconditions and postconditions. By making different
choices for the underlying state type, and supplying suitable primitive functions, we
gave semantics for standard access control mechanisms based on stacks, histories,
and roles. Type-checking ensures the absence of security exceptions, a common
problem for code-based access control.

This work is dedicated to Tony Hoare, in part in gratitude for his useful feedback
over the years on various behavioural type systems for process calculi. Some of
those calculi had a great deal of innovative syntax. So we hope he will endorse our
general conclusion, that it is better to design behavioural type systems using types
refined with logical formulas, than to invent still more syntax.
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Chapter 5
Forward with Hoare

Mike Gordon and Hélène Collavizza

Abstract Hoare’s celebrated paper entitled “An Axiomatic Basis for Computer
Programming” appeared in 1969, so the Hoare formula PfSgQ is now 40 years old!
That paper introduced Hoare Logic, which is still the basis for program verification
today, but is now mechanised inside sophisticated verification systems. We aim here
to give an accessible introduction to methods for proving Hoare formulae based
both on the forward computation of postconditions and on the backward computa-
tion of preconditions. Although precondition methods are better known, computing
postconditions provides a verification framework that encompasses methods rang-
ing from symbolic execution to full deductive proof of correctness.

5.1 Introduction

Hoare logic [12] is a deductive system whose axioms and rules of inference provide
a method of proving statements of the form PfSgQ, where S is a program statement1

and P and Q are assertions about the values of variables. Following current practice,
we use the notation fPgSfQg instead of PfSgQ. Such a ‘Hoare triple’ means that
Q (the ‘postcondition’) holds in any state reached by executing S from an initial
state in which P (the ‘precondition’) holds. Program statements may contain vari-
ables V (X, Y, Z, etc.), value expressions (E) and Boolean expressions (B). They are

1 The word ‘statement’ is overused: Hoare statements PfSgQ (or fPgSfQg) are either true or false,
but program statements are constructs that can be executed to change the values of variables. To
avoid this confusion program statements are sometimes called commands.
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built out of the skip (SKIP) and assignment statements (V:=E) using sequential
composition (S1;S2), conditional branching (IFBTHENS1 ELSES2) and WHILE-
loops (WHILE B DO S). The assertions P and Q are formal logic formulae expressing
properties of the values of variables.

Hoare explicitly acknowledges that his deductive system is influenced by the
formal treatment of program execution due to Floyd [8].2 There is, however, a dif-
ference, which is exhibited below using Hoare triple notation (where the notation
MŒE=V�, where M can be a formula or expression, denotes the result of substituting
E for V in M).

Floyd’s assignment axiom: ` fPgV:=Ef9 v: .V D EŒv=V�/ ^ PŒv=V�g
Hoare’s assignment axiom: ` fQŒE=V�gV:=EfQg

These are axiom schemes: any instance obtained by replacing P, Q, V , E by specific
terms and formulae is an axiom. Example instances of the axiom schemes, using the
replacements P 7! .XDY/, Q 7! .XD2�Y/, V 7! X and E 7! .XCY/, are:

Floyd: ` fXDYgX:=XCYf9 v: .X D ..XCY/Œv=X�// ^ ..XDY/Œv=X�/g
Hoare: ` f.XD2�Y/Œ.XCY/=X�gX:=XCYfXD2�Yg

which become the following if the substitutions MŒE=V� are performed:

Floyd: ` fXDYgX:=XCYf9 v: .X D vCY/ ^ .vDY/g
Hoare: ` f.XCY/D2�YgX:=XCYfXD2�Yg

These are both equivalent to ` fXDYgX:=XCYfXD2�Yg, but the reasoning in the
Hoare case is a bit simpler since there is no existential quantification.

In general, the Floyd and Hoare assignment axioms are equivalent, but it is the
Hoare axiom that is more widely used, since it avoids an accumulation of an exis-
tential quantifier – one for each assignment in the program.

The axioms of Hoare logic include all instances of the Hoare assignment axiom
scheme given above. The rules of inference of the logic provide rules for combin-
ing Hoare triples about program statements into Hoare triples about the result of
combining the statements using sequential composition, conditional branches and
WHILE-loops.

5.2 Weakest Preconditions and Strongest Postconditions

A few years after Hoare’s pioneering paper, Dijkstra published his influential book
“A Discipline of Programming” [6] in which a framework for specifying semantics
based on ‘predicate transformers’ – rules for transforming predicates on states – is

2 The fascinating story of the flow of ideas between the early pioneers of programming logic is
delightfully told in Jones’ historical paper [16].
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described. Dijkstra regarded assertions like preconditions (P above) and postcon-
ditions (Q above) as predicates on the program state, since for a given state such
an assertion is either true or false. His book introduces ‘weakest preconditions’
as a predicate transformer semantics that treats assignment statements in a way
equivalent to Hoare’s assignment axiom. A dual notion of ‘strongest postconditions’
corresponds to Floyd’s treatment of assignments. We do not know who first intro-
duced the concept of strongest postconditions. They are discussed in Dijkstra’s 1990
book with Scholten [7], but several recent papers (e.g. [11]) cite Gries’ 1981 text-
book [10], which only describes them in an exercise. Jones [16, p. 12] mentions that
Floyd discusses a clearly related notion of ‘strongest verifiable consequents’ in his
1967 paper.

If P ) Q then P is said to be stronger than Q. The strongest postcondition
predicate transformer for a statement S transforms a precondition predicate P to
a postcondition predicate spS P, which is the ‘strongest’ predicate holding after
executing S in a state satisfying precondition P. This is strongest in the sense that if
Q has the property that it holds of any state resulting from executing S when P, then
spS P is stronger than Q – i.e. spS P) Q. The strongest postcondition predicate
transformer semantics of V:=E is

sp .V:=E/P D 9 v: .V D EŒv=V�/ ^ PŒv=V�

The definition of strongest postcondition entails that fPgV:=EfQg holds if and only
if sp .V:=E/P entails Q.

If P) Q then Q is said to be weaker than P. The weakest precondition predicate
transformer for a statement S transforms a postcondition predicate Q to a precon-
dition predicate wpS Q, which is the ‘weakest’ predicate that ensures that if a state
satisfies it then after executing S the predicate Q holds.3 This is weakest in the sense
that if P has the property that executing S when P holds ensures that Q holds, then
wpS Q is weaker than P – i.e. P ) wpS Q. The weakest precondition predicate
transformer semantics of V:=E is

wp .V:=E/Q D QŒE=V�

The definition of weakest precondition entails that fPgV:=EfQg holds if and only
if P entails wp .V:=E/Q.

Equations satisfied by spS P and wpS Q are listed in Fig.5.1 (the equations for
assignments are repeated there for convenience). These equations were originally
taken as axioms. The axiomatic approach is discussed in Hoare’s paper: it has the
advantage of allowing a partial specification of meaning, which gives freedom to
compiler writers and can make language standards more flexible. However, a purely
axiomatic approach is hard to scale to complex programming constructs, as the

3 Dijkstra defined ‘weakest precondition’ to require termination of S – what we are calling ‘weakest
precondition’ he calls ‘weakest liberal precondition’. Dijkstra also uses different notation: in his
first book he uses wlp(S,Q) and wp(S,Q). In the later book with Scholten he uses wlp.S.Q
and wp.S.Q. Thus our wp S Q is Dijkstra’s wlp(S,Q) (or wlp.S.Q). However, our use of
‘strongest postcondition’ corresponds to Dijkstra’s, though our notation differs.
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spSKIPP D P
wpSKIPQ D Q

sp .V:=E/P D 9 v: .VDEŒv=V�/^ PŒv=V�
wp .V:=E/Q D QŒE=V�

sp .S1;S2/P D sp S2 .sp S1 P/
wp .S1;S2/Q D wp S1 .wp S2 Q/

sp .IFBTHEN S1 ELSE S2/P D .sp S1 .P ^ B// _ .sp S2 .P^:B//
wp .IFBTHEN S1 ELSE S2/Q D ..wp S1 Q/^ B/ _ ..wp S2 Q/^:B/

sp .WHILE B DO S/P D .sp .WHILE B DO S/ .sp S .P^ B/// _ .P^:B/
wp .WHILE B DO S/Q D .wp S .wp .WHILE B DO S/Q/^ B/ _ .Q^:B/

Fig. 5.1 Equations defining strongest postconditions and weakest preconditions

axioms and rules get complicated and consequently hard to trust. It is now more
common to give a formal semantics of programming constructs (either operational
or denotational) and to derive Hoare logic axioms and rules and predicate trans-
former laws from this [24].

Computing sp .S1;S2/P using the equations in Fig. 5.1 consists of starting
from a precondition P, then first computing spS1 P and then applying spS2 to
the resulting predicate. This is forwards symbolic execution. In contrast, comput-
ing wp .S1;S2/Q proceeds backwards from a postcondition Q by first computing
wpS2Q and then applying wp S1 to the resulting predicate. We have more to say
about forwards versus backwards later (e.g. in Section 5.6).

5.3 Proving Hoare Triples via Predicate Transformers

The relationship between Hoare triples, strongest postconditions and weakest pre-
conditions is that fPgSfQg holds if and only if .spS P/ ) Q and also if and only
if P ) wpS Q. These implications are purely logical formulae, so a pure logic
theorem prover can be used to prove them. Thus strongest postconditions and weak-
est preconditions each provide a way of ‘compiling’ the problem of verifying a
Hoare triple to a purely logical problem.4 For a loop-free program S, the equations
in Fig. 5.1 can be used as left-to-right rewrites to calculate spS P and wpS Q (if S
contains a WHILE-loop then such rewriting may not terminate). The right-hand side
of the equation for sp .V:=E/P contains an existentially quantified conjunction,
whereas the right-hand side of the equation for wp .V:=E/Q is just QŒE=V�, thus

4 Actually this is an oversimplification: mathematical constants might occur in the formula, e.g.C,
�, 	 from the theory of arithmetic, so the theorem prover may need to go beyond pure logic and
solve problems in mathematical theories.
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R:= 0;
K:= 0;
IF I < J THEN K:=KC 1 ELSE SKIP;
IF K D 1^:.I D J/ THEN R:=J� I ELSE R:=I� J

Fig. 5.2 The loop-free example program AbsMinus

the formulae generated by the equations for strongest postconditions will be signif-
icantly more complex than those for weakest preconditions. This is one reason why
weakest preconditions are often used in Hoare logic verifiers. The reader is invited
to compare the two proofs of fI < JgAbsMinusfR D J
I ^ I<Jg (the loop-
free program AbsMinus is given in Fig. 5.2) obtained by manually calculating
spAbsMinus .I < J/ and wpAbsMinus .R D J
I ^ I<J/.

Although the naive calculation of spS P using the equations in Fig. 5.1 gen-
erates complicated formulae with nested existential quantifications, a more careful
calculation strategy based on symbolic execution is possible. This can be used as a
theoretical framework for symbolic execution in software model checking [11].

5.4 Symbolic Execution and Strongest Postconditions

Suppose all the variables in a program S are included in the list X1, : : : , Xn (where
if m ¤ n then Xm ¤ Xn). We shall specify a set of states of the program variables
symbolically by logical formulae of the form:

9 x1 � � � xn:X1 D e1 ^ � � � ^ Xn D en ^ �
where x1, : : : , xn are logical variables (think of xi as symbolically representing the
initial value of program variable Xi), e1, : : : , en are expressions (ei represents the
current value of Xi) and � is a logical formula constraining the relationships between
the values of the variables. For reasons that will become clear later, it is required that
neither e1, : : : ,en nor � contain the program variables X1, : : : , Xn, though they may
well contain the variables x1, : : : , xn. For example, the formula

9 i j:I D i ^ J D j ^ i < j

represents the set of states in which the value of program variable I (represented
symbolically by i) is less than the value of program variable J (represented symbol-
ically by j). This formula is logically equivalent to I < J. In general, any predicate
P can be written as

9 x1 � � � xn:X1 D x1 ^ � � � ^ Xn D xn ^ PŒx1; : : : ; xn=X1; : : : ;Xn�

where PŒx1; : : : ; xn=X1; : : : ;Xn� (corresponding to � above) denotes the result of
replacing all occurrences of program variable Xi by variable xi (1 � i � n) that
symbolically represents its value. In these formulae, program variables Xi and vari-
ables xi, representing symbolic values, are both just logical variables. Expressions
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in programs (e.g. the right-hand side of assignments) are logic terms and tests in
conditionals are logic formulae. This identification of program language constructs
with logic terms and formulae is one of the reasons why Hoare logic is so effective.
Although this identification might appear to be confusing the different worlds of
programming languages and logical systems, it does have a sound semantic basis
[2, 4, 13]. The reason for adopting this form of symbolic representation is because
the strongest postcondition for assignment preserves it and introduces no new exis-
tential quantifiers.

sp .Xi:=E/ .9 x1 � � � xn:X1 D e1 ^ � � � ^ Xn D en ^ �/
9 x1 � � � xn:X1 D e1 ^ � � � ^ Xi D EŒe1 � � � en=X1 � � �Xn� ^ � � � ^ Xn D en ^ �

Thus calculating sp .Xi:=E/ consists of evaluating E in the current state
(i.e. EŒe1; : : : ; en=X1; : : : ;Xn�) and then updating the equation for Xi to specify
that this is the new value after the symbolic execution of the assignment.

If X1; : : : ;Xn, x1; : : : ; xn and e1; : : : ; en are clear from the context, then they may
be abbreviated to X, x and e respectively. We may also write X D e to mean X1 D
e1 ^ � � � ^ Xn D en. With this notation the equation above becomes

sp .Xi:=E/ .9 x:X D e ^ �/
D 9 x:X1 D e1 ^ � � � ^ Xi D EŒe=X� ^ � � � ^ Xn D en ^ �

The derivation of this equation follows below (an informal justification of each line
is given in brackets just after the line). The validity of the equation depends on the
restriction that neither e1, : : : , en nor � contain the program variables X1, : : : , Xn.
In addition, we also need to assume below that v, x1, : : : , xn and X1, : : : , Xn are all
distinct and v, x1, : : : , xn do not occur in E. These restrictions are assumed from
now on.

sp .Xi:=E/ .9 x:X D e ^ �/
D 9 v:XiDEŒv=Xi� ^ .9 x:X D e ^ �/Œv=Xi�

(Floyd assignment rule)

D 9 v:XiDEŒv=Xi� ^ .9 x:X1De1 ^ � � � ^ vDei ^ � � � ^ XnDen ^ �/
(distinctness of variables and Xi not in e1, : : : , en or �)

D 9 v x:XiDEŒv=Xi� ^ X1De1 ^ � � � ^ vDei ^ � � � ^ XnDen ^ �
(pulling quantifiers to front: allowed as variables distinct, x not in E)

D 9 x:XiDEŒei=Xi� ^ X1De1 ^ � � � ^ .9 v: vDei/ ^ � � � ^ XnDen ^ �
(restricting scope of v to the only conjunct containing v)

D 9 x:XiDEŒei=Xi� ^ X1De1 ^ � � � ^ T ^ � � � ^ XnDen ^ �
(9 v: vDei is true)

D 9 x:X1De1 ^ � � � ^ XiDEŒei=Xi� ^ � � � ^ XnDen ^ �
(eliminate T and move equation for Xi to where it was in the conjunction)
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D 9 x:X1De1 ^ � � � ^ XiDEŒe1; : : : ; en=X1; : : : ;Xn� ^ � � � ^ XnDen ^ �
(X D e justify replacing X1, : : : ,Xn in E by e1, : : : , en)

D 9 x:X1De1 ^ � � � ^ XiDEŒe=X� ^ � � � ^ XnDen ^ �
(definition of Œe=X� notation)

Since sp .S1;S2/P D spS2 .spS1P/, if S1 and S2 are assignments and P
has the form 9 x:X D e ^ �, then to compute sp .S1;S2/P, one just updates the
equations in the conjunction corresponding to the variable being assigned by S1
followed by that assigned by S2.

For conditional branches, the equation for calculating strongest postconditions
is: sp .IFBTHENS1 ELSES2/P D .spS1 .P ^ B// _ .spS2 .P ^ :B//. If P has
the form 9 x:X D e ^ � then P ^ B and P ^ :B can be put into this form. The
derivation is below.

P ^ B D .9 x:X D e ^ �/ ^ B
(expanding P)

D 9 x:X D e ^ .� ^ B/
(allowed if x1, : : : , xn do not occur in B, which is assumed)

D 9 x:X D e ^ .� ^ BŒe=X�/
(conjuncts X D e justify replacing X in B by e)

Similarly: P ^ :B D 9 x:X D e ^ .� ^ :BŒe=X�/ .
If a conditional is in a sequence then as spS .P1 _ P2/ D spS P1 _ spS P2 for

any program S, it follows that

sp ..IFBTHENS1 ELSES2/;S3/P
D sp .S1;S3/ .P ^ B/ _ sp .S2;S3/ .P ^ :B/

thus the calculation of the strongest postcondition of a sequence starting with a
conditional can proceed by separate symbolic evaluations of each arm.

If it can be shown that either P ^ B or P ^ :B are false (F) then, since for any S
it is the case that spS F D F, one of the disjuncts can be pruned. If such pruning is
not possible, then separate evaluations for each arm must be performed. These can
be organised to maximise efficiency based on heuristics (e.g. depth-first or breadth-
first). As an example illustrating how symbolic evaluation can be used to compute
strongest postconditions, we calculate:

sp AbsMinus .I < J/ D
sp.R WD 0;

K WD 0;
IFI < JTHENK WD KC 1ELSESKIP;
IFK D 1 ^ :.I D J/THENR WD J 
 IELSER WD I 
 J/
.9 i j k r:I D i ^ J D j ^ K D k ^ R D r ^ i < j/ D

sp.K WD 0;
IFI < JTHENK WD KC 1ELSESKIP;
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IFK D 1 ^ :.I D J/THENR WD J 
 IELSER WD I 
 J/
.9 i j k r:I D i ^ J D i ^ K D k ^ R D 0 ^ i < j/ D

sp.IFI < JTHENK WD KC 1ELSESKIP;
IFK D 1 ^ :.I D J/THENR WD J 
 IELSER WD I 
 J/
.9 i j k r:I D i ^ J D i ^ K D 0 ^ R D 0 ^ i < j/ D

.sp.K WD KC 1; IFK D 1 ^ :.I D J/THENR WD J 
 IELSER WD I 
 J/
.9 i j k r:I D i ^ J D i ^ K D 0 ^ R D 0 ^ .i < j ^ .I < J/Œi; j=I;J�//

_
sp.SKIP; IFK D 1 ^ :.I D J/THENR WD J 
 IELSER WD I 
 J/
.9 i j k r:I D i ^ J D i ^ K D 0 ^ R D 0 ^ .i < j ^ :.I < J/Œi; j=I;J�///

Since .I < J/Œi; j=I;J� D i < j the precondition of the second disjunct above
contains the conjunct i < j ^ :.i < j/, which is false. Thus the second disjunct can
be pruned:

.sp.K WD KC 1; IFK D 1 ^ :.I D J/THENR WD J 
 IELSER WD I 
 J/
.9 i j k r:I D i ^ J D i ^ K D 0 ^ R D 0 ^ .i < j ^ .I < J/Œi; j=I;J�//

_
sp.SKIP; IFK D 1 ^ :.I D J/THENR WD J 
 IELSER WD I 
 J/
.9 i j k r:
I D i ^ J D i ^ K D 0 ^ R D 0 ^ .i < j ^ :.I < J/Œi; j=I;J�/// D

sp.K WD KC 1; IFK D 1 ^ :.I D J/THENR WD J 
 IELSER WD I 
 J/
.9 i j k r:I D i ^ J D i ^ K D 0 ^ R D 0 ^ i < j�// D

sp.IFK D 1 ^ :.I D J/THENR WD J 
 IELSER WD I 
 J/
.9 i j k r:I D i ^ J D i ^ K D .K+1/Œ0=K� ^ R D 0 ^ i < j�// D

.sp.R WD J 
 I/
.9 i j k r:I D i ^ J D i ^ K D 1 ^ R D 0 ^ .i < j ^ .1 D 1 ^ :.i D j////

_
sp.R WD I 
 J/
.9 i j k r:
I D i ^ J D i ^ K D 1 ^ R D 0 ^ .i < j ^ :.1 D 1 ^ :.i D j///// D

The second disjunct is pruned as i < j ^ :.1 D 1 ^ :.i D j// simplifies to F.

sp.R WD J 
 I/
.9 i j k r:I D i ^ J D i ^ K D 1 ^ R D 0 ^ i < j/

D .9 i j k r:I D i ^ J D i ^ K D 1 ^ R D .J
I/Œi; j=I;J� ^ i < j/

The right-hand side of this equation simplifies to R D J
I ^ I < J by per-
forming the substitution and then using properties of existential quantifiers. Thus:
sp AbsMinus .I < J/ D R D J
I ^ I < J by the derivation above.

A similar calculation by symbolic execution (but pruning different branches of
the conditionals) gives: sp AbsMinus .J � I/ D .R D I
J ^ J � I/.
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Since fPgSfQg if and only if .spS P/) Q it follows from the results of calcu-
lations for AbsMinus above that fI < JgAbsMinusfR D J
I ^ I < Jg and
fJ � IgAbsMinusfR D I
J ^ J � Ig. Hence by the disjunction rule for Hoare
Logic

` fP1gSfQ1g ` fP2gSfQ2g
` fP1 _ P2gSfQ1 _ Q2g

we can conclude ` fTgAbsMinusf.R D J
I ^ I < J/ _ .R D I
J ^ J � I/g.
This example suggests a strategy for proving Hoare triples fPgSfQg. First split

P into a disjunction P, P1_ � � � _Pn where each Pi determines a path through the
program S. Then, for each i, compute spPi S by symbolic execution. Finally check
that spPi S ) Q holds for each i. If these implications all hold, then the original
Hoare triple follows by the disjunction rule above. This strategy is hardly new, but
explaining it as strongest postcondition calculation implemented by symbolic eval-
uation with Hoare logic for combining the results of the evaluations provides a nice
formal foundation and also provides a link from the deductive system of Hoare logic
to automated software model checking, which is often based on symbolic execution.

5.5 Backwards with Preconditions

Calculating weakest preconditions is simpler than calculating strongest postcon-
ditions because the assignment rules need just one substitution and generate no
additional quantifiers: wp .V:=E/Q D QŒE=V�. There is thus no need to use for-
mulae of the form 9 x:X D e ^ � as one can calculate with postconditions of any
form. Furthermore, if the McCarthy conditional notation .B ! P j Q/ is defined by

.B ! P j Q/ D .P ^ B/ _ .Q ^ :B/

then the wp rule for conditionals can be expressed as

wp .IFBTHENS1 ELSES2/Q D .B ! wpS1Q j wpS2Q/

which simplifies the calculation of wp. This is illustrated using the AbsMinus
example (see Fig. 5.2). In the calculation that follows, assignment substitutions are
performed immediately.

wpAbsMinus .R D J
I ^ I < J/ D
wp.R WD 0;

K WD 0;
IFI < JTHENK WD KC 1ELSESKIP;
IFK D 1 ^ :.I D J/THENR WD J 
 IELSER WD I 
 J/
.R D J
I ^ I < J/ D
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wp.R WD 0;
K WD 0;
IFI < JTHENK WD KC 1ELSESKIP/
.K D 1 ^ :.I D J/ ! J
I D J
I ^ I<J j J
I D I
J ^ I<J/ D

wp.R WD 0;
K WD 0;

.I<J ! .KC1 D 1 ^ :.I D J/ ! J
I D J
I ^ I<J j J
I D I
J ^ I<J/
j .K D 1 ^ :.I D J/ ! J
I D J
I ^ I<J j J
I D I
J ^ I<J// D

.I<J ! .0C1 D 1 ^ :.I D J/! J
I D J
I ^ I<J j J
I D I
J ^ I<J/
j .0 D 1 ^ :.I D J/! J
I D J
I ^ I<J j J
I D I
J ^ I<J//

This calculation can be simplified on-the-fly: .K C 1 D 1/ simplifies to .K D 0/,
.J
I D J
I/ simplifies to T and .J
I D I
J ^ I<J/ simplifies to F.

wp.R WD 0;
K WD 0;
IFI < JTHENK WD KC 1ELSESKIP;
IFK D 1 ^ :.I D J/THENR WD J 
 IELSER WD I 
 J/
.R D J
I ^ I<J/ D

wp.R WD 0;
K WD 0;
IFI < JTHENK WD KC 1ELSESKIP/
.K D 1 ^ :.I D J/ ! I<J j F/ D

wp.R WD 0;
K WD 0;
.I<J ! .K D 0 ^ :.I D J/ ! I<J j F/

j .K D 1 ^ :.I D J/ ! I<J j F// D
.I<J ! .1 D 1 ^ :.I D J/! I<J j F/ j .0 D 1 ^ :.I D J/! I<J j F//

The last formula above is wpAbsMinus .R D J
I ^ I < J/ and simplifies to
.I<J ! T j F/, which simplifies to I<J.

The Hoare triple fI<JgAbsMinusfR D J 
 I ^ I<Jg then follows from
wpAbsMinus .R D J
I ^ I < J/ D I<J.

5.6 Forwards Versus Backwards

It seems clear from the example in the preceding section that proving fPgSfQg
by calculating wpS Q is simpler than proving it by calculating spS P, indeed
many automated Hoare logic verifiers work by calculating weakest preconditions.
There are, however, several applications where strongest postconditions have a role.
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One such application is ‘reverse engineering’ where, given a precondition, one tries
to deduce what a program (e.g. legacy code) does by discovering a postcondition
by symbolic execution [9]. Related to this is the use of symbolic execution for test-
ing [18]. Yet another application is to verify a given Hoare triple by symbolically
executing separate paths and combining the results (this approach has already been
outlined at the end of Section 5.2). This is a form of software model checking,
where loops are unwound some number of times to create loop-free straight line
code, the strongest postcondition is calculated and then an automatic tool (like an
SMT solver) used to show that this entails the given postcondition.5 The hope is that
one runs enough of the program to expose significant bugs. In general, code with
loops cannot be unwound to equivalent straight line code, so although this approach
is a powerful bug-finding method it cannot (without further analysis) be used for
full proof of correctness. An advantage of symbolic evaluation is that one can use
the symbolic representation of the current state to resolve conditional branches and
hence prune paths. The extreme case of this is when the initial precondition specifies
a unique starting state, so that symbolic execution collapses to normal ‘ground’ exe-
cution. Thus calculating strongest postconditions by symbolic execution provides a
smooth transition from testing to full verification: by weakening the initial precon-
dition one can make the verification cover more initial states.

5.7 Loops and Invariants

There is no general way to calculate strongest postconditions or weakest precondi-
tions for WHILE-loops. Rewriting with the equations in Fig. 5.1 may not terminate,
so if S contains loops then the strategies for proving fPgSfQg by calculating spP S
or wpS Q will not work. Instead, we define ‘approximate’ versions of sp and wp
called, respectively, asp and awp, together with formulae (‘verification condi-
tions’) svcP S and wvcS Q with the properties that

` svcS P) fPgSfaspS Pg
` wvcS Q) fawpS QgSfQg

See Fig. 5.3 for equations specifying asp and svc and Fig. 5.4 for awp and wvc.
Let � be a formula and x1; : : : ; xn all the free variables in �. It is clear that if S is
loop-free then svcS P and wvcS Q are true (T) and also aspS P D spS P and
awpS Q D wpS Q. Thus for loop-free programs the ‘approximate’ predicate trans-
formers are equivalent to the exact ones.

5 State-of-the-art bounded model checkers [1,3] generate the strongest postcondition using similar
rules to those given in Fig. 5.1. However, they first transform programs into SSA (Static Single
Assignment) form [5] and avoid the explicit use of existential quantifiers generated by assignments.
The approach in this paper seems equivalent to the use of SSA, but we have not worked out a clean
account of this. A feature of our method is that it applies directly to programs without requiring
any preprocessing.
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aspSKIPP D P
svcSKIPP D T

asp .V:=E/P D 9 v: .VDEŒv=V�/ ^ PŒv=V�
svc .V:=E/P D T

asp .S1;S2/P D asp S2 .asp S1 P/
svc .S1;S2/P D svc S1 P ^ svc S2 .asp S1 P/

asp .IFBTHEN S1 ELSE S2/PD asp S1 .P^ B/ _ asp S2 .P^:B/
svc .IFBTHEN S1 ELSE S2/PD

.UNSAT.P ^ B/ _ svc S1 .P^ B// ^ .UNSAT.P^:B/_ svc S2 .P^:B//

asp .WHILE B DOfRg S/P D R^:B
svc .WHILE B DOfRg S/P D .P) R/ ^ .asp S .R^ B/) R/ ^ svc S .R^ B/

Fig. 5.3 Approximate strongest postconditions and verification conditions

awpSKIPQ D Q
wvcSKIPQ D T

awp .V:=E/Q D QŒE=V�
wvc .V:=E/Q D T

awp .S1;S2/Q D awp S1 .awp S2 Q/
wvc .S1;S2/Q D wvc S1 .awp S2 Q/ ^ wvc S2 Q

awp .IFBTHEN S1 ELSE S2/Q D .B ! awp S1 Q j awp S2 Q/
wvc .IFBTHEN S1 ELSE S2/Q D TAUT.Q/ _ .wvc S1 Q^ wvc S2 Q/

awp .WHILE B DOfRg S/Q D R
wvc .WHILE B DOfRg S/Q D .R^ B) awp S R/ ^ .R^:B) Q/ ^ wvc S R

Fig. 5.4 Approximate weakest postconditions and verification conditions

In Fig. 5.3, the operator UNSAT is true if its argument is unsatisfiable: UNSAT.�/ D
:9 x1 � � � xn: �. The operator TAUT is true if its argument is a tautology: TAUT.�/ D
8 x1 � � � xn: �. The relation between UNSAT and TAUT is: UNSAT.�/ D TAUT.:�/.
Point 4 of the first proof in the appendix uses the fact that fPgSfQg holds vacuously
if UNSAT.P/. Point 4 of the second proof in the appendix uses the dual fact that
fPgSfQg holds vacuously if TAUT.Q/.

To establish fPgSfQg, the Hoare logic ‘Rules of Consequence’ ensure that it
is sufficient to prove either the conjunction .svcS P/ ^ .aspS P) Q/ or the
conjunction .wvcS Q/ ^ .P) awpS Q/ . The early development of mechanised
program verification uses ideas similar to weakest preconditions to generate verifi-
cation conditions [14, 15, 17, 19, 20, 23]. Strongest postconditions are less used for
reasoning about programs containing loops, but generalisations of symbolic execu-
tion for them have been developed [22].
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Reasoning about loops usually requires invariants to be supplied (either by
a human or by some invariant-finding tool). Hoare logic provides the following
WHILE-rule (which is a combination of Hoare’s original ‘Rule of Iteration’ and his
‘Rules of Consequence’). Following standard practice, we have added the invariant
R as an annotation in curly brackets just before the body S of the WHILE-loop

` P) R ` fR^ BgSfRg R ^ :B) Q
` fPgWHILE B DOfRg SfQg

This rule is the logical basis underlying methods based on invariants for verifying
WHILE-loops.

The ideas underlying asp, svc, awp and wvc are old and mostly very well
known. The contribution here is a repackaging of these standard methods in a some-
what more uniform framework. The properties stated above connecting asp and
svc, and awp and wvc are easily verified by structural induction. For complete-
ness the proofs are given in an appendix.

The equations for asp in Fig 5.3 are the same as those for sp in Fig. 5.1, except
for the additional equation for aspWHILE B DOfRg S P. For symbolic execution, as
described in Section 5.4, this equation can be written as

asp .WHILE B DOfRg S/ .9 x:X1 D e1 ^ � � � ^ Xn D en ^ �/
D 9 x:X D x ^ .R ^ :B/Œx=X�

Thus symbolically executing WHILE B DOfRg S consists in throwing away the pre-
condition and restarting in a new symbolic state corresponding to the state specified
as holding after the WHILE-loop by the Hoare rule. This is justified if the verifica-
tion conditions for the WHILE-loop hold, namely:

svc .WHILE B DOfRg S/ .9 x:X1 D e1 ^ � � � ^ Xn D en ^ �/
D ..9 x:X1 D e1 ^ � � � ^ Xn D en ^ �/) R/
^ .aspS .R ^ B/) R/ ^ svcS .R ^ B/

D .8 x: � ) RŒe=X�/ ^ .aspS .R ^ B/) R/ ^ svcS .R ^ B/

This says that the precondition must entail the invariant evaluated in the state
when the loop is started (RŒe=X�), the invariant R must really be an invariant
(aspS .R ^ B/) R) and any verification conditions when checking R is an invari-
ant must hold (svcS .R ^ B/). To verify that R is an invariant a recursive symbolic
execution of the loop body, starting in a state satisfying R ^ B, is performed. Note
that:

aspS .R ^ B/ D aspS .9 x:X D x ^ .R ^ B/Œx=X�/

The equations for symbolic execution and verification conditions on symbolic state
formulae are given in Fig 5.5. Note that UNSAT.9 x:X D e ^ �/ D UNSAT.�/.

As an example, consider the program Div in Fig. 5.6. For simplicity, assume the
values of the variables in Div (i.e. R, X and ERR) are non-negative integers. First
we compute asp Div .YD0/.
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aspSKIP .9 x:X D e^ �/ D .9 x:X D e^ �/
svcSKIP .9 x:X D e^ �/ D T

asp .Xi:=E/ .9 x:X D e^ �/
D 9 x:X1 D e1 ^ : : :^ Xi D EŒe=X�^ : : :^ Xn D en ^ �

svc .Xi:=E/ .9 x:X D e^ �/ D T

asp .S1;S2/ .9 x:X D e^ �/ D asp S2 .asp S1 .9 x:X D e^ �//
svc .S1;S2/ .9 x:X D e^ �/ D svc S1 .9 x:X D e^ �/ ^ svc S2 .asp S1 .9 x:X D e^ �//
asp .IFBTHEN S1 ELSE S2/ .9 x:X D e^ �/
D asp S1 .9 x:X D e^ .� ^ BŒe=X�// _ asp S2 .9 x:X D e^ .� ^:BŒe=X�//

svc .IFBTHEN S1 ELSE S2/ .9 x:X D e^ �/
D .UNSAT.� ^ BŒe=X�/_ svc S1 .9 x:X D e^ .� ^ BŒe=X�///

.̂UNSAT.� ^:BŒe=X�/_ svc S2 .9 x:X D e^ .� ^:BŒe=X�///

asp .WHILE B DOfRg S/ .9 x:X1 D e1 ^ : : :^ Xn D en ^ �/
D 9 x:X D x^ .R^:B/Œx=X�

svc .WHILE B DOfRg S/ .9 x:X1 D e1 ^ : : :^ Xn D en ^ �/ D
D .8 x: �) RŒe=X�/ ^ .asp S .R ^ B/) R/ ^ svc S .R^ B/

Fig. 5.5 Approximate strongest postconditions and verification conditions

R:=X;Q:= 0;ERR:= 0;
IF YD0 THEN ERR:= 1 ELSE WHILE Y < R DOfX D RC Y	 Qg .R:=R�Y;Q:= 1CQ/

Fig. 5.6 The example program Div

Let S be WHILE Y < R DOfX D RC Y � Qg .R:=R
Y;Q:=1CQ/, then:

asp
.R:=X;Q:=0;ERR:=0;IF YD0 THEN ERR:=1 ELSES/
.YD0/D
asp
.R:=X;Q:=0;ERR:=0;IF YD0 THEN ERR:=1 ELSES/
.9 xyqre:XDx^YDy^QDq^RDr^ERRDe^yD0/D
asp
.IF YD0 THEN ERR:=1 ELSES/
.9 xyqre:XDx^YDy^QD0^RDx^ERRD0^yD0/D
asp .ERR:=1/ .9 xyqre:XDx^YDy^QD0^RDx^ERRD0^yD0 ^ .yD0//
_
aspS .9 xyqre:XDx^YDy^QD0^RDx^ERRD0^yD0 ^ :.yD0// D
asp .ERR:=1/ .9 xyqre:XDx^YDy^QD0^RDx^ERRD0^yD0 ^ .yD0// D
.9 xyqre:XDx^YDy^QD0^RDx^ERRD1^yD0 ^ .yD0// D
XDR ^ YD0 ^ ERRD1
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Next we compute svc Div .YD0/ (simplifying T ^ � to � on-the-fly).

svc
.R:=X;Q:=0;ERR:=0;IF YD0 THEN ERR:=1 ELSES/
.YD0/D
svc
.R:=X;Q:=0;ERR:=0;IF YD0 THEN ERR:=1 ELSES/
.9 xyqre:XDx^YDy^QDq^RDr^ERRDe^yD0/D
svc
.IF YD0 THEN ERR:=1 ELSES/
.9 xyqre:XDx^YDy^QD0^RDx^ERRD0^yD0/D
.UNSAT.y D 0 ^ y D 0/ _ svc .ERR:=1/ .� � � //
^
.UNSAT.y D 0 ^ :.y D 0// _ svcS .� � � // D .F _ T/ ^ .T _ � � � / D T

Thus fYD0gDivfXDR^YD0^ERRD1g, since 8 S P:svcS P) fPgSfaspS Pg.
Whilst this might seem to be a very heavyweight derivation of a trivial case, the
point is that the derivation is a forward symbolic execution with some on-the-fly
simplification. This simplification enables the calculation of asp and svc for the
WHILE-loop to be avoided.
For the Y > 0 case, it is necessary to analyse the loop, which we now do.

asp
.R:=X;Q:=0;ERR:=0;IF YD0 THEN ERR:=1 ELSES/
.Y>0/D
asp
.R:=X;Q:=0;ERR:=0;IF YD0 THEN ERR:=1 ELSES/
.9 xyqre:XDx^YDy^QDq^RDr^ERRDe^y>0/D
asp
.IF YD0 THEN ERR:=1 ELSES/
.9 xyqre:XDx^YDy^QD0^RDx^ERRD0^y>0/D
asp .ERR:=1/ .9 xyqre:XDx^YDy^QD0^RDx^ERRD0^y>0 ^ .yD0//
_
aspS .9 xyqre:XDx^YDy^QD0^RDx^ERRD0^y>0 ^ :.yD0// D
aspS .9 xyqre:XDx^YDy^QD0^RDx^ERRD0^y>0 ^ :.yD0//

Since S is WHILE Y < R DOfX D RC Y � Qg .� � � /, it follows (see Fig. 5.5) that

asp Div .Y>0/ D
aspS .9 xyqre:XDx^YDy^QD0^RDx^ERRD0^y>0 ^ :.yD0// D
.9 xyqre:XDx^YDy^QDq^RDr^ERRDe^.x D rCy�q ^ :.y<r/// D
.X D RC Y � Q ^ :.Y < R//
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Thus if svc Div .Y>0/ holds (which it does, see below) then

fY>0gDivfX D RC Y � Q ^ :.Y < R/g
To verify svc Div .Y>0/, first calculate:

svc
.R:=X;Q:=0;ERR:=0;IF YD0 THEN ERR:=1 ELSES/
.Y>0/D
svc
.R:=X;Q:=0;ERR:=0;IF YD0 THEN ERR:=1 ELSES/
.9 xyqre:XDx^YDy^QDq^RDr^ERRDe^y>0/D
svc
.IF YD0 THEN ERR:=1 ELSES/
.9 xyqre:XDx^YDy^QD0^RDx^ERRD0^y>0/D
.UNSAT.y > 0 ^ y D 0/ _ svc .ERR:=1/ .� � � //
^
.UNSAT.y > 0 ^ :.y D 0// _ svcS .� � � // D .T _ T/ ^ .F _ svcS .� � � // D
svcS .9 xyqre:XDx^YDy^QD0^RDx^ERRD0^.y>0 ^ :.y D 0///

S is a WHILE-loop; Fig. 5.5 shows the verification conditions generated:

1. 8 xyqre: .y>0 ^ :.y D 0//) .X D RC Y � Q/Œx; y; 0; x; 0=X;Y;Q;R;ERR�
2. asp .R:=R
Y;Q:=1CQ/ ..X D RC Y � Q/ ^ Y < R/) .X D RC Y � Q/
3. svc .R:=R
Y;Q:=1CQ/ ..X D RC Y � Q/ ^ Y < R/

The first (1) is .y>0^:.y D 0//) .x D xCy�0/, which is clearly true. The third
(3) is also clearly true as svcS P D T if S is loop-free. The second (2) requires a
symbolic execution:

asp .R:=R
Y;Q:=1CQ/ ..X D RCY � Q/ ^ Y < R/ D
asp
.R:=R
Y;Q:=1CQ/
.9 x y q r:X D x ^ Y D y ^ Q D q ^ R D r ^ ..x D rC y�q/^ y < r// D
.9 x y q r:X D x ^ Y D y ^ Q D 1Cq ^ R D r
y ^ ..x D rC y�q/ ^ y < r//

Thus to show verification condition 2 above, we must show:

.9 x y q r:X D x ^ Y D y ^ Q D 1Cq ^ R D r
y ^ ..x D rC y�q/ ^ y < r//
)
.X D RC Y�Q/

i.e.: ...x D rC y � q/ ^ y < r//) .x D .r
y/C y � .1Cq// , which is true.
So all three verification conditions, 1, 2 and 3 above, are true.

The application of weakest precondition methods (wvc and awp) to the Div
example is completely standard and the details are well known, so we do not
give them here. However, the general remarks made in Section 5.6 continue to
apply when there are loops. In particular, using forward symbolic execution, one
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can separately explore non-looping paths through a program using software model
checking methods. Deductive theorem proving needs only be invoked on paths with
loops. The general framework based on svc and asp enables these separate analy-
sis methods to be unified.

5.8 Discussion, Summary and Conclusion

Our goal has been to provide a review of some classical verification methods,
especially Hoare logic, from the perspective of mechanical verification. We re-
viewed how both weakest preconditions and strongest postconditions could be used
to convert the problem of verifying Hoare triples to problems in pure logic, suit-
able for theorem provers. Although ‘going backwards’ via weakest preconditions
appears superficially simpler, we have tried to make a case for going forward using
strongest postconditions. The benefits are that computing strongest postconditions
can be formulated as symbolic execution, with loops handled via forward verifica-
tion conditions. This provides a framework that can unify both deductive methods
for full proof of correctness with automatic property checking based on symbolic
execution.

Although the development in this paper has been based on classical Hoare logic,
over the years there have been many advances that add new ideas. Notable examples
are VDM [16] that generalises postconditions to relations between the initial and
final states (rather than just predicates on the final state) and separation logic [21]
that provides tractable methods for handling pointers. Separation logic tools are
often based on symbolic execution (though it remains to to be seen whether anything
here provides a useful perspective on this).

The contribution of this paper is to explain how old methods (Floyd-Hoare logic)
and new ones (software model checking) can be fitted together to provide a spectrum
of verification possibilities. There are no new concepts here, but we hope to have
provided a clarifying perspective that shows that Hoare’s pioneering ideas will be
going strong for another 40 years!
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Appendix: Proofs Relating svc, asp, wvc, awp

Proof by Structural Induction on S that
8 S P: svcS P ) fPgSfaspS Pg

1. SKIP.
Follows from ` fPgSKIPfPg.

2. V:=E.
Follows from ` fPgV:=Ef9 v: .V D EŒv=V�/ ^ PŒv=V�g.

3. S1;S2.
Assume by induction:
8P:svcS1 P) fPgS1faspS1Pg
8P:svcS2 P) fPgS2faspS2Pg
Specialising P to aspS1P in the inductive assumption for S2 yields:
svcS2 .aspS1 P/) faspS1 PgS2faspS2 .aspS1P/g
Hence by inductive assumption for S1 and the Hoare sequencing rule:
svcS1 P ^ svcS2 .aspS1P/) fPgS1;S2faspS2 .aspS1P/g
Hence by definitions of svc .S1;S2/P and asp .S1;S2/P:
svc .S1;S2/P) fPgS1;S2 fasp .S1;S2/Pg.

4. IFBTHENS1 ELSES2.
Assume by induction:
8P:svcS1 P) fPgS1faspS1Pg
8P:svcS2 P) fPgS2faspS2Pg
Specialising these with P ^ B and P ^ :B, respectively, yields:
svcS1 .P ^ B/) fP ^ BgS1faspS1 .P ^ B/g
svcS2 .P ^ :B/) fP ^ :BgS2faspS2 .P ^ :B/g
Applying the ‘postcondition weakening’ Hoare logic Rule of Consequence:
svcS1 .P ^ B/) fP ^ BgS1faspS1 .P ^ B/ _ aspS2 .P ^ :B/g
svcS2 .P ^ :B/) fP ^ :BgS2faspS1 .P ^ B/ _ aspS2 .P ^ :B/g
Hence by definition of asp .IFBTHENS1 ELSES2/P:
svcS1 .P ^ B/) fP ^ BgS1fasp .IFBTHENS1 ELSES2/Pg
svcS2 .P ^ :B/) fP ^ :BgS2fasp .IFBTHENS1 ELSES2/Pg
Since Hoare triples are true if the precondition is unsatisfiable:
UNSAT.P ^ B/) fP ^ BgS1fasp .IFBTHENS1 ELSES2/Pg
UNSAT.P ^ :B/) fP ^ :BgS2fasp .IFBTHENS1 ELSES2/Pg
By definition of svc .IFBTHENS1 ELSES2/P and Hoare logic rules:
svc .IFBTHENS1 ELSES2/P
) fPgIFBTHENS1 ELSES2 fasp .IFBTHENS1 ELSES2/Pg

5. WHILE B DOfRg S.
Assume by induction:
8P:svcS P) fPgSfaspS Pg
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Specialise P to R ^ B:
svcS .R ^ B/) fR^ BgSfaspS .R ^ B/g
By definition of svc .WHILE B DOfRg S/P and Consequence Rules:
svc .WHILE B DOfRg S/P) fR^ BgSfRg
By definition of svc .WHILE B DOfRg S/P and Hoare WHILE-rule:
svc .WHILE B DOfRg S/P) fPgWHILE B DOfRg SfR^ :Bg
Hence by definition of asp .WHILE B DOfRg S/P:
svc .WHILE B DOfRg S/P)
fPgWHILE B DOfRg Sfasp .WHILE B DOfRg S/Pg

Proof by Structural Induction on S that:
8 S Q: wvcS Q ) fawpS QgSfQg

1. SKIP.
Follows from ` fQgSKIPfQg.

2. V:=E.
Follows from ` fQŒE=V�gV:=EfQg.

3. S1;S2.
Assume by induction:
8Q:wvcS1Q) fawpS1QgS1fQg
8Q:wvcS2Q) fawpS2QgS2fQg
Specialising Q to awpS2Q in the inductive assumption for S1 yields:
wvcS1 .awpS2Q/) fawpS1 .awpS2Q/gS1fawpS2Qg
Hence by inductive assumption for S2 and the Hoare sequencing rule:
wvcS1 .awpS2Q/ ^ wvcS2Q) fawpS1 .awpS2Q/gS1;S2 fQg
Hence by definitions of wvc .S1;S2/Q and awp .S1;S2/Q:
wvc .S1;S2/Q) fawp .S1;S2/QgS1;S2 fQg.

4. IFBTHENS1 ELSES2.
Assume by induction:
wvcS1Q) fawpS1QgS1fQg
wvcS2Q) fawpS2QgS2fQg
Strengthening the preconditions using the Rules of Consequence
wvcS1Q) fawpS1Q ^ BgS1fQg
wvcS2Q) fawpS2Q ^ :BgS2fQg
Rewriting the preconditions using awp .IFBTHENS1 ELSES2/Q
wvcS1Q) fawp .IFBTHENS1 ELSES2/Q ^ BgS1 fQg
wvcS2Q) fawp .IFBTHENS1 ELSES2/Q ^ :BgS2 fQg
Since Hoare triples are true if the postcondition is a tautology
TAUT.Q/) fawp .IFBTHENS1 ELSES2/Q ^ BgS1fQg
TAUT.Q/) fawp .IFBTHENS1 ELSES2/Q ^ :BgS2fQg
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By the definition of wvc .IFBTHENS1 ELSES2/Q and the Hoare conditional
rule
wvc .IFBTHENS1 ELSES2/Q
) fawp .IFBTHENS1 ELSES2/QgIFBTHENS1 ELSES2 fQg

5. WHILE B DOfRg S.
Assume by induction:
8Q:wvcS Q) fawpS QgSfQg
Specialise Q to R. By wvc .WHILE B DOfRg S/Q and Consequence Rule:
wvc .WHILE B DOfRg S/Q) fR ^ BgSfRg
By Hoare WHILE-rule:
wvc .WHILE B DOfRg S/Q) fRgWHILE B DOfRg SfR^ :Bg
By definitions of awp and wvc for WHILE B DOfRg S, and Consequence Rule:
wvc .WHILE B DOfRg S/Q)
fawp .WHILE B DOfRg S/QgWHILE B DOfRg SfQg



Chapter 6
Probabilistic Programming with Coordination

He Jifeng

Abstract Failure is the typical phenomenon of the execution of long-running
transactions. To accommodate the random features of internet-based computing
this paper concentrates on adding probabilistic behaviour to the Dijkstra’s Guarded
Command Language. We introduce probabilistic choice and coordination operators,
and extend standard states to probabilistic states by replacing the final state with a
final distribution. This paper explores algebraic properties of the new programming
combinators, and shows how to convert programs to normal forms algebraically.

6.1 Introduction

A theory of programming is intended to aid the construction of programs that meet
their specifications; for such a theory to be useful it should capture (only) the essen-
tial aspects of the program’s behaviour, that is only those aspects which one wishes
to observe. And it should do so in a mathematically elegant – hence tractable – way.

In recent years, in order to describe the infrastructure for carrying out long-
running transactions, various business modeling languages have been introduced,
such as XLANG, WSFL, BPEL4WS (BPEL) and StAC [1, 2, 6, 9]. Coordination
and compensation mechanisms are vital in handling exception and failure which
occur randomly during the execution of a long-running transaction. This paper is an
attempt at taking a step forward to gain some perspectives on long-running transac-
tions within the design calculus [4].

In [4], we give the relational meaning of a program by a pair of predicates p;R,
with this syntax and interpretation:

p.s/ ` R.s; s0/ Ddf .ok ^ p/) .ok0 ^ R/
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where

� ok records the observation that the program has been properly started,
� ok0 records the observation that the program has terminated normally (without

“error messages”) and
� s and s0, respectively, denote the initial and final states of the program, mappings

from the set of program variables to their values.

Thus if the program starts in an initial state satisfying the precondition p, it will
terminate in a final state satisfying the postcondition R.

The effect of the “design” notation � � � ` � � � is thus to adjoin a Boolean ok to
the state space, for the description of proper termination: if the previous command
has terminated (ok in the antecedent) and the precondition p holds of the passed-on
state, then this command will establish relation R between s and s0, and will itself
terminate too (ok0 in the consequent). The approach used in the refinement calculus
and in VDM [5] gives semantics to programs by associating them with designs
according to this scheme:

? Ddf false ` true

skip Ddf true ` .s0 D s/

x WD e Ddf true ` .s0 D sŒe=x�/

P uQ Ddf P _ Q

P � b � Q Ddf .b ^ P/ _ .:b ^ Q/

P; Q Ddf P ı Q

.�X � P.X// Ddf

_
fQ j 8 ok; s; ok0; s0 � .Q) P.Q//g

where

P ı Q Ddf 9 Ook; Os � P. Ook; Os=ok0; s0/ ^ Q. Ook; Os=ok; s/

and sŒe=x� denotes the new state obtained by updating s at x with e in the usual way.
A program refines another if it terminates more often and behaves less nondeter-

ministically than the other. We write v for “is refined by”; for predicates P and Q it
is defined by

P v Q Ddf 8 s; s0; ok; ok0 � .Q) P/

In this paper we investigate two aspects of such semantic extensions, one general
and one specific. The specific is that we concentrate on adding probabilistic be-
haviour to our programs. The more important general point however is to enrich
the standard state space to deal with failure and rollback. There are two stages. In
the first we extend the “base type” of the model by adding new logical variables
to describe the control status of a program. The second stage is to determine what
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algebraic characteristics define the probabilistic behaviour of our programs. Such
characteristics, often called “healthiness conditions”, both reflect the behaviour of
“real” programs and allow us to formulate and prove further algebraic laws that are
of practical use in program derivation.

Our novel contributions include

� an enriched design model to handle exception and program failure,
� a set of new programming combinators in support of compensation and coordi-

nation and
� an algebraic system useful for program derivation and normal form reduction.

This paper presents a probabilistic model for coordination system, which is based
on the UTP approach [4] developed by Tony Hoare. To celebrate the 75th birthday
and many achievements of Tony Hoare, we write this paper as our gratitude to his
encouragement, and in recognizing his great contribution to computer science.

6.2 Probabilistic Program Syntax

The language examined in this paper extends the Guarded Command Language [3]
by including the probabilistic choice operator r˚, compensation operator cpens
and coordination operator else. The abstract syntax of the programming language
is given below.

P WWD ? abort
fail primitive failure command
skip empty command
x WD e assignment
P � b � P conditional
PŒŒp��P probabilistic choice
Pcaught
 byP exception handling
PelseP coordination operator
P; P sequential composition
.�X � F.X// recursion

where

� Program fail halts with indication of the failure of the execution.
� Let p be an expression satisfying8 v�0 � p � 1. Program PŒŒp��Q makes a choice

between programs P and Q with probabilities p and 1 
 p, respectively.
� Exception handling construct Pcaught
 byQ runs program P first. If its

execution fails, then Q will be invoked as the exception handler.
� Coordination construct PelseQ behaves like P if its execution succeeds.

Otherwise it will fire Q on the same initial state as P.

In the following sections, we will abbreviate the entire list of program variables
.x; y; ; ::; z/ by the simple vector variable v.
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6.3 Probabilistic Semantics

6.3.1 New State Ingredient

To equip a language with an exception handling mechanism, it is necessary to figure
out the cases when the execution of a program fails. We add a new logical variable
eflag (standing for error-flag) to the standard design model for the description of the
current status of a program:

� eflag0 D false indicates it terminates successfully.
� eflag0 D true indicates it is forced to halt due to an exception case during its

execution.

As a result, the enriched state space S used in later discussion has the type

.Var ! Val/ � .feflagg ! Bool/

6.3.2 Final Distribution

We extend our standard states to probabilistic states by replacing the final state with
a final distribution over S.

Definition (Probabilistic distribution)

A final distribution is a total function from S into the closed interval of reals Œ0; 1�.
We define

PROB Ddf S! Œ0; 1�

We insist further that for any member prob of PROB the probabilities must NOT
exceed 1:

˙s2S prob.s/ � 1

For any subset X of S we define

prob.X/ Ddf ˙s2X prob.s/:

We use the notation 0 to denote the zero distribution � s � 0, and define

prob1 � prob2 Ddf 8 s 2 S � .prob1.s/ � prob2.s//

For any prob 2 PROB we have

0 � prob
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For any s 2 S we introduce its corresponding point-distribution �s:

�s Ddf � t W S � int.t D s/

where
int.b/ Ddf 1 � b � 0

This paper identifies a probabilistic program as a function from S to PROB, and
introduces the refinement relation � between probabilistic programs as follows:

P � Q Ddf 8 s 2 S � .P.s/ � Q.s//

Lemma 3.1 � is a complete partial order with � s � 0 as its bottom.

Proof For any increasing chain fPn j 1 � ng we can show that

supnPn Ddf � s W S � supnPn.s/

is the least upper bound of the chain.

6.3.3 Healthiness Condition

Having introduced the logical variable eflag into the alphabet of our behavioural
predicates, it becomes necessary to ask a program to remain idle when its predeces-
sor throws an exception case, i.e., a probabilistic program must meet the following
healthiness condition:

.Req/P D skip � eflag � P

where
P � b � Q Ddf int.b/ � P C int.:b/ � Q

and
skip Ddf � s W S � �s

The healthiness condition is captured by the idempotent mapping

H W .S! PROB/! .S! PROB/

where
H.P/ Ddf skip � eflag � P

in the sense that a function from S to PROB is Req healthy if and only if it is a fixed
point of H.
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Theorem 3.1 Healthy functions form a complete partial order.

In the following sections, we will confine ourselves to healthy mappings only.

6.4 Programs

This section provides a probabilistic semantics to our language. In the following dis-
cussion, v will represent the program variables cited in the alphabet of the program,
and s the state variable of the type S defined in Section 6.3.1.

6.4.1 Primitive Commands

The execution of fail throws an exception case.

fail Ddf � s W S � �sŒtrue=eflag�

Lemma 4.1

fail D H.fail/
The behaviour of the chaotic program? is totally unpredictable

? Ddf H.� s W S � 0/

6.4.2 Probabilistic Choice

Let P and Q be programs, and p an expression satisfying 8 v � 0 � p � 1. Proba-
bilistic choice PŒŒp��Q selects P and Q with probability p and 1 
 p, respectively.

PŒŒp��QDdf p � P C .1 
 p/ � Q

Healthy functions are closed under probabilistic choice operator:

Lemma 4.2
H.P/ŒŒp��H.Q/ D H.PŒŒp��Q/

Probabilistic choice is symmetric, associative and idempotent.

Theorem 4.1
(1) P ŒŒp��Q D Q ŒŒ1 
 p��P

(2) P ŒŒ1��Q D P
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(3) P ŒŒp��P D P

(4) .P ŒŒp��Q/ ŒŒq��R D P ŒŒ.p � q/�� .Q ŒŒ.q 
 p � q/=.1� p � q/��R/

where

1� pDdf .1
 p/ � 0 � p < 1 � 1

Proof (4) When p D q D 1, the conclusion follows from (2). Otherwise we have

LHS fDef of ŒŒr��g
D q � .PŒŒp��Q/ C .1 
 q/ � R fDef of ŒŒr��g
D q � .p � P C .1 
 p/ � Q/ C .1 
 q/ � R fcalculationg
D .p � q/ � P C .1 
 p � q/ � .q � .1 
 p/=.1
 p � q/ � Q

C.1 
 q/=.1
 p � q/ � R fDef of ŒŒr��g
D RHS

Normal forms, which will be defined in Section 6.5, require us to add “generalised
probabilistic choice” to our language. Let fpi j 1 � i � ng be a set of expressions
satisfying

8 v � .0 � ˙i2f1;::;ngpi � 1/

Let fPi j 1 � i � ng be a set of programs. We define the generalised probabilistic
choice

pchoice.p1&P1; :::; pn&Pn/ Ddf ˙1
i
n.pi � Pi/ C .1 
˙1
i
npi/ � ?

Theorem 4.2
(1) pchoice.p1&P1; :::; pn&Pn/ D pchoice.p�.1/&P�.1/; :::; p�.n/&P�.n//

for any permutation � of f1; :::; ng.
(2) pchoice.p1&pchoice.q1&Q1; ::; qk&Qk/; ::: pn&Pn/

D pchoice..p1 � q1/&Q1; ::; .p1 � qk/&Qk; :::; pn&Pn/

(3) pchoice.1&P1; :::/ D P1

(4) pchoice.0&P1; p2&P2; :::/ D pchoice.p2&P2; ::/

(5) pchoice.p1&P; p2&P; :::/ D pchoice..p1 C p2/&P; :::/

6.4.3 Conditional Choice

Conditional choice is defined by

P � b � QDdf int.b/ � P C int.:b/ �Q

It is actually a special type of probabilistic choice.
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Theorem 4.3
P � b � Q D PŒŒint.b/��Q

Proof RHS fDef of ŒŒp��g
D int.b/ � P C .1 
 int.b//� Q fint.:b/ D 1 
 int.b/g
D int.b/ � P C int.:b/ � Q fDef of � b �g
D LHS

6.4.4 Assignment

The execution of assignment x WD e assigns the value of e to variable x if e can be
successfully evaluated. Otherwise it behaves like fail

.x WD e/ Ddf .� s W S � �sŒe=x�/ � De � fail

where De is true in just those circumstances in which the evaluation of e will yield
a value properly [8]. For example

Dx D true

D.e C f / D De ^ Df

D.e=f / D De ^ Df ^ .f ¤ 0/
D.e � b � f / D Db ^ .b) De/ ^ .:b) Df /

An expression e is well defined if De � true. For example

e � De � x

is well defined.

Lemma 4.3
x WD e D H.x WD e/

Definition 4.1
x WD e is a total assignment if e is well defined.

In the following sections we will confine ourselves to total assignments because
an assignment x WD e can always be converted to a conditional with total assignment
as its component

x WD e D .x WD .e � De � x// � De � fail



6 Probabilistic Programming with Coordination 131

6.4.5 Sequential Composition

For sequential composition we follow the Kleisli-triple approach to the semantics
of programming languages [7], introducing a lift operator " to map a function from
S to PROB to a function from PROB to PROB.

Definition 4.2 (Kleisli lifting)

" P Ddf �prob W PROB �˙s2S.prob.s/ � P.s//

Lemma 4.4
(1) " skip D �prob W PROB � prob
(2) " P ı skip D P

(3) " ." Q ı P/ D" Q ı " P

Proof

.1/ skip fDef of "g
D �prob W PROB �˙s2Sprob.s/ � skip.s/ fDef ofskipg
D �prob W PROB �˙s2Sprob.s/ � �s fDef of �sg
D �prob W PROB � prob
.2/ " P ı skip fDef of "g
D .�prob W PROB �˙s2S.prob.s/ � P.s/// ı .� s W S � �s/ fDef of compositeg
D � s W S � .˙t2S.�s.t/ � P.t// fDef of �sg
D � s W S � P.s/ fDef of Pg
D P

.3/ " ." Q ı P/ fDef of "g
D �prob W PROB �˙s2S.prob.s/ � ." Q ı P/.s// fDef of "g
D �prob W PROB �˙s2S.prob.s/ �˙t2S.P.s/.t/ � Q.t/// fcalculationg
D �prob W PROB �˙t2S.˙s2S.prob.s/ � P.s/.t// �Q.t// fDef of "g
D �prob W PROB �˙t2S." P.prob/.t/ � Q.t// fDef of "g
D �prob W PROB� " Q." P.prob// fDef of compositeg
D " Q ı " P

We define
P; QDdf ." Q/ ı P

Healthy functions are closed under sequential composition
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Lemma 4.5
H.P/; H.Q/ D P.s/.eflag D true/ � .eflag D false/ GQ.s/

H.P; H.Q//
where

.X G prob/.s/Ddf D prob.s/ � s 2 X � 0

Because sequential composition adopts a new definition, we are obliged to reestab-
lish its well-known properties.

Theorem 4.4
(1) skip; P D P D P; skip

(2) P; .Q; R/ D .P; Q/; R

(3) pchoice.p1&P1; :::; pn&Pn/; Q D pchoice.p1&.P1; Q/; ::::; pn&.Pn; Q//

(4) .x WD e/ ; pchoice.p1.x/&P1; :::; pn.x/&Pn/ D
pchoice.p1.e/&.x WD e ; P1/; :::; pn.e/&.x WD e ; Pn//

provided that 8 v �˙1
i
n pi D 1.

Proof

.1/ skip ; P fDef of ; g
D " P ı skip fLemma4:4.2/g
D P fLemma4:4.1/g
D " skip ı P fDef of ; g
D P; skip

.2/ P; .Q; R/ fDef of ; g
D " ." R ı Q/ ı P fLemma4:4.3/g
D " R ı " Q ı P fDef of ; g
D " R ı .P; Q/ fDef of ; g
D .P; Q/; R

.3/ LHS fDef of ; g
D � s W S �˙t2S.˙1
i
npi.s/ � Pi.s/.t/

C .1 
˙1
i
npi.s// � ?.s/.t// � Q.t/ f˙t2S ı C D C ı ˙t2Sg
D � s W S �˙1
i
n � s W S�
.pi.s/ �˙t2S.Pi.s/.t// � Q.t//

C .1 
˙1
i
npi.s// �˙t2S.?.s/.t/ � Q.t// fDef of "g
D ˙1
i
n � s W S � .pi.s/� " Q.Pi.s///C
� s W S � .1 
˙1
i
npi.s//� " Q.?.s// fDef of ; g
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D ˙1
i
n � s W S � .pi.s/ � .Pi; Q/.s/

C � s W S � .1 
˙1
i
npi.s// � .?; Q/.s// fDef of pchoiceg
D RHS

Both ? and fail act as left zero of sequential composition

Theorem 4.5
(1) fail; P D fail

(2)?; P D ?
Proof

.1/ fail; P fDef of ; g
D " P ı fail fDef of compositeg
D � s W S �˙t2Sfail.s/.t/ � P.t/ fDef offailg
D � s W S � P.sŒtrue=eflag�/ fReqg
D � s W S � skip.sŒtrue=eflag�/ fDef ofskipg
D � s W S � �sŒtrue=flag� fDef offailg
D fail

6.4.6 Exception Handling

Let P and Q be programs. The program Pcaught
 byQ runs P first. If it fails,
then Q is fired to handle the exception thrown by P.

Pcaught
 byQ D H.P; �.Q//

where
�.Q/Ddf QŒfalse=eflg� � eflag � skip

Exception handling operator is associative, and has ? and x WD e as its left zeros. It
also distributes probabilistic choices.

Theorem 4.6
(1) Pcaught
 by .Qcaught
byR/ D .Pcaught
 byQ/caught
 byR

(2)?caught
 byQ D ?
(3) .x WD e/caught
 byQ D x WD e

(4) .x WD e; fail/caught
 byQ D .x WD e; Q/

(5) pchoice.p1&P1; :::; pn&Pn/caught
 byQ

D pchoice.p1&.P1 caught
 byQ/; :::; pn&.Pn caught
 byQ//

provided that 8 v � .˙i2f1;::;ngpi D 1/
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Proof
.1/ LHS fDef of caught
 byg
D H.P; �.H1.Q; �.R//// f�.H.X// D �.X/g
D H.P; �.Q; �.R/// f�.Q; �.R// D �.Q/; �.R/g
D H.P; �.Q/; �.R// fH is idempotentg
D H.H1.P; �.Q/; �.R/// fDef ofHg
D H..:efalg/?; H1.P; �.Q/; �.R/// fP � false � Q D Qg
D H..�.R/ � eflag � .P; �.Q/; �.R//// f� b � 

; distributiveg
D H.H1.P�.Q//; �.R// fDef ofcaught
 byg
D RHS

6.4.7 Coordination

Let P and Q be programs. The coordination construct PelseQ behaves like P if
its execution succeeds. Otherwise it behaves like Q.

PelseQ Ddf � s W S � .eflag D false/ G P.s/ C P.s/.eflag D true/ � Q.s/

From the definition it follows that

.eflag D false/ G .PelseQ/.s/

D .eflag D false/ G P.s/ C P.s/.eflag D true/ � .eflag D false/ G Q.s/

.PelseQ/.eflag D true/

D P.s/.eflag D true/ � Q.s/.eflag D true/ .	/
Lemma 4.6
H.P/elseH.Q/ D H.PelseQ/

Coordination operator is associative, and has both ? and x WD e as its left zeroes
and fail as its left unit. It also distributes over probabilistic choice.

Theorem 4.7
(1) Pelse .QelseR/ D .PelseQ/elseR

(2)?elseQ D ?
(3) .x WD e/elseQ D .x WD e/

(4) .x WD e; fail/elseQ D Q

(5) pchoice.p1&P1; :::; pn&Pn/elseQ D
pchoice.p1&.P1 elseQ/; :::; pn&.Pn elseQ//

provided that 8 v � .˙1
i
n pi D 1/
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Proof
.1/ LHS fDef ofelseg
D � s W S � ..eflag D false/ G P.s/C

P.s/.eflag D true/ � .QelseR/.s/ fDef ofelseg
D � s W S � ..eflag D false/ G P.s/C

P.s/.eflag D true/ � .eflag D false/ G Q.s/C
P.s/.eflag D true/ � Q.s/.eflag D true/ � R.s/ fConclusion .	/g

D � s W S � .eflag D false/ G .PelseQ/.s/C
.PelseQ/.s/.eflag D true/ � R.s/ fDef ofelseg

D RHS

.2/ LHS fDef ofelseg
D � s W S � .eflag D false/ G 0 C 0.eflag D true/ � Q.s/ fDef of 0g
D � s W S � 0 fDef of?g
D RHS

6.4.8 Recursion

Recursive program �X � F.X/ is defined as the least upper bound of the increasing
chain fFn.?/ j 1 � ng:

�X � F.X/ D supnFn.?/

where

F0.X/ Ddf ?
FnC1.X/ Ddf F.Fn.?//

Theorem 4.8
�X � F.X/ D F.�X � F/

Proof We are required to show that all programming combinators are continuous.
Let fPn j n � 1g be an increasing chain.

Q ; supnPn fDef of ; g
D � s W S �˙t2S.Q.s/.t/ � .supnPn/.t// fLemma3:1g
D � s W S �˙t2S.Q.s/.t/ � supnPn.t// f� is continuousg
D � s W S �˙t2S.supn.Q.s/.t/ � Pn.t/// fcalculationg
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D � s W S � supn.˙t2S.Q.s/.t/ � Pn.t// fDef of ; g
D supn.Q; Pn/

.supnPn/ ; Q fDef of ; g
D � s �˙t2S.supnPn/.s/.t/ � Q.t// fLemma3:1g
D � s W S �˙t2S.supn.Pn.s/.t// � Q.t/// f� is continuousg
D � s �˙t2S.supn.Pn.s/.t/ � Q.t/// fCalculationg
D supn.� s W S � .˙t2S.Pn.s/.t/ � Q.t/// fDef of ; g
D supn.Pn; Q/

.supnPn/ ŒŒr��Q fDef of ŒŒr��g
D r � .supnPn/ C .1 
 r/ � Q f� is continuousg
D supn.r � Pn C .1 
 r/ � Q/ fDef of ŒŒr��g
D supn.Pn ŒŒr��Q/

supnPn elseQ fDef ofelseg
D � s W S � .eflag D false/ G .supnPn/.s/C

.supnPn/.s/.eflag D true// � Q.s/ fLemma 3:1g
D � s W S � supn..eflag D false/ G Pn.s//C

supn.Pn.s/.eflag D true/ � Q.s// fcalculationg
D supn.� s W S � .eflag D false/ G Pn.s/C

Pn.s/.eflag D true/ � Q.s// fDef ofelseg
D supn.Pn elseQ/

6.5 Normal Form

The normal form of our language is of the form

pchoice

0

B
B
@

p1&.v WD e1/; :::; pm&.v WD em/;

q1&.v WD f1; fail/; :::; qn&.v WD fn; fail/

r&?

1

C
C
A

where v stands for the vector of program variables< x; y; ::; z >, and all expressions
ei, fj are well defined, and

8 v � .˙1
i
mpi C ˙1
j
nqj C r/ y D 1
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Theorem 5.1 ?, fail and total assignment can be converted to normal forms.

Proof
(1)? D pchoice.1&?/
(2) fail D pchoice.1&.v WD v; fail//

(3) x WD e D pchoice.1&.x; y; ::; z WD e; y; ::; z//

Proof Conclusions (1) and (2) follow from Theorem 4.2(3).

.3/ LHS f.x WD e/ D .x; y WD e; y/g
D x; y; :::; z WD e; y; ::; z fTheorem4:2.3/g
D RHS

Theorem 5.2 Normal forms are closed under all programming operators.

Proof Let

P D pchoice

0

@
a1&.v WD e1/; :::; aj&.v WD ej/;

b1&.v WD f1; fail/; :::; bk&.v WD fk; fail/
c&?

1

A

Q D pchoice

0

@
p1&.v WD g1/; :::; pm&.v WD gm/;

q1&.v WD h1; fail/; :::; qn&.v WD hn; fail/
r&?

1

A

PŒŒd��Q

fTheorem4:3.2/g

D pchoice

0

B
B
B
B
B
B
B
B
B
B
B
@

.a1 � d/&.v WD e1/; :::; .aj � d/&.v WD ej/;

.b1 � d/&.v WD f1; fail/; :::; .bk � d/&.v WD fk; fail/

.c � d/&?

.p1 � .1 
 d//&.v WD g1/; :::; .pm � .1 
 d//&.v WD gm/;

.q1 � .1 
 d//&.v WD h1; fail/
:::

.qn � .1 
 d//&.v WD hn; fail/

.r � .1 
 d//&?

1

C
C
C
C
C
C
C
C
C
C
C
A

fTheorem4:3.5/g

D pchoice

0

B
B
B
B
B
B
B
B
B
B
@

.a1 � d/&.v WD e1/; :::; .aj � d/&.v WD ej/;

.p1 � .1 
 d//&.v WD g1/; :::; .pm � .1 
 d//&.v WD gm/;

.b1 � d/&.v WD f1; fail/; :::; .bk � d/&.v WD fk; fail/

.q1 � .1 
 d//&.v WD h1; fail/; :::;

.qn � .1 
 d//&.v WD hn; fail/

.c � d C r � .1 
 d//&?

1

C
C
C
C
C
C
C
C
C
C
A
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Pcaught
 byQ

fTheorem4:6g

D pchoice

0

B
B
@

a1&.v WD e1/; :::; aj&.v WD ej/;

b1&.v WD f1; Q/; :::; bk&.v WD fk; Q/

c&?

1

C
C
A

fTheorem4:4.4/g

D pchoice

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

a1&.v WD e1/; :::; aj&.v WD ej/;

b1&pchoice

0

B
B
B
B
B
B
B
@

p1.f1/&.v WD g1.f1//; :::;

pm.f1/&.v WD gm.f1//;

q1.f1/&.v WD h1.f1/; fail/; :::;

qn.f1/&.v WD hn.f1/; fail/

r.f1/&?

1

C
C
C
C
C
C
C
A

; :::;

bk&pchoice

0

B
B
B
B
B
@

p1.fk/&.v WD g1.fk//; :::; pm&.v WD gm.fk//;

q1.fk/&.v WD h1.fk/; fail/; :::;

qn.fk/&.v WD hn.fk/; fail/

r.fk/&?

1

C
C
C
C
C
A

c&?

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

fTheorem4:2.2/g

D pchoice

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

a1&.v WD e1/; :::; aj&.v WD ej/;

.b1 � p1.f1//&.v WD g1.f1//; :::; .b1 � pm.f1//&.v WD gm.f1//;

.b1 � q1.f1//&.v WD h1.f1/; fail/

:::

.b1 � qn.f1//&.v WD hn.f1/; fail/

.b1 � r.f1//&?;
:::;

.bk � p1.fk//&.v WD g1.fk//; :::; .bk � pm.fk//&.v WD gm.fk//;

.bk � q1.fk//&.v WD h1.fk/; fail/

:::

.bk � qn.fk//&.v WD hn.fk/; fail/

.bk � r.fk//&?
c&?

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A
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fTheorem4:2.1/ and .5/g

D pchoice

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

a1&.v WD e1/; :::; aj&.v WD ej/;

b1&.b1 � p1.f1//&.v WD g1.f1//; :::;

.b1 � pm.f1//&.v WD gm.f1//;

::::::;

.bk � p1.fk//&.v WD g1.fk//; :::; .bk � pm.fk//&.v WD gm.fk//;

.b1 � q1.f1//&.v WD h1.f1/; fail/

:::

.b1 � qn.f1//&.v WD hn.f1/; fail/

::::::;

.bk � q1.fk//&.v WD h1.fk/; fail/

:::

.bk � qn.fk//&.v WD hn.fk/; fail/

.˙1
i
k.bi � r.fi// C c/&?

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

PelseQ

fTheorem4:7g

D pchoice

0

B
B
@

a1&.v WD e1/; :::; aj&.v WD ej/;

b1&Q; :::; bk&Q

c&?

1

C
C
A

fTheorem4:2.2/g

D pchoice

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

a1&.v WD e1/; :::; aj&.v WD ej/;

.b1 � p1/&.v WD g1/; :::; .b1 � pm/&.v WD gm/;

.b1 � q1/&.v WD h1; fail/; :::; .b1 � qn/&.v WD hn; fail/

.b1 � r/&?
::::::;

.bk � p1/&.v WD g1/; :::; .bk � pm/&.v WD gm/;

.bk � q1/&.v WD h1; fail/; :::; .bk � qn/&.v WD hn; fail/

.bk � r/&?
c&?

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A
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fTheorem4:2.1/ and .5/g

D pchoice

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

a1&.v WD e1/; :::; aj&.v WD ej/;

.b1 � p1/&.v WD g1/; :::; .b1 � pm/&.v WD gm/;

:::::;

.bk � p1/&.v WD g1/; :::; .bk � pm/&.v WD gm/;

.b1 � q1/&.v WD h1; fail/; :::; .b1 � qn/&.v WD hn; fail/

::::::;

.bk � q1/&.v WD h1; fail/; :::; .bk � qn/&.v WD hn; fail/

.�1
i
kbi � r C c/&?

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

P; Q

fTheorem4:4.3/g

D pchoice

0

B
B
@

a1&.v WD e1; Q/; :::; am&.v WD ej; Q/;

b1&.v WD f1; fail; Q/; :::; bk&.v WD fk; fail; Q/

c&.?; Q/

1

C
C
A

fTheorem4:5g

D pchoice

0

B
B
@

a1&.v WD e1; Q/; :::; am&.v WD ej; Q/;

b1&.v WD f1; fail/; :::; bk&.v WD fk; fail/

c&?

1

C
C
A

fTheorem4:4.4/g

D pchoice

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

a1&pchoice

0

B
B
B
B
B
B
B
@

p1.e1/&.v WD g1.e1//; :::;

pm.e1/&.v WD gm.e1//;

q1.e1/&.v WD h1.e1/; fail/; :::;

qn.e1/&.v WD hn.e1/; fail/

r.e1/&?

1

C
C
C
C
C
C
C
A

::::::;

am&pchoice

0

B
B
B
B
B
B
B
@

p1.em/&.v WD g1.em//; :::;

pm.em/&.v WD gm.em//;

q1.em/&.v WD h1.em/; fail/; :::;

qn.em/&.v WD hn.em/; fail/

r.em/&?

1

C
C
C
C
C
C
C
A

b1&.v WD f1; fail/; :::; bk&.v WD fk; fail/

c&?

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A
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fTheorem4:2.2/g

D pchoice

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

.a1 � p1.e1//&.v WD g1.e1//; :::;

.a1 � pm.e1//&.v WD gm.e1//;

.a1 � q1.e1//&.v WD h1.e1/; fail/; :::;

.a1 � qn.e1//&.v WD hn.e1/; fail/

.a1 � r.e1//&?::::::;

.am � p1.em//&.v WD g1.em//; :::;

.am � pm.em//&.v WD gm.em//;

.am � q1.em//&.v WD h1.em/; fail/; :::;

.am � qn.em//&.v WD hn.em/; fail/

.am � r.em//&?
b1&.v WD f1; fail/; :::; bk&.v WD fk; fail/

c&?

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

fTheorem4:2.1/ and .5/g

D pchoice

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

.a1 � p1.e1//&.v WD g1.e1//; :::;

.a1 � pm.e1//&.v WD gm.e1//;

::::::;

.am � p1.em//&.v WD g1.em//; :::;

.am � pm.em//&.v WD gm.em//;

.a1 � q1.e1//&.v WD h1.e1/; fail/; :::;

.a1 � qn.e1//&.v WD hn.e1/; fail/

::::::;

.am � q1.em//&.v WD h1.em/; fail/; :::;

.am � qn.em//&.v WD hn.em/; fail/

b1&.v WD f1; fail/; :::; bk&.v WD fk; fail/

.˙1
i
mai � r.ei/ C c/&?

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

Theorem 5.3 All finite programs can be converted to normal forms.

Proof From Theorems 5.1 and 5.2.
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6.6 Conclusion

This paper presents a probabilistic model to an extended guarded command
language. A new logical variable eflag is added to the standard design model
to describe the failure state of a program. We introduce the probabilistic choice
operator to “implement” the nondeterministic choice operator by providing the
probability with which the alternatives are selected randomly. Aiming to reduce the
failure rate of programs, we introduce the notion of coordination construct whose
second operand acts as the assistant of its first operand when the latter fails during
its execution.
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Chapter 7
The Operational Principle and Problem Frames

Michael Jackson

Abstract In the problem frames approach to software development – as its name
indicates – analysis of the problem precedes construction of the solution. The prob-
lem analysis rests on certain ideas of structure and simplicity, including a general
recommendation that composition should be postponed until the parts to be com-
posed are well understood in their preliminary isolated forms. These ideas are
discussed in the light of Michael Polanyi’s notion of the operational principle of
a machine or contrivance, and his account of the relationship between scientific
knowledge and understanding of machines. Criteria are suggested for simplicity
in problem decomposition. The outline structure of the associated development
approach is sketched, and the relationship between formal development methods
and problem structuring is clarified.

7.1 Complexity and Simplicity

In software development complexity is the mother of failure. As C A R Hoare
famously said, speaking of Algol W and Algol 68 in his Turing Award lecture [4]:
“I conclude that there are two ways of constructing a software design: One way is
to make it so simple that there are obviously no deficiencies and the other way is
to make it so complicated that there are no obvious deficiencies.” The emphasis on
what is obvious shows clearly that Hoare was talking about complexity in a subjec-
tive human sense – about a particular kind of obstacle to human understanding. It is
intellectual complexity, that manifests itself as difficulty in designing, writing and
understanding software – in developing a dependable system and achieving confi-
dence that it will provide the required functionality.
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7.1.1 Computer-Based Systems

The theme of this paper is mastery of this kind of complexity as it is encountered in
software development for software-intensive or computer-based systems. These are
systems in which computers interact with the physical world in order to bring about
certain desired effects there. For example: a system for a lending library, intended to
control library membership and the acquisition, cataloguing and lending of books,
and to provide information about these activities; an avionics system, designed to
help the pilot to fly the plane safely and efficiently; or a lift control system, whose
purpose is to provide convenient and safe transport from floor to floor in a tall
building. In all of these systems, the success of the development is judged by the
effects in the physical world. The true subject matter of the software development
activity is not the computations carried out inside the computer, but the desired be-
haviour that these computations evoke and control in the world outside.

Realistic systems of this kind are complex. The world with which the com-
puter interacts is usually a heterogeneous assemblage of physical domains. For the
avionics system these domains include the earth’s atmosphere, the pilot, the airport
runways, the aircraft’s engines and its control surfaces. For the lending library sys-
tem they include the library staff, the members, the books and the barcode labels
stuck on their covers, and the membership swipe cards. For the lift-control system
the domains include the lift shafts and the building’s floors, the lift cars, the re-
quest buttons, the users, the lift and lobby doors, the lift position display and so
on. Further complexity arises from the proliferation of features, along with their in-
escapable feature interactions, in response to market pressures. At the same time,
the highest possible level of automation is sought, even within critical systems.
The development process, then, must address the software’s interactions with many
physical domains of different natures, exploiting the multiple properties of each do-
main in the service of each of many interacting features. It is in the understanding
and development of such complex systems that we seek simplicity.

Much of the complexity in these systems springs from the interactions of rela-
tively simple constituents brought together to form complex wholes. Mastering this
complexity demands the unravelling – and subsequently the analysis and reconstruc-
tion – of these interactions. Formal languages, analysis, reasoning and calculation
are vital tools in this task; and so too is a sound technique of formalising a non-
formal reality so that it can be reasoned about as reliably as possible. But these tools
alone are not sufficient. They must be applied within a conceptual framework which
supports and guides both a decomposition of a complex whole into simple parts
and an analysis of the interactions among those parts that must be accommodated
when they are recombined into the desired whole. Proposing and clarifying such a
framework is the purpose of this paper.
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7.1.2 Problem Frames and the Operational Principle

The conceptual framework proposed in this paper is that of the problem frames
approach [1] to software development. Development of a system is regarded as a
problem: the task is to devise a software behaviour that will satisfy the requirement
– that is, will produce the required effects in the physical problem world. The com-
plexity of the problem is addressed by decomposition into subproblems, and so on
recursively, until the subproblems obtained are sufficiently simple to be understood
and solved without further decomposition. A subproblem is simple when the argu-
ment necessary to justify a solution is itself simple by certain specific criteria.

Each simple subproblem can be regarded as defining a small system to be
developed – with its own software behaviour, problem world, and requirement. The
subproblem and its associated system are regarded as closed: they are to be analysed
in isolation, temporarily ignoring interactions with other subproblems. The subse-
quent recombination of the analysed subproblems, to give the analysis of the original
whole problem, is a substantial task in its own right. Naturally, the decomposition
into simple subproblems proceeds top-down, while their recombination proceeds
bottom-up.

Support for the ideas on which this conceptual framework is based, and clarifica-
tion of its consequences, can be drawn from the notion of the operational principle
of a machine or contrivance, extensively discussed by the philosopher and physical
chemist Michael Polanyi in his book Personal Knowledge [9]. Each small system
defined by a simple subproblem can be regarded as a contrivance in Polanyi’s sense,
the software and the problem domains constituting the characteristic parts of the
contrivance. Polanyi lays great stress on the human and individual nature of knowl-
edge and understanding, which are central to the practical work of developing a
computer-based system. He emphasises the distinction between scientific knowl-
edge and the understanding of machines. This distinction has a clear parallel in
software development: formal scientific and mathematical knowledge are to be dis-
tinguished from the understanding of problem and system structures within which
they can be deployed. The relationship between them is discussed here in the context
of the conceptual framework of the problem frames approach.

7.1.3 A Caveat

A caveat is necessary before the substance of the paper is presented in the sections
that follow. Success in software development, as in any human activity, is often to be
sought by identifying and following successful precedents – in short, by practising
normal design as discussed by the aeronautical engineer Vincenti [10]. The focus
of the development work is then the instantiation and improvement of an existing
accepted design: the developer rarely has reason to reconsider the decomposition
into components or to devise a new configuration of the components and their inter-
actions. In effect, the long evolution of the normal design has gradually stimulated,
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and then absorbed, successive steps in a mastery of the problem complexities: in a
normal practice it is unnecessary to recapitulate that evolution.

In this paper, however, mastery of complexity is the central topic. The discus-
sion will therefore implicitly assume that the development problem is – at least to
a large extent – novel, and that the developer cannot rely chiefly on precedent but
must draw on general principles to master the problem complexity. The practical
justification for adopting this assumption is that many areas of software develop-
ment are regrettably lacking in established and acknowledged normal designs. The
intellectual justification is that mastery of complexity ab initio is a topic of intrinsic
interest.

7.2 The Operational Principle

Polanyi elaborates the notion of an operational principle as it applies in several
fields. He discusses operational principles in language, mathematics, biology, psy-
chology and even in logic. He also applies and illustrates it in the field of machines
such as clocks, locomotives, telephones and cameras, and other contrivances of a
like nature, which are assemblages of physical parts. This is where the notion is
most directly applicable to the development of computer-based systems and to the
theme of this paper.

7.2.1 A Machine Example

The operational principle of a machine specifies [9] how “its characteristic parts –
its organs – fulfil their special function in combining to an overall operation which
achieves the purpose of the machine”. For example, we may describe the operational
principle of the weight-driven pendulum clock in terms of the weights, the gear train,
the hands, the escapement, the pendulum and the passage of time. In the style of a
problem diagram [6], the interactions among these parts, together with the purpose
of the whole machine, are sketched in Fig. 7.1.

The operational principle is as follows. The weights, under gravity, apply power
(a1) to turn the gear train. The escapement wheel turns (a2), being fixed to a shaft
in the gear train. The pendulum is connected to the escapement lever. Through the
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Fig. 7.1 A pendulum clock and its purpose
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lever each swing of the pendulum allows the escapement wheel to advance by one
unit for each swing (a3) and also to give a small impulse (a3) to keep the pendulum
swinging. The gear train shafts therefore turn proportionally to the number of swings
of the pendulum, and the rotating hands, fixed to appropriate shafts in the train (a5),
count the pendulum swings (a4) and so effectively indicate the passage of time.
The purpose of the machine is shown in the dashed oval: it is to govern the angular
positions of the hands (b1) to correspond to the elapsed time (b2). The arrowhead
on the dashed line b1, and its absence from the line b2, indicates that the purpose of
the contrivance is to constrain the hands, not to constrain the passage of time.

7.2.2 Science and the Operational Principle

Polanyi is at pains to stress the difference between knowledge and understanding
of the operational principle of a contrivance, and knowledge of the relevant natural
science and mathematics. He goes so far as to write:

. . . Indeed, the understanding of the structure and operation of a machine require as a rule
very little knowledge of physics and chemistry. Hence the two kinds of knowledge, the
technical and the scientific, largely by-pass each other.

But the relation of the two kinds of knowledge is not symmetrical. If any object—such
as for example a machine—is essentially characterised by a comprehensive feature, then
our understanding of this feature will grant us a true knowledge of what the object is. It
will reveal a machine as a machine. But the observation of the same object in terms of
physics and chemistry will spell complete ignorance of what it is. Indeed, the more detailed
knowledge we acquire of such a thing, the more our attention is distracted from seeing what
it is.

The “understanding of the structure and operation of the machine” does not
itself explain in mathematical and scientific terms the detailed conditions necessary
for the clock to achieve its purpose. Rather, it provides an intellectual and practi-
cal structure within which such an explanation can be formulated and given. This
explanation must rest on two foundations. First, on a scientific understanding of the
physical properties of the characteristic parts of the clock. The pendulum swings
with an approximately constant period that depends – in accordance with the math-
ematical analysis of the forces acting on it – on its length and the acceleration due
to gravity. The impulses imparted to the pendulum are strong enough to compensate
for the effects of friction and air resistance. The weight is heavy enough to drive the
whole mechanism. The escapement mechanism exploits the mechanical principle of
the lever to minimise disturbance of the pendulum and wear on the contact surfaces.
The gear ratios of the shafts for the hands and the escapement are correctly matched
to the pendulum’s period – and so on. Second, the scientific explanation depends for
its applicability on the assumed context of the machine operation. The clock must
be located in the earth’s gravitational field; it must be positioned close to sea level; it
must be stably located on terra firma and not tossed about on a ship at sea; the cen-
tre of the pendulum swing must be at the vertical position; and so on. The scientific
and mathematical explanations given need be valid only in the specific local context
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for which the machine has been devised. If this local context is familiar, or readily
understood, the contrivance and its operational principle are easily grasped: they
provide the intellectual structure for the scientific and mathematical explanations
and for their understanding and validation.

7.3 The Operational Principle in Computer-Based Systems

Polanyi’s discussion returns more than once to the description of the contrivance as
it would be – or is – presented in a patent, because he sees the patent claim as a
document in which the inventor will “. . . always try to obtain a patent in the widest
possible terms; he will therefore try to cover all conceivable embodiments of its
operational principle by avoiding the mention of the physical or chemical particulars
of any actually constructed machine, unless these are strictly indispensable to the
operations claimed for the machine.” The patent applicant, in short, is trying to give
the most abstract specification of the invention that is consistent with the conditions
on which patents can be issued, excluding inessential implementation detail that
would limit the scope of the patent.

7.3.1 The Given Problem World

Practical software development, unlike a patent application, is usually concerned
with operational principles in a very specific concrete form. A computer-based
system brings together the software, executed by one or more computers, with a
problem world – which is a heterogeneous assemblage of physical problem domains.
The purpose of the software1 is to govern the interactions of the computers with the
world and, through these interactions, to achieve some observable effects in the
world: these observable effects are the functional requirement for the system.

In the design of a contrivance such as a clock, the designer is in principle free
to choose any assemblage of parts, and to arrange any interaction paths among
them, that can achieve the purpose of the contrivance. In a computer-based sys-
tem the parts are the computer (executing the software to be developed) and the
problem domains, and the interaction paths are the interfaces of phenomena they
share. For software development per se, this configuration of parts and interfaces
is largely – or even entirely – given: that is, it is not open to the software devel-
opers to introduce additional or replacement problem domains, or to introduce new

1 In the usual presentation of the problem frames approach [6] the software and computer are
regarded as together constituting the machine. Here we avoid this term because Polanyi uses it for
what we consider to be the whole system, comprising both the software and the problem world.
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interaction paths between problem domains or between the computer and the prob-
lem domains. These given parts and interfaces determine the arrangement of the
system’s parts in a very concrete way. The problem to be solved by the software
developers is to devise a software behaviour that will achieve the system’s purpose
within this given configuration.

7.3.2 A Zoo Turnstile

Figure 7.2 depicts a very small example. The system is intended to control entry to
a zoo, ensuring that each visitor pays for entry.

Entry is protected by a turnstile barrier controlled by the software, which is also
interfaced to a coin acceptor into which entry fees are to be inserted. The parts of
the system are the given problem domains – the People, the Coin Acceptor, the
Coins, and the Entry Barrier – and the Turnstile Software, which is to be developed.
These parts and their interfaces are identified in Figure 7.2: people may insert coins
into the acceptor (a4); they may enter through the barrier when the barrier allows
entry (a3); the software controls the entry barrier (a2) and detects coins inserted into
the acceptor (a1). The purpose of the system, represented by the dashed oval, is to
achieve Convenient Paid Entry, by controlling people’s entry (b2) with respect to the
insertion of coins (b1); the insertion of coins (b1) is not constrained. The operational
principle is readily expressed in terms of the system parts. People can insert coins
(a4) into the acceptor; the turnstile software detects (a1) coin insertions and releases
the entry barrier (a2) accordingly to allow people to enter (a3).

Evidently, within this operational principle, there is room for variation in the
purpose of the system and in the realisation of the operational principle, even when
the problem world is given. For example, depending on the relative positions of the
coin acceptor and entry barrier, there may be neither the intent nor the possibil-
ity of ensuring that each person admitted is the person who most recently inserted
a coin. The purpose must then specify which possible interleavings of coin in-
sertion and barrier release events are acceptable. There are arguments in favour
of strict alternation; but a schoolteacher equipped with a handful of coins to pay
for pupils on a school outing may be grateful for a looser scheduling that ensures
only that cumulatively the number of entries does not exceed the number of coins
inserted.
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Fig. 7.2 Controlling a zoo turnstile
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7.3.3 Understanding the Operational Principle

Although there is room for variation, the system’s purpose and its operational
principle are simple enough to be humanly intelligible. This simplicity is vital,
because it provides a clear structure within which the detailed examination and anal-
ysis can be made of the given domain properties, and of the possibilities they offer
for satisfying the system’s functional requirements. Polanyi boldly asserts:

Unless I believe a purpose to be reasonable or at least conceivably reasonable, I cannot
endorse an operational principle which teaches how to achieve this purpose.

Putting the same point differently: the developers will be more liable to confusion
and error in their work unless they have both accepted the functional requirement
and clearly understood the operational principle of the system by which the re-
quirement is to be achieved. Although the eventual development will embrace many
details that must be dealt with exactly, the acceptance and understanding spoken
of here do not depend on exactness. They depend more on the recognition of com-
ponents of familiar kinds, interacting in familiar structures and configurations. It is
with this clear recognition that the detailed work of modelling the problem world
domains and their interactions, and of devising a satisfactory software behaviour,
can be most reliably conducted.

7.3.4 Solving the Problem

Solving the software development problem depends on detailed investigation, for-
malisation and analysis of the properties and behaviours of the problem domains,
and of the shared phenomena by which they interact with each other and with the
software. For example, it is necessary to understand not only the interface (a2) at
which the software can control the entry barrier, but also the interactions at (a3)
between a visitor trying to enter and the possible states of the barrier. To enter it
may be necessary to push on the barrier, indicating at (a2) that entry is requested; if
the software then releases the barrier (a2) the visitor can enter by pushing the barrier
further, whereupon the barrier reverts to its locked state to prevent a further entry
until there has been a further pair of push and release events. This barrier behaviour
is operationally similar to the behaviour of the clock escapement, and may similarly
involve some matters of timing in the interactions of the system’s parts.

When the development is complete, the developers must be able to show that they
have produced an adequate solution. This adequacy argument will involve formal
descriptions of the requirement and of the properties and behaviours of the problem
domains and the software. For example, it may include a finite state machine de-
scription of the given behaviour of the entry barrier, from which the effects at (a3) of
possible visitor behaviours at (a3) combined with the software’s control behaviour at
(a2) can be formally deduced. The operational principle of the system gives an out-
line structure for the adequacy argument. The argument will include reasoning along
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causal chains in the system, both within the software and the problem domains and
at their interaction interfaces. The formal descriptions of properties and behaviours
of the software and of problem domains, and the reasoning based on them, furnish
the lemmas that allow some detail to be hidden and the structure of the whole ar-
gument to be clearly visible. Local invariants may provide succinct links between
behaviours of adjacent domains. Some aspects of the system requirements may be
captured formally in global invariants that can be shown to hold over the operation
of the whole system. In essence, the role of the adequacy argument is to show that
the system embodies its operational principle, not only in the large, but in the small
also; and that it does so in a way that achieves its purpose.

7.4 Problems and Solutions

The zoo turnstile system is unrealistically small and simple, permitting a simple
relationship between the problem and its solution. The functional requirement – the
purpose – of the system can be easily understood and tersely expressed, and its
operational principle is easily grasped and easily referred to the behaviour of the
problem domains and the software.

7.4.1 Refinement

Development of the solution can proceed by a kind of refinement, successively step-
ping across the problem diagram of Fig. 7.2 from right to left, appealing at each
step to the given properties of the relevant problem domain [7]. The requirement
is expressed in terms of coin insertions (b1) and entries (b2). The coin insertions
are elementary events (a4), but each entry event (a3) is the culmination of a little
protocol executed by the visitor and the entry barrier. The given properties of the
coin acceptor allow the coin insertions to be refined to events at the interface (a1)
between the software and the coin acceptor. The given properties of the turnstile
allow the entry protocol for the visitor to be refined to a protocol of events at the in-
terface (a2) between the software and the entry barrier. In the final refinement steps
the software itself can be developed in detail to maintain the required relationship
between events at (a1) and events at (a2).

Subject to developer trial and error, this kind of development is a monotonic pro-
gression from problem to solution, refining and elaborating the requirement until
it becomes the software solution. The structure of the requirement is elaborated
to respect and exploit the given problem world properties (which must, of course,
be explicitly described in documentation referenced in the refinement steps), and
becomes the structure of the solution. There is no well-defined point in the develop-
ment at which the developer shifts attention from problem analysis to construction
of the solution.
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7.4.2 Limitations of Refinement

The advantages of refinement as a technique for developing a program from a formal
program specification are well known. Here we are arguing that a form of refinement
can also be used in developing the software of a small and simple system. However,
it is not fully and directly applicable to realistically large and complex computer-
based systems. The immediately obvious obstacle is that neither the operational
principle nor the functional requirement of such a system can be captured in a terse
formal specification, even at a high level of abstraction. What is the purpose of the
global telephone network system? Of the lending library system? Of an avionics
system? Of a chemical process control system? Of a banking system?

Of course, it is easy enough to choose some salient, centrally important, function.
“The purpose of the telephone system is to enable people to talk to each other,”
we may say. But such a large purpose, unlike the turnstile requirement, gives no
useful purchase on the first refinement step. It is simultaneously too large to grasp
as a development objective, and too small to encompass the whole of the required
functionality. What about billing? What about conference calls, call forwarding and
wake-up calls? Or automatic callback, call blocking and credit card calls? Some
decomposition and structuring of the purpose or requirement must take place before
it can form a basis for solution development.

7.4.3 Problem Structuring

In the problem frames approach, structuring the purpose or requirement of the sys-
tem is regarded as structuring the problem. The problem is regarded as having the
general form exemplified by Fig. 7.2. That is: it defines a small system to be devel-
oped, having a problem world comprising given problem domains, a software part,
interaction paths among them and a system functional requirement, which stipulates
the effects to be brought about in the problem world by the execution of the soft-
ware. If the requirement is very complex, as it will be in a realistic computer-based
system, then the problem must be decomposed into subproblems, each subproblem
itself having the general form of a problem. Decomposition continues recursively
until the problems at the leaves of the decomposition tree have clear and easily un-
derstandable purposes and operating principles, and are sufficiently simple – like
the turnstile problem – to be solved directly.

This is a decomposition of the problem, not of the solution. The small sys-
tems defined by the subproblems are not, in general, structural subsystems of the
whole system to be built. Nor can the problem structure that results from the decom-
position be confidently expected to serve as a solution structure: the software in each
subproblem is not expected to become a module of the software of the whole system
when it is eventually completed. Rather, the small systems defined by the subprob-
lems should be regarded as projections of the whole system. The behaviours of the
subproblems’ software are projections of the behaviour of the completed software;
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the domain behaviours which the subproblems evoke are projections of the domain
behaviours in the completed system; and the requirements of the subproblems, when
fleshed out by the subproblem analysis, are projections of the functional requirement
of the whole system.

There is a little paradox here. The problem frames approach aims to be firmly
anchored in the physical problem world: the software in each subproblem must
evoke a physical system behaviour that exemplifies the subproblem’s operational
principle. Yet the software parts of these small systems are not expected to fit to-
gether snugly as subsystems of the completed software. The source of the paradox
is the pursuit of simplicity and understanding in problem structure and analysis,
deferring considerations of software architecture – which are concerned with the
structure of the solution rather than the problem. A realistic computer-based sys-
tem can be understood from many points of view and dissected and structured in
many dimensions. For example, in a particular business system development, it may
be clear that the eventual implementation will be based on a three-tier architecture:
the architectural view then has the three parts ClientPresentation, BusinessLogic
and ServerDatabase. The architecture of an embedded system may have four parts:
AcceptStimuli; ProcessStimuli; ControlOutputs; ManageDisplay. These may be ex-
cellent structures for the software; but they are likely to be an obstacle – not an
aid – to understanding the problems that the systems are intended to solve. From the
point of view of problem analysis, they separate what should be brought together,
and bring together what should be separated. Useful problem structures will be quite
different. A simple correspondence between problem and solution structures is de-
sirable, but may often be unachievable without doing violence to one of the two.
The malleability – even fluidity – of software allows a rich repertoire of transforma-
tions: when the time comes the old wine of the problem-structured analyses can be
carefully poured into the new bottles of the chosen implementation architecture.

7.4.4 Two Sources of Complexity

Each subproblem to be identified in a problem decomposition will correspond
broadly to an identifiable useful functionality of the whole system: for example, in
the library system BookLending and MembershipManagement may be identified as
two subproblems. Decomposition to a much finer granularity will not increase un-
derstandability, because the resulting fragments of functionality, when considered
individually, will have no intelligible purpose or operational principle. The point is
readily illustrated by the analysis of a large finite-state machine. Understanding may
be achievable by factoring into smaller quotient machines, or by identifying nearly
decomposable regions. But decomposition into individual state transitions will hin-
der understanding, not help it. A single transition arc, considered individually, can
have no intelligible purpose.

The complexity of any subproblem in a realistic system arises from contributions
from two sources: from the intrinsic complexity of the subproblem function itself;
and from the modification – perhaps even the distortion – of the function due to its
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interactions with other functions. The BookLending subproblem must deal with the
basic events in which members borrow and return books, renew loans when they
want to keep the book for longer than the standard loan period, reserve a book that
is currently out on loan, cancel a reservation and so on. In addition the subprob-
lem must deal with such possibilities as the loss, theft or destruction of books. The
MembershipManagement subproblem must handle initiating, renewing and resign-
ing membership, payment of subscriptions, changes in members’ circumstances –
such as bankruptcy, emigration, change of name, prolonged illness – and so on.

Each of these subproblems, then, has its own intrinsic complexity. Addition-
ally, the subproblems interact because books are to be borrowed only by members.
A further potential contribution to the complexity of both subproblems is therefore
the need to handle this interaction. Can a book be lent if the borrower’s membership
is due to expire within the standard loan period? Can a member be permitted to re-
sign while still holding a borrowed book? What must happen if a member’s name
changes while a book is reserved but not yet borrowed?

7.4.5 Top-Down Decomposition, Bottom-Up Recombination

In the proposed approach to problem analysis, the two sources of subproblem com-
plexity are separated. The decomposition into subproblems is carried out top-down.
Each identified subproblem is regarded as defining a small closed system, ignoring
its interactions with other subproblems of the system. For example, the BookLending
subproblem may ignore the interaction with the MembershipManagement subprob-
lem by assuming a context in which memberships, and the properties of individual
members, are constant. The recombination of the subproblems, after their respec-
tive analyses, is carried out bottom-up. In the library system, the recombination will
address the complexities arising from the interactions between the book lending and
membership management processes.

Deferring the subproblem interactions in this way allows the intrinsic complex-
ities of each subproblem to be studied and sufficiently well understood before the
interaction complexities are addressed. Recognising the need for recombination as a
distinct development task has implications for the whole development process. Be-
cause the subproblems identified in decomposition are oversimplified, some of the
analysis may need to be reconsidered and possibly modified. By design, therefore,
the development process is non-monotonic.

The decomposition is also unconventional in two other ways. First, because it
ignores the interactions of the identified subproblems, the decomposition does not
formally specify any relationship among them. In particular, if a problem P is de-
composed into two subproblems S1 and S2, the decomposition says nothing about
P itself except that S1 and S2 will – eventually – contribute to its solution.2 Second,

2 There is an exception to this statement, explained in the following section. In some cases a local
variable of the software of P is identified by which S1 and S2 will communicate.
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the decomposition is not exhaustive: it does not exhaust the subproblems that will
eventually make up the whole problem. The task of recombining the subproblems
will, in general, reveal the existence of additional subproblems concerned with the
analysis and management of interactions among the subproblems to be recombined.

Naturally there are opportunities and motivations for modifying this process;
and judgment must be exercised in deciding how far the analysis of each subprob-
lem should be carried before its combination with its siblings can be addressed.
These judgments are made in the light of the general principle that the parts of a
whole must be both identified and well understood before they can be recombined.
The seventeenth-century clockmaker could not begin the design work for the first
pendulum clock by designing the clock’s frame. It was necessary first to design the
parts – the weight, the pendulum and its suspension, the gear train, the escapement
and the hands – before the necessary dimensions and properties of the frame could
be determined.

7.5 Requirement Decomposition and Instrumental
Decomposition

So far, the discussion of decomposition here has emphasised the identification
of subproblems concerned with distinct functions that the system is required to
provide. Each subproblem’s requirement is a separate projection of the whole
requirement, and its problem world is a projection of the whole problem world. This
may be called requirement decomposition. It differs from instrumental decomposi-
tion, in which the responsibility for satisfying one requirement projection is divided
between two loosely communicating subproblems. The difference is explained in
this section.

7.5.1 Requirement Decomposition

Figure 7.3 shows a sketch of a system to control a lift in a hotel.
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Fig. 7.3 A lift control system
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The stated system purpose is to provide safe and convenient lift service; but this
is not a simple purpose readily associated with a simply expressed and understood
operational principle. On investigation, it appears, rather, to be some combination
of at least three smaller purposes:

� To provide lift service in the usual sense, transporting users from floor to floor on
request
� To maintain safety by detecting equipment faults such as hoist motor failure,

breakage of the hoist cable, or a stuck floor sensor, and taking appropriate action
to avoid disaster
� To maintain a display in the hotel lobby, showing which floor the lift car is

currently at and which floors have pending requests

If this view holds, the decomposition must take the form of capturing these three
identified subproblems. The first is shown in Fig. 7.4.

In this projection, the lobby display is not relevant and has been omitted. Also,
a local assumption has been made about the lift equipment problem domain. It is
assumed that the equipment is healthy in the sense that it is sufficiently free from
malfunctions to provide the behaviours necessary to the lift service function. That is:
when the software sets the hoist motor state to upwards and on, the lift car rises at
the expected rate in the shaft; when the car reaches and leaves a floor the floor sensor
state switches to on and off accordingly; and so on. This assumption, that fault-free
behaviour is a given property of the lift equipment, is, of course, a strictly local
assumption about the context of the subproblem.

The second subproblem is shown in Fig. 7.5.
The purpose of this subproblem is to monitor the behaviour of the lift equipment

in order to detect faults that could potentially endanger the lift users, and to take
appropriate action when such a fault is detected. Here, of course, the local context
does not assume healthy equipment. On the contrary, it assumes that the equipment
is liable to faults. The given domain properties of the lift equipment are therefore
those that allow faults – including incipient and impending faults – to occur: when
the hoist motor state is upwards and on, the lift car may fail to rise at the expected
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rate in the shaft. To the extent that is possible and desirable, the given properties
also allow faults to be detected, and the necessary precautionary action to be taken.
Here we may suppose that the action to be taken is always the same: the hoist motor
state is set to off and the emergency brake is applied, locking the lift car in the shaft
so that it cannot fall freely.

7.5.2 Instrumental Decomposition

A different form of decomposition is instrumental decomposition. Requirement
decomposition answers the question: What are the smaller and simpler purposes
that contribute to the larger purpose of this problem? Instrumental decomposition
answers the question: How can the intrinsic complexity of this problem’s purpose
be mastered? In an instrumental decomposition some internal interface of the un-
decomposed software – a structure of otherwise hidden phenomena – is exposed
to serve as a medium of communication between the decomposed subproblems.
For example, this interface may be a shared data structure, or a set of shared events.
Unlike requirement decomposition, instrumental decomposition therefore has a sub-
stantial design aspect. In the lift control system, for example, the safety system may
be decomposed as shown in Fig. 7.6.

In the safety subproblem the exposed interface is the LiftEqptModel. It is a
shared data structure written by one of the subproblems and read by the other,
functioning as a model – or software surrogate – of the lift equipment. The upper
subproblem’s software monitors the behaviour of the lift equipment (excluding the
emergency brake, which is assumed to be fully reliable), and builds and maintains a
dynamic representation in the LiftEqptModel of the equipment’s current history and
state, with particular focus on potential failures. The lower subproblem’s software
monitors the history and state of the model; it detects any dangerous situation recog-
nisable in the model, and takes the necessary action. The primary design task arising
from the decomposition is to design the data structure – probably as an instance of
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an abstract data type. The design will be determined by the information needed by
the lower subproblem, and by the extent to which the upper subproblem’s software
can maintain a data structure from whose current value that information is directly
available or can be derived.

The motive for this decomposition is to make a separation that is instrumental
in satisfying the safety requirement. The separation is not in any way inherent in
the safety requirement: it is a chosen instrument to simplify satisfaction of the re-
quirement by separating two concerns. One concern is to monitor the behaviour of
the lift equipment, continually checking the sensor states in relation to each other
and to the current and recent motor settings, and maintaining a partially summarised
record – that is, the model – from which existing, incipient and impending faults can
be inferred. The other concern is to draw appropriate inferences from the model state
as it changes, and to take any necessary action. The justification for this separation
is the complexity of these two concerns.

7.6 Simple Operational Principles

The discussion so far has merely asserted the simplicity of the chosen subproblems.
If problem complexity is to be mastered by decomposition into simple subprob-
lems, practical criteria are needed to distinguish the complex from the simple. The
operational principle of a proposed subproblem provides the context for applying
such criteria. When the subproblem purpose is elaborated or refined in the process
of solving the subproblem – that is, specifying a software behaviour that can en-
sure satisfaction of that purpose – the operational principle provides a structure for
the process. Traversing that structure, considering the subproblem requirement and
the given properties of its domains, the developer may encounter points at which
simplicity appears seriously compromised, and the choice of the subproblem in hand
must be reconsidered. In this section some criteria of simplicity are mentioned and
briefly discussed. These criteria are not disjoint. In the presence of complexity more
than one criterion of simplicity is likely to be compromised.

7.6.1 One Level of Purpose

A simple operational principle has only one level of purpose. In many systems a cas-
cading requirement stipulates a primary goal to be achieved, together with one or
more levels of weaker goals to be achieved if the primary goal is unattainable. This
is common in systems that must exhibit some degree of fault-tolerance. It may be
recognised also in systems where the behaviour of a human participant in the prob-
lem world may fall short of what is normally expected. The criterion suggests that
distinct levels of the requirement cascade should be treated in separate subproblems.
For example, a bank loan customer may pass through several successive levels of
delinquency by failing to meet the bank’s loan conditions. Separating the treatment
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of the different levels will both clarify the conditions applicable to each level and
expose the concerns to be addressed when the customer moves to a higher or lower
level.

7.6.2 One Level of Abstraction

A simple operational principle is based on one level of abstraction of the phenom-
ena of the problem domains. Suppose, for example, that in a system to control a
car park the shared phenomena by which the software normally controls the rais-
ing and lowering of the barrier are abstracted as the events fRaise and Lowerg; in
some circumstances a finer-grained abstraction of the same phenomena – fMotorOn,
MotorOff, MotorUp, MotorDown, Open and Closedg – may be appropriate. The two
abstractions should not be applied in the service of the same operational principle;
they should be applied in different subproblems.

To provide the more abstract interface fRaise and Lowerg it will be necessary
to translate between the two levels: the translation separates the car park manage-
ment requirement from the detail of operating the barrier hardware. The translation
is itself a distinct subproblem resulting from an instrumental decomposition. Both
levels of abstraction will appear in the translation subproblem, but as phenomena
of distinct problem domains. Only the fine-grained level appear as phenomena of
the barrier domain; the more abstract fRaise and Lowerg appear as phenomena of a
domain introduced in the decomposition, behaving as a source of commands issued
to the barrier. The stream of these commands is the structure of exposed phenomena
of the undecomposed software.

7.6.3 Uniform Given Domain Properties

A simple operational principle assumes uniform given properties for each problem
domain. For example, in the lift control example, the lift service subproblem must
assume healthy operation of the lift equipment to the degree that is necessary to
provide service. For the lift safety system, by contrast, the operational principle
rests specifically on the potential for faults in the equipment, and on the relation-
ships between internal equipment faults – such as a stuck sensor – and the evidence
of that fault detectable at the interface with the software. This consideration alone
indicates that the lift service and lift safety requirements are to be handled by distinct
subproblems.

7.6.4 Synchronicity

Every system has a temporal dimension of execution. This temporal dimension may
embrace asynchronous concurrent processes: it is then necessary to separate the
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concurrent processes into distinct subproblems. (In the turnstile problem the stream
of coin insertions and the protocol by which each visitor negotiates the barrier may
be regarded as concurrent processes.)

In the absence of true concurrency, a system may still perform functions of differ-
ent periodicities. The tempi of these functions may be synchronised by nesting, just
as the gear train of the pendulum clock has shafts rotating at different, but synchro-
nised, speeds. In some cases, however, the tempi may be incompatible and cannot
be nested – for example, if one behaviour is synchronised with calendar months
and another with seven-day weeks, or one with lunar months and another with solar
years. Incompatible tempi should be separated for treatment in distinct subproblems.
An application of this idea to the spatial periodicity of iterative stream structures is
found in the notion of a structure clash in the JSP design method [5] for sequential
programs.

7.6.5 Uniform Domain Roles

In a simple operational principle each problem domain plays essentially one role.
For example, in a system in which clerical workers edit documents, and management
information is provided about the work they do, the workers are playing two roles.
In one role they are the users in a document editing problem; in the other they are
the subjects of an information display problem. The two roles should be separated
into distinct subproblems.

7.6.6 Single Operational Phase

Many systems have distinct phases of operation. For example, in an avionics sys-
tem the phases may be: pull-back from departure gate; taxing; take-off; climbing;
cruising; descent; landing; pull-in to arrival gate; and so on. Each phase is likely
to have its own local assumptions of problem domain properties, and its own op-
erational principle. To maintain simplicity of the operational principle, each phase
should therefore be separated into distinct subproblems.

7.6.7 Completeness

A subproblem can embody a simple operational principle, and achieve an intelli-
gible purpose which the developer can easily endorse, only if its problem world is
in some sense closed and complete. First, in a closed problem world every state or
event is regarded as controlled by some problem domain included in the problem
world. This is an assumption of the local subproblem context: for example, in the
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lift safety subproblem shown in Fig. 7.5 the changes in the motor state are regarded
as spontaneous behaviour of the lift equipment, although in the lift service subprob-
lem of Fig. 7.3 they are regarded as controlled by the lift control software. Second,
the problem world must be complete in the same sense as a CSP process must be
complete. That is: if the alphabet of a problem domain includes any events of a
class, then all events of that class must be accounted for in the described domain
properties.

In some software application areas it is common to find a style of requirement
description by isolated fragments that make this criterion hard to satisfy. For ex-
ample, the following requirement appeared in a large specification of a chemical
manufacturing plant [2]: “When the temperature is maximum, the system should
display a message on the screen, unless no operator is on the site except when
T < 60ı.” The apparent intention is to relate the dynamic behaviour of the tem-
perature, the possible presence and absence of an operator, and the desired message
display. Taken alone, this isolated statement cannot define an intelligible purpose
for a subproblem: its satisfaction cannot be the purpose of a contrivance embodying
an intelligible operational principle.

7.7 Bottom-Up Recombination

In identifying very simple subproblems, the decomposition oversimplifies by ignor-
ing the eventual need for recombination. Each subproblem can then be analysed
and understood in isolation. For example, when a subproblem associated with one
mode or phase of the system is analysed, the local context of the subproblem treats
that mode or phase as if it persisted over the whole operational life of the system.
This approach flouts the dictum ascribed to Albert Einstein: “Everything should
be as simple as possible, but no simpler,” the oversimplification being justified by
the easier understanding of each subproblem in isolation. But in the end the dictum
cannot be gainsaid, and the price is paid when the parts are recombined to constitute
the whole. Recombination is itself to be regarded as a distinct task, in which the
subproblems to be combined constitute the problem world.

7.7.1 Requirement Recombination

Subproblem recombination includes the task of bringing the subproblem require-
ments together in a coherent overall requirement.

Some recombinations may fall into the ambit of well-known techniques. For
example, the combination of the two parts of the safety system – one building and
the other using the LiftEqpt model – is a relatively straightforward case of managing
access by a writer and a reader to a shared variable: the granularity of the interleaved
accesses must take account of both syntactic and semantic properties of the model.
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Sequential recombinations of parts associated with distinct phases are, in general,
concerned with identifying and establishing a compatible state which can serve both
as the termination state of the preceding phase and the initial state of the subsequent
phase. It may be necessary to modify the phase subproblems to ensure this orderly
switchover; or an additional subproblem may be identified that is responsible for
reaching the compatible state before the switchover takes place.

Some recombinations demand the reconciliation of a conflict between the parts
to be combined. For example, the lift service and lift safety requirements come
into conflict when an equipment fault has been detected. The safety requirement
demands that the motor be switched off; the service requirement demands that the
motor continues to be available for sending the lift car to requested floors. In such a
case it is necessary to concede priority to one part over another.

Where two subproblems have requirements that overlap in time, but make incon-
sistent local assumptions about problem domain properties, the inconsistency may
be removed by suitable elaboration of one or both subproblems. For example, in the
library system, the book lending subproblem may have assumed that membership
is effectively static. In reality, the status of each member may change during the
currency of one episode of lending. Both the lending and the membership subprob-
lems have already been well understood and analysed in their simplified forms: in
particular, the possible behaviours and event sequences have been elaborated for the
lending subproblem, and the various member statuses and the transitions between
them have been analysed in the membership subproblem. Viewing both subprob-
lems as defining finite state machines, the developer can in principle construct their
product machine. The states and events of the product machine can then be exam-
ined to identify impossible or undesirable events and transitions, and the software
behaviours of the subproblems can be modified to eliminate them.

7.7.2 Software Recombination

A system comprising only one subproblem can be implemented by executing the
subproblem’s software. Where the system has more than one subproblem the sub-
problems’ software must be recombined into a suitable architecture. In general, this
recombination will involve transforming each subproblem’s software. For example:
the software of one subproblem may be dismembered and distributed in the text
of the software of another subproblem; two similar but not identical models of a
problem domain may be merged into one; a software behaviour including opera-
tions to read from an input stream of events or messages may be transformed into a
procedure to be invoked as each element of the stream becomes available.3

Because the topic of this paper is problem analysis rather than software im-
plementation, these transformations will not be further discussed here. Their

3 An example of this transformation is the program inversion scheme described in [5].
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significance for this paper is that the possibility of transformation releases the
problem analysis from the obligation to fit the Procrustean bed of the eventual
software architecture.

7.8 Formal Reasoning and Operational Principles

Polanyi stresses the distinction between science and mathematics on the one hand
and operational principles of contrivances on the other, even when they are applied
to the same physical objects:

The first thing to realize is that a knowledge of physics and chemistry would in itself not
enable us to recognize a machine. Suppose you are faced with a problematic object and
try to explore its nature by a meticulous physical or chemical analysis of all its parts. You
may thus obtain a complete physico-chemical map of it. At what point would you discover
that it is a machine (if it is one), and if so, how it operates? Never. For you cannot even
put this question, let alone answer it, though you have all physics and chemistry at your
finger-tips, unless you already know how machines work. Only if you know how clocks,
typewriters, boats, telephones, cameras, etc. are constructed and operated, can you even
enquire whether what you have in front of you is a clock, typewriter, boat, telephone, etc.
The questions: ‘Does the thing serve any purpose, and if so, what purpose, and how does
it achieve it?’ can be answered only by testing the object practically as a possible instance
of known, or conceivable, machines. The physico-chemical topography of the object may
in some cases serve as a clue to its technical interpretation, but by itself it would leave us
completely in the dark in this respect.

In the development of computer-based systems, similarly, the role of science and
mathematics is not to propose, or select, or establish operational principles of con-
trivances. Rather, it is to operate within the framework determined by the informally
identified operational principles of the subproblems and their recombination in the
system which is to embody them. Formal software development should be based on
non-formal, clearly articulated, structures and operational principles.

7.9 Concluding Remarks

The fundamental technique for mastering complexity is division of the complex
object of study into simple parts. This technique has been known in principle since
antiquity, and was compellingly reiterated [1] in one of Descartes’ four principles:

. . . to divide each of the difficulties under examination into as many parts as possible, and
as might be necessary for its adequate solution.

but as Leibnitz pointed out [8]:

This rule of Descartes is of little use as long as the art of dividing remains unexplained.
. . . By dividing his problem into unsuitable parts, the inexperienced problem-solver may
increase his difficulty.
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The central theme of this paper is that the problem frames approach can help to
reduce difficulty, and also to place formal and structural aspects of development in
their proper relationship. Polanyi’s notion of the operational principle of a machine
or contrivance offers both justification and support for this approach, and clarifies
the relationship between natural science and mathematics on one side, and what
Polanyi calls “the logic of contriving” on the other. The applicability of this notion
to software development has been argued here at length. Applicability in another
field is evidenced by its enthusiastic adoption by the aeronautical engineer Walter
Vincenti. He wrote [10]:

Finally, the operational principle provides an important point of difference between tech-
nology and science – it originates outside the body of scientific knowledge and comes into
being to serve some innately technological purpose. The laws of physics may be used to
analyze such things as air foils, propellers, and rivets once their operational principle has
been devised, and they may even help in devising it; they in no way, however, contain or by
themselves imply the principle.

The broad structure proposed in this paper, in which the development prob-
lem is decomposed top-down and the decomposed parts subsequently recombined
bottom-up, reflects the character of human understanding as a dynamic process.
Just as developers gain in general understanding of their field during their individ-
ual working lifetimes, so in the same way they gain in specific understanding of
each system to be developed during the progress of its development. The top-down
initial identification and analysis of isolated simplified systems, followed by bottom-
up recombination – demanding some adjustment and rework of what has already
been done on the way down – can be seen as an instance of this learning process.
Descartes’ well-known principle of overcoming complexity by division into parts is
accompanied [1] by three other principles. Perhaps the most apposite here is this:

. . . to conduct my thoughts in such order that, by commencing with objects the simplest
and easiest to know, I might ascend by little and little, and, as it were, step by step, to the
knowledge of the more complex; assigning in thought a certain order even to those objects
which in their own nature do not stand in a relation of antecedence and sequence.

The “top-down, then bottom-up” sequence of problem analysis and understand-
ing is valuable in itself, and is well supported by careful attention to the operational
principle of each identified subproblem. For some readers, surely, this paper will
have done no more than articulate a form of development process that they will
recognise as their own usual practice.

Acknowledgements This paper has been much improved by Daniel Jackson’s comments and
suggestions.
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Chapter 8
The Role of Auxiliary Variables in the Formal
Development of Concurrent Programs

C.B. Jones

Abstract So called “auxiliary variables” are often used in reasoning about
concurrent programs. They can be useful – but they can also be undesirable in
that they can undermine the hard won property of “compositionality”. This paper
explores the issue of auxiliary variables and tries to set concerns about overuse in a
wider context; it concludes with an attempt to recommend constraints on their use.

8.1 Introduction

There have been a number of “X considered harmful” papers, the most famous
being [14]. The position taken here is that the use – or rather overuse – of “aux-
iliary variables” (sometimes referred to as “ghost variables”) can be harmful in the
development of concurrent programs.

The reason that concurrent programs are difficult to think about is the interference
that comes from their environment. Interference is the reason that it is difficult to
find compositional ways of formally developing concurrent programs; rely/guaran-
tee ideas offer a way to achieve a notion of “compositionality” that enables separate
development of programs that run in parallel. In most cases, rely conditions express
assumptions about how variables written in another process (or “thread”) change.
Auxiliary variables are often used in reasoning about concurrent programs; typically
each such variable is changed in exactly one process and only used in assertions of
other processes. The alternative phrase “ghost variables” emphasises the fact that
they can subsequently be erased without affecting the behaviour of a program.

There is, however, a danger inherent in the use of ghost or auxiliary variables
in reasoning about concurrency. In the extreme, they can be used to record the
entire history of execution of a process; if the rely conditions of other processes use
this history, there is no abstraction of the interference. One could not, for example,
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reuse the proof with a slightly different split. More importantly, there is no sense in
which a design decision to split a system into two or more parallel threads would
facilitate separate development.

The next two sections include a review of known material. At first sight, this
might appear to be a digression but, on the one hand, it builds up to some key issues
about concurrency and, on the other hand, identifies via a rather different route a
basis for believing that abstraction is best served by minimising auxiliary variables.
The discussion of rely/guarantee thinking in Section 8.2 also serves to make the pa-
per relatively self-contained. Section 8.4 discusses the search for a general approach
to “atomicity refinement” and, finally, Section 8.5.2 sets out my current views on us-
ing auxiliary variables.

8.2 Rely/Guarantee “Thinking”

8.2.1 For Comparison: the Sequential Case

Today, it is second nature to talk about specifications in the form of pre - and post-
conditions but this was not always the case. Tony Hoare’s “axiomatic basis” paper
led to what might reasonably be classed a “paradigm shift” in the way computer
scientists think about programs.1 The move from the flow charts of Floyd [17] or
King [44] to thinking about programs in non-operational terms is clear in [22] and
crucial for the intellectual shift that has followed.

In fact, the most important point about pre/postconditions was not really
explicitly recognised in Tony’s papers until he presented a development of FIND
in [23] in which he shows how the axiomatic approach offers a useful notion of
separating development choices. Items that are specified (and are to be implemented
by a program) are referred to as “operations” as in VDM (the B method uses the
same term, Event-B uses “events”). Assuming that one has some specified operation
S and makes a design decision to split it into a sequential composition of operations
S1 and S2 (thus S D S1; S2) – of course specifying S1 and S2 with pre- and
postconditions, the key property is that the development of S1 can be independent
of S and S2. Once the proof rule for “semicolon” is discharged, that step of the
argument does not need to be revisited (unless there is some broader change to be
made). This property of a development method is often referred to as “composi-
tionality” and this term is used below. To find compositional development rules for
sequential programs is reasonably straightforward. A top-down documentation of
design can introduce design decisions in many layers but the proofs at each layer
are independent of each other and the development of sibling operations.

1 My view of the importance of Hoare’s paper led me to take [22] as the “fulcrum” for [39]; that
discussion links the prior work of Floyd, Naur and van Wijngaarden (and remarks on the lack of
what could have been an interesting link back to Turing’s work).
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Before the discussion moves to concurrent programming, there are several points
to be made about the above approach to sequential programs – the message is that,
although facing concurrency magnifies some problems, their seeds are present even
with sequential reasoning.

First, there is the issue of whether one should strive for one, definitive, set
of rules. Even within Hoare’s framework, there are choices about how to present
the rules for programming constructs. For example, one version might include a
specific rule to weaken pre- and postconditions – alternatively, such weakening can
be built into the rules for each construct by adding implications.

Another issue is that misnamed “partial correctness” (vs. “total correctness”):
termination was not handled in [22]. Ignoring termination was lampooned by
McCarthy’s “millionaire’s algorithm” (to become a millionaire, walk along the
street – pick up every piece of paper on the sidewalk – if it’s a check – made out
to you – for a million dollars then cash it; otherwise, discard the piece of paper and
continue).

VDM [37] rules are about “total correctness” – that is, they require termination.
They also differ from some other approaches such as “weakest preconditions” [15,
16] in that VDM’s postconditions are relational (they are predicates of two states:
initial and final).2 Relevant to the issue of auxiliary variables is that relational
postconditions have the advantage that they obviate the need to use free (logical)
variables in weakest preconditions approaches to define constraints on the final state
that are relative to values in the initial state.

The proof rules in [34] were – in Peter Aczel’s polite phrase – “unmemorable”;
his unpublished note [3] gave a presentation of the VDM rules that is close to
Hoare’s original rules but deals with relational postconditions and termination (these
rules are used in [37]):3

while 
 I
fP ^ bg S fP ^Wg
fPg while b do S od fP ^ :b ^W�g

The use of postconditions (especially when presented as relations) yields a natural
way of writing specifications that do not determine a unique outcome, somewhat
loosely, these are often referred to as “non-deterministic specifications”. It has
become clear with usage that such specifications are a very good way of structuring
the introduction of decisions during the design process. For example, the proper-
ties of a free storage manager are easily documented before a specific algorithm is
designed.

2 Both points were true not only in the early book on program development in VDM [34] but also
the earlier IBM reports [31, 32].
3 In the rule, P is a predicate of one state; W a predicate of two that is well founded (thus establish-
ing termination without the need for a “variant function”); W� is the reflexive and transitive closure
of W. See [37] for the honest form of this rule which has an additional hypothesis on definedness
– but this paper is not about partial functions.
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One last, but important, point (that is magnified considerably by concurrency) is
“expressive weakness”. In common with some other approaches, it is a requirement
in VDM that the set of states defined by the precondition of any operation should
be a subset of the domain of the relation characterised by the postcondition of the
operation. One might say that if an operation is required to terminate on some
state, the postcondition should constrain the result state. This prompts a satisfaction
relation that a valid step of development can widen the precondition or restrict the
non-determinacy in the postcondition (subject to the aforementioned “satisfiability”
condition). In most situations, these guidelines fit and are not even noticed but there
are applications like security where non-determinacy has to play a different role and
in “action systems” semantics are not preserved by widening “guards” – some of
the alternatives are explored in [8].

8.2.2 Onwards to the Concurrent Case

It is worth taking a careful look at why it is much harder to achieve composi-
tionality for concurrent, than sequential, program development. Postconditions are
enough to characterise sequential operations because the latter can be considered
to execute atomically. In contrast, if two parallel processes share variables, each
process can have an effect on the other. Such effects (viewed from the recipient) are
“interference”. Once this point is recognised, it becomes obvious that a development
method for concurrent programs must support documentation of – and reasoning
about – interference. As with other formalisations of development, the quest is then
for tractability: we know that we need to record more than the input/output relation
for an operation but recording the full history of execution is clearly not going to
yield a compositional development method.

Rely/guarantee “thinking” is about finding this sweet point. A possible way to
record a specification of a shared variable program is to add to:

pre-OPi W †! B

post-OPi W † �†! B

a predicate that records what can happen to the shared state when the environment
interferes:

rely-OPi W † �†! B

and one that records the interference that OPi will inflict on the environment:

guar-OPi W † �†! B

An execution, in which the environment makes the state transition from �i to
�iC1 and the component makes the transition from �j to �jC1, is pictured in
Figure 8.1.

It was perhaps not fully appreciated at the time of [22] that the roles of pre-and
postconditions differ in that a precondition gives permission to a developer to ignore
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pre
‚…„ƒ
�0 � � �

rely
‚ …„ ƒ
�i �iC1 � � � �j �jC1

„ ƒ‚ …
guar

� � � �f

„ ƒ‚ …
post

Fig. 8.1 Illustrative execution under interference

certain possibilities; the onus is on a user to prove that a component will not be ini-
tiated in a state that does not satisfy its precondition. In contrast a postcondition is
an obligation on the code that is created according to the specification. This Deontic
view carries over: just as preconditions should be viewed as assumptions that the
developer can make about where the finished code will be deployed, rely condi-
tions are assumptions that the developer can make on the limit of interference that
the code will have to endure (i.e. permission to ignore the possibility of arbitrary
interference). Similarly, a guarantee condition is like a postcondition in that it is a
commitment on the code finally created from the development process; in the case
of a guarantee condition, the finished code must not generate interference that does
not satisfy the specified relation.

Typical clauses that occur in rely and guarantee conditions are:

� Some variable x is unchanged.4

� A variable changes in some monotonic way – notice that the ordering need not
be over numbers, the example in Section 8.3.3 uses s � s0-.
� The truth/falsity of some flag implies some condition similar to one of the above.
� And, of course, ensuring that such a flag behaves as expected is an example of

monotonic change.

It is interesting that, even in fairly complicated concurrent programs, most vari-
ables are changed in only one thread even though many processes might access
their values. The most common exception to this observation is in fact flag-like
variables.

In [35] and several subsequent papers, rely and guarantee conditions are con-
strained to be both transitive and reflexive: this corresponds to the observation that
there can be zero or multiple steps of interference. This is only one of the points on
which there is flexibility in choosing specific rules for reasoning about interference.
This flexibility prompts the use of the term “rely/guarantee thinking” to make clear
that we are not limiting the discussion to one specific set of rules.

It is worth looking at a representative rule. If one wishes to decompose the
operation S into the parallel composition of Sl and Sr, it is clear that the interference
generated by Sl can affect the outcome of Sr. In the spirit of presenting Hoare-like
rules as fPg S fQg one can write: fP;Rg S fG;Qg; a sound rule is:

4 Rely/guarantee conditions are quite capable of recording “no change” but Section 8.2.3 discusses
how the read/write frames of VDM simplify such descriptions.
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Par-I

fP;R _Grg Sl fGl;Qlg
fP;R _Glg Sr fGr;Qrg
Gl _ Gr ) G
(
P ^ Ql ^ Qr ^ .R _ Gl _ Gr/

� ) Q
fP;Rg Sl jj Sr fG;Qg

There are a number of issues that could be addressed at this point but, for the
immediate purpose of cuing discussion of auxiliary variables, the most pressing of
these issues is the “expressive weakness” of rely/guarantee conditions. Basically,
the decision to record potential interference in a single relation makes it difficult or
impossible to state certain behaviours. For example, consider a sequence of instruc-
tions that can be viewed as progressing through two phases: in the first phase, some
variable x is monotonically increased; whereas in the second phase, x is monotoni-
cally decreased. The union of the two behaviours(
x � x and(
x � x tells us nothing
other than that x might change! Unfortunately, there are contexts that require some-
thing more useful than this nugatory information. Section 8.5.2 indicates that this
specific example can often be finessed. Be that as it may, expressive weakness is
one of the issues that the rely/guarantee rules for concurrency magnify (over the
sequential case) and the question must be faced as to whether this forces the use
of auxiliary variables. The answer is, however, deferred to Section 8.5.2 pending
explanation of the distaste of such variables.

8.2.3 Conclusions So Far

It is, perhaps, worth first repeating the point that the attempt here is to learn from “re-
ly/guarantee thinking”: the point has been made that there is considerable freedom
in the presentation of such rules – far more than there is with Hoare logic of sequen-
tial programs (but, freedom – Section 8.2.2 points out – is already there). There is
a significant literature on extensions and variants of rely/guarantee rules (see [41]).
One interesting extension is the use of “dynamic invariants” in [11]. There are also
some odd variants including those that try to get by with predicates of single states
for rely and guarantee conditions; stirling [58]5 even restricts post-conditions to be-
ing predicates of a single state. In each case, for practical application, the move
away from relations creates the need for extra auxiliary or logical variables.

Turning now to the lessons themselves, they fall under the headings of ab-
straction, compositionality and granularity. The abstraction with pre=post might be
described as “what – not how” (e.g. it is not only easier to write and/or read a speci-
fication of SORT than an implementation but the latter is also much harder to use for
subsequent reasoning because algorithm equivalence is more difficult than showing
an algorithm satisfies some property). Rely/guarantee thinking retains this viewpoint
as far as it can but needs to face the extra abstraction of “interference” which it is

5 Colin Stirling was interested in meta results more than usability in applications.



8 The Role of Auxiliary Variables in the Formal Development 173

argued is the essence of concurrency. The question which has to be addressed below
(cf. Section 8.5) is whether the abstraction using relations is well chosen.6

The main motivation behind the inception [35] of rely/guarantee conditions was
the lack of compositionality in [50]. Both multi-level decomposition and even
changes of data representation work compositionally with rely/guarantee condi-
tions. Thus, we have a design method that allows the designer to make and record
design decisions in a stepwise form. As with introducing loops and sequential
composition in sequential program design, definite design decisions to use paral-
lel composition are difficult to undo in the sense that designers should avoid putting
themselves back into the problems of equivalence proofs.

In concurrent program design, the issue of granularity is closely linked to com-
positionality: a guarantee condition must be respected at the level of granularity at
which the final code executes. This, in fact, works well but it must be tackled with
awareness. Making rash granularity decisions can necessitate locking of variables
and this can destroy the performance advantages of parallel execution. In general,
it is far better to avoid locking. Section 8.3.2 and the example in Section 8.3.3
offer interesting insight on the topic of granularity; further discussion can be found
in [12, 13].

8.3 Abstract Objects

Although this section covers what might be classed as well-known territory, there
is in the first sub-section a useful warning about “clutter” in specifications and an
indication of how abstraction can be used to avoid it. Perhaps most importantly for
the analysis of auxiliary variables, a precise test is given for where complexity is
actually “clutter”. Section 8.3.2 moves on to an important link between data reifica-
tion and rely/guarantee thinking.

8.3.1 Why Use a Relation if a Retrieve Function Will Do?

The story of using abstract data objects to obtain short and perspicuous specifi-
cations is traced in [36]. In passing, I might comment that I am proud of having
included data abstraction in the early book on VDM [34] and of promoting it to its
rightful place ahead of operation decomposition in the 1986 first edition of [37].
The essence of the abstraction is to use, in a specification, data types that match the

6 There are those who argue that the root of the problem is, in fact, shared variable concurrency.
Another of Tony Hoare’s major contributions is, of course, the development of CSP [26, 27]. Al-
though the concept of communicating processes has yielded considerable insight into the nature of
concurrency, it is by no means immune from interference. The interference just comes from com-
munication. This is manifest in any process algebra in which shared variables can be simulated by
a process that holds their current value.



174 C.B. Jones

problem rather than the implementation. Typically, these are finite mathematical ob-
jects with pleasing algebras. It is revealing that quite diverse specification languages
such as Z [18], VDM and SETL [6] all build on some form of sets, sequences, maps
and records.

The use of the abstraction leaves the two questions of how good it is (as an
abstraction) and how to get from the abstraction to the implementation. It is useful
to tackle the second of these issues first for reasons that become clear below.

Given two descriptions of a collection of operations, one needs to be able to
determine if they exhibit the same “behaviour”. Peter Lucas faced this problem in
looking at two operational models of the PL/I programming language: did they give
the same semantics? In [45], he used a “twin machine” proof. In essence, he de-
fined a large machine with state elements from both descriptions and linked them
by what we might call today a “gluing invariant”; he then proved that the combined
machine preserved this data type invariant. The argument was then that either set of
variables could be regarded as “ghost variables” and be erased without changing the
behaviour. It is possible to argue that this was the mother and father of all auxiliary
variable ideas! The contribution of [30]7 was to capitalise on the fact that – in most
cases – one model is more abstract than the other in that it “has less information”.
Where this is the case, it is reasonable to take the model with less information as
the specification and simplify the reification proof by recording a function from the
(more populous) implementation type back to the abstraction. In VDM, these were
called “retrieve” functions because they extracted the abstraction from the details of
the representation. This homomorphic idea is, of course, the same as in [46]8 and
[24]. The VDM rules for data reification include an “adequacy” proof obligation
that determines whether there is at least one representation for each abstract state.
Failures of adequacy frequently indicate missed invariants. We have not laboured
data type invariants here – although extremely important, they have little to add to
the discussion of “auxiliary variables”. Suffice it to say that an additional heuristic
is to prefer – of two isomorphic models – the one with simpler invariants. Heinrich
Hertz wrote:

Various models of the same objects are possible, and these may differ in various respects.
We should at once denote as inadmissible all models which contradict our laws of thought.
We shall denote as incorrect any permissible models, if their essential relations contradict
the relations of the external things. But two permissible and correct models of the same
external objects may yet differ in respect of appropriateness. Of two models of the same
object : : : the more appropriate is the one which contains the smaller number of superfluous
or empty relations; the simpler of the two.

The question of how good an abstraction is can now be addressed. It is easy to
see that the retrieve function idea offers a partial ordering on models: model S is at
least as abstract as I if there is a retrieve function from I ! S. There are, however,
“equivalently abstract” models where there are retrieve functions in both directions.

7 Far too much of the Vienna Lab’s work was only published as technical reports.
8 The community was denied a journal version of this paper because it was rejected by JACM.
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The question of how to know if one has found one of the “sufficiently abstract”
models is settled in [33] by saying that a specification is “biased” if the equality
on the underlying states cannot be computed in terms of the operations of the type.
(Worked examples are provided in [34, Chapter 15] and [37, Section 9.3]).

One could, in fact, get by with a biased specification by adding “ghost variables”
to the implementation and later erasing them as in Lucas’ twin machine proofs but
there is a real sense in which abstraction can be listed as a virtue – a virtue for which
there is a precise test. This situation led to a certain smugness in the model-oriented
camp. One should never be smug! The claim that any biased specification could,
and should, be replaced by one that is appropriately abstract was challenged by Lyn
Marshall who was writing a large VDM specification (of the then standard of the
“Graphics Kernel System”). Lyn claimed that bias was required in her specification.
After much discussion, she was proved right. The problem boils down to there being
non-determinacy in the specification that, once a designer makes design choices,
obviates the need for some state values. Together with Tobias Nipkow we boiled
this down to a tiny example that illustrated the point beautifully. In parallel (and
partially in cooperation) with researchers from Oxford, Tobias came up with a data
refinement rule that he proved to be complete in a useful sense (see [20,47,48]). This
rule uses a relation and thus evokes shades of the twin machine idea. More details
of this story are given in [36] (and both rules are described in (even the first edition
of) [37]); what matters for the discussion of auxiliary variables in concurrency are
the points:

� The essence of design is that it introduces “bias” (cf. decisions made in decom-
position of operations)
� But for specifications, prefer the simpler model
� Abstraction should be used to avoid bias because equivalence is harder than reifi-

cation
� There is a test for “goodness”
� Where there is a specific technical problem, it might be possible to devise a new

proof method

8.3.2 Linking Rely/Guarantee with Reification

There is a very interesting connection between rely/guarantee development and data
reification. Surprisingly, this was not made explicit in any of the early rely/guaran-
tee proofs. In fact, as far as I’m aware, the first written reference is in [40]. The
observation is that often obligations from guarantee conditions can only be realised
without excessive locking by choosing a clever data representation. So, just like the
comment on non-determinacy being a good abstraction of design choices, guarantee
conditions are a way of postponing a design decision. Of course, postponement can
be perilous if the designer has no idea how to solve the problem.

A very simple example can be made of the FINDP problem for Sue Owicki’s the-
sis [50]. The top level specification states that the task is to find the minimum value
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of an array index such that the indexed element satisfies some predicate.9 A sequen-
tial algorithm simply searches the array indices from the minimum index upwards.
The interest is how to use concurrency – an “n-fold” split of the indices is no more
technically difficult, but the description is shorter if two processes are considered.
Suppose one process searches the odd – and the other the even – indices. If these
two processes do not communicate, it is easy to see that there is a trap where the
parallel algorithm could be slower than the sequential alternative. To avoid this, ei-
ther process should terminate if its sibling process has detected an array element
with a lower index that has the required condition. An obvious abstraction is to have
the two processes share a variable, say t, in which they record any index for which
it is detected that the array element at that index satisfies the given predicate. At
this level of abstraction, both processes need a sub-operation whose specification
involves setting t to the minimum of the current value of t and some variable local
to that process. Mental warning lights (should) flash when writing down a rely con-
dition that specifies that neither process can live with the other lying (in the sense
that they temporarily reduce t then increase it again): the process on which this dis-
honesty is inflicted might have terminated prematurely. At this level of abstraction,
it is not difficult to describe the honesty requirement in a rely condition.

One possible implementation strategy is for both processes to lock t when they
need to access it but this could also make a concurrent implementation slower than
the simpler sequential approach. In this example, it is not difficult to spot that equip-
ping each process with a local variable means that t can be reified to the minimum of
these values. The troublesome guarantee condition of monotonic reduction is now
trivial because each local variable is read but not written by the partner process.

The same story of the interplay of reification with satisfying guarantee condi-
tions can be seen with the SIEVE example of Section 8.3.3 – but here it is more
interesting:

� Each of n processes removes elements from a set s.
� Assuming the designer does not want to lock s (it’s big!).
� The designer must find a representation that helps realise rely/guarantee condi-

tions s �(
s .
� The (less obvious) representation of s as a bit vector meets the need.

This example is spelled out in the next section.
Yet more interesting is the example discussed in Section 8.5.1. Simpson’s

so-called “four-slot” implementation of Asynchronous Communication Methods
(ACMs) is an intriguing and very clever piece of programming whose correctness is
far from easy to prove. Even more challenging is the task of presenting the develop-
ment and its formalisation in a way that conveys Simpson’s contribution. The claim
made in [42] is that this is achieved by the use of data reification combined with
rely and guarantee conditions. Before more detail is given, Section 8.4 adds one
more idea to our armoury.

The above three examples are identified in [40] and are expanded on in [53].

9 In the case that there is no such value, the program can either return an indicator or add a sentinel
that does have the property.
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8.3.3 An Example

The example in this section is a parallel version of the “Sieve of Eratosthenes” which
finds all prime numbers – up to some required n – by removing composite numbers.
The first reference that I am aware of to a concurrent version is [25].

We can use an abstract object containing a set of numbers to make the overall
problem clear:10

post
 PRIMES.(
s ; s/ 4 s D f1 � i � n j is 
 prime.i/g
It is equally straightforward to make (and record) the decision to split SIEVE into
two sequentially decomposed sub-operations: one for initialisation of s to contain
all natural numbers up to the required limit(n); the other operation removes all com-
posites from s. One might think that the specification of the sub-operations INIT and
SIEVE is best written as follows:

.INIT; SIEVE/ satisfies PRIMES
post
 INIT.(
s ; s/ 4 s D f1; : : : ; ng

pre-SIEVE.s/ 4 s D f1; : : : ; ng
post-SIEVE.(
s ; s/ 4 post-Primes.(
s ; s/

But this would be a mistake – in two ways SIEVE is being too tightly specified to
fit its context. A better split is to recognise that sieving can be performed on any set
and that the removal need not necessarily end up with all primes (consider the case
where the starting state for SIEVE is the empty set) – so:

pre-SIEVE 4 true
post-SIEVE.(
s ; s/ 4 s D(
s 
Sfmults.i/ j 2 � i � bpncg

creates a much cleaner separation of SIEVE from its context. Here, in the sequential
case, the earlier definition might not be disastrous but in more complex cases it
could be; moreover, the issue of separation is certainly one that is magnified by the
move to concurrency.

As pointed out in Section 8.2, the step of introducing sequential constructs
as in PRIMES D .INIT; SIEVE/ marks a clear design decision. If a sequential
implementation is sought, it is now straightforward to make – and justify – further
design decisions for SIEVE to use nested loops as in:

for i � � �
post-BODY W s D(
s 
 mults.i/
for j � � �

s s
 mults.i 	 j/

10 VDM notation [37] is used; the only item that might be unfamiliar is the use of (�s for the
initial (and undecorated s for the final) state in relational postconditions. Furthermore, the predicate
is� prime should be obvious and the function mults delivers the set of multiples (by 2 and above)
of its argument.
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The fact that repeated execution of the removal of composites (i 	 j) eventually
ensures the postcondition s D (
s 
 mults.i/ relies on there being no interference
and this is a reasonable assumption in sequential programs.

The real interest here is to use the design of a concurrent SIEVE to illustrate
points about the trade-off between the various predicates in a rely/guarantee speci-
fication. So, implementing SIEVE as:

jjiREM.i/

One might first try copying the idea from post 
 BODY above and write:

post
 REM.(
s ; s/ 4 s D(
s 
mults.i/

but this exact definition of the elements to be removed cannot be achieved in the
situation where it is the intention that sibling processes are removing elements of s.
This points to the idea of specifying in the postcondition only that certain elements
must be absent after REM.i/ has executed:

post
 REM.(
s ; s/ 4 s \mults.i/ D ;
A moment’s thought however indicates that even the lower bound on removal of
elements can be achieved in the presence of arbitrary interference – the reliance on
the fact that no sibling will re-insert deleted elements can be easily recorded in

rely 
 REM.(
s ; s/ 4 s �(
s
An attempt to use (an n-ary form of) the Par 
 I proof rule of Section 8.2.2 shows
that too much was given away in the above relaxation to the postcondition of REM:
this lower bound on removal could in fact be achieved by setting s to the empty
set which will clearly not lead to satisfying the specification of the overall SIEVE
process. So the guarantee condition can be used to outlaw such over zealousness

guar-REM.(
s ; s/ 4 .(
s 
 s/ � mults.i/ ^ � � �
This pattern of shifting conditions that might fit the post condition of a sequen-

tial process back into the guarantee conditions of concurrent specifications is both
common and useful.

Finally, since the sibling processes of REM.i/ are actually twins, the guarantee
condition is completed by conjoining a copy of the rely condition (cf. Par
I) giving
the overall specification of each REM.i/ to be

REM.i/
pre true
rely s �(
s
guar .(
s 
 s/ � mults.i/ ^ s �(
s
post s \mults.i/ D ;
Thus far, the example has been used to illustrate both the fact that – even in

sequential programs – care in divorcing a sub-operation from its context produces a
more useful specification; and furthermore the sometimes delicate trade-off between
the predicates used in the description of a concurrent program (not surprisingly, this
balance is more interesting in complex examples – see [11]).
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The largest lesson from this example is however to illustrate the point made in
Section 8.3.2. To set the scene, Hoare writes in his discussion of the problem in [25]:

Of course, when a variable is a large data structure, as in the example given above, the
apparently atomic operations upon it may in practice require many actual atomic machine
operations. In this case an implementation must ensure that these operations are not inter-
leaved with some other operation on that same variable

As Hoare goes on to mention, placing all updates to s in critical regions is
certainly one way of ensuring that the guarantee condition is met but it is an im-
plementation that is unlikely to give high performance.

An alternative is to choose a data representation in which such updates can be
made safely without locking. As hinted in Section 8.3.2, this can be achieved by
representing the set as a vector of n bits.

To emphasise how subtle the issue of granularity can be, it is worth mentioning
that there could still be a dependency on the machine architecture if the implementer
packs bits in such a way that it is impossible to set one bit atomically.

8.4 Abstraction Using a “Fiction of Atomicity”

Just as postconditions abstract from “how” to achieve an objective, and abstract data
objects offer a way to abstract from details of machine representations honed for ef-
ficiency, a “fiction of atomicity” can be a powerful abstraction that achieves far more
perspicuous descriptions than is possible when considering the actual interleaving
of steps in an algorithm. Far from being a completely new idea, this very conve-
nient fiction is well known in computing. In particular, it is key to the whole idea of
database transactions: a user of a DBMS can picture transactions as “atomic” and it
is the responsibility of the system both to overlap transactions and to disguise that
fact that it has done so. (Furthermore, it has to do so in the presence of failures in
hardware.)

Although by no means the first attempt, what is perhaps unusual is the extent to
which [40] attempts to elevate the atomicity abstraction – and approaches around
splitting – to tools to be used alongside, and in concert with, the other development
approaches of Sections 8.2 and 8.3. It is indicated below that compositionality can
be achieved by deploying rely/guarantee conditions.

Some of the ideas here were enhanced by two Schloß Dagstuhl workshops11 on
the topic of atomicity. The objective was to bring together researchers from different
fields that use atomicity in one form or another. In particular [29] draws up a “man-
ifesto” that compares and contrasts views and approaches from database, hardware,
fault-tolerance and formalism research.

The genesis of my own research on splitting atoms was an acceptance that re-
ly/guarantee reasoning was bound to be heavier than proofs in terms of pre- and

11 Some papers from the 2004 workshop appear in Journal of Universal Computing Science,
Vol. 11, No.5; similarly (and in the same journal), Vol. 13, No. 8 for the 2006 workshop.
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postconditions. More generally, it is inevitable that development of algorithms that
interfere will be more difficult than those that (appear to) run in isolation. The higher
level advice must be to use concurrency only where it is really required either by
the problem itself or to make really telling performance gains.

The acceptance that one needed to be able to limit the areas of reasoning using
rely/guarantee conditions came when trying to write a joint paper with Ketil Stølen
after he submitted his PhD thesis [59]. Our paper was never completed – but we
learned a lot. In fact, it was the start of my search for ways of limiting interference.12

In particular, the power of object oriented (OO) programming languages to control
interference appeared promising: Pierre America’s POOL language [5] proved to be
a good basis for further investigation.

The avenue I followed in the �oˇ � research was to offer “equivalence rules” that
facilitated transforming OO programs with large (atomic) steps into equivalent pro-
grams where many objects were active concurrently. The argument was that, if there
were many processors to run threads for different objects, performance would im-
prove. The notion of “equivalence” was, of course, crucial: the �oˇ � language was
designed to be expressively weak so that its observations were a sensible approxi-
mation to what a user might want. The work on proving these equivalences correct
showed that being precise about acceptable observations was crucial. This research
(and pointers to more detailed papers – especially on the semantics to justify the
equivalences) is summarised in [38].

The general proposal in [40] is to use the “fiction of atomicity” as an abstrac-
tion with the corresponding development method called “splitting (software) atoms
safely” (or “atomicity refinement”). In the �oˇ � proposal, the fission was sup-
ported by equivalence rules. More generally, if one starts with an abstraction of
atomicity, it is essential to have a notion of observation power to determine whether
decomposed (and overlapping) sub-operations offer the expected behaviour to an
observer. After all, to an all powerful observer, the behaviour is manifestly different.

Recall also the emphasis in earlier sections on compositionality: there will be
cases where splitting can occur at more than one stage of design. If we look for cases
where separation is not the answer, it will clearly be necessary to have a handle on
any potential interference that can occur with the decomposed sub-operations.

The foregoing observations all point to reasons to investigate how useful rely
and/or guarantee conditions can be in atomicity refinement. The general argument
looks quite strong: guarantee conditions state what the outside world can rely on –
any decomposition must preserve this but is at liberty to decompose operations on
any variables not so constrained. To give a trivial example, an operation whose
postcondition requires the value of a variable x to be increased by, say, 10 can be
decomposed into any number of assignments whose accumulated effect is that in-
crement if there are no guarantee conditions on x; if there is a guarantee condition
that x increases monotonically some decompositions such as x x
2; x xC12
are ruled out.

12 My valued friends working on Separation Logic [28, 55] for concurrency [10, 49, 51, 52, 56]
should remember that this was back in the early 1990s.
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The far more complex example in Section 8.5.1 offers more evidence for the
usefulness of rely and guarantee conditions in atomicity refinement. It is perhaps
worth contrasting this approach to the interesting “event refinement” in [1]. The
need to introduce the concept of some events “refining skip” is a consequence of
not having rely conditions.

8.5 Limiting the Use of Auxiliary Variables

The essence of the argument here is that abstraction is a better tool than auxiliary
variables. The example in Section 8.5.1 not only illustrates the techniques outlined
above; the frank account of two attempts to present an informative development
underlies the conclusions in Section 8.5.2.

8.5.1 Development of ACMs

This section indicates how the ideas in Sections 8.2–8.4 are used in concert to
provide a rational reconstruction of a very intricate algorithm. A development of
Simpson’s “four-slot” implementation of “Asynchronous Communication Mecha-
nisms” (ACMs) is given in [42]; the fact that the authors discovered flaws in the
original development and the investigation of whether auxiliary variables are needed
to complete the proof is of relevance to the key message of the current paper.

The objective in writing yet another paper on Simpson’s algorithm was precisely
to provide insight as to what is going on in its design. The extremely tight code is
difficult to prove correct, but somehow treatments like [19, 57] (and even the more
recent [2, 7]) fail to utilise fully abstraction in their proofs.

ACMs are used to communicate values between two processes which are asyn-
chronous in the sense that it is not allowed for either to hold up the other. Thus, in
the ACM world, locking a shared variable is certainly not an option. A little thought
shows that it is possible for the Read process to see the same value more than once
and for the reader to miss values that are written. There is a requirement that the
reader gets the freshest reasonable value and most importantly that the reader never
sees a value older than one already read.

The first challenge is to provide a specification to act as a reference point that
is clear enough that a user can have confidence that he/she understands the prop-
erties. We based the specification in [42] around an abstraction (†a) of a sequence
of all Values written. This is clearly redundant but precisely in the way discussed
in Section 8.3.1: the redundancy admits non-determinacy and the state can be spe-
cialised once the choices are narrowed.

More controversially, the specifications of Read and Write in [42] are each split
into two phases. In the terms of the current paper, this is a design commitment: it
would be messy to justify further development that was not a specialisation of these
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phases. In fact, the split start-Write, commit-Write, start-Read and end-Read not
only holds good for the development, it also makes the behaviour of reader/writer
values easy to comprehend. Furthermore, this “phasing” makes it possible to record
simpler rely and guarantee conditions than would work with the unsplit operations.
Another key aid to clear rely and guarantee conditions is the use of VDM’s read-
/write frames.

The first step of development in [42] shows that it is not necessary for the state to
hold the whole history of values input. This is a classic example of using Nipkow’s
rule [48] to show that an otherwise “inadequate” representation gives acceptable
behaviour. The states†i are mappings from some arbitrary index set X to the Values
to be transmitted. In fact, if X is the natural numbers, this model could be identical to
†a but the intermediate step establishes properties required of the set X. It is clear
from the formal descriptions that the cardinality of X must be at least three. The
key to Simpson’s choice of four slots is actually about communication between the
Read and Write threads: the only atomicity assumption is on the setting and reading
of single control bits.

At the †i stage of development, there are still unacceptable atomicity assump-
tions on updates to the state. The step to Simpson’s actual design (†r) uses the fact
that four variables (with clever control flags) suffice. The final essence of Simpson’s
inspiration is presented (cf. Section 8.3.2 above) as choosing a representation that
makes the guarantee conditions realisable. The residual atomicity assumptions are
limited to the ability to update single bit flags without corruption.

Unfortunately, when filling in more detailed proofs to write a journal version
of [42], we detected flaws in two of the proofs. Initially, I could only see how to fix
these by adding deprecated auxiliary variables and this led me on this odyssey to
understand how to constrain their use. The revised development has been submitted
to a journal and a version (prerefereeing) is available at [43].

One flaw in the development in [42] was a postcondition which stated that a local
variable could acquire either the initial or final value of a variable changed by the
other thread. In fact, because the relative progress of the threads is not synchronised,
the other thread could potentially change this value many times. A short term fix
is to use an auxiliary variable to record all possible values. This is the resolution
presented in [53]. The solution in [43] is more radical: a new specification concept
of the set of possible values of a variable is introduced. Thus, in a postcondition,
cvar is a set of all values that this variable has during the execution of the spec-
ified operation. This concept not only avoids the need to introduce an auxiliary
variable in this case, it also provides a specification concept that is of use in other
circumstances.

The other place where [53] and [43] differ is the way they handle the crucial
avoidance of a clash of the Read and Write processes on a single position in the four
slots. This also points to a surprising conclusion about the respective strengths of
the rely/guarantee approach and separation logic.

The classical idea of mutual exclusion is one of the core concepts in con-
currency. Interestingly, Simpson’s algorithm does not fit the classic pattern. One
reason for this is that mutual exclusion leads to blocking which is inimical with
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the requirements of ACMs. There is however an issue that might be called “mutual
data exclusion”: the Read and Write processes must not interfere on the same cell.
In [53], this is proved by adding auxiliary variables at the †r level; the approach
in [43] establishes the relevant conditions at the more abstract level (†i). This is
a useful illustration of the proposal to use abstraction in preference to auxiliary
variables.

The deeper aspects of this are even more interesting. John Reynolds pointed out
verbally at MFPS in 2005: “separation logic lets one reason about avoiding races;
rely/guarantee conditions support reasoning about racy programs”. Like so much
that Reynolds says, this shows great insight but the example in hand points to a
further observation. Simpson’s final code does not “race”; in fact, the whole point
is to avoid conflicting reads/writes. The use of rely/guarantee conditions makes it
possible to present a key abstraction in which there appear to be races.

8.5.2 Auxiliary Variables: a Position

The expressive weakness of rely/guarantee conditions is conceded in Section 8.2
but it is also made clear in discussing pre/postcondition specifications that there is
always a trade-off between being able to express everything and having a tractable
method that makes good engineering sense: abstraction must have a part. In partic-
ular, compositionality dictates that detail must be postponed by abstraction.

Coming back to auxiliary variables, it is worth looking in more detail at what
we have learnt. It should be clear from Sections 8.2 and 8.3 that it is easier to show
that a reification step fills in detail than to prove that two detailed algorithms are
equivalent. Specifically, with respect to abstract data types, one feels on solid ground
if there is a precise test for unnecessary detail.

Before going further, it is worth pinning down the origin of the expressive weak-
ness: is it a facet of rely/guarantee conditions? I concede that I assumed this to be
the case for some time. In fact, this is incorrect! If one considers Owicki’s “Ein-
mischungsfrei” proof obligation [50], it requires that no step of sr can interfere with
the proof of a step between any two statements of sl. In fact, the issue is already
there in the earlier approach proposed in [4]. Even though neither of these methods
is compositional in the sense set out in Section 8.2, they have no way of describing
different behaviour during the progress of a sibling process.13

So, given the widespread expressive weakness, is it acceptable to plug it with
auxiliary variables and can we put precise limits on their use? Two further data
points are given before I, tentatively, give positive answers to both questions.

The apparent weakness of rely conditions has an interesting role in the soundness
proof for rely/guarantee rules given in [12]. Essentially, the fact that a rely condition
must be broad enough to capture any interference means that it can be used in the

13 This is the source of the difficulty in [50] in proving that two parallel instances of< x xC1 >
achieve the obvious result.
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induction proof of a parallel construct even though interference can come either
from a sibling process or from any contextual process. (The language in [12], unlike
that in the Isabelle-checked proofs of [54], permits nested parallelism; our paper
and [13] also accommodate fine grained interleaving of expression evaluation.)

What is the evidence that one can not avoid auxiliary variables? It is plausible
that a process will go through phases in which different conditions are guaranteed.
For example, one process might, under the control of a flag p, guarantee

p ) (
x � x
:p ) (
x � x

Although this might be viewed as internal information of the process, if the joint
behaviour depends on it, the rely condition must record it. Actually, so far, there is
no problem in its recordability. In fact, it is reasonable to see it as an extension of the
“phasing” idea of Section 8.5.1. The problem comes where there is no convenient
variable p to demarcate the phases.

The position taken here is that, in such circumstances, it is reasonable to add an
auxiliary variable in place of the missing p. This introduces no more dependence
on the other process, no more loss of compositionality, than if the variable were
actually present in the first place. Clearly, parallelism that does not depend on dis-
tinct phasing in its sibling processes is more robust but, in examples like that in
Section 8.5.1, the mutual dependencies are very intimate.

In spite of conceding this use of auxiliary variables, in all cases, I would prefer a
better abstraction to the use of such coding tricks. The key reason for this preference
is that it is difficult to retain compositionality without severe constraints on the use
of ghost variables.

There is one remaining question – prompted by the history above of reification
of data types – and that is whether the whole issue of auxiliary variables points to
new proof rules and/or languages. I venture to suggest that process algebras will not
resolve the issue. Nor do I expect anything like our current temporal logics to be the
source of a solution; but Amir Pnueli14 who heard the talk from which this paper is
derived did make the point that past-time temporal logic could cover some cases.
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Chapter 9
Avoid a Void: The Eradication of Null
Dereferencing

Bertrand Meyer, Alexander Kogtenkov, and Emmanuel Stapf

Abstract All object-oriented programs, but also those in C or Pascal as soon as
they use pointers, are subject to the risk of run-time crash due to “null pointer
dereferencing”. Until recently this was the case even in statically typed languages.
Tony Hoare has called this problem his “billion-dollar mistake”.

In the type system of ISO-standard Eiffel, the risk no longer exists: void safety
(the absence of null pointer dereferencing) has become a property guaranteed by the
type system and enforced by the compiler. The mechanism is fully implemented and
major libraries and applications have been made void-safe.

This presentation describes the principles of Eiffel’s void safety, their implemen-
tation and the lessons gained.

9.1 Repairing the One-Billion-Dollar Mistake

Tony Hoare recently spoke [6] about the issue of null dereferencing:
I call it my billion-dollar mistake. It was the invention of the null reference in 1965. At
that time, I was designing the first comprehensive type system for references in an object
oriented language (ALGOL W). My goal was to ensure that all use of references should be
absolutely safe, with checking performed automatically by the compiler. But I couldn’t resist
the temptation to put in a null reference, simply because it was so easy to implement. This
has led to innumerable errors, vulnerabilities, and system crashes, which have probably
caused a billion dollars of pain and damage in the last forty years.

The present note (a modest attempt at a 75th birthday present) describes how a
statically typed object-oriented programming language has, 4 decades after Algol W
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and half a century after the appearance of NIL in Lisp, liberated its users from the
scourge of null-dereferencing failures.

Hoare’s statement seems to hint that just a little more care and discipline in the
design of Algol W would have prevented the problem from even arising. Even in
light of Hoare’s record of finding brilliantly simple solution to problems that had
eluded other researchers, our experience makes us doubt that null dereferencing
could have vanished at the stroke of a pen. The problem indeed is not the null
reference, a concept that appears as necessary to the type systems of usable pro-
gramming languages as zero – another troublemaker, the tormentor of division –
to the number system of mathematics. What threatens to make programs crash is
the risk of null dereferencing (or “void call”): a run-time attempt to apply to a null
(void) reference an operation that can only work if the reference denotes an object –
in other words, if it is not void. In mathematics we want zero and we also want to
divide numbers (by non-zero denominators); the difficulty is to avoid ever apply-
ing a division to a zero denominator. In programming, we want void references and
we also want to apply operations to objects (through the associated non-void refer-
ences); the difficulty is to avoid ever applying a call to a void reference, a property
we shall call void safety. This need to reconcile two desirable but conflicting goals
explains that a void-safety policy requires not only a sound theoretical concept but
also careful engineering. As often in language design, success involves a delicate
balancing act between programmer expressiveness and run-time safety.

Devising, refining and documenting the concept behind the mechanism presented
here took a few weeks. The engineering took 4 years.

This article describes the concept, the same in its essence as first presented in
the original article [10] and ISO language standard [5] but with important sim-
plifications, and discusses the engineering of the implemented solution. All the
mechanisms presented are in use today as part of EiffelStudio (commercial and
open-source licenses), which has offered them since version 6.4 (May 2009); in
particular, the libraries have been updated to void safety.

While the authors take responsibility for the present article and the implementa-
tion, any credit for the design of the mechanism must be shared with other members
of the ECMA TC49-TG4 committee, in particular Éric Bezault, Karine Bezault and
Mark Howard. ECMA provided an ideal framework for the difficult task of stan-
dardizing the language while continuing to innovate.

We are grateful to Erik Meijer, Rustan Leino, Manuel Fähndrich, Wolfram
Schulte and other members of Microsoft Research for introducing us to the Spec#
non-null type mechanism [1,4], which provided the decisive influence on our work.
From the many people whose comments helped improve the mechanism we should
cite Peter Müller, Piotr Nienaltowski (for applications to concurrency not detailed
in this article), Kim Waldén, David Hollenberg, Bernd Schoeller, Paul-Georges
Crismer, Ian King and Jocelyn Fiat.

Section 9.2 presents the problem and a general overview of the solution
(sufficient to understand its essential elements). Section 9.3 details the background,
listing in particular the constraints on any satisfactory approach. Section 9.4 presents
the basic language mechanisms for void safety, and Section 9.5 some of the specific
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elements that make the result practical. Section 9.6 addresses the delicate problem of
genericity, and Section 9.7 the solution to the final remaining need: handling arrays.
The final sections present the pragmatic perspective: an estimate of the conversion,
based on our experience in making the Eiffel libraries void-safe (8); and lessons
learned (9).

9.2 Overview

We start with a description of the problem and an outline of the solution.

9.2.1 The Void-Safety Issue

Finding a practical solution to void safety may be delicate, but describing the
problem is easy. In an object-oriented language, the basic computational mech-
anism is a feature call (also known as method call and as message passing) of
the form

x . f .a; b; : : :/ /E1/

where x is expected to denote an object and f is a feature (operation). The arguments
a; b; : : : play no role here and the discussion will ignore them. If x is of a reference
type, its possible run-time values are references; a reference is either attached to an
object or void. If the value of x is attached to an object, /E1/ will apply f to that
object. A void call arises if the value of x is void. Void safety is the avoidance of
void calls.

In a language that does not guarantee void safety, the run-time effect of a void
call is either to crash the program or, if the language supports exception handling,
to trigger an exception. (The difference is not necessarily significant in practice,
since programs seldom provide sophisticated exception handling for such cases: if
a programmer detects the risk of a void call, he will generally find it just as simple
to remove it than to let an exception happen and try to recover through an exception
handler.)

The risk of void calls is already present in Pascal and C programs, where f takes
no argument and denotes a field. It is even more acute in O-O languages since /E1/
is the basic form of object-oriented computation. In the absence of a void-safety
mechanism, the risk of void call is a Sword of Damocles potentially threatening the
execution of every O-O program.

With the possible exception of some arithmetic overflows, it is the last such risk.
By adopting static typing, most modern O-O languages have ruled out type mis-
match, the other potential source of run-time failure. Type mismatch would arise in
/E1/ if x were dynamically attached to an object on which no appropriate feature f
is available, or the feature exists but cannot accept a; b; : : : as arguments. The type
system of such languages as Eiffel, Java and C# excludes this through simple rules
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enforced at compile time: every variable and expression must have an explicit type;
this type must be based on a class that includes a feature f ; the types of the actual
arguments a; b; : : : must conform to those of the formal arguments of f ; and in
any assignment x WD y (or actual-formal argument association) the type of y must
conform to the type of x.

Static typing ensures type safety. The goal of the present discussion is to replicate
that success story for void safety.

9.2.2 Sketch of the Solution

The basic elements of the mechanism detailed below are the following. “Attached”,
as defined so far, is a property of run-time values (references). To be more explicit
we may call it “dynamically attached”. The void-safety mechanism defines another
property, “statically attached”, applicable to variables and expressions; compilers
(and human readers) can determine static attachment through a simple analysis of
the program text. The goal is to ensure the following property:

Attachment consistency: If x is statically attached, its possible run-time values
are dynamically attached.

The language rule is then simply:

Void safety rule: A call x . f .: : :/ is only permitted if x is statically attached.

This rule will only ensure void safety, and hence deserve its name, if the lan-
guage mechanism satisfies attachment consistency. The mechanism appears to
meet this requirement; at present, however, we have not performed a mathematical
proof.

The rest of this discussion uses the word “attached” without specifying
“statically” or “dynamically”, since the context removes any ambiguity: static
attachment is a property of program elements (variables and expressions); dynamic
attachment is a property of run-time values.

The void-safety mechanism provides three ways to ensure that a variable or
expression x, of some type T, is (statically) attached:

� T is an attached type. An attached type is devised so that all its values will be
dynamically attached; in other words, it does not admit Void as one of its values.
Using an attached type is in principle the most effective way to guarantee the
absence of void calls; the disadvantage is that any attached type must possess an
initialization mechanism ensuring that the corresponding variables have a non-
void value on first use. The remaining two cases assume that T is a detachable
(not-attached) type.
� The context of a call may guarantee that x has a non-void value. For example, if

x is a local variable the call in

if x=D Void then x . f .: : :/ end /E2/
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is void-safe. The language definition includes a small number of such schemes,
known as certified attachment patterns or CAPs.
� More delicate cases may use the object test construct to guarantee safety. /E2/ is

not necessarily void-safe if x is an arbitrary expression, because of the possibility
of side effects and also in the presence of multi-threading. The scheme becomes
void-safe if rewritten as

if attached x as l then l . f .: : :/ end /E3/

The boolean expression attached x as l is the object test; it has value True if an
only if the value of x is dynamically attached to an object, and also has the effect
of binding l (a fresh name) to that object over the scope of the object test, which
in this case is the then clause.

In addition, special care must be taken when handling variables of generic types.

These rules are the core of the void-safety mechanism and will be reviewed in
detail below.

9.3 Background

To understand the language mechanism it is necessary to review the constraints
that apply to any solution, and the precise role of void references in practical
programming.

9.3.1 Constraints on the Solution

The following constraints governed the design of the solution:

Requirements on the void-safety mechanism

1 Static: compile-time mechanism ensuring full void safety.
2 General: applicable to generic types and concurrent programming.
3 Simple: no mysterious rules; for programmers, easy to learn; for compiler

writers, realistically implementable.
4 Compatible: minimal language extension; respects the spirit of the language;

fits well with other constructs; does not limit programmer expressiveness;
minimum change for existing code.

Constraint 1 prescribes an entirely static mechanism, like type safety. If a compiler
accepts a program, it must guarantee the absence of void calls in any execution of
the generated code.
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Constraint 2 requires support for advanced language mechanisms:

� A class may be generic. In the class LIST ŒG�, the name G represents an arbitrary
type; a call of the form /E1/ is more delicate to handle if x of type G than if it is of
a known type, since G represents many possible actual types, as in the “generic
derivations” LIST [INTEGER], LIST [SOME REFERENCE TYPE], LIST [LIST
[INTEGER]] and so on.
� The mention of concurrency illustrates how perversely language mechanisms

can interact with each other. Void safety might at first seem independent from
concurrency issues, but it is not. In particular, scheme /E2/ is not void-safe if x
is an attribute (representing object fields) rather than a local variable as previ-
ously assumed: in the presence of multi-threading, another thread can make x
void between the time the current thread ascertains that x=D Void and the time
it takes advantage of that finding to execute x . f .: : :/. This problem is the major
irritant in the practical use of the void-safety mechanism. Its presence is partic-
ularly frustrating to us since the SCOOP concurrency mechanism [11] designed
for Eiffel handles multi-threading at a higher level of abstraction and removes
such fine-grain interference; since SCOOP is not yet available as part of standard
Eiffel implementations, programmers today must use traditional multi-threading
techniques, which may cause interference in schemes such as /E2/ and as a result
complicate the void-safety mechanism.

Constraint 3 states that void safety should not come at the expense of simplic-
ity. Professional programmers should learn the new mechanisms easily, and the
language should still be teachable to novices. (In a university setting we rely on
object-oriented techniques for first-semester introductory programming and like to
present the language as used in industry.) This constraint also cautions against mak-
ing the language too hard to implement; we can be tougher on compiler writers than
on language users, but within reason.

Relevant to both language users and compiler writers is the avoidance of
mysterious rules. Today’s compilers may use sophisticated techniques to deter-
mine that certain schemes are void-safe; such an approach is only acceptable if
it relies on clear criteria which can be explained in the form of simple language
rules. Otherwise programmers have to rely blindly on their compiler, not under-
standing what is going on; and one compiler may reject a program that another
accepts.

Constraint 4 covers compatibility. It was a critical requirement for the work
described here, whose goal was not to design a language from scratch but to make
an existing language void-safe. There are several aspects to compatibility:

� Minimal language extension: additions to the programming language –
constructs, keywords – should be kept to a minimum.
� Respecting the spirit of the existing language design: new mechanisms should fit

with existing ones. In the Eiffel case, the language design follows a number of
explicit principles, such as “Provide one good way to do anything important”;
they should be retained.
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� Not limiting programmers’ power of expression: the void-safety mechanism
should avoid bothering programmers unless their code demonstrably causes a
risk of void call. This requirement is one of the hardest to satisfy.
� Minimum change for existing code: we need the best possible mechanism for

future generations, but we also have to contend with millions of lines of existing
production code.

This final requirement causes the worst headaches. Some of the existing programs
may contain sources of potential void calls (if programmers only ever wrote void-
perfect code, there would be no need for any new mechanism); the problem is to
avoid false alarms. As much as possible, we would like to accept existing code
unchanged except for elements that are demonstrably void-unsafe. This goal has
only been reached in part; we have succeeded in minimizing change to existing
code, but not in eliminating it.

The adaptation of the standard Eiffel libraries themselves took up the better part
of a release cycle (6 months). This measure is not representative, since the circum-
stances were peculiar: we were performing such an effort for the first time, learning
along the way; we did not have a conversion guide (but as a by-product of the effort
developed such a guide [3], facilitating the tasks of others who need to adapt their
programs); and we were still refining the mechanism as we went, improving the end
result but causing delays in the process. Still, migration of existing code continues
to require a significant effort.

9.3.2 Void and Attached References

A literal reading of Hoare’s comment might suggest that void references are dis-
pensable. One may indeed wish for a language design that magically gets rid of
them. Unfortunately, this is only a dream; attempts have been made, as in the Self
language [2], but they do not remove the underlying problem.

This problem is, at its core, the need to terminate linked structures. In the same
way that numbers need a zero to denote the number that can be added to another
without changing it, linked representations of data structures such as lists and trees
need Void to denote the reference that can be included in an object to refer to no
other object. Linked lists are the archetypal example:

rightitem rightitem rightitem

Voidfirst_element

A B C

In the figure, the list is represented by three cells (of type LINKABLE [CHAR-
ACTER] in the EiffelBase library), each with a field item giving the value and a
reference field right leading to the next cell. The right field in the last cell cannot
lead to any object and hence must be void.
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The presence of such possibly void references immediately introduces the
risk of void calls. For example, if first element is the reference to the first
list cell (first element is indeed the name of the corresponding attribute in the
LINKED LIST class), and we assume first element itself has a non-void value, then
first element.right might be void, so an attempt to evaluate first element.right.right
may cause a void call. This result is not a nasty side-effect of introducing an
ill-conceived notion (void references) into the programming language, but the
expression of an incontrovertible property: the expression does not make sense if
the list has fewer than two elements – just as 1=.m 
 n/, in ordinary mathematics,
does not make sense if m happens to be equal to n.

Because void calls result from logical impossibilities, not artifacts of language
design, simplistic attempts to remove void references disguise the problem rather
than removing it. Two such ideas are:

� Prohibit void references and use some trick to represent structure termination;
for example, in linked lists, the last right reference would point to the cell itself.
This breaks the acyclic nature of linked lists, and requires checking every use of
right, for example in a list traversal, to determine whether it is truly a reference
to another element or an artificial self-reference marker.
� Use inheritance to distinguish between two kinds of LINKABLE cells: proper

linkables and end markers. The last right would be of the second kind. This com-
plicates the inheritance structure, and requires checking every use of right for
its type. The effect on performance (in particular the extra load on the garbage
collector) can also be noticeable.

Such solutions replace void checks (if right/DVoid then: : :) by checks of another
kind, with no clear benefit. They cause the risk that a wrong dereferencing, such as
first element.right.right.item applied to a one-element list, will yield an incorrect
result (in the first solution, the value of the first element) instead of an exception.
In erroneous cases, it is generally preferable to crash than to continue and deliver
wrong results.

This discussion dashes any hope of casting off the void-safety problem by simply
casting off void references. It also includes some good news. Terminating linked
structures seems to be the only case that truly requires void references. That case
occurs in system-oriented parts of programs, typically in libraries that implement
fundamental data structures; in the more application-oriented parts of a program,
void references are generally unnecessary. Consider a program manipulating bank
accounts objects, each with an owner field denoting a PERSON. To represent the
notion of a bank account by an unknown owner, a void reference is usually not
the best solution; instead, the program can define a special object representing a
PERSON with incomplete information.

This observation suggests a software design guideline: confine void references
to specific parts of a system, largely preserving the application-oriented layers from
having to worry about the issues discussed in this article. It also confirms our expec-
tation that the conversion of typical user applications will require significantly less
effort than our initial experiences, which involved system-level libraries.
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9.4 Basic Language Mechanisms

We now review the three major techniques for ensuring void safety: attached types
in the present section, CAP and object test in the next two.

9.4.1 Attached Types

The void-safety mechanism introduces into the type system an attachment qualifier
for types. A reference type is either attached or detachable. The difference is that
Void is a valid value for detachable types only.

Syntactically, a detachable type is indicated by the keyword detachable, as in

right: detachable LINKABLE [G]

Attached types can similarly use the keyword attached, but this is usually not
needed as “attached” is the default status; a declaration

owner: PERSON – In class BANK ACCOUNT

has the same meaning as owner: attached PERSON. This policy follows from
the above observation that application-oriented types do not normally need a void
value. Experience has shown it to be the right decision, even though it raises
compatibility issues (see constraint 4) since previous code followed the inverse
convention.

The explicit form attached PERSON is mostly useful during the transition
period. The EiffelStudio compiler provides a compatibility option with three pos-
sible values, settable class-by-class to help programmers migrate existing code
progressively:

� Enforce void safety. This is the default for the future.
� Do not enforce void safety; ignore attached and detachable type marks. This is

the full-backward-compatibility option.
� Enforce void safety rules, but only for attached types; leave detachable types

alone (void calls will still be possible in the corresponding cases). This is a tran-
sition option.

Defining a type T as attached – using any syntactic convention – is only a declara-
tion; the important part of the language mechanism is the set of semantic rules that
ensure the attachment consistency property introduced earlier: any run-time use of a
variable x of type T must find x attached to an object. This requires the mechanism
to enforce two properties:

A1 The value of x on first use, as defined by language initialization rules, must be
non-void.

A2 Any assignment to x must leave the value of x non-void.
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Objective A2 is the easier of the two, achieved through the following rule:

Attachment Preservation rule

An attachment operation of source y and target x, where the type of x is attached,
is permitted only if the type of y is also attached.

An “attachment operation” is either an assignment x WD y or an argument passing
f .: : : ; y; : : :/ where the corresponding formal argument is x. (This meaning of the
word “attachment” to denote an operation predates its use to describe, as in the rest
of this article, the status of a reference.)

This leaves the issue of initialization (A1). Eiffel (followed in this respect by
other modern object-oriented languages) includes initialization rules for all types;
for example, all integer variables are initialized to zero and all booleans to False.
For reference types, the earlier initialization value was Void: the most obvious one,
and indeed the only one applicable to all (detachable) reference types – but also the
worst possible choice for an attached type! The void-safety mechanism requires a
new policy.

The key notion is that of a variable being properly set, meaning that it has been
given a non-void value. It figures in the rule for variables of attached types:

Attached Type Initialization rule

If a program uses the variable at a certain position, one of the following properties
must hold:

� The variable is properly set at that position. This possibility applies to both kinds
of variable: attributes of a class, and local variables of a routine.

� The variable is an attribute, and is properly set at the end position of every
creation procedure of the class.

The creation procedures of a class, also known as its constructors, are the initial-
ization operations associated with the class. A variable x of type T is properly set
at a certain position if one of the instructions preceding that position is an assign-
ment to x (which, thanks to the Attachment Preservation rule, gives it an attached
value if T is an attached type) or a creation instruction of target x (of the form
create x : : :).

As an example, the use of x in the last instruction of the following routine is
valid:

r
do

create y
: : :

x WD y
print .x/

end
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This assumes that x and y are variables of the same type. In the last instruction, x is
properly set since the preceding instruction is an assignment to x. In that assign-
ment, the source y itself is properly set since it was earlier the target of a creation
instruction; without this property, the assignment x WD y would be invalid as it is
uses the value of y.

This discussion and the rule do not apply to formal arguments of routines, which are not
variables (they cannot be the target of assignments). In a routine r.xW T/, the Attachment
Preservation rule guarantees that the formal argument x will always be attached since in any
call r.y/ the actual argument y must be attached.

As stated, the condition guaranteeing that a variable is properly set is over-
conservative; for example, it does not imply that x is properly set after

if c then create x else x WD y end – With y properly set /E4/

In moving library code to void safety we realized that scheme /E4/ is fairly common,
and added it, along with a few others, to those accepted by EiffelStudio as void-safe.
Since these cases fall outside of the current language definition, a compiler option is
available to disable them for portability; we will submit them to the standards com-
mittee for inclusion in the initialization rule. The challenge – in line with constraint
3, “No mysterious rules” – is to replace operational, compiler-oriented descriptions
of specific cases by general language rules, lending themselves to clear, abstract
definitions.

The simplicity of the rules governing attached types suggests using these types
as much as possible; as noted, the business-oriented parts of a program should limit
themselves almost exclusively to attached types. This will spare them the diffi-
culties of ensuring void safety for detachable types – the topic of the remaining
sections.

9.4.2 Certified Attachment Patterns

In the interest of simplicity and compatibility (constraints 3 and 4), it is desirable to
accept without change some program schemes that are demonstrably void-safe even
though they involve detachable variables or expressions. Such a scheme is called
a Certified Attachment Pattern or CAP. The language standard currently defines a
single CAP, which covers a number of useful cases. It is phrased as follows:

Basic CAP
A call x . f .: : :/, where x is a formal argument or local variable of a routine, is
void-safe if this call both:

� Appears in the scope of a void test involving x.
� Is not preceded, in that scope, by a setter for x.
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The arguments, variables and expressions considered in this rule and the rest of
the discussion are all of detachable types, since no further rules are necessary for
the attached case. A void test is one of the following, possibly involving a boolean
expression e:

� Positive void test: the simple form x D Void, or the composite form x D Void or
else e
� Negative void test: the simple form x=D Void, or the composite form x=D Void

and then e

(The operators and then and or else are the non-commutative variants of and and
or: if a is False, evaluating a and then b will not evaluate b; if a is True, evaluating
a or else b will not evaluate b.) The scope of a void test v includes:

S1 If v is of a composite form: the rest of the expression, e
S2 If v is a negative void test appearing in a conditional instruction if v then : : :

end (where the instruction may include elseif clauses and an else clause): the
then clause

S3 If v is a positive void test appearing in a conditional instruction if v then : : : else
: : : end (where the instruction may include elseif clauses): the else and elseif
clauses

S4 If v is a positive void test appearing in a loop instruction from : : : until v loop
: : : end: the loop body (loop clause)

A “setter for x” is an assignment to x or a control structure that (recursively) includes
a setter for x.

The CAP makes it possible to sanction a wide range of fundamental programming
schemes. Examples, accepted as void-safe, include not only the simple con-
ditional /E2/ but algorithms for traversing or searching linked structures,
such as:

from
l WD first element

until
l D Void or else l . item  sought –  is object equality

loop
l WD l . right

end

Such schemes occur frequently in basic libraries of data structures and algorithms
and reflect natural ways of expressing search and other traversal operations. It was
critical, as part of the compatibility and simplicity of use requirements, to accept
them without change.

Case S1 allows other frequent schemes, arising in boolean expressions:

x=D Void and then x . some property /E5/
x D Void or else x . some property /E6/
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/E5/ is widely used in contracts: preconditions, postconditions and class invariants.
It expresses a requirement that an object, if it exists, satisfies a certain property. For
example, the equality operation on two references a and b has the postcondition

Result D
(a D Void and b D Void) or else ((a = D Void and b = D Void) and then

a . is equal .b/)

defining them to be equal if they are either both void or attached to equal objects.
The operation is equal ascertains the equality of two objects, and hence can only be
applied to a non-void target and a non-void argument. Case S1 of the CAP certifies
this postcondition as void-safe.

These results extend to contracts consisting of several clauses; the language
semantics treats them as if they were separated by and then, so that if a routine
starts with

r (x: detachable T) /E7/
require

x=D Void
x . some property

its precondition is equivalent to /E5/; as a consequence, the second clause is
void-safe.

The CAP is limited to formal arguments and local variables, excluding attributes.
Cases such as the following are indeed not void-safe if x is an attribute:

if x=D Void then /E8/
routine call
x . f .: : :/

end

One of the reasons why this example could lead to a void call was mentioned in
connection with the simpler variant /E2/: in a multi-threading execution, another
thread could falsify the property x =D Void before the call. Another risk, even
with single threading, is that a routine call may perform an assignment to the
attribute x.

Similarly, the second precondition clause in the following variant of /E7/ is not
void-safe if x is an attribute rather than a formal argument:

r /E9/
require

x=D Void
x . some property

Achieving void safety in such cases may require a specific technique: object test.
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9.4.3 Object Test

The “object test” language construct provides, under a simple syntax, a general solu-
tion to the problem known as run-time type identification (or RTTI), with particular
application to void safety.

In object-oriented languages, it is generally not necessary to query an object di-
rectly for its type; the preferred technique [8] is to use inheritance, polymorphism
and dynamic binding. In a call x . f .: : :/, the target x may be polymorphic, meaning
that it may at run time become attached to objects of different types, all descend-
ing from a common ancestor. Any of these classes may provide a specific version
of f ; then dynamic binding ensures that each call will select the appropriate version,
based on the type of the object actually to x. For the simplicity and ease of change of
the software’s architecture these techniques are preferable to letting the program test
explicitly for the type of the object and select the appropriate variant of f through a
conditional instruction.

Techniques of run-time type identification, also known as “type narrowing” and
“downcasting”, are necessary for more complex cases where these standard object-
oriented techniques do not apply. The most obvious example is that of an object
obtained from the outside world (a file, a network): the program has no choice but
to posit a certain type and dynamically find out whether the object matches it.

Object test provides a general mechanism for run-time type identification, which
we find preferable to existing approaches, including the construct previously avail-
able in Eiffel (assignment attempt, introduced in 1988). An object test checks
that a reference is attached to an object of a specified type, and if so catches
the object under a local name to avoid safe processing over a certain syntactic
scope.

An object test on a given expression exp of a detachable type may appear as
follows, here as part of a conditional instruction

if attached fTg exp as l then /E10/
: : : Operations on l, such as l . f .: : :/ : : :

end

The object test is attached fTg exp as l. It is a boolean expression, evaluating to
True if and only if the value of exp is a reference attached to an object of type
T or conforming. Then the “object-test local” l, a fresh name (distinct from the
names of all variables in the context), will denote a reference to that object through-
out the scope of the object-test local, defined by the same rules as the scope of a
void test.

Here, the scope is the then clause; the effect of the conditional instruction is to
determine whether exp is attached to an object of type T and, if so, to apply the
given operations to that object. Because the object is captured under the temporary
name l at the time of the object test, no interference may arise from multi-threading
or from operations that could cause the value of exp to change.

In such uses of an object test for void safety rather than general run-time type
identification, the type T is often just the (static) type of exp; for that reason the
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qualifier fTg is optional. We may indeed write the object test in /E10/ as just
attached exp as l. (The “as l” part can also be omitted for RTTI uses that need
the object only to test its type, but in void-safety applications it is necessary.)

An object test will achieve void safety in the second variant of the precondition
example /E9/, which involved an attribute and hence was not covered by the CAP.
A void-safe version is

r – Void-safe version of /E9/ /E11/
require

x=D Void
attached x as l and then l . some property

The second clause is void-safe thanks to clause S1 of the CAP.
Although the first clause x=D Void is now redundant, we have retained it for the

(frequent) occurrences of this pattern in our library conversions so far. The reason
is to help testing and debugging. In the case of a contract violation, the run-time
contract monitoring tools identify the violated clause; for a void x, it is clearer to
see a violation of the first clause, since a violation of the second one does not dis-
tinguish between a void x (no object) and an object that exists but does not satisfy
some property.

9.5 Fine-Tuning the Mechanism

Object test would in principle provide, just by itself, a general solution to void
safety: protect every feature call x . f .: : :/ with an object test on x. This would be
an extreme solution, and indeed the general design guideline, consistent with the
object-oriented method’s reluctance to use RTTI except when polymorphism and
dynamic binding are not applicable, is to minimize the use of object test.

We have already seen two alternatives, superior to object test whenever they can
be applied: attached types and CAPs. Two other facilities, the Check instruction and
stable attributes, help limit the use of object test.

9.5.1 The Check Instruction

The Check instruction – not a new construct, but an existing part of Eiffel’s Design
by Contract mechanism [8] – expresses that a certain property is assumed always to
hold at a certain program position, whether or not a proof exists. It is particularly
relevant for void safety, addressing cases where a detachable expression is known
from the context to be non-void.

The following example is typical. Class LINKED LIST describes lists in a linked
implementation, with list cells implemented as instances of LINKABLE as discussed
above. LINKED LIST itself describes a list as a whole and includes a notion of
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“cursor”, which can be moved to a list item, as well as to the positions immediately
to the left of the first item if any and to the right of the last item if any:

active

A B C

(LINKABLE [G])

The attribute active represents the cursor position. By convention, active is always
attached to a list cell, except if the list is empty; this is reflect by a clause of the class
invariant:

(activeD Void) implies is empty

Now consider a routine of the class with the precondition not is empty. From the
invariant, it also satisfies active=D Void. With the rules given so far, however, the
following version will be rejected:

r
require

not is empty
do

active.some operation
end

The attribute active is of type detachable LINKABLE ŒG� and it is not used as part
of a void-safe CAP, so the value of active at the place of the call is not known to
be attached. There is no easy way to address this problem through a solution based
only on the type system. We can protect the call with an object test, through one of
the forms

if attached active as l then l.some operation else “Raise an exception” end /E12/
if attached active as l then l.some operation end /E13/

In both cases we test for a property that we expect always to hold; the difference
is that if it does not /E12/ raises an exception whereas /E13/ does nothing. Neither
variant is satisfactory: the object test is in principle unnecessary; if there is a mistake,
doing nothing is not an appropriate solution. The recommended scheme in such a
case is

check attached active as l then l.some operation end /E14/

The semantics of check e then Instructions end (inspired, in its current form, by
Spec#’s “assert” instruction) is that the construct requires any compiler to either:

� Prove that e will always hold. (This assumes a “verifying compiler” equipped
with proof capabilities – another concept promoted by Tony Hoare [7].)
� Generate code with the effect of /E12/, triggering an exception if e is dynamically

not satisfied.
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The first solution is the desirable one, but places high demands on the compiler (see
“realistically implementable” in constraint 3). The second solution, currently imple-
mented in EiffelStudio, is open to criticism: one can argue that it simply replaces
one kind of exception, void call, with another. To refute this criticism we note that
there exists in practice a fundamental difference: a program written prior to the in-
troduction of void safety is chock-full with potentially unsafe calls; adapted to obey
the void-safety rules, it may still contain a few check constructs in the style of /E14/,
which may cause exceptions but are clearly identified; they will be the natural target
of quality assurance efforts intended to demonstrate that the condition will never be
True during execution.

9.5.2 Stable Attributes

As described, the void-safety mechanism does a reasonable job of not bothering
programmers (especially, not forcing them to write object tests) when there is no
real risk of void call; the annoying case that remain is scheme /E2/ applied to an
attribute:

if x=D Void then x . f .: : :/ end /E2/

This is not void-safe and requires an object test. The culprit, as noted, is multi-
threading, and the annoyance will remain as long as SCOOP-based concurrency
is not fully available. In one case, however, the annoyance can be avoided. The
technique relies on the following notion:

Definition: stable attribute

A detachable attribute is stable if it does not appear as target of an assignment
whose source is a detachable expression.

(“Detachable attribute” and “detachable expression” are abbreviations for attribute
and expression of a detachable type.) A stable attribute might have a void value
on object creation, but once it becomes attached it will remain attached, since every
value that gets assigned to it will be attached. The definition is restrictive: the source
of an attachment cannot just be stable, it has to be attached. Even so, however, stable
attributes do constitute a substantial share of detachable attributes; detecting them
is useful since /E2/ is void-safe for a stable attribute, avoiding an object test.

A compiler can easily determine, when seeing a pattern such as /E2/, that x is a
stable attribute (just check all the assignments in the class). In spite of this property,
a recently adopted language extension introduces an explicit stable marker in the
syntax for attribute declarations

stable x: detachable SOME TYPE

The reason for this decision is that in the implicit approach, where the compiler
silently blesses /E2/ when it determines that x is stable, a small change to a class,
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such as adding an assignment in a routine, may suddenly cause the program no
longer to compile because of a void-safety violation in a seemingly unrelated part
of the code.

It remains an open question in the standards committee whether – for the sake of minimiz-
ing programmer annoyance – /E2/ should be accepted anyway, possibly with a compiler
warning, for an attribute that happens to be stable but has not been declared as such.

9.6 Handling Genericity

All the types considered so far were explicit, and known directly from the pro-
gram text. A typed object-oriented language will also provide a generic mechanism,
with classes such as LIST ŒG� where G represents an arbitrary type. A particular
use of the class uses a type obtained as a generic derivation, using a type as actual
generic parameter; an example is LIST[CHARACTER]. The question of void safety
arises here too: for x declared of type G in a class C ŒG�, under what conditions
is a call x . f .: : :/ void-safe? The techniques that we have seen are different for at-
tached and detachable types; but within the class we do not know whether the actual
generic parameter T of any particular generic derivation C ŒT� will be of one kind
or the other.

To obtain a suitable solution, we should first note the general convention
regarding genericity. The basic form is constrained genericity, whereby a class
is declared as

class CŒG
> CT � : : :
for some type CT known as the constraint (or “constraining type”). This means that
the only valid generic derivations are of the form C ŒT�where T conforms (according
to inheritance-based rules) to the constraint CT. Unconstrained genericity, as in LIST
ŒG�, is simply an abbreviation for a special case of constrained genericity, LIST
ŒG
 > ANY�, where ANY is the library class serving as ancestor to all programmer-
defined classes (ANY is called Object in some object-oriented languages).

The introduction of void safety leads to a slight adaptation of this convention: un-
constrained genericity C ŒG� is now an abbreviation for C [G
> detachable ANY].
The type system, as implied by the discussion in previous sections, ensures that T
(synonym for attached T) conforms to detachable T but not the other way around.
Within the class C ŒG�, then, G represents a detachable type; with x declared of type
G, the call x . f .: : :/ is not void-safe and must be protected through a CAP, an object
test, a Check instruction or a stable attribute status for x.

It is also possible to declare x of type attached G; then the call is void-safe, but
x is subject to the initialization constraints on attributes of attached types.

As another possibility, the class declaration may read C ŒG
> ANY � or more
generally C ŒG
> T� for some attached type T (remember again that these are
synonyms for C [G
> attached ANY] and C [G
> attached T]). Then G repre-
sents an attached type and the call is void-safe.
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These rules make it possible to write void-safe generic container classes –
representing structures such as lists, stacks queues and many others – in a conve-
nient fashion. One of the goals defined for the design of the void safety mechanism
was indeed to enable a smooth and easy conversion of the EiffelBase library of
fundamental data structures and algorithms, involving as little rewrite as possible.

One generic structure, however, remains beyond the scope of these techniques:
arrays.

9.7 Arrays

The language definition is engineered in such a way that programmers get the
advantages of two complementary views of arrays:

� The traditional view, with the performance benefits of direct-access, contiguous-
memory representation and usual array syntax such as

aŒi� WD aŒi�C p /E15/

� The object-oriented view, where ARRAY ŒG� has all the prerogatives of a normal
generic class: it is characterized by features (so that /E15/ is simply an abbre-
viation for the object-oriented form a . put .a . item .i/ C p//, has preconditions,
postconditions and a class invariant, and can be used by other classes, for example
as ancestor in inheritance.

ARRAY, however, is a special class because its implementation relies on a contiguous
memory area that cannot be entirely managed by the program. For void safety, this
means that it is impossible without a further mechanism to accept a declaration

a: ARRAY ŒT�

where T is an attached type. Normally, an array is created through the make creation
procedure, as

create a . make .l; h/

where the arguments l and h are the initial bounds, low and high, of the array. After
that creation, any operation is possible on the array, including an access to a Œi�
as in /E15/ – assuming in this case that T has a “C” operation, so that the right
side of /E15/ is an abbreviation for a Œi�.plus .p/. But this call is not void-safe: the
creation procedure make has no provision for initializing the array elements; there
is no guarantee that a Œi� will be non-void.

We see here a fundamental consequence of making the language void-safe:
language-specified automatic initialization of variables, mentioned at the beginning
of this article as a key property of modern object-oriented languages, is no longer
possible, or at least not in a simple form. Previously every type had a default value,
which was Void for all reference types; this property is still applicable to detach-
able types and to expanded types (non-reference types, including basic types such
as INTEGER), but not to attached reference types.
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If T is detachable, the items of an ARRAY ŒT� will be initialized to Void; for
expanded types, they will be initialized to the default value such as zero for integers;
but for attached T no such universal default is available.

This property does not cause any particular problem for ordinary generic classes
such as LINKED LIST, since they are entirely under the control of the programmer,
who can also take care of initialization for any type, in accordance with rules of the
previous section. But creating an array allocates a memory area that lies beyond the
programmer’s direct control. Another way to express this observation is that arrays
remain a system-level island in a modern high-level language.

As a result of this situation, arrays require special treatment. The solution is
simple: for attached reference types (as opposed to detachable types and expanded
types), array creation may no longer use the make creation procedure, with its two
arguments representing bounds; it must instead use a newly introduced creation
procedure, make filled, with an extra argument representing a default value. Its sig-
nature in ARRAY ŒG� is

make filled (low, high: INTEGER; value: G)

allowing creation instructions of the form

create a . make .l; h; val/

where val is a value of the appropriate type; if that type is attached, the type rules
guarantee that val must be attached as well – a reference to an actual object. Upon
creation of the array, every one of its entries will be a reference to that object. More
precisely, the abstract requirement is that for an entry that has not been explicitly
initialized a Œi� must yield such a reference; the implementation can achieve it in
smarter ways than physically copying the reference. The implementation should
also consider the needs of garbage collection (to make sure that the shared object
can be freed if no longer useful).

To avoid making up a specific default value for every array, a mechanism is under consider-
ation that would allow defining a default value for any type, under the form fTg . set default
(val). (The notation fTg, a reflection mechanism, denotes an object representing the type T.)
The creation procedure make would then be applicable to an ARRAY ŒT�.

The current solution to the problem of making arrays void-safe is clearly sound, and
is generally acceptable, at least for new code. In practice it causes some unpleas-
antness in only one case: when there is no obvious default value, and the program’s
makeup guarantees that no array entry will be accessed without having been set.
The most important example we know is the HASH TABLE class of EiffelBase:
an implementation of hash tables using an array controls the array entirely, and can
guarantee the set-before-accessing property; but it requires a default value to placate
the void-safe type system.

Even though the solution works, it is an example of the worst possible nightmare
for a language designer: having to change the usage instructions for a fundamental
mechanism – arrays in this case – used by every single program in existence.
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9.8 Measuring the Conversion Effort

The recently completed library conversion process provides a basis for assessing
the amount of work needed to adapt code. Out of thousands of converted classes,
the following measures apply to 215 fundamental classes of Free ELKS (the Eiffel
Library Kernel Standard, a subset of EiffelBase common to all implementations):

� Introduction of object tests: before conversion, the code included 100 occurrences
of the assignment attempt instruction, the predecessor to object test. After con-
version, it contains 115 object tests. All the added object tests are in contract
elements, specifically postconditions and class invariants.
� Introduction of check instructions: there were 71 Check instructions; the number

is now 90.

It is encouraging to note that no object test had to be added outside of contract
elements. In the case of contracts, many of the changes were of the kind illustrated
with /E9/ and /E11/; for example the insertion routine put left from LINKED LIST
now has the postcondition clauses

previous /D Void
attached previous as q and then q.itemD v

with the redundancy noted in Section 9.4.3. Another example of an added object
test is the following clause in the postcondition of put right, now reading:

(old before) implies (attached active as c and then c.item D v)

(old, in a postcondition, denotes the value of an expression on entry to the routine).
In this case the object test causes no redundancy; indeed the previous version of the
class had the clause as just

(old before) implies (active.itemD v)

but no clause stating that active /D Void. In the absence of a proof that active cannot
be void on routine exit, this expression was not void-safe.

Altogether, the percentage of lines changed in EiffelBase between versions 6.1
and 6.4 is 11% (9,093 out of 82,459). This is probably not a reliable indicator of
future conversion efforts as the changes span three release cycles over an 18-month
period, during which many non-void-safety-related changes also took place (but are
not separately identified in the change record). The reason an analysis of EiffelBase
changes requires going back that far is that EiffelBase served as a testbed for the
progressive implementation of void safety, starting with 6.2. Since the library cov-
ers fundamental data structures, it makes extensive use of void references and is
probably a worst-case example.

The EiffelVision multi-platform graphical library was converted in a single shot
between versions 6.3 and 6.4, with almost no other changes. The figures may be
more generally relevant since EiffelVision is more similar to application libraries.
It is also much larger than EiffelBase. In EiffelVision the number of changed lines
was 10,909 out of 376,592 – less than 3%.
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The conversion efforts that have occurred until now have mostly been applied to
libraries. To maintain compatibility for existing client code, the converted versions
must declare all externally visible reference types as detachable: using attached
types would make existing client code invalid whenever it passes actual arguments –
possibly void – to the corresponding routines. This policy goes against the general
recommendation of using attached types as much as possible. No such precaution is
necessary for converting non-library code and for writing new code; this is one of
the reasons why we expect that the change effort in the future will be less than the
above figures.

While there is not enough concrete experience to offer a definitive estimate, the
experience so far is encouraging. It suggests that the effort of adapting existing
software to void safety is tractable, and that requiring void safety for new code will
not impose an undue burden on programmers.

Conversion is a temporary hurdle. What is clearly emerging from our experience
is that writing new code so that it is void-safe implies no particular effort once one
has mastered the concepts. For daily programming in our groups at Eiffel Software
and ETH, void safety has become a self-evident part of the process.

9.9 Assessment and Conclusion

Initial user reactions to the void-safety mechanism were not all positive. Predictably,
the need to convert existing code caused some concerns among users, including
long-time Eiffel programmers who feared that it would take them back to “defensive
programming”, at the antipodes of Desing by Contract and the Eiffel method. At the
time of writing, these objections have largely subsided. Many experienced users
appreciate that the cost of conversion is justified; and like our own groups they now
write new code so that it is void-safe from the start.

The preceding sections have illustrated the challenges of language evolution,
discussed in more general terms in a previous contribution to a Hoare anniversary
volume [9]. Research on language design often focuses on inventing language con-
structs and trying them out separately. Such experimentation is obviously useful;
but it may miss the difficulties faced by language designers who are in charge of an
existing language, having existing users and an existing code base.

The development of the void-safety mechanism and its insertion into a full-
fledged, industrially used language are a reminder of some of these difficulties:

� Interaction Between Language Features Two of the major obstacles to void
safety turned out to be multi-threading and arrays. It was not clear to us, at the
beginning of this effort, that they would even figure in the discussion. The orig-
inal article [10] does not mention them; their importance became clear as we
started applying the mechanism to the mass conversion of existing programs and
libraries. The need to use object tests to protect simple accesses to attributes is,
for us, one more incentive to complete the implementation of the SCOOP mech-
anism, which unlike today’s multithreading mechanisms provides a concurrency
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framework at a level of abstraction that matches the expressive power of modern
programming and modern programming languages.
� Engineering Considerations The most clever language design ideas will fail un-

less they can be properly engineered into compilers, explained to programmers
and retrofitted into existing designs.
� Compatibility and Migration Whenever possible, new mechanisms should re-

main compatible with existing ones. Failing this goal, a migration path should
be devised, enabling users to adapt their code progressively. We have repeatedly
found, in the evolution of Eiffel, that users are not adverse to change; but the
change must be justified, and a clear path charted. This starts with providing com-
patibility options in compilers, which will process existing code unchanged, and
continues with providing migration guides (or, when possible, conversion tools).

The process is not always perfect; our own experience with void safety has involved
many trials and many errors. We hope that the results will be useful to others: not
just the lessons of that experience but, concretely, the availability for the first time
of guaranteed void safety in a mainstream programming language.
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Chapter 10
Unfolding CSP

Mikkel Bundgaard and Robin Milner

Dedicated to Sir Tony Hoare for his 75th birthday

Appreciation from the second author Tony Hoare and I have exchanged ideas on
concurrent processes for three decades. To a sufficiently distant observer it has seemed
that we were doing the same thing, and that therefore we should not have made it look
different. A closer view shows this to be false. Complementary things, yes; and both have
been enriched by the cross-fertilisation.

A little history shows something of these different approaches. Around 1979 we first discov-
ered our complementary interests in concurrency. Tony at first expressed his ideas through
the medium of a programming language [6], and I through a prototypical algebraic the-
ory [8]. The difference became plainer as time went on. Tony was keen to find a single
formalism in which specifications of concurrent systems could be refined into programs. I,
on the other hand, was keen to find a mathematical concept of process that could stand
in analogy with the familiar notion of (single valued) function, and I was happy that
specification should be done in an associated logic. We enjoyed discussing these things.
I recall one discussion at a blackboard (or was it a whiteboard?) where Tony hinted to me
his first ideas about failures semantics.

The present short paper, in honour of Tony and continuing our long, friendly and sometimes
rivalrous collaboration, is another step towards harmonising our approaches.

Abstract This paper demonstrates that a wide range of the CSP operators, in
particular parallel composition, hiding, general choice, interleaving, and the non-
deterministic OR, can be represented by confluent unfolding to a normal form. The
relevant normal form is an enrichment of the CSP choice construction by the inclu-
sion of non-determinism and silent actions. It is demonstrated that the majority of
the equational laws presented by Hoare for these operators are valid not only for
the failures equivalence but even for strong bisimilarity. This work is a prelude to
embedding CSP in the bigraph model, a recent generic model for ubiquitous com-
puting in which other process calculi have been faithfully embedded. The authors
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hope by this means to elucidate the differences and similarities between CSP and
other calculi. The present paper presents the main ideas of the embedding in the
formalism of CSP itself, and makes no use of bigraphs in doing so.

10.1 Motivation

Over the past decade a topographical process model called Bigraphs [11] has
been developed, aiming to provide a rigorous definitional platform for ubiquitous
computing. A first priority has been to show how existing process calculi can be
embedded faithfully in the bigraphical framework. This effort has been largely
successful, and the effort on bigraphs is now broadening into the experimental
modelling of real ubiquitous systems.

An exception to this success has, hitherto, been the attempt to accommodate
CSP [7] within the bigraphical framework. Why has this seemed difficult? (Readers
not familiar with bigraphs can safely skim, or even ignore, the rest of this section,
since bigraphs are hardly mentioned thereafter.)

The difficulty is not due to the semantic treatment. CSP favours a preorder based
upon the notions of refusals and failures, thus providing process specifications as
well as fully defined processes. On the other hand, CCS [9] emphasises the equiva-
lence relation of bisimilarity, relying on other means, such as an associated logic, to
provide specification. However, this difference is no barrier to accommodating CSP-
style specifications in the bigraphical framework, where both semantic treatments
fit comfortably.

More significant are two features special to CSP: channel ownership and a large
repertoire of operations on processes. Consider the latter first. The bigraph model
is a symmetric partial monoidal (spm) category, and the main operations of paral-
lel composition in both CCS and CSP can be modelled essentially by the tensor
product, which is a structural operation central to such categories. However, it was
not clear how to model other CSP operations, such as general choice or interleav-
ing. It seemed that a more cumbersome categorical structure would be needed, and
this would not do justice to the inherent simplicity of CSP. But the appearance is
unfounded; by the device of unfolding – a special case of parametric recursion –
these operations (many, perhaps all) can be defined by reduction to a normal form,
a device present in the bigraph model.

Turning to channel ownership: In CSP, one can maintain the distinction among
the channel-sets owned by several processes by careful limitation of the use of non-
injective renaming; for example, in his book [7] Hoare uses process labelling. In
bigraphs it appears that similar control can be exercised by careful restriction of the
use of substitutions, which are themselves elementary bigraphs. This is achieved by
defining a so-called sorting, a device inspired by many-sorted algebra to determine
a sub-spm-category of bigraphs for any particular application.
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In a future paper we shall identify the sorted bigraphical model for CSP. Here we
confine ourselves to the representation of CSP operators by unfolding, which can be
presented independently of bigraphs.

10.2 Outline and Disclaimer

As we have already declared, we hope in a future paper to represent CSP as a
bigraphical reactive system. Here, we wish to demonstrate the complementarity be-
tween the CSP approach and one that features bisimilarity. We avoid any judgement
that one or the other approach is superior. Our main focus here is upon finding
how the richly various set of CSP operators can be defined so as to harmonise with
bisimilarity.

Let us make explicit the differing concerns of the two approaches. CSP de-
fines the failures preorder that allows specifications, as well as their refinement into
implementations, to be expressed within a single syntactic framework. The emphasis
is upon refinement. On the other hand, the aim in CCS [9] is to characterise the no-
tion of process as an equivalence class of process expressions, respecting the order
in which non-deterministic choices are made as the process progresses. This equiva-
lence relation is the (strong) bisimilarity – introduced by Park [12], an improvement
on the equivalence originally given for CCS.

Bisimilarity is a congruence, i.e. preserved by syntactic context. Furthermore
bisimilarity is also preserved by the transition relation between processes. This latter
property – preservation by transition – is not satisfied by the CSP failures preorder or
its variants; it could not be, since these preorders allow a specification to be refined
into process expressions that differ in when they make non-deterministic choices.
To achieve complementarity between these approaches we must, as far as possible,
define any CSP operator OP to ‘make sense’ for bisimilarity; i.e. (for binary OP)
if P1  Q1 and P2  Q2 then OP.P1;P2/  OP.Q1;Q2/. We believe that this
can be achieved for all the operators; here we shall ensure it for a selection of them.
Moreover, the equational laws of CSP declared in Hoare’s book for the operators we
examine (except those involving u, non-deterministic ‘or’) are almost all satisfied
not just for failures equivalence, but for strong bisimilarity.

Now, since the failures preorder includes strong bisimilarity, the preorder can
be understood to be over processes themselves, not only over the expressions that
denote them. It is therefore possible to combine the theories of CCS and CSP.

To define the CSP operators over processes, we shall work with a new head
normal form. This will be based upon a generalisation of the CSP choice construc-
tion. We can then define the operators quite simply, using the unfolding of process
expressions. This notion of unfolding (related to that already studied for bigraphs,
see [11]) turns out to be confluent. Moreover, the equivalence induced by unfolding
is closely related to bisimilarity, even coinciding with it in the absence of recursively
defined processes.

Roscoe [15] has already defined a head normal form for CSP, and thence a full
normal form following De Nicola [5]. These forms depend crucially upon the way
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u (non-deterministic ‘or’) distributes over other operators. Thus, at least for finite
processes (those without recursion), two process expressions in normal form are es-
sentially identical if and only if they are failures-equivalent.1 However, our purpose
is to achieve a similar result for bisimilarity equivalence, where we regard non-
deterministic ‘or’ as an action that does not in general commute with other actions.
We therefore unfold the u operator in the same way as the other operators.

Let us repeat: the failures model and the notion of bisimilarity are not in compe-
tition; each has a rationale with independent value.

10.3 CSP with Enriched Syntax

Recall the well-known CSP syntax, employing several binary operators. The
constructions were designed to introduce the phenomena of choice, concurrency,
non-determinism, hiding, etc., one-by-one.

Channel names x; y; : : : (also called channels) are drawn from an infinite vocab-
ulary X . Each process P has a finite2 alphabet ˛P � X . CSP has many process
constructions, often binary operators. We shall not model them all here; for exam-
ple, we shall not consider the sequential composition P; Q nor the interrupt operator
P4Q. We consider the following six process constructions, and conjecture that our
treatment can be extended to some or all of the others:

P;Q WWD
.x1!P1 j � � � j xn!Pn/ choice ˛P D ˛Pi � fx1; : : : ; xng

.xi distinct/
P1 kP2 parallel ˛P D ˛P1 [ ˛P2
Q n Y hiding ˛P D ˛Q n Y
P1� P2 general choice ˛P D ˛P1 D ˛P2
P1 jjjP2 interleave ˛P D ˛P1 D ˛P2
P1 u P2 ‘or’ ˛P D ˛P1 D ˛P2

The n-ary choice construction is deterministic in the sense that there is a unique
choice of action for each channel x 2 ˛P.

The important intuition of parallel composition P kQ is that on the shared chan-
nels x 2 ˛P \ ˛Q the actions of P and Q are synchronised, while on unshared
channels only the unique possessor acts, the other remain unchanged. Thus the par-
allel composition preserves determinism.

The other operators introduce non-determinism in various ways. In particular,
the hiding construction QnY renders the actions in ˛Q\ Y unobservable. Hence the
actions are able to occur without further participants.

1 Roscoe’s normal form also caters explicitly for divergence; this lies beyond the scope of our
paper.
2 For simplicity, we assume alphabets to be finite. Later work may relax this restriction.
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In his book, Hoare avoids formalising the operational behaviour of CSP. It has
been formalised by others, probably first by Brookes et al. [3], employing the struc-
tural operational semantics pioneered by Plotkin [13]. However, we adopt a different
approach here, defining the behaviour by unfolding each syntactic construction to a
head normal form. As we shall see, this unfolding is a confluent reduction system.
Indeed, for finite CSP (i.e. no user-defined recursions) this unfolding terminates in
a normal form; moreover, two process terms unfold to the same normal form if and
only if they are strongly bisimilar.

In the next section we shall define how each of the several operators unfolds. But
first we have to define our head normal forms. To understand our definition better, it
is helpful to recall an equation that records how parallel composition ‘unfolds’ into
a choice among alternatives. It was first introduced as a law [8], and later became
the expansion theorem of CCS [9]. Recall that the parallel composition of two CCS
processes is written P jQ, and that this allows P and Q each to perform an input
action x or output action x independently or to communicate – creating a hidden
action � – if P can do x and Q do x or vice versa. Thus interaction in CCS involves
exactly two participants, unlike in CSP.

The expansion theorem then captures the behaviour of the parallel composition
of two ‘summations’ (or choice forms, in CSP terminology), expressing it again
as a summation. Each summand takes the form � �P, where the prefix � takes the
form x, x or � . (A summand � �P corresponds to a choice element �!P in CSP.)
We declare that x D x. Letting P D P

i �i �Pi and Q D P
j �j �Qj the expansion

theorem asserts:

X

i

�i �Pi

ˇ
ˇ
ˇ
X

j

�j �Qj 
X

i

�i � .Pi jQ/C
X

j

�j � .P jQj/C
X

�iD�j

� � .Pi jQj/

where  denotes strong equivalence, later improved to strong bisimilarity by
Park [12].

This theorem arose from the semantics of CCS defined by structured operational
semantics [13], i.e. by an inference system over labelled transitions. But it suggests
another way to formulate the semantics. Let us convert the expansion theorem into
a rewriting rule

X

i

�i �Pi

ˇ
ˇ
ˇ
X

j

�j �Qj ,!
X

i

�i � .Pi jQ/C
X

j

�j � .P jQj/C
X

�iD�j

� � .Pi jQj/

where the directed relation ,! unfolds a parallel composition into a summation.
CCS would also need such an unfolding rule for restriction (hiding); then bisimilar-
ity, and other semantic equivalences or preorders, can be defined in terms of such
rules.

We propose to adopt this approach in the bigraph model; it will be especially
useful for process calculi like CSP which have many operators, each giving rise to an
unfolding rule. We shall do this here for CSP directly, in terms of its familiar syntax.
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Thus we avoid further reference to bigraphs, but we pave the way for a simple
embedding of CSP in bigraphs, allowing the insights of CSP to be conferred upon
other calculi.

For this to work, we must enrich the choice construction

P D .�1!P1 j � � � j �n!Pn/

to allow non-determinism; this entails allowing the actions �i to be not necessarily
distinct, and also to be drawn from ˛P [ f�g, where � represents a hidden action.
For simplicity, since the order of choices is immaterial, we shall define ProcsetsX

to mean the set of finite3 sets of process expressions over alphabet X, and enrich the
choice construction to a so-called head normal form (hnf):

P D F W ˛P [ f�g 
! Procsets˛P

Thus a hnf F is a function mapping each action � 2 ˛P [ f�g to a finite set of
possible successor processes. For example, the hnf

F W x 7! fP1;P2g; y 7! fQg; � 7! fR1;R2g
could be written in an extension of the CSP choice notation as

F D .x!P1 j x!P2 j y!Q j �!R1 j �!R2/

We conjecture that sequential composition P; Q can be treated by introducing a
special hnf SKIPX , for each alphabet X, to represent successful termination. We
define a process P to be in normal form if and only if the only constructions in P are
enriched choices.

Definition 1 (Normal Form) A process P is a normal form iff the only process
operators in P are enriched choices.

In the rest of the paper we will present several relations on CSP terms, and we
will tacitly assume that these relations only relate terms with the same alphabet.

10.4 Unfolding

We now define all the CSP operators listed above by means of unfolding to hnfs.
Let us use F;G;H to range over hnfs, P;Q;R over arbitrary processes, and S;T over
finite sets of processes. Furthermore we extend the operators to sets of processes by
defining, for example,

P k S defD fP kQ W Q 2 Sg and S kT defD fP kQ W P 2 S;Q 2 Tg

3 Here again, it may be possible to remove the finiteness constraint for some purposes.
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For each operator we give a single axiom that defines its unfolding for arguments
that are themselves hnfs. In the following we assume ˛F D X and ˛G D Y, and to
avoid too many parentheses we assume that set union [ binds less tightly than all
the operators. Note that X D Y in the case of the operators � (general choice), jjj
(interleaving) and u (or).

F kG ,! H where H.z/ D
8
<

:

F.z/ kG .z 2 X n Y/
F kG.z/ .z 2 Y n X/
F.z/ kG.z/ .z 2 X \ Y/

and H.�/ D F.�/ kG [ F kG.�/

F � G ,! H where H.x/ D F.x/[G.x/ .x 2 X/
and H.�/ D F.�/� G [ F � G.�/

F jjjG ,! H where H.�/ D F.�/ jjjG [ F jjjG.�/ .� 2 X [ f�g/

F n Z ,! H where H.x/ D F.x/ n Z .x 2 X n Z/
and H.�/ D F.�/ n Z [ Sx2X\Z F.x/ n Z

F u G ,! H where H.�/ D F.�/[ G.�/ .� 2 X [ f�g/

In addition, we allow unfolding to occur in any context; that is:

for any process context CŒ��; if P ,! P0 then CŒP� ,! CŒP0�

For finite CSP, this defines unfolding fully. Infinite CSP allows mutually recursive
definitions of any number of process identifiers. For each such identifier A there is a
unique defining expression PA, and the definition augments the unfolding operation
with the axiom

A ,! PA

Each PA may contain occurrences of any of the process identifiers, but these
occurrences must be guarded – i.e. must be within the body of some enriched choice
construction.

Now recall that a (directed) relation ! is confluent if, whenever a!�a1 and
a!�a2, then there exists a0 such that a1!�a0 and a2!�a0.
Theorem 1 (Confluence) The unfolding relation ,! is confluent.

Proof The proof will be given fully in a later paper. Intuitively, it relies on the
intuition that unfolding loses none of the non-determinism represented in each
operation.

In summary, the proof uses a generalisation of the Parallel Moves Lemma for
term rewriting, which may be found as Lemma 4.3.3 in [17]. This asserts that a
reduction relation on terms is confluent provided its rules are left-linear (no re-
peated parameter variables on the left-hand side of a rule) and non-overlapping
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(no preemption of one rule by another). These conditions are satisfied by our set
of unfolding rules. The lemma is slightly generalised since it originally applies to
terms, whose syntax consists of strings of symbols, and we have introduced the syn-
tax of enriched choice constructions, which are finite maps to sets. ut
Although unfolding is confluent, it may fail to terminate. One reason is the recursive
unfolding of process identifiers; indeed, the single recursive rule A ,! fx 7! fAgg
repeats the action x ad infinitum. Perhaps surprisingly, this is the only reason for
non-termination. To see this, we first define strong normalisation.

Definition 2 (Strong Normalisation) A process P is strongly normalising if it has
no infinite unfolding.

Theorem 2 (Strong Normalisation) Recursion-free processes are strongly
normalising.

Proof In outline, we assign to each term a multiset, consisting of the heights of all
the process operators in the term, except for enriched choice operators. For instance,
the term

..F kF/ jjjF/� ..F kF/ jjjF/
– where F is an empty hnf – will be assigned the multiset f2; 2; 3; 3; 4g, since there
are two operator occurrences (both k ) with height 2, two (both jjj ) with height 3,
and one ( � ) with height 4. (For convenience, leaves have height 1.)

Now it is known [4] that if an ordering on a set C is well founded, then so is its
extension to an ordering on finite multisets over C. Here, take C to be the natural
numbers; then the ordering extends to finite multisets as follows: B � B0 if B0 can
be obtained from B by replacing some elements by finitely many smaller elements.

It remains to prove that every unfolding strictly decreases this ordering. Indeed,
an unfolding does not increase the height of a term; and it replaces a single process
operator with a finite number of process operators, but of smaller height. ut

For the next section we shall need to use the transitive reflexive closure of un-
folding, written ,!�. We shall also need the transitive reflexive symmetric closure
of unfolding which we will call structural congruence.

Definition 3 (Structural Congruence) Structural congruence, denoted by �, is
the transitive reflexive symmetric closure of unfolding . - [ ,!/�.
This concludes the properties of unfolding that we need.

10.5 Bisimilarity

We shall now introduce transition relations labelled by actions X [ f�g; we shall
let � range over these labels. The simplest case is for a hnf F; we want F &� P0
whenever P0 2 F.�/. However, we want transitions for an arbitrary process term P,
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not necessarily a hnf; so we allow P to unfold into a hnf first. Thus transitions are
defined by the following rule:

P ,!� F P0 2 F.�/
P&� P0

Having defined transitions, we can now define strong bisimilarity in the usual way.

Definition 4 (Bisimulation, Bisimilarity) A strong bisimulation is a binary rela-
tion R over processes such that, whenever .P;Q/ 2 R and P &� P0 then there
exists Q0 such that Q&� Q0 and .P0;Q0/ 2 R, and conversely when Q&� Q0 then
there exists P0 such that P &� P0 and .P0;Q0/ 2 R. Bisimilarity, denoted by , is
the largest bisimulation; that is, it is the union of all bisimulations.

A weaker equivalence relation, weak bisimilarity, places less constraint upon �
actions P&� P0; for example, two � actions in sequence are equivalent to one. We
are only concerned here with the strong version; its role is to provide one answer
to the question ‘What is a process?’; the answer is ‘A bisimilarity-class of process
expressions’. This recalls the definition of a natural number, attributed to Bertrand
Russell, as ‘an equivalence class of sets under bijection’.

CSP places emphasis on the failures preorder on process expressions; this is –
intentionally – much weaker than strong bisimilarity, and as a preorder it represents
the way in which a process may be said to satisfy a specification. A point relevant
to the present work is that, since the failures preorder includes the strong bisimi-
larity equivalence, it can be understood as a relation on processes, i.e. bisimilarity
classes of process expressions, rather than on the process expressions themselves. In
other words, the CSP semantics can be factored into two; first we determine which
expressions denote the same process, and second we determine whether one process
satisfies or implements another considered as a specification.

The remainder of this paper therefore has two concerns: First, how does (strong)
bisimilarity relate to structural congruence as we have defined it, namely as the tran-
sitive reflexive symmetric closure of unfolding? Second, which of the well-known
equations of CSP – as for instance listed in Hoare [7] – already hold for bisimilarity,
and which hold only for failures equivalence?

Our first result is that bisimilarity is no stronger than structural congruence:

Theorem 3 (Bisimilarity Includes Structural Congruence)� � .

Proof It is enough to show that� is a bisimulation, and this is straightforward. ut
The second result is more surprising, since we are used to thinking of structural

congruence as a demanding (i.e. small) congruence. But the version of structural
congruence introduced here places more emphasis upon similar behaviour, and less
upon syntactic similarity. In fact:

Theorem 4 (Structural and Behavioural Congruence) In finite (i.e. recursion-
free) CSP, structural congruence and strong bisimilarity coincide; that is, � D .
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Proof It only remains to prove that  � �. Unfolding in finite CSP is both
confluent and strongly normalising, so each term unfolds uniquely to a normal form
(i.e. containing no process constructions except for enriched choice). Hence it is
enough to prove that if two normal forms are bisimilar, they are structurally congru-
ent. This can be proved by induction on the structure of normal forms. ut
Why does this result fail in the presence of recursion? It is enough to find two
recursively defined processes that are bisimilar but not structurally congruent. This
is easy; consider the two recursive definitions

A ,! fx 7!fAgg and B ,! fx 7!fBgg

They are not structurally congruent, since they never unfold to the same process, but
they are bisimilar; indeed, consider the singleton bisimulation f.A;B/g.

Since bisimilarity does not coincide with structural congruence in the presence
of recursion, we have to prove it to be a congruence by other means. In fact we must
prove that it is preserved by each of the operators. This, though a little tedious, is
straightforward.

Theorem 5 (Congruence of Bisimilarity) Strong bisimilarity is a congruence.

Proof (outline) We shall be content to present the case that one operator, k , pre-
serves bisimilarity. The proof of congruence of the other operators follows the same
template.

We wish to prove that if P1  P2 then P1 kQ  P2 kQ. For this, it is enough to
prove that B defD f.P1 kQ;P2 kQ/ j P1  P2g is a bisimulation.

Let P1 kQ&� R1. We must find R2 such that P2 kQ&� R2 and .R1;R2/ 2 B.
Now by definition of transition we have P1 kQ ,!� H, with R1 2 H.�/.

We consider only the case in which � D z 2 ˛P1 n ˛Q (other cases are similar).
By the definition of unfolding for k , we have P1 ,!� F1 and Q ,!� G, with
H.z/ D F1.z/ kG, and R1 D P01 kG where P01 2 F1.z/.

From this we first deduce that P1 &z P01. But P1  P2, so there exists P02 such
that P2 &z P02 and P01  P02. This implies that P2 ,!� F2, with P02 2 F2.z/.

It follows that P2 kQ ,!� F2 kG and F2 kG ,! H0 for some (unique) H0; so,
by the transition rule, P2 kQ&z R02 for any R02 in H0.z/. But H0.z/ D F2.z/ kG in
this case, and P02 kG is in F2.z/ kG. Hence P2 kQ &z P02 kG. So we are done by
taking R2 to be P02 kG. ut

What are we to make of our ‘discovery’ that, for finite CSP, bisimilarity ./
agrees with what we have called structural congruence .�/? We have to admit that
there is no unique notion of structure – and hence of structural congruence – for
processes. This amounts to saying that, given a syntax of process terms, like CSP or
CCS or ACP [2], there is no unique congruence on its terms such that we all agree
that its congruence classes are processes. For some people, process structure in-
volves a causal relationship among actions; in that case a process in which an action
x causes an action y differs from one in which x merely precedes y. For other people,
process structure will involve duration of action or locality of agents, and so on.
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Our definition of unfolding commits us to an abstract notion of process in which
causality, timing and placing are all ignored; the only remaining structure is that
of non-determinism, recording the possible transitions in any state, whether or not
under control of the process’s environment. This structure is captured for finite CSP
by the congruence based upon unfolding, and – as we have seen – strong bisimilarity
equally captures it.

How does this generalise to infinite CSP, where recursive definitions enable
infinite unfolding? An infinitely proceeding process, one that enables an infinite
sequence

P1 &�1
P2 &�2

P3 &�3
� � � � � �

of transitions, corresponds closely to an infinite chain

S1 3 S2 3 S3 3 � � � � � �
of inverse membership of sets, in the theory of non-well-founded sets. Peter Aczel,
in his book [1], argues that equality of such sets coincides with bisimilarity, i.e. it is
the largest symmetric relation R such that

if S R T and S0 2 S; then S0 R T 0 for some T 0 2 T

The bisimilarity of process terms differs only in that transition is a little more com-
plex than inverse membership; indeed the relation 3 is replaced by the compound
relation ,!�3. Therefore, even for infinite CSP, we are justified in interpreting
bisimilarity as a structural congruence.

10.6 Equational Theory

In this section we examine the equational laws of CSP as given in Hoare’s book [7],
for concurrency (k), general choice (�), hiding (nZ), interleaving (jjj) and non-
deterministic ‘or’ (u). They all hold when equality is interpreted as failures equiv-
alence; that is the intention in CSP. We indicate which of them hold also for strong
bisimilarity (); in fact, we tag with the symbol �
� all those – a minority – which do
not so hold. As is well known, the discrepancy between these two interpretations is
largely due to the �-transitions, which matter more in strong bisimilarity than in the
failures model. They are relevant to the failures model in a negative sense: a failure
of P is a pair .t; S/, where t 2 X � and S � X , such that P can perform t to reach
a state in which no �-transitions are possible and in which no action in S can be
performed.

Each law that holds for strong bisimilarity, , can be established by exhibiting
a suitable bisimulation; we omit these to avoid boring the reader. As mentioned
above, a law is tagged with �
� if it does not hold for , and in each case we sketch
a concrete counter-example. Many of these laws involve the non-deterministic ‘or’
(u); we will discuss this a little further at the end of this section.
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Of course it has long been known that such laws do not hold for . The point
of this section is to add detail to our claim that the theory of CSP can be factorised
into two complementary parts: first, we quotient the class of CSP expressions by the
congruence, calling each congruence class a process, and we identify an algebraic
theory of these processes; second, we assert further laws that hold for the failures
preorder over processes as so defined.

For the purpose of this section, let us first define the well-known CSP processes
STOPX and RUNX as hnfs:

STOPX
4D f� 7! ; j � 2 X [ f�gg

RUNX
4D fx 7! fRUNXg j x 2 Xg [ f� 7! ;g

As described in [7], STOPX is the process with alphabet X which never actually
engages in any of the events of X. On the other hand RUNX is the process which at
all times can engage in any event of its alphabet X. We shall discuss these definitions
further at the end of the section.

In Table 10.1 we list the equational laws for k as presented in section 2.3.1 in [7].
We note that all the laws hold for except for L3A. The reason for the latter is that
if P can perform a �-transition then P kSTOP˛P can perform one, whereas STOP˛P

cannot.
In Table 10.2 we list the equational laws for the general choice � from

section 3.3.1. For this operator several of the laws do not hold for. For L1, the rea-
son is that the process P � P can possibly perform two �-transitions when P can only
perform one.

As expected the laws relating � and u do not hold for . For L5, the left-hand
side must choose either P.a/ or Q.a/ when performing a shared event a whereas
this choice is ‘delayed’ in the right-hand side. For L6, if P&� P0 then the left-hand
side may become P0� .Q u R/, while the right-hand side becomes either P0� Q
or P0� R. Similarly, we can find a counter-example to L7 by letting Q perform a
�-transition.

Table 10.1 Equational laws for k from section 2.3.1 in [7]
L1 P kQD Q kP
L2 P k .Q kR/ D .P kQ/ kR
L3A P kSTOP˛P D STOP˛P ���
L3B P kRUN˛P D P
Let a 2 .˛P n ˛Q/, b 2 .˛Q n ˛P/, and fc; dg � .˛P\ ˛Q/.
L4A .c! P/ k .c! Q/ D c! .P kQ/
L4B .c! P/ k .d! Q/D STOP if c 6D d
L5A .a! P/ k .c! Q/D a! .P k .c! Q//
L5B .c! P/ k .b! Q/D b! ..c! P/ kQ/
L6 .a! P/ k .b! Q/D .a! .P k .b! Q// j b! ..a! P/ kQ//
Let PD .x W X! P.x// and Q D .y W Y ! Q.y//:
L7 .P kQ/ D .z W Z! P0 kQ0/

where

8
<

:

Z D .X \ Y/[ .X n ˛Q/[ .Y n ˛P/
P0 D P.z/ if z 2 X otherwise P0 D P
Q0 D Q.z/ if z 2 Y otherwise Q0 D Q:
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Table 10.2 Equational laws for � from section 3.3.1 in [7]
L1 P � P D P ���
L2 P � Q D Q � P
L3 P � .Q � R/ D .P � Q/� R
L4 P �STOP D P
L5 .x W X! P.x//� .y W Y ! Q.y// D

.z W .X [ Y/!
8
<̂

:̂

P.z/ if z 2 .X n Y/

Q.z/ if z 2 .Y n X/

P.z/ uQ.z/ if z 2 .X \ Y/

���

L6 P � .Q u R/ D .P � Q/ u .P � R/ ���
L7 P u .Q � R/ D .P uQ/� .P u R/ ���

Table 10.3 Equational laws for n from section 3.5.1 in [7]
L1 P n fg D P
L2 .P n Y/ n Z D P n .Y [ Z/
L3 .P u Q/ n Z D .P n Z/ u .Q n Z/
L4 STOPX n Z D STOPXnZ

L5 .x! P/ n Z D
(

x! .P n Z/ if x 62 Z

P n Z if x 2 Z
���

L6 If ˛P\ ˛Q\ ˛Z D fg, then.P kQ/ n Z D .P n Z/ k .Q n Z/
L8 If Y \ Z D fg, then.x W Y ! P.x// n Z D .x W Y ! .P.x/ n Z//
L9 If Y � Z, and Y is finite and not empty, then

.x W Y ! P.x// n Z D ux2Y .P.x/ n Z/ ���

Table 10.4 Equational laws for jjj from section 3.6.1 in [7]
L1 P jjj .Q u R/ D .P jjjQ/ u .P jjjR/ ���
L2 P jjjQD Q jjjP
L3 P jjj .Q jjjR/ D .P jjjQ/ jjjR
L4 P jjjSTOP D P
L5 P jjjRUN D RUN Provided P does not diverge ���
L6 .x! P/ jjj .y! Q/ D .x! .P jjj .y! Q///� .y! ..x! P/ jjjQ//
L7 If P D .x W X! P.x// and Q D .y W Y ! Q.y//

then P jjjQ D .x W X! .P.x/ jjjQ//� .y W Y ! .P jjjQ.y///

Table 10.3 contains the laws governing the hiding operator. All of the laws hold
for , except for two. For L5, suppose that the choice x is hidden by Z, i.e. x 2 Z.
Then the left-hand side can perform a �-transition to become P n Z, but this �-
transition is not possible for the right-hand side of the equation. For L9 we tacitly
assume that we have generalised the binary non-deterministic ‘or’ operator into an
n-ary operator. The law contravenes for the same reason as L5.

Table 10.4 contains the laws for the interleaving operator. As expected the law
L1 does not hold for . A simple counter-example can be constructed by making P
perform any transition. For L5, P jjjRUN can possibly perform a �-transition (if P
can) which cannot be matched by RUN.
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Table 10.5 Equational laws for u from section 3.2.1 in [7]
L1 P u PD P
L2 P u QD Qu P
L3 P u .Q u R/ D .P u Q/ u R
L4 x! .P u Q/D .x! P/ u .x! Q/ ���
L5 .x W X! .P.x/ uQ.x/// D .x W X! P.x// u .x W X! Q.x// ���
L6 P k .Q u R/ D .P kQ/ u .P kR/ ���
L7 .P u Q/ kR D .P kR/ u .Q kR/ ���

Finally, Table 10.5 contains the laws for non-deterministic ‘or’. Due to the simple
unfolding rule for u, we are in fact able to prove that the three first laws hold even
for structural congruence (�), by reducing both sides to the same hnf. However,
laws L4 and L5 do not hold for  since the left-hand side has not made the choice
between the processes, whereas the choice has been made in the right-hand side.
For laws L6 and L7 we can find simple counter-examples by letting respectively P
or R perform a transition. This will leave the non-deterministic ‘or’ unchanged in
the left-hand side of the equation, but enforce a choice in the right-hand side.

We note that we cannot redefine u in such a way that these laws hold for. That
is because the laws take advantage of the properties of the failures preorder, which
intentionally conflates what may be regarded as two kinds of non-determinism: the
dynamic kind arising from uncontrolled decisions at run-time, and the static kind
arising from lack of knowledge of what process is running. The latter kind is what
lies behind the failures preorder. But bisimilarity aims to define the notion of non-
deterministic process (irrespective of how much we know about it), so it is only
concerned with the former kind.

We conjecture that further CSP operators – for example sequential composition
and interrupt – are amenable to definition by unfolding, and that certain of the laws
they satisfy will hold for. Recall our conjecture that the constant SKIPX , essential
for sequential composition, can be treated as a special normal form, whose character
is determined by unfolding rules. We also conjecture that both STOPX and RUNX ,
which we defined above, can instead be treated as special normal form constants, in
such a way that the laws listed for them will all hold for .

10.7 Conclusion

This paper is motivated by the wish to represent CSP as a bigraphical reactive
system. This is to ensure that the bigraph model, which aspires to be a generic frame-
work for process modelling, can indeed represent the phenomena that are special to
CSP. This will not only add validity to the bigraph model; it will also allow other
bigraphical reactive systems to benefit from the specific insights of CSP.

In this paper we have therefore handled some of CSP’s repertoire of operators
in a way that reflects how they will be defined in bigraphs, while remaining close
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to CSP’s syntactic framework. In bigraphs, we expect to define these operators by
generalising a notion of unfolding already present in bigraphs (see [11]). This gen-
eralisation has already been mooted, and the CSP encoding will add motivation
for it.

Indeed, the work presented here suggests a class of unfolding relations for which
unfolding in bigraphs is guaranteed to be confluent, though it is not yet clear how
broad this class may be. After doing the present work the authors have become aware
of Roscoe’s [16] proposed definition for ‘CSP-like’ operators; it will be interesting
to compare CSP-like operators with those that unfold confluently.

The second CSP phenomenon which we have mentioned, the ownership of chan-
nels, has not been discussed further in this paper. It will be handled in bigraphs
by imposing a constraint on what bigraphs are admitted in the encoding. As men-
tioned in the motivation, such a constraint in bigraphs is called a sorting; a sorting is
usually needed when encoding a calculus, because of the generality of bigraphical
contexts.

Let us renew our claim that the present approach complements, rather than
contravenes, the original presentation of CSP. It enriches the choice construction,
making it non-deterministic. Hoare’s original choice construction preserves deter-
minism, thus allowing the phenomena of concurrency to be introduced one-by-one
as the repertoire of operators is extended. But the original choice construction is
still available as a special case of the enriched one. Also, our hnfs provide a simple
formal understanding of many of CSP’s wide range of operators, and a simple way
to define the bisimilarity of CSP process expressions. As we have noted, most of
CSP’s equational properties, not involving u, hold not just for the failures preorder,
but even for strong bisimilarity.

In doing this work we have gained a more intimate understanding of the power
and beauty of CSP, such as cannot be gained by just reading about it. We would
be grateful for any feedback from those who have worked closely with CSP, in the
hope of a better integrated theory of concurrent processes.
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Chapter 11
Quicksort: Combining Concurrency, Recursion,
and Mutable Data Structures

David Kitchin, Adrian Quark, and Jayadev Misra

Abstract Quicksort (Commun. ACM 4(7):321–322, 1961) remains one of the most
studied algorithms in computer science. It is important not only as a practical sorting
method, but also as a splendid teaching aid for introducing recursion and systematic
algorithm development. The algorithm has been studied extensively; so, it is natural
to assume that everything that needs to be said about it has already been said. Yet,
in attempting to code it using a recent programming language of our design, we
discovered that its structure is more clearly expressed as a concurrent program that
manipulates a shared mutable store, without any locking or explicit synchronization.
In this paper, we describe the essential aspects of our programming language Orc
(Proceedings of FMOODS/FORTE, vol. 5522 of LNCS, pp. 1–25. Springer 2009),
show a number of examples that combine its features in various forms, and then
develop a concise description of Quicksort. We hope to highlight the importance of
including concurrency, recursion and mutability within a single theory.

11.1 Introduction

Quicksort [5] remains one of the most studied algorithms in computer science.
Its performance has been studied extensively by Knuth [11] and Sedgewick [17]
in particular. A variety of implementations exist on different architectures, and
many variants of Quicksort have been developed that improve its performance for
specific platforms.
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The structure of the algorithm has also been studied extensively. It presents three
important ideas in computing – mutable store, recursion, and concurrency – making
it attractive as a teaching tool. These aspects cross the usual boundaries of program-
ming languages: pure functional programs typically do not admit in situ permutation
of data elements, imperative programs are typically sequential and do not high-
light concurrency, and typical concurrency constructs do not combine well with
recursion.

We have recently designed a process calculus [14] and a programming lan-
guage based on it, called Orc [8]. We believe that the Orc coding of Quicksort,
in Section 11.5, highlights all three of these aspects while remaining faithful to the
original intent of the algorithm.

This paper first presents Orc, starting with the Orc calculus, and then the pro-
gramming language designed around the calculus. The calculus starts with the
premise that concurrency is fundamental; sequential programming is a special case.
The calculus itself is extremely small, consisting of four combinators (only three of
which are essential for this paper) and a definition mechanism. It contains no data
structuring, nor any notion of process, thread or communication.

The calculus is next enhanced with a small functional language to ease writing
of practical programs. The language includes basic operators, conditionals, some
primitive data types, and pattern matching mechanisms. The enhancements are mere
syntactic sugar; they can all be translated to the core Orc calculus, and that is how
they are actually implemented. The programming model draws its power from exter-
nal services, called sites, which may encode functionalities that are better expressed
in other programming paradigms. The combinators allow these sites to be integrated
into a full concurrent program.

The paper is structured as follows. In Section 11.2, we review the Orc con-
currency calculus. Section 11.3 shows its expansion into a functional concurrent
programming language, with a library of sites supporting time, mutable state,
communication, and synchronization. Section 11.4 presents a series of example pro-
grams using concurrency, recursion, and the additional capabilities provided by the
site library. In Section 11.5, we present the Quicksort algorithm in Orc. Section 11.6
includes brief concluding remarks.

For a more thorough review of the Orc language, see [8], from which Sec-
tions 11.2, 11.3, and 11.4 borrow substantially. We also encourage the reader to
visit our web site [16]; it hosts a comprehensive user guide [9], a community wiki,
and a web-based interface for experimenting with Orc.

11.2 The Orc Concurrency Calculus

The Orc calculus is based on the execution of expressions. Expressions are built
up recursively using Orc’s concurrency combinators. When executed, an Orc
expression invokes services and may publish values. Different executions of the
same expression may have completely different behaviors; they may call different
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services, receive different responses from the same service, and publish different
values. An expression is silent if it never publishes a value.

In order to invoke services, Orc expressions call sites. A site may be implemented
on the client’s machine or a remote machine. A site may provide any service; it could
run sequential code, transform data, communicate with a web service, or be a proxy
for interaction with a human user.

We describe three of the four concurrency combinators of Orc in this paper.
Notable omissions in this paper are treatments of logical time (using site Ltimer)
and halting (using the fourth concurrency combinator ;). The operational and deno-
tational semantics of the calculus appear in [7].

11.2.1 Site Calls

The simplest Orc expression is a site call M(p), where M is a site name and p is a
list of parameters, which are values or variables. The execution of a site call invokes
the service associated with M, sending it the parameters p. If the site responds, the
call publishes that response. A site responds with at most one value.

Here are some examples of site calls.

add(3,4) Add the numbers 3 and 4.
CNN(d) Get the CNN news headlines for date d.
Prompt("Name:") Prompt the user to enter a name on the console.
random(10) Generate a random integer in the range 0::9.
email(a,m) Send message m to email address a

11.2.1.1 Fundamental Sites

Though the Orc calculus itself contains no sites, there are a few fundamental sites
that are so essential to writing useful programs that we always assume they are
available. The site let is the identity site; when passed one argument, it publishes
that argument, and when passed multiple arguments it publishes them as a tuple. The
site if responds with a signal (a value which carries no information) if its argument
is true, and otherwise it does not respond. The site call Rtimer(t) responds
with a signal after exactly t time units.

11.2.1.2 signal and stop

For convenience, we allow two additional expressions: signal and stop. The
expression signal just publishes a signal when executed; it is equivalent to
if(true). The expression stop is simply silent; it is equivalent to if(false).
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11.2.2 Combinators

Orc has four combinators to compose expressions: the parallel combinator |, the
sequential combinator >x>, the pruning combinator2 <x<, and the otherwise com-
binator ;. We discuss only the first three in this paper; see [8] for more information
on the otherwise combinator.

When composing expressions, the >x> combinator has the highest precedence,
followed by |, then <x<.

11.2.2.1 Parallel Combinator

In F | G, expressions F and G execute independently. The sites called by F and G
are the ones called by F | G and any value published by either F or G is published
by F | G. There is no direct communication or interaction between F and G.

For example, evaluation of CNN(d) | BBC(d) initiates two independent com-
putations; up to two values will be published depending on the number of responses
received.

The parallel combinator is commutative and associative.

11.2.2.2 Sequential Combinator

In F >x> G, expression F is first evaluated. Each value published by F initiates
a separate execution of G wherein x is bound to that published value. Execution
of F continues in parallel with these executions of G. If F publishes no value, no
execution of G occurs. The values published by the executions of G are the values
published by F >x> G. The values published by F are consumed.

As an example, the following expression calls sites CNN and BBC in parallel to
get the news for date d. Responses from either of these calls are bound to x and
then site email is called to send the information to address a. Thus, email may
be called 0, 1 or 2 times, depending on the number of responses received.

( CNN(d) | BBC(d) ) >x> email(a, x)

The sequential combinator is right associative, i.e. F >x> G >y> H is
F >x> (G >y> H). When x is not used in G, one may use the short-hand
F >> G for F >x> G.

The sequential combinator generalizes the sequential composition of the tradi-
tional imperative languages for a concurrent world: if F publishes a single value
and does nothing further, then F >> G behaves like an imperative sequential pro-
gram, F followed by G.

2 In previous publications, F <x< G was written as F where x W2 G.
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11.2.2.3 Pruning Combinator

In F <x< G, both F and G execute in parallel. Execution of parts of F that do
not depend on x can proceed, but site calls in F for which x is a parameter are
suspended until x has a value. If G publishes a value, then x is assigned that value,
G’s execution is terminated and the suspended parts of F can proceed. This is the
only mechanism in Orc to block or terminate parts of a computation.

In contrast to sequential composition, the following expression calls email at
most once.

email(a, x) <x< ( CNN(d) | BBC(d) )

The pruning combinator is left associative, i.e. F <x<G<y<H is (F <x<G)
<y<H. When x is not used in F, one may use the short-hand F <<G for F <x<G.

The pruning combinator introduces eager concurrent evaluation. Later, we will
see that expressions in the Orc language are often converted to pure Orc calculus
using the pruning combinator; this introduces concurrency, even in the evaluation of
arithmetic expressions, without programmer intervention.

11.2.3 Algebraic Properties of the Combinators

An operational semantics of Orc based on a labeled transition system appears in
[18]. Employing bisimulation, we have proven the following algebraic properties
of the combinators, some of which resemble laws of Kleene algebra (see [19] for
these proofs). Below, we write “f is x-free” to mean that x does not occur as a free
variable in f .

(Unit of j ) f j stopD f
(Commutativity of j ) f j g D g j f
(Associativity of j ) .f j g/ j h D f j .g j h/

(Left zero of � ) stop > x > f D stop
(Left unit of � ) signal� f D f
(Right unit of � ) f > x > let.x/ D f
(Associativity of � ) .f > x > g/ > y > h D f > x > .g > y > h/,

if h is x-free
(Distributivity of j over � ) .f j g/ > x > h D .f > x > h j g > x > h/

(Right unit of � ) f �stop = f
(Commutativity of j with � ) .f j g/ < x < h D .f < x < h/ j g,

if g is x-free
(Commutativity of � with � ) .f > y > g/ < x < h D .f < x < h/ > y > g,

if g is x-free
(Commutativity of � with � )..f < x < g/ < y < h/ D ..f < y < h/ < x < g/,

if g is y-free and h is x-free
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We can prove, for example, that .f <x< g/ D f j .stop <x< g/, if f is x-free.
This follows from unit of j , commutativity of j , and commutativity of j over � .

11.2.4 Definitions

An Orc expression may be preceded by a sequence of definitions of the form:

def E(x) = F

This defines a function named E whose formal parameter list is x and body is
expression F. Definitions may be recursive.

A call E(p) executes the body F with the actual parameters p substituted for the
formal parameters x. A function call may publish more than one value; it publishes
every value published by the execution of F. If multiple concurrent calls are made
to a function E, all instances of the body F execute concurrently.

Unlike a site call, a function call does not require all of its arguments to have
values. Suppose E is called when an actual parameter q, corresponding to a formal
parameter y, does not have a value. As in the pruning combinator, the executions of
parts of F that do not depend on y may proceed, and the parts that depend on y will
block until q has a value, which is then substituted for y.

11.3 The Orc Programming Language

In the preceding section, we introduced a small concurrency calculus, which serves
well as a formal model, but is not a practical language for writing larger programs.
Now we describe a language by introducing constructs familiar from functional pro-
gramming. We show how each construct can be represented in the Orc calculus, so
that every program can be translated directly into an equivalent expression in the
calculus that uses a small set of primitive sites for arithmetic or data structuring
operations. We conclude with an example program and its translation into the cal-
culus. For the details of the full language, see the Orc User Guide [9].

11.3.1 Functional Aspects of the Language

11.3.1.1 Values and Operators

The Orc language has three types of constants: numbers (5, 
1, 2.71828, � � � ),
strings ("orc", "ceci n’est pas une |", � � � ), and booleans (true and
false). It provides typical arithmetic (+ - * / � � � ), logical (&& || � � � ), and
comparison (= < > � � � ) operators. They are written infix with Java-like operator
precedence. Parentheses can be used to override this precedence.
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(98+2)*17 evaluates to 1700.
4 = 20 / 5 evaluates to true.
"leap" + "frog" evaluates to "leapfrog".

The arithmetic, logical, and comparison operators translate directly to site calls;
for example,2+3 translates to add(2,3), where add is simply a site that performs
addition. A value v which occurs as an expression on its own becomes a site call
let(v).

11.3.1.2 Nested Expressions and Implicit Concurrency

The Orc language allows nested expressions, such as 2+(3+4). However,
2+(3+4) cannot be translated directly to add(2, add(3,4)) as described
above; the Orc calculus does not allow expressions, such as add(3,4), to appear
as arguments. Instead, we use a fresh variable z as the argument, and then use a
pruning combinator to bind the result of add(3,4) to z. Thus the expression
2+(3+4) translates to add(2,z) <z< add(3,4).

Any expression may be nested in this way, even expressions using concurrency
combinators. For example, we allow the expression 2 + (3 | 4); it translates
to add(2,z) <z< (3 | 4). Since the pruning combinator <z< binds only the
first value published by 3 | 4 to z, the expression could evaluate to either 5 or
6. Furthermore any depth of nesting is allowed, and unfolded in the same way;
2+(3+(4+5)) becomes add(2,z) <z< add(3,y) <y< add(4,5).

This is the fundamental link between Orc as a concurrency calculus and Orc
as a functional concurrent language. Since we use the pruning combinator in this
translation, all subexpressions are executed concurrently, providing massive implicit
parallelism without any additional work by the programmer. See Sections 11.3.2 and
11.4.1 for examples.

11.3.1.3 Conditionals

A conditional expression is of the form if E then F else G. If E evaluates
to true, then F is evaluated. If E evaluates to false, then G is evaluated. If E
does not publish a value, neither F nor G is evaluated.

if true then 4 else 5 evaluates to 4.
if 0 < 5 then 0/5 else 5/0 evaluates to 0.
if 1 < 1/0 then 2 else 3 is silent.

The conditional expression if E then F else G translates to:

( if(b) >> F0 | not(b) >c> if(c) >> G0 ) <b< E0

where E0, F0 and G0 are translations of E, F and G, respectively.
Recall that if(true) publishes a signal and if(false) is silent. The site

not performs boolean negation.
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11.3.1.4 Variables

We introduce and bind variables using a val declaration, as follows. Below, x and
y are bound to 3 and 6, respectively.

val x = 1 + 2
val y = x + x

Variables cannot be reassigned. If the same variable is bound again, subsequent
references to that variable will use the new binding, but previous references remain
unchanged. Variable bindings obey the rules of lexical scope.

The declaration val x = G, followed by expression F, translates to:

F0 <x< G0

where F0 and G0 are translations of F and G, respectively.
All the rules that apply to the pruning combinator apply to val, and it is permis-

sible to write any Orc expression, even one that publishes multiple values, in a val.
One of the most common Orc programming idioms is to write a val to choose the
first available publication of a concurrent expression:

val url = Google("search term") | Yahoo("search term")

11.3.1.5 Data Structures

The Orc language supports two types of data structures: tuples, such as (3,
7) or ("tag", true, false), and finite lists, such as [4,4,1] or
["example"] or []. A tuple or list containing expressions to be evaluated is
itself an expression; each of the expressions is evaluated, and the result is a tuple or
list of those results.

[1,2+3] evaluates to [1,5].
(3+4, if true then "yes" else "no") evaluates to (7, "yes").

Tuples and lists can contain any value, including other tuples or lists.
The prepend (cons) operation on lists is written x:xs, where xs is a list and x

is some element to be prepended to that list.

[3,5] >t> 1:t evaluates to [1,3,5].

Data structures are created by site calls. The site let creates tuples directly.
The site nil returns the empty list when called. The site cons implements the
cons operator and is also used to construct list expressions. For example, [1,2]
translates to cons(1,s) <s< cons(2,t) <t< nil().

11.3.1.6 Patterns

We can bind parts of data structures to variables using patterns. We write _ for the
wildcard pattern.
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Patterns may replace variables in the >x> and <x< combinators. If a publication
does not match the pattern of a >x> combinator, the publication is ignored, and no
new instance of the right hand expression is executed. For the <x< combinator, the
publication is ignored, and the right-hand expression continues to run.

(3,4) >(x,y)> x+y publishes 7.
x <(0,x)< ((1,0) | (0,1)) publishes 1.

Since the val declaration is simply a different form of the <x< combinator,
patterns may replace variables in val as well:

val (x,y) = (2+3,2*3)
binds x to 5 and y to 6.

val [a,_,c] = "one":["two", "three"]
binds a to "one" and c to "three".

val ((a,b),c) = ((1, true), (2, false))
binds a to 1, b to true, and c to (2,false).

Patterns can be translated into a set of calls to pattern deconstruction sites
followed by a set of variable bindings to match up each of the pieces with the ap-
propriate variable names.

11.3.1.7 Functions

Functions are defined using the keyword def, and are identical to definitions in
the Orc calculus. Definitions may be recursive, and groups of definitions may be
mutually recursive.

def sumto(n) = if n <= 0 then 0 else n + sumto(n-1)

Functions can be defined as a series of clauses, each of which has a different list
of patterns for its formal parameters. When such a function is called, the function
body used for the call is that of the first clause whose formal parameter patterns
match the actual parameters.

def fib(0) = 0
def fib(1) = 1
def fib(n) = if (n < 0) then 0 else fib(n-1) + fib(n-2)

The function fib may also be written more efficiently, as follows:

def fibpair(0) = (0,1)
def fibpair(n) = fibpair(n-1) >(a,b)> (b,a+b)
def fib(n) = if (n < 0) then 0 else fibpair(n) >(x,_)> x

Defining a function creates a value called a lexical closure; the name of the func-
tion is a variable and its bound value is the closure, which records all of the current
bindings for free variables in the function body.
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Since a closure is a value, it can be passed as an argument to another function,
thus allowing us to define higher-order functions. As an example, here is the classic
map function; see additional examples in Sections 11.4.1.3 and 11.4.3.3.

def map(f,[]) = []
def map(f,x:xs) = f(x):map(f,xs)

Note the important distinction between f and f(x); the former is a variable
whose bound value is a function (closure), and the latter is a call to that function.

11.3.2 Implicit Concurrency: An Example

We show an Orc program that does not use any of the concurrency combinators
explicitly. In fact, the program is entirely functional, with the sole exception of the
site call random(6), which returns a random integer between 0 and 5. Yet, each
nested expression translates into a use of the pruning combinator, making this pro-
gram implicitly concurrent without any programmer intervention.

The program runs a series of experiments. Each experiment consists of rolling a
pair of dice. An experiment succeeds if the total shown by the two dice is c. The
function exp(n,c) returns the number of successes in n experiments.

-- return a random number between 1 and 6
def toss() = random(6) + 1

def exp(0,_) = 0
def exp(n,c) = exp(n-1,c) + (if toss()+toss() = c then 1 else 0)

In exp(n,c), the two expressions exp(n-1,c) and if toss()+toss()
= ... may be executed concurrently; both calls to toss may also be executed
concurrently. Therefore, all 2n calls to toss may be executed concurrently. This is
clearly seen in the translation, given below, of this program into the Orc calculus.
Here, site add returns the sum of its arguments, sub(x,y) returns x-y, not(b)
returns the negation of b, and equals returnstrue iff its two arguments are equal.

def toss() = add(x,1) <x< random(6)

def exp(n,c) =
( if(b) >> let(0)
| not(b) >nb> if(nb) >>

( add(x,y)
<x< ( exp(m,c) <m< sub(n,1) ) )
<y< ( ( if(bb) >> 1 | not(bb) >nbb> if(nbb) >> 0 )

<bb< equals(p,c)
<p< add(q,r)

<q< toss()
<r< toss() )

) <b< equals(n,0)
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11.3.3 Site Library

We have implemented a library of useful sites. We introduce a few essential sites
here, and we also note a few properties of sites that were not previously discussed.

11.3.3.1 Sites Are First-Class Values

In both the Orc calculus and the Orc programming language, sites are first-class
values; they may be bound to variables, passed as arguments, published, and re-
turned by site calls. It is very important that sites can be published by other sites,
as this allows the use of “factory” sites, which create new sites such as mutable
references or communication channels.

11.3.3.2 Sites May Have Methods

Sites may represent objects with multiple methods, in an object-oriented style. We
access methods on sites using a special form of site call, as in c.put(4), which
accesses the put method of channel c and calls it as a site, with argument 4.

This call form, like every other new syntactic form introduced so far, can be
encoded in the Orc calculus. The site c is sent a special value called a message, in
this case the "put" message. The site responds to that message with another site
which will execute the desired method when called. So c.put(4) translates to
c("put") >x> x(4).

11.3.3.3 Time

Orc is designed to communicate with the external world, and one of the most
important characteristics of the external world is the passage of time. Orc implic-
itly accounts for the passage of time by interacting with external services that may
take time to respond. However, Orc can also explicitly wait for a specific amount of
time, using the special site Rtimer. The call Rtimer(t), where t is an integer,
responds with a signal exactly t milliseconds later.3

We can use Rtimer together with the <x< combinator to enforce a timeout.
Continuing with the example from Section 11.2.2, we can query BBC for a headline,
but allow a default response if BBC does not respond within 5 seconds.

email(a, x) <x< (BBC(d) | Rtimer(5000) >> "BBC timed out.")

3 An implementation can only approximate this guarantee.
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11.3.3.4 References

Orc does not have mutable variables. Mutable state is provided by sites instead. The
Ref site is used to create new mutable references, which are used in a style similar
to Standard ML’s ref [15].

A call to Ref may include an argument specifying the initial contents of the ref-
erence; if none is given, then the reference’s value is undefined. Given a reference
r, r.write(v) overwrites the current value stored in r, changing it to v, and re-
turns a signal; r.read() publishes the current value stored in r. If r is undefined,
r.read() blocks until a value is written into r.

We write r := v as syntactic sugar for r.write(v), and r? for r.read().

11.3.3.5 Arrays

The Array site creates new mutable arrays. Calling Array(n), where n is the
size of the array to be created, returns an array a with indices 0 through n-1, where
the element values are undefined. Elements of array a are accessed by a site call,
a(i), which returns a reference to the ith element. That reference can then be read
or written just like any reference created by Ref. The expression a.length()
returns the length of the array.

Array(3) >a> a(0):= true >> a(1):= false >> a(1)?
publishes false.

Array(3) >a> a(a.length()-1)?
blocks until a(2) has a value.

11.3.3.6 Semaphores

Unlike other concurrent languages, Orc does not have any built-in locking mech-
anisms. Instead, it uses the Semaphore site to create semaphores which enable
synchronization and mutual exclusion. Semaphore(k) creates a semaphore with
the initial value k (i.e. it may be acquired by up to k parties simultaneously). Given
a semaphore s, s.acquire() attempts to acquire s, reducing its value by one if
it is positive, or blocking if its value is zero. The call s.release() releases s,
increasing its value by one. The implementation of Semaphore guarantees strong
fairness, i.e. if the semaphore value is infinitely often non-zero, then every call to
acquire will eventually succeed.

We show below a function that returns an array of n semaphores, each with initial
value 0.

def semArray(n) =
val a = Array(n)
def populate(0) = signal
def populate(i) = a(i-1) := Semaphore(0) >> populate(i-1)
populate(n) >> a
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In practice, semaphores and other synchronization sites are only needed when
resolving resource conflicts, i.e. concurrent calls to a site that has mutable state. Orc
programs with implicit concurrency do not require these arbitration mechanisms.

11.3.3.7 Channels

Orc has no communication primitives like �-calculus channels [13] or Erlang mail-
boxes [1]. Instead, it makes use of sites to create channels of communication.

The most frequently used of these sites is Buffer, which publishes a new asyn-
chronous FIFO channel. That channel is a site with two methods: get and put.
The call c.get() takes the first value from channel c and publishes it, or blocks
until a value becomes available. The call c.put(v) puts v as the last item of c
and publishes a signal. A channel is a value, so it can be passed as an argument.

11.4 Example Programs

In this section, we present a number of small programs, demonstrating how Orc
combines concurrency and recursion, integrates real time, manipulates mutable
state, and performs complex synchronizations.

11.4.1 Examples Using Concurrency and Recursion

These examples implement some common idioms of concurrent and functional pro-
gramming. Despite the austerity of Orc’s combinators, we are able to encode a
variety of idioms concisely.

11.4.1.1 Fork-Join

One of the most common concurrent idioms is a fork-join: evaluate two expressions
F and G concurrently and wait for a result from both before proceeding. Thanks to
the unfolding of nested expressions described on page 235, this is easily expressed
in Orc using just a tuple:
(F,G)

This expands to:

(x,y) <x< F <y< G

We take advantage of the fact that a tuple is constructed by a site call, which
must wait for all of its arguments to become available. In fact, any operator or site
call may serve to join forked expressions. For example, if F and G each publish a
number and we wish to output their maximum value, we simply write max(F,G),
where max returns the maximum of its arguments. We extend this example below.
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Simple Parallel Auction

Orc programs often use fork-join together with recursion to dispatch many tasks in
parallel and wait for all of them to complete. Suppose we have a list of bidders in a
sealed-bid, single-round auction. Calling b.ask() requests a bid from the bidder
b. We want to ask for one bid from each bidder and then publish the highest bid.
The function auction performs this task:

def auction([]) = 0
def auction(b:bs) = max(b.ask(), auction(bs))

Note that all bidders are called simultaneously. Also note that if some bidder
fails to return a bid, then the auction will never complete. Section 11.4.2.1 presents
a different solution that addresses the issue of non-termination by using timeout.

11.4.1.2 Parallel Or

“Parallel or” is a classic idiom of parallel programming. The “parallel or” operation
executes two expressions F and G in parallel, each of which may publish a single
boolean, and returns the disjunction of their publications as soon as possible. If
one of the expressions publishes true, then the disjunction is true, so it is not
necessary to wait for the other expression to publish a value. This holds even if one
of the expressions never publishes a value.

The “parallel or” of expressions F and G may be expressed in Orc as follows:

val result =
val a = F
val b = G
(a || b) | if(a) >> true | if(b) >> true

result

The expression (a || b) waits for both a and b to become available and then
publishes their disjunction. However, if either a or b is true we must publish true
immediately, regardless of whether the other variable has a value. Therefore we
run if(a) >> true and if(b) >> true in parallel. Since more than one of
these expressions may publish true, we bind only the first result to result. The
value of the whole expression is simply the value bound to result.

Note that F and G are evaluated within the binding of result, so that when
result becomes bound, F and G are terminated. If val a = F and val b =
G were written above val result = ..., their executions would continue.

11.4.1.3 Fold

We consider various concurrent implementations of the classic “list fold” function,
defined by fold(f, [x1, ... , xn]) = f(x1, f(x2, ... f(xn�1,
xn) ... ). Here is a simple functional implementation:
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def fold(_, [x]) = x
def fold(f, x:xs) = f(x, fold(f, xs))

This is a seedless fold (sometimes called fold1) which requires that the list
be non-empty, and uses its first element as the seed. This implementation is short-
circuiting – it may finish early if the reduction operator f does not use its second
argument – but it is not concurrent; no two calls to f can proceed in parallel.
However, if f is associative, we can overcome this restriction and implement fold
concurrently. If f is also commutative, we can further increase concurrency.

Associative Fold

We define afold(f,xs) where f is an associative binary function and xs is a
non-empty list. The implementation iteratively reduces xs to a single value. Each
iteration applies the auxiliary function step, which reduces adjacent pairs of items
to single values.

def afold(f, [x]) = x
def afold(f, xs) =

def step([]) = []
def step([x]) = [x]
def step(x:y:xs) = f(x,y):step(xs)
afold(f, step(xs))

Notice that f(x,y):step(xs) is an implicit fork-join, as described in
Section 11.4.1.1. Thus, the call f(x,y) executes concurrently with the recur-
sive call step(xs). As a result, all calls to f execute concurrently within each
iteration of afold.

Associative, Commutative Fold

We can make the implementation even more concurrent when the fold operator
is both associative and commutative. We define cfold(f,xs), where f is an
associative and commutative binary function and xs is a non-empty list. The im-
plementation initially copies all list items into a buffer in arbitrary order using the
auxiliary function xfer, counting the total number of items copied. The auxiliary
function combine repeatedly pulls pairs of items from the buffer, reduces them,
and places the result back in the buffer. Each pair of items is reduced in parallel as
they become available. The last item in the buffer is the result of the overall fold.

def cfold(f, xs) =
val c = Buffer()

def xfer([]) = 0
def xfer(x:xs) = c.put(x) >> stop | xfer(xs)+1

def combine(0) = stop
def combine(1) = c.get()
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def combine(m) = c.get() >x> c.get() >y>
( c.put(f(x,y)) >> stop | combine(m-1))

xfer(xs) >n> combine(n)

11.4.2 Examples Using Time

These examples demonstrate how Orc programs can integrate real time to detect
time outs, and execute expressions at regular time intervals, using the site Rtimer
described in Section 11.3.3.

11.4.2.1 Timeout

Timeout, the ability to execute an expression for at most a specified amount of time,
is an essential ingredient of fault-tolerant and distributed programming. Orc accom-
plishes timeout using pruning and the Rtimer site, as we saw in Section 11.3.3;
we further develop that technique in these examples.

Auction with Timeout

The auction example in Section 11.4.1.1 may never finish if one of the bidders does
not respond. We add a timeout so that each bidder has at most 8 seconds to respond:

def auction([]) = 0
def auction(b:bs) = max(b.ask() | Rtimer(8000) >> 0, auction(bs))

This version of the auction is guaranteed to complete within 8 seconds.4

Priority

We can use Rimer to give a window of priority to one computation over another. In
this example, we run expressions F and G concurrently, each of which may publish
a single result. For a time interval of 1 second, F has priority; F’s result is published
immediately if it is produced within 1 second; otherwise, the first value from F or G
is published after the time interval.

val result =
val a = F
val b = G
a | Rtimer(1000) >> b

result

4 An implementation can only approximate this guarantee.
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Detecting Timeout

Sometimes, rather than just yielding a default value, we would like to determine
whether an expression has timed out, and if so, perform some other computation. To
detect the timeout, we pair the result of the original expression with true and the
result of the timer with false. Thus, if the expression does time out, then we can
distinguish that case using the boolean value.

Here, we run expression F with a time limit t. If it publishes within the time
limit, we bind its result to r and execute G. Otherwise, we execute H.
val (r, b) = (F, true) | (Rtimer(t), false)
if b then G else H

11.4.2.2 Metronome

A timer can be used to execute an expression repeatedly at regular intervals. We
define a function metronome(t), which publishes a signal every t time units.
def metronome(t) = signal | Rtimer(t) >> metronome(t)

The following example publishes “tick” once per second, and “tock” once per
second after a half-second delay. The publications alternate: “tick tock tick tock
. . . ”. Note that this code is not recursive; the recursion is entirely contained within
metronome.

metronome(1000) >> ("tick" | Rtimer(500) >> "tock")

11.4.3 Examples Using Mutable State

These examples show how Orc can manipulate mutable state, such as the reference
cells and arrays described in Section 11.3.3. Recall that x? is syntactic sugar for
x.read(), and x := y for x.write(y). Also recall that the expression a(i)
returns a reference to the element of array a at index i; array indices start from 0.

11.4.3.1 Simple Swap

The following function takes two references as arguments, exchanges their values,
and returns a signal.
def swap(a, b) = (a?, b?) >(x,y)> (a := y, b := x) >> signal

11.4.3.2 Array Permutation

The following function randomly permutes the elements of an array in place. It uses
the helper function randomize, which for each index i in the array generates a
random numberj between 0 and (i-1) inclusive, and swaps a(i-1)with a(j).
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def permute(a) =
def randomize(0) = signal
def randomize(i) = random(i) >j>

swap(a(i-1),a(j)) >>
randomize(i-1)

randomize(a.length())

Since random returns values from a uniform distribution, each possible permu-
tation of the array is equally likely. This algorithm originally appears in [3, 10].

The technique we use here – traversing an array recursively and calling swap to
exchange its elements – is crucial for our Quicksort implementation.

11.4.3.3 Applicative Map

The map function, shown in Section 11.3.1, applies a function to each element in
a list and returns a new list populated with the results; it is a common idiom in
pure functional programming. When manipulating mutable arrays, it is often help-
ful to perform a map operation in place: apply the function to each element of the
array overwriting the previous contents. The function inplacemap(f,a), de-
fined below, applies the function f to the array a in this way. The helper function
mapstep(i) applies f to each element of a with index less than i.
def inplacemap(f,a) =

def mapstep(0) = signal
def mapstep(i) =
val rest = mapstep(i-1)
a(i-1) := f(a(i-1)?) >> rest

mapstep(a.length())

A call to mapstep(i) applies the function f to element a(i-1), and con-
currently maps the remainder of the array by calling mapstep(i-1). When
mapstep(i-1) completes, rest is bound to a signal, and then mapstep(i)
returns.

The following expression increments the value of each element of a by 1:
def inc(x) = x+1
inplacemap(inc,a)

11.4.4 Examples Using Synchronization and Communication

Synchronization and communication are fundamental to concurrent computing. We
implement some examples of synchronization – the rendezvous mechanism [6, 12]
and a solution to the readers–writers problem [2] – and show how communicating
processes [6] may be programmed in Orc.

11.4.4.1 Rendezvous

The concept of rendezvous between two parties was first introduced by Hoare and
Milner as a form of process synchronization. Orc does not include rendezvous as a
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primitive concept, but we can program it using semaphores. First, we show a two-
party rendezvous, and then generalize it to .nC 1/-party rendezvous, for n � 1.

A rendezvous occurs between a sender and a receiver when both of them are
waiting to perform their respective operations. They each wait until they complete
the rendezvous, and then they can proceed with their computations. A rendezvous
involves synchronization and data transfer. In the solution below, first we show only
the synchronization, and later data transfer. Potentially many senders and receivers
may simultaneously wait to rendezvous, but each can rendezvous with exactly one
other party.

Senders and receivers call the functions send and receive, respectively, when
they are ready to rendezvous. The solution employs two semaphores, up and down,
which are acquired and released in a symmetric manner. (The roles of sender and
receiver are symmetric; so the two function bodies may be exchanged.) It can be
shown that this solution synchronizes a pair of sender and receiver, each of them
receives a signal following a synchronization, and that it leaves the semaphores
in their original states (with value 0) following the synchronization. We expect
each semaphore to be binary-valued, yet this is not a requirement. For general
semaphores, there is still pairwise synchronization, though it cannot be ascertained
which sender has synchronized with which receiver.
val up = Semaphore(0)
val down = Semaphore(0)
def send() = up.release() >> down.acquire()
def recv() = up.acquire() >> down.release()

In order for the sender to send data value v, replace semaphore up by buffer b,
and modify the programs:
def send(v) = b.put(v) >> down.acquire()
def receive() = b.get() >x> down.release() >> x

The given solution can be generalized to the case where the senders and receivers
belong to specific groups, and a rendezvous occurs only between members of a
group. In that case, each group uses its own pair of semaphores and corresponding
definitions.

.nC 1/-party Rendezvous

We generalize the rendezvous algorithm given above to synchronize n C 1 parties
(processes), n � 1, using 2n semaphores. We create two arrays of semaphores,
up and down, using the semArray function defined in Section 11.3.3. The algo-
rithm is reminiscent of 2-phase commit protocol in databases. Each of the n C 1
parties calls a function when it is ready to synchronize, like the sender and the re-
ceiver above. The process with index n is designated the coordinator, and it calls
function coord; all others call ready. Function call ready(i), where 0 � i
< n, first releases semaphore up(i) and then waits to acquire down(i). Func-
tion coord first acquires all the up semaphores and then releases all the down
semaphores. The 2-party rendezvous is a special case where the receiver played the
role of the coordinator.
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val up = semArray(n)
val down = semArray(n)
def ready(i) = up(i).release >> down(i).acquire
def coord() =

def Acq(0) = signal
def Acq(k) = up(k-1).acquire >> Acq(k-1)
def Rel(0) = signal
def Rel(k) = (down(k-1).release,Rel(k-1)) >> signal
Acq(n) >> Rel(n)

11.4.4.2 Readers–Writers Synchronization

We present a solution to the classical Readers–Writers synchronization problem [2].
Processes, called readers and writers, share a resource such that concurrent reading
is permitted but a writer needs exclusive access. We present a starvation-free solu-
tion consisting of three functions:start, end, and manager. Readers and writers
call start, a blocking operation, to request access; readers call start(true)
and writers call start(false). Function start publishes a signal when the
resource can be granted. Readers and writers call end() to release the resource.
Function manager runs concurrently with the rest of the program to grant the re-
quests.

A call to start(b) adds a request to channelq. Function manager reads from
q, decides when the request can be granted, and then calls back the requester. We
employ semaphores for callback. Specifically,

val q = Buffer()
def start(b) = Semaphore(0) >s> q.put((b,s)) >> s.acquire()

Function manager releases s when it can grant the request. Since s has initial
value 0, s.acquire() blocks until the request is granted.

To count the number of active readers and writers, we employ a counter c,
a mutable object on which three methods are defined: (1) c.inc() adds 1
to the counter value, (2) c.dec() subtracts 1 from the counter value, and (3)
c.onZero() sends a signal only when the counter value is 0. The first two are
non-blocking operations, and the last one is blocking. Though onZero() sends a
signal only when the counter value is 0, the value may be non-zero by the time the
recipient receives the signal. There is a weak fairness guarantee: if the counter value
remains 0 continuously, a signal is sent to some caller of onZero(). The counter
is initially 0. The site call Counter() creates and returns a new counter.

The code for end merely decrements the counter:

val c = Counter()
def end() = c.dec()

The manager is an eternal loop structured as follows:

def manager() =
q.get() >(b,s)> if b then read(s) else write(s) >> manager()
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The invariants in each iteration of manager are that (1) there are no current
writers, and (2) the counter value is the number of current readers. We use these
invariants in the implementations of read and write.

A reader can always be granted permission to execute, from invariant (1). To
satisfy invariant (2), the counter value must be incremented.
def read(s) = c.inc() >> s.release()

A writer can be granted permission only if there are no active readers. To satisfy
invariant (1), the execution of write terminates only when there are no active
writers.
def write(s) = c.onZero() >> c.inc() >> s.release() >> c.onZero()

We start execution of an instance of manager by writing:
val _ = manager()

The Readers–Writers program in its entirety is shown below.
val q = Buffer()
def start(b) = Semaphore(0) >s> q.put((b,s)) >> s.acquire()
val c = Counter()
def end() = c.dec()
def manager() =

q.get() >(b,s)> if b then read(s) else write(s) >> manager()
def read(s) = c.inc() >> s.release()
def write(s) = c.onZero() >> c.inc() >> s.release() >> c.onZero()
val _ = manager()

11.4.4.3 Process Network

Process networks [6] and actors [1, 4] are popular models for concurrent program-
ming. Their popularity derives from the structure they impose on a concurrent
computation. Different aspects of the computation are partitioned among different
processes (actors), and the processes communicate through messages over chan-
nels. This simple programming model allows a programmer to focus attention on
one aspect of a problem at a time, corresponding to a process. Additionally, inter-
ference and race conditions among processes, the bane of concurrent programming,
are largely eliminated by restricting communication to occur through messages.

We show how this programming model can be incorporated within Orc. Chan-
nels are created by calls to Buffer. Processes are represented as Orc definitions,
which share these channels. The entire process network is the parallel composi-
tion of these processes. Below, we restrict ourselves to FIFO channels though other
communication protocols can be defined in Orc.

As an example, consider a transformer process P that reads inputs one at a time
from channel in, transforms each input to a single output by calling function (or
site) transform, writes the result on channel out, and repeats these steps forever.
def P(c,d) = c.get() >x> transform(x) >y> d.put(y) >> P(c,d)
P(in,out)
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Next, we build a small network of such processes. The network has two
processes, and both read from in and write to out.

P(in,out) | P(in,out)

Here, the two processes may operate at arbitrary speeds in removing items from
in and writing to out. Therefore, the order of items in the input channel is not
necessarily preserved with the corresponding outputs in out.

Probabilistic Load Balancing

Consider adding a balancer process that reads from in and randomly assigns the
input to one of the processes for transformation, as a form of load balancing. Again,
the processes write their results to out, and they may not preserve the input order.
We define two internal channels in’ and in’’ which link balancer to the trans-
former processes.

def balancer(c,c’,c’’) =
c.get() >x>
(if random(2) = 0 then c’.put(x) else c’’.put(x)) >>
balancer(c,c’,c’’)

val (in’, in’’) = (Buffer(), Buffer())

balancer(in,in’,in’’)
| P(in’,out) | P(in’’,out)

Deterministic Load Balancing

Now consider a load balancing network in which the order of inputs is preserved
in the output. We replace the balancer process with a distributor process that sends
alternate input items along in’ and in’’. The transformer processes write their
outputs to two internal channels out’ and out’’. And, we add a collector process
that copies the values from out’ and out’’ alternately to out.

def distributor(c,c’,c’’) =
c.get() >x> c’.put(x) >>
c.get() >y> c’’.put(y) >>
distributor(c,c’,c’’)

def collector(d’,d’’,d) =
d’.get() >x> d.put(x) >>
d’’.get() >y> d.put(y) >>
collector(d’,d’’,d)

val (in’,in’’) = (Buffer(), Buffer())
val (out’,out’’) = (Buffer(), Buffer())

distributor(in,in’,in’’)
| P(in’,out’) | P(in’’,out’’)
| collector(out’,out’’,out)
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We have shown some very simple networks here; in particular, the networks are
acyclic and a priori bounded in size. See [16] for networks in which arbitrarily
many processes are dynamically initiated, interrupted, resumed, or terminated. The
networks may be structured in a hierarchy where a process itself may be a network
to any arbitrary depth, and connections among network components are established
statically by naming explicit channels as shown, or dynamically by sending a chan-
nel name as a data item.

11.5 Quicksort in Orc

The Quicksort algorithm focuses on three core ideas in computing: recursion,
mutable store, and concurrency. We present an implementation of Quicksort in Orc,
in which we show how Orc expresses all three of these ideas. The program is re-
cursive and largely functional in its structure. It uses fork-join when partitioning
the array and sorting subarrays, making both the partitioning process and the recur-
sive subsorts implicitly parallel throughout. Furthermore, it manipulates the array
elements in place, avoiding the overhead of maintaining extra copies.

We define a quicksort function, which takes as its only argument an array a,
and sorts that array in place. When the sort is complete, it returns a signal.

def quicksort(a) = ...

Within the body of quicksort, we define an auxiliary functionpart(p,s,t)
that partitions the subarray of a defined by indices s through t into two partitions,
one containing values�p and the other containing values>p. One of the partitions
may be empty. The call part(p,s,t) returns an index m such that a(i) � p
for all s � i � m, and a(j) > p for all m < j � t.

def part(p, s, t) = ...

To create the partitions, part calls two auxiliary functions lr and rl. These
functions scan the subarray from the left and right, respectively, looking for the first
out-of-place element. Function lr returns the index of the leftmost item that ex-
ceeds p, or simply t if there is none. Function rl returns the index of the rightmost
item that is less than or equal to p, or simply s-1 if there is none (the value at
a(s-1) is assumed to be �p).

def lr(i) = if i < t && a(i)? <= p then lr(i+1) else i
def rl(i) = if a(i)? > p then rl(i-1) else i

Observe that lr and rl may safely be executed concurrently, since they do not
modify the array elements.

Once two out-of-place elements have been found, they are swapped using the
function swap defined in Section 11.4.3.1, and then the unscanned portion of the
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subarray is partitioned further. Partitioning is complete when the entire subarray has
been scanned. Here is the body of the part function:

(lr(s), rl(t)) >(s’, t’)>
( if(s’ + 1 < t’) >> swap(a(s’), a(t’)) >> part(p, s’+1, t’-1)
| if(s’ + 1 = t’) >> swap(a(s’), a(t’)) >> s’
| if(s’ + 1 > t’) >> t’
)

Observe that in the body of part, we use three parallel calls to the if site, with
mutually exclusive conditions, each followed by >> and another expression. This
is a representation of Dijkstra’s guarded commands in Orc, using if to represent
a guard, followed by >> and a consequent. Also observe that the second guarded
command can be eliminated by replacing the first guard by s’ + 1 <= t’; this
incurs a slight performance penalty.

The main sorting function sort(s,t) sorts the subarray given by indices s
through t by calling part to partition the subarray and then recursively sorting the
partitions concurrently. It publishes a signal on completion.

def sort(s, t) =
if s >= t then signal
else part(a(s)?, s+1, t) >m>

swap(a(m), a(s)) >>
(sort(s, m-1), sort(m+1, t)) >>
signal

The body of quicksort is just a call to sort, selecting the whole array:

sort(0, a.length()-1)

Here is the quicksort program in its entirety.

def quicksort(a) =

def part(p, s, t) =
def lr(i) = if i < t && a(i)? <= p then lr(i+1) else i
def rl(i) = if a(i)? > p then rl(i-1) else i

(lr(s), rl(t)) >(s’, t’)>
( if (s’ + 1 < t’) >> swap(a(s’),a(t’)) >> part(p,s’+1,t’-1)
| if (s’ + 1 = t’) >> swap(a(s’),a(t’)) >> s’
| if (s’ + 1 > t’) >> t’
)

def sort(s, t) =
if s >= t then signal
else part(a(s)?, s+1, t) >m>

swap(a(m), a(s)) >>
(sort(s, m-1), sort(m+1, t)) >>
signal

sort(0, a.length()-1)
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11.6 Why Orc?

Much like other process algebras, the Orc calculus was designed to study the ap-
propriateness of certain combinators for concurrent computing. Unlike most other
process algebras, the calculus relies on external sites to deal with non-concurrency
issues. Many of the lower-level problems, such as management of locks and shared
state, are delegated to sites in Orc. The Orc language was designed to provide a min-
imal base to experiment with the Orc combinators. Therefore, the language includes
only the basic data types and structuring mechanisms. A site library provides addi-
tional capabilities for creating references, arrays, and channels, for example. Such a
combination has proved fruitful, as we have demonstrated in programming a classic
example, Quicksort.

We hope that designers of future languages will adopt the fundamental princi-
ple we have espoused in the design of Orc: seamless integration of concurrency,
structure, and interaction with the external world.
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Chapter 12
The Thousand-and-One Cryptographers

A.K. McIver and C.C. Morgan

Abstract Chaum’s Dining Cryptographers protocol crystallises the essentials of
security just as other famous diners once demonstrated deadlock and livelock: it is
a benchmark for security models and their associated verification methods.

Here we give a correctness proof of the Cryptographers in a new style, one in which
stepwise refinement plays a prominent role. Furthermore, our proof applies to arbi-
trarily many diners: that is unusually general.

The proof is based on the Shadow Security Model, which integrates non-interference
and program refinement: with it, we try to make a case that stepwise development
of security protocols is not only possible but also actually to be recommended. It
benefits from more than 3 decades of experience of how layers of abstraction can
both simplify the design process and make its outcomes more likely to be correct.

12.1 Introduction: Refinement of Security Properties

Program development by stepwise refinement [34] is widely accepted as a good
idea in theory, but it is often a late arrival in practice. Indeed, with some notable
exceptions [1, 5] most current approaches and tools for correctness concentrate on
proving1 that a single system has certain desirable properties, whereas a refinement-
based approach would rather prove that one (real, i.e. implementation) system had
all the desirable properties of another (ideal, i.e. specification) system.

For example, we note the frequent claims that downgrading is a challenging issue
in the non-interference model of security [12]. In that model a program is secure if

1We include model checking as a form of proving, at this informal level.
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observation of its “low-security” visible outputs does not reveal anything about its
“high-security” hidden inputs; thus in the context of visible integer variable v and
hidden variable h the program vWD 0�h is secure but vWD 1�h is not. As an interme-
diate option there is the program vWD h�2 that “downgrades” the security, revealing
in this case most bits of v but not all, yet it is not considered to be “intermediately”
secure: like vWD 1 � h, it is considered (simply) insecure.

Now in a real system we might find the code

vWD 0; while vC 2 � h do hsend two bytesi; vWD vC 2 end ; (12.1)

in which v counts the number of bytes sent, ensuring no more than h can be sent
overall. If the sent messages are observed and counted, then this program also
reveals – to anyone aware of the source code – all but the low-order bit of h. Like
vWD h� 2 above, it is considered insecure in the non-interference model.

Downgrading is inescapable in practice, and it is to reason about it effectively –
in spite of the black-or-white judgement of the original non-interference model –
that downgrading extensions to that model are introduced [7, 20] in which one can
express, by annotations of the code, the information leaks that are to be considered
acceptable. The proof of correctness is then relative to those annotations.

But there is an alternative to concentrating on downgrading exclusively: instead
we concentrate on refinement, with downgrading then a special case. In this
approach we would describe a downgrading policy for the loop of (12.1) as a
requirement of there being a refinement, saying that

vWD 2.h� 2/ v vWD 0; while vC 2 � h doh sendi; vWD vC 2 end; (12.2)

i.e. that the lhs “is refined by” the rhs and meaning that the desirable properties
of the specification on the left – including its not revealing h’s low-order bit – are
shared by its implementation on the right. The downgrading aspect is that the rhs
can indeed reveal the higher-order bits of h – because the lhs does just that. We feel
that a refinement-based approach to security has many advantages, demonstrated
over the years by its success generally (in those places where it has, after all, been
adopted). In this particular case, for example, using it would mean that we require
neither annotations nor an explicit notion of downgrading.

Integrating refinement and security is exactly what we do here: we make (12.2)
precise by giving an appropriately extended definition of refinement, one which is
“security aware.” It is explained below (and earlier [25, 27]). In doing so we join
a small number of other researchers – from the large security community – who
have similar aims [2,9,21]; we compare our work with theirs in Section 12.9. In the
meantime, we highlight some of the conspicuous aspects of our approach.

Refinement is complementary to abstraction, and abstraction can be viewed in
turn as demonic nondeterministic choice resolved at design-time; but it is well
known that there are conceptual benefits to conflating abstraction with run-time
demonic choice [4, 8, 17, 23] and so it is natural to include demonic choice in our
security model in both the design- and run-time senses. Where this has been done by
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others, in some cases the non-interference model has been extended so that the “full
range of nondeterminism” of the hidden variables must not be dependent on visible
variables’ observed values, but the nondeterminism cannot subsequently be reduced
as refinement would ordinarily allow [19, 32]; and in other cases the requirement
has been imposed that – while nondeterminism is allowed in the model – in the fi-
nal implementation program there must be none of it remaining [31]. One aspect
of our work is that, in contrast, we include both features: nondeterminism can be
reduced; and some of it can remain in the implementation. This requires careful
treatment of hidden-versus visible nondeterminism, and is how we solved the Re-
finement Paradox [18, 24].

A second aspect is that our notion of adversary is quite strong: we allow perfect
recall [11] that intermediate values of visible variables can be observed even if they
subsequently are overwritten; and we allow an attacker’s observation of control flow,
that conditionals’ Booleans expressions are (implicitly) leaked. We assume also that
the program code is known. Doing all these effectively, while avoiding an infinite
regress to “quark-level attacks,” requires explicit treatment of atomicity at some
point. We define that.

The reason for the strong adversary is that refinements must be effective locally:
refinement of a small fragment in a large program must refine the whole program
even if the refinement was proved only for the fragment. This is monotonicity –
and without it no scaled-up development is possible. Since for some fresh local
visible variable v0 it is a refinement to insert assignment v0WD v willy-nilly at almost
any place in a program, we must live with the fact that v’s value at that point will
possibly be preserved (in some local v0) in spite of v’s subsequent overwriting: that
is, although the unfortunate v0WD v might not be there “now,” one developer must
accept that a second developer in some other building might put it there “later”
without asking. After all, if it’s a refinement (and it is) then he does not need to ask.

Rather than making refinements unworkable, the strong-adversary assumptions
make them more applicable. Distributed protocols (such as the Dining Cryptogra-
phers) can be treated as single “sequential” programs because the information hiding
normally implied by non-interference’s end-to-end analysis does not apply. Indeed,
if it did, the sequential formulation would seem to be hiding the transfer of mes-
sages and the interleaving of concurrent threads, and that would make it unsound.
For example, if Agent A executes vWD h and Agent B then executes vWD 0 we can
analyse this as the single sequential program vWD h; vWD 0 without having acciden-
tally (and incorrectly) ignored the fact that A can observe v (and hence learn h)
before B’s thread has begun the execution that would overwrite it.

A third aspect of our approach is that we concentrate on algebraic reasoning for
proving refinement: although we do have both an operational model (Section 12.2)
and a language of logical assertions (Section 12.3) for refinement-based security,
we use those mainly for proving schematic program-fragment equalities and refine-
ments (Section 12.4). Those schemes, rather than the logic or the model, are then
what is used in the derivation of specific programs. For this we need a program-level
indication of information escape, analogous to the way in which the assert statement
can embed Hoare-Logic pre- and post-conditions within program code [16, 23, 35].
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This is our reveal E statement that publishes E’s value for all to read, but does not
change any program variable: its purpose is to bring an extra expressivity that helps
formulate general algebraic (in)equalities. Since functionally it acts as skip on pro-
gram variables (having no effect at all), but wrt secrecy it does not act as skip (it
releases information but skip does not), its behaviour considered alone will capture
much of the flavour of what we intend to do.

Section 12.2 gives our relational-style operational model; Section 12.3 describes
a corresponding modal logic based on the logic of knowledge; and Section 12.4
introduces our program algebra. Sections 12.5–12.8 demonstrate the approach on
examples of increasing complexity.

Throughout we use left-associating dot for function application, so that f :x:y
means .f .x//.y/ or f .x; y/, and comprehensions/quantifications are written uni-
formly, as .QxWT j R � E/ for quantifier Q, bound variable(s) x of type(s) T, range
predicate R (probably) constraining x and element-constructor E in which x (proba-
bly) appears free. For sets the opening “.Q” is “f” and the closing “/” is “g” so that,
e.g. the comprehension fx; yWN j y D x2 � z C yg is the set of all natural numbers
that exceed z by a perfect square exactly, that is fz; zC1; zC4; � � �g.

12.2 The Shadow Model of security

12.2.1 Introduction; Non-interference; Logic of Knowledge

Our operational model is loosely based on non-interference [12] and on the Kripke
structures associated with the (modal) Logic of Knowledge [11]: it extends the for-
mer with concepts of the latter, and is targetted specifically at development of secure
programs (in its terms) via a process of stepwise refinement. The “shadow” of the
title refers to an extra semantic component that tracks a postulated attacker’s inferred
knowledge, or ignorance, of hidden (high-security) variables.

The non-interference approach (in its simplest form) partitions variables into
high-security- and low-security classes: we call them hidden and visible, respec-
tively. A “non-interference -secure” program then prevents an attacker’s inferring
hidden variables’ initial values from initial and/or final visible variables’ values.
Assuming for simplicity just two variables v; h of class visible, hidden, respectively
we consider in this simple approach a possibly nondeterministic program r that takes
initial states .v; h/, to sets of final visible states v0 and is thus of type V!H! PV ,
where V ;H are the value sets corresponding to the types of v; h, respectively; note
that we are ignoring final hidden values at this point. Such a program r is non-
interference secure just when for any initial visible value the set of possible final
visible values is independent of the initial hidden value [19, 28, 32] as expressed
here:

.8 vWV ; h0; h1WH � r:v:h0 D r:v:h1/ :



12 The Thousand-and-One Cryptographers 259

Our first extension of the simple approach is to concentrate on final- (rather than
initial) hidden values and therefore to model programs by the slightly more elaborate
type V!H!P.V �H/. For two such programs rf1;2g we say that r1 v r2, that r1
“is (securely) refined by” r2, just when the following both hold:

(i) For any initial state v; h each possible r2 outcome is also a possible r1 outcome,
that is

.8 vWV ; hWH � r1:v:h � r2:v:h/ :2

This is the normal “can reduce nondeterminism” form of refinement, i.e. it is
the classical form.

(ii) For any initial state v; h and final state v0 possible for r2 (i.e. for which there
exists a compatible h02), each h01 that r1 can produce with that v; v0 can also be
produced by r2 with that same v; v0, that is

 
8 v; v0WV ; h; h01; h02WH � .v0; h02/ 2 r2:v:h ^ .v0; h01/ 2 r1:v:h

) .v0; h01/ 2 r2:v:h

!

:

This second condition says that for any particular visible final v0 the attacker’s
“ignorance” of h0’s compatible with that v0 cannot be decreased by the refine-
ment from r1 to r2: whenever we must consider out of ignorance that some h01
is possible for r1, we must be forced to consider that same h01 to be possible for
r2 as well. This is the extended “secure” refinement that we use to restrict the
classical.

In fact, in this moderately extended approach, the two conditions (i), (ii) together
do not allow ignorance strictly to increase: refinement then boils down to a simple
policy of allowing decrease of nondeterminism in v but not in h. But strict increase
of hidden nondeterminism will be possible (12.3) in the more ambitious approach
we introduce below.

As an example of the above we restrict all our variables’ types so that V D H D
f0; 1g, and we let r1 be the maximally nondeterministic program that can produce
from any initial values .v; h/ any one of the four possible .v0; h0/ final values in
V�H. Then the program r2 that produces only the two final values in f.0; 0/; .0; 1/g
is a refinement of r1 that strictly reduces nondeterminism in v but not in h, and is
(therefore) still secure. But the program r02 that produces only the two final values
in f.0; 0/; .1; 1/g is not a secure refinement, because it reduces nondeterminism in h
(as well).

Thus r1 allows any behaviour, and r2 simply reduces the nondeterminism by
limiting its outputs to v0 D 0 only; but, even with the limited outputs, an attacker of
r2 can gain no more knowledge of h0’s value than it would have had from attacking

2 Some researchers [2] do not consider the final h here: for our purposes that would make our
program operators non-monotonic for refinement (thus a failure of compositionality). That is, if
for hidden h the assignments hWD 0 and hWD 1 are the same, then for visible v the compositions
hWD 0; vWD h and hWD 1; vWD h should not be different.
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r1 instead. So r1 v r2. An attacker of r02 however can deduce h0’s value from having
seen v0’s, since that program guarantees they will be equal. Since that attack is not
possible on r1, we have r1 6v r02.

12.2.2 The Shadow of h

In r1 above, when the final value v0 was 0 the corresponding set of associated pos-
sible values of h0 was f0; 1g. This set f0; 1g is called “The Shadow,” and represents
explicitly an attacker’s ignorance of the hidden variables’ values. In r2 that shadow
was the same (for v0 D 0); but in r02 the shadow was smaller, and that is why we
don’t consider r02 to be a refinement of r1 as far as security is concerned.

In the shadow semantics we model this ignorance-set explicitly, so that our final
program state is extended to a triple .v0; h0;H0/ with H0 a subset of H – in each triple
the H0 contains exactly those (other) values that h0 might have had. The (extended)
output-triples of the three example programs are then respectively

r1 — f.0; 0; f0; 1g/; .0; 1; f0; 1g/; .1; 0; f0; 1g/; .1; 1; f0; 1g/g
r2 — f.0; 0; f0; 1g/; .0; 1; f0; 1g/g
r02 — f.0; 0; f0g/; .1; 1; f1g/g ;

and we can see r1 v r2 because r1’s set of outcomes includes all of r2’s. But, e.g.
the outcome .0; 0; f0g/ of r02 does not occur among r1’s outcomes, nor is there even
an r1-outcome .0; 0;H0/ with H0 � f0g that would satisfy (ii). That is why we say
that r1 6v r02 for security.

Now – the final step – to enable the sequential composition of shadow-enhanced
programs also initial triples .v; h;H/ must be dealt with, since the final triples of
some first component become initial triples for a second component following it.
We therefore define the full shadow semantics, in the next section, by showing how
those triples are related by program execution.

12.2.3 The Shadow Semantics of Atomic Programs

A “non-shadow,” call it classical program r is effectively an input–output relation
between V � H -pairs. Its shadow version hri is a relation between V � H � PH
-triples and is defined as follows:

Definition 1. Atomicity Given a standard program rWV ! H ! P.V � H/ we
define its atomic shadow version hriWV ! H! PH! P.V � H � PH/ so that
hri:v:h:H 3 .v0; h0;H0/ just when

(i) we have both r:v:h 3 .v0; h0/.
(ii) and H0 D fh0WH j .9 hWH � r:v:h 3 .v0; h0/ /g.
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The final shadow component is thus generated from the initial shadow component
and any nondeterminism present in the program. �

As a first example, let the syntax xW2 S denote the standard program that chooses
variable x’s value from a set S, which we assume to be non-empty. From Definition 1
we have that

(i) A choice of visible v has no effect on h;H
because hvW2 Si:v:h:H D fv0W S � .v0; h;H/g

(ii) But choice of hidden h introduces ignorance
because hhW2 Si:v:h:H D fh0W S � .v; h0; S/g

(iii) And finally an assignment of hidden to visible “collapses” any ignorance that
might be there because hvWD hi:v:h:H D f.h; h; fhgg

From (ii) and (iii) above we can therefore see that in the sequential composition
hhW2 Si; hvWD hi the first statement introduces ignorance – we do not know h’s exact
value “at the semicolon” – but the second statement then removes it because we
can deduce h’s value, at the end, by observing v. The composition as a whole is
nondeterministic, because v; h’s common final value is drawn arbitrarily from S; but
the nondeterminism is observable.

In general, atomicity is not preserved by composition (indeed one expects it not
to be); but in many simple cases it is preserved.

Lemma 1. atomicity and composition Given two programs rf1;2g over v; h we
have hr1; r2i D hr1i; hr2i just when v’s intermediate value, i.e. “at the semi-
colon,” can be deduced from its endpoint values, i.e. initial and final, possibly in
combination. The semicolon denotes relational composition in both cases, of pairs
on the left and of triples on the right.

Proof. Given in [22 App. 1.10]. �

In fact this lemma is more significant when its conditions are not met than
when they are. It means, for example, that we cannot conclude from Lemma 1 that
hvWD h; vWD 0iD hvWD hi; hvWD 0i, since on the left the intermediate value of v can-
not be deduced from its endpoint values: for h is not visible at the beginning and v
itself has been “erased” at the end. And indeed from Definition 1

(i) On the left we have hvWD h; vWD 0i:v:h:H D f.0; h;H/g, whereas
(ii) On the right we have .hvWD hi; hvWD 0i/:v:h:H D f.0; h; fhg/g .

This phenomenon is called perfect recall [11] – that v’s temporary receipt of h is
seen by an attacker even though it is subsequently overwritten – and it is a feature
(not a bug). It is due to our refinement-oriented point of view, as we now explain.

12.2.4 Refinement Versus Atomicity: Gedanken Experiments

Perfect recall is necessary because refinement must be monotonic, i.e. (A) that
refinement of a program portion must refine the whole program; and we insist
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additionally (B) that classical refinements involving v only must remain valid even
when we take security into account. Both principles (A, B) are required in order to
be able to develop large programs via local reasoning over small portions.

For example, without perfect recall the overwriting of v would prevent program
vWD h; vW2 f0; 1g from revealing h. Yet from (B) we have vW2 f0; 1g v vWD v; and
then from (A) we have .vWD h; vW2 f0; 1g/ v .vWD h; vWD v/ – and it is a contradic-
tion of secure refinement that the lhs does not reveal h but the rhs does. Thus the
premise – that recall is not perfect – is false.

There is a similar experiment for conditionals: because (A, B) imply the
refinement

if hD 0 then vW2 f0; 1g else vW2 f0; 1g fi
v if hD 0 then vWD 0 else vWD 1 fi ;

we must accept that the if-test reveals its outcome, in this case whether h D 0 holds.
And nondeterministic choice P1 u P2 is visible to the attacker because each of the
two branches Pf1;2g can be refined separately in a similar way.

12.2.5 Declared Atomicity

If there is a code fragment P that we know will be executed atomically at runtime,
we can write it hPi using the notation of Definition 1. This will however have two
consequences:

(i) At runtime the atomicity must be guaranteed for P’s execution, and
(ii) At design-time only equality reasoning can be used within P.

With respect to (2) we mean that PvP0 does not allow us to conclude the refinement
hPivhP0i. We can however conclude the equality hPiDhP0i from PDP0.

12.2.6 Summary of Semantics

The Shadow Semantics of a small imperative language is given in Fig. 12.1 for non-
looping constructs. The only non-traditional command is reveal that gives the value
of some expression to the attacker directly, but changes no program variables; note
it does change the shadow.

Refinement between programs is defined as follows:

Definition 2. Refinement For programs Pf1;2g we say that P1 is refined by P2 and
write P1 v P2 just when for all v; h;H we have

.8.v0; h0;H02/W ŒŒP2��:v:h:H �
.9H01WPH j H01 � H02 � .v0; h0;H01/ 2 ŒŒP1��:v:h:H / / :
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Program P Semantics ŒŒP��:v:h:H

Publish a value reveal E:v:h f .v; h; fh0WH j E:v:h0 D E:v:hg/ g
Assign to visible vWDE:v:h f .E:v:h; h; fh0WH j E:v:h0 D E:v:hg/ g �
Assign to hidden hWDE:v:h f .v; E:v:h; fh0WH � E:v:h0g/ g �

Choose visible vW2 S:v:h fv0W S:v:h � .v0; h; fh0WH j v0 2 S:v:h0g/ g �
Choose hidden hW2 S:v:h fh0W S:v:h � .v; h0; fh0WH; h00W S:v:h0 � h00g/ g �

Sequential composition P1; P2 .ŒŒP1��; ŒŒP2��/:v:h:H
Demonic choice P1 u P2 ŒŒP1��:v:h:H [ ŒŒP2��:v:h:H

Conditional if E:v:h then Pt else Pf fi ŒŒPt��:v:h:fh0WH j E:v:h0 D trueg
� E:v:h �

ŒŒPf ��:v:h:fh0WH j E:v:h0 D falseg

The commands P marked � satisfy ŒŒP�� D h“classical semantics of P” i, and we call them the
atomic commands, meaning semantically so. Note that reveal is therefore not security-atomic,
even though it is a syntactic atom.

Fig. 12.1 Semantics of non-looping commands

This means that for each initial triple .v; h;H/ every final triple .v0; h0;H02/ produced
by P2 must be “justified” by a triple .v0; h0;H01/, with equal or smaller ignorance,
produced by P1.3 �

For example, from Fig. 12.1 we have that ŒŒhWD 0 u hWD 1��:v:h:H produces the
outome f.v; 0; f0g/; .v; 1; f1g/g, whereas ŒŒhW2 f0; 1g��:v:h:H produces the outcome
f.v; 0; f0; 1g/; .v; 1; f0; 1g/g. Thus

hWD 0 u hWD 1 � hW2 f0; 1g (12.3)

is an example of a strict refinement where the two commands differ only by a strict
increase of ignorance: they have equal nondeterminism functionally, but in one case
(u) it can be observed by the attacker and in the other case (W2 ) it cannot. For
example, the “more ignorant” triple .v; 0; f0; 1g/ is strictly justified by the “less
ignorant” triple .v; 0; f0g/, where we say “strictly” because f0g � f0; 1g.

12.3 The Logic of Ignorance

With the .v; h;H)-triple semantics of Section 12.2.6 comes an assertion logic over
the triples; it is based on the Logic of Knowledge and its interpretation over Kripke
structures [11]. We call it The Logic of Ignorance.

3 This is the Smyth Order [33] on sets of outcomes that is induced by the order on individual
outcomes given by .v; h;H1/ v .v; h;H2/ iff H1 � H2.
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As in Hoare Logic for sequential programs [16] we interpret first-order predicate
formulae over program states by making the program variables act as constants in
the logic. To that we add a possibility modality so that P� means (roughly) that �
holds for some “possible” value h2H rather than necessarily for the actual current
value of h, where � is a classical formula. In fact we have �)P� because a prop-
erty of our semantics is that h2H for all triples .v; h;H/ we consider: what is true
must also be possible. In general, however, we do not have P�)�, since what is
possible is not necessarily true.

12.3.1 Interpretation of Modal Formulae

The assertion language contains function- (including constant-) and relation sym-
bols as needed, among which we distinguish the (program-variable) constant sym-
bols visibles in some set V and hiddens in H; as well there are the usual (logical)
variable symbols in L over which we allow8; 9 quantification. The visibles, hiddens
and variables are collectively the scalars XWDV [ H [ L with V;H;L assumed
disjoint.

A structure comprises a non-empty domain D of values, together with functions
and relations over it that interpret the function- and relation symbols mentioned
above; within the structure we name the partial functions v;h that interpret visi-
bles and hiddens, respectively; we write their types V 7!D and H 7!D, respectively
(where the “crossbar” indicates the potential partiality of the function). We don’t
bother naming the interpretations of function- and relation symbols, as they do not
vary from one program state to another.

A valuation is a partial function from scalars to D, thus typed X 7!D; one valua-
tion w0 can override another w so that for scalar x we have that .wGw0/:x is w0:x if w0
is defined at x and is w:x otherwise. The valuation x 7!d is defined only at variable
x, where it takes value d.

A state .v;h;H/ comprises a visible- v, hidden- h and shadow- part H; the last,
in P.H 7!D/, is a set of valuations over hiddens only. All the states that we consider
satisfy h2H.

We define truth of ˚ at .v;h;H/ under valuation w by induction in the usual
style, writing .v;h;H/;w ˆ ˚ . For term t let ŒŒt��:v:h:w be its value interpretation
determined inductively from the valuation vGhGw and the (implicit) interpretation
of function symbols. Then our formula interpretation is as defined in Fig. 12.2 [11,
pp. 79, 81].

12.3.2 Shadow-Sensitive Hoare-Triples; Revelations

As is normal, we say that f˚gprogf�g just when any initial state .v;h;H/ ˆ ˚

can lead via ŒŒprog�� only to final states .v0;h0;H0/ ˆ � ; typically ˚ is called the
precondition and � is called the postcondition.
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� .v; h;H/;w ˆ R:t1: � � � :tK for relation symbol R and terms tf1���Kg iff the tuple
.ŒŒt1��:v:h:w; � � � ; ŒŒtK ��:v:h:w/ is an element of the interpretation of R in DK .
� .v; h;H/;wˆ t1 D t2 iff ŒŒt1��:v:h:w D ŒŒt2��:v:h:w.
� .v; h;H/;wˆ :˚ iff .v; h;H/;w 6ˆ ˚ .
� .v; h;H/;wˆ ˚1 ^ ˚2 iff .v; h;H/;w ˆ ˚1 and .v; h;H/;w ˆ ˚2.
� .v; h;H/;wˆ .8 x � ˚/ iff .v; h;H/;wG.x7!d/ ˆ ˚ for all d in D.

� .v; h;H/;wˆ P˚ iff .v;bh;H/;w ˆ ˚ for somebh in H.

We write just .v; h;H/ ˆ ˚ when w is empty, and ˆ ˚ when .v; h;H/ ˆ ˚ for all .v; h;H/
with h2H, and we take advantage of the usual “syntactic sugar” for other operators. Thus, for
example, we can show ˆ ˚)P˚ for all ˚ , a fact which we mentioned earlier. Similarly we
can assume wlog that modalities are not nested, since we can remove nestings via the validity
ˆ P˚ � . 9 c � ˚h c ^ P.hDc/ /.

As a convenience we allow 0-subscripted hidden variables (e.g. h0) within the modality to refer to
the actual rather than potential hidden value; for that we extend the last clause above to read

� .v; h;H/;w ˆ P˚ iff .v;bh;H/;wG.h0 7!h:h/ ˆ ˚ for somebh in H.

Thus, for example, P.hD:h0/means that whatever value Boolean h might have, we must consider
also its negation to be possible: we do not (cannot, if that formula holds) know it exactly.

Fig. 12.2 Interpretation of logic of Ignorance

We illustrate Shadow-sensitive Hoare-triples with the reveal E command: we
have for any classical � that 4

fP.EDE0 ^ �/g reveal E fP�g , where E0 is E with all its hidden
variables 0-subscripted.

(12.4)

It is verified as follows:

.v;h;H/ ˆ P.EDE0 ^ �/
and ŒŒreveal E��:v:h:H 3 .v0;h0;H0/

iff “Fig. 12.2, for somebh 2 H and h0 D .h0 7!h:h/”

.v;bh;H/; .wGh0/ ˆ EDE0 ^ �
and ŒŒreveal E��:v:h:H 3 .v0;h0;H0/

iff .v;bh;H/; .wGh0/ ˆ EDE0
and .v;bh;H/; .wGh0/ ˆ �
and ŒŒreveal E��:v:h:H 3 .v0;h0;H0/

“Fig. 12.2”

iff E:v:bh D E:v:h
and .v;bh;H/; .wGh0/ ˆ �
and v0Dv ^ h0Dh ^ H0Dfh0WH j E:v:h0 D E:v:hg

“Fig. 12.2; Fig. 12.1”

4 We use upper case for modal formulae, and lower case for classical.
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iff bh 2 H0

and .v0;bh;H/; .wGh00/ ˆ �
and v0Dv ^ h0Dh ^ H0Dfh0WH j E:v:h0 D E:v:hg

“third line simplifies first; equalities”

iff bh 2 H0

and .v0;bh;H0/; .wGh00/ ˆ �
and v0Dv ^ h0Dh ^ H0Dfh0WH j E:v:h0 D E:v:hg

“classical � has shadow-independent interpretation:
thus can replace H by H0”

implies .v0;bh;H0/; .wGh00/ ˆ � “for somebh 2 H0”

iff .v0;h0;H0/;w ˆ P� : “Fig. 12.2”

That was not a pretty calculation but, having done it once, we can use (12.4) forever.
In fact the precondition in (12.4) is the weakest such with respect to postcondition

P�, and we thoroughly explore ignorance-based weakest preconditions elsewhere
[8, 25, 27]. Using that, we can give some examples of assertion-based reasoning
about revelations.

In the items below, let � be the assertion P..h mod 2 D h0 mod 2/ ^ hD3/,
generated by (12.4) applied to reveal .h mod 2/ fP.hD3/g , which we can simplify
as follows:

P..h mod 2 D h0 mod 2/ ^ hD3/
D P..3mod 2 D h0 mod 2/ ^ hD3/
D P..1 D h0 mod 2/ ^ hD3/
D .h mod 2/D1 ^ P.hD3/ ;
that is odd h ^ P.hD3/. With that we consider the following examples:

(i) Does hW2 f1; 3g; reveal .h mod 2/ establish P.hD3/? Yes �
Command hW2 f1; 3g establishes both conjuncts of � .

(ii) Does hW2 f1; 5g; reveal .h mod 2/ establish P.hD3/? No �
Command hW2 f1; 5g does not establish P.hD3/, which is the second conjunct
of � . Given the source code, it is obvious that h cannot be 3 finally.

(iii) Does hW2 f2; 3g; reveal .h mod 2/ establish P.hD3/? No �
Command hW2 f1; 5g does not establish odd h, which is the first conjunct of � .
One possible outcome is that 0 is revealed, which precludes h’s being finally 3.

(iv) Does .hWD 1 u hWD 3/; reveal .h mod 2/ establish P.hD3/? No �
The left-hand command hWD 1 – a demonic possibility which we must take into
account – establishes the first conjunct of � but not the second. Because the
nondeterminism is visible (unlike Case (1)), if the left branch is taken – and it
might be – then from the source code we know that h cannot be 3.

Note especially the difference between (i) and (iv). In the former, the nondeter-
minism occurs within an atomic command, and is therefore hidden; but, in the latter,
it occurs between atomic commands, and is therefore observable.
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12.4 The Algebra of Ignorance

12.4.1 Assertions: The Historical Motivation

The Hoare-logic method of program correctness involves “hybrid” formulae (the
triples) that are built from two formal languages: the programming language, and the
assertion language. Thus f�gprogf g in its partial correctness interpretation holds
just when every terminating execution of prog from an initial state satisfying � is
guaranteed to deliver a final state satisfying  .

The command assert� is typically defined to act as skip in states satisfying
� and to “abort” (or give some error message) otherwise [23, 35]. Assuming that
“abort” is refined by anything, we can see that the classical program-algebraic
inequality

assert�; prog v prog; assert 

has the same meaning as f�gprogf g does. It encodes the Hoare-triple entirely
within the programming language and its in-built notion of refinement, thus within
the program algebra: if � does not hold in the initial state, then the refinement
goes through because the entire left side aborts; if � does hold, then the refine-
ment goes though only if the right-hand side does not abort – it must deliver only
final states of prog for which the subsequent assert does not abort.

12.4.2 Revelations: The Modern Analogue of Assertions
for Security

By analogy with Section 12.3.2 we can express ignorance-logical properties of
program fragments entirely within the programming language by using a special-
purpose command encoding the ignorance formulae. There are two main idioms.

In the first we have

assert �; prog v reveal E; prog; (12.5)

where of course refinement is now understood in the sense of Definition 2, that is
non-classically because it preserves ignorance as well as functional properties. If
� does not hold in the initial state, then the refinement goes through; otherwise, it
goes through only if prog reveals the initial value of E “anyway” (so that the explicit
reveal E on the right “does no further damage”). Thus (12.5) expresses “If � holds
initially, then prog reveals the initial value of E.”

In the second we have

assert �; prog v prog; reveal E ;

expressing “If � holds initially, then prog reveals the final value of E.”
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Here are some examples, in which our variables take numeric values. We have
the refinement

assert v¤0; vWD v�h v reveal h; vWD v�h

because h’s initial value can be deduced by dividing v’s final value by its initial
value, provided that initial value was not zero. The refinement does not go through
without the assertion, since in the v-initially-zero case we cannot deduce h’s value.
For final values we have

assert vD0; hWD v�h v hWD v�h; reveal h

because when v is zero we can see that h’s final value must be zero too, although in
that case hWD v�h still tells us nothing about h’s initial value. The refinement does
not go through without the assertion, since in the v-initially-nonzero case we cannot
deduce h’s final value without knowing what its initial value was.

Further idioms are possible, for example, with revelations on both sides.

12.4.3 A Calculus of Revelations 5

We now set out some of the program-algebra associated with revelations; much use
of the identities will be made later.

12.4.3.1 Replacing One Revelation by Another

Provided that truth of � implies the equality F D f .E/ for some function f depend-
ing (optionally) on other visible variables, we have

assert�; reveal E v reveal F : (12.6)

These are some examples:

assert hD0; skip v reveal h Here f is the constant function 0.
reveal h v reveal h�1 . . . that is h
1max 0.

reveal h�1 6v reveal h Initial values 0,1 not distinguished.
assert h>0; reveal h�1 v reveal h If h>0 then .�1/ is injective.

5 This is the title of the presentation on which the current paper is based [26].
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12.4.3.2 Combining Revelations

In all cases we have

reveal E; reveal F D reveal .E;F/ : (12.7)

Here is an example over Booleans and exclusive-or:

reveal x˚ y; reveal y˚ z “Write˚ for exclusive-or”

D reveal .x˚ y; y˚ z/ “(12.7)”

D reveal .x˚ y; x˚ z/ “(12.6) in both directions”

D reveal x˚ y; reveal x˚ z : “(12.7) in both directions”

12.4.3.3 Equivalence with Assignment to Local Visible

In all cases we have
reveal E D j[ vis v � vWDE ]j ; (12.8)

highlighting the fact that scope (local vs global) and visibility (vis vs hid) are or-
thogonal: in spite of the fact that v is temporary, ultimately “popped from the stack
and discarded,” assigning to it while it is there does reveal the value assigned.

An example of this is given in Section 12.4.4.

12.4.4 Example: Specifications and the Encryption Lemma

For Booleans, or isomorphically f0; 1g-valued variables x; y we write x˚yWDE to
abbreviate the specification statement x; yWŒx˚y D E� in the style of the Refinement
Calculus [1, 3, 23], thus a command that sets x; y nondeterministically to make their
exclusive-or equal to E. We define the command to be atomic, so that ŒŒx˚yWDE�� D
hx; yWŒx˚y D E�i.

A common pattern for this is j[ vis v; hid h0 � v˚h0WD h ]j in the context of a dec-
laration hid h. It is functionally equivalent to skip because it assigns only to local
variables; we show it is Shadow-equivalent to skip also, i.e. that its effect of assign-
ing to visible v reveals nothing about h. We have

j[ vis v; hid h0 � v˚h0WD h ]j
D j[ vis v; hid h0 � hv; h0WŒv˚h0 D h�i ]j “defined above”

D j[ vis v; hid h0 � hvW2 f0; 1g; h0WD h˚vi ]j “standard equality �”

D j[ vis v; hid h0 � hvW2 f0; 1gi; hh0WD h˚vi ]j “Lemma 1”

D j[ vis v; hid h0 � vW2 f0; 1g; h0WD h˚v ]j “Fig. 12.1”

D j[ vis v � vW2 f0; 1g; j[ hid h0 � h0WD h˚v ]j]j “move scopes”
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D j[ vis v � vW2 f0; 1g]j “assignment to local hidden is skip”

D skip : “assignment of visibles to local visible is skip”

But at 	 we could have written instead

D j[ vis v; hid h0 � hh0W2 f0; 1g; vWD h0˚hi ]j “standard equality”
D “Lemma 1; Fig. 12.1; move scopes �”

j[ hid h0 � h0W2 f0; 1g; j[ vis v � vWD h0˚h ]j]j
D j[ hid h0 � h0W2 f0; 1g; reveal h0˚h ]j ; “(12.8) �”

with both �; � being interesting formulations often used in protocols: they too are
therefore equal to skip. Each sets a hidden local Boolean h0 randomly and publishes
its exclusive-or with some global hidden h; the reasoning above shows rigorously
(and formally) that no information about h is released by doing that.

We call that The Encryption Lemma and make much use of it below.

12.5 The Two Cryptographers 6

Two cryptographers are about to choose from the trolley, but there are only two
desserts there: a lavish cream cake, and a small biscuit. To avoid a series of insincere
“after you” exchanges, they engage in this simple protocol: a single coin is flipped
privately between them; each secretly writes his dessert choice on his own napkin
if the coin shows heads, or the opposite choice if it shows tails; then they hand their
folded-over napkins to the waiter.

If the waiter tells them their napkin-choices differ, they can safely take the two
desserts and select their actual preferences once the waiter has gone away; other-
wise, to avoid embarrassment, they will forego dessert altogether.

The protocol ensures that neither cryptographer knows the other’s choice before
he makes his own choice; and, whatever happens, the waiter does not find out which
of them greedily chose the cream cake.7

Here is a Shadow-analysis of the protocol. Let the two cryptographers be A and
B with Boolean variables a; b recording whether each wants the cream cake, respec-
tively. Boolean c is the shared coin. We do not model the waiter explicitly, because
his function of ensuring “oblivious choices” is outside our terms of reference: we

6 While based on Chaum’s Dining Cryptographers [6], the story for this tiny example has been
especially invented to illustrate piecewise construction of a protocol that ultimately will be quite
complex. This is the smallest portion, the first step.
7 The original story ends differently. Without a protocol, the two diners do engage in “after you”
protestations, each believing that the one who eventually chooses first will out of politeness have
to take the small cracker; but in fact one diner finally chooses the cake. Outraged, the other diner
protests “If I had chosen first, I’d have taken the cracker!” “Well,” replies the first, “That’s exactly
what you’ve got.”
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do not address the issue of possible protocol violations. The specification of the
protocol is just

hid a; bWBool �
reveal a�b ;

where the declarations of the hidden a; b are global: we assume them in subsequent
manipulations of this example.

The specification says clearly that whether a and b agree is to be revealed but
nothing else, and in fact it is hard to think of a clearer way of saying this. And
although revealing a�b reveals a’s value to B by implication (and vice versa), this
does not need any special treatment: it cannot be avoided, and so there is no need to
mention it. 8 Thus “but nothing else” above, an informal phrase, carries the sense of
“unless unavoidable.”

With the declarations as given, both a; b hidden, the observer is “the public”
who thus cannot observe either one directly. The implementation under those same
declarations, that is the protocol above, is derived algebraically as follows:

reveal a�b

D skip;
reveal a�b

“classical reasoning”

D j[ hid cWBool �
cW2Bool;
reveal a�c

]j;
reveal a�b

“Encryption Lemma, Section 12.4.4,
and that .reveal a�b/ D .reveal a˚b/ by (12.6)”

D j[ hid cWBool �
cW2Bool;
reveal a�c;
reveal a�b

]j

“adjust scopes”

D j[ hid cWBool �
cW2Bool;
reveal a�c;
reveal b�c

]j :

“Reveal Calculus, example following (12.7):
.a�c; a�b/ determines .a�c; b�c/

and vice versa”

8 We formalise this observation by observing that with the altered declarations hid a; vis b, that is
B’s point of view, we have the equality .reveal a�b/ D .reveal a�b; reveal a/ from (12.6) and
b’s being visible.
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Note (and recall from the introduction) that our strong assumptions for the adversary
mean that it is sound to model this distributed protocol with a single sequential
program: adversaries’ access to the individual threads is modelled by the assumption
of perfect recall.

In [22, App. 1.11] we illustrate some conventions for abbreviating the presenta-
tion of derivations like the one above.

12.6 The Three Cryptographers 9

Three cryptographers have just had lunch, and ask for the bill. The waiter says that
the bill has already been paid; and the cryptographers want to determine whether
one of them paid it or whether it was paid by the NSA. In the case that one of them
paid, none of the other cryptographers nor anyone else is to be able to determine
which one it was. They proceed as follows.

They are sitting at a round table, 10 and each of the three adjacent pairs flips a
coin between them that only that pair can see; thus each cryptographer can see two
coins, because he is a member of two such pairs.

Each cryptographer then announces whether he paid; but if the two coins he sees
show different faces, he lies. If an odd number of cryptographers claim to have paid,
then indeed one did, but no-one (except him) knows who it was; otherwise the lunch
was paid for by the NSA.

12.6.1 Helping Three Cryptographers by Considering
One at a Time

Rather than giving a direct derivation in the style of Section 12.5, we build this
protocol up from smaller components. We imagine a single cryptographer X with
Boolean x who has access to two coins l; r on his left and right. The left one is
already flipped; the right one he must flip himself; and then he reveals the exclusive-
or of all three values. That amounts to the fragment

var l; rWBool; hid xWBool �
rW2Bool;
reveal l˚ x˚ r ;

�

Protocol X

in which for the moment we are not giving the visibility type of l; r.
Now if we instantiate the X-fragment to A and B in turn, and introduce a hidden

“middle” coin mWBool, with both fragments we can get

9 Three diners is Chaum’s example exactly.
10 This Arthurian concept is one of Formal Methods’ great contributions to computing.
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var l; rWBool; hid a; bWBool �
j[ hid mWBool;

mW2Bool;
reveal l˚ a˚ m;

�

First instance of X

rW2Bool;
reveal m˚ b˚ r

�

Second instance of X

]j ;

(12.9)

and this – by similar reasoning to Section 12.5 – can be shown 11 to implement the
specification

var l; rWBool; hid a; bWBool �
rW2Bool;
reveal l˚ .a˚ b/˚ r :

(12.10)

Again only a ˚ b is revealed, and nothing about a or b individually. But the point
of doing it in this way is that it suggests how the protocol can be extended to any
number of participants. So far we have dealt with two out of three.

For the third cryptographer (or final, when there are more than three in total) we
must use a slightly different approach. It is no more complex, but must be “back-
wards” since he cannot assume that some coin is already flipped: the process must
begin somewhere; and the two “extremal” coins must be hidden. Thus Cryptogra-
pher C executes

j[ hid l; rWBool �
lW2Bool;
rW2Bool;
reveal l˚ .a˚ b/˚ r

�
specification from (12.10)
implemented by (12.9)

reveal l˚ c˚ r
]j ;

(12.11)

in which we have embedded the specification of the A;B protocol as the middle two
commands. That is, Cryptographer C flips a coin l and says to A;B “now execute
your protocol,” finally making his own revelation using the coin l he flipped him-
self (now some time ago) and the “output” coin r provided by the A;B protocol he
arranged to have executed. This is the right thing to do, because in two easy steps
from the above we can reason

11 Think of A’s secret in Section 12.5 being l˚ a and B’s secret being b˚ r, and re-instantiate the
derivation on that basis, replacing � by˚.
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(12.11)D “Revelation Calculus; adjust scopes”

j[ hid l; rWBool �
lW2Bool;
rW2Bool;
reveal l˚ .a˚ b/˚ r

]j;
reveal a˚ b˚ c

D reveal a˚ b˚ c ; “Encryption Lemma for l; r together”

which is our specification for the Three Cryptographers.
To finish the three cryptographers’ protocol we now simply replace the specifica-

tion of A;B’s sub-protocol by its implementation, which was given earlier. Because
the monotonicity property of refinement, actually equality in this case, we do not
need to do any further checking. The immediate result, thus obtained “for free”
from (12.10)v (12.9), is

hid a; b; cWBool �

reveal a˚ b˚ c

D j[ hid l;m; rWBool �
lW2Bool;
mW2Bool;
reveal l˚ a˚ m;
rW2Bool;
reveal m˚ b˚ r;
reveal l˚ c˚ r

]j :

“replace A;B specification above
by its implementation from earlier”

In Section 12.8 we will do the same step-by-step construction within a loop, thus
dealing with arbitrarily many cryptographers.

12.6.2 On Expressiveness and “Caveats”

An informal specification of the Three Cryptographers might state that whether the
NSA paid is to be learned without at the same time learning whether any particular
cryptographer paid. Except of course the paying cryptographer himself, who knows
it anyway. . . Similarly, as we saw, it is unavoidable that in the Two Cryptographers
protocol, each learns what the other chose, given that he knows his own choice and
comes to know whether the other’s differs.

Thus if the first sentence above were formalised, as a logical assertion to be
met by the implemented code, it would be too strong. The caveat (A) is that
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when we write (somehow) “for all i; jW 1::3 cryptographeri does not know whether
cryptographerj paid,” we must add (when we remember) “provided i ¤ j.”

Similarly there is an implicit assumption that at most one cryptographer paid
(where “implicit” means “probably we forgot to mention that the first time around”).
If two cryptographers paid (B), then the outcome will be “NSA paid” when in fact it
did not: two of the three cryptographers did. So another caveat is added: “Assuming
that at most one cryptographer paid. . . ”

In fact neither of these two problems bother us if we use refinement. In both
cases (A, B) it is obvious from the specification reveal a ˚ b ˚ c what behaviour
we should expect in all situations, no matter how bizarre, and we do not have to
add extra “caveat” clauses to some assertion in order to accommodate them. More
importantly, we do not have to worry about whether we have added enough caveat
clauses. A similar situation occurs in the Obvlivious Transfer Protocol [10, 29, 30],
specified a WD bi and in which A reads into a his choice indexed iW f1; 2g of one of
two messages b1;2 that B holds, without A’s learning anything about the message he
did not choose and without B’s learning anything about the index i of the choice A
made. Except that in the case m1Dm2 we must accept (C) that A does learn about
the message he did not choose, because it is equal to the one he did choose. . .

Again, from the specification a WD bi it is obvious what happens in (C), and we
do not have to introduce caveats to accommodate it. (We gave a rigorous derivation
of the Oblivious Transfer Protocol in our earlier report [27].)

12.6.3 On Points of View

In the derivation of Section 12.6.1 all three variables a; b; c are declared hidden, and
so our conclusions apply only to adversaries for whom they actually are all-three
hidden: the general public. To show that as well that no cryptographer learns the
thoughts of another, say that C does not learn about whether A or B paid (unless of
course C did pay, in which case he knows that A and B did not. . . another caveat
we can ignore), we would vary the declarations hid a; b; vis c and do the derivation
under those conditions.

In general, sometimes the same derivation steps go through for all viewpoints; but
sometimes they do not, and then we must choose different intermediate refinement
steps depending on “who’s looking.” When that happens, it’s equivalent to a case
analysis and can fairly be considered a disadvantage: thus we try to find derivations
that go through for all viewpoints in the same way.

12.7 Loops and Fixed-Points

As an example of how loops are treated, the code of (12.1) in Section 12.1, slightly
modified, is shown to satisfy a simple specification: we will prove the equality
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hid hWN �
reveal h�2;
hWD h mod 2

D while h>1 do
hWD h 
 2

end :

That is, not only does the loop change the value of h (in an obvious way), but,
also the repeated conditional tests reveal all but the low bit of h’s original value.
This leaking occurs because it is a refinement (an equality) to unfold a loop, which
produces an if command, and we have already seen how refinement causes leakage
in the conditionals of if ’s.

Terminating loops are the unique fixed-points of their associated program func-
tionals, and so to prove equality between a loop and some specification it is enough
to show the specification satisfies the loop’s functional. In the example above, that
means we show

hid hWN �
reveal h�2;
hWD h mod 2

D if h>1 then
hWD h 
 2;
reveal h�2;
hWD h mod 2

fi ;

for which the techniques we have already will suffice.
We start with the right-hand side, since it has more structure (thus suggesting

appropriate moves), and the left-hand side is a smaller target:

if h>1 then
hWD h 
 2;
reveal h�2;
hWD h mod 2

fi

D if h>1 then
assert h>1;
hWD h
2;
reveal h�2;
hWD h mod 2

fi

“add assertion”
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D if h>1 then
assert h>1;
reveal .h
2/� 2;
hWD h
2;
hWD h mod 2

fi

“commute commands”

D if h>1 then
reveal h�2;
hWD h mod 2

fi

“Revelation calculus; classical reasoning; remove assertion”

D if h>1 then
reveal h�2;
hWD h mod 2

else
assert 0�h�1;
reveal h�2;
hWD h mod 2

fi

“Add assertion; Revelation Calculus; classical reasoning”

D if h>1 then skip else skip fi;
reveal h�2;
hWD h mod 2

“Remove assertion; classical reasoning”

D reveal h>1;
reveal h�2;
hWD h mod 2

“Revelation calculus”

D reveal h�2;
hWD h mod 2 ;

“Revelation calculus”

and we are done.
An abbreviated derivation is given in [22 App. 1.12].

12.8 The Thousand-and-One Cryptographers 12

With the tools introduced in earlier sections, we can now derive a looping program
that implements the Dining Cryptographers’ specification for as many participants
as we like. Let the cryptographers be numbered 0::N inclusive (thus NC 1 of them)

12 This is in the Arabian sense: “as many as you like.”
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and let their did-pay states be recorded as indexed Boolean variables aŒ0::N�WBool.
Our specification is then

vis NWN; hid aŒ0::N�WBool �

reveal .˚nWN j 0�n�N � aŒn�/ ;

Having learned in Section 12.6.1 that the last cryptographer is treated specially,
we make that special treatment our first development step, reasoning

D j[ hid l; rWBool �
reveal l˚ .˚nWN j 0�n<N � aŒn�/˚ r;
reveal l˚ aŒN�˚ r

]j ;

“As in Section 12.6.1”

intending to implement the right-barred portion (i.e. having a “j” at right) as a loop.
For that loop, we refer again to Section 12.6.1, which suggests using a loop body

built on the fragment

rW2Bool;
reveal l˚ aŒn�˚ r;
nWD nC1;

and it turns out that a repeat-until works better in this instance. With that in mind
we propose as the next step for the right-barred portion, above, the code

D j[ vis nWN; hid m �
m; nWD l; 0;
repeat

rW2Bool;
reveal m˚ aŒn�˚ r;
m; nWD r; nC1

until nDN
]j ;

where we have had to introduce a temporary variable m to avoid over writing the
initially flipped l that will be needed at the end by Cryptographer N. In order to
establish this equality, we use the techniques of Section 12.7 to show that the right-
barred repeat-until is equal to this straight-line fragment:

rW2Bool;
reveal m˚ .˚iWN j n�i<N � aŒi�/˚ r
m; nWD r;N

For the loop (and its functional) as given, that means we must work towards the
program fragment immediately above from this fragment below:
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vis NWN; hid aŒ0::N�WBool �

reveal .˚nWN j 0
n
N � aŒn�/

D j[ vis nWN; hid l;m; rWBool �
lW2Bool;
m; nWD l; 0;
repeat

rW2Bool;
reveal m˚ aŒn�˚ r;
m; nWD r; nC1

until nDN;
reveal l˚ aŒN�˚ r

]j

“Reasoning in this section”

Fig. 12.3 Specification and implementation for the thousand-and-one cryptographers

rW2Bool;
reveal m˚ aŒn�˚ r;
m; nWD r; nC1;

if n<N then
rW2Bool;
reveal m˚ .˚iWN j n�i<N � aŒi�/˚ r;
m; nWD r;N

fi :

Since this derivation is “more of the same” material that we have illustrated in earlier
sections, we put it elsewhere [22, App. 1.13].

As we remarked in Section 12.6.1, monotonicity of refinement (equivalently, the
congruence of our program operators) means that no further reasoning is necessary
when we pull the pieces of this section together. That gives the overall equality
shown in Fig. 12.3.

12.9 Advantages; Disadvantages; Comparisons; Conclusions

Provable program refinement is the established scientific technique relating specifi-
cations to software code; it is hard to achieve, but brings with it a recognised quality
to the workmanship of the code it produces. “Provable security refinement” – or
something very like – is the technique we propose here with similar implications of
quality.
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Our proposed mathematical model for secure refinement has been inspired by a
number of other works; our contribution has been to select and fuse several well-
known techniques to produce a reasoning tool that can be applied at the source
level, and our focus on reasoning at the level of source code is the most obvious
feature setting us apart from other researchers. Earlier work setting out the theory
[25, 26] outlined in more detail how this approach relates to other techniques. In
summary, it shares many similarities with the Logic of Knowledge [15] but is less
general. The semantic technique is based on a version of noninterference, which
distinguishes “high-security” variables from “low security,” and similar techniques
have been suggested by Leino [19] and Sabelfeld [32].

However, our overriding motivation is to be able to prove security properties
about program code relative to specific assumptions about the operating context.
But code – even without security implications – is hard to understand; with secu-
rity in the mix it can rise to a higher order of impenetrability, and finding security
flaws in such code is an unending task. In 1988 Goldwasser, Micali and Rivest [13]
were the first to introduce the idea of “provable security”; it was highly innovative
for its time but set the foundations to place security on a scientific footing, and has
led to many theoretical results about cryptographic protocols and their relationship
to their underlying cryptographic primitives. Although we do not claim a technique
as general or widely applicable as Goldwasser and Micali’s work, we do claim a
source-level method following its fundamental principles, which is applicable to
some security properties. Here our attacker – a feature of their work – is the pro-
grammer who might (maliciously or not) attempt to use a program in a context for
which it was not designed; secure refinement means exactly that the implemented
code has the same (or better) security properties as the specification. The crucial
advantage of this is that the specification suffers exactly the same security flaws
as the implementation, whatever they might be, and is exposed to the same attacks.
Specifications by tradition only state the designer’s ideal requirements and avoid the
issues of implementation, and – as with traditional functional properties – it is only
at the abstract level that designers have any chance of understanding their designs:
this is where security issues should be considered.
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Chapter 13
On Process-Algebraic Extensions
of Metric Temporal Logic

Christoph Haase, Joël Ouaknine, and James Worrell

Abstract It is known that the satisfiability problem for Metric Temporal Logic
(MTL) is decidable over finite timed words. In this chapter we study the satisfia-
bility problem for extensions of this logic by various process-algebraic operators.
On the negative side we show that satisfiability becomes undecidable when any
of hiding, renaming, or asynchronous parallel composition are added to the logic.
On the positive side we show decidability with the addition of alphabetised par-
allel composition and fixpoint operators. We use one-clock Timed Propositional
Temporal Logic (TPTL(1)) as a technical tool for the decidability results and show
that TPTL(1) with fixpoints provides a logical characterisation of the class of lan-
guages accepted by one-clock timed alternating automata.

13.1 Introduction

The model of time usually adopted in computer-aided verification and process
algebra is qualitative: it offers an ordering of the various events a given system may
go through, but abstracts away from quantitative, or metric, information regarding
the precise timing of these events. If such information is required, one must adopt
a more sophisticated framework, modelling time using real numbers, for example.
Over the last two decades, much work has gone into developing and studying such
frameworks, both in the model-checking and in the process-algebraic communities.

This chapter studies extensions of the linear dense-time specification formalism
Metric Temporal Logic (MTL). MTL, introduced by Koymans in 1990 [13], is one
of the most prominent logics for reasoning about real-time systems. MTL formulas
can either be interpreted in a state-based semantics, in which observations are made
continuously, or in an event-based semantics, in which observations are recorded
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as instantaneous “snapshots” whenever a discrete change, or “event,” occurs. In the
latter, models of formulas are timed words, i.e., sequences of events together with
associated real-valued timestamps.

Unfortunately, it has long been known that MTL satisfiability is undecidable in
the state-based semantics [2, 9]. Moreover, it was shown more recently that over
infinite timed words, MTL is also undecidable [19]. Surprisingly, MTL turned out
to be decidable – albeit with non-primitive recursive complexity – over finite timed
words [20]. Subsequent to this discovery, various fragments of MTL – over both
semantics and over both finite and infinite behaviours – were shown to be decidable;
for a recent survey of these results, we refer the reader to [5, 21].

This chapter focuses on extensions of MTL by various natural process-algebraic
operators, from the point of view of computability. Accordingly, we are exclusively
interested in the event-based semantics over finite timed words, as all other seman-
tics immediately result in undecidability. We consider MTL augmented with the
following various operators:

� Hiding. This operator, which corresponds to existential quantification, provides
a convenient way to abstract away unimportant events (as regards a particular
property of interest).
� Renaming. Similarly to hiding, the renaming operator is useful for expressing

specifications and constructing abstractions of systems; it can be used, for exam-
ple, to group the various possible events into a small number of categories.
� Asynchronous parallel composition. Also known as interleaving or shuffle prod-

uct; this operator combines the behaviours of two systems in as liberal a way as
possible; in particular, each system is entirely oblivious to the other one.
� Alphabetised parallel composition. Also known as (partially) synchronous paral-

lel composition. Two systems thus composed will synchronise over their common
events, and otherwise proceed independently of each other. This operator is par-
ticularly useful to model communication over a well-defined interface.
� Fixpoints. Fixpoint operators are omnipresent in process algebra and model

checking, enhancing the expressiveness of various formalisms and allowing one,
for example, to model recursion.

The results of this chapter are twofold. On the negative side, we show that
MTL augmented with any of hiding, renaming or asynchronous parallel compo-
sition becomes undecidable. The main result, however, is that we can augment
MTL with both alphabetised parallel composition and least fixpoint operators and
still retain decidability over finite words. The key technical tools we use to obtain
decidability are the one-clock (or one-variable) fragment of Timed Propositional
Temporal Logic, denoted TPTL(1) [3], and one-clock Timed Alternating Automata
(1TAA) [15, 20]. Moreoever, we show that the extension of TPTL(1) with fixpoints
provides a complete logical characterisation of 1TAA, which is of independent
interest.

The process-algebraic operators listed above originate from Tony Hoare’s
Communicating Sequential Processes (CSP), undoubtedly the most prominent
linear-time process algebra. These operators, or slight variations thereof, have also
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figured in other process algebras and in the context of temporal and dynamic logics.
For example, Lange [14] considers LTL with fixpoint operators, showing that it
is expressively equivalent to finite alternating automata with weak parity accep-
tance conditions. Hiding also appears in temporal logic in the guise of existential
quantification over propositional variables. Sistla, Vardi, and Wolper [26] show
that LTL with existential quantification can express all !-regular languages. Over
real time, it is known that Metric Interval Temporal Logic (MITL) with existential
quantification can express all languages that are accepted by timed automata [11].
Propositional Dynamic Logic with interleaving has been considered in [16].

One of the key contributions of Tony Hoare’s work on CSP has been a deeper
understanding of the central phenomenon of nondeterminism in semantics. Hoare’s
classic text Communicating Sequential Processes [12], for example, devotes an en-
tire chapter to the subject; his perspective on nondeterminism, in particular as a
mechanism of underspecification, but also as an inevitable consequence of concur-
rency, has proven enormously influential.

From a semantic standpoint, it seems fair to say that the development of the
standard failures divergences model for CSP [6] arose principally as a solution
to the problem of adequately handling nondeterminism in a denotational setting.
The problems turned out considerably more resilient in the timed world, and a
fully satisfactory understanding of nondeterminism in Timed CSP has not yet been
reached [25]. Nonetheless, one of the pivotal notions to emerge from the study of
nondeterminism in both the untimed and timed settings is that of operators that
preserve determinism. It is remarkable – although perhaps not entirely surprising –
that in the present chapter, the operators that preserve decidability turn out to be
precisely those that preserve determinism (quite independently of the fact that basic
MTL formulas do exhibit native “nondeterminism” through disjunction in any case).

Nondeterminism was also studied around the same time as Tony Hoare by
Robin Milner, and features in his seminal work A Calculus of Communicating Sys-
tems [17]. Milner was, however, exclusively concerned with operational semantics
at the time, and consequently his outlook had a very different flavour. Outside of pro-
cess algebra and semantics, nondeterminism has an even older history, going back
(at least) some two millennia in philosophy, and half a century in other areas of
computer science [22], notably formal language theory, algorithms and complexity.
Modern applications of nondeterminism can be found, among others, in computer
security, artificial intelligence and software engineering.

Most proofs have been omitted from this chapter and can be found in the techni-
cal report [8].

13.2 Preliminaries

Let RC denote the set of non-negative real numbers, QC the set of non-negative
rational numbers, and N the set of positive integers. The set Nn is the set of positive
integers up to and including n, i.e., Nn WD f1; : : : ; ng. For an interval I � RC and
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r 2 RC, I C r WD fu C r j u 2 Ig. By IdX WD f.x; x/ j x 2 Xg we denote
the identity relation on a set X. Given a binary relation R � X � Y, we define its
functional lifting R W X ! P.Y/ as R.x/ WD fy j .x; y/ 2 Rg. We call R total if
R.x/ ¤ ; for all x 2 X. Given a function f W X ! Y, its update f Œx 7! y� W X ! Y is
defined as f Œx 7! y�.z/ WD y if z D x and f Œx 7! y�.z/ WD f .z/ otherwise.

In the untimed world, traces of systems are usually modelled as finite or infi-
nite words over some alphabet of events˙ . However, as discussed in Section 13.1,
this model does not allow one to make quantitative assertions regarding when events
occur. A natural way to overcome this drawback, first proposed by Reed and Roscoe
in the development of Timed CSP [23, 24], is to model traces of timed systems as
finite or infinite words over the event alphabet together with timestamps indicating
the time of occurrence of events. In the remainder of this chapter we focus exclu-
sively on finite timed words.

Definition 1 (Timed words). Let ˙ be a nonempty finite set of events. A time
sequence � is a finite sequence �1�2 : : : �n of time values from RC such that �i �
�iC1 for all 1 � i < n. A timed word � over ˙ is a tuple .�; �/ where � is a time
sequence and � D �1�2 : : : �n is a word over˙ of the same length as � .

The set of all finite timed words over ˙ is written T˙�. Note that our notion of
time is weakly monotonic, in that we allow several events to share the same times-
tamp. Similar results to the ones presented here also hold for strongly monotonic
time, although as pointed out in [10], awkward complications arise when disallow-
ing the possibility of simultaneous events in the presence of parallel composition
operators. Note that we do not require the first element of a time sequence to be zero.

The length of a timed word � is denoted by j � j and is the length of the under-
lying time sequence. Alternatively, we can represent a timed word as a sequence of
timed events by writing � D .�1; �1/.�2; �2/ : : : .�n; �n/. For convenience, we also
define auxiliary functions as follows: for 1 � i �j � j, �i.�/ WD �i and �i.�/ WD �i,
where .�i; �i/ is the i-th timed event of �. Given a timed word �, denote by �i;j the
timed word .�i; 0/.�iC1; �iC1 
 �i/ : : : .�j; �j 
 �i/; 1 � i � j �j � j. Moreover
�i WD �i;j�j and for j >j � j, �i;j WD �i. Given E � ˙ , the timed word � n E is
obtained from � by deleting all timed events .�i; �i/ from � with �i 2 E.

Definition 2 (TPTL(1) syntax). TPTL(1) formulas are defined inductively ac-
cording to the following grammar:

' WWD a j '1 _ '2 j :' j �' j '1 U '2 j x  c j x:'

Here, a 2 ˙ is an event,� is the next operator, U is the until operator, x is a clock
variable, c 2 QC and  2 f�; <;D;¤; >;�g. Note that TPTL(1) makes use of a
single-clock variable, x.

We define the standard Boolean abbreviations '1 ^ '2 WD :.:'1 _:'2/, '1 !
'2 WD :'1 _ '2, > WD a _ :a, and ? WD :>. The eventually operator is defined
as ♦' WD >U ' and the globally operator as �' WD :♦:'. The clock variable
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in TPTL(1) formulas is the key reference for making quantitative statements about
the evolution of time. It allows one to “freeze” (or record) time points along a timed
word, which can later be compared to the current time. When x:' holds at some
time point � , x is bound to � in ' and when the clock constraint x  c is evaluated
at some later time point � 0, it is checked whether or not � 0
 �  c. This can be seen
this resetting the clock x at time point � .

Originally, TPTL as introduced in [3] allowed for multiple clock variables. How-
ever, that logic has an undecidable satisfiability problem and we therefore only
consider its one-variable fragment TPTL(1) in this chapter.

We now give a non-standard presentation of the semantics of TPTL(1), which can
however easily be shown to be equivalent to that commonly found in the literature.
Its main advantage is to ease the definition of fixpoint operators later on.

Given a timed word � and a TPTL(1) formula ', the semantic function ŒŒ
���
maps ' to an element of the set V.�/ WD P.Nj�j � RC/. Intuitively, .i; r/ 2 ŒŒ'��� if
' holds at position i in � when the value of the clock variable x is r.

Definition 3 (TPTL(1) semantics). The semantics of a TPTL(1) formula ' is de-
fined by induction on the structure of ', as follows:

ŒŒa��� WD f.i; r/ j � i D a; i 2 Nj�j; and r 2 RCg
ŒŒ'1 _ '2��� WD ŒŒ'1��� [ ŒŒ'2���
ŒŒ:'��� WD f.i; r/ j i 2 Nj�j and r 2 RCg n ŒŒ'���
ŒŒ�'��� WD f.i; r/ j .iC 1; r0/ 2 ŒŒ'��� and r D r0 C �i 
 �iC1g
ŒŒ'1 U '2��� WD f.i; r/ j 9 j:i � j �j � j and .j; rC �j 
 �i/ 2 ŒŒ'2��� and

8 k:i � k < j implies .k; rC �k 
 �i/ 2 ŒŒ'1���g
ŒŒx  c��� WD f.i; r/ j i 2 Nj�j; r 2 RC; and r  cg
ŒŒx:'��� WD f.i; r/ j .i; 0/ 2 ŒŒ'��� and r 2 RCg

We write � ˆ ' iff .1; �1.�// 2 ŒŒ'��� , and L.'/ WD f� j � ˆ 'g for the timed
language defined by '. A TPTL(1) formula ' is called satisfiable iff L.'/ ¤ ;.
The problem of checking whether a formula ' is satisfiable has been shown to be
decidable with non-primitive recursive complexity in [20], by translating TPTL(1)
formulas into one-clock timed alternating automata (1TAA), introduced subse-
quently.1

The real-time logic MTL can be defined as a syntactic fragment of TPTL(1). It
is known to be strictly less expressive than TPTL(1) [4].

Definition 4 (MTL). MTL formulas are defined according to the following gram-
mar, where a 2 ˙ and I is an open, half-open, or closed interval with endpoints
in QC:

' WWD a j '1 _ '2 j :' j �I' j '1 UI '2

1 Technically speaking, [20] deals with Metric Temporal Logic rather than TPTL(1). The proof
techniques however carry over straightforwardly.
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The semantics of MTL formulas is given by a translation function .
/� that maps
MTL formulas to TPTL(1) formulas, as follows:

a� WD a

.'1 _ '2/� WD '
�
1 _ '�2

.:'/� WD :.'�/

.�I'/
� WD x:� .x 2 I ^ '�/

.'1 UI '2/
� WD x:.'�1 U .x 2 I ^ '�2//

where x 2 I denotes the obvious corresponding conjunction of inequalities.

We call�I the time-constrained next and UI the time-constrained until oper-
ators. The time-constrained eventually operator ♦I and globally operator �I are
defined similarly to their TPTL(1) counterparts. We also sometimes abuse notation
and use pseudo-arithmetic expressions, such as ‘D1’, to denote intervals.

Let S be a finite set of locations, and define the set ˚.S/ of formulas as follows:

' WWD tt j ff j '1 ^ '2 j '1 _ '2 j s j x  c j x:'

where s 2 S, c 2 QC and  2 f<;�;D;¤;�; >g. As in TPTL(1), x  c is a clock
constraint and the expression x:' resets the clock variable x, i.e., binds x to 0 in '.

Definition 5 (1TAA). A one-clock timed alternating automaton or 1TAA is a
five-tuple A D .˙; S; s0;F; ı/ where ˙ is a finite alphabet, S is a finite set of
locations, s0 is the initial location, F � S is a finite set of accepting locations and
ı W S �˙ ! ˚.S/ is the transition function.

Given a 1TAA A, a state of A is a tuple .s; v/, where s is a location and v 2 QC a
clock value. A configuration C of A is a finite set of states, and f.s0; 0/g is the initial
configuration of A. By C C r we denote the configuration f.s; vC r/ j .s; v/ 2 Cg.
We call a configuration C accepting if s 2 F for every location s occurring in C.
For convenience, given a 1TAA Ai D .˙i; Si; si

0;Fi; ıi/ we introduce functions for
accessing each of the components of Ai, e.g., S.Ai/ D Si, s0.Ai/ D si

0, etc.
Given a configuration C and a clock value v, we define a Boolean valuation on

˚.S/ as follows:

C ˆv tt
C ˆv '1 ^ '2 iff C ˆv '1 and C ˆv '2
C ˆv '1 _ '2 iff C ˆv '1 or C ˆv '2
C ˆv s iff .s; v/ 2 C
C ˆv x  c iff v  c
C ˆv x:' iff C ˆ0 '

Definition 6 (Run). Given a finite timed word � of length n, define dj WD �j 
 �j�1
for 1 � j � n with �0 WD 0. A run of a 1TAA A on � is a finite sequence of
configurations

C0
d1� C1

	1
! C2
d2� C3

	2
! � � � dn� C2n�1
	n
! C2n
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such that C2jC1 D C2jCdjC1 and for C2jC1 D f.si; vi/gi2I , C2jC2 D Si2I C0i , where

C0i ˆvi ı.si; �jC1/ with 0 � j < n. Here, C2j
djC1� C2jC1 is called a delay step and

C2jC1
	jC1


! C2jC2 is a discrete step. A run is accepting if C2n is accepting.

A finite timed word � is accepted by a 1TAA A with respect to an initial clock
value v if A has an accepting run starting from C0 D f.s0; v/g. The language ac-
cepted by A, L.A/ � T˙�, is the set of all finite timed words accepted by A with
respect to the initial clock value zero.

13.3 Decidable Cases

In this section we establish the decidability of satisfiability for TPTL(1) augmented
with least fixpoint and alphabetised parallel operators. Our strategy is to trans-
late a formula ' in the extension under consideration to a 1TAA A' such that
L.'/ D L.A'/.

13.3.1 Least Fixpoints

Introducing the least fixpoint operator offers a natural way to express recursive spec-
ifications in TPTL(1). The resulting logic �TPTL(1) is strictly more expressive than
TPTL(1).

In order to guarantee the existence of fixpoints, we restrict �TPTL(1) formulas
to be in negation normal form, i.e., with negations only occurring in front of events
from ˙ . We moreover drop the until operator, since it can be expressed with the
least fixpoint operator.

Definition 7 (�TPTL(1) syntax). The set of �TPTL(1) formulas is defined induc-
tively according to the following grammar:

' WWD > j ? j a j a j :a j Z j x  c j x:' j �' j '1 ^ '2 j '1 _ '2 j �Z:'

Here, Z is a propositional variable from a finite set Z , �Z is the least fixpoint op-
erator, and a is an end-marker that is only true at the last position of a timed word,
i.e. is equivalent to :�>. A �TPTL(1) formula ' is closed if every Z in ' occurs
within the scope of a least fixpoint operator �Z. Otherwise, the formula is deemed
to be open and we may write '.Z1; : : : ;Zk/ to indicate that Z1; : : : ;Zk occur un-
bound in '. If Z 2 Z is bound in ', we require without loss of generality that there
be exactly one least fixpoint quantifier �Z occurring in '. By fpd.'/ we denote the
fixpoint depth of ', which is the maximum nesting depth of least fixpoint operators,
e.g. fpd.�Y:.�.a _ Y/ _ �Z:.b _�.Y ^ Z//// D 2. Note that the until operator
'1U'2 can be introduced as an abbreviation for �Z:.'2 _ .'1 ^�Z//.
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The semantics of �TPTL(1) formulas is given with respect to an environment �,
which enables one to evaluate open �TPTL(1) formulas. Given a timed word �, �
is a mapping from the propositional variables in Z to V.�/.

The clauses of Definition 3, which prescribe the semantics of TPTL(1) formulas,
carry over to �TPTL(1) formulas whose outermost connective is in TPTL(1). The
additional clauses specific to �TPTL(1) are as follows:

ŒŒa���



:= f.j � j; r/ j r 2 RCg
ŒŒZ���



WD �.Z/

ŒŒ�Z: .Z/���


WD TfM 2 V.�/ j ŒŒ .Z/���


ŒZ 7!M� � Mg
Thus, ŒŒ�Z: .Z/���



is the least fixpoint of the function F ;Z;�;
.M/ WD ŒŒ ���
ŒZ 7!M� .

Before we show the decidability of �TPTL(1) by translation to 1TAA, we give
an example of the usefulness of this extension of TPTL(1).

Example 1. The formula even.'/ expresses the property that ' is true on a timed
word an even number of times. The untimed language of L.even.'// is not counter-
free and not expressible in TPTL(1).

even.'/ D �Y:..:'^ .a_�Y//_ .' ^��Z:..:'^�Z/_ .' ^ .a_�Y/////

(Of course, one would need to put :' in negation normal form, which can readily
be done as soon as a concrete ' is supplied.)

The existence of least fixpoints is a consequence of the subsequent lemma and
the Knaster-Tarski fixpoint theorem.

Lemma 1. For any timed word �, �TPTL(1) formula '.Z;Z1; : : : ;Zk/, and val-
uation of the propositional variables �, the function F';Z;�;
 is monotone with
respect to �.

Let 'ŒZ= � be the�TPTL(1) formula obtained from ' in which every occurrence
of Z in ' is replaced by  . Approximants of a formula �Z: .Z/ are inductively
defined for any i 2 N as:

�0 Z: .Z/ WD ?
�iC1 Z: .Z/ WD  ŒZ=�i Z: .Z/�

The next lemma is a standard result about approximants:

Lemma 2. For any timed word � and�TPTL(1) formula ' D �Z: .Z/, M D ŒŒ'���



iff there exists an i 2 N such that M D ŒŒ�i Z: .Z/���



.

Given a �TPTL(1) formula '.Z;Z1; : : : ;Zk/, Z is guarded in ' if it occurs in
the scope of a next operator. We call a formula ' proper if for every subformula
�Z: .Z/ in ', Z is guarded in  .Z/. Properness of �TPTL(1) formulas will be
assumed in the following without loss of generality, since �Z:.Z _  .Z// is equiv-
alent to �Z: .Z/ and �Z:.Z ^  .Z// is equivalent to ?. Since we are dealing with
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finite timed words the fixpoint of F';Z;�;
 is unique for proper formulas. It therefore
follows that least and greatest fixpoints coincide for �TPTL(1), obviating the need
for two distinct fixpoint operators.

Lemma 3. Let � be a timed word and '.Z;Z1; : : : ;Zk/ be a formula such that
Z occurs guarded in '.Z/. Then for all �;M�;N�, F';Z;�;
.M�/ D M� and
F';Z;�;
.N�/ D N� implies M� D N�.

Although we have not explicitly allowed for arbitrary negation, �TPTL(1) still
is closed under complement. Given a formula ', we define its complement ' by
induction on the structure of ', where, maps the relation  to its complementary
relation, e.g., < to �,D to ¤ etc.

> WD ?
? WD >
a WD �>

a WD :a

:a WD a

Z WD Z

x  c WD xc

�' WD a _�'
'1 ^ '2 WD '1 _ '2

'1 _ '2 WD '1 ^ '2
�Z:' WD �Z:'

Lemma 4. Let ' be a proper�TPTL(1) formula. Then .i; r/ 2 ŒŒ'���



iff .i; r/ … ŒŒ'���


,

where �.Z/ WD f.i; r/ j i 2 Nj�j and r 2 RCg n �.Z/.
The lemma can be proved straightforwardly by induction on the structure of ' using
the properness of the subformulas �Z: .Z/ of ' and the resulting unique fixpoint
property.

The translation of a �TPTL(1) formula ' into a 1TAA A' is given by induction
on fpd.'/ and is somewhat similar to the untimed case considered in [14]. Recall
that Z is assumed to be guarded in  .Z/ for any subformula �Z: .Z/ of '. For
fpd.'/ D 0, we define A' by induction on the structure of ':

� Case ' D a. Define A' D .˙; fs'g; s' ;;; ı/ with ı.s'; a/ D tt and ı.s'; b/ D ff
if b ¤ a.
� Case ' D a. Define A' D .˙; fs' ; sag; s' ; fsag; ı/ with ı.s' ; a/ D sa and
ı.sa; a/ D ff for all a 2 ˙ .
� Case ' D Z. Define A' D .˙; fs'g; s' ;;; ı/ with ı.s'; a/ D tt for all a 2 ˙ .

Note that we will refer to s' as sZ in the induction step ' D �Z: .Z/.
� Case ' D x  c. Define A' D .˙; fs'g; s' ;;; ı/ with ı.s' ; a/ D x  c for all

a 2 ˙ .
� Case ' D x: . Define A' D .˙; fs'g [ S.A /; s' ;F.A /; ı/ with ı.s'; a/ D

x:ı.A /.s0.A /; a/ and a 2 ˙ and ı.s; a/ D ı.A /.s; a/ for all s 2 S.A /.
� Case ' D  1 ^  2. Define A' D .˙; fs'g [ S.A 1

/ [ S.A 2
/; s' ;F.A 1

/ [
F.A 2

/; ı/ with ı.s'; a/ D ı.A 1
/.s0.A 1

/; a/ ^ ı.A 2
/.s0.A 2

/; a/ and
ı.s; a/ D ı.A i ; a/ if s 2 S.A i/ for all a 2 ˙ .
� Case ' D � . Define A' D .˙; fs'g [ S.A /; s' ;F.A /; ı/ with ı.s' ; a/ D

s0.A / and ı.s; a/ D ı.A /.s; a/ for all s 2 S.A / and a 2 ˙ .

The cases when ' is >;?;:a, or  1 _  2 are defined in a similar way. In the
construction above we assume different subformulas to have disjoint sets of states,
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but that A' D A if ' D  . In particular, if Z is a free variable in ', then A'
contains exactly one state sZ corresponding to Z.

Now for fpd.'/ D n C 1, we consider the only relevant case ' D �Z: .Z/;
the construction for the remaining cases can be done along similar lines as
the above. Define A' D .˙; fs'g [ S.A .Z//;F.A .Z//; ı/ with ı.s'; a/ D
ı.A .Z//.s0.A .Z//; a/, ı.sZ; a/ D ı.s' ; a/, and ı.s; a/ D ı.A .Z//.s; a/ for all s
distinct from s' and sZ . Here, a 2 ˙ and sZ is the state obtained from the 1TAA cor-
responding to Z during the inductive construction of  .Z/. The transition function
is well-defined since Z occurs guarded in  .Z/.

Lemma 5. Let ' be a closed �TPTL(1) formula and � a timed word. Then .i; r/ 2
ŒŒ'��� iff A' has an accepting run on �i with initial clock value r.

Theorem 1. Satisfiability in �TPTL(1) over finite words is decidable with non-
primitive recursive complexity.

The translation from �TPTL(1) formulas to 1TAA also works in the other di-
rection, i.e. for any 1TAA there exists a closed �TPTL(1) formula 'A such that
� 2 L.A/ iff � ˆ 'A, as we now demonstrate. The translation has the same struc-
ture as the analogous construction of �-calculus formulas from alternating automata
in the untimed case.

At this point it is helpful to extend the definition of �TPTL(1) to allow
fixed points in vectorial form. Given an n-dimensional vector of variables
Z D .Z1; : : : ;Zn/ and an n-dimensional vector of formulas .'1; : : : ; 'n/, we al-
low for vectorial fixpoints �Z:.'1; : : : ; 'n/. Given a timed word �, such a vectorial
fixed point is interpreted as an element of the n-fold product V.�/n according to the
following rule, where Mi is the i-th component of M:

ŒŒ�Z:.'1; : : : ; 'n/��
�



WD

\
fM 2 V.�/n j ŒŒ'i��

�


ŒZ 7!M� � Mi for all 1 � i � ng :

Let � be a timed word and let �i denote the i-th projection V.�/n ! V.�/ for
1 � i � n.

Proposition 1. Given a vectorial fixed point formula �Z:.'1; : : : ; 'n/, for each i 2
f1; : : : ; ng there is a corresponding �TPTL(1) formula  i such that �i.ŒŒ'��

�



/ D

ŒŒ i��
�



.

Proof. The proof is by repeated application of the Bekić identity

�1ŒŒ�.Y;Z/:.'1; : : : ; 'n/��
�



D ŒŒ� Y:'1ŒZ=�Z:.'2; : : : ; 'n/���

�



:

This identity is valid in any complete lattice, so holds for our semantics.

Now let A D .˙; S; s0;F; ı/ be a 1TAA. Let Z D .Zs j s 2 S/ be a vector of
variables indexed by the set of locations of A. Recall from Definition 5 that the
transition function ı of A takes values in the set of expressions ˚.S/. The first
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step in defining 'A is to give a translation mapping each expression ' in ˚.S/ to a
corresponding�TPTL(1) formula '� with free variables in Z. To this end we write:

tt� D >
ff� D ?

.'1 ^ '2/� D '�1 ^ '�2

.'1 _ '2/� D '�1 _ '�2

.x  c/� D x  c
.x:'/� D x:'�

s� D �Zs

For each location s 2 S we define a �TPTL(1) formula 's.Z/, where

's.Z/ D
� W

a2˙ .a ^ ı.s; a/�/ if s is not accepting
a _Wa2˙ .a ^ ı.s; a/�/ if s is accepting

Recall that s0 2 S is the initial location of A. We define 'A to be the �TPTL(1)
formula that is equivalent to the s0-th component of the vectorial fixed point
�Z:.'s j s 2 S//. Such a formula is guaranteed to exist by Proposition 1.

Theorem 2. Let A be a 1TAA and 'A its corresponding�TPTL(1) formula '. Then
L.A/ D L.'A/.

This result, together with the construction underlying Theorem 1, shows that
�TPTL(1) characterises the class of languages accepted by one-clock timed alter-
nating automata.

13.3.2 Alphabetised Parallel Composition of TPTL(1) Formulas

In this section we consider TPTL(1) extended with the alphabetised parallel compo-
sition operator k and show the decidability of the augmented logic. This extension is
useful for specifying systems that run independently subject to sharing some events
in common. For example, consider the following specification:

.�.processed!�
1queued// k .�.queued!�D1send//:

It describes a system consisting of a processor and a sender that run independently
of each other and only synchronise on the queued event. The specification requires
that a processed item be queued by the processor in the next step within one time
unit, and that each queued item be sent by the sender in the next step one time
unit later. However, in the timed trace of the composed system internal events from
the sender may occur between a processed and queue-event of the processor. This
issue is resolved by the k operator which ensures that the events unrelated to each
specification do not interfere with it.

Formally, we augment the syntax of TPTL(1) in Definition 2 with an additional
term for the alphabetised parallel composition '1 k '2. The alphabetised parallel
composition of timed words �1 and �2 over the alphabets ˙1 and ˙2 respectively
is defined as follows: � 2 �1 k �2 � T.˙1 [ ˙2/� iff �1 D � n .˙2 
 ˙1/
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and �2 D � n .˙1 
˙2/. Informally speaking, the timed events from �1 and �2
are merged in � with the requirement that the timed events from ˙1 \ ˙2 oc-
cur at the same time points in both �1 and �2. The semantics of TPTL(1) together
with alphabetised parallel composition is obtained by adding the following clause
to Definition 3:

ŒŒ'1 k '2��� WD f.i; r/ j 9 �1; �2:�i 2 �1 k �2; .1; r/ 2 ŒŒ'1���1 ; .1; r/ 2 ŒŒ'2���2g

We have seen in the previous section how to construct a 1TAA from a TPTL(1)
formula '. We now extend this construction to show decidability of TPTL(1) with
alphabetised parallel composition. For i 2 f1; 2g, given TPTL(1) formulas 'i with
their corresponding event alphabets ˙i and 1TAA Ai, we show how to construct a
1TAA A1 k A2 such that L.A1 k A2/ D L.'1 k '2/. Let A1 D .˙1; S; s0;F; ı/,
define A1 extended with˙2 as A˙2

1 WD .˙1[˙2; S; s0;F; ı0/, where ı0.s; a/ D fsg
for all a 2 ˙2 
 ˙1 and ı0.s; a/ D ı.s; a/ otherwise. Without loss of generality
we assume the set of states of A1 and A2 to be disjoint. Define A1 k A2 WD
.˙1 [˙2; S.A1/[ S.A2/ [ fskg; fskg;F.A1/[ F.A2/; ı/, where

ı.s; a/ D

8
<̂

:̂

ı.A˙2

1 /.s; a/ if s 2 S.A1/
ı.A˙1

2 /.s; a/ if s 2 S.A2/
ı.A˙2

1 /.s0.A1/; a/ ^ ı.A˙1

2 /.s0.A2/; a/ if s D sk

Decidability of TPTL(1) C alphabetised parallel composition is then a conse-
quence of the following lemma.
Lemma 6. Let A1 and A2 be two 1TAA over the alphabets ˙1 and ˙2 respec-
tively. Then A1 k A2 has an accepting run on � iff A1 has an accepting run on
� n .˙2 
˙1/ and A2 has an accepting run on � n .˙1 
˙2/.
Proof. Given an accepting run C0

d1� C1
	1
! : : :

	n
! C2n of A1 k A2 on �, by

exhaustively replacing C2i�2
di� C2i�1

	i
! C2i
diC1� C2iC1 with C2i�2

diCdiC1� C2iC1
if �i 2 ˙2 
 ˙1, intersecting each remaining Ci with f.s; r/ j s 2 S.A1/; r 2
RCg, and replacing C0 with f.s0.A1/; 0/g, we obtain an accepting run of A1. The
construction works, since C02i�2 \ f.s; r/ j s 2 S.A1/; r 2 RCg D C02iC1 \ f.s; r/ j
s 2 S.A1/; r 2 RCg ensures that we obtain a valid run of A1 on � n .˙2 
 ˙1/.
Similarly, we obtain an accepting run of A2 on � n .˙1 
˙2/.

Conversely, let C0
d1� C1

	1
! : : :
	n
! C2n be an accepting run of A1 on �1.

This run can be altered to become an accepting run of A˙2

1 on �. In general, for
.�j; �j/.�jC1; �jC1/ : : : .�k; �k/ in � with �j; �k 2 ˙1, �` 2 ˙2 
 ˙1 for j < ` < k

and .�j; �j/ equal to .�i; �i/ in �1, C2i�1
	i
! C2i

�iC1.�1/��i.�1/� C2iC1 can be ex-

haustively replaced with C2i�1
	i.�1/



! C2i

�jC1.�/��j.�/� C2i C �jC1.�/ 
 �j.�/
	jC1


!

: : :
�iC1.�1/��k�1.�/� C2iC1

	iC1.�1/





! C2iC2 in order to obtain an accepting run of A˙2

1

on �. Then by joining the accepting runs of A˙2

1 and A˙1

2 and setting C0 D f.sk; 0/g
we obtain an accepting run of A1 k A2 on �.
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Theorem 3. Satisfiability in TPTL(1) augmented with alphabetised parallel com-
position is decidable over finite words with non-primitive recursive complexity.

It is not hard to see that it is possible to combine the inductive constructions of
1TAA from �TPTL(1) and TPTL(1) together with alphabetised parallel composi-
tion. Hence satisfiability for TPTL(1) augmented both with fixpoint operators and
alphabetised parallel composition is decidable.

Theorem 4. Satisfiability for TPTL(1) augmented with fixpoint operators and al-
phabetised parallel composition is decidable over finite words, with non-primitive
recursive complexity.

13.4 Undecidable Cases

In this section we show that augmenting MTL (and a fortiori also TPTL(1)) with any
of hiding, renaming or asynchronous parallel composition renders the corresponding
satisfiability problem undecidable.

To establish these results, we reduce the reachability problem for deterministic
two-counter machines (2CM) to satisfiability for MTL with the extensions under
consideration. A 2CM M D .S; init; ı/ is a finite-state automaton augmented with
two counters over the naturals, where S is a finite set of states, init 2 S is the initial
location and ı is the transition function. A configuration ofM is a triple .s; n0; n1/ 2
S � N � N. From a given configuration, the transition function can test each of
the counters for zero and accordingly change configurations by jumping to a new
location and incrementing, decrementing or leaving each of the counters untouched.
A run of a 2CM is a finite sequence of configurations that is consistent with the
transition function. The reachability problem asks whether for a given 2CM M it
is possible to reach a configuration .s; 0; 0/ starting from the initial configuration
.init; 0; 0/. This problem is well-known to be undecidable [18].

Following [1] and [7], we can encode a run of an m-location 2CM M as a timed
word � over the alphabet ˙ D fa; b1; : : : ; bm; cg. The a-events are used to encode
the value of the counters in unary, each bi represents a location of M, and c is
used as a marker. The i-th configuration .sj; v1; v2/ of a run is stored in the interval
Œi; iC1/ of �. The event bj occurs at time i, representing the current location sj. In the
following, let I WD .0; 0:25/. The number of a-events in the interval I C i encodes
the value of the first counter. Likewise, the value of the second counter is encoded
in the interval I C i C 0:5. The marker c occurs at time iC 0:5 and the remaining
intervals in Œi; iC1/ do not contain any a- or bi-events. We assume that init D s1, so
that b1 is the first event to occur. It is not hard to see that we can construct an MTL2

formula 'M such that 'M^♦bi is satisfiable if .si; 0; 0/ is reachable. The converse,
however, does not hold, since MTL is incapable of detecting insertion errors.

2 This even holds for the until-free fragment of MTL, which is obtained from Definition 4 by
dropping the UI -definition and introducing �I and ♦I as primitives.
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a a a a a a

1

0 1 2 3τ2 τ4 τ5 τ6

τ7 τ8

1

1

σ1 σ3

Fig. 13.1 Illustration of a timed word suffering from insertion errors

Definition 8. Let � ˆ 'M be a timed word representing a run ofM. Then � suffers
from insertion errors if there are 1 � i < j �j � j and �i; �j 2 ˙ such that �
contains .�i; �i/.a; �iC1/ and .�j; �i C 1/.a; �jC1/ with �jC1 < �iC1 C 1.

An illustration of this definition is presented in Fig. 13.1. First, consider the
events .�1; 0/ and .a; �2/. We have that .�1; 0/ is followed one time unit later by
.�3; 1/ which itself is followed by .a; �4/. However, �4 < �2 C 1 and hence .a; �4/
is wrongly inserted. Observe that .a; �2/ does not have any corresponding event one
time unit later. Second, the a-event at time �7 is also wrongly inserted, since it lies
strictly between �4 C 1 and �5 C 1.

D’Souza and Prabhakar show in [7] that MTL augmented with any extension
that is able to characterise a slightly more restricted version of the language from
Definition 8 has an undecidable satisfiability problem. We now use their observation
to establish undecidability of satisfiability of MTL extended with any of hiding,
renaming or asynchronous parallel composition. For each extension, we define a
formula 'ie that is capable of detecting insertion errors. Whence there exists a run
of M reaching si iff 'M ^ ♦bi ^ :'ie is satisfiable.

13.4.1 Hiding

Let E � ˙ be a set of events. We augment the syntax of TPTL(1) in Definition 2
with an additional term for the hiding operator nE. In designing specifications, hid-
ing is used to abstract away irrelevant events. For example, given a set I � ˙ , the
formula .�.' !�<1 // n I specifies a bounded response property that “ignores”
events from I that could occur between ' and  . Formally, the semantic mapping
for hiding is obtained by adding the following clause to Definition 3:

ŒŒ' n E��� WD f.i; r/ j 9 �0:�i D �0 n E and .1; r/ 2 ŒŒ'���0g

It has been observed in [10] that hidden propositions lead to an undecidable sat-
isfiability problem for real-time logics when the underlying time model is dense. In
order to detect insertion errors, we add d to the event alphabet and use the hiding op-
erator in the following way: � suffers from insertion errors (following Definition 8)
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iff we can insert a d-event into � immediately preceding an a-event, in such a way
that d is followed exactly one time unit later by an a. Formally:

Lemma 7. Let 'ie D .'sm ^ ♦.d ^ ♦Ia ^ ♦D1a// n fdg and � ˆ 'M be a timed
word representing a run of M. Then � suffers from insertion errors iff � ˆ 'ie.
(In the above, 'sm stands for a formula that captures precisely all strongly monotonic
timed words, i.e. words in which no two events share the same timestamp.)

The lemma shows that hiding renders the satisfiability problem undecidable even
if applied at the outermost level, i.e. checking satisfiability of ' n E is undecidable
for MTL formulas '. This is not the case for MITL, where checking satisfiability of
' n E for some MITL formula ' still is decidable [10].

13.4.2 Renaming

Let R � ˙ � ˙ be a total renaming relation over ˙ . We augment the syntax of
TPTL(1) in Definition 2 with an additional term for the renaming operator ŒR�. Let
us write that � 2 �0ŒR� iff j � jDj �0 j, �i.�/ D �i.�

0/, and �i.�/ 2 R.�i.�
0// for

all 1 � i �j � j. The semantics of TPTL(1) together with renaming is obtained by
adding the following clause to Definition 3:

ŒŒ'ŒR���� WD f.i; r/ j 9 �0:�i 2 �0ŒR� and .1; r/ 2 ŒŒ'���0g

The effect of renaming is less drastic than that of hiding, since it does not delete
timed events from timed words. It, however, still provides a convenient means of
abstraction in specifications. For example, given a set I � ˙ of internal events and
renaming relation R WD fi=bgi2I [ Id˙nI , the formula .�.' ! .b U<1  //ŒR�
expresses a bounded response property that treats all events from I in the same way
by grouping them into a single event b.

Using the renaming operator to detect insertion errors is slightly more involved
than in the previous case, and we describe the procedure with the help of an exam-
ple given in Fig. 13.2. Observe that the a-event at time �3 is wrongly inserted in
the timed word shown in the lower part of Fig. 13.2. Our tactic is to nondetermin-
istically rename some a-events to d-events in this timed word in such a way as to
identify the wrongly inserted a-event. Such a renaming is shown in the upper part
of the figure. There we have that the a-event at time �1 is immediately followed by
exactly one d-event, which itself is followed exactly one time unit later by a d-event.
For the event at time �1, we can then check that there is in strictly more than one
time unit later an a-event followed immediately by a d-event – which identifies the
wrongly inserted a-event.

The formulas below also have to take account of the case in which the a-event at
time �2 does not have a corresponding a-event one time unit later and are therefore
somewhat trickier to read. However, it is not hard to check that they capture the
intuition described above.
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Fig. 13.2 On the bottom, a timed word suffering from an insertion error, and above its renaming
that allows one to detect it

Lemma 8. Let � ˆ 'M be a timed word representing a run of M, and let

 WD �I..a _ d/! �I:d/ ^ ♦I.d ^ .♦D1.d ^ �I:d/ _ �Œ1;1:25/?//
'ie WD ♦. ^ ♦D1..♦I.a ^ ♦Id/ _ .�I:d ^ ♦Ia////Œf.d; a/g [ Id˙nfdg�

Then � suffers from insertion errors iff � ˆ 'ie.

13.4.3 Asynchronous Parallel Composition

We augment the syntax of TPTL(1) in Definition 2 with an additional term for
the asynchronous parallel composition operator �, also known as interleaving and
(timed) shuffle product. This operator is similar to its alphabetised counterpart in
that it allows one to express specifications on systems that run concurrently.

Given timed words �, �1, and �2 with j � jD n, j �1 jD n1, and j �2 jD n2, we
let � 2 �1 � �2 iff the set of positions f1; : : : ; ng of � can be partitioned into disjoint
sets fi1; : : : ; in1

g and fj1; : : : ; jn2
g such that �k.�1/ D �ik .�/, �k.�1/ D �ik.�/ for

1 � k � n1, and �`.�2/ D �j`.�/, �`.�2/ D �j`.�/ for 1 � ` � n2.
The semantics of TPTL(1) together with asynchronous parallel composition is

obtained by adding the following clause to Definition 3:

ŒŒ'1 � '2��
� WD f.i; r/ j 9 �1; �2:�i D �1 � �2; .1; r/ 2 ŒŒ'1���1 ; .1; r/ 2 ŒŒ'2���2g

In order to show undecidability, we use the fact 'M holds on timed words with
and without insertion errors. Consequently, the interleaving 'M � a only holds on
timed words with insertion errors.

Lemma 9. Let � ˆ 'M be a timed word representing a run of M and let 'ie WD
'M � a. Then � suffers from insertion errors iff � ˆ 'ie.
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We sum up the results of this section in the following theorem.

Theorem 5. The satisfiability problem for MTL augmented with any of hiding,
renaming or asynchronous parallel composition is undecidable.

13.5 Conclusion

In this chapter, we have considered various extensions of the central timed specifica-
tion formalism of Metric Temporal Logic by process-algebraic operators originating
from Tony Hoare’s Communicating Sequential Processes. We have argued that such
extensions, each of which strictly enhances the expressive power of MTL, allow for
more natural and versatile specification of timed systems.

On the positive side, we have shown that MTL augmented with both fixpoint
operators and alphabetised parallel composition remains decidable. On the other
hand, the addition of any of hiding, renaming or asynchronous parallel composition
(also known as interleaving and shuffle product) immediately yields undecidability.

One of our main technical tools has been the one-clock fragment of Timed Propo-
sitional Temporal Logic, TPTL(1). We have shown that extending this formalism
with fixpoint operators provides a precise logical characterisation of the class of
languages accepted by one-clock timed alternating automata, a result of indepen-
dent interest. An intriguing question is whether the fixpoint-extension of the n-clock
fragment of TPTL precisely characterises the class of languages accepted by n-clock
timed alternating automata, thereby extending Theorem 2 (notwithstanding the fact
that such languages are in general not recursive).

An interesting avenue for future work would be to investigate more thoroughly
the methodological applications of our decidability results towards the specification
of timed systems themselves built from recursive and concurrent components, such
as Timed CSP processes.
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Chapter 14
Fun with Type Functions

Oleg Kiselyov, Simon Peyton Jones, and Chung-chieh Shan

Abstract Tony Hoare has always been a leader in writing down and proving
properties of programs. To prove properties of programs automatically, the most
widely used technology today is the ubiquitous type checker. Alas, static type
systems inevitably exclude some good programs and allow some bad ones. Thus
motivated, we describe some fun we have been having with Haskell, by making
the type system more expressive without losing the benefits of automatic proof
and compact expression. Specifically, we offer a programmer’s tour of so-called
type families, a recent extension to Haskell that allows functions on types to be ex-
pressed as straightforwardly as functions on values. This facility makes it easier for
programmers to effectively extend the compiler by writing functional programs that
execute during type checking.

Source code for all the examples is available at
http://research.microsoft.com/simonpj/papers/assoc-types/fun-with-type-funs.zip.

14.1 Introduction

The type of a function specifies (partially) what it does. Although weak as a speci-
fication language, static types have compensating virtues: they are

� Lightweight, so programmers use them
� Machine-checked, with minimal programmer assistance
� Ubiquitous, so programmers cannot avoid them.
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As a result, static type checking is by far the most widely used verification
technology today.

Every type system excludes some “good” programs and permits some “bad”
ones. For example, a language that lacks polymorphism will reject this “good” pro-
gram:

f :: [Int] -> [Bool] -> Int
f is bs = length is + length bs

Why? Because the length function cannot apply to both a list of Ints and a list
of Bools. The solution is to use a more sophisticated type system in which we can
give length a polymorphic type.

Conversely, most languages will accept the expression

speed + distance

where speed is a variable representing speed and distance represents distance,
even though adding a speed to a distance is as much nonsense as adding a character
to a boolean.

The type-system designer wants to accommodate more good programs and ex-
clude more bad ones, without going overboard and losing the virtues mentioned
above. In this chapter we describe type families, an experimental addition to Haskell
with precisely this goal. We start by using type families to accommodate more good
programs, then turn in Section 14.5 to excluding more bad programs. We focus on
the programmer, and our style is informal and tutorial. The technical background
can be found elsewhere [5–7, 42].

14.2 Associated Types: Indexing Types by Types

Haskell has long offered two ways to express relations on types. Multiparameter
type classes express arbitrary, many-to-many relations, whereas type constructors
express specifically functional relations, where one type (the “argument”) uniquely
determines the other. For example, the relation between the type of a list and the type
of that list’s elements is a functional relation, expressed by the type constructor []
:: * -> *, which maps an arbitrary type a to the type [a] of lists of a. A type
constructor maps its argument types uniformly, incorporating them into a more com-
plex type without inspecting them. Type functions, the topic of this chapter, also
establish functional relations between types, but a type function may perform case
analysis on its argument types.

For example, consider the relation between a monad that supports mutable state
and the corresponding type constructor for reference cells. The IO monad supports
the following operations on reference cells of type IORef a:
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newIORef :: a -> IO (IORef a)
readIORef :: IORef a -> IO a
writeIORef :: IORef a -> a -> IO ()

Similarly, the ST s monad supports the analogous operations on reference cells of
type STRef s a:

newSTRef :: a -> ST s (STRef s a)
readSTRef :: STRef s a -> ST s a
writeSTRef :: STRef s a -> a -> ST s ()

It is tempting to overload these operations using a multiparameter type class:

class Mutation m r where
newRef :: a -> m (r a)
readRef :: r a -> m a
writeRef :: r a -> a -> m ()

instance Mutation IO IORef where
newRef = newIORef
...etc...

instance Mutation (ST s) (STRef s) where
newRef = newSTRef
...etc...

This approach has two related disadvantages. First, the types of newRef and the
other class operations are too polymorphic: one could declare an instance such as

instance Mutation IO (STRef s) where ...

even though we intend that the IO monad has exactly one reference type, namely
IORef. Second, as a result, it is extremely easy to write programs with ambiguous
typings, such as

readAndPrint :: IO ()
readAndPrint = do { r <- newRef ’x’

; v <- readRef r
; print v }

We know, from the type signature, that the computation is performed in the IO
monad, but the type checker cannot select the type of r, since the IO monad could
have reference cells of many different types. Therefore, we must annotate r with
its type explicitly. Types are no longer lightweight when they have to be explicitly
specified even for such a simple function.

The standard solution to the second problem is to use a functional dependency:

class Mutation m r | m -> r where ...

The “m -> r” part says that every m is related to at most one r. Functional de-
pendencies have become a much-used extension of Haskell, and we return to a brief
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comparison in Section 14.6. Meanwhile, the main purpose of this chapter is to ex-
plain an alternative approach in which we express the functional dependency at the
type level in an explicitly functional way.

14.2.1 Declaring an Associated Type

The class Mutation does not really have two type parameters: it has one type
parameter, associated with another type that is functionally dependent. Type families
allow one to say this directly:

class Mutation m where
type Ref m :: * -> *
newRef :: a -> m (Ref m a)
readRef :: Ref m a -> m a
writeRef :: Ref m a -> a -> m ()

instance Mutation IO where
type Ref IO = IORef
newRef = newIORef
readRef = readIORef
writeRef = writeIORef

instance Mutation (ST s) where
type Ref (ST s) = STRef s
newRef = newSTRef
readRef = readSTRef
writeRef = writeSTRef

The class declaration now introduces a type function Ref (with a specified kind)
alongside the usual value functions such as newRef (each with a specified type).
Similarly, each instance declaration contributes a clause defining the type func-
tion at the instance type alongside a witness for each value function.

We say that Ref is a type family, or an associated type of the class Mutation.
It behaves like a function at the type level, so we also call Ref a type function.
Applying a type function uses the same syntax as applying a type constructor: Ref
m a above means to apply the type function Ref to m, then apply the resulting type
constructor to a.

The types of newRef and readRef are now more perspicuous:

newRef :: Mutation m => a -> m (Ref m a)
readRef :: Mutation m => Ref m a -> m a

Furthermore, by omitting the functionally determined type parameter from
Mutation, we avoid the ambiguity problem exemplified by readAndPrint
above. When performing type inference for readAndPrint, the type of r is
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readily inferred to be Ref IO Char, which the type checker reduces to IORef
Char. In general, the type checker reduces Ref IO to IORef, and Ref (ST s)
to STRef s.

These type equalities aside, Ref behaves like any other type constructor and it
may be used freely in type signatures and data type declarations. For example, this
declaration is fine:

data T m a = MkT [Ref m a]

14.2.2 Arithmetic

In the class Mutation of Section 14.2.1, we used an associated type to avoid
a two-parameter type class, but that is not to say that associated types obviate
multiparameter type classes. By declaring associated types in multiparameter type
classes, we introduce type functions that take multiple arguments. One compelling
use of such type functions is to make type coercions implicit, especially in arith-
metic. Suppose we want to be able to write add a b to add two numeric values
a and b even if one is an Integer and the other is a Double (without writing
fromIntegral explicitly). We also want to add a scalar to a vector represented
by a list without writing repeat explicitly to coerce the scalar to the vector type.
The result type should be the simplest that is compatible with both operands. We
can express this intent using a two-parameter type class, whose parameters are the
argument types of add and whose associated type SumTy is the result:

class Add a b where
type SumTy a b
add :: a -> b -> SumTy a b

instance Add Integer Double where
type SumTy Integer Double = Double
add x y = fromIntegral x + y

instance Add Double Integer where
type SumTy Double Integer = Double
add x y = x + fromIntegral y

instance (Num a) => Add a a where
type SumTy a a = a
add x y = x + y

In other words, SumTy is a two-argument type function that maps the argument
types of an addition to the type of its result. The three instance declarations ex-
plain how SumTy behaves on arguments of various types. We can then write
add (3::Integer) (4::Double) to get a result of type SumTy Integer
Double, which is the same as Double.
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The same technique lets us conveniently build homogeneous lists out of hetero-
geneous but compatible components:

class Cons a b where
type ResTy a b
cons :: a -> [b] -> [ResTy a b]

instance Cons Integer Double where
type ResTy Integer Double = Double
cons x ys = fromIntegral x : ys

-- ...

With instances of this class similar to those of the class Add, we can cons an
Integer to a list of Doubles without any explicit conversion.

14.2.3 Graphs

Garcia et al. [15] compare the support for generic programming offered by Haskell,
ML, CCC, C#, and Java. They give a table of qualitative conclusions, in which
Haskell is rated favourably in all respects except associated types. This observation
was one of the motivations for the work we describe here. Now that GHC supports
type functions, we can express their main example as follows:

class Graph g where
type Vertex g
data Edge g
src, tgt :: Edge g -> Vertex g
outEdges :: g -> Vertex g -> [Edge g]

newtype G1 = G1 [Edge G1]
instance Graph G1 where
type Vertex G1 = Int
data Edge G1 = MkEdge1 (Vertex G1) (Vertex G1)
-- ...definitions for methods...

newtype G2 = G2 (Map (Vertex G2) [Vertex G2])
instance Graph G2 where
type Vertex G2 = String
data Edge G2 = MkEdge2 Int (Vertex G2) (Vertex G2)
-- ...definitions for methods...

The class Graph has two associated types: Vertex and Edge. We show two rep-
resentative instances. In G1, a graph is represented by a list of its edges and a vertex
is represented by an Int. In G2, a graph is represented by a mapping from each
vertex to a list of its immediate neighbours, a vertex is represented by a String,
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and an Edge stores a weight (of type Int) as well as its end points. As these in-
stance declarations illustrate, the declaration of a Graph instance is free to use the
type functions Edge and Vertex.

14.2.4 Associated Data Types

The alert reader will notice in the class Graph that the associated type for Edge
is declared using “data” rather than “type.” Correspondingly, the instance
declarations give a data declaration for Edge, complete with data constructors
MkEdge1 and MkEdge2. The reason for this use of data is somewhat subtle.

A type constructor such as [] expresses a functional relation between types
that is injective, mapping different argument types to different results. For exam-
ple, if two list types are the same, then their element types must be the same, too.
This injectivity does not generally hold for type functions. Consider this function to
find the list of vertices adjacent to the given vertex v in the graph g:

neighbours g v = map tgt (outEdges g v)

We expect GHC to infer the following type:

neighbours :: Graph g => g -> Vertex g -> [Vertex g]

Certainly, outEdges returns a [Edge g1] (for some type g1), and tgt requires
its argument to be of type Edge g2 (for some type g2). So, GHC’s type checker
requires that Edgeg1  Edgeg2, where “” means type equality.1 Does that
mean that g1  g2, as intuition might suggest? Not necessarily! If Edge were an
associated type, rather than data, we could have written these instances:

instance Graph G3 where
type Edge G3 = (Int,Int)

instance Graph G4 where
type Edge G4 = (Int,Int)

so that EdgeG3  EdgeG4 even though G3 and G4 are distinct. In that case, the
inferred type of neighbours would be:

neighbours :: (Graph g1, Graph g2, Edge g1 ˜ Edge g2)
=> g1 -> Vertex g1 -> [Vertex g2]

Although correct, this type is more general and complex than we want. By declaring
Edge with data, we specify that Edge is injective, that Edgeg1  Edgeg2
indeed implies g1  g2.2 GHC then infers the simpler type we want.

1 “D” is used for too many other things.
2 A possible extension, not currently implemented by GHC, would be to allow an associated type
synonym declaration optionally to specify that it should be injective, and to check that this property
is maintained as each instance is added.
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14.2.5 Type Functions Are Open

Value-level functions are closed in the sense that they must be defined all in one
place. For example, if one defines

length :: [a] -> Int

then one must give the complete definition of length in a single place:

length [] = 0
length (x:xs) = 1 + length xs

It is not legal to put the two equations in different modules.
In contrast, a key property of type functions is that, like type classes themselves,

they are open and can be extended with additional instances at any time. For exam-
ple, if next week we define a new type Age, we can extend SumTy and add to work
over Age by adding an instance declaration:

newtype Age = MkAge Int

instance Add Age Int where
type SumTy Age Int = Age
add (MkAge a) n = MkAge (a+n)

We thus can add an Int to an Age, but not an Age or Float to an Age without
another instance.

14.2.6 Type Functions May Be Recursive

Just as the instance for Show [a] is defined in terms of Show a, a type func-
tion is often defined by structural recursion on the input type. Here is an example,
extending our earlier Add class with a new instance:

instance (Add Integer a) => Add Integer [a] where
type SumTy Integer [a] = [SumTy Integer a]
add x y = map (add x) y

Thus

SumTy Integer ŒDouble�  ŒSumTy Integer Double�  ŒDouble�:

In a similar way, we may extend the Mutation example of Section 14.2.1
to monad transformers. Recall that a monad transformer t :: (*->*) ->
(*->*) is a higher-order type constructor that takes a monad m into another
monad t m.

class MonadTrans t where
lift :: Monad m => m a -> t m a
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At the value level, lift turns a monadic computation (of type m a) into one in
the transformed monad (of type t m a). Now, if a monad m is an instance of
Mutation, then we can make the transformed monad t m into such an instance
too:

instance (Monad m, Mutation m, MonadTrans t)
=> Mutation (t m) where

type Ref (t m) = Ref m
newRef = lift . newRef
readRef = lift . readRef
writeRef = (lift .) . writeRef

The equation for Ref says that the type of references in the transformed monad is
the same as that in the base monad.

14.3 Optimised Container Representations

A common optimisation technique is to represent data of different types differently
(rather than uniformly as character strings, for example). This technique is best
known when applied to container data. For example, we can use the same array
container to define a Bool array and to define an Int array, yet a Bool array can
be stored more compactly and negated elementwise faster when its elements are
tightly packed as a bit vector. CCC programmers use template meta-programming
to exploit this idea to great effect, for example, in the Boost library [47]. The follow-
ing examples show how to express the same idea in Haskell, using type functions to
map among the various concrete types that represent the same abstract containers.

14.3.1 Type-Directed Memoisation

To memoise a function is to improve its future performance by recording and reusing
its past behaviour in a memo table [35]. The memo table augments the concrete
representation of the function without affecting its abstract interface. A typical way
to implement memoisation is to add a lookup from the table on entry to the function
and an update to the table on exit from the function. Haskell offers an elegant way
to express memoisation, because we can use lazy evaluation to manage the lookup
and update of the memo table. But type functions offer a new possibility: the type
of the memo table can be determined automatically from the argument type of the
memoised function [12, 19].

We begin by defining a type class Memo. The constraint Memo a means that the
behaviour of a function from an argument type a to a result type w can be repre-
sented as a memo table of type Table a w, where Table is a type function that
maps a type to a constructor.
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class Memo a where
data Table a :: * -> *
toTable :: (a -> w) -> Table a w
fromTable :: Table a w -> (a -> w)

For example, we can memoise any function from Bool by storing its two return
values as a lazy pair. This lazy pair is the memo table.

instance Memo Bool where
data Table Bool w = TBool w w
toTable f = TBool (f True) (f False)
fromTable (TBool x y) b = if b then x else y

To memoise a function f :: Bool -> Int, we simply replace it by g:

g :: Bool -> Int
g = fromTable (toTable f)

The first time g is applied to True, the Haskell implementation computes the first
component of the lazy pair (by applying f in turn to True) and remembers it for
future reuse. Thus, if f is defined by

f True = factorial 100
f False = fibonacci 100

then evaluating (g True + g True)will take barely half as much time as eval-
uating (f True + f True).

Generalising the Memo instance for Bool above, we can memoise functions
from any sum type, such as the standard Haskell type Either:

data Either a b = Left a | Right b

We can memoise a function from Either a b by storing a lazy pair of a
memo table from a and a memo table from b. That is, we take advantage of
the isomorphism between the function type Either a b -> w and the product
type (a -> w, b -> w ).

instance (Memo a, Memo b) => Memo (Either a b) where
data Table (Either a b) w = TSum (Table a w)

(Table b w)
toTable f = TSum (toTable (f . Left))

(toTable (f . Right))
fromTable (TSum t _) (Left v) = fromTable t v
fromTable (TSum _ t) (Right v) = fromTable t v

Of course, we need to memoise functions from a and b; hence the “(Memo a,
Memo b) =>” part of the declaration. Dually, we can memoise functions from
the product type (a,b) by storing a memo table from a whose entries are memo
tables from b. That is, we take advantage of the currying isomorphism between the
function types (a,b) -> w and a -> b -> w.
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instance (Memo a, Memo b) => Memo (a,b) where
newtype Table (a,b) w

= TProduct (Table a (Table b w))
toTable f = TProduct (toTable (\x ->

toTable (\y -> f (x,y))))
fromTable (TProduct t) (x,y)

= fromTable (fromTable t x) y

14.3.2 Memoisation for Recursive Types

What about functions from recursive types, like lists? No problem! A list is a com-
bination of a sum, a product, and recursion:

instance (Memo a) => Memo [a] where
data Table [a] w = TList w (Table a (Table [a] w))
toTable f = TList (f [])

(toTable (\x -> toTable
(\xs -> f (x:xs))))

fromTable (TList t _) [] = t
fromTable (TList _ t) (x:xs) = fromTable

(fromTable t x) xs

As in Section 14.3.1, the type function Table is recursive. Since a list is either
empty or not, Table [Bool] w is represented by a pair (built with the data con-
structor TList), whose first component is the result of applying the memoised
function f to the empty list, and whose second component memoises applying f to
non-empty lists. A non-empty list (x:xs) belongs to a product type, so the corre-
sponding table maps each x to a table that deals with xs. We merely combine the
memoisation of functions from sums and from products.

It is remarkable how laziness takes care of the recursion in the type[a]. A memo
table for a function f maps every possible argument x of f to a result (f x).
When the argument type is finite, such as Bool or (Bool,Bool), the memo
table is finite as well, but what if the argument type is infinite, such as [Bool]?
Then, of course, the memo table is infinite: in the instance declaration above, we
define toTable for [a] not only using toTable for a but also using toTable
for [a] recursively. Just as each value (f x) in a memo table is evaluated only
if the function is ever applied to that particular x, so each sub-table in this memo
table is expanded only if the function is ever applied to a list with that prefix. So the
laziness works at two distinct levels.

Now that we have dealt with sums, products and recursion, we can deal with
any data type at all. Even base types like Int or Integer can be handled by first
converting them (say) to a list of digits, say [Bool]. Alternatively, it is equally
easy to give a specialised instance for Table Integer that uses some custom
(but infinite!) tree representation for Integer.
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More generally, if we define Memo instances – once and for all – for sum types,
product types, and fixpoint types, then we can define a Memo instance for some new
type just by writing an isomorphism between the new type and a construction out of
sum types, product types, and fixpoint types. These boilerplate Memo instances can
in fact be defined generically, with the help of functional dependencies [8] or type
functions.3

14.3.3 Generic Finite Maps

A finite map is a partial function from a domain of keys to a range of values. Finite
maps can be represented using many standard data structures, such as binary trees
and hash tables, that work uniformly across all key types. However, our memo-table
development suggests another possibility, that of representing a finite map using a
memo table:

type Map key val = Table key (Maybe val)

That is, we represent a partial function from key to val as a total function from
key to Maybe val. But we get two problems. The smaller one is that whereas
Table did not need an insert method – once we construct the memo table,
we never need to update it – Map needs insert and many other methods in-
cluding delete and union. These considerations might lead us to add insert,
delete, etc. to the Table interface, where they appear quite out of place. A nicer
alternative would be to define a sub-class of Table.

The second, more substantial problem is that Table is unnecessarily ineffi-
cient in the way it represents keys that map to Nothing. An extreme case is an
empty map whose key type is Integer. An efficient finite map would represent an
empty map as an empty trie, so that the lookup operation returns immediately with
Nothing. If instead we represent the empty map as an (infinite) Table mapping
every Integer to Nothing, each lookup will explore a finite path in the poten-
tially infinite tree, taking time proportional the number of bits in the Integer.
Furthermore, looking up many Integers in such a Table would force many
branches of the Table, producing a large tree in memory, with Nothing in every
leaf! Philosophically, it seems nicer to distinguish the mapping of a key to Nothing
from the absence of the mapping for that key.

For these reasons, it makes sense to implement Map afresh [19, 22]. As with
Memo, we define a class Key and an associated data type Map:

class Key k where
data Map k :: * -> *
empty :: Map k v
lookup :: k -> Map k v -> Maybe v
-- ...many other methods could be added...

3 http://hackage.haskell.org/cgi-bin/hackage-scripts/package/pointless-haskell

http://hackage.haskell.org/cgi-bin/hackage-scripts/package/pointless-haskell
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Now the instances follow in just the same way as before:

instance Key Bool where
data Map Bool elt = MB (Maybe elt) (Maybe elt)
empty = MB Nothing Nothing
lookup False (MB mf _) = mf
lookup True (MB _ mt) = mt

instance (Key a, Key b) => Key (Either a b) where
data Map (Either a b) elt = MS (Map a elt)

(Map b elt)
empty = MS empty empty
lookup (Left k) (MS m _) = lookup k m
lookup (Right k) (MS _ m) = lookup k m

instance (Key a, Key b) => Key (a,b) where
data Map (a,b) elt = MP (Map a (Map b elt))
empty = MP empty
lookup (a,b) (MP m) = case lookup a m of

Nothing -> Nothing
Just m’ -> lookup b m’

The fact that this is a finite map makes the instance for Int easier than before,
because we can simply invoke an existing data structure (a Patricia tree, for example)
for finite maps keyed by Int:

instance Key Int where
newtype Map Int elt = MI (Data.IntMap.IntMap elt)
empty = MI Data.IntMap.empty
lookup k (MI m) = Data.IntMap.lookup k m

Implementations of other methods (such as insert and union) and instances at
other types (such as lists) are left as exercises for the reader.

Hutton describes another example with the same flavour [24].

14.3.4 Session Types and Their Duality

We have seen a recursively defined correspondence between the type of keys and
the type of a finite map over those keys. The key and the lookup function of a finite
map can be regarded as a pair of processes that communicate in a particular way: the
key sends indices to the lookup, then the lookup responds with the element’s value.
In this section, we generalise this correspondence to the relationship between a pair
of processes that communicate with each other by sending and receiving values in a
session.
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For example, consider the following definitions:

data Stop = Done
newtype In a b = In (a -> IO b)
data Out a b = Out a (IO b)

add_server :: In Int (In Int (Out Int Stop))
add_server = In $ \x -> return $ In $ \y ->

do { putStrLn "Thinking"
; return $ Out (x + y) (return Done) }

The function-like value add server accepts two Ints in succession, then prints
“Thinking” before responding with an Int, their sum. We call add server a
process, whose interface protocol is specified by its type – so-called session type.
We write session types explicitly in this section, but they can all be inferred.

We may couple two processes whose protocols are complementary, or dual:

class Session a where
type Dual a
run :: a -> Dual a -> IO ()

Of course, to write down the definition of run we must also say what it means to
be dual. Doing so is straightforward:

instance (Session b) => Session (In a b) where
type Dual (In a b) = Out a (Dual b)
run (In f) (Out a d) = f a >>= \b -> d >>= \c -> run b c

instance (Session b) => Session (Out a b) where
type Dual (Out a b) = In a (Dual b)
run (Out a d) (In f) = f a >>= \b -> d >>= \c -> run c b

instance Session Stop where
type Dual Stop = Stop
run Done Done = return ()

The type system guarantees that the protocols of the two processes match. Thus, if
we write a suitable client add client, like

add_client :: Out Int (Out Int (In Int Stop))
add_client = Out 3 $ return $ Out 4 $

do { putStrLn "Waiting"
; return $ In $ \z -> print z >> return Done }

we may couple them (either way around):

> run add_server add_client
Thinking
Waiting 7
> run add_client add_server
Thinking
Waiting 7
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However, run will not allow us to couple two processes that do not have dual
protocols. Suppose that we write a negation server:

neg_server :: In Int (Out Int Stop)
neg_server = In $ \x ->

do { putStrLn "Thinking"
; return $ Out (-x) (return Done) }

Then (run add client neg server) will fail with a type error. Just as
the Memo class represents functions of type a -> w by memo tables of the
matching type Table a w, this Session class represents consumers of type
a -> IO () by producers of the matching type Dual a.

These protocols do not allow past communication to affect the type and direction
of future exchanges. For example, it seems impossible to write a well-typed server
that begins by receiving a Bool, then performs addition if True is received and
negation if False is received. However, we can express a protocol that chooses
between addition and negation (or more generally, a protocol that chooses among
a finite number of ways to continue). We simply treat such a binary choice as a
distinct sort of protocol step. The receiver of the choice has a product type, whereas
the sender has a sum type:

instance (Session a, Session b) => Session (Either a b) where
type Dual (Either a b) = (Dual a, Dual b)
run (Left y) (x,_) = run y x
run (Right y) (_,x) = run y x

instance (Session a, Session b) => Session (a, b) where
type Dual (a,b) = Either (Dual a) (Dual b)
run (x,_) (Left y) = run x y
run (_,x) (Right y) = run x y

These additional instances let us define a combined addition-negation server, along
with a client that chooses to add. The two new processes sport (inferable) types that
reflect their initial choice.

server :: (In Int (Out Int Stop),
In Int (In Int (Out Int Stop)))

server = (neg_server, add_server)

client :: Either (Out Int (In Int Stop))
(Out Int (Out Int (In Int Stop)))

client = Right add_client

To connect server and client, we can evaluate either run server client
or run client server. The session type of the client hides which of the two
choices the client eventually selects; the choice may depend on user input at run
time, which the type checker has no way of knowing. The type checker does stati-
cally verify that the corresponding server can handle either choice.

With the instances defined above, each protocol allows only a finite number of ex-
changes, so a server cannot keep looping until the client disconnects. This restriction



316 O. Kiselyov et al.

is not fundamental: recursion in protocols can be expressed, for example using an
explicit fixpoint operator at the type level [38].

We can also separate the notion of a process from that of a channel, and associate
a protocol with the channel rather than the process. This and other variants have been
explored in other works [26, 27, 36, 38, 41], from which we draw the ideas of this
section in a simplified form.

In principle, we can require that Dual be an involution (i.e. Dual be its own
inverse) by adding a equality constraint as a superclass of Session:

class (Dual (Dual a) ˜ a) => Session a where ...

We can then invoke run on a pair of processes without worrying about which pro-
cess is known to be the dual of which other process. More generally, this technique
lets us express bijections between types. However, such equality superclasses are
not yet implemented in the latest release of GHC (6.12).

14.4 Typed Sprintf and Sscanf

We conclude the first half of the chapter, about using type functions to accommodate
more good programs, with a larger example: typed sprintf and sscanf.

A hoary chestnut for typed languages is the definition of sprintf and
sscanf. Although these handy functions are present in many languages (such
as C and Haskell), they are usually not type-safe: the type checker does not stop the
programmer from passing to sprintf more or fewer arguments than required by
the format descriptor. The typing puzzle is that we want the following to be true:

sprintf "Name=%s" :: String -> String
sprintf "Age=%d" :: Int -> String
sprintf "Name=%s, Age=%d" :: String -> Int -> String

That is, the type of (sprintf fs) depends on the value of the format descrip-
tor fs. Supporting such dependency directly requires a full-spectrum dependently
typed language, but there is a small literature of neat techniques for getting close
without such a language [1, 9, 20]. Here we show one technique using type fami-
lies. In fact, we accomplish something more general: typed sprintf and sscanf
sharing the same format descriptor. Typed sprintf has received a lot more atten-
tion than typed sscanf; it is especially rare for an implementation of both to use
the same format descriptor.

14.4.1 Typed Sprintf

We begin with two observations:

� Format descriptors in C are just strings, which leaves the door wide open for mal-
formed descriptors that sprintf does not recognise (e.g. sprintf "%?").
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The language of format descriptors is a small domain-specific language; the type
checker should reject ill-formed descriptors.
� In Haskell, we cannot make the type of (sprintf f) depend on the value of

the format descriptor f. However, using type functions, we can make it depend
on the type of f.

Putting these two observations together suggests that we use a now-standard design
pattern: a domain-specific language expressed using a generalised algebraic data
type (GADT) indexed by a type argument. Concretely, we can define the type of
format descriptors F as follows:

data F f where
Lit :: String -> F L
Val :: Parser val -> Printer val -> F (V val)
Cmp :: F f1 -> F f2 -> F (C f1 f2)

data L
data V val
data C f1 f2

type Parser a = String -> [(a,String)]
type Printer a = a -> String

So F is a GADT with three constructors, Lit, Val, and Cmp.4 Our intention is
that(sprintf f) should behave as follows:

� If f = Lit s, then print (that is, return as the output string) s.
� If f = Cmp f1 f2, then print according to descriptor f1 and continue according

to descriptor f2.
� If f = Val r p, then use the printer p to convert the first argument to a string to

print. (The r argument is used for parsing in Section 14.4.2 below.)

If fmt :: F ty, then the type ty encodes the shape of the term fmt. For exam-
ple, given int :: F (V Int), we may write the following format descriptors:
f_ld = Lit "day" :: F L
f_lds = Cmp (Lit "day") (Lit "s") :: F (C L L)
f_dn = Cmp (Lit "day ") int :: F (C L (V Int))
f_nds = Cmp int (Cmp (Lit " day") (Lit "s")) :: F (C (V Int) (C L L))

In each case, the type encodes an abstraction of the value. (We have specified the
types explicitly, but they can be inferred.) The types L, V and C are type-level ab-
stractions of the terms Lit, Val and Cmp. These types are uninhabited by any
value, but they index values in the GADT F and they are associated with other,
inhabited types by two type functions. We turn to these type functions next.

We want an interpreter sprintf for this domain-specific language, so that:

sprintf :: F f -> SPrintf f

4 “Cmp” is short for “compose”.
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where SPrintf is a type function that transforms the (type-level) format descriptor
f to the type of (sprintf f). For example, the following should all work:

sprintf f_ld -- Result: "day"
sprintf f_lds -- Result: "days"
sprintf f_dn 3 -- Result: "day 3"
sprintf f_nds 3 -- Result: "3 days"

It turns out that the most convenient approach is to use continuation-passing style,
at both the type level and the value level. At the type level, we define SPrintf
above using an auxiliary type function TPrinter. Because TPrinter has no ac-
companying value-level operations, a type class is not needed. Instead, GHC allows
the type function to be defined directly, like this:5

type SPrintf f = TPrinter f String

type family TPrinter f x
type instance TPrinter L x = x
type instance TPrinter (V val) x = val -> x
type instance TPrinter (C f1 f2) x = TPrinter f1 (TPrinter f2 x)

So SPrintf is just a vanilla type synonym, which calls the type function
TPrinter with second parameter String. Then TPrinter transforms the
type as required. For example:

SPrintf (C L (V Int)) � TPrinter (C L (V Int)) String
� TPrinter L (TPrinter (V Int) String)
� TPrinter (V Int) String
� Int -> String

At the value level, we proceed thus:

sprintf :: F f -> SPrintf f
sprintf p = printer p id

printer :: F f -> (String -> a) -> TPrinter f a
printer (Lit str) k = k str
printer (Val _ show) k = \x -> k (show x)
printer (Cmp f1 f2) k = printer f1 (\s1 ->

printer f2 (\s2 ->
k (s1++s2)))

5 GHC requires the alarming flag -XAllowUndecidableInstances to accept the
(Cf1f2) instance for TPrinter, because the nested recursive call to TPrinter does not
“obviously terminate.” Of course, every call to TPrinter does terminate, because the second ar-
gument (where the nested recursive call is made) is not scrutinised by any of the equations, but this
is a non-local property that GHC does not check. The flag promises the compiler that TPrinter
will terminate; the worst that can happen if the programmer makes an erroneous promise is that
the type checker diverges.
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It is interesting to see how printer type-checks. Inside the Lit branch, for
example, we know that f is L and hence that the desired result type TPrinter
f a is TPrinter L a, or just a. Since k str :: a, the actual result type
matches the desired one. Similar reasoning applies to the Val and Cmp branches.

14.4.2 Typed sscanf

We can use the same domain-specific language of format descriptors for parsing as
well as printing. That is, we can write

sscanf :: F f -> SScanf f

where SScanf is a suitable type function. For example, reusing the format descrip-
tors defined above, we may write:

sscanf f_ld "days long" -- Result: Just ((), "s long")
sscanf f_ld "das long" -- Result: Nothing
sscanf f_lds "days long" -- Result: Just ((), " long")
sscanf f_dn "day 4." -- Result: Just (((),4), ".")

In general, sscanf f s returns Nothing if the parse fails and Just (v,s’) if
it succeeds, where s’ is the unmatched remainder of the input string and v is a (left-
nested) tuple containing the parsed values. The details are now fairly routine:

type SScanf f = String -> Maybe (TParser f (), String)

type family TParser f x
type instance TParser L x = x
type instance TParser (V val) x = (x,val)
type instance TParser (C f1 f2) x = TParser f2 (TParser f1 x)

sscanf :: F f -> SScanf f
sscanf fmt inp = parser fmt () inp

parser :: F f -> a -> String -> Maybe (TParser f a, String)
parser (Lit str) v s = parseLit str v s
parser (Val reads _) v s = parseVal reads v s
parser (Cmp f1 f2) v s = case parser f1 v s of

Nothing -> Nothing
Just (v1,s1) -> parser f2 v1 s1

parseLit :: String -> a -> String -> Maybe (a, String)
parseLit str v s = case prefix str s of

Nothing -> Nothing
Just s’ -> Just (v, s’)

parseVal :: Parser b -> a -> String -> Maybe ((a,b), String)
parseVal reads v s = case reads s of

[(v’,s’)] -> Just ((v,v’),s’)
_ -> Nothing



320 O. Kiselyov et al.

14.4.3 Reflections

We conclude with a few reflections on the design.

� Our Val constructor makes it easy to add printers for new types. For example:

newtype Dollars = MkD Int

dollars :: F (V Dollars)
dollars = Val read_dol show_dol

where
read_dol (’$’:s) = [ (MkD d, s) | (d,s) <- reads s ]
read_dol _ = []
show_dol (MkD d) = ’$’ : show d

� Our approach is precisely that of Hinze [20], except that we use type functions
and GADTs (unavailable when Hinze wrote) to produce a much more elegant
result.
� It is (just) possible to take the domain-specific-language approach without using

type functions, albeit with less clarity and greater fragility [31].
� Defining F as a GADT makes it easy to define new interpreters beyondsprintf

and sscanf, but hard to add new format-descriptor combinators. A dual ap-
proach [33], which makes it easy to add new descriptors but hard to define new
interpreters, is to define F as a record of operations:

data F f = F {
printer :: forall a. (String -> a) -> TPrinter f a,
parser :: forall a. a -> String

-> Maybe (TParser f a, String) }

Instead of being a GADT, F becomes a higher-rank data constructor – that is,
its arguments are polymorphic functions. The type functions TPrinter and
TParser are unchanged. The format-descriptor combinators are no longer data
constructors but ordinary functions instead:

lit :: String -> F I
lit str = F { printer = \k -> k str,

parser = parseLit str }

int :: F (V Int)
int = F { printer = \k i -> k (show i),

parser = parseVal reads }

� If we consider only sprintf or only sscanf, then the type-level format de-
scriptor is the result of defunctionalising a type-level function, and TPrinter
or TParser is the apply function [10,39]. Considering sprintf and sscanf
together takes format descriptors out of the image of defunctionalisation.

In general, type functions let us easily express a parser that operates on
types (and produces corresponding values). In this way, we can overlay our own



14 Fun with Type Functions 321

domain-specific, variable-arity syntax onto Haskell’s type system.6 For example,
we can concisely express XML documents,7 linear algebra,8 and even keyword
arguments.9

14.5 Fun with Phantom Types

Each type function we have seen so far returns types that are actually used in the
value-level computations. In other words, type functions are necessary to type-check
the overloaded functions above. For example, it is thanks to the type function Ref
that the value functions newIORef and newSTRef can be overloaded under the
name newRef. In contrast, this section considers type functions that operate on
so-called phantom types.

Phantom types enforce distinctions among values with the same run-time repre-
sentation, such as numbers with different units [30] and strings for different XML
elements. Functions on phantom types propagate these distinctions through a static
approximation of the computation. Phantom types and functions on them thus let
us reason more precisely about a program’s behaviour before running it, essentially
by defining additional type-checking rules that refine Haskell’s built-in ones. The
reader may find many applications of phantom types elsewhere [13, 14, 21]; our
focus here is on the additional expressiveness offered by type families – to exclude
more bad programs.

14.5.1 Pointer Arithmetic and Alignment

The refined distinctions afforded by phantom types are especially useful in em-
bedded and systems programming, where a Haskell program (or code it generates)
performs low-level operations such as direct memory access and interacts with hard-
ware device drivers [11, 32]. It is easy to use phantom types to enforce access
permissions (read versus write), but we take the example of pointer arithmetic and
alignment to illustrate the power of type functions.

Many hardware operations require pointers that are properly aligned (i.e., divis-
ible) by a statically known small integer, even though every pointer, no matter how
aligned, is represented by a machine word at run time. Our goal is to distinguish the
types of differently aligned pointers and thus prevent the use of misaligned pointers.

6 http://okmij.org/ftp/Haskell/types.html#polyvar-fn
7 http://okmij.org/ftp/Haskell/typecast.html#solving-read-show
8 http://okmij.org/ftp/Haskell/typecast.html#is-function-type
9 http://okmij.org/ftp/Haskell/keyword-arguments.lhs

http://okmij.org/ftp/Haskell/types.html#polyvar-fn
http://okmij.org/ftp/Haskell/typecast.html#solving-read-show
http://okmij.org/ftp/Haskell/typecast.html#is-function-type
http://okmij.org/ftp/Haskell/keyword-arguments.lhs
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Before we can track pointer alignment, we first need to define natural numbers at
the type level. The type Zero represents 0; if the type n represents n then the type
Succ n represents nC 1.

data Zero
data Succ n

For convenience, we also define synonyms for small type-level numbers.

type One = Succ Zero
type Two = Succ One
type Four = Succ (Succ Two )
type Six = Succ (Succ Four)
type Eight = Succ (Succ Six )

These type-level numbers belong to a class Nat, whose value member toInt lets
us read off each number as an Int:

class Nat n where
toInt :: n -> Int

instance Nat Zero where
toInt _ = 0

instance (Nat n) => Nat (Succ n) where
toInt _ = 1 + toInt (undefined :: n)

In this code, toInt uses a standard Haskell idiom called proxy arguments. As the
underscores in its instances show, toInt never examines its argument. Never-
theless, it must take an argument, as a proxy that specifies which instance to use.
Here is how one might call toInt:

Prelude> toInt (undefined :: Two)
2

We use Haskell’s built-in undefined value and specify that it has type Two,
thereby telling the compiler which instance of Nat to use. There is exactly such
a call in the (Succ n) instance of Nat, only in that case the proxy argument is
given the type n, a lexically scoped type variable.

As promised above, we represent a pointer or offset as a machine word at run
time, but use a phantom type at compile time to track how aligned we know the
pointer or offset to be.

newtype Pointer n = MkPointer Int
newtype Offset n = MkOffset Int

Thus a value of type Pointer n is an n-byte-aligned pointer; and a value of
type Offset n is a multiple of n. For example, a Pointer Four is a 4-byte-
aligned pointer. Pointer n is defined as a newtype and so the data constructor
MkPointer has no run-time representation. In other words, the phantom-type
alignment annotation imposes no run-time overhead.

To keep this alignment knowledge sound, the data constructorsMkPointer and
MkOffset above must not be exported for direct use by clients. Instead, clients
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must constructPointer and Offset values using “smart constructors.” One such
constructor is multiple:

multiple :: forall n. (Nat n) => Int -> Offset n
multiple i = MkOffset (i * toInt (undefined :: n))

So (multiple i) is the i-th multiple of the alignment specified by the re-
turn type. For example, evaluating multiple 3 :: Offset Four yields
MkOffset 12, the third multiple of a Four-byte alignment.

When a pointer is incremented by an offset, the resulting pointer is aligned by
the greatest common divisor (GCD) of the alignments of the original pointer and the
offset. To express this fact, we define a type function GCD to compute the GCD of
two type-level numbers. Actually, GCD takes three arguments: GCD d m n com-
putes the GCD of d+m and d+n. We will define GCD in a moment, but assuming we
have it we can define add:

add :: Pointer m -> Offset n -> Pointer (GCD Zero m n)
add (MkPointer x) (MkOffset y) = MkPointer (x + y)

Thus, if p has the type Pointer Eight and o has the type Offset Six, then
add p o has the type Pointer Two.

The type checker does not check that x + y is indeed aligned by the GCD. Like
multiple, the function add is trusted code and its type expresses claims that its
programmer must guarantee. Once she does so, however, the clients of add have
complete security. If fetch32 is an operation that works on 4-aligned pointers
only, then we can give it the type

(GCD Zero n Four ˜ Four) => Pointer n -> IO ()

In words, fetch32 works on any pointer whose alignment’s GCD with 4 is 4. It
is then a type error to apply fetch32 to add p o, but it is acceptable to apply
fetch32 to p.

Because the type function GCD has no accompanying value-level operations, we
can define it without a type class:

type family GCD d m n
type instance GCD d Zero Zero = d
type instance GCD d (Succ m) (Succ n) = GCD (Succ d) m n
type instance GCD Zero (Succ m) Zero = Succ m
type instance GCD (Succ d) (Succ m) Zero = GCD (Succ Zero) d m
type instance GCD Zero Zero (Succ n) = Succ n
type instance GCD (Succ d) Zero (Succ n) = GCD (Succ Zero) d n

14.5.2 Tracking State and Control in a Parameterised Monad

Because actions in Haskell are values as well, phantom types can be used to en-
force properties on actions and control flow as well as on values and data flow. In
particular, we can express the preconditions and postconditions of monadic actions
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by generalising monads to parameterised monads [2]. A parameterised monad is a
type constructor that takes three arguments, reminiscent of a Hoare triple: an initial
state, a final state, and the type of values produced by the action. As shown in the
following class definition (generalising the Monad class), a pure action does not
change the state and concatenating two actions identifies the final state of the first
action with the initial state of the second action.

class PMonad m where
unit :: a -> m p p a
bind :: m p q a -> (a -> m q r b) -> m p r b

The precise meaning of states depends on the particular parameterised monad: they
could describe files open, time spent, or the shape of a managed heap [32]. In this
example, we use a parameterised monad to track the locks held among a given
(finite) set.

A lock can be acquired only if it is not currently held, and released only if it is
currently held. Furthermore, no lock is held at the beginning of the program and no
lock should be held at the end. We encode a set of locks and whether each is held by
a type-level list of booleans. The spine of the list is made of Cons cells and Nil;
each element of the list is either Locked or Unlocked. For example, suppose we
are tracking three locks. If only the first and last are held, then the state is the type
Cons Locked (Cons Unlocked (Cons Locked Nil)).

data Nil
data Cons l s

data Locked
data Unlocked

The run-time representation of our parameterised monad is simply that of Haskell’s
IO monad, so it is easy to implement a PMonad instance.

newtype LockM p q a = LockM { unLockM :: IO a }

instance PMonad LockM where
unit x = LockM (return x)
bind m k = LockM (unLockM m >>= unLockM . k)

It is also easy to lift an IO action that does not affect locks to become a LockM
action whose initial and final states are the same and arbitrary.

lput :: String -> LockM p p ()
lput = LockM . putStrLn

To manipulate boolean lists at the type level, we define type functions Get and
Set. Given a type-level natural number n and a list p, the type Get n p is the
n-th element of that list, and the type Set n e p is the result of replacing the
n-th element of p by e. The first element of a list is indexed by Zero. It is a type
error if the element does not exist because the list is too short.
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type family Get n p
type instance Get Zero (Cons e p) = e
type instance Get (Succ n) (Cons e p) = Get n p

type family Set n e’ p
type instance Set Zero e’ (Cons e p) = Cons e’ p
type instance Set (Succ n) e’ (Cons e p) = Cons e (Set n e’ p)

We represent a lock as a mutex handle (here caricatured by an Int), with a
phantom type n attached to identify the lock at compile time. The phantom type n
is an index into a type-level list.

newtype Lock n = Lock Int deriving Show

mkLock :: forall n. Nat n => Lock n
mkLock = Lock (toInt (undefined::n))

The data constructor introduced by the newtype declaration has no run-time rep-
resentation and so this wrapping imposes no run-time overhead. We make one lock,
lock1, for the sake of further examples.

lock1 = mkLock :: Lock One

We can now define actions to acquire and release locks. The types of the actions
reflect their constraints on the state.

acquire :: (Get n p ˜ Unlocked) =>
Lock n -> LockM p (Set n Locked p) ()

acquire l = LockM (putStrLn ("acquire " ++ show l))

release :: (Get n p ˜ Locked) =>
Lock n -> LockM p (Set n Unlocked p) ()

release l = LockM (putStrLn ("release " ++ show l))

In the type of acquire, the constraint Get n p ˜ Unlocked is the precon-
dition on the state before acquiring the lock: the lock to be acquired must not be
already held. The final state of the LockM action returned by acquire specifies
the postcondition: the lock just acquired is Locked. For the release action, the
pre- and postconditions are the converse. To keep the example simple, we do not
manipulate any real locks; rather, we print our intentions.

At the top level, a LockM action is executed by applying the function run to
turn it into an IO action. The type of run below requires that the action begin and
end with no lock held among three available.

type ThreeLocks = Cons Unlocked (Cons Unlocked (Cons Unlocked Nil))
run :: LockM ThreeLocks ThreeLocks a -> IO a
run = unLockM

For example, given any action a, the action with1 a defined below acquires
lock 1, performs a, then releases lock 1 and returns the result of a.
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with1 a = acquire lock1 ‘bind‘ \_ ->
a ‘bind‘ \x ->
release lock1 ‘bind‘ \_ ->
unit x

Therefore, we can execute run (with1 (lput "hello")) by itself.

> run (with1 (lput "hello"))
acquire Lock 1
hello
release Lock 1

Multiple locks can be held at the same time and need not be released in the opposite
order as they were acquired. However, the type system prevents us from nesting
with1 inside with1, because such an action would try to acquire lock 1 twice.
Indeed, the expression run (with1 (with1 (lput "hello"))) does not
type-check. We also cannot acquire a lock without releasing it subsequently. For
example, the expression run (acquire lock1) is rejected.

We can also introduce actions that do not change the state of locks yet require
that a certain lock be held:

critical1 :: (Get One p ˜ Locked) => LockM p p ()
critical1 = LockM (putStrLn "Critical section 1")

An attempt to run such an action without holding the required lock, as in run
critical1, is rejected by the type checker. On the other hand, the program
run (with1 critical1) type checks and can be successfully executed. Like-
wise, we can define potentially blocking actions, to be executed only when a lock
is not held; the type checker will then prevent such actions within a critical section
protected by the lock.

14.5.3 Keeping the Kinds Straight

It will not have escaped the reader’s notice that we are doing untyped functional
programming at the type level. For example, the kind of GCD is

GCD :: * -> * -> * -> *

so the compiler would accept the nonsensical type(GCD Int Zero Bool). The
same problem occurs with Pointer n and other types defined in this section.
We can alleviate the problem using the Nat n constraint. For example, we could
define Pointer n as

newtype Nat n => Pointer n = MkPointer Int

so that, for example, Pointer Bool becomes invalid and will raise a compile-
time error. The constraint Nat n is a kind predicate, specifying the set of types that
constitute natural numbers – just as the type Int specifies a set of values.
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We wish for the convenience and discipline of algebraic data kinds when writing
type-level functions, just as we are accustomed to algebraic data types in con-
ventional, term-level programs. One possibility is to “lift”’ the ordinary data type
declaration

data N = Zero | Succ N

to the kind level. Alternatively, we may want to declare algebraic data kinds like
this:

data kind N = Zero | Succ N

Here N is a kind constant and Zero and Succ are type constructors. Now GCD
could have the kind

GCD :: N -> N -> N -> N

Similarly, Pointer and Offset should both have kind N -> *. Much the same
applies in the discussion of state and control, where we would rather write:

data kind ListLS = Nil | Cons LockState ListLS
data kind LockState = Locked | Unlocked

then give a decent kind to Get:

Get :: N -> ListS -> LockState

Furthermore, unlike the earlier examples in which it was crucial that our type func-
tions were open (Section 14.2.5), type functions such as GCD and Get are closed,
in that all their equations are given in one place.

These are shortcomings of GHC’s current implementation, but there is no tech-
nical difficulty with algebraic data kinds; indeed they are fully supported by the ˝
language [43].

14.5.4 Type-Preserving Compilers

A popular, if incestuous, application of Haskell is for writing compilers. If the object
language is statically typed, then one can index a GADT by a phantom type to ensure
that only well-typed object programs can be represented in the compiler [37]:

data Exp a where
Enum :: Int -> Exp Int
Eadd :: Exp Int -> Exp Int -> Exp Int
Eapp :: Exp (a->b) -> Exp a -> Exp b
...

Now an optimiser and an evaluator might have types

optimise :: Exp a -> Exp a
evaluate :: Exp a -> a
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which compactly express the facts that (a) the optimiser need only deal with well-
typed object terms, (b) optimising a term does not change its type, and (c) evaluating
a term yields a value of the correct type.

But what about transforming programs into continuation-passing style? In that
case, the type of the result term is a function of the type of the argument term:

cpsConvert :: Exp a -> Exp (CpsT a)

Here CpsT maps a type a to its CPS-converted version [34]. Guillemette and Mon-
nier express CpsT as a type-level function [18], whereas Carette et al. show how to
do without type-level functions [4].

14.6 Related Work and Reflections

The goal of type families is to build on the success of static type systems, by
extending their power and expressiveness without losing their brevity and compre-
hensibility to programmers. (Of course, there is an implicit tension between these
goals and the reader will have to judge how successful we have been.) There are
other designs with similar goals:

� Functional dependencies took the Haskell community by storm when Mark Jones
introduced them [29], because they met a real need. Many, perhaps all, of the ex-
amples in this tutorial can also be programmed using functional dependencies, but
the programming style at the type level feels like logic programming rather than
functional programming. The reader may find a programmer’s-eye comparison of
the two approaches in [6]. Jones showed recently how the stylistic question can
be at least partly addressed by a notational device [28] but, more fundamentally,
the interaction of functional dependencies with other type-level features such as
existentials and GADTs is not well understood and possibly problematic. In fact,
one may see type families as a way to understand functional dependencies in
these more general settings.
� ˝ [43] is a prototype programing language that specifically aims to provide the

programmer with type-level computation. It goes quite a bit further than GHC’s
type families (e.g., ˝ has an infinite tower of kinds and supports closed type
functions), but lacks type classes and much of the other Haskell paraphernalia.
˝ comes with a number of excellent papers giving many a motivating example
[44–46].

These designs, along with GHC’s type families, can be thought of as helping
programmers prove more interesting theorems that characterise their programs.
Meanwhile, the theorem-proving and type-theory community has been drawing
from its long history of type-level computation to help mathematicians write more
interesting programs that witness their theorems [3].

The motivation for type-level computations comes from the Curry-Howard cor-
respondence [17,23] that underlies Martin-Löf’s intuitionistic type theory: proposi-
tions are types and proofs are terms. The more expressive a type system, the more
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propositions we can state and prove in it, such as properties involving numbers and
arithmetic. Hence expressive languages such as those of NuPRL, Coq, Epigram,
and Agda permit types involving numbers and arithmetic. For example, the follow-
ing type in Agda states that addition is commutative:

(n m : Nat) -> n + m == m + n

To prove this proposition is to write a term of this type, and to check the proof is
the job of the type checker. To do its job, the type checker may need to simplify a
type like (Zero + m) to m, so type checking involves type-level computations.
Because a proof checker should always terminate, it is natural to insist that type-
level computations also always terminate.

Since proof assistants based on type theory implement a (richly typed) �-
calculus, they can be used to program – that is, to write terms that compute
interesting values, not just inhabit interesting types. To this end, an expressive type
system lets us state and prove more interesting properties about programs – of the
sort we have shown in this chapter. Tools such as Coq, Epigram, and Agda thus
cater increasingly to the use of theorem proving for practical programming. This
convergence of theory and practice renews our commitment to Tony Hoare’s ideal
of simple, reliable software.
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22. Hinze, R., Jeuring, J., Löh, A.: Type-indexed data types. In: Proceedings of the Sixth Inter-

national Conference on Mathematics of Program Construction (MPC 2002), pp. 148–174.
Lecture Notes in Computer Science 2386, Springer Verlag (2002)

23. Howard, W.A.: The formulae-as-types notion of construction. In: Seldin, J.P., Hindley, J.R.
(eds.), To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism,
pp. 479–490. Academic Press, San Diego, CA (1980).

24. Hutton, T.: Fun with type functions. http://www.haskell.org/pipermail/haskell-cafe/
2008-November/051105.html (2008)

25. Hook, J., Thiemann, P. ICFP ’08: Proc. ACM international conference on functional program-
ming. ACM Press, New York (2008)

26. Imai, K., Yuen, S., Agusa, K.: A full implementation of session types in Haskell. In: PPL2009:
11th Programming and Programming Languages Workshop. http://www.agusa.i.is.nagoya-u.
ac.jp/person/sydney/fullsession-ppl2009/20090224/imai-ppl2009-submitted1.pdf (2009)

27. Ingram, R.: Fun with type functions. http://www.haskell.org/pipermail/haskell-cafe/
2008-November/051108.html (2008)

28. Jones, M.P.: Languages and program design for functional dependencies. In [16], 87–98 (2008)
29. Jones, M.P.: Type classes with functional dependencies. In: Programming Languages and Sys-

tems: Proceedings of ESOP 2000, 9th European Symposium on Programming, Smolka, G.
(ed.), pp. 230–244. Lecture Notes in Computer Science 1782, Springer, Berlin (2000)

30. Kennedy, A.: Programming languages and dimensions. Ph.D. thesis, University of Cambridge
(1995)

31. Kiselyov, O.: Formatted IO as an embedded DSL: the initial view. http://okmij.org/ftp/
typed-formatting/#DSL-In (2008)

32. Kiselyov, O., Shan, C.-c.: Lightweight static resources: sexy types for embedded and sys-
tems programming. In: Morazán, M.T., Nilsson, H. (eds.), Draft Proceedings of TFP 2007:
6th Symposium on Trends in Functional Programming. Tech. Rep. TR-SHU-CS-2007-04-1,
Department of Mathematics and Computer Science, Seton Hall University (2007)

33. Krishnamurthi, S., Felleisen, M., Friedman, D.P.: Synthesizing object-oriented and functional
design to promote re-use. In: Jul, E. (ed.), Proceedings of ECOOP’98: 12th European Confer-
ence on Object-oriented Programming, pp. 91–113. Lecture Notes in Computer Science 1445,
Springer, Berlin (1998)

http://conal.net/blog/posts/elegant-memoization-with-functional-memo-tries
http://conal.net/blog/posts/elegant-memoization-with-functional-memo-tries
http://www.haskell.org/pipermail/haskell-cafe/2008-November/051105.html
http://www.haskell.org/pipermail/haskell-cafe/2008-November/051105.html
http://www.agusa.i.is.nagoya-u.ac.jp/person/sydney/fullsession-ppl2009/20090224/imai-ppl2009-submitted1.pdf
http://www.agusa.i.is.nagoya-u.ac.jp/person/sydney/fullsession-ppl2009/20090224/imai-ppl2009-submitted1.pdf
http://www.haskell.org/pipermail/haskell-cafe/2008-November/051108.html
http://www.haskell.org/pipermail/haskell-cafe/2008-November/051108.html
http://okmij.org/ftp/typed-formatting/#DSL-In
http://okmij.org/ftp/typed-formatting/#DSL-In


14 Fun with Type Functions 331

34. Meyer, A.R., Wand, M.: Continuation semantics in typed lambda-calculi (summary). In: Logics
of programs, Parikh, R. (ed.), pp. 219–224. Lecture Notes in Computer Science 193, Springer,
Berlin (1985)

35. Michie, D.: “Memo” functions and machine learning. Nature 218:19–22 (1968)
36. Neubauer, M., Thiemann, P.: An implementation of session types. In: Practical Aspects

of Declarative Languages: 6th International Symposium, PADL 2004, Jayaraman, B. (ed.),
pp. 56–70. Lecture Notes in Computer Science 3057, Springer, Berlin (2004)

37. Peyton Jones, S.L., Vytiniotis, D., Weirich, S., Washburn, G.A.: Simple unification-based type
inference for GADTs. In: ICFP ’06: Proc. ACM international conference on functional pro-
gramming, pp. 50–61. ACM Press, New York (2006)

38. Pucella, R., Tov, J.: Haskell session types with (almost) no class. In [16], 25–36 (2008)
39. Reynolds, J.C.: Definitional interpreters for higher-order programming languages. In: Proceed-

ings of the ACM National Conference, vol. 2, pp. 717–740. ACM Press, New York. Reprinted
as [40] (1972)

40. Reynolds, J.C.: Definitional interpreters for higher-order programming languages. Higher-
Order and Symbolic Computation 11(4), 363–397 (1998)

41. Sackman, M.: A tutorial for session types. http://www.wellquite.org/sessions/tutorial 1.html
(2008)

42. Schrijvers, T., Peyton Jones, S.L., Chakravarty, M.M.T., Sulzmann, M.: Type checking with
open type functions. In: [25], 51–62 (2008)

43. Sheard, T.: Languages of the future. Onward Track, OOPSLA’04. Reprinted in: ACM
SIGPLAN Notices, Dec. 2004. 39:116–119. OOPSLA Companion Volume (2004)

44. Sheard, T.: Generic programming in ˝. In: Backhouse, R., Gibbons, J., Hinze, R., Jeuring,
J. (eds.), Datatype-generic programming, vol. 4719 of Lecture Notes in Computer Science,
pp. 258–284. Springer (2006)

45. Sheard, T., Linger, N.: Programming in ˝. In: Horváth, Z., Plasmeijer, R., Soós, A., Zsók, V.
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Chapter 15
On CSP and the Algebraic Theory of Effects

Rob van Glabbeek and Gordon Plotkin�

Abstract We consider CSP from the point of view of the algebraic theory of effects,
which classifies operations as effect constructors or effect deconstructors; it also
provides a link with functional programming, being a refinement of Moggi’s sem-
inal monadic point of view. There is a natural algebraic theory of the constructors
whose free algebra functor is Moggi’s monad; we illustrate this by characterising
free and initial algebras in terms of two versions of the stable failures model of CSP,
one more general than the other. Deconstructors are dealt with as homomorphisms
to (possibly non-free) algebras.

One can view CSP’s action and choice operators as constructors and the rest,
such as concealment and concurrency, as deconstructors. Carrying this programme
out results in taking deterministic external choice as constructor rather than gen-
eral external choice. However, binary deconstructors, such as the CSP concurrency
operator, provide unresolved difficulties. We conclude by presenting a combination
of CSP with Moggi’s computational �-calculus, in which the operators, including
concurrency, are polymorphic. While the paper mainly concerns CSP, it ought to be
possible to carry over similar ideas to other process calculi.

15.1 Introduction

We examine Hoare’s CSP [9,13,29] from the point of view of the algebraic theory of
effects [14,22,23,25], a refinement of Moggi’s seminal “monads as notions of com-
putation” [3,18,19]. This is a natural exercise as the algebraic nature of both points
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to a possibility of commonality. In the algebraic theory of effects all operations do
not have the same character. Some are effect constructors: they create the effects at
hand; some are effect deconstructors: they respond to effects created. For example,
raising an exception creates an effect – the exception raised – whereas exception-
handling responds to effects – exceptions that have been raised. It may therefore
be interesting, and even useful, to classify CSP operators as constructors or decon-
structors. Considering CSP and the algebraic theory of effects together also raises
the possibility of combining CSP with functional programming in a principled way,
as Moggi’s monadic approach provides a framework for the combination of compu-
tational effects with functional programming. More generally, although we mainly
consider CSP, a similar exercise could be undertaken for other process calculi as
they have a broadly similar algebraic character.

The theory of algebraic effects starts with the observation that effect constructors
generally satisfy natural equations, and Moggi’s monad T is precisely the free alge-
bra monad for these equations (an exception is the continuations monad, which is of
a different character). Effect deconstructors are treated as homomorphisms from the
free algebra to another algebra, perhaps with the same carrier as the free algebra but
with different operations. These operations can be given by combinations of effect
constructors and previously defined deconstructors. The situation is much like that
of primitive recursive definitions, although we will not present a formal definitional
scheme.

We mainly consider that part of CSP containing action, internal and exter-
nal choice, deadlock, relabelling, concealment, concurrency and interleaving, but
not, for example, recursion (we do, albeit briefly, consider the extension with ter-
mination and sequencing). The evident constructors are then action prefix, and
the two kinds of choice, internal and external, the latter together with deadlock.
The evident deconstructors are relabelling, concealment, concurrency and inter-
leaving. There is, however, a fly in the ointment, as pointed out in [25]. Parallel
operators, such as CSP’s concurrency and interleaving, are naturally binary, and
respond to effects in both arguments. However, the homomorphic approach to de-
constructors, as sketched above, applies only to unary deconstructors, although it
is possible to extend it to accommodate parameters and simultaneous definitions.
Nonetheless, the natural definitions of concurrency and interleaving do not fall
within the homomorphic approach, even in the extended sense. This problem has
nothing to do with CSP: it applies to all examples of parallelism of which we
are aware.

Even worse, when we try to carry out the above analysis for CSP, it seems that
the homomorphic approach cannot handle concealment. The difficulty is caused by
the fact that concealment does not commute with external choice. Fortunately this
difficulty can be overcome by changing the effect constructors: we remove external
choice and action prefix and replace them by the deterministic external choice oper-
ator .a1 ! P.a1/ j : : : j an ! P.an//, where the ai are all different. Binary external
choice then becomes a deconstructor.

With that we can carry out the program of analysis, finding only the expected dif-
ficulty in dealing with concurrency and interleaving. However, it must be admitted
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that the n-ary operators are somewhat clumsy to work with, and it is at least a priori
odd to take binary external choice as a deconstructor. On the other hand, in [13]
Section 1.1.3 Hoare writes:

The definition of choice can readily be extended to more than two alternatives, e.g.,

.x! P j y! Q j : : : j z! R/

Note that the choice symbol j is not an operator on processes; it would be syntactically
incorrect to write P j Q, for processes P and Q. The reason for this rule is that we want to
avoid giving a meaning to

.x! P j x! Q/

which appears to offer a choice of first event, but actually fails to do so.

which might be read as offering some support to a treatment, which takes determin-
istic external choice as a primitive (here = constructor), rather than general external
choice. On our side, we count it as a strength of the algebraic theory of effects that it
classifies effect-specific operations and places constraints on them: that they either
belong to the basic theory or must be defined according to a scheme that admits
inductive proofs.

Turning to the combination with functional programming, consider Moggi’s
computational �-calculus. Just as one accommodates imperative programming
within functional programming by treating commands as expressions of type unit ,
so it is natural to treat our selection of CSP terms as expressions of type empty
as they do not terminate normally, only in deadlock. For process languages such as
ACP [4, 5] which do have the possibility of normal termination, or CSP with such
a termination construct, one switches to regarding process terms as expressions of
type unit , when a sequencing operator is also available.

As we have constructors for every T.X/, it is natural to treat them as polymorphic
constructs, rather than just as process combinators. For example, one could have a
binary construction for internal choice, with typing rule:

M W� N W�
M u N W�

It is natural to continue this theme for the deconstructors, as in:

M W�
Mna W�

M W� N W�
M jjN W� � �

where the thought behind the last rule is that M and N are evaluated concurrently,
terminating normally only if they both do, when the pair of results returned individ-
ually by each is returned.

In the case of CSP a functional programming language CSPM incorporating
CSP processes has been given by Scattergood [31]; it is used by most existing
CSP tools including the Failures Divergences Refinement Checker (FDR), see [28].
Scattergood’s CPSM differs from our proposal in several respects. Most signifi-
cantly, processes are not treated on a par with other expressions: in particular, they
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cannot be taken as arguments in functions, and CSP constructors and deconstructors
are only available for processes. It remains to be seen if such differences are of
practical relevance.

In Section 15.3 we take deadlock, action, binary internal and external choice as
the constructors. We show, in Theorem 1, that, with the standard equational theory,
the initial algebra is the “finitary part” of the original Brookes-Hoare-Roscoe fail-
ures model [9]; which is known to be isomorphic to the finitary, divergence- and
�-free part of the failures/divergences model, as well as the finitary, divergence-
and �-free part of the stable failures model, both of which are described in [29].
In Section 15.4 we go on to consider effect deconstructors, arriving at the difficulty
with concealment and illustrating the problems with parallel operators in the (sim-
pler) context of Milner’s synchronisation trees. A reader interested in the problem
of dealing with parallel operators algebraically need only read this part, together
with [25].

We then backtrack in Section 15.5, making a different choice of constructors, as
discussed above, and giving another characterisation of the finitary failures model as
an initial algebra in Theorem 3. With that, we can carry out our programme, failing
only where expected: with the binary deconstructors. In Section 15.6 we add a zero
for the internal choice operator to our algebra; this can be interpreted as divergence
in the stable failures model, and permits the introduction of a useful additional de-
terministic external choice constructor. Armed with this tool, in Section 15.7, we
look at the combination of CSP and functional programming, following the lines
hinted at above. In order to give a denotational semantics we need, in Theorem 7, to
characterise the free algebras rather than just the initial one.

As remarked above, termination and sequencing are accommodated within func-
tional programming via the type unit; in Section 15.7.1 we therefore also give a
brief treatment of our fragment of CSP extended with termination and sequencing,
modelling it in the free algebra over the one-point set.

Section 15.8 contains a brief discussion of the general question of combining
process calculi, or parallelism with a global store, with functional programming.
The case of CSP considered here is just one example of the many such possible
combinations. Throughout this paper we do not consider recursion; this enables us
to work within the category of sets. A more complete treatment would deal with
recursion working within, say, the category of !-cpos (i.e., partial orders with lubs
of increasing !-sequences) and continuous functions (i.e., monotone functions pre-
serving lubs of increasing !-sequences). This is discussed further in Section 15.8.
The appendix gives a short presentation of Moggi’s computational �-calculus.

15.2 Technical Preliminaries

We give a brief sketch of finitary equational theories and their free algebra mon-
ads. For a fuller explanation see, e.g., [2, 8]. Finitary equational theories Th are
derived from a given set of axioms, written using a signature ˙ consisting of a set
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of operation symbols op: n, together with their arities n � 0. One forms terms t
from the signature and variables and the axioms then consist of equations t D u
between the terms; there is a natural equational logic for deducing consequences of
the axioms; and the theory consists of all the equations derivable from the axioms.
A ground equation is one where both terms are closed, meaning that they contain
no variables.

For example, we might consider the fragment of CSP with signature � W 2,
Stop W0 and the following axioms for a semilattice (the first three axioms) with
a zero (the last):

Associativity .x � y/� z D x � .y � z/
Commutativity x � y D y � x
Idempotence x � x D x
Zero x � Stop D x

A ˙-algebra is a structure A D .X; .opA W Xn ! X/opWn2˙ /; we say that X is the
carrier ofA and the opA are its operations. We may omit the subscript on operations
when the algebra is understood. When we are thinking of an algebra as an algebra
of processes, we may say “operator” rather than “operation.” A homomorphism
between two algebras is a map between their carriers respecting their operations;
we therefore have a category of ˙-algebras.

Given such a ˙-algebra, every term t has a denotation ŒŒt��.�/, an element of the
carrier, given an assignment � of elements of the carrier to every variable; we often
confuse terms with their denotation. The algebra satisfies an equation t D u if t
and u have the same denotation for every such assignment. If A satisfies all the
axioms of a theory Th, it is called a Th-algebra; the Th-algebras form a subcategory
of the category of ˙-algebras. Any equation provable from the axioms of a theory
Th is satisfied by any Th-algebra. We say that a theory Th is (ground) equationally
complete with respect to a Th-algebra if a (ground) equation is provable from Th if,
and only if, it is satisfied by the Th-algebra.

Any finitary equational theory Th determines a free algebra monad TTh on the cat-
egory of sets, as well as operations

opX WTTh.X/n ! TTh.X/

for any set X and op: n 2 ˙ , such that .TTh.X/; .opX WXn ! X/opWn2˙ / is the free Th-
algebra over X. Although TTh.X/ is officially just a set, the carrier of the free algebra,
we may also use TTh.X/ to denote the free algebra itself. In the above example the
monad is the finite powerset monad:

F.X/ D fu � X j u is finiteg

with �X and StopX being union and the empty set, respectively.
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15.3 A First Attempt at Analysing CSP

We consider the fragment of CSP with deadlock, action prefix, internal and external
choice, relabelling and concealment, and concurrency and interleaving. Working
over a fixed alphabet A of actions, we consider the following operation symbols:

Deadlock
Stop W0

Action
a! 
W1 .a 2 A/

Internal and External Choice

u;� W2

Relabelling and Concealment

f .
/;
na W1

for any relabelling function f W A ! A and action a. If A is infinite, this makes the
syntax infinitary; as that causes us no problems, we do not avoid it.

Concurrency and Interleaving

jj; jjj W2

The signature of our (first) equational theory CSP .�/ for CSP only has oper-
ation symbols for the subset of these operators, which are naturally thought of as
constructors, namely deadlock, action and internal and external choice. Its axioms
are those given by de Nicola in [10]. They are largely very natural and modular, and
are as follows:

� �;Stop is a semilattice with a zero (i.e., the above axioms for a semilattice with
a zero).
� u is a semilattice (i.e., the axioms stating the associativity, commutativity and

idempotence of u).
� � and u distribute over each other:

x � .y u z/ D .x � y/ u .x � z/ x u .y � z/ D .x u y/� .x u z/

� Actions distribute over u:

a! .x u y/ D a! x u a! y

and:
a! x � a! y D a! x u a! y
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All these axioms are mathematically natural except the last which involves a
relationship between three different operators.

We adopt some useful standard notational abbreviations. For n � 1 we write�n
iD1 ti to abbreviate t1 u : : : u tn, intending t1 when n D 1. We assume that paren-

theses associate to the left; however as u is associative, the choice does not matter.
As u is a semilattice, we can even index over nonempty finite sets, as in

�
i2I ti,

assuming some standard ordering of the ti without repetitions. As � is a semilat-
tice with a zero, we can adopt analogous notations

�n
iD1 ti and

�
i2I ti but now also

allowing n to be 0 and I to be ;.
Asu is a semilattice we can define a partial order for which it is the greatest lower

bound by writing t v u as an abbreviation for t u u D t; then, as � distributes
over u, it is monotone with respect to v: that is, if x v x0 and y v y0 then x �
y v x0 � y0. (We mean all these in a formal sense, for example, that if t v u and
u v v are provable, so is t v v, etc.) We note the following, which is equivalent
to the distributivity of u over �, given that u and � are semilattices, and the other
distributivity, that � distributes over u:

x u .y � z/ D x u .y � z/ u .x � y/ (15.1)

The equation can also be written as xu .y � z/ v .x � y/. Using this one can derive
another helpful equation:

.x � a! z/ u .y � a! w/ D .x � a! .z u w// u .y � a! .z u w// (15.2)

We next rehearse the original refusal sets model of CSP, restricted to finite pro-
cesses without divergence; this provides a convenient context for identifying the
initial model of CSP .�/ in terms of failures.

A failure (pair) is a pair .w;W/ with w 2 A� and W �fin A. For every set F of
failure pairs, we define its set of traces to be

trF D fw j .w;;/ 2 Fg

and for every w 2 trF we define its set of futures to be:

futF.w/ D fa j wa 2 trFg

With that a refusal set F (aka a failure set) is a set of failure pairs, satisfying the
following conditions:

1. " 2 trF

2. wa 2 trF ) w 2 trF

3. .w;W/ 2 F ^ V � W ) .w;V/ 2 F
4. .w;W/ 2 F ^ a … futF ) .w;W [ fag/ 2 F

A refusal set is finitary if its set of traces is finite.
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The collection of finitary refusal sets can be turned into a CSP .�/-algebra Rf by
the following standard definitions of the operators:

StopRf D f.";W/ j W �fin Ag
a!Rf F D f.";W/ j a … Wg [ f.aw;W/ j .w;W/ 2 Fg
F uRf G D F [ G
F �Rf G D f.";W/ j .";W/ 2 F \Gg [ f.w;W/ j w ¤ "; .w;W/ 2 F [Gg

The other CSP operation symbols also have standard interpretations over the collec-
tion of finitary refusal sets:

f .F/ D f.f .w/;W/ j .w; f�1.W/ \ futF.w// 2 Fg
Fna D f.wna;W/ j .w;W [ fag/ 2 Fg
F jj G D f.w;W [ V/ j .w;W/ 2 F; .w;V/ 2 Gg
F jjj G D f.w;W/ j .u;W/ 2 F; .v;W/ 2 G; w 2 u jvg

with the evident action of f on sequences and sets of actions, and where wna is
obtained from w by removing all occurrences of a, and where u j v is the set of
interleavings of u and v.

Lemma 1. Let F be a finitary refusal set. Then for every w 2 trF there are
V1; : : : ;Vn � futF.w/, including futF.w/, such that .w;W/ 2 F iff W \ Vi D ;
for some i 2 f1; : : : ; ng.
Proof. The closure conditions imply that .w;W/ is in F iff .w;W \ futF.w// is.
Thus we only need to be concerned about pairs .w;W/ with W � futF.w/. Now, as
futF.w/ is finite, for any relevant .w;W/ 2 F, of which there are finitely many, we
can take V to be futF.w/nW, and we obtain finitely many such sets. As .w;;/ 2 F,
these include futF.w/. ut
Lemma 2. All finitary refusal sets are definable by closed CSP .�/ terms.

Proof. Let F be a finitary refusal set. We proceed by induction on the length of
the longest trace in F. By the previous lemma there are sets V1; : : : ;Vn, including
futF."/, such that .";W/ 2 F iff W \ Vi D ; for some i 2 f1; : : : ; ng. Define Fa, for
a 2 futF."/, by:

Fa D f.w;W/ j .aw;W/ 2 Fg
Then it is not hard to see that each Fa is a finitary refusal set, and that

F D
�

i

�

a2Vi

a! Fa

As the longest trace in Fa is strictly shorter than the longest one in F, the proof
concludes, employing the induction hypothesis. ut
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We next recall some material from de Nicola [10]. Let L be a collection of sets;
we say it is saturated if whenever L � L0 � S

L, for L 2 L then L0 2 L. Then a
closed CSP .�/-term t is in normal form if it is of the form:

�

L2L

�

a2L

a! ta

where L is a finite non-empty saturated collection of finite sets of actions and
each term ta is in normal form. Note that the concept of normal form is defined
recursively.

Proposition 1. CSP .�/ is ground equationally complete with respect to Rf .

Proof. Every term is provably equal in CSP .�/ to a term in normal form. For the
proof, follow that of Proposition A6 in [10]; alternatively, it is a straightforward
induction in which Eqs. 15.1 and 15.2 are helpful. Further, it is an immediate conse-
quence of Lemma 4.8 in [10] that if two normal forms have the same denotation in
Rf then they are identical (and Lemma 6 below establishes a more general result).
The result then follows. ut
Theorem 1. The finitary refusal sets algebra Rf is the initial CSP .�/ algebra.

Proof. Let the initial such algebra be I. There is a unique homomorphism h W I !
Rf . By Lemma 2, h is a surjection. By the previous proposition, Rf is complete for
equations between closed terms, and so h is an injection. So h is an isomorphism,
completing the proof. ut

15.4 Effect Deconstructors

In the algebraic theory of effects, the semantics of effect deconstructors, such as
exception handlers, is given using homomorphisms from free algebras. In this case
we are interested in TCSP .�/.;/. This is the initial CSP .�/ algebra, Rf , so given a
CSP .�/ algebra:

A D .TCSP .�/.;/;uA;StopA; .a!A/;�A/

there is a unique homomorphism:

h WRf ! A

Relabelling We now seek to define f .
/ W TCSP .�/.;/ ! TCSP .�/.;/ homomor-
phically. Define an algebra Rl on TCSP .�/.;/ by putting, for refusal sets F;G:
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StopRl D StopRf

.a!Rl F/ D .f .a/!Rf
F/

F uRl G D F uRf
G F �Rl G D F �Rf

G

One has to verify this gives a CSP .�/-algebra, which amounts to verifying that the
two action equations hold, for example that, for all F;G:

a!Rl .F uRl G/ D .a!Rl F/ uRl .a!Rl G/

which is equivalent to:

f .a/!Rf
.F uRf

G/ D .f .a/!Rf
F/ uRf

.f .a/!Rf
G/

We therefore have a unique homomorphism

Rf
hRl
! Rl

and so the following equations hold over the algebra Rf :

hRl.Stop/ D Stop

hRl.a! F/ D f .a/! hRl.F/

hRl.F u G/ D hRl.F/ u hRl.G/ hRl.F � G/ D hRl.F/� hRl.G/

Informally one can use these equations to define hRl by a “principle of equational
recursion,” but one must remember to verify that the implicit algebra obeys the
required equations.

We use hRl to interpret relabelling. We then immediately recover the familiar
CSP laws:

f .Stop/ D Stop

f .a! x/ D f .a/! f .x/

f .x u y/ D f .x/ u f .y/ f .x � y/ D f .x/� f .y/

which we now see to be restatements of the homomorphism of relabelling.

Concealment There is a difficulty here. We do not have that

.F � G/na D Fna � Gna

but rather have the following two equations (taken from [10]):

..a! F/� G/na D Fna u ..F � G/na/ (15.3)



15 On CSP and the Algebraic Theory of Effects 343
 

n�

iD1
aiFi

!-

a D
n�

iD1
ai.Fina/ (15.4)

where no ai is a. Furthermore, there is no direct definition of concealment via an
equational recursion, i.e., there is no suitable choice of algebra, �A etc. For, if there
were, we would have:

.F � G/na D Fna �A Gna (15.5)

So if a does not occur in any trace of F0 or G0 we would have:

F0 �A G0 D F0na �A G0na
D .F0 � G0/na
D F0 � G0

but, returning to Eq. 15.5, a certainly does not occur in any trace of Fna or Gna and
so we would have:

.F � G/na D Fna �A Gna
D Fna �Rf

Gna
which is false. It is conceivable that although there is no direct homomorphic defi-
nition of concealment, there may be an indirect one where other functions (possibly
with parameters – see below) are defined homomorphically and concealment is de-
finable as a combination of those.

15.4.1 Concurrency Operators

Before trying to recover from the difficulty with concealment, we look at a fur-
ther difficulty, that of accommodating binary deconstructors, particularly parallel
operators. We begin with a simple example in a strong bisimulation context, but
rather than a concurrency operator in the style of CCS we consider one analogous
to CSP’s jj.

We take as signature a unary action prefix, a:
, for a 2 A, a nullary NIL and
a binary sum C. The axioms are that C is a semilattice with zero NIL ; the initial
algebra is then that of finite synchronisation trees ST . Every synchronisation tree �
has a finite depth and can be written as

nX

iD1
ai:�i

for some n� 0, where the �i are also synchronisation trees (of strictly smaller depth),
and where no pair .ai; �i/ occurs twice. The order of writing the summands makes
no difference to the tree denoted.
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One can define a binary synchronisation operator jj on synchronisation trees � DP
i ai:�i and � 0 DPj bj:�j by induction on the depth of � (or � 0):

� jj � 0 D
X

aiD bj

ai:.�i jj � 0j /

Looking for an equational recursive definition of jj, one may try a “mutual (paramet-
ric) equational recursive definition” of jj and a certain family jja with x; y; z varying
over ST :

NIL jj z D NIL
.xC y/ jj z D .x jj z/C .y jj z/

a:x jj z D x jja z

and
z jja NIL D NIL

z jja .xC y/ D .z jja x/C .z jja y/

z jja b:x D
�

a:.z jj x/ .if b D a/
NIL .if b ¤ a/

Unfortunately, this definition attempt is not an equational recursion. Mutual
(parametric) equational recursions are single ones to an algebra on a product.
Here we wish a map: ST ! ST �ST . Informally we would write such clauses as:

h.xC y/ jj z; z jja .xC y/i D h.x jj z/C .y jj z/; .z jja x/C .z jja y/i

with the recursion variables, here x; y, on the left for jj and on the right for jja.
However:

ha:x jj z; z jja b:xi D
� hx jja z; a:.z jj x/i .if b D a/
hx jja z; NIL i .if b ¤ a/

does not respect this discipline: the recursion variable, here x, (twice) switches
places with the parameter z.

We are therefore caught in a dilemma. One can show, by induction on the depth
of synchronisation trees, that the above definitions, viewed as equations for jj and jja
have a unique solution: the expected synchronisation operator jj, and the functions
jja defined on synchronisation trees � and � 0 DPj bj:�j by:

� jja � 0 D
X

bjD a

a:.� jj �j/

So we have a correct definition not in equational recursion format. So we must find
either of the following:

� A different correct definition in the equational recursion format
� Another algebraic format into which the correct definition fits
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When we come to the CSP parallel operator we do not even get as far as we did
with synchronisation trees. The problem is like that with concealment: the distribu-
tive equation:

.F � F0/ jj G D .F jj G/� .F0 jj G/
does not hold. One can show that there is no definition of jj analogous to the above
one for synchronisation trees, i.e., there is no suitable choice of algebra, �A etc, and
functions jja. The reason is that there is no binary operator �0 on (finitary) failure
sets such that, for all F;G;H we have:

.F � F0/ jj G D .F jj G/�0 .F0 jj G/

For suppose, for the sake of contradiction, that there is such an operator. Then, fixing
F and F0, choose G such that F jj G D F, F0 jj G D F0 and .F�F0/ jj G D .F�F0/.
Then, substituting into the above equation, we obtain that F � F0 D F �0 F0 and so
the above equation yields distributivity, which, in fact, does not hold. As in the case
of concealment, there may nonetheless be an indirect definition of jj.

A similar difficulty obtains for the CSP interleaving operator. It too does not
commute with �, and it too does not have any direct definition (the argument is like
that for the concurrency operator but a little simpler, taking G D Stop). As in the
case of the concurrency operator, there may be an indirect definition.

15.5 Another Choice of CSP Effect Constructors

Equations 15.3 and 15.4 do not immediately suggest a recursive definition of con-
cealment. However, one can show that, for distinct actions ai (iD 1; n), the following
equation holds between refusal sets:

 
n�

iD1
ai ! Fi

!-

aj D
�
Fjnaj

� u
 
�
Fjnaj

�
�

�

i¤j

ai !
�
Finaj

�
!

where 1 � j � n. Taken together with Eq. (15.4), this suggests a recursive definition
in terms of deterministic external choice. We therefore now change our choice of
constructors, replacing binary external choice, action prefix and deadlock by deter-
ministic external choice.

So as our second signature for CSP we take a binary operation symbol u of
internal choice and, for any deterministic action sequence a (i.e., any sequence of
actions ai (i D 1; n), with the ai all different and n � 0), an n-ary operation symbol�

a of deterministic external choice. We write
�

a.t1; : : : ; tn/ as
�n

iD1 aiti although it
is more usual to use Hoare’s notation .a1 ! t1 j � � � j an ! tn/; we also use Stop
to abbreviate

�
a./.
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We have the usual semilattice axioms for u. Deterministic external choice is
commutative, in the sense that:

�

i

aixi D
�

i

a�.i/x�.i/

for any permutation� of f1; : : : ; ng. Given this, we are justified in writing determin-
istic external choices over finite, possibly empty, sets of actions,

�
a2I ata, assuming

some standard ordering of pairs .a; ta/ without repetitions.
For the next axiom it is convenient to write .a1 ! t1/ �

�n
iD2 aiti for

�n
iD1 aiti

(for n � 0). The axiom states that deterministic external choice distributes over
internal choice:

.a1 ! .xux0// �

n�

iD2
aixi D

 

.a1 ! x/ �

n�

iD2
aixi

!

u
 

.a1 ! x0/ �

n�

iD2
aixi

!

This implies that deterministic external choice is monotone with respect to v.
We can regard a, possibly nondeterministic, external choice, in which the ai need

not be all different, as an abbreviation for a deterministic one, via:

�

i

aiti D
�

b2fa1;:::;ang
b

0

@
�

aiDb

ti

1

A (15.6)

With that convention we may also write a1 ! t1 �
�n

iD2 aiti even when a1 is some
ai, for i > 1. We can now write our final axiom:

 
�

i

aixi

!

u
0

@.b1 ! y1/�
n�

jD2
bjyj

1

A v .b1 ! y1/ �
�

i

aixi (15.7)

Restricting the external choice .b1 ! y1/ �
�

j bjyj to be deterministic gives an
equivalent axiom, as does restricting

�
i aixi (in the presence of the others).

Let us call this equational theory CSP.j/. The finitary refusal sets form a CSP.j/-
algebra Rdf with the evident definitions:

F uRdf
G D F [G

��
a
�
Rdf

.F1; : : : ;Fn/ D f.";W/ j W \ fa1; : : : ; ang D ;g
[ f.aiw;W/ j .w;W/ 2 Fig

Theorem 2. The finitary refusal sets algebra Rdf is complete for equations
between closed CSP.j/ terms.

Proof. De Nicola’s normal form can be regarded as written in the signature of
CSP.j/, and a straightforward induction proves that every CSP.j/ term can be
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reduced to such a normal form using the above axioms. But two such normal forms
have the same denotation whether they are regarded as CSP .�/ or as CSP.j/ terms,
and in the former case, by Lemma 4.8 of [10], they are identical. ut
Theorem 3. The finitary refusal sets algebra Rdf is the initial CSP.j/ algebra.

Proof. Following the proof of Lemma 2 we see that every finitary refusal set is
definable by a closed CSP.j/ term. With that, initiality follows from the above com-
pleteness theorem, as in the proof of Theorem 1. ut

Turning to the deconstructors, relabelling again has a straightforward homomor-
phic definition: given a relabelling function f WA! A, hRl WTCSP.j/.;/! TCSP.j/.;/
is defined homomorphically by:

hRl.F uG/ D hRl.F/ u hRl.G/

hRl

 
�

i

aiFi

!

D
�

i

f .ai/hRl.Fi/

As always one has to check that the implied algebra satisfies the equations, here
those of CSP.j/.

There is also now a natural homomorphic definition of concealment, 
na, but,
surprisingly perhaps, one needs to assume that � is available. For every a 2 A one
defines ha WTCSP.j/.;/! TCSP.j/.;/ homomorphically by:

ha.F u G/ D ha.F/ u ha.G/

ha

 
n�

iD1
aiFi

!

D
(

ha.Fj/ u .ha.Fj/�
�

i¤j aiha.Fi// .if a D aj; j 2 f1 : : : ng
�n

iD1 aiha.Fi/ .if a ¤ any ai/

Verifying that the implicit algebra obeys satisfies the required equations is quite a
bit of work. We record the result, but omit the calculations:

Proposition 2. One can define a CSP.j/-algebra Con on TCSP.j/.;/ by:

F uCon G D F u G

.
�

a/Con.F1; : : : ;Fn/ D
(

Fj u .Fj �
�

i¤j aiFi/ .if a D aj/�
i aiFi .if a ¤ any ai/

The operator � is, of course, no longer available as a constructor. However, it can
alternatively be treated as a binary deconstructor. While its treatment as such is no
more successful than our treatment of parallel operators, it is also no less success-
ful. We define it simultaneously with .nC 1/-ary functions �a1:::an on TCSP.j/.;/, for
n � 0, where the ai are all distinct. That we are defining infinitely many functions
simultaneously arises from dealing with the infinitely many deterministic choice
operators (there would be be infinitely many even if we considered them as param-
eterised on the a’s). However, we anticipate that this will cause no real difficulty,
given that we have overcome the difficulty of dealing with binary deconstructors.
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Here are the required definitions:

.F u F0/� G D .F � G/ u .F0 � G/
 

�

i

aiFi

!

� G D .F1; : : : ;Fn/�
a1:::an G

.F1; : : : ;Fn/�a1:::an .G uG0/ D ..F1; : : : ;Fn/�
a1:::an G/

u ..F1; : : : ;Fn/�a1:::an G0/ (15.8)

.F1; : : : ;Fn/�
a1:::an

0

@
�

j

bjGj

1

A D .a1 ! F1/

�
�
: : :
�
.an ! Fn/�

�
j bjGj

�
: : :
�

where, in the last equation, the notational convention .a1 ! t1/�
�n

iD2 aiti is used
n times. It is clear that � together with the functions

�a1:::an WTCSP.j/.;/nC1 ! TCSP.j/.;/

defined by:

�a1:::an.F1; : : : ;Fn;G/ D
 

�

i

aiFi

!

� G (15.9)

satisfy the equations, and, using the fact that all finitary refusal sets are definable by
normal forms, one sees that they are the unique such functions.

We can treat the CSP parallel operator jj in a similar vein following the pattern
given above for parallel merge operators in the case of synchronisation trees. We
define it simultaneously with .nC 1/-ary functions jja1:::an on TCSP.j/.;/, for n � 0,
where the ai are all distinct:

.F u F0/ jj G D .F jj G/ u .F0 jj G/
 

�

i

aiFi

!

jj G D .F1; : : : ;Fn/ jja1:::an G

.F1; : : : ;Fn/ jja1:::an .G u G0/ D ..F1; : : : ;Fn/ jja1:::an G/

u ..F1; : : : ;Fn/�
a1:::an G0/ (15.10)

.F1; : : : ;Fn/ jja1:::an

0

@
�

j

bjGj

1

A D
�

aiDbj

ai.Fi jj Gj/

Much as before, jj together with the functions jja1:::anW TCSP.j/.;/nC1 ! TCSP.j/.;/
defined by:

jja1:::an .F1; : : : ;Fn;G/ D
 

�

i

aiFi

!

jj G

are the unique functions satisfying the equations.
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Finally, we consider the CSP interleaving operator jjj. We define this by
following an idea, exemplified in the ACP literature [4, 5], of splitting an asso-
ciative operation into several parts. Here we split jjj into a left interleaving operator
jjjl and a right interleaving operator jjjr so that:

F jjj G D .F jjjl G/� .F jjjr G/

In ACP the parallel operator is split into three parts: a left merge, a right merge
(defined in terms of the left merge), and a communication merge; in a subtheory,
PA, there is no communication, and the parallel operator, now an interleaving one,
is split into left and right parts [5]. The idea of splitting an associative operation into
several operations can be found in a much wider context [11] where the split into
two or three parts is axiomatised by the respective notions of dendriform dialgebra
and trialgebra.

Our left and right interleaving are defined by the following “binary deconstruc-
tor” equations:

.F u F0/ jjjl G D .F jjjl G/ u .F0 jjjl G/
 

n�

iD1
aiFi

!

jjjl G D
�

i

ai..Fi jjjl G/� .Fi jjjr G//

G jjjr .F u F0/ D .G jjjr F/ u .G jjjr F0/

G jjjr
 

n�

iD1
aiFi

!

D
�

i

ai..G jjjl Fi/� .G jjjr Fi// (15.11)

As may be expected, these equations also have unique solutions, now given by:

F jjjl G D f.";W/ j .";W/ 2 Fg [ f.w;W/ j .u;W/ 2 F; .v;W/ 2 G; w 2 u jl vg
F jjjr G D f.";W/ j .";W/ 2 Gg [ f.w;W/ j .u;W/ 2 F; .v;W/ 2 G; w 2 u jr vg

where u jl v is the set of interleavings of u and v which begin with a letter of u, and
u jr v is defined analogously. It is interesting to note that:

F jjjl .G uG0/ D .F jjjl G/ u .F jjjl G0/

and similarly for jjjr.

15.6 Adding divergence

The treatment of CSP presented thus far dealt with finite divergence-free processes
only. There are several ways to extend the refusal sets model of Section 15.3 to
infinite processes with divergence. The most well-known model is the failures/
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divergences model of [13], further elaborated in [29]. A characteristic property of
this model is that divergence, i.e., an infinite sequence of internal actions, is mod-
elled as Chaos, a process that satisfies the equation:

Chaos � x D Chaosu x D Chaos (15.12)

So after Chaos no further process activity is discernible.
An alternative extension is the stable failures model proposed in [6], and also

elaborated in [29]. This model equates processes that allow the same observations,
where actions and deadlock are considered observable, but divergence does not give
rise to any observations. A failure pair .w;W/ – now allowing W to be infinite –
records an observation in which w represents a sequence of actions being observed,
and W represents the observation of deadlock under the assumption that the environ-
ment in which the observed process is running allows only the (inter)actions in the
set W. Such an observation can be made if after engaging in the sequence of visible
actions w, the observed process reaches a state in which no further internal actions
are possible, nor any actions from the set W. Besides failure pairs, also traces are
observable, and thus the observable behaviour of a process is given by a pair .T;F/
where T is a set of traces and F is a set of failure pairs. Unlike the model Rf of
Section 15.3, the traces are not determined by the failure pairs. In fact, in a process
that can diverge in every state, the set of failure pairs is empty, yet the set of traces
conveys important information.

In the remainder of this paper we add a constant˝ to the signature of CSP that is
a zero for the semilattice generated by u. This will greatly facilitate the forthcoming
development. Intuitively, one may think of ˝ as divergence in the stable failures
model.

With respect to the equational theory CSP .�/ of Section 15.3 we thus add the
constant˝ and the single axiom:

x u˝ D x (15.13)

thereby obtaining the theory CSP .�;˝/. We note two useful derived equations:

x u .˝ � y/ D x u .x � y/

.˝ � x/ u .˝ � y/ D .˝ � x/� .˝ � y/ (15.14)

Semantically, a process is now given by a pair .T;F/, where T is a set of traces
and F is a set of failure pairs that satisfy the following conditions:

1. " 2 T
2. wa 2 T ) w 2 T
3. .w;W/ 2 F) w 2 T
4. .w;W/ 2 F ^ V � W ) .w;V/ 2 F
5. .w;W/ 2 F ^ 8 a 2 V:wa … T ) .w;W [ V/ 2 F .where V � A/
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The two components of such a pair P are denoted TP and FP, respectively, and for
w 2 TP we define futP.w/ WD fa 2 A j wa 2 TPg. We can define the CSP operators
on processes by setting

P op Q D .P opT Q;P opR Q/

where opT is given by:

StopT D f"g
a!T P D f"g [ faw j w 2 TPg
P uT Q D TP [ TQ

P �T Q D TP [ TQ

fT .P/ D ff .w/ j w 2 TPg
PnT a D fwna j w 2 TPg
P jjT Q D fw j w 2 TP; w 2 TQg
P jjjT Q D fw j u 2 TP; v 2 TQ; w 2 u jvg

and opR is given as opRf
was in Section 15.3, but without the restriction to finite

sets W in defining StopR. For the new process˝ we set

˝T D f"g and ˝R D ;

This also makes the collection of processes into a CSP .�;˝/-algebra, F .
A process P is called finitary if TP is finite. The finitary processes evidently form

a subalgebra of F ; we call it Ff .

Lemma 3. Let P be a finitary process. Then, for every w 2 TP there is an n � 0 and
V1; : : : ;Vn � futF.w/ such that .w;W/ 2 FP iff W\Vi D ; for some i 2 f1; : : : ; ng.
Proof. Closure conditions 4 and 5 above imply that .w;W/ 2 FP if, and only if,
.w;W \ futP.w// 2 FP. Thus we only need to be concerned about pairs .w;W/
with W � futP.w/. Now, as futP.w/ is finite, for any relevant .w;W/ 2 F, of which
there are finitely many, we can take V to be futP.w/nW, and we obtain finitely many
such sets. ut
Note that it may happen that n D 0, in contrast with the case of Lemma 1.

Lemma 4. All finitary processes are definable by closed CSP .�;˝/ terms.

Proof. Let P be a finitary process. We proceed by induction on the length of the
longest trace in TP. By the previous lemma there are sets V1; : : : ;Vn, for some n � 0,
such that .";W/ 2 F iff W \ Vi D ; for some i 2 f1; : : : ; ng. Define Ta and Fa, for
a 2 TP, by:

Ta D fw j aw 2 TPg Fa D f.w;W/ j .aw;W/ 2 FPg
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Then it is not hard to see that each Pa WD .Ta;Fa/ is a finitary process, and that

P D
 

�

i

�

a2Vi

a! Pa

!

u
 

˝ �
�

a2TP

a! Pa

!

As the longest trace in Ta is strictly shorter than the longest one in TP, the proof
concludes, employing the induction hypothesis. ut
Proposition 3. CSP .�;˝/ is ground equationally complete with respect to both
F and Ff .

Proof. This time we recursively define a normal form as a CSP .�;˝/-term of the
form �

L2L

�

a2L

a! ta or ˝ �
�

a2K

a! ta

where L is a finite non-empty saturated collection of finite sets of actions, K is a
finite set of actions, and each term ta is in normal form. Every term is provably equal
in CSP .�;˝/ to a term in normal form; the proof proceeds as for Proposition 1,
but now also using the derived equations (15.14). Next, by Lemma 6 below, if two
normal forms have the same denotation in F then they are identical. So the result
follows for F , and then for Ff too, as all closed terms denote finitary processes. ut
Theorem 4. The algebra Ff of finitary processes is the initial CSP .�;˝/ algebra.

Proof. Let the initial such algebra be I. There is a unique homomorphism h W I! Ff .
By Lemma 4, h is a surjection. By the previous proposition, Ff is complete for
equations between closed terms, and so h is an injection. Hence h is an isomorphism,
completing the proof. ut

As in Section 15.5, in order to deal with deconstructors, particularly hiding,
we replace external choice by deterministic external choice. The availability of ˝
permits useful additional such operators. The equational theory CSP.j;˝/ has as
signature the binary operation symbol u, and for any deterministic action sequence
a, the n-ary operation symbols

�
a (as in Section 15.5), as well as the new n-ary

operation symbols
�˝

a , for n � 0, which denote a deterministic external choice
with ˝ as one of the summands. We adopt conventions for

�˝
a analogous to those

previously introduced for
�

a.t1; : : : ; tn/. We write
�˝

a .t1; : : : ; tn/ as˝�
�n

iD1 aiti.
We also write ˝ � .c1 ! t1/�

�n
jD2 cjtj for˝ �

�n
jD1 cjtj, so that the cj (j D 1; n)

must all be distinct.
The first three groups of axioms of CSP.j;˝/ are:

� u;˝ Is a semilattice with a zero – here ˝ is the 0-ary case of
�˝

a ,
� Both deterministic external choice operators

�
a and

�˝
a are commutative, as

explained in Section 15.5
� Both deterministic external choice operators distribute over internal choice, as

explained in Section 15.5,
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Given commutativity, we are, as before, justified in writing deterministic external
choices

�
a2I ata or ˝ �

�
a2I ata, over finite, possibly empty, sets of actions I,

assuming some standard ordering of pairs .a; ta/ without repetitions. Next, using
the analogous convention to (15.6) we can then also understand˝ �

�n
jD1 cjtj, and

so also ˝ � .c1 ! t1/�
�n

jD2 cjtj, even when the cj are not all distinct. With these
conventions established, we can now state the final group of axioms. These are all
variants of Axiom (15.7) of Section 15.5, allowing each of the two deterministic
external choices to have an ˝-summand:

 

˝ �
�

i

aixi

!

u
0

@˝ � .b1! y1/�

n�

jD2
bjyj

1

A v ˝ � .b1! y1/�
�

i

aixi

 

˝ �
�

i

aixi

!

u
0

@.b1 ! y1/�

n�

jD2
bjyj

1

A v ˝ � .b1 ! y1/�
�

i

aixi

 
�

i

aixi

!

u
0

@˝ � .b1! y1/�

n�

jD2
bjyj

1

A v .b1 ! y1/�
�

i

aixi

 
�

i

aixi

!

u
0

@.b1! y1/�

n�

jD2
bjyj

1

A v .b1 ! y1/�
�

i

aixi (15.15)

As in the case of Axiom (15.7), restricting any of these choices to be deterministic
results in an axiom of equivalent power. We note two useful derived equations:

�

i

aixi u
0

@˝ �
�

j

bjyj

1

A D
�

i

aixi u
0

@
�

i

aixi �
�

j

bjyj

1

A

 

˝ �
�

i

aixi

!

u
0

@˝ �
�

j

bjyj

1

A D
 

˝ �
�

i

aixi

!

�
�

j

bjyj (15.16)

where two further notational conventions are used: .
�m

iD1 aiti/ � .
�n

jD1 bjt0j/ stands
for

�mCn
kD1 ckt00k where ck D ak and t00k D tk, for k D 1;m, and ck D bk�m, and

t00k D t0k�m, for k D mC1;mCn; and .˝ �
�m

iD1 aiti/ � .
�n

jD1 bjt0j/ is understood
analogously. In fact, the first three axioms of (15.15) are also derivable from (15.16),
in the presence of the other axioms, and thus may be replaced by (15.16).

The collection of processes is turned into a CSP.j;˝/-algebra Fd as before,
writing:

P opFd
Q D .P opTd

Q;P opRd
Q/
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and defining opTd
and opRd

in the evident way:

P uTd
Q D TP [ TQ��

a
�
Td
.P1; : : : ;Pn/ D f"g [ faiw j w 2 TPig��˝

a

�

Td

.P1; : : : ;Pn/ D f"g [ faiw j w 2 TPig
��˝

a

�

Rd

.P1; : : : ;Pn/ D f.aiw;W/ j .w;W/ 2 FPig

with uRd and .
�

a/Rd
given just as in Section 15.5. Exactly as in Section 15.5, but

now using the derived equations (15.16), we obtain:

Theorem 5. The algebra Fd is complete for equations between closed CSP.j;˝/
terms.

Theorem 6. The finitary subalgebra Fdf of Fd is the initial CSP.j;˝/ algebra.

Turning to the deconstructors, relabelling and concealment can again be treated
homomorphically. For relabelling by f one simply adds the equation:

hRl

 

˝ �
�

i

aiFi

!

D ˝ �
�

i

f .ai/hRl.Fi/

to the treatment in Section 15.5, and checks that the implied algebra satisfies the
equations. Pleasingly, the treatment of concealment can be simplified in such a way
that the deconstructor � is no longer needed. For every a 2 A one defines ha W
TCSP.j;˝/.;/! TCSP.j;˝/.;/ homomorphically by:

ha.P u Q/ D ha.P/ u ha.Q/

ha

 
n�

iD1
aiPi

!

D
(

ha.Pj/ u .˝ �
�

i¤j aiha.Pi// .if a D aj; j 2 f1 : : : ng
�n

iD1 aiha.Pi/ .if a ¤ any ai/

ha

 

˝ �

n�

iD1
aiPi

!

D
(

ha.Pj/ u .˝ �
�

i¤j aiha.Pi// .if a D aj; j 2 f1 : : : ng
˝ �

�n
iD1 aiha.Pi/ .if a ¤ any ai/

Note the use of the new form of deterministic choice here. One has again to ver-
ify that the implicit algebra obeys satisfies the required equations. The treatment
of the binary deconstructors �, jj and jjj is also a trivial adaptation of the treat-
ment in Section 15.5. For � one adds a further auxiliary operator �˝;a1:::an and the
equations:

.˝ �
�

i

aiPi/� Q D .P1; : : : ;Pn/�
˝;a1:::an Q

.P1; : : : ;Pn/�
˝;a1:::an .Q uQ0/ D �

.P1; : : : ;Pn/�˝;a1:::an Q
�

u �.P1; : : : ;Pn/�˝;a1:::an Q0
�
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.P1; : : : ;Pn/�
˝;a1:::an

0

@
�

j

bjQj

1

A D
 

˝ �
�

i

aiPi

!

�
�

j

bjQj

.P1; : : : ;Pn/�
˝;a1:::an

0

@˝ �
�

j

bjQj

1

A D
 

˝ �
�

i

aiPi

!

�
�

j

bjQj

.P1; : : : ;Pn/�a1:::an

0

@˝ �
�

j

bjQj

1

A D
 

˝ �
�

i

aiPi

!

�
�

j

bjQj

For jj one adds the auxiliary operator jj˝;a1:::an and the equations:

 

˝ �
�

i

aiPi

!

jj Q D .P1; : : : ;Pn/ jj˝;a1:::an Q

.P1; : : : ;Pn/ jj˝;a1:::an
�
Q u Q0

� D �
.P1; : : : ;Pn/ jj˝;a1:::an Q

�

u �.P1; : : : ;Pn/�
˝;a1:::an Q0

�

.P1; : : : ;Pn/ jj˝;a1:::an

0

@
�

j

bjQj

1

A D ˝ �
�

aiDbj

ai
�
Pi jj Qj

�

.P1; : : : ;Pn/ jj˝;a1:::an

0

@˝ �
�

j

bjQj

1

A D ˝ �
�

aiDbj

ai
�
Pi jj Qj

�

.P1; : : : ;Pn/ jja1:::an

0

@˝ �
�

j

bjQj

1

A D ˝ �
�

aiDbj

ai
�
Pi jj Qj

�

Finally, for jjj one simply adds extra equations:

 

˝ �

n�

iD1
aiPi

!

jjjl Q D ˝ �
�

i

ai
��

Pi jjjl Q
�
� .Pi jjjr Q/

�

Q jjjr
 

˝ �

n�

iD1
aiPi

!

D ˝ �
�

i

ai
��

Q jjjl Pi
�
� .Q jjjr Pi/

�

15.7 Combining CSP and Functional Programming

To combine CSP with functional programming, specifically the computational
�-calculus, we use the monad TCSP.j;˝/ for the denotational semantics. As re-
marked above, CSP processes then become terms of type empty . However, as the
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constructors are polymorphic, it is natural to go further and look for polymorphic
versions of the deconstructors. We therefore add polymorphic constructs to �c as
follows:

Constructors

M W� N W�
M u N W�

M W�
a! M W� ˝ W�

Unary Deconstructors

M W�
f .M/ W�

M W�
Mna W�

for any relabelling function f , and any a 2 A. (One should really restrict the allow-
able relabelling functions in order to keep the syntax finitary.)

Binary Deconstructors

M W� N W�
M � N W�

M W� N W�
M jj N W� � �

M W� N W�
M jjj N W� � �

The idea of the two parallel constructs is to evaluate the two terms in parallel and
then return the pair of the two values produced. We did not include syntax for the
two deterministic choice constructors as they are definable from a! 
 and˝ with
the aid of the � deconstructor.

For the denotational semantics, the semantics of types is given as usual using
the monad TCSP.j;˝/, which we know exists by the general considerations of
Section 15.2. These general considerations also yield a semantics for the con-
structors. For example, for every set X we have the map:

uX WTCSP.j;˝/.X/2! TCSP.j;˝/.X/

which we can use for X D ŒŒ��� to interpret terms M u N W� .
The homomorphic point of view also leads to an interpretation of the unary de-

constructors, but using free algebras rather than just the initial one. For example, for
relabelling by f we need a function:

hRl WTCSP.j;˝/.X/! TCSP.j;˝/.X/

We obtain this as the unique homomorphism extending the unit �XWX!TCSP.j;˝/.X/,
equipping TCSP.j;˝/.X/ with the algebra structure

A D
�

TCSP.j;˝/.X/;uA;
�

A;
�˝

A

�
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where, for x; y 2 TCSP.j;˝/.X/,

x uA y D x uX y

��
a
�
A .x1; : : : ; xn/ D

��
f .a/

�

X
.x1; : : : ; xn/

and
��˝

a

�

A
.x1; : : : ; xn/ D

��˝
f .a/

�

X
.x1; : : : ; xn/

Concealment 
na can be treated analogously, but now following the treatment
in the case of Fdf , and defining A by:

x uA y D x uX y

for x; y 2 TCSP.j;˝/.X/,

.
�

a/A.x1; : : : ; xn/ D
(

xj u .˝ �
�

i¤j aixi/ .if a D aj; where 1 � j � n/
�n

iD1 aixi .if a ¤ any ai/

and

.
�˝

a /A.x1; : : : ; xn/ D
(

xj u .˝ �
�

i¤j aixi/ .if a D aj; where 1 � j � n/
˝ �

�n
iD1 aixi .if a ¤ any ai/

We here again make use of the deterministic choice operator made available by the
presence of ˝ .

However, we cannot, of course, carry this on to binary deconstructors as we have
no general algebraic treatment of them. We proceed instead by giving a concrete
definition of them (and the other constructors and deconstructors). That is, we give
an explicit description of the free CSP.j;˝/-algebra on a set X and define our oper-
ators in terms of that representation.

An X-trace is a pair .w; x/, where w 2 A� and x 2 X; it is generally more
suggestive to write .w; x/ as wx. For any relabelling function f , we set f .wx/ D
f .w/x, and, for any a 2 A, we set wxna D .wna/x. An X-process is a pair .T;F/
with T a set of traces as well as X-traces, and F a set of failure pairs, satisfying the
same five conditions as in Section 15.6, together with:

20. wx 2 T ) w 2 T .for x 2 X/

The CSP operators are defined on X-processes exactly as before, except that the
two parallel operators now have more general types:

jjX;Y; jjjX;YWTCSP.j;˝/.X/� TCSP.j;˝/.Y/! TCSP.j;˝/.X � Y/

We take futP.w/ WD fa 2 A j wa 2 TPg, as before.
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˝T .X/ Df�g
˝R.X/ D;
StopT .X/ Df"g
StopR.X/ Df.";W/ j W � Ag
a!T .X/ P Df"g [ faw j w 2 TPg
a!R.X/ P Df.";W/ j a … Wg [ f.aw;W/ j .w;W/ 2 FPg
P uT .X/ Q DTP [ TQ

P uR.X/ Q DFP [ FQ

P �T .X/ Q DTP [ TQ

P �R.X/ Q D f.";W/ j .";W/ 2 FP \ FQg
[ f.w;W/ j w ¤ "; .w;W/ 2 FP [ FQg

fT .X/.P/ Dff .w/ j w 2 TPg
fR.X/.P/ Df.f .w/;W/ j .w; f�1.W/\ futP.w// 2 FPg
PnT .X/a Dfwna j w 2 TPg
PnR.X/a Df.wna;W/ j .w;W [ fag/ 2 FPg
P jjT .X;Y/ Q Dfw j w 2 TP \ TQ \ A�g [ fw.x; y/ j wx 2 TP; wy 2 TQg
P jjR.X;Y/ Q Df.w;W [ V/ j .w;W/ 2 FP; .w;V/ 2 FQg
P jjjT .X;Y/ QD fw j u 2 TP \ A�; v 2 TQ \ A�; w 2 u jvg

[ fw.x; y/ j ux 2 TP; vy 2 TQ; w 2 u jvg
P jjjR.X;Y/ QDf.w;W/ j .u;W/ 2 FP; .v;W/ 2 FQ; w 2 u jvg

Here, much as before, we write P opF.X/ Q D .P opT .X/ Q;P opR.X/ Q/ when
defining the CSP operators on X-processes. The X-processes also form the carrier
of a CSP.j;˝/-algebra Fd.X/, with the operators defined as follows:

P uTd .X/ Q D TP [ TQ

P uRd .X/ Q DFP [ FQ��˝
a

�

Td .X/
.P1; : : : ;Pn/ Df"g [ faiw j w 2 TPig

��˝
a

�

Rd .X/
.P1; : : : ;Pn/Df.aiw;W/ j .w;W/ 2 FPig

��
a
�
Td .X/

.P1; : : : ;Pn/ Df"g [ faiw j w 2 TPig��
a
�
Rd .X/

.P1; : : : ;Pn/ Df.";W/ j W \ fa1; : : : ; ang D ;g [
f.aiw;W/ j .w;W/ 2 FPig

The finitary X-processes are those with a finite set of traces and X-traces; they form
the carrier of a CSP.j;˝/-algebra Fdf .X/.

We now show that Fdf .X/ is the free CSP.j;˝/-algebra over X. As is well
known, the free algebra of a theory Th over a set X is the same as the initial al-
gebra of the theory ThC obtained by extending Th with constants x for each x 2 X
but without changing the axioms. The unit map � WX ! TTh.X/ sends x 2 X to the
denotation of x in the initial algebra. We therefore show that Fdf .X/, extended to a
CSP.j;˝/C-algebra by taking

ŒŒx�� D .fxg;;/ .for x 2 X/

is the initial CSP.j;˝/C-algebra. We begin by looking at definability.
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Lemma 5. The finitary X-processes are those definable by closed CSP.j;˝/C
terms.

Proof. The proof goes just as the one for Lemma 4, using that Lemma 3 applies just
as well to finitary X-processes, but this time we have

P D
�

i

�

a2Vi

a! Pa u
 

˝ �
�

a2TP

a! Pa

!

u
�

x2TP

x ut

Next, we say that a closed CSP.j;˝/C-term t is in normal form if it is has one of
the following two forms:

�

L2L

�

a2L

ata u
�

x2J

x or

 

˝ �
�

a2K

ata

!

u
�

x2J

x

where, as appropriate, L is a finite non-empty saturated collection of finite sets of
actions, J �fin X, K �fin A, and each term ta is in normal form.

Lemma 6. Two normal forms are identical if they have the same denotation in
Fdf .X/.

Proof. Consider two normal forms with the same denotation in Fdf .X/, say .T;F/.
As .";;/ 2 F iff F is the denotation of a normal form of the first form (rather than
the second), both normal forms must be of the same form. Thus, there are two cases
to consider, the first of which concerns two forms:

�

L2L

�

a2L

ata u
�

x2J

x
�

L02L0

�

a02L0
a0t0a0 u

�

x2J0
x

We argue by induction on the sum of the sizes of the two normal forms. We evidently
have that J D J0. Next, if a 2 SL then a 2 T and so a 2 SL0; we therefore have
that

S
L � S

L0. Now, if L 2 L, then ."; .
S

L0/nL/ 2 F; so for some L0 2 L
we have L0 \ ..SL0/nL/ D ;, and so L0 � L. As L0 is saturated, it follows by the
previous remark that L 2 L0. So we have the inclusion L � L0 and then, arguing
symmetrically, equality.

Finally, the denotations of ta and t0a, for a 2 SL D S
L0 are the same, as they

are determined by T and F, being fw j aw 2 Tg and f.w;W/ j .aw;W/ 2 Fg, and
the argument concludes, using the inductive hypothesis.

The other case concerns normal forms:

 

˝ �
�

a2K

ata

!

u
�

x2J

x

 

˝ �
�

a02K0
a0t0a

!

u
�

x2J0
x

Much as before we find J D J0, K D K0, and ta D ta for a 2 K. ut
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Lemma 7. CSP.j;˝/C is ground complete with respect to Fdf .X/.

Proof. As before, a straightforward induction shows that every term has a normal
form, and then completeness follows by Lemma 6. ut
Theorem 7. The algebra Fdf .X/ is the free CSP.j;˝/-algebra over X.

Proof. It follows from Lemmas 5 and 7 that Fdf .X/C is the initial CSP.j;˝/C-
algebra. ut

As with any finitary equational theory, CSP.j;˝/ is equationally complete with
respect to Fdf .X/ when X is infinite. It is not difficult to go a little further and show
that this also holds when X is only required to be non-empty, and, even, if A is
infinite, when it is empty.

Now that we have an explicit representation of the free CSP.j;˝/-monad in
terms of X-processes, we indicate how to use it to give the semantics of the compu-
tational �-calculus. First we need the structure of the monad. As we know from the
above, the unit �X W X ! TCSP.j;˝/.X/ is the map x 7! .fxg;;/. Next, we need the
homomorphic extension g� WFdf .X/! Fdf .Y/ of a given map g WX ! Fdf .Y/, i.e.,
the unique such homomorphism making the following diagram commute:

X

TCSP.j;˝/.X/

�X

�
g�
� TCSP.j;˝/.Y/

g

�

This is given by:
�

g� .P/
�

T
D fv j v 2 TP \ A�g [ fvw j vx 2 TP; w 2 g .x/T g

�
g� .P/

�

R
D f.v;V/ 2 FPg [ f.vw;W/ j vx 2 TP; .w;W/ 2 g .x/Rg

As regards the constructors and deconstructors, we have already given explicit
representations of them as functions over (finitary) X-processes. We have also al-
ready given homomorphic treatments of the unary deconstructors. We finally give
treatments of the binary deconstructors as unique solutions to equations, along sim-
ilar lines to their treatment in the case of Fdf . Observe that:

��
a
�

X.P1; : : : ;Pn/ D a1P1 �X a2P2 �X : : : �X anPn
��˝

a

�

X
.P1; : : : ;Pn/ D ˝ �X a1P1 �X a2P2 �X : : :�X anPn



15 On CSP and the Algebraic Theory of Effects 361

Using this, one finds that �X, �˝;a1:::an
X and �a1:::an

X , the latter defined as in Eq. 15.9
are the unique functions which satisfy the evident analogues of Eq. 15.8 together
with, making another use of the form of external choice made available by ˝:

�.x/� P D �.x/ uX .˝ � P/

and
.P1; : : : ;Pn/�

a1:::an �.x/ D
��˝

a

�

X
.P1; : : : ;Pn/ uX �.x/

.P1; : : : ;Pn/�˝;a1:::an �.x/ D
��˝

a

�

X
.P1; : : : ;Pn/ uX �.x/

As regards concurrency, we define

jjX;YWTCSP.j;˝/.X/� TCSP.j;˝/.Y/! TCSP.j;˝/.X � Y/

together with functions

jja1:::an
X;Y WTCSP.j;˝/.X/n � TCSP.j;˝/.Y/! TCSP.j;˝/.X � Y/

jj˝;a1:::an
X;Y WTCSP.j;˝/.X/n � TCSP.j;˝/.Y/! TCSP.j;˝/.X � Y/

jjxX;YWTCSP.j;˝/.Y/! TCSP.j;˝/.X � Y/

where ai 2 A are all different, and x 2 X, by the analogues of Eq. 15.10 above,
together with:

�.x/ jj Q D jjx .Q/

jjx .P uQ/ D jjx .P/u jjx .Q/
jjx .�n

iD1 aiPi/ D ˝
jjx .˝ �

�n
iD1 aiPi/ D ˝

jjx .�.y// D �..x; y//

.P1; : : : ;Pn/ jja1:::an �.x/ D ˝

.P1; : : : ;Pn/ jj˝;a1:::an �.x/ D ˝

Much as before, the equations have a unique solution, with the jj component be-
ing jjX;Y .

As regards interleaving, we define

jjjlX;Y; jjjrX;YWTCSP.j;˝/.X/� TCSP.j;˝/.Y/! TCSP.j;˝/.X � Y/
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by:

P jjjlTdf .X;Y/
Q D f"g [ fw j u 2 TP \ A�; v 2 TQ \ A�; w 2 u jl vg [

fw.x; y/ j ux 2 TP; vy 2 TQ; w 2 u jl v _ .u D v D w D "/g

P jjjlRdf .X;Y/
Q D f.";W/ j .";W/ 2 FPg [

f.w;W/ j .u;W/ 2 FP; .v;W/ 2 FQ; w 2 u jl vg

P jjjrX;Y Q D Q jjjlY;X P

One has that:
P jjjX;Y Q D P jjjlX;Y Q � P jjjrX;Y Q

and that jjjlX;Y; jjjrX;Y are components of the unique solutions to the analogues of
Eq. 15.11 above, together with:

�.x/ jjjl Q D jjjl;x .Q/

jjjl;x .P uQ/ D jjjl;x .P/u jjjl;x .Q/
jjjl;x .�n

iD1 aiPi/ D ˝
jjjl;x .˝ �

�n
iD1 aiPi/ D ˝

jjjl;x .�.y// D �.x; y/

and corresponding equations for jjjr and jjjr;y.
It would be interesting to check more completely which of the usual laws, as

found in, e.g., [9, 10, 13], the CSP operators at the level of free CSP.j;˝/-algebras
obey. Note that some adjustments need to be made due to varying types. For exam-
ple, jj is commutative, which here means that the following equation holds:

TCSP.j;˝/.�X;Y/.P jjX;Y Q/ D Q jjY;X P

where � WX � Y ! Y � X is the commutativity map .x; y/ 7! .y; x/.

15.7.1 Termination

As remarked in the introduction, termination and sequencing are available in a stan-
dard way for terms of type unit . Syntactically, we regard skip as an abbreviation
for 	 and M; N as one for .� x W unit :N/.M/ where x does not occur free in N;
semantically, we have a corresponding element of, and binary operator over, the free
CSP.j;˝/-algebra on the one-point set.

Let us use these ideas to treat CSP extended with termination and sequencing.
We work with the finitary f�g-processes representation of TCSP.j;˝/.f�g/. Then,
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following the above prescription, termination and sequencing are given by:

SKIP D f�g P; Q D .x 2 f�g 7! Q/�.P/

For general reasons, termination and sequencing, so-defined, form a monoid and
sequencing commutes with all constructors in its first argument. For example, we
have that:

n�

iD1
ai.Pi; Q/ D

 
n�

iD1
aiPi

!

; Q

Composition further commutes with u in its second argument.
The deconstructors are defined as above except that in the case of the concurrency

operators one has to adjust jjf�g;f�g and jjjf�g;f�g so that they remain within the
world of the f�g-processes; this can be done by postcomposing them with the evi-
dent bijection between f�g�f�g-processes and f�g-processes, and all this restricts
to the finitary processes. Alternatively one can directly consider these adjusted op-
erators as deconstructors over the (finitary) f�g-processes.

The f�g-processes are essentially the elements of the stable failures model
of [29]. More precisely, one can define a bijection from Roscoe’s model to our
f�g-processes by setting �.T;F/ D .T;F0/ where

F0 D f.w;W/ 2 A� � P.A/ j .w;W [ f�g/ 2 Fg

The inverse of � sends F0 to the set:

f.w;W/; .w;W [ f�g/ j .w;W/ 2 F0g [
f.w;W/ j w� 2 T ^W � Ag [ f.w�;W/ j w� 2 T ^W 2 A [ f�gg

and is a homomorphism between all our operators, whether constructors, decon-
structors, termination, or sequencing (suitably defined), and the corresponding ones
defined for Roscoe’s model.

15.8 Discussion

We have shown the possibility of a principled combination of CSP and functional
programming from the viewpoint of the algebraic theory of effects. The main miss-
ing ingredient is an algebraic treatment of binary deconstructors, although we were
able to partially circumvent that by giving explicit definitions of them. Also missing
are a logic for proving properties of these deconstructors, an operational semantics,
and a treatment that includes recursion.

As regards a logic, it may prove possible to adapt the logical ideas of [24, 25]
to handle binary deconstructors; the main proof principle would then be that of
computation induction, that if a proposition holds for all “values” (i.e., elements of
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a given set X) and if it holds for the applications of each constructor to any given
“computations” (i.e., elements of T.X/) for which it is assumed to hold, then it holds
for all computations. We do not anticipate any difficulty in giving an operational
semantics for the above combination of the computational �-calculus and CSP and
proving an adequacy theorem.

To treat recursion algebraically, one passes from equational theories to inequa-
tional theories Th (inequations have the form t � u, for terms t, u in a given signature
˙); inequational theories can include equations, regarding an equation as two ev-
ident inequations. There is a natural inequational logic for deducing consequences
of the axioms: one simply drops symmetry from the logic for equations [7]. Then
˙-algebras and Th-algebras are taken in the category of !-cpos and continuous
functions, a free algebra monad always exists, just as in the case of sets, and the
logic is complete for the class of such algebras. One includes a divergence constant
˝ in the signature and the axiom

˝ � x

so that Th-algebras always have a least element. Recursive definitions are then
modelled by least fixed-points in the usual way. See [14,21] for some further expla-
nations.

The three classical powerdomains: convex (aka Plotkin), lower (aka Hoare) and
upper (aka Smyth) provide a useful illustration of these ideas [12, 14]. One takes
as signature a binary operation symbol u, to retain notational consistency with the
present paper (a more neutral symbol, such as [, is normally used instead), and the
constant ˝; one takes the theory to be that u is a semilattice (meaning, as before,
that associativity, commutativity and idempotence hold) and that, as given above,˝
is the least element with respect to the ordering �. This gives an algebraic account
of the convex powerdomain.

If one adds that˝ is the zero of the semilattice (which is equivalent, in the present
context, to the inequation x � xu y) one obtains instead an algebraic account of the
lower powerdomain. One then further has the notationally counterintuitive facts that
x � y is equivalent to y v x, with v defined as in Section 15.3, and that x u y is
the supremum of x and y with respect to �; in models, � typically corresponds to
subset. It would be more natural in this case to use the dual order tov and to write t
instead of u, when we would be dealing with a join-semilattice with a least element
whose order coincides with �.

If one adds instead that x u y � x, one obtains an algebraic account of the upper
powerdomain. One now has that x � y is equivalent in this context to x v y, that
x u y is the greatest lower bound of x and y, and that x u ˝ D ˝ (but this latter
fact is not equivalent in inequational logic to x u y � x); in models, � typically
corresponds to superset. The notations u and v are therefore more intuitive in the
upper case, and there one has a meet-semilattice with a least element whose order
coincides with �.

It will be clear from these considerations that the stable failures model fits into
the pattern of the lower powerdomain and that the failures/divergences model fits
into the pattern of the upper powerdomain. In the case of the stable failures model
it is natural, in the light of the above considerations, to take Th to be CSP.j;˝/
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together with the axiom ˝ � x. The X-processes with countably many traces pre-
sumably form the free algebra over X, considered as a discrete !-cpo; one should
also characterise more general cases than discrete !-cpos.

One should also investigate whether a fragment of the failures/divergences model
forms the initial model of an appropriate theory, and look at the free models of such
a theory. The theory might well be found by analogy with our work on the stable
failures model, substituting (15.12) for (15.13) and, perhaps, using the mixed-choice
constructor, defined below, to overcome any difficulties with the deconstructors.
One would expect the initial model to contain only finitely-generable processes,
meaning those which, at any trace, either branch finitely or diverge (and see the
discussion in [29]).

Our initial division of our selection of CSP operators into constructors and de-
constructors was natural, although it turned out that a somewhat different division,
with “restricted” constructors, resulted in what seemed to be a better analysis (we
were not able to rule out the possibility that there are alternative, indirect, defini-
tions of the deconstructors with the original choice of constructors). One of these
restricted constructors was a deterministic choice operator making use of the di-
vergence constant˝ . There should surely, however, also be a development without
divergence that allows the interpretation of the combination of CSP and functional
programming.

We were, however, not able to do this using CSP.j/: the free algebra does not
seem to support a suitable definition of concealment, whether defined directly or
via a homomorphism. For example a straightforward extension of the homomor-
phic treatment of concealment, in the case of the initial algebra (cf. Section 15.5)
would give

.a:x � b:Stop/na D x u .x � b:Stop/

However, our approach requires the right-hand side to be equivalent to a term built
from constructors only, but no natural candidates came forward – all choices that
came to mind lead to unwanted identifications.

We conjecture that, taking instead, as constructor, a mixed-choice operator of the
form: �

i

˛i:xi

where each ˛i is either an action or � , would lead to a satisfactory theory. This new
operator is given by the equation:

�

i

˛i:xi D
�

˛iD�
xi u

0

@
�

˛iD�
xi �

�

˛i¤�
˛i:xi

1

A

and there is a homomorphic relationship with concealment:

 
�

i

˛i:xi

!-

a D
�

i

.˛ina/:.xina/
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(with the evident understanding of ˛ina). Note that in the stable failures model we
have the equation:

�

i

˛i:xi D
�

˛iD�
xi u

0

@˝ �
�

˛i¤�
˛i:xi

1

A

which is presumably why the deterministic choice operator available in the presence
of ˝ played so central a rôle there.

In a different direction, one might also ask whether there is some problem if we
alternatively take an extended set of operators as constructors. For example, why
not add relabelling with its equations to the axioms? As the axioms inductively
determine relabelling on the finitary refusal sets model, that would still be the initial
algebra, and the same holds if we add any of the other operators we have taken as
deconstructors.

However, the X-refusal sets would not longer be the free algebra, as there would
be extra elements, such as f .x/ for x 2 X, where f is a relabelling function. We would
also get some undesired equations holding between terms of the computational �-
calculus. For any n-ary constructor op and evaluation context EŒ
�, one has in the
monadic semantics:

EŒop.M1; : : : ;Mn/� D op.EŒM1�; : : : ;EŒMn�/

So one would have EŒf .M/� D f .EŒM�/ if one took relabelling as a constructor, and,
as another example, one would have EŒM jj N� D EŒM� jj EŒN� if one took the
concurrency operator as a constructor.

It will be clear to the reader that, in principle, one can investigate other process
calculi and their combination with functional programming in a similar way. For
example, for Milner’s CCS [17] one could take action prefix (with names, conames
and �) together with NIL and the sum operator as constructors, and as axioms that
we have a semilattice with a zero, for strong bisimulation, together with the usual
�-laws, if we additionally wish to consider weak bisimulation. The deconstructors
would be renaming, hiding, and parallel, and all should have suitable polymorphic
versions in the functional programming context. Other process calculi such as the
�-calculus [30, 33], or even the stochastic �-calculus [16, 26], might be dealt with
similarly. In much the same way, one could combine parallelism with a global store
with functional programming, following the algebraic account of the resumptions
monad [1,14] where the constructors are the two standard ones for global store [22],
a nondeterministic choice operation, and a unary “suspension” operation.

A well-known feature of the monadic approach [14] is that it is often possible
to combine different effects in a modular way. For example, the global side-effects
monad is .S � 
/S where S is a suitable set of states. A common combination of it
with another monad T is the monad T.S�
/S. So, taking T D TCSP.j/, for example,
we get a combination of CSP with global side-effects.
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As another example, given a monoid M, one has the M-action monad M � 

which supports a unary M-action effect constructor m:
, parameterised by elements
m of the monoid. One might use this monad to model the passage of time, taking M
to be, for example, the monoid of the natural numbers IN under addition. A suitable
combination of this monad with ones for CSP may yield helpful analyses of timed
CSP [20, 27], with Wait n; 
 given by the IN-action effect constructor. We there-
fore have a very rich space of possible combinations of process calculi, functional
programming and other effects, and we hope that some of these prove useful.

Finally, we note that there is no general account of how the equations used in the
algebraic theory of effects arise. In such cases as global state, nondeterminism or
probability, there are natural axioms and monads already available, and it is encour-
aging that the two are equivalent [14, 22]. One could investigate using operational
methods and behavioural equivalences to determine the equations, and it would be
interesting to do so. Another approach is the use of “test algebras” [15, 32]. In the
case of process calculi one naturally uses operational methods; however, the result-
ing axioms may not be very modular, or very natural mathematically, and, all in all,
in this respect the situation is not satisfactory.
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Appendix: The Computational �-Calculus

In this appendix, we sketch (a slight variant of) the syntax and semantics of Moggi’s
computational �-calculus, or �c-calculus [18, 19]. It has types given by:

� WWD b j unit j � � � j empty j � ! �

where b ranges over a given set of base types, e.g., nat ; the type construction T�
may be defined to be unit ! � . The terms of the �c-calculus are given by:

M WWD x j g.M/ j 	 j inM j .M;M/ j fstM j sndM j � x W�:M j MM
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where g ranges over given unary function symbols of given types � ! � , such
as 0 W unit ! nat or succ W nat ! nat , if we want the natural numbers,
or op W T.�/ � : : : � T.�/ ! T.�/ for some operation symbol from a theory for
which T is the free algebra monad. There are standard notions of free and bound
variables and of closed terms and substitution; there are also standard typing rules
for judgements 	 ` M W � , that the term M has type � in the context 	 (contexts
have the form 	 D x1 W �1; : : : ; xn W �n), including:

	 ` M Wempty
	 ` inM W�

A �c-model (on the category of sets – Moggi worked more generally) consists of
a monad T, together with enough information to interpret basic types and the given
function symbols. So there is a given set ŒŒb�� to interpret each basic type b, and then
every type � receives an interpretation as a set ŒŒ���; for example ŒŒempty �� D ;.
There is also given a map ŒŒ��� ! T.ŒŒ���/ to interpret every given unary function
symbol g W� ! � . A term 	 ` M W� of type � in context 	 is modelled by a map
ŒŒM�� W ŒŒ	 �� ! TŒŒ��� (where ŒŒx1 W�1; : : : ; xn W�n�� D ŒŒ�1�� � : : : � ŒŒ�n��). For example,
if 	 ` inM W � then ŒŒinM�� D 0ŒŒ	��oŒŒM�� (where, for any set X, 0X is the unique
map from ; to X).

We define values and evaluation contexts. Values can be thought of as (syntax
for) completed computations, and are defined by:

V WWD x j 	 j .V;V/ j inV j � x W�:M

together with clauses such as:

V WWD 0 j succ .V/

depending on the choice of basic types and given function symbols. We may then
define evaluation contexts by:

E WWD Œ
� j inE j .E;M/ j .V;E/ j EM j VE j fst .E/ j snd .E/

together with clauses such as:

E WWD succ .E/

depending on the choice of basic types and given function symbols. We write EŒM�
for the term obtained by replacing the ‘hole’ Œ
� in an evaluation term E by a term
M. The computational thought behind evaluation contexts is that in a program of the
form EŒM�, the first computational step arises within M.



Chapter 16
CSP is Expressive Enough for �

A.W. Roscoe

Abstract Recent results show that Hoare’s CSP, augmented by one additional
operator, can express every operator whose operational semantics are expressible in
a new notation and are therefore “CSP-like.” In this paper we show that �-calculus
fits into this framework and therefore has CSP semantics. Rather than relying on
the machinery of the earlier result we develop a much simpler version from scratch
that avoids the extra operator and is sufficient for �-calculus: a much generalised
relabelling operator that is expressed in terms of the others. We present a number of
different options for the semantics of fresh names, showing how they give semantics
that are largely congruent to each other. Finally, we begin the investigation of how
these new semantics might be analysed and exploited.

16.1 Introduction

When I contributed [15] to the volume celebrating Tony’s 60th birthday, CSP was
just half as old as it is now. I wrote then how remarkable it was that it should have
stood the test of so many challenges unimagined by Tony when he created it, and
of how frustrating it was to work academically on something that was so “right first
time,” since one was denied the usual joys of refining and changing it. I have contin-
ued to be surprised by its ability to capture new concepts in modelling concurrency
and interaction. The present paper recalls recent work quantifying this expressive
power and shows that CSP can both represent the �-calculus and provide the vehi-
cle for a wide range of new semantics for that notation.

I can report, however, that my previous frustration has been reduced, since I
have finally found an operator to be missing from Tony’s original CSP: this will be
described below.
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When I first described my new expressibility results to Tony, part of his response
was “Which operators of CCS satisfy your definition? Which ones don’t? What
about �-calculus?” This paper answers these questions.

While other languages for concurrent systems are often defined in terms of
their operational semantics, the CSP approach [6, 16] has always been to regard
behavioural models such as traces T , stable failures F , failures-divergences N
and infinite traces-failures-divergencesU as equally important means of expression.
Thus any operator must make sense over these behavioural models in which details
of individual linear runs of the processes are recorded by an observer who cannot,
of course, see the internal action � .

Nevertheless CSP has a well-established operational semantics, and congruence
with that is perhaps the main criterion for the acceptability of any new model that is
proposed.

Operational semantic definitions of languages have the advantage that they are
direct, understandable, and of themselves carry no particular obligation to prove
congruence results such as those alluded to above. On the other hand definitions in
abstract models, intended to capture the extensional meaning of a program in some
sense, have the advantage of “cleanliness” and allow us to reason about programs in
the more abstract models. The most immediate benefit of CSP models in this respect
is that they bring a theory of refinement, which in turn gives refinement checking
(with low complexity at the implementation end, as in FDR) as a natural vehicle for
specification and verification.

The author has recently [20] defined what it means for an operational seman-
tics to be CSP-like, in the sense that it does not require any basic powers beyond
what the semantics of the various CSP operators already have. In this paper we will
show that the �-calculus (the version presented in [23]) is CSP-like.

The main result of [20] is that every CSP-like operator can be simulated up to
strong bisimulation in CSP extended by one more operator. The proof there con-
structs a very general but complex “machine” for simulating any such operator.
In the present paper we will give significantly more straightforward CSP repre-
sentations (not needing the additional operator) of the constructs we need to give
�-calculus a semantics.

In the next section we recall the definitions of a CSP-like operational semantics
and the new operator �A needed to complete the general simulation result, as well
as summarising the techniques used in that proof. In the following section we will,
since it is needed for �-calculus, show how the usual CSP renaming operator can
be extended into a much generalised relabelling operator that can nevertheless be
expressed in terms of standard CSP operators.

There are three significant issues that arise when attempting to give a CSP
semantics to �-calculus. The first is the �-calculus containing choices such as
�:P C x.y/ � Q that are resolved by � ; while no CSP operator ever reacts to one
of its arguments performing the invisible � . The second is that the CCS parallel
operator used in �-calculus is very different to that in CSP. The third is the require-
ment that names in �-calculus are generated freshly, without collisions. Since the
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first two of these arise in CCS, we examine the problem of translating CCS into
CSP in Section 16.4. The third problem is handled using generalised relabelling in
Section 16.5, where the translation into CSP of �-calculus is presented.

There seems to be quite a bit of choice in how one handles freshness in the CSP
model, and we present a number of options that give (at least for the best-known
CSP models) the same equivalence between �-calculus terms.

Throughout this paper, when talking primarily about CSP, ˙0 will denote the
alphabet that our underlying language of processes uses to communicate with each
other and with the external environment. We will frequently need to extend this
alphabet to allow us to build CSP models of operators not directly contained in
CSP. This extended alphabet will be termed˙ . We will later define a corresponding
alphabet˙� for the embedding of �-calculus into CSP.

Our main references for CSP and �-calculus are respectively [16] and [23]. Our
notation is drawn largely from these.

16.2 CSP is Very Expressive

Though originally given semantics in behavioural models such as traces T and
failures-divergencesN , CSP has long had a congruent operational semantics [2, 4].
By congruent here, we mean that the sets of behaviours obtained by observing the
LTS created by a process’s operational semantics are the same as those calculated in
the corresponding behavioural model by a denotational semantics. The operational
semantics of CSP and some congruence proofs can be found in [16].

There is a lengthy discussion of what makes an operationally defined operator
CSP-like in [20]. The first part of the conclusion is that a CSP-like operator has a
two-part arity .m; I/, where m is the finite number of process arguments that are
turned on at the start of execution, and I indexes a possibly infinite family of argu-
ments that are initially off. (Infinite nondeterministic choice and ?x W A!P.x/ for
infinite A both have I infinite and m D 0. The first action of either of these constructs
selects a single one of these off operands to turn on, and the rest are discarded.)

When defining a family of operators fOP� j � 2 �g, the actions of
OP�.P1; : : : ;Pm.�/;Q/ are determined by � and the initial actions of the on
arguments Pi : they are all the actions deducible under a set of rules determined
by �. There are two sorts of rule:

� A rule promoting a � action for each on argument: these take the form:

Pi
�
! P0i

OP.P1; : : : ;Pi; : : : ;Pm;Q/
�
! OP.P1; : : : ;P0i; : : : ;Pm;Q/

First suggested for CSP in [13], these are termed patience rules by van Glabbeek
[25] when giving a set of operational rules that respect weak bisimulation.
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� An arbitrary collection of rules based on the visible actions of the Pi. Each such
rule of OP� is represented as a tuple .�; x; ˇ; f ;  ; #/ where

– � is a partial function from f1; : : : ;m.�/g to ˙0 (the alphabet of the under-
lying processes). Its meaning is that, in order for this transition to fire, each
argument Pj such that j 2 dom.�/ must be able to perform the action �.j/ and
become some P0j. Note that this imposes no condition if dom.�/ is empty: this
corresponds to an action that the operator can perform without reference to an
on argument, like the initial a in a! P.

– x is the action in ˙0 [ f�g that OP�.P;Q/ performs as a consequence of the
condition expressed in � being satisfied.

– ˇ is the index of the operator that forms the result state of this action.
– f is a total function from f1; : : : ; kg for some k D k.�/ � 0 to I.�/ that

represents, in some chosen order, the indexes of the components of Q (the off
arguments), that are started up when the rule fires (i.e. become on).

–  W f1; : : : ;m.ˇ/g ! f1; : : : ;m.�/ C k.�/g is the (total) function that
selects each of the resulting state’s on arguments. It must include the whole
of fm.�/C 1; : : : ;m.�/C k.�/g in its range.

– # W I.ˇ/! I.�/ is the total function that selects the off arguments of OPˇ .

These rules give us all the information we need to form the state that results after
the action it generates once we state the following. Whenever an on argument Pi is
present in the result state, then it is in its original state if i 62 dom.�/ and, if �.i/ D a
then Pi is in state P0i such that Pi

a
! P0i in the result.
To illustrate this way of representing operators, we will show how some CSP+

operators fit into this framework. None of them, in fact, need to be defined together
with any other operator apart from the identity id whose arity is .1;;/ and which
has the rules f.f.1; a/g; a; id;;; f.1; 1/g;;/ j a 2 ˙0g. Here and below we represent
the same functions and partial functions as sets of pairs.

� a ! � has arity .0; f
1g/ and the single rule .;; a; id; f.1;
1/g; f.1; 1/g;;/. We
have used a negative number to index the off argument since it is a convenient
way of making sure that they are disjoint from the on indices. id is (the index of)
the identity operator. Thus here k D 1 (the number of off arguments turned on)
and the resulting operator id has no off arguments.
� � has arity .2;;/ and, for each a 2 ˙0, the rules
.f.1; a/g; a; id;;; f.1; 1/g;;/ and .f.2; a/g; a; id;;; f.1; 2/g;;/.
� n X has arity .1;;/ and the rules .f.1; a/g; �; n X;;; f.1; 1/g;;/ for all a 2 X and
.f.1; a/g; a; n X;;; f.1; 1/g;;/ for all a 2 ˙0 
 X.
� k

X
has arity .2;;/ and rules .f.1; a/; .2; a/g; a; k

X
;;; f.1; 1/; .2; 2/g;;/ for

all a 2 X and both .f.1; a/g; a; k
X
;;; f.1; 1/; .2; 2/g;;/ and .f.2; a/g; a; k

X
;

;; f.1; 1/; .2; 2/g;;/ for all a 62 X.
� 4 (interrupt) has arity .2;;/ and, for each a 2 ˙0, the rules
.f.1; a/; a;4;;; f.1; 1/; .2; 2/g;;/ and .f.2; a/; a; id;;; f.1; 2/g;;/. This is the
interrupt operator.
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The reader might like to compare these with the conventional (Structured Oper-
ational Semantics, or SOS) descriptions of the operational semantics of CSP given
in Chapter 7 of [16]. They express exactly the same semantics when combined with
the principle of promoting �s from on arguments. In fact, the CSP-like operators are
precisely those that can be presented in this way. It is, however, possible to describe
many operators in the SOS style which cannot be translated into the above form:
those that are not CSP-like.

Consider the CSP-like operator P�A Q, which we will read P throw Q. It has
arity .1; f
1g/ and the rule .f.1; a/g; a; id; f.1;
1/g; f.1; 1/g;;/ for each a 2 A as
well as .f.1; b/g; b; �A;;; f.1; 1/g; f.
1;
1/g/ for each b 2 ˙0 
 A.

P�A Q runs the process P until it communicates an event in A – which you might
think of as a set of exceptions – at which point it hands control over directly to Q.
It has much in common with the interrupt operator4, except that here it is an event
of P rather than one of Q that triggers the hand-over to Q: in P�A Q you could say
that P passes the baton over to A, whereas, in P 4 Q, Q can take it at any time by
performing a visible event.

In [19], the author showed that �A adds strictly to the expressive power of the
CSP language and that4 can be expressed in terms of �A and the rest of CSP.

In [20], the author showed that CSPC (CSP augmented by �A) is capable of
simulating any operator with CSP-like operational semantics: for any such opera-
tor OP.P1; : : : ;Pm;Q/ we can define a CSPC context COP.P1; : : : ;Pm;Q/ that is
strongly bisimilar to it. This is done by building a complex “machine” that can in-
terpret any rule of the form outlined above appropriately, and always have the right
set of argument processes turned on so that the right �s are promoted by CSP.

One of the most important consequences of this result is the following: every
language whose operators are all CSP-like has a denotational semantics in every
denotational model of CSP. Thus, by showing that a language is CSP-like in this
way one simultaneously equips it with many different new semantic models with an
automatic representation in each.

The established denotational models of CSP take the form of recording one or
more sorts of behaviour that an observer might see on a single run of the process:
these are linear as opposed to branching behaviours. In [17, 18], the author defined
what a behavioural model of CSP is in the cases of finite observation models and
divergence-strict models. These are congruences that are relational images of two
specific models. In the finite observation case this is the model FL that observes
sequences of the form

hA0; b1;A1; b2; : : : ;An�1; bn;Ani

where the bi are the visible events performed by the process, and Ai is either the
stable acceptance set offered by the process in the state from which biC1 occurs,
or � meaning that stability was not observed. The final acceptance set can be ;,
meaning that the process is deadlocked.
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In the strict divergence case, two further components are added to get a model
FL+! : infinite sequences of the same sort, and finite sequences with the final An

replaced by *, meaning that the process divergences (performs an infinite sequence
of � actions). By strict divergence we mean that all extensions of any divergence are
also considered to be behaviours of the process: no attempt is made to distinguish
two processes on the basis of what they can or cannot do after their first possibility
to diverge.

The infinite sequence case is necessary to get a congruence for CSP if un-
boundedly nondeterministic constructs are used. We will find that �-calculus is an
exception to this rule.

In the original draft of [20], the �-calculus was used as an example to show
how general the concept of a CSP-like operational semantics is. We there demon-
strated the existence of a CSP semantics for it as a consequence of the above result.
The complexity of our simulation machine means, however, that its translation into
CSPC is scarcely clear, and the fact that �A is not actually required becomes
obscured.

The present paper therefore refines these techniques so that the translation into
standard CSP, and hence the structure of the resulting semantics in CSP’s models,
become significantly clearer.

16.3 Generalised Relabelling

The main challenge we will have to meet in giving a CSP semantics to �-calculus is
dealing with the concept of fresh names. We will find ourselves needing to change
names on-the-fly as a process progresses, in a way that is much more flexible than
the usual CSP renaming operator PŒŒR��. Therefore, in this section, we introduce a
generalised relabelling operator PhhGii and show that it can be expressed using a
combination of standard CSP operators.

CSP has two operators that work by changing the labels on a process’s actions:
hiding and renaming. The first changes a selection of labels to � and the second maps
each action of a process P to a selection of one or more. In each case the mapping
on labels does not change as the process progresses, and no action is blocked from
occurring.

We can regard both these operators as instances of relabelling: replacing each
visible action of P with an action (or perhaps a choice of actions). We call this
“relabelling” rather than “renaming” because x may be � and so invisible to the
environment.1 As hiding shows, there is no reason why a visible action should not be
replaced by � . It would, however, not be CSP-like even to let the operator notice �’s
performed by P: these must always be promoted as �s. In generalised relabelling,
we will allow two features not seen in either renaming or hiding:

1 The uses of relabelling we make later only map visible actions to other visible actions.
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� We will allow the replacement mapping to vary as the process progresses.
� We will allow the replacement mapping to forbid certain visible actions by

P: such actions will map to empty choices of options. So, for example, P k
A

STOP

equivalent to the generalised relabelling that maps every event not in A to itself,
and has no image for events in A.

The second of these points is clear cut. The first leaves it open as to what can
influence the variation of the mapping. It might be the sequence of visible events that
P has performed; it might be the sequence of events that these have been mapped
to; or it might be nondeterministic. Or, of course, it might be any combination of
these. We will initially consider the first of these, which covers the case of the first
generalised renaming HDT used in this paper.

Suppose G is a relation on ˙0, ˙�0 and ˙�
0 , where .a; t; x/ 2 G says that when-

ever process P can perform the event a after trace t, the relabelled process PhhGii
can perform x. We can give this operator a natural, CSP-like, operational semantics
in SOS style as follows:

P
�
! P0

PhhGii �
! P0hhGii
P

a
! P0; .a; hi; x/ 2 G

PhhGii x
! P0hhG=haiii

where G=t D f.a; s; x/ j .s; tOs; x/ 2 Gg.
In our new style of presenting operational semantics, this translates to hhGii hav-

ing the rule .f.1; a/g; x; hhG=haiii;;; f.1; 1/g;;/ for each .a; hi; x/ 2 G.
Adapting the techniques developed for the most straightforward case of the main

theorem of [20], we can re-cast the above operator using two conventional renam-
ings (one one-to-many and one many-to-one), parallel composition with a regulator
process, and the hiding of a single event.

We extend the alphabet ˙ to include all pairs of the form .a; x/ for a 2 ˙0 and
x 2 ˙0 [ f�g D ˙�

0 as well as the alphabet ˙0 of the original processes and the
special visible event tau, which takes the place of � in building up the semantics,
and will actually become � via hiding at the outermost level, as we will see below.

We can define two renamings:

E D f.a; .a; x// j a 2 ˙0 ^ x 2 ˙�
0 g C D f..a; x/; x/ j a 2 ˙0 ^ x 2 ˙�

0 g

where a D a for a 2 ˙0, and � D tau.
Clearly PŒŒE��ŒŒC�� maps every event of P to all events in ˙0 [ ftaug, but we can

be a lot more selective by running PŒŒE�� in parallel with a regulator process. Define

Reg.G/ D�f.a; x/! Reg.G=hai/ j .a; hi; x/ 2 Gg

It should be clear that

.PŒŒE�� k̇ Reg.G//ŒŒC�� n ftaug .	/
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has precisely the same actions as PhhGii, and that these two processes are strongly
bisimilar on the assumption that the guarded recursion defining Reg.G/ does not
introduce any � actions (as discussed in [20], there are two alternative operational
semantics for recursion in CSP, one of which introduces a � for each unfolding and
one of which does not).

It is obviously important for practical purposes whether G is, or is not, finitary
(respectively finitary relative to P) in the sense that G=s has only finitely many
values as s varies (or varies over the traces of P). For we will be able to simulate
QhhGii for general Q (or PhhGii for specific P) using a finite-state regulator just when
these apply.

This implementation illustrates how the concept of one-to-many renaming in
CSP, as introduced by Hoare, is enormously powerful in allowing us to express
a wide variety of constructs that seem at first sight to be beyond what CSP can ex-
press. Even more elaborate one-to-many renamings are used in creating the machine
in [20].

As well as conventional renaming and hiding (both history independent in the
sense that the relabelling does not depend on what actions have occurred before),
the following operations on processes are instances of finitary relabellings:

� Hide every second visible event performed by P.
� Hide all visible events equal to the preceding one.
� Rename all odd-numbered tock events to tick.
� Prevent all a actions not immediately preceded by member of A.

Rather than deriving the regulator process from G, we can gain maximum
freedom in allowing the mapping to vary by instead allowing Reg to be any
divergence-free process whose alphabet is ˙0 � ˙�

0 . The relabelling will be said
to be deterministic just when Reg is.

We will use this format for presenting most of the relabellings in this paper, even
when they could have been given in terms of relations.

16.4 CCS

Since �-calculus is built on top of CCS [9,10], it is useful to consider that language
before proceeding to our ultimate goal.

There is a CCS operator, namelyC, that stands out as not being CSP-like, since
this can be resolved by a � action performed by either of its operands. This is im-
possible for CSP-like operators since they have to promote �s without changing
their own state. Apart from that, the constant Nil is equivalent to the CSP STOP;
the operational semantics of ˛:P for ˛ ¤ � are identical to those of CSP prefix
or prefix-choice. The semantics of recursion in CCS is essentially2 identical to the

2 The only difference is that CCS allows this definition to be used unconditionally, even on under-
defined terms such as � p:p. The translations from CCS to CSP in this section are therefore
restricted to the case where all recursions add at least one initial action.



16 CSP is Expressive Enough for � 379

non-� version in CSP, and the CCS relabelling operation is a case of CSP renaming.
Let us consider the rest of the language: parallel composition j, and restriction n ˛.

The structure of ˙0 (as we again call the set of visible action names used in cre-
ating processes) with an operator ˛ (with ˛ D ˛ and ˛ ¤ ˛) causes no difficulties
to CSP, although naturally the usual CSP notation does not automatically handle the
relationship between ˛ and ˛: it has to be programmed explicitly as we do in the
CSP model of j below.

The CCS restriction operator has semantics

P
x
! P0

P n ˛ x
! P0 n ˛
.x 62 f˛; ˛g/

Since ˛ is not � , this is trivially CSP-like, and indeed is equivalent to the CSP
construct P k

f˛;˛g
STOP as well as being a generalised relabelling of the sort seen in

the last section.
The CCS parallel operator is much more interesting. It has semantics

P
x
! P0

P j Q x
! P0 j Q
Q

x
! Q0

P j Q x
! P j Q0
P

˛
! P0 ^ Q
˛
! Q0

P j Q �
! P0 j Q0
This is CSP-like, with arity .2;;/ and one set of transition rules for each of
these three clauses: the first two have .f.1; ˛/g; ˛; j;;; f.1; 1/; .2; 2/g;;/ and
.f.2; ˛/g; ˛; j;;; f.1; 1/; .2; 2/g;;/ for all ˛ 2 ˙0, and the final clause is mod-
elled by .f.1; ˛/; .2; ˛/g; �; j;;; f.1; 1/; .2; 2/g;;/ for all ˛ 2 ˙0.

Note how similar these are to the rules for k
X

quoted earlier. The main structural

difference is that both sorts of rules apply to all visible events, rather than being
partitioned by X.

The following representation of j in CSP is much simpler than the simulation
produced by the [20] machine. Extend˙0 by a separate copy˙1 D f˛0 j ˛ 2 ˙0g.
Let IP (Identity plus Prime) be the renaming that maps ˛ 2 ˙0 to both ˛ and ˛0,
and let IDP (Identity plus Dual Prime) map each such ˛ to ˛ and ˛0. Then P j Q is
equivalent to the CSP construct defined

P jccs Q D .IP.P/ k̇
1

IDP.Q// n ˙1

in the sense that the two processes are strongly bisimilar.
We can therefore conclude that, except forC, CCS is CSP-like.
It is possible to simulate the whole of CCS in CSP, but in a slightly more complex

way that does not imply full compositionality over CSP models or a straightforward
theory of refinement. An elementary way of doing this is to replace the event � by
a visible analogue (say tau as we have seen elsewhere in this paper), and produce
models of CCS operators that model the syntax �:P by tau! P. Finally, at the out-
ermost level (in common with the implementation of generalised relabelling given
in the previous section) we would hide tau. Thus the model of a closed piece P of
CCS syntax would be the CSP term P0 n ftaug, where P0 is the syntax of P with all
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operators replaced by their CSP analogues. In this model the analogue of C would
be �, since tau does resolve �, and the model of parallel would be as above (noting
that tau is not synchronised) except that the outer hiding n ˙1 would be replaced by
the renaming that sends all members of ˙1 to tau.

This provides a way of calculating the operational semantics of a CCS term using
those of CSP, and also an easy method for using CSP tools such as FDR [15] on such
terms.

It is not, in fact, necessary to leave all the tau actions visible as we build up
a term, only those that might resolve a C operator for which our present process
becomes (directly or indirectly) an argument. A little structural analysis shows that
the only relevant taus are those that are the first action that our process performs.
It follows that if we apply the following generalised relabelling (standing for “Hide
Delayed Taus”), and presented in the relational form discussed earlier, to any term
as we build up P0, the final result is not affected:

HDT D f.a; s; f .s; a// j a 2 ˙0 ^ s 2 ˙�0 g
where f .tau; s/ D � for s ¤ hi, f .a; s/ D a otherwise.

This operator might well be useful if one wants to apply CSP model compressions
such as those of FDR [22] in a hierarchical way to CCS constructs, as might the
simpler observation that it is always safe to hide any tau at a level in the syntax
above anyC.

This translation will allow any finite-state CCS process to be checked on FDR
against the types of specification that FDR supports.

An obvious question then arises: can one model CSP in CCS? The immediate
answer to this is “no” since CCS cannot model the multi-way synchronisations
permitted by CSP: as soon as two events are synchronised in CCS they are hidden.
Another consequence of this is that it is seemingly impossible, in CCS, to imple-
ment the style of generalised relabelling discussed in the previous section for the
same reason: synchronising P and Reg would hide the event. Of course there may be
further interesting questions to ask here about subsets of CSP or extensions of CCS.

16.5 The �-Calculus

The  -calculus [11, 12, 23] builds on the notation of CCS by adding the concepts
of name binding and name passing into the language. Like CCS, it does not need
process alphabets to define parallel, and therefore the way it expresses mobility is
more implicit than one in which passing a label along a channel explicitly changes
the alphabets at the two ends, as seems natural for a direct mobile extension of CSP.

The following syntax for the  -calculus is taken from [23]:

PREFIXES   WWD xy j x.z/ j � j Œx D y� 
PROCESSES P WWD S j PjP j �z P j ŠP
SUMMATIONS S WWD 0 j �:P j SC S0
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Here, xy represents the sending of the name y via x (akin to the CSP action xŠy)
and x.z/ is a construct binding z that represents the receipt of z over x (akin to x‹z).
Like CCS and unlike CSP it has a construct representing the explicit introduction of
� , and one can guard actions with the assertion that pairs of names are the same.

The process constructs are the same as in CCS except that the infinite replication
ŠP (equivalent to P j ŠP) takes the place of recursion and �x P replaces P n x. The ef-
fect of having summations in a separate syntactic class is to allowC only to appear
in restricted contexts (similar to the “guarded choice” construct introduced as a pre-
cursor to � in CSP in both of [6,16]). Some presentations of the �-calculus omitC.
Others generalise replication to full recursion � p:P, and we shall follow this latter
school. We therefore add � p:P and p to the syntax of PROCESSES, where p repre-
sents a process identifier. (We will not, therefore, directly consider ŠP, regarding it
as equivalent to � p:P j �:p.)

The restriction on the use of C imposed by this syntax is crucial in allowing
us to give �-calculus semantics in CSP. When giving semantics to summations we
will still need to leave � visible as tau; but for the main semantics (of processes)
this is not necessary. We will therefore find that this version of �-calculus fits more
smoothly and compositionally into the world of CSP than does CCS.

In our treatment of �-calculus we assume unless stated otherwise that the set
Name is countably infinite with a fixed enumeration fn0; n1; : : :g. If N is a nonempty
subset of names then �.N/ is the name with least index in N, and when Name 
 N
is nonempty �.N/ denotes �.Name 
 N/. The visible events communicated by
�-calculus processes, and making up ˙� (which plays the role of ˙0 for our treat-
ment of �-calculus) are of two forms: x:y represents the input of name y over the
channel represented by name x, and x:y represents the corresponding output of y
over x.

The theory of the  -calculus is complex. This is less because processes can pass
names around and use them as channels as it is because of the way new names are
“created” fresh and distinct from all others, and may be exported from their original
scope.

Our goal is to find a way of dealing with this in CSP in a way that implements
the above policy successfully and does not create any artificial distinctions between
processes on the basis of exactly which fresh names they extrude.
Example To illustrate the power of the  -calculus, and provide an example for
our later semantics, consider the following description of a variable-length buffer.
This consists of a chain of processes, which initially consists of the single process
C.in; out; split; export/, which uses the channels in and out as the buffer input and
output, respectively. Each process additionally has a channel along which it can be
told to split in two and one from which the environment can choose to accept outputs
in place of them proceeding down the chain. See Fig. 16.1 to see how it might evolve
from top to bottom, with the single cell splitting to form two, and then the left-hand
one splitting in turn.

C.i; o; s; e/ D i.y/:.ox:C.i; o; s; e/C ex:C.i; o; s; e//

C s.z/:�m �s0 zs0:.C.i;m; s0; z/ j C.m; o; s; e//
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Fig. 16.1 One cell evolving into three

Each command to split (i.e. input on s) inputs a new name z from the environment,
and that is used as the external output (e) channel of the new node. A new channel
name also has to be extruded to the environment: the one to split the new node. That
is the first output along z.

So in the transformation of the top line of the figure to the second, the environ-
ment sends z along split, and the process replies by sending s back along z. Sending
z0 along s then causes the second split, with s0 being sent back along z0.

This is a somewhat contrived example, designed to use a lot of channel names
(input, internal and extruded) to help our later understanding of the semantics of
names. The semantics of the �-calculus rely on every name that the process creates
being different from each other and from all that the environment has passed to it
by that time. No such restriction applies to the environment, though obviously this
particular example makes most sense when every name sent by the environment is
also fresh.

We now identify two choices that have to be made when constructing our
 -calculus semantics.

1. We can ensure that no artificial distinctions arise thanks to the precise choice of
names in two ways.

– The first is to create processes such that, whenever a name is extruded, it
is picked nondeterministically from all permitted ones. We will call this the
nondeterministic approach.
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– The second is to ensure that each fresh name that emerges from a process is
completely predictable based on knowledge of the preceding trace. We will
implement this by ensuring that the name is always the one with least index
that might legitimately appear, and call this the standardised approach.

2. One of the trickiest problems in giving the semantics is to ensure that names
input by a process from the environment do not get confused with a name that
may already exist in the process’s scope without having been extruded. It is a
basic assumption that these names are different, so how do we achieve this?

– One approach is to allow the environment, at any time, to output any name
to the process. The semantics then has to perform an operation related to ˛-
conversion on any fresh and unextruded name it holds that clashes. We will
call this the unified approach.

– The opposite of this, which we will call the bipartite approach, is to split the
fresh name space into two infinite parts and allocate one to the process and
the other to the environment. In other words, the process will simply assume
at all times that the environment will not output any name to it that is in that
part of the process’s fresh name space unless that name has previously been
extruded by the process.

In this paper we will first consider the unified name space approach, providing an
initial translation into CSP followed by constructs that respectively map this into the
nondeterministic and standardised approaches. We then summarise the differences
in how these steps are taken in the bipartite approach.

We would expect any semantics for  -calculus to have complete symmetry
in those names that the environment generates as fresh (though in the unified ap-
proach the symmetries will be more complex since they will need to factor in the
fact that the names chosen by the environment affect the values of the names chosen
subsequently by the process). We would expect any nondeterministic semantics to
have complete symmetry in the names chosen by the process.

Think, for a moment, about how these decisions would affect our example. Note
that, in it, the creation of names is a distributed activity: when we have split the orig-
inal cell into N pieces, any one of them can input new names from the environment
and generate fresh ones without interacting with the others. And yet all of our mod-
els except for the nondeterministic, bipartite approach seem to rely on there being
some sort of instantaneous passing of information between the different cells. In
the unified approach one cell has to “know” which names have input by another
from the environment so it can avoid generating that name itself. In the standard-
ised approach two cells that are simultaneously able to output channel names to the
environment seem to need to know whether the other has done so yet. On the other
hand, if (i) the available names for a cell are nondeterministically split into two in-
finite parts when it splits and (ii) the environment is prevented from creating any of
these names, there is no such problem.

Arguably, what the other approaches are doing is placing each process in a frame-
work that forces us to think of processes as sequential, or at least to look at parallel
processes through a prism that makes them look sequential. In that sense they are
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doing no more than what happens when we use an LTS semantics or one based
on any of the usual CSP models, for these are all inherently sequential. But this
does suggest that an attempt to give a true concurrency semantics might follow the
nondeterministic and bipartite approach to names.

16.5.1 Preserving Inequality

The �-calculus is fairly straightforward to translate into our CSP extended by jccs,
with the exception of its handling of freshness. We first show how to translate sum-
mations. If S is a SUMMATION then CSPŒS�C will be a CSP term in which � actions
remain visible as tau. The corresponding semantics for a PROCESS P is written
CSPŒP�.

� CSPŒ0�C D STOP
� CSPŒŒx D y��:P�C D CSPŒ�:P�C<I x D y>I STOP
� CSPŒ�:P�C D tau! CSPŒP�
� CSPŒx.y/:P�C D x‹z! CSPŒPŒz=y��
� CSPŒxy:P�C D x:y! CSPŒP�
� CSPŒSC S0�C D CSPŒS�C � CSPŒS0�C

Here X <I b>I Y is Hoare’s infix representation conditional choice: it equals X if b
it true and Y if b is false.

We can interpret a summation as a process via hiding, and both process identifiers
and recursion translate directly into CSP:

� CSPŒS� D CSPŒS�C n ftaug
� CSPŒp� D p
� CSPŒ� p:P� D � p:CSPŒP�

The remaining constructs are parallel P j Q and restriction �z P. These are more
difficult because of the way they handle fresh names. The effects we want to achieve
are set out below.

� �z P creates a fresh name z0 for the placeholder z that is used within P. This is
different from all other names known to P at the point of creation and all names
that P sees subsequently that cannot result from other processes reflecting z0 back
to P.
� �z P may extrude this z0 from this scope by means of output xz0 on some other

channel (i.e. x ¤ z0).
� After this extrusion, �z P may use the name z0 as a channel name, output it again,

etc. However, before the extrusion any of P’s communications that use it as a
channel name are blocked. This, by analogy with CCS restriction P n ˛, explains
why this operator is called “restriction.” In our example it means that no com-
munication on our internal channels m;m0 � � � are visible on the outside, because
these channel names are never extruded.
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� In the parallel composition P j Q, the processes P and Q never extrude the same
fresh name.
� Because of the way in which interactions between P and Q are hidden, P may

extrude a fresh name z to Q or vice-versa, without the external environment see-
ing z. This expansion of the scope of z is restricted as above: it may not use the
name z in a visible way until z has been extruded from the parallel composition
via output on a different channel.
� Each fresh name extruded from P j Q must be different from all names either P

or Q knew originally or subsequently input.

The above must hold for any strategy for assigning and managing the fresh names
created within a term P. We use the term “managing” here because there is no sen-
sible way, within the unified approach to name choice, of ensuring that once a fresh
value z has been created but not yet extruded, the external environment does not
independently invent the same name (we will call this a name collision). If this hap-
pened it would cause confusion both in the environment and the process P.

This is why we need to use relabelling. In the instance above, one thing we could
do would be to pick a further fresh name z0 not known to P, and apply the renaming
ŒŒz; z
0
=z0; z�� (transposing the two names) to P from the point where the environment

communicates z to it. Thus P will see z as z0 (correctly, a value that is fresh to it and
distinct from the z it already knows about) and the environment will, if and when P
ultimately extrudes z the outside world will see it as z0 (correctly, a value it has not
seen before). Since neither z nor z0 has appeared in the trace before this point, each
of these names only has a single role in the whole trace. We will use relabellings
such as this to avoid collisions both for �z P and P j Q, the latter because of the
scope expansion issues discussed above.

We will introduce a relabelling called OF.N;K;P/ (“output first”). Here N is a
set of names that the process P might extrude but are not known to the environment.
K (disjoint from N) is the set of names initially known to both P and environment:
we think of this as their common knowledge. OF.N;K;P/ introduces a transposi-
tion of the above form each time the process inputs from the environment a name
that clashes with a member of N. The set N may diminish as the process evolves
since some of the names in it may be extruded; and K may increase as P learns
more names.

In order to keep track of the transpositions that are introduced as the system
evolves, we need to introduce a parameter � that is a bijection on Name. At any time,
� will be the the function that maps names as seen on the inside of the relabelling to
the corresponding names seen by the environment. While this function will evolve
as the system progresses, as soon as a name has been seen in a trace of P its image
remains fixed thereafter. It follows that, at the end of a trace, � is a permutation
on Name that translates P’s view to the environment’s view of every member in the
trace. Initially, � is the identity function, and remains so on the initial members of K.

The most straightforward way of presenting OF is by defining a RegOF process
that creates the relabelling using the construction .	/.
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In the following, as with OF, we assume that K and N (the set of potentially fresh
names yet to emerge from the process) are disjoint. RegOF.K;N; �/ takes the form

�f.a; b/! RegOF.K0;N0; � 0/ j .a; b;K0;N0; � 0/ 2 Cg

where a is the process P’s event, b is the environment’s view of the same event, and
C is a set of clauses that we will describe below, each representing a different sort
of event that the relabelling allows.

We consider the cases of output x:y and input x:y events separately, splitting these
depending on which of K and N y belongs to. In both cases we restrict x to be K: it
is part of the role of OF to prevent P from using names in N before these have been
extruded from scope; and if our semantics are sensible P could never use a channel
name that is outside K [ N.

We now enumerate the various clauses of RegOF .K;N; �/:

� If both the channel and data are part of common knowledge, then an input does
not change the parameters:

f.x:y; �.x/:�.y//! RegOF .K;N; �/ j x; y 2 Kg

� If both the channel and data are part of common knowledge, then an output does
not change the parameters:

f.x:y; �.x/:�.y//! RegOF .K;N; �/ j x; y 2 Kg

� If P outputs a name in N, then this is removed from N and added to K

f.x:y; �.x/:�.y//! RegOF .K [ fxg;N 
 fxg; �/ j x 2 K; y 2 Ng

� If P inputs a name outside K [ N, then this is equivalent to the environment
extruding a name to P, so it is added to the common knowledge:

f.x:y; �.x/:�.y//! RegOF .K [ fxg;N; �/ j x 2 K; y 62 N [ Kg

� Finally, if P was to input a name y in N, then this is a name collision, since the
environment has yet to be told of N by P. However, in the unified approach, there
is nothing to stop the environment inventing such a name independently. There-
fore, the mapping � is changed so that the new name maps outside K [ N under
��1. The simplest way to do this is to transpose x and the name �.K [ N/, which
we recall is the one with least index not in this set. We write this transposition
(which maps all other names to themselves) as xp.x; �.K [ N//. The clauses of
this type are thus

f.x:n; �.x/:�.y//! RegOF.K [ fng;N; � ı xp.x; n// j x 2 K; y 2 Ng

where n D �.K [ N/.
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Notice that all of the above English descriptions are formulated from the point of
view of P, with the already established permutation � assumed.

It is these transpositions in OF that represent the analogy of ˛-conversion that
we discussed earlier. Both of these things have the role of avoiding clashes between
external and bound identifiers. While traditional ˛-conversion does not change the
semantics of a term, our transpositions do, but this is only because “bound” identi-
fiers in �-calculus can, unusually, be seen from the outside.

This relabelling is deterministic since there is only one wayRegOF .K;N; �/ can
perform any given action, and clearly it has no �-generated nondeterminism. Indeed,
since there is only one action that RegOF .K;N; �/ can perform for any given action
seen by the environment, OF.N;K; �/ could be presented as a relabelling generated
by a relation between P’s visible actions, the environment’s visible actions and the
environment’s traces. But since it does evolve naturally a step at a time, the above
presentation is probably the best.

We are now very close to being able to give a semantics to �z P, but before we
do that we need to establish what the right values are to use for K and N when we
come to use OF. We will also need a semantic mechanism to keep the fresh names
invented by two parallel processes distinct.

The best way to do these things is to add parameters � and � to the seman-
tics so they become CSPŒS�C�� and CSPŒP��� . � will represent the initial common
knowledge of names by P and its environment or context: a finite set of names
that includes all free names in P. � will be an infinite set of names, disjoint
from �, that are available to be used as fresh. So, for example, we will now have
CSPŒP C Q�C�� D CSPŒP�C�� � CSPŒQ�C�� and (the only clause given to date
with a significant change) CSPŒx.y/:P�C�� D x‹y! CSPŒP�C.� [ fyg/.� 
 fyg/.

We can then write

CSPŒ�z P��� D OF.f�.�/g; �; CSPŒPŒ�.�/=z��.� [ f�.�/g/.� 
 f�.�/g//

In other words, the name with least index not in � is chosen to bind to z, and this
name is then “protected” by the OF operator, which also prevents it from being used
as a channel by P until it has been output.

The interactions between P and Q in P j Q are calculated in the same way as in
CCS. It follows that the same CSP construction we used in the last section can be
used here provided we sort out what happens to the sets of names that P and Q use
and generate, and provided we ensure that P j Q obeys the rules discussed above for
it being an expanded scope for some of these generated names.

The parameter � gives us the ability to keep the names that P and Q generate
distinct from each other. To do this we assume that we have functions ˘i for i D
1; 2; 3 such that, for any infinite set � of names, f˘1.�/;˘2.�/;˘3.�/g partitions
� into three infinite sets. [One such triple of functions would allocate the names
of increasing index in � to the three sets in a round robin fashion.] In evaluating
CSPŒP j Q��� these three sets will respectively represent the sets of fresh names
that might be generated by P, by Q, and outside this system.
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We can then define CSPŒP j Q��� to be

OF.˘1.�/ [˘2.�/; �; CSPŒP��.˘1.�// jccs CSPŒQ��.˘2.�///

The role of OF here is to protect any fresh names extruded from P or Q into P j Q
but not yet to the environment. Since it does not know exactly which fresh names
have been extruded in this way, it protects the whole of the set ˘1.�/ [ ˘2.�/.
Here, of course jccs is the CSP translation given earlier of the CCS operator j.

Note that as far as P’s and Q’s choices of names are concerned, we have used
what amounts to the bipartite approach by ensuring that they choose from dis-
joint sets.

16.5.2 Nondeterministic Fresh Names

We might say that the above clauses give a provisional semantics, since they suffer
from the lack of abstraction discussed above caused by specific choices of fresh
names.

In many ways the most elegant approach to this problem is to apply a mapping
that in effect maps each assignment of fresh names to a representation of its sym-
metry class: the processes that might have been obtained under a different strategy
for assigning fresh names.

We can attempt to do this by identifying each semantic value CSPŒP��� with the
nondeterministic composition of the set of its values under renamings that change
the choices of fresh names it picks from � . The following operator is perhaps the
most natural way to do this.

NFN.P; �/ D ufPŒŒ� [ id.Name�	/�� j � W � ! �; � bijectiong .�/

One can gain much insight into CSP models and the way to use them correctly
for �-calculus by analysing whether this approach works or not.

We will now show that there are pairs of processes P and Q that we would like to
regard as semantically equivalent for which there is no such � with CSPŒP���ŒŒ��� D
CSPŒQ��� .

If we have a process that has two different behaviours on which it extrudes a
free name, it should not matter whether these two names are the same or different.
Consider, for example, P D �:.�z xz:0/ C �:.�z yz:0/ (where the above semantics
will always output the same fresh name via whichever of x and y the environment
chooses) and Q D �:.�z xz:0/ C �:.0 j .�z yz:0// (where, depending on ˘2, it may
not, and we will assume not). No renaming of the above form can map P to Q. For
similar reasons the CSP operational semantics of P and Q with construct .�/ applied
to them are not bisimilar, since no bijection � can map the state P to the state Q.
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Thus the initial choice of a single permutation does not characterise semantic
equivalence in a model where processes are represented as tree structures.

One of the main differences in CSP-style models based on linear observations of
processes is that they deliberately obscure when choices are made: hence the CSP
distributivity law a ! .R u S/ D .a ! R/ u .a ! S/, for example. A CSP-style
semantics of the processes P and Q above will only let you look at things that occur
down a linear observation. However, the structure of P above means that it will not
let you examine the consequences of outputting on channels x and y in the same
observation; only in two separate ones. It should not therefore matter, in this style
of model, if the choice of a permutation � is made initially or in stages as long as
every name that actually appears is mapped to the same place as in �.

We would expect such a model of CSPŒP��� still to output the same name along
these two channels and CSPŒQ��� probably to output different ones, so the pro-
visional semantics of P and Q will still be different even if we only record process
traces. However, when we look at the effect on their traces of the .�/ construct, these
two values are mapped to the same value. The point is that any trace of CSPŒP���
will be the result of some � being applied to a trace of CSPŒQ��� , and vice versa.
The fact that different � may be needed for different traces is immaterial: every trace
of CSPŒP��� will be a trace of NFN.CSPŒQ���; �/ and vice versa.

We can conclude that, at least for the finite traces semantics of CSP, construction
.�/ gives the provisional CSP semantics the necessary abstraction. There are subtle
problems, however, when we come to study types of behaviour that appear in other
CSP models. These are, on the one hand, refusal and acceptance sets and, on the
other, behaviours recording infinite traces. To avoid this second sort of difficulty, let
us assume for the time being that we are interpreting CSP over a model that does
not have infinite traces.

Most CSP models have refusal or acceptance sets to enable us to detect things like
deadlock. These can lead to undesirable semantic differences between �-calculus
terms in two related ways. For example, consider the processes

�y xy:�z:xz:0 .�y xy:0/ j .�z xz:0/

Each of them simply extrudes two fresh names in succession along x, and they ought
to be regarded as equivalent.

With conventional failures-based models, in which refusal sets are sets of events,
these two processes are not equivalent under the NFN mapping. For the left-hand
process will have failures of the form .hi; ˙ 
 fx:ng/, while the largest refusal sets
on hi of the right-hand process will omit x:n and x:m for two different names n and
m: in effect the parallel structure gives the environment a “choice” of two different
names.

A further difficulty arises in more elaborate CSP models such as refusal testing
where it is possible to see the refusal or acceptance of an event that extrudes a name
several steps before it actually appears in the trace. Such a name might or might not
get relabelled between these two appearances, which can again lead to undesired
inequivalences as well as some confusing-looking observed behaviours.



390 A.W. Roscoe

There is a simple solution to both these problems: in languages such as
�-calculus where all communication between processes happens over point-to-
point channels, and processes inputting on a channel always do so non-selectively –
they cannot accept some communications on it but refuse others – we get a better
model of refusal and acceptance sets by constructing them solely of channel names,
not events. This was recognised for occam in [14].

It will therefore be impossible to tell, in any “channel-based” CSP-style model,
between the sequential and parallel processes above that extrude fresh names, to see
any fresh name in a recorded behaviour before it is extruded, or indeed to make the
same sort of distinctions based on non-fresh names. Thus, for example, xy :PCxz :Q
and � : xy :PC xz :Q will be identified as processes (though not as summations) in
any such model.

Given any of these channel-based CSP models M we can therefore give a proper
semantics to the �-calculus. The semantics for a summation and a process will be
written3 M1uŒS�C�� and M1uŒP��� , which are defined to be the respective CSP
interpretations over M of the terms:

NFN.CSPŒS�C��; �/ and NFN.CSPŒP���; �/

The superscript 1 here means that this is a semantics using a single (unified) name
space, and u means that this is the nondeterministic semantics. The alternatives for
these are 2 (bipartite) and � (standardised).

These can readily be turned into denotational semantics. The preliminary seman-
tics CSPŒP��� can already be interpreted in this way if we add an extra parameter �:
an environment that maps process identifiers to functions from common knowledge
sets � and fresh-name sets � to M.4 They will thus be written M1uŒP���� . Thus
the semantics of a process identifier is given by �.p/�� . The semantics of each
non-recursive operator is then just the interpretation over M of the CSP syntax into
which we have already translated it, applied to sub-terms as appropriate. The se-
mantics of recursion is just the same fixed-point calculation that is appropriate for
M: sometimes a refinement-least fixed point, sometimes a subset-least fixed point,
and sometimes something more complex as in [17].

The full denotational semantics is then obtained in the same way except that
for some syntactic forms (parallel, restriction) it is necessary to apply the operator
NFN.�; �/ (interpreted as an operator over M) to the result.

3 It is traditional to write such terms using “semantic brackets,” as in MŒŒP��. We do not follow this
convention in this paper because the traditional notation is so similar to CSP renaming PŒŒR��.
4 These parameters are required because both the common knowledge and availability of fresh
names may well have changed at the point of call, and it seems to be correct to evaluate the re-
cursive call in that new world, just as is done by the textual substitution of term rewriting. In the
spirit of a pure denotational semantics, fully espousing the traditions of [24], we might well wish
to discriminate between Name and the identifiers Ide that denote them: this would allow definitions
of input and restriction without syntactic substitution.
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NFN.�; �/ was presented above as the nondeterministic choice of a set of renam-
ings. It is easy to reformulate it as a nondeterministic relabelling, if desired.

Since no name other than a member of fn.P/ means anything special to a
�-calculus term P, we must expect that, for any permutation � of Name 
 fn.P/,
the processes P and PŒŒ��� are equivalent. Since we give meaning to members of
� 
 fn.P/ and � , we cannot expect that M1uŒP��� DM1uŒP���ŒŒ��� in general, but
we can expect that

M1uŒP���� DM1uŒP��.��1.�//.��1.�//ŒŒ���

The infinite nondeterministic choice used in NFN actually goes beyond the CSP
syntax that some of the standard models can handle, specifically those which, like
the failures-divergences model N , have representations of divergence but not other
infinite behaviours such as infinite traces. The reason for this limitation is that when
a process has unbounded nondeterminism it is not possible to infer whether P n X
can diverge from its finite traces alone. Hiding appears in our CSP translation of
�-calculus as part of the definition of jccs. Fortunately, however, the symmetry of
�-calculus semantics under permutations on names means that whenever there are
arbitrarily long finite traces of terms P and Q that combine under j to give prefixes of
a fixed finite trace, then there is also a pair of infinite traces with the same property.5

It follows that whenever there are arbitrarily long finite traces created by the part of
the CSP construction of jcsp other than hiding, that the hiding maps to prefixes of
a given trace s, then (i) there is an infinite trace of the same process that hides to a
prefix of s and (ii) s itself is recorded as a divergence by divergence strictness.

It is therefore not necessary to use CSP models involving infinite traces if one
wishes to handle strict divergence accurately in �-calculus. If, however, we want
to calculate the infinite traces for other reasons or to handle non-strict divergence
using the techniques developed in [17], we need to use a model that represents
them explicitly. As we said above, this brings with it the danger of distinguishing

5 We can deduce this as follows. Consider the operational semantics of P and Q derived from
CSPŒP���P and CSPŒQ���Q (without any application of NFN, where �P and �Q are the sets assigned
to them by the CSPŒ���� semantics of j). These are finite branching, in the sense that every finite
sequence of visible events and �s can only lead to finitely many distinct states. This depends on the
fact that no single state of P or Q can have more than a finite number of distinct output x:y actions
available, for otherwise jccs might introduce infinite branching on � .

The existence of arbitrarily long pairs of finite traces of P and Q such that P j Q, under perhaps
different �s, can give rise to prefixes of a given finite trace s means that CSPŒP j Q��� can itself
behave in the same way except that the names of the fresh names extruded might be different.
So if we examine that part of the operational semantic tree of CSPŒP j Q��� in which the visible
trace is a prefix of s with modifications to the names of extruded fresh names permitted, it is
infinite and therefore, by König’s lemma, has an infinite path that necessarily ends (as viewed from
the outside) in an infinite sequence of �s. It follows that CSPŒP j Q��� has a divergence that is a
prefix of s except that the finitely many extruded names might be different. Since there is certainly
a permutation � that maps these names to the ones seen in s, it follows that the corresponding exact
prefix of s, and hence s itself from divergence strictness, are divergences of NFN.CSPŒP j Q���; �/.
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processes that we would naturally hope to be equivalent: consider the following pair
of processes:

� p : �z xz : p and � p : �y �z xz : p

These both output an infinite supply of fresh names over channel x. There is every
reason for wanting to identify them, and indeed the terms P and �y P when y
is not free in P. A little thought, however, will reveal that our CSPŒ�� semantics
will have � p : �z xz : p output all the enumerated fresh names one by one, whereas
� p : �y �z xz : p will only output every other one.

For finite traces, this problem is easily remedied by an appropriate permutation
�: any injective finite partial function from a set to itself can be extended to a per-
mutation. This does not work for infinite traces: once we map the single infinite
trace of the right-hand process to the single infinite trace of the left-hand one, there
is nowhere left to map all the names that the right-hand process has missed out. We
must therefore conclude that the semantics we have built to date, if interpreted over
a model with infinite traces, makes undesirable distinctions between processes.

We can also conclude that the semantic values it creates are not always closed,
in the sense that if every prefix of an infinite trace is present, then so is the infinite
trace itself. This is not in itself worrying, but it means that the nondeterministic
interpretation of �-calculus provides the only example known to the author of a
semantics involving hiding in which models like N work accurately despite the
processes not being closed!

An easy, if perhaps extreme, way of solving this problem is to move to having
an uncountable set of Name; the point being that such a set can never be used up,
even in an infinite trace. It is difficult to see how we can otherwise solve it in the
nondeterministic spirit of NFN, at least in the unified case, when one considers how
the environment is also allowed to pick an infinity of fresh names in some infinite
traces.

To avoid these difficulties and more complex arguments later in this paper, in this
paper’s initial treatment of �-calculus via CSP we will only consider CSP models
where each recorded behaviour only involves a finite number of names in each trace:
ones that are relational images of either FL (as described earlier) or FL+ (with
strict divergence but without infinite behaviours), in their channel-based versions
where all the acceptance sets consist only of channel names.

The fact that a �-calculus term only “knows” a finite set of names immediately,
coupled with the way in which we are using channel-based models, means that
all these acceptance sets are themselves finite. It follows that only finitely many
members of Name appear in any behaviour recorded in FL or FL+. We will use
this fact repeatedly. We will refer to these as finite behaviour models.

This restriction allows one immediate simplification. The nondeterministic
choice in the definition of NFN is over an uncountable set of functions. Over a
model in which only finitely many names appear in a trace it is equivalent to addi-
tionally restrict the set of bijections to those which, except for a finite set of names,
are equivalent to the identity. This is now a countable choice.
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16.5.3 Standardised Fresh Names

The CSP semantics that emerges from the nondeterministic approach given above
has much to recommend it, not least the symmetry. It can, however, be viewed as
unnecessarily infinitary, depending as it does on infinite nondeterministic choice.

We can solve this problem by removing from the process all opportunities to
choose the fresh names it extrudes. We ensure that each name to appear in this way
is always the least allowed: the member of � with least index that has not already
appeared in the trace. We can achieve this with a relabelling SFN.P;K; S/ (stan-
dardised fresh names) presented in a similar style to OF, namely via its regulator
process RegSFN.K; S; �/. This is, like RegOF , formed by composing a sets of clauses
with �. The parameters are similar to those used for RegOF, except that this time
the parameters are based mainly on the external view of the system since it is that
which we standardising.

K (initially �) is the external view of the current common knowledge.
S (initially �) is the external view of the set of free names that are available to be

extruded by the system.
� is a partial function, with domain K, that maps the external view of common

knowledge to the internal one. Initially this is the identity function on �.

The clauses forming RegSFN are:

� If both the channel and data are part of common knowledge, then an input does
not change the parameters:

f.�.x/:�.y/; x:y/! RegSFN.K;N; �/ j x; y 2 Kg
� If both the channel and data are part of common knowledge, then an output does

not change the parameters:

f.�.x/:�.y/; x:y/! RegSFN.K;N; �/ j x; y 2 Kg
� If P outputs a fresh name x (one not in range.�/ D �.K/), then this is seen on the

outside as the least index member of S.

f.�.x/:y; x:m/! RegSFN.K [ fmg; S
 fmg; � C Œm 7! y� j
m D �.S/; x 2 K; y 62 �.K/g

� If P inputs a fresh name, then we standardise this so that it is always the one with
least index not in K.

f.�.x/:�.z/; x:y/! RegSFN.K [ fyg; S
 fyg; � C Œy 7! �.z/�/
j z D �.K/; x 2 K; y 62 Kg

The way we formulated this last clause means that we have not only standardised
the way in which fresh names are extruded from P, but also the names that P inputs
as fresh from the environment. The latter is not strictly necessary to achieve the
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standardised external view of our process, but (i) it has a pleasing symmetry and (ii)
it might well make for more efficient automated verification.

As with NFN, we can add this new operator to the CSP translation

SŒP� D .CSPŒP�.fn.P//N/hhSFN.fn.P/;N/ii
where fn.P/ is the set of free names in P and N0 D Name 
 fn.P/. We can also
construct a denotational semantics based on any channel-based CSP model if we
add an environment of the same form as used in the nondeterministic semantics.

We have the following interesting property of the relabellings used in our two
semantics:

Lemma 1. This result is about CSP processes defined over the alphabet˙� which
respect the �-calculus discipline that no name not in the initial set K is used as a
channel before it is input or output over another channel, and such that the names
it thus “creates” through output are confined to the infinite set S disjoint from K.

For any such process:

(a) For any permutation � of names that is the identity on Name
S, PhhSFN.K; S/ii
D PŒŒ���hhSFN.K; S/ii holds up to strong bisimulation.

(b) The equivalence PhhSFN.K; Sii/DNFN.P; S/hhSFN.K; S/ii holds in every
finite-behaviour CSP model.

The first part simply says that it does not matter how the fresh names generated
by P are permuted if they are to be renamed into standard order. The second part
then follows because in any such model the hhSFN.K; S/ii operator is distributive
over nondeterministic choice.

This lemma implies that the equivalence induced by the nondeterministic seman-
tics is at least as fine as that induced by the standardised one.

If we were to allow CSP models recording behaviours with an infinity of names in
individual traces, part (b) of this lemma would not hold in reverse (i.e. with the roles
of NFN and SFN transposed). This is because applying hhSFN.K; S/ii to a behaviour
b that extrudes an infinity of Name from S always maps it to one in which the whole
of S appears. This means that hhSFN.K; S/iiwill identify pairs of behaviours that no
permutation on S can. This is the same issue we saw when discovering undesirable
inequivalences created by the nondeterministic semantics with infinite traces.

If, however, a behaviour b only involves a finite number of names, then the result
of applying hhSFN.K; S/ii to it is certain to leave an infinite set of names unrecorded
in b. As in the earlier example, it is then possible to extend the finite injective map-
ping from S to itself, created by RegSFN by the time it has communicated all the
names used in b, to a bijection. This proves the following inverse of the lemma
above.

Lemma 2. Under the same conditions as Lemma 1,

NFN.P; S/ D NFN.PhhSFN.K; S/ii; S/
holds in any channel-based, finite-behaviour CSP model.
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We can collect these two results into the following theorem:

Theorem 1. In any such channel-based, finite-behaviour model of CSP the stan-
dardised and nondeterministic semantics for �-calculus represent the same equiva-
lence over process terms.

The author believes that in cases, beyond the scope of this paper, of models in-
cluding infinite-name behaviours, the standardised semantics will give the correct
equivalences. In future discussions in this paper we will concentrate on the stan-
dardised form.

The parameters � � fn.P/ and infinite � disjoint to � are structurally important
to the semantics, but however they are chosen within these constraints they do not
change the equivalence induced by the semantics, as is demonstrated by Lemma 4
below. The crucial result needed to establish this is Lemma 3: the role it plays is that
it allows us to disentangle the fresh names picked by process and environment.

If b is any finite-name behaviour from a channel-based CSP model, M let
enames.b;K/ be the (necessarily finite) set of names first input from the environ-
ment that are not in the common knowledge set K. We then have the following:

Lemma 3. If P is a �-calculus process with fn.P/ � �, and � (disjoint from �) is
infinite, then

b 2M1
�ŒP��� , b 2M1

�ŒP��.� 
 enames.b;K//

Lemma 4. If P and Q are �-calculus processes with fn.P/[ fn.Q/ � �\ �0, and �
(disjoint from �) and � 0 (disjoint from �0) are infinite, then over any finite-behaviour
channel-based CSP model M we have

M1
�ŒP��� DM1

�ŒQ��� ,M1
�ŒP��

0� 0 DM1
�ŒQ��

0� 0

It follows that we can talk about the congruence on �-calculus induced by a given
CSP model of this type, rather than needing to calculate it relative to a particular �
and � . In deciding the equivalence of two processes we can compare their semantics
with � D fn.P/ [ fn.Q/ and � D Name 
 �. The above lemma demonstrates inter
alia that this is an equivalence relation.

16.5.4 Bipartite Semantics

In the above semantics we ensured that a pair of parallel processes P j Q never
create names that collide with each other. Our main reason for doing this was to
ensure that two fresh names output directly to the environment respectively by P
and Q do not collide. It has the side effect, however of meaning that when P inputs a
fresh name created by Q or vice versa they never need to call upon the transpositions
of OF to avoid collisions.
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The only entity that we have not been able to control enough to prevent collisions
is the external environment, because we have always allowed it to output any name
to the process we are observing. It is this that characterises the unified approach.

In the bipartite approach, the set � or S of names that the process can choose from
is not only infinite, but its complement (the names either initially known or available
to be created fresh by the environment) is also infinite. We replace the parameter �,
which we will not need with the bipartite treatment of freshness, with a different
set, $. This represents the set of names which it is legitimate to receive as inputs
over channels. Before the process has started to run $ is always the complement of
� , but at some points in the semantics it is a proper subset of the complement, the
difference being the fresh names that the process has created (and so are no longer
in �) but not yet extruded.

Rather than giving this alternative semantics in detail, we summarise the differ-
ences below. The translations of the input and output constructs are now as follows,
noting we are defining a second translation CSP2Œ��:

CSP2Œx.y/:P�C$� D x‹y W $ ! CSP2ŒP�C$�
CSP2Œxy�C$� D x:y! CSP2ŒP�C.$ [ fyg/�

We get a considerable simplification by being able to drop the most complicated
part of the OF relabelling. OF can in fact be replaced by parallel composition with
a process BOF.$/ (bipartite output first) that enforces the discipline that no name
not in $ can be used as a channel before being output by the process:

BOF.Z/ D�fx‹y W Z ! BOF.Z/ j x 2 Zg
�

�fx‹y W Name! BOF.Z [ fyg/ j x 2 Zg

The translation of �z P thus becomes

CSP2Œ�z P�$� D BOF.$/ k̇
�

CSP2ŒPŒ�.�/=z��$.� 
 f�.�/g/

There is no need to have the function ˘3 in the semantics of j: all we need are
functions˘ 01 and˘ 02 that partition � into two disjoint infinite sets, with each process
having the other’s � incorporated into its $, as are any names in Name
.$[�/ since
these have already been declared at the point the parallel composition is started, and
we could easily have given the output end of such a channel to P and the input end
to Q. CSP2ŒP j Q�$� is defined to be

BOF.$/ k̇
�

.CSP2ŒP�N1.˘ 01.�// jccs CSP2ŒQ�N2.˘ 02.�///

where Ni D Name 
˘ 0i .�/.
There is one important respect in which things get more involved. The reasons

for needing to use channel-based CSP models are equally valid in this bipartite
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model, but the use of these models is not quite as easy to justify since processes
no longer have the “no selective input” property. Just as with the argument earlier
that demonstrated that the N semantics of divergence is correct despite the fact
that processes are not closed, we need to move outside CSP’s established “comfort
zone.” In order for the channel-based models to be valid, we need to ensure that
whenever two processes are running in parallel, one inputting and one outputting a
value v on a given channel c, if the inputting process is in a state where it can accept
any input on c, then it can also accept v, even though there may be values that it
does not accept.

This is always true of our CSP models of the �-calculus. This is because the only
inputs that CSP2Œx.y/�P�$� cannot make are names that have been reserved for P to
generate freshly, or has already generated but not output yet. These are different
from (i) the names created by the external environment by the bipartite structure,
(ii) names created by other parallel processes, because of the way we use ˘ 01 and
˘ 02, and (iii) names previously output by P, by construction.

CSP2ŒP� suffers from the same failures of abstraction due to exact choices of
fresh names as the unified version CSPŒP�. We have the same two choices of how to
fix these, using the same operators NFN.P; �/ and hhSFN.�; �/ii. The first of these
can be used without alteration, as can the second if it is only used at the outside
of the semantics. We cannot incorporate this version into a denotational semantics
M2

�
ŒP��$� since it requires the parameter �. There are two choices: either to in-

corporate this parameter into the semantics, or to use a modified SFN0.�/ that does
not standardise how external names appear to the process P, something that is not
necessary semantically.

It is interesting to note that one of our four CSP semantics, namely M2uŒP�$� , is
defined without any use of generalised renaming, though it does use both elaborate
renamings and parallel composition with processes that limit traces. This is related
to our remark earlier that this semantics is the only where no instantaneous influence
between seemingly independent parallel processes is required.

We have already seen that the two unified semantics give the same equivalence,
and the equivalence they give is independent of reasonable choices for � and � . Sim-
pler arguments of the same type work for the two bipartite semantics. Therefore, we
will know that all four agree if we can prove that the two nondeterministic semantics
agree.

Theorem 2. For a finite-behaviour channel-based CSP model M and �-calculus
process P, we have

(a) M2uŒP�.Name
 �/� D fb 2M1uŒP�.fn.P//� j enames.b/\ � D ;g whenever
� \ fn.P/ D ; and both � and Name 
 � are infinite.

(b) M1uŒP�fn.P/� D ufM2uŒP�.Name 
 � 0/� 0 j � 0 � �; .Name 
 � 0/ infiniteg for
any infinite � disjoint from fn.�/.
� Consequently, the congruences induced by M1uŒ�� and M2uŒ�� are the same.

Part (a) of this result says that behaviours b of P in a bipartite name space are just
those that happen in the unified name space where the environment did not choose
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to inject any names that it would have been banned from doing so under bipartite
rules. The fact that we are in a channel-based model is vital here.

Part (b) essentially observes that for any finite behaviour b of the unified seman-
tics, there is an infinite subset � 0 of � left when we remove enames.b/, and b will
belong to M2uŒP�.Name 
 � 0/� 0.

It follows that the choice of which semantics to adopt is largely down to personal
taste. For the author, the unified nondeterministic semantics has much to recommend
it because it removes the arbitrary choices implicit in the choice of an enumeration
for Name – the semantic value generated by NFN is independent of which enumer-
ation is used in constructing CSPŒ�� – and a partition of that set into process and
environment names. On the other hand it seems likely that the bipartite standardised
approach is best suited to most automatic verification methods.

Recall our expandable buffer example, with its four initial names K in the com-
mon knowledge of process and environment, and where there are three families of
names that get introduced as it proceeds: the zi introduced by the environment, the
si extruded by the process, and the mi used internally by the process but never seen
in traces. In the following we will assume that each zi devised by the environment
is fresh.

� In the M1uŒ�� semantics, any trace in which all the si and zi are different (and
different from K) is allowed.
� In the M1

�
Œ�� semantics, there are less traces, since each si is always the name

with least index not seen up to that point.
� With M2uŒ��, the si and zi are chosen from two predetermined separate pots.
� And in M2

�
Œ��, the sequence of si is fixed at the outset since they are chosen in

order from a pot that is not used for any other purpose.

One of the most interesting things we might observe about this is that nothing in a
trace reveals the values or even presence of the mi to the outside world. In particular
the standardised M1

�
Œ�� semantics seems to use up all the names for the visible

names, leaving none for the mi. Whether or not one regards this as paradoxical
depends on one’s standpoint: certainly we would not want the abstract semantic
value of a process to depend on whether it used a name internally or not.

16.6 Properties and Future Work

We have simultaneously introduced a large number of new semantics for �-calculus,
simply because there is one6 for every channel-based CSP model that does not give a
representation to infinite traces. We cannot hope to explore all their properties here.
In this section, therefore, we restrict ourselves to establishing a few basic properties
and setting out a research programme to explore further possibilities.

6 We say “one” here, because the four options for presenting it are congruent to each other.
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Throughout this section, the M semantics of a �-calculus process P will be
understood to mean the standardised (SFN) semantics calculated over the channel-
based CSP model M over a unified name space with parameters fn.P/ and Name

fn.P/

16.6.1 Refinement and Refinement Checking

The most obvious consequence of having a CSP semantics is that it gives a lan-
guage a natural notion of refinement. We define refinement, relative to a given model
M, by

P vM Q �M1
�ŒP��� vM1

�ŒQ���

for any � containing fn.P/ [ fn.Q/, which is the same as the M-equivalence, as
processes, of P and �:PC�:Q (simply a translation of the CSP construct P u Q). This
equational characterisation means that the definitions of refinement do not depend
on which of the four options is chosen.

Our constructions, Lemma 4, and the properties of refinement in CSP imply that
vM has the compositionality properties one would want, namely

P vM Q) CŒP� vM CŒQ�

for any context C.
As in CSP, one process refines another if its behaviours are a subset of those of

the second process. Thus one process trace refines another if all its traces are ones
of the second, and so on.

In CSP models that record only finitely observable behaviours (a category that
does not include divergence), there is a refinement-maximal process, always equiv-
alent to the simply divergent term � p:�:p. There is a refinement-minimal member
of the CSP model, but no �-calculus process represents it since the minimal mem-
ber has the capability of using every name on the first step as an output channel.
No �-calculus term can do that. It is possible to construct a minimal process in
the traces model subject to knowing the set of names K initially: imagine a system
constructed using the replication ŠC and ŠD of two sorts of cell. A C is initialised
with one name x and can then endlessly either input x.y/ or output a fresh name xz
where z is introduced by �z (and in either case it initialises a further C with name y
or z) or initialise a D with value x.

C D c.x/: � p:�z:.x.y/:cy:pC xz:cz:pC dx:p/

D is initialised with two names and then endlessly outputs one over the other.

D D d.x/:d.y/: � p:xy:p

The process is then defined �c �d ŠC jŠD j C0Œk1=x� j � � � j C0Œkn=x� where C0 is
an initialised copy of C.
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The ŠC D � p:C j �:p construction could not be used in the same way in build-
ing refinement-minimal elements of other finite-behaviour models such as stable
failures F because it is never stable itself. It is, nevertheless, possible to adapt the
above construction to build a refinement-minimal element for F for a given initial
knowledge K. This is left as an exercise to the ingenious reader!

In FDR, the main mode of verifying processes is to show that they refine other
CSP processes representing their specifications. Since our constructions have, in
effect, embedded �-calculus within CSP, we have considerable freedom in how to
formulate refinement checks using a mixture of the two languages.7 A reasonably
general model is provided by checks of the form

Spec vM CŒImp�

where Spec is either a CSP or �-calculus process and C is a possibly null CSP
context.

So, for example, deadlock freedom is equivalent to the refinement check

� p:�:p vF Imp n Events

and we can use the lazy abstraction construction from CSP, as in the following fault
tolerance check from Chapter 12 of [16] that goes a little beyond the model above:

Imp k
E

STOP vF .Imp k
E

CHAOS.E// n E

where E is a set of events that trigger erroneous behaviour within Imp. This spec-
ification says that whatever externally visible behaviour appears with these error
events allowed also happens when they are banned.

16.6.2 Prospects for Using FDR

Having formulated specifications as refinement checks, it is interesting to ask
whether they can be run on FDR, since this might provide a powerful additional
tool to apply to systems designed in �-calculus.

FDR achieves its considerable speed by concentrating on finite-state systems,
allowing most checks to be performed in time linear (or sublinear if compressions
are used) in the number of states of the implementation. It concentrates on what is
the central case of CSP, namely of a number of finite-state processes connected by
a static harness built of parallel, hiding and renaming operators.

This is challenged by two aspects of �-calculus. Firstly, �-calculus assumes
that every x.y/ input communication offers an infinite range of inputs. Secondly,

7 In such usage it will be necessary to ensure that any CSP used respects the no-selective-input
regime required to make channel-based models works.
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�-calculus networks are frequently dynamic and potentially unbounded in size, as
seen both in our buffer example and in the construction above that built the trace-
refinement-minimal process. This takes them outside FDR’s “comfort zone” and
probably out of its range altogether.

It therefore seems sensible to start by looking at �-calculus networks that create
static networks and which generate only finitely new names using �z P constructs.

We therefore consider networks which take the form

�x1 �x2 : : : �xn .P1 j P2 j : : : j Pm/

where the Pi make no use of the operators j and �x and are therefore finite-state
except for the precise names they contain.

The author conjectures that the majority of trace refinement checks involving
such processes can be performed finitely in the following way, thanks to Lazić’s
theory of data independence in CSP [8].

� Use the bipartite approach to semantics.
� Use a type of nC k C 2 names, of which n are tied to the identifiers x1; : : : ; xn,

k are the externally visible names in the system, and the final two are “extras.”
The reason for there are just two extra names is that every �-calculus term, with
the exception of the inequality constraints for fresh names, satisfies the condition
PosConjEqT from [8], which states that no two members of the data-independent
type (here Name) are ever compared for equality except in such a way that the
consequences of equality are always trace refined by the consequences of inequal-
ity. In �-calculus, both (obviously) equality guards Œx D y� and communication
in P j Q represent equality tests of this sort. The first use of any extra name must
be as an input along a preexisting channel. Lazić’s results show that in similar cir-
cumstances, it usually suffices to consider a check in which the data-independent
type is of size one or two greater than the number of distinct constant values. This
represents a threshold value for the refinement check. Thus initially, and until the
process has extruded one or more of the names xi, inputs are restricted to the other
kC 2 names L.
� Regarding the identifiers xi as constants, replace the system with .P1 j : : : j

Pm/ k̇
�

BOF.L/.

� This process may well not be symmetric in the names xi, but if it is refinement
checked against a process that is symmetric in them (for example, by not referring
to them at all, as will presumably be the case when the system does not extrude
names) it should be equivalent to check that the unsymmetric version refines the
specification.

Data independence will, in fact, be applicable to all �-calculus descriptions of
systems: it is impossible to create �-calculus processes that are not data indepen-
dent, at least using the syntax we have adopted for it.

Another class of system that uses an unbounded collection of fresh values has al-
ready been widely studied in CSP, namely cryptographic protocols where the values
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are keys, nonces, etc. (This connection has already been exploited in the Spi Cal-
culus [1].) Several related methods for turning naturally infinite-state refinement
checks involving these into finite-state ones have been developed for these proto-
cols [7, 21]. These methods use a combination of recycling values that no longer
have any meaning to the system and making room for this by identifying “out of
date” values.

It would be interesting to see whether these same techniques can be employed
usefully for �-calculus systems that generate an infinite number of fresh names in
their lifetimes, but only have a finite number meaningful at any one time.

Using the present version of FDR it is not possible to analyse networks that grow
unboundedly. It should, however, be possible to analyse ones that are dynamic but
only have a bounded number of active (i.e. nonzero processes in �-calculus terms)
at any one time and only have a finite number of patterns that these processes follow.
We would need to create a CSP process definition Flex that could be initialised to
behave like one of these patterns and returns to the state Flex once the first pattern
has finished. When a process executes a parallel command P j Q it would implement
one of these (say P) itself and initialise one of the available Flexes to behave like Q.

16.6.3 Full Abstraction

All the well-known CSP models are fully abstract with respect to one or more simple
tests that can be made of processes in the sense that two processes P and Q are
identified in the model if and only if, for all CSP contexts CŒ��, CŒP� passes each of
the tests if and only if CŒQ� does. (See [16,18,19] for information on this.) Thus, for
example, the finite traces model T is fully abstract with respect to the test “P has
the trace hai” for an arbitrarily chosen visible event a, and the failures divergences
model N is fully abstract with respect to the test “neither deadlocks nor diverges
on hi.”

It is clear that, when a given CSP model M has such a property, then two
�-calculus terms P and Q are identified in it if and only if all CSP contexts applied
to them give the same results for the tests. It is interesting to ask whether the same
will hold for �-calculus contexts. The author believes that most of these results will
indeed carry across in this way, but resolving these questions is beyond the scope of
this paper.

16.6.4 Comparison

Equivalences for �-calculus terms have previously been given in terms of bisimula-
tion relations of different sorts. Over other process calculi it is true that bisimulations
relations generally give finer equivalences than CSP-style models, except that some
bisimulations (e.g. weak) do not make the same distinctions based on the potential
to diverge that some CSP models do. The author expects that the same will be true
for �-calculus.
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It seems to the author that the semantics of �-calculus in CSP models have the
merit of simplicity, in the sense that each recorded behaviour only gives a single
value to each name, whichever of our four options is picked. These models seem
no less natural for �-calculus than they do for CSP. Indeed, given that in a unified
name space it is inevitable that any branching-lime model for �-calculus there will
be recorded behaviours on which the name declared in �z P will appear with two
different values, the use of linear observations seems particularly appropriate here.

While our four different ways of treating the fresh names of �-calculus create
different models of a process, they do not change the equivalence induced by the
translation. This is in contrast to the usual bisimulation-based equivalences for the
languages (early, late, barbed, etc.).

16.7 Conclusions

We have illustrated the enormous expressive power of Hoare’s CSP by giving a
number of semantics to �-calculus. The author hopes that in addition to providing
this demonstration of the power of CSP this paper will also be the key to new under-
standings and process analysis methods for �-calculus, and that for some audiences
it might provide a relatively comprehensible way of explaining the semantics of that
notation. In particular, it will be interesting to see if the existence of compositional
theories of refinement for �-calculus will have any applications.

In addition to the topics for further work highlighted in the previous section, there
is a further open end to be explored, namely the topic of models with infinite traces.
Since an infinite trace can contain an infinite number of fresh names, several of the
arguments we have used in this paper no longer apply, and it becomes possible for
a single trace to contain every single name if there are only finitely many of these.

While this may or may not be apparent to the reader, the author discovered on
numerous occasions that the semantic decisions made in the design of �-calculus
were absolutely crucial to the creation of a reasonably elegant semantics for it in
CSP. A prime example of this is the rule that no fresh name can be used as a channel
until it has been passed along another channel is necessary for ensuring that the first
time a name appears in a behaviour in a channel-based model is as the “data” field of
an actually communicated event. This is key to a number of things working properly
in the CSP semantics. Thus, at least to the author, this work demonstrated not only
the power of CSP, but also the great elegance of the �-calculus.
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Chapter 17
The Tokeneer Experiments

Jim Woodcock, Emine Gökçe Aydal, and Rod Chapman

For Tony Hoare, to celebrate his 75th birthday.

Abstract We describe an experiment conducted as part of a pilot project in the
Verified Software Initiative (VSI). We begin by recounting the background to the
VSI and its six initial pilot projects, and give an update on the current progress of
each project. We describe one of these, the Tokeneer ID Station in greater detail.
Tokeneer was developed by Praxis High Integrity Systems and SPRE for the US
National Security Agency, and it has been acclaimed by the US National Academies
as representing best practice in software development. To date, only five errors have
been found in Tokeneer, and the entire project archive has been released for ex-
perimentation within the VSI. We describe the first experiment using the Tokeneer
archive. Our objective is to investigate the dependability claims for Tokeneer as a
security-critical system. Our experiment uses a model-based testing technique that
exploits formal methods and tools to discover nine anomalous scenarios. We discuss
four of these in detail.

17.1 Introduction (by JW)

In 2002, I attended a colloquium in Lisbon to celebrate the UN Software Technology
Institute’s 10th Anniversary [1]. Tony Hoare gave a talk on the use of assertions
in current Microsoft practice, where they instrument programs as software testing
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probes [40]. He went on to describe the greater benefits that would follow from
using a tool to check a program’s adherence to its assertions: the Verifying Compiler.
He concluded by saying that building a verifying compiler would be a “splendid
opportunity for academic research” and “one of the major challenges of Computing
Science in the twenty-first century,” likening it to the Human Genome project.

Tony had invited me to lecture at that year’s Marktoberdorf Summer School.
During one of the excursions, he repeated to me his idea for the verifying compiler
as a way of galvanising the computer science community into a productive long-
term research programme: a Grand Challenge. This, Tony said, was the dream of
Jim King’s doctoral thesis [59], a dream abandoned in the 1970s as being well be-
yond current theorem-proving capabilities. But much progress had been made in the
following 30 years, both in hardware capacity and in the software technologies for
verification. Tony suggested that the renewed challenge of an automatic verifying
compiler could provide a focus for interaction, cross-fertilisation, advancement, and
experimental evaluation of all relevant verification technologies. Perhaps by a con-
certed international effort, we might be able to meet this challenge within 15–25
years. I was now recruited to the cause.

In November that year, there was a UK Grand Challenge Workshop in Edinburgh,
where more than 100 proposals were submitted [43]. These proposals were distilled
into just seven grand challenges, one of which included the verifying compiler:
GC6—Dependable Systems Evolution. As its name suggests, this challenge was
based on a very broad understanding of software correctness, and tried to include as
wide a community of researchers as possible, spanning the range of interests from
full functional correctness through to issues of dependability, where formalisation is
difficult, if at all possible. Three threads of activity were launched to progress GC6:
software verification, dependability, and evolution. Tony Hoare, Cliff Jones, and
Brian Randell tried to maintain the breadth of the grand challenge by emphasising
the importance of the work on dependability and evolution [44], but proposals like
this are shaped by the availability and enthusiasm of the individuals involved, and
the only thread that has so far really taken off was the one inspired by Tony’s orig-
inal idea of the verifying compiler. The main activity within this thread has been
experimental work on pilot verification projects, as reported in this paper.

The term “verifying compiler” is often misunderstood by researchers, who some-
times hear “verified compiler.” It is also often thought of as just a single tool for a
single programming language, probably an idealised academic one at that. But this
was never Tony’s intention. The verifying compiler was a cipher for an integrated
set of tools checking correctness, in a very broad sense, of a wide range of pro-
gramming artefacts. In promoting the grand challenge, Tony talked about things
that might have surprised his colleagues only a few years before. He talked not just
about full functional correctness, but about checking isolated properties and about
the subtler notions of robustness and dependability. He talked about tools that were
neither sound nor complete, about inter-operability of tools, and about the practical
programming languages used in industry. He even talked about testing.

GC6 has now transformed into an international grand challenge: the Verified
Software Initiative, led by Tony Hoare and Jay Misra, and its manifesto [42]
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represents a consensus position that has emerged from a series of national and
international meetings, workshops, and conferences. Overviews of the background
and objectives may be found in [52, 77, 78]. Surveys of the state of the art are avail-
able [41], covering practice and experience in formal methods [8, 80], automated
deduction for verification [68], and software model checking [51].

Interest in the VSI’s research agenda has grown from just a few dedicated indi-
viduals in 2002 to a distinct community today. There are 55 different international
research groups working in the experimental strand alone. Many members of this
community are young researchers, making important contributions at early stages
of their career. They have their own conference series, Verified Software: Theories,
Tools, and Experiments (Zurich 2005 [64], Toronto 2008 [69], and Edinburgh 2010).
They have published a series of special journal issues (some are still in press): ACM
Computing Surveys, Formal Aspects of Computing [18, 54], Science of Computer
Programming [28], Journal of Object Technology, Journal of Universal Computer
Science [4], and Software Tools for Technology Transfer. They organise working
meetings at leading and specialist conferences: FM Symposium, FLoC, SBMF,
ICTAC, ICFEM, ICECCS, and SEFM. They represent six continents: North and
South America, Europe, Asia, Australia and Africa.

17.2 The Verified Software Repository

The main focus of the UK’s contribution to the VSI is on building a Verified
Software Repository [9, 75], which will eventually contain hundreds of programs
and components, amounting to several million lines of code. This will be accom-
panied by full or partial specifications, designs, test cases, assertions, evolution
histories, and other formal and informal documentation. Each program will be me-
chanically checked by at least one tool, although most will be analysed by a series of
tools in a comparative study. The Repository’s programs are selected by the research
community as realistically representing the wide diversity of computer applications,
including smartcards, embedded software, device drivers, a standard class library, an
embedded operating system, a compiler for a useful language (possibly Java Card),
and parts of the verifier itself, a program generator, a communications protocol (pos-
sibly TCP/IP), a desk-top application, parts of a web service (perhaps Apache). The
main purpose of the Repository is to advance science, but reusable verified compo-
nents may well be taken up in real-life application domains.

Verification of repository components already includes the wide spectrum of pro-
gram properties, from avoidance of specific exceptions like buffer overflow, general
structural integrity (crash-proofing), continuity of service, security against intru-
sion, safety, partial functional correctness, and (at the highest level) total functional
correctness [45]. The techniques used are similarly wide ranging: from unit test-
ing to partial verification, through bounded model checking to fully formal proof.
To understand exactly what has been achieved, each claim for a specific level of
correctness is accompanied by a clear informal statement of the assumptions and
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limitations of the proof, and the contribution that it makes to system dependability.
The progress of the project can be measured by the automation involved in reach-
ing each level of verification for each module in the Repository. Since the ultimate
goal of the project is scientific, the ultimate aim is for complete automation of every
property, higher than the expectations of a normal engineer or customer.

In the remainder of this introductory section, we describe the status of some early
pilot projects that are being used to populate the Repository. Mondex is a smartcard
for electronic finance. The Verified Filestore is inspired by a real space-flight ap-
plication. FreeRTOS is a real-time scheduler that is very widely used in embedded
systems. The Cardiac Pacemaker is a real system, and is representative of an impor-
tant class of medical devices. Microsoft’s Hypervisor is based on one of their future
products. Finally, Tokeneer is a security application involving biometrics. These six
pilot projects encompass a wide variety of application areas and each poses some
important challenges for verification.

17.2.1 Mondex

The following description is based on [81]. In the early 1990s, the National West-
minster Bank and Platform Seven (a UK software house) developed a smartcard-
based electronic cash system, Mondex, suitable for low-value cash-like transactions,
with no third-party involvement, and no cost per transaction. A discussion of the
security requirements can be found in [73,81]; a description of some wider require-
ments can be found in [2]. It was crucial that the card was secure, otherwise money
could be electronically counterfeited, so Platform Seven decided to certify Mondex
to one of the very highest standards available at the time: ITSEC Level E6 [46],
which approximates to Common Criteria Level EAL7 [14] (see the discussion in
Section 17.3). This mandates stringent requirements on software design, develop-
ment, testing, and documentation procedures. It also mandates the use of formal
methods to specify the high-level abstract security policy model and the lower-
level concrete architectural design. It requires a formal proof of correspondence
between the two, in order to show that the concrete design obeys the abstract secu-
rity properties. The evaluation was carried out by the Logica Commercial Licensed
Evaluation Facility, with key parts subcontracted to the University of York to ensure
independence.

The target platform smartcard had an 8-bit microprocessor, a low clock speed,
limited memory (256 bytes of dynamic RAM, and a few kilobytes of slower
EEPROM), and no built-in operating system support for tasks such as memory
management. Power could be withdrawn at any point during the processing of
a transaction. Logica was contracted to deliver the specification and proof using
Z [71, 79]. They had little difficulty in formalising the concrete architectural de-
sign from the existing semi-formal design documents, but the task of producing
an abstract security policy model that both captured the desired security properties
(in particular, that “no value is created” and that “all value is accounted for”) and
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provably corresponded to the lower-level specification, was much harder. A very
small change in the design would have made the abstraction much easier, but was
thought to be too expensive to implement, as the parallel implementation work was
already well beyond that point. The 200-page proof was carried out by hand, and
revealed a small flaw in one of the minor protocols; this was presented to Platform
Seven in the form of a security-compromising scenario. Since this constituted a real
security problem, the design was changed to rectify it. The extensive proofs carried
out were done manually using some novel techniques [72]. The decision not to use
mechanical theorem proving was intended to keep costs under control. Recent work
(reported below) has shown that this was overly cautious, and that Moore’s Law has
swung the balance further in favour of cost-effective mechanical verification.

In 1999, Mondex achieved its ITSEC Level E6 certificate: the very first product
ever to do so. As a part of the ITSEC E6 process, the entire Mondex development
was additionally subjected to rigorous testing, which was itself evaluated. No errors
were found in any part of the system subjected to the use of formal methods.

Mondex was revived in 2006 as a pilot project for the Grand Challenge in Veri-
fied Software. The main objective was to test how the state of the art in mechanical
verification had moved on in 10 years. Eight groups took up the challenge using
the following formal methods (with references to a full discussion of the kinds of
analysis that were performed in each case): Alloy [67], ASM [39], Event-B [10],
OCL [60], PerfectDeveloper,1 �-calculus [53], Raise [36], and Z [32]. The cost of
mechanising the Z proofs of the original project was 10% of the original develop-
ment cost, and so did not dominate costs as initially believed. Interestingly, almost
all techniques used in the Mondex pilot achieved the same level of automation,
producing similar numbers of verification conditions and requiring similar effort
(see [54] for a discussion of these similarities).

17.2.2 Verified Filestore

At an early workshop on the Verifying Compiler, Amir Pnueli suggested that we
should choose the verification of the Linux kernel as a pilot project. It would
be a significant challenge, and would have a lasting impact. Joshi and Holzmann
suggested a more modest aim: the verification of the implementation of a sub-
set of the POSIX filestore interface suitable for flash-memory hardware with strict
fault-tolerance requirements to be used by forthcoming NASA missions [56]. They
required the system would prevent corruption in the presence of unexpected power-
loss, and that it would be able to recover from faults specific to flash hardware
(e.g., bad blocks, read errors, bit corruption, wear-levelling, etc.) [35] . The POSIX
file-system interface [55] was chosen for four reasons: (i) it is a clean, well-defined,

1 No paper is available on the PerfectDeveloper treatment of Mondex, but see [24] for a general
discussion of the PerfectDeveloper tool itself.
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and standard interface that has been stable for many years; (ii) the data structures and
algorithms required are well understood; (iii) although a small part of an operating
system, it is complex enough in terms of reliability guarantees, such as unexpected
power-loss, concurrent access, or data corruption; and (iv) modern information tech-
nology is massively dependent on reliable and secure information availability. An
initial subset of the POSIX standard has been chosen for the pilot project. There is no
support for: (i) file permissions; (ii) hard or symbolic-links; or (iii) entities other than
files and directories (e.g., pipes and sockets). Adding support for (i) is not difficult
and may be done later, whereas support for (ii) and (iii) is more difficult and might
be beyond the scope of the challenge. Existing flash-memory file-systems, such as
YAFFS2 [50], do not support these features, since they are not usually needed for
the functionality of an embedded system.

Freitas and Woodcock have mechanically verified existing Z models of the
POSIX API [33] and a higher-level transaction processing API [31, 34]. Freitas
has shown how to verify datatypes for the design of operating system kernels [30].
Butterfield, Freitas, and Woodcock have modelled the behaviour of flash memory
devices [11–13]. Butler has specified a tree-structured file system in Event-B [26],
and has specified some of the details of the flash file system itself [25]. Mühlberg
and Lüttgen have used model checking to verify compiled file-system code [65],
and Jackson has used Alloy to produce a relational model of aspects of a flash file
system [57]. Ferreira and Oliveira have integrated Alloy, VDMCC, and HOL into a
tool chain to verify parts of the Intel flash file system [29]. Finally, Kim has explored
the flash multi-sector read operation using concolic testing [58].

17.2.3 FreeRTOS

Richard Barry (Wittenstein High Integrity Systems) has proposed the correctness of
their open-source real-time mini-kernel as a pilot project. It runs on a wide range of
different architectures and is used in many commercial embedded systems. There
are over 5,000 downloads per month from SourceForge, putting it in the top 250 of
SourceForge’s 170,000 codes. It is less than 2,500 lines of pointer-rich code, which
makes it small, but very interesting. The first challenge is to analyse the program
for structural integrity properties, for example, to prove that its elaborate use of
pointers is safe. The second challenge is to make a rational reconstruction of the
development of the program, starting from an abstract specification, and refining
down to working code, with all verification conditions discharged with a high level
of automation. These challenges push the current state of the art in both program
analysis and refinement of pointer programs.

Déharbe has produced an abstract specification of FreeRTOS [27] and Machado
has shown how to generate tests automatically from the code [63]. Craig is working
on the formal specification and refinement in Z of more general operating system
kernels [22, 23]. Some of his models have been verified by Freitas and Woodcock.
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17.2.4 Cardiac Pacemaker

Boston Scientific has released into the public domain the system specification for a
previous generation pacemaker, and is offering it as a challenge problem. They have
released a specification that defines functions and operating characteristics, iden-
tifies system environmental performance parameters, and characterises anticipated
uses. This challenge has multiple dimensions and levels. Participants may choose
to submit a complete version of the pacemaker software, designed to run on speci-
fied hardware, they may choose to submit just a formal requirements documents, or
anything in between. McMaster University’s Software Quality Research Laboratory
is putting in place a certification framework to simulate the concept of licensing.
This will enable the Challenge community to explore the concept of licensing ev-
idence and the role of standards in the production of such software. Furthermore,
it will provide a more objective basis for comparison between putative solutions to
the Challenge.

Lawson and his colleagues at McMaster University maintain a web page describ-
ing the state of the Pacemaker pilot project [61]. It gives details of the pacemaker
hardware reference platform, developed by students at the University of Minnesota,
based on an 8-bit PIC18F4520 microcontroller. Macedo, Fitzgerald and Larsen have
an incremental development of a distributed real-time model of a cardiac pacing sys-
tem using VDM [62]. Gomes and Oliveira have specified the Pacemaker in Z, and
carried out proofs of consistency of their specification using ProofPowerZ [37].

17.2.5 Microsoft Hypervisor

Schulte and Paul initiated work within Microsoft on a hypervisor (a kind of sepa-
ration kernel), and it has been proposed by Thomas Santen as a challenge project.
The European Microsoft Innovation Center is collaborating with German academic
partners and the Microsoft Research group for Programming Languages and Meth-
ods on the formal verification of the new Microsoft Hypervisor, to be released as
part of as new Windows Server. The Hypervisor will allow multiple guest operating
systems to run concurrently on a single hardware platform. By proving the mathe-
matical correctness of the Hypervisor, they will control the risks of malicious attack.
Cohen has briefly described the Microsoft Hypervisor project [17].

17.3 Pilot project: Tokeneer ID Station

In this section, we describe one of the pilot projects in a lot more detail: the Tokeneer
ID Station (TIS), a project conducted by Praxis High Integrity Systems and SPRE
for the US National Security Agency. See [15] for an overview of the system, and [6]
for an account of how it was engineered. Tony Hoare has already recorded his opin-
ion of the work carried out: “The Tokeneer project is a milestone in the transfer of
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program verification technology into industrial application” [74]. A report from the
US National Academies [48] refers to several Praxis projects as examples of best
practice in software engineering, particularly in the areas of formal methods and
programming language design and verification.

The Tokeneer project was originally conceived to supply evidence about whether
it is economically feasible to develop systems that can be assured to the higher
levels of the Common Criteria Security Evaluation, the ISO/IEC 15408 standard for
computer security certification [14]. The standard defines seven levels for evaluating
information technology security:

� EAL7: formally verified design and tested
� EAL6: semi-formally verified design and tested
� EAL5: semi-formally designed and tested
� EAL4: methodically designed, tested, and reviewed
� EAL3: methodically tested and checked
� EAL2: structurally tested
� EAL1: functionally tested

Barnes et al. report that an evaluation in 1998 to what is now understood as EAL4
cost about US$2.5 million [6].

Numerous smartcard devices have been evaluated at EAL5, as have multilevel
secure devices such as the Tenix Interactive Link. XTS-400 (STOP 6) is a general-
purpose operating system, which has been evaluated at an augmented EAL5 level.
An example of an EAL6 certified system is the Green Hills Software INTEGRITY-
178B operating system, the only operating system to achieve EAL6 so far. The
Tenix Interactive Link Data Diode Device has been evaluated at EAL7 augmented,
the only product to achieve this.

The problem with these higher levels of the Common Criteria is that industry
believes that it is simply too expensive to develop systems to this standard. The argu-
ment is a familiar one. In 1997, the UK Government Communications Headquarters
held a workshop to discuss the view held in industry that it was too expensive to
use formal methods to achieve ITSEC Level E6 [76], approximately EAL7. The
Mondex project (see Section 17.2) provided evidence to the contrary.

So the objective of the Tokeneer project was to explore the feasibility of develop-
ing cost-effective, high-quality, low-defect EAL5 systems, and to provide evidence
for both EAL6 and EAL7. It was a rare and valuable opportunity to undertake the
controlled measurement of productivity and defect rates. Remarkably, the entire
project archive is openly available and may be downloaded from [74].

Praxis have a well-developed software engineering method that addresses not
only assurance, but also cost requirements. Their method starts from requirements
analysis using their REVEAL technique, continues with specification and develop-
ment, using formal methods where appropriate, until an implementation is reached
in SPARK, a high-level programming language and toolset designed for writing
software for high-integrity applications [7]. They have a successful record of using
their method to develop commercial applications of formal methods, with costs re-
portedly lower than traditional manual object-oriented methods.
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Tokeneer was the subject of an earlier NSA research project investigating the use
of biometrics for physical access control to a secure room containing user worksta-
tions (the enclave). The Tokeneer ID Station contributed to a further development
of the original system. The key idea is that users have smartcard security tokens that
must be used both to gain access to the enclave and to use the workstations once
the user is inside. There are smartcard and biometric readers outside the enclave; if
a user passes their identity tests, then the door opens for entry. Authorisation infor-
mation is written onto the card for subsequent workstation access. This information
describes privileges the user can enjoy for this visit, including times of working,
security clearance and user roles.

In what follows, it is important to understand the Tokeneer ID Station security
target, in order to answer the question, “Is Tokeneer really secure?” The require-
ments assume that the enclave is situated in a high-security area, and so all the users
will have passed a stringent security clearance procedure, either as NSA employees
or as accredited visitors. As a consequence, it may be safely assumed that no user
will ever attempt a malicious attack on the enclave. Instead, the security measures
are intended to prevent accidents: unintentional, unauthorised access to the enclave
and the data provided by its workstations.

The overall functionality of the Tokeneer ID Station was formalised in a 100-
page Z specification. The code was developed in two parts. The core security-related
functionality was implemented in SPARK, and amounts to 9,939 lines of code, with
6,036 lines of flow annotations, 1,999 lines of proof annotations, and 8,529 lines of
comments. The remainder of the system was not security critical, and so was devel-
oped using Ada95, comprising 3,697 lines of code, no flow or poof annotations, and
2,240 lines of comments. The entire development required 260 man-days, provided
by three people working part-time over 9 months.

The task set by NSA was to conform to EAL5. The development actually ex-
ceeded EAL5 requirements in several areas, including configuration control, fault
management, and testing. The main body of the core development work was carried
out to EAL5. But the specification, design, implementation and proof of correspon-
dence were conducted to EAL6 and 7. So why would Praxis do more than they were
asked to do? Because they were told that, if they could produce evidence at these
higher levels within budget, then they should.

The Tokeneer project archive has been downloaded many hundreds of times.
Knight [38] has verified Tokeneer properties using the PVS theorem prover [66].
Jackson is working to broaden the range of properties of SPARK programs that are
automatically verifiable, thus speeding up verification and supporting use of richer
assertions [49]. Work is underway to re-implement Tokeneer using the PerfectDe-
veloper system (see [24] for details of PerfectDeveloper). Aydal and Woodcock have
been analysing the system to search for attacks [3], work reported below.

But how good was the original development of Tokeneer? In fact, only five de-
fects have been found in Tokeneer since it was deployed within NSA in 2004. We
describe each of the defects, reflecting on their causes and significance.
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17.3.1 Defect 1

This account is based on that in [15, Section 17.3]. When the Tokeneer code was
re-analysed in August 2008, in preparation for the public release of the entire
archive, the tool that summarised the proof obligations (the POGS tool) revealed a
single undischarged verification condition. Further investigation showed this to be
in the subprogram ConfigData.ValidateFile. ReadDuration. The code
in question concerns validation of an integer value that is read from a file, but is
expected to be in the range 0–200 s before it is converted into a number of tenths of
seconds in the range 0–2000. The offending undischarged VC is essentially:

H1: rawduration__1 >= - 2147483648 .
H2: rawduration__1 <= 2147483647 .

->
C1: success__1 ->

rawduration__1 * 10 >= - 2147483648 and
rawduration__1 * 10 <= 2147483647 .

The code is from line 222 of configdata.adb:

if Success and then
(RawDuration * 10 <= Integer(DurationT’Last) and
RawDuration * 10 >= Integer(DurationT’First)) then

This VC clearly has a counterexample. For instance, when RawDurationD 109,
H1 and H2 are true, but C1 is false. This reflects the possibility of an integer over-
flow when multiplying by 10 before the range of RawDuration is checked. The
correction to the code is trivial. If replaced by:

if Success and then
(RawDuration <= Integer(DurationT’Last) / 10 and
RawDuration >= Integer(DurationT’First) / 10) then

then all VCs discharge successfully.
Why was this defect not discovered and reported during the original develop-

ment? The original project used the SPARK Examiners “rtc” switch to generate
VCs, which it does for partial correctness and run-time errors, but omits those side-
conditions relating to Ada’s Overflow_Check. Previously, the SPARK toolset
was limited in its capability to discharge these VCs, so these were omitted from
the original project. Subsequently, the SPARK toolset has become far more capa-
ble with regard to overflow conditions, through the use of the compiler-dependent
configuration file, and the base-type assertion for integer types. Users can now gen-
erate VCs using the “vcg” switch, which does include VCs for overflow checks. It
is interesting to note that this defect was not discovered by any testing during the
original project, or any use or attempt to analyse the system since the initial delivery.
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What about the security impact? First, there is a potential denial-of-service attack
resulting from this defect: a malicious user holding the “security officer” role can
deliberately terminate the TIS core software by supplying a malformed configura-
tion data file, rendering the system unusable. More seriously, the software can be
terminated in this fashion with the enclave door open.

17.3.2 Defect 2

The first defect was discovered by Spinellis in October 2008; see his blog [70],
where he reports the following. The Tokeneer function SystemFaultOccurred
is required to return true exactly when a critical system fault has occurred while
attempting to maintain the audit log. The code that implements this uses a global
variable, AuditSystemFault, which is set to true whenever a fault is detected.
Spinellis lists all the assignments to AuditSystemFault that he found in the
code (OK is a variable set by various system functions).

AuditSystemFault := AuditSystemFault or not OK;
AuditSystemFault := AuditSystemFault or not OK;
AuditSystemFault := AuditSystemFault or not OK;
AuditSystemFault := AuditSystemFault or not OK;
AuditSystemFault := True;
AuditSystemFault := True;
AuditSystemFault := True;
AuditSystemFault := True;
AuditSystemFault := not OK;
AuditSystemFault := AuditSystemFault and not OK;

But there is an anomaly in the last assignment, which is used when a log file is
deleted. The conjunction used instead of a disjunction has the effect of clearing the
AuditSystemFault flag if the deletion is successful, and failing to set it if the
deletion fails, but no fault was detected before. Spinellis found this bug by inspection
in less than an hour of browsing. In fact, it was in the second file he looked at, the
first being very short.

17.3.3 Defect 3

The second defect was found by the CodePeer tool on or about 24 August 2009.
CodePeer (developed jointly by AdaCore and SofCheck) statically analyses Ada
programs for a wide range of flaws, including: pointer misuse, buffer overflows,
numeric overflow or wraparound, division by zero, dead code, unused variables,
and race conditions. The tool detected the following error.
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The procedure KeyStore.DoFind contains the following code sequence:

Interface.FindObjectsInit(Template => Template,
ReturnValue => RetValIni);

if RetValIni = Interface.Ok then
Interface.FindObjects(HandleCount => HandleCount,

ObjectHandles => Handles,
ReturnValue => RetValDo);

if RetValIni = Interface.Ok then
Interface.FindObjectsFinal(ReturnValue =>

RetValFin);
end if;

end if;

The test in the second conditional statement is wrong: it should be

if RetValDo = Interface.Ok then

of course. This is almost certainly a cut-and-paste error from the enclosing con-
ditional statements, but why was it not detected during the original verification
process? The procedure call above the offending test assigns to RetValDo, but
unfortunately, there is a meaningful reference to RetValDo later in the subpro-
gram, so the SPARK flow-analyser fails to spot this as an ineffective assignment, as
might have been expected. The offending code also gives rise to several dead paths
through the code, since there are paths with traversal condition

(RetValIni = Interface.Ok) and
-- then branch of outer if statement
(RetValIni /= Interface.Ok)
-- erroneous else branch of inner if statement

But the verification conditions arising from this code are all trivially true, since this
procedure has an implicitly true postcondition. Therefore, the SPARK Simplifier
does not bother with proof-by-contradiction and so fails to spot the dead paths.

The discovery of this error has led to the development of a new tool, Zombie-
Scope, to detect dead code. It is similar to the SPARK Simplifier, except that but it
looks only for contradictory hypotheses, ignoring the conclusions of all VCs. Any
VCs that are found to have contradictory hypotheses are flagged up as indicating
dead paths. The security impact of this bug is not known, as it has yet to be analysed
closely enough.

17.3.4 Defect 4

The third defect was found using the most recent GNAT compiler, a free, high-
quality, complete compiler for Ada95, integrated into the GCC compiler system.
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The defect was found in AuditLog.AddElementToFile. NameOfType,
using the -gnatwa flag (all warnings mode). The offending code is:

function NameOfType (E : AuditTypes.ElementT )
return ElementTextT
is

--# hide NameOfType;
ElementText : ElementTextT := NoElement;

begin
ElementText(1..

AuditTypes.ElementT’Image(ElementID)’Last)
:= AuditTypes.ElementT’Image(ElementID);

return ElementText;
end NameOfType;

GNAT reports that the formal parameter E is not referenced, which is of course
quite right: there is no reference to E in the body of that function. The reference to
ElementID, which is a global variable that is visible from that scope, should be E
here, so it should read:

ElementText(1..
AuditTypes.ElementT’Image(E)’Last)
:= AuditTypes.ElementT’Image(E);

Why was this defect not found before? It would have been difficult to detect the error
during development using the tools available at the time. When the code was first
written, the much earlier version of GNAT used did not implement this warning. The
code in question is not even SPARK, but actually Ada, since it uses a feature that is
not part of SPARK (an array-slice in the assignment), and the code has to be hidden
from the analyser, which would otherwise reject it. Consequently no flow analysis
was conducted at all. The original decision to hide this code was almost certainly
a mistake. Bugs like this can creep in without the rigour of the SPARK tools. This
bug was also missed in code-review, suggesting that the reviewing of hidden units
should have been given more attention. If the code were SPARK, the tools would
certainly have spotted it: an unreferenced formal parameter is always reported by
the SPARK Examiner.

What is the impact on correctness and security? Curiously, none. There is exactly
one call to this function, which reads:

File.PutString( TheFile => TheFile,
Text => NameOfType (ElementID),
Stop => 0 );

So, in this single call E (the formal parameter) is synonymous with ElementID
(the global variable), so there is no foul. But it is a bug waiting to happen if this
code were ever called again with a different parameter, and the developers would fix
it given the chance, so it still qualifies as a defect [16].



418 J. Woodcock et al.

17.3.5 Defect 5

The fourth defect was also found by SofCheck’s CodePeer tool, in September 2009,
in TokenReader.Poll.CheckCardState. CodePeer reports that the final
branch of the case statement

when Interface.InvalidCardState =>
MarkTokenBad;

is dead—telling us that CardState can never have the value

InvalidCardState

CodePeer (through some surprisingly clever inter-procedural value propagation) is
able to determine that the RawCardState value returned from

TokenReader.Interface.Status

is always in the range 1–6, not 0–6. This can be verified by inspection by
following the sequence of calls down the call tree into the support software
(in support/tokenapi.adb). The SPARK tools did not detect this, since
the dead-path analysis is intra-procedural and based on the contracts of the called
units alone.

Is this a bug? Well, not really, but it is an interesting observation that the analysis
of the use of subtypes in the code could be improved.

17.4 A Token Experiment

In this section, we report on an experiment that we performed on Tokeneer. Our mo-
tivation was to take a system that has been developed using best practice and to see
if there is anything more that we can say about it. In particular, since it is a security-
critical system, can we break it? One way of proceeding in our experiment would
have been to search for undischarged verification conditions and proof obligations,
hoping to find that at least one of them would turn out not to be true.

But a second motivation for the experiment was to revisit the original goals of
GC6, and to make a small contribution towards understanding not just the functional
correctness of Tokeneer (Does it correctly implement its specification?), but to say
something about its dependability (Is it really secure?). For this reason, we decided
to try to validate the system against its requirements, and in particular, the security
requirement of no accidental access to the enclave or to its workstations.

To do this, we used a novel model-based testing technique that exploits for-
mal methods and tools: assertion-guided model-based robustness testing. The main
hypothesis of this study was:
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Applying robustness testing in a model-based manner with the use of a separate test model
may reveal requirements-related faults that may not necessarily be detected by formal
verification techniques.

In addition to this hypothesis, we assumed two test hypotheses that helped us define
the test oracle and the test selection algorithm. These hypotheses are valid for very
specific kinds of system, and their usefulness must be judged by the quality of the
results: have they uncovered any genuine failures? We revisit this point at the end of
the paper. We consider first the Redundant Models Hypothesis:

If there are two different specifications of the same System under Test (SuT) that conform
to the same set of requirements, then their fault domains must match with respect to some
test set T.

By using two models of the same system that are independently produced from the
requirements of the SuT, and a test suite generated by using one of these models,
we tried to reveal faults within these models by finding inconsistent behaviours in
their fault domains. Having one model for code generation and a separate model
for test case generation not only introduces the redundancy required for the testing
process, but also separates concerns whilst producing these models. Additionally,
there may be situations where the design model of the system may not be available
due to confidentiality reasons (e.g., in security-critical systems) or the testing of the
system may be completely outsourced. For such cases, being able to generate test
cases from a separate test model brings flexibility to the testing process.

We used a test selection algorithm based on the satisfaction of assertions char-
acterising the operations of the SuT. In order to make the satisfaction of these
assertions more concrete, we introduced the Alternative Scenarios Hypothesis:

For any operation of the SuT, if s satisfies the precondition but t does not, then their corre-
sponding post-states must be different.

This hypothesis is relevant to robust systems, where we want to find situations where
the Operation under Test (OuT) has incorrect fault-handling. In general, robustness
testing checks that a system can handle unexpected user input or software failures
by testing the software outside its expected input range. Thus, by feeding the soft-
ware with classified unexpected input that fails one precondition at a time, the faults
for different situations are uncovered. For the Tokeneer Experiment, a separate test
model of the high integrity variant of the Tokeneer was produced in the Alloy mod-
elling language [47]. The test case specifications were produced by falsifying the
assertions of the operations modelled in some order. The test case specifications
were then fed into Alloy Analyzer, and the test cases generated automatically as
counterexamples using SAT-solving technology.

Bearing in mind the high quality of the system under test, including the fact that
only five errors have previously been found in Tokeneer since its release, we wish to
report a small success in our experiment. We detected nine anomalous behaviours,
and we describe four representative scenarios in the rest of this section (see [3] for
a more detailed account of how we found the anomalies and for a description of the
other scenarios). In Section 17.6, we consider whether these anomalous scenarios
really compromise the security of the enclave and its workstations.
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17.4.1 Scenario 1

Our first scenario concerns tailgating. The Tokeneer system should be seen as more
than the sum of its software and hardware peripherals. It is a socio-technical system,
and there are interactions between people and their procedures and the hardware and
software, and these have to be considered to get a picture of the entire system. We
understand that users must undertake not to “tailgate,” that is, to follow an authorised
user into the enclave without being separately authorised themselves. So we can
rule out the possibility of deliberate tailgating, since users agree not to do it, and
no one has any malicious intent. But we found a scenario that can be explained by
accidental tailgating. Consider the following sequence of events.

1. Miss Moneypenny, an NSA employee, inserts her smartcard into the reader,
which checks its validity.

2. She places her thumb on the fingerprint reader, which checks her identity.
3. The system authorises Miss Moneypenny, unlocking the door.
4. Miss Moneypenny enters the enclave, and the door closes behind her.
5. I am a new NSA employee. Since I have not started to work on a project that

needs access to the enclave area, my card does not have access to the enclave,
but I am not told which areas my card has access to. I assume that my card has
access to all areas.

6. I have eyes only for Miss Moneypenny, and as a result I look anxiously at the
door to get a glimpse of her.

7. I insert my card into the reader.
8. The screen says

ENTRY DENIED

but I am not paying attention. There is no provision for audible alarms.
9. I place my thumb on the fingerprint reader, but again I miss the error message.

10. Anyone watching my actions would be satisfied that I appear to be following
authorised procedures, and so would have no reason to be suspicious.

11. The door is still unlocked following Miss Moneypenny’s entry, and it stays
unlocked for a period known as the latch-unlock duration. I enter the enclave
during this period, and there is no way of detecting my unauthorised entry.

The scenario may be thought rather far-fetched and scarcely credible. It relies on
two mistakes: me not noticing either of the error messages. But it does show how
I could accidentally gain access to the enclave, even though this appears to be an
unlikely occurrence. Perhaps more interestingly, it reveals something about the im-
plementation of the system.

1. Audible alarms could profitably be used to draw attention to the authorisation
failures of the card and fingerprint readers.

2. The no-tailgating rule could be enforced with hardware (a physical turnstile or a
pair of “airlock” doors), or checked with a video entry-detection system.
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3. There is a vulnerability offered by the door being unlocked during the
latch-unlock duration. There are two issues here.

(a) The duration must be long enough to allow Miss Moneypenny to enter, but
not so long as to give others the possibility to tailgate; this seems impossible
to get right.

(b) Errors triggered during attempted authorisations do not prematurely end the
latch-unlock duration. This is a missed opportunity.

17.4.2 Scenario 2

Suppose now that the security officer decides to shorten the latch-unlock duration,
perhaps as a result of discovering my antics in Scenario 1. The security officer needs
to update a configuration file on one of the workstations within the enclave, and
suppose that he wants to decrease the duration from 30s to 15s.

1. The security officer modifies the configuration file, prepares the configuration
data, and writes it to a floppy disk.

2. The security officer successfully authorises his entry and then enters the enclave.
3. He successfully authorises his use of a workstation.
4. He logs in, inserts the floppy disk, and enters the update command, but then

he sees the following:

read/write error

5. The security officer is uncertain what this means, so he then checks the screen
showing the new configuration file. It says very clearly:

Latch-Unlock Duration = 15s

and he is satisfied that the update really has taken place.
6. Working hours currently stop at 17:00, and entry to the enclave should be for-

bidden after this time.
7. But I accidentally misread the time, thinking it to be 16:45, when it is really

17:45. This is probably due to my having returned from a foreign trip, and having
made a mistake adjusting between time zones.

8. I successfully authorise my entry at 17:45 and enter the enclave.
9. I work until 18:00, 1 h later than permitted.

This scenario is rather puzzling at first sight: how could I have been authorised to
enter the enclave in Step 8, clearly outside working hours? To answer this, we need
to know a little bit more about how Tokeneer works. There is a default configuration
file on the system that is used in case of an update failure. When the system detects
a read/write errorwhile trying to read the floppy disk or when the file on the
floppy disk is incorrectly formatted, it is forced to use this default configuration file.
The default file is inaccessible, presumably to prevent accidental interference. It just
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so happens in our scenario that the default value for the latch-unlock duration is the
same as that required by the security officer (15s), and this coincidence persuades
him in Step 5 that the update has taken place correctly. But of course, all the other
settings now assume their default values. In our scenario, this gives the later working
time of 18:00, and so explains my entry in Step 8.

So I have gained accidental entry to the enclave and accidental access to a work-
station. Is this an unlikely scenario? It depends on how carefully the configuration
data file is prepared and whether or not the floppy disk drive is working properly, and
it may well be an ageing device with reliability problems. But if a failure does occur,
then it is made worse by a human–computer interface problem: the consequences of
the error are not made clear to the security officer.

17.4.3 Scenario 3

The third scenario also concerns configuration data. The system logs information
about workstation usage in an audit file, and an alarm is signalled when the file
reaches the minimum log-size for sounding the alarm.

1. The number of users and tasks increases, with the audit log filling up rapidly.
2. The audit manager visits the enclave several times a day to archive the log.
3. The security officer agrees to raise the threshold to reduce the number of alarms.
4. He copies new configuration data to a floppy disk, authorises his entry and enters

the enclave.
5. He logs in to a workstation and updates the system.
6. To check that the update has occurred properly, he logs out, logs back in again

and checks the minimum audit-log size. It has the value he requires, so he logs
out and leaves the enclave.

7. But the alarm is triggered once more by the old threshold.
8. He discovers later that the update seems to take effect only after the system is

rebooted, following a public holiday.

The triggering of the alarm in Step 7 is puzzling. The security officer assured himself
in Step 6 that the update had taken place satisfactorily, but later discovers that this
doesn’t seem to be the case. Again, we need to know more about how Tokeneer
works. Although a new file is introduced to the system, and when requested, it can be
viewed on the screen, the actual configuration data used for alerting stays the same
till the next system start-up. The same thing also happens when a disk is inserted
into the system drive for an admin operation. If the disk is not inserted at the start-up
time, then the system does not recognise the disk.

This scenario affects the usability of the system, as too many alarms deny proper
users the service they require from the system. It is a rather surprising behaviour,
and may constitute an accidental denial-of-service attack.
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17.4.4 Scenario 4

Our final scenario also concerns configuration files.

1. The security officer wants to change the closing time from 17:00 to 16:00.
2. He prepares a configuration file and writes it to a floppy disk.
3. But he accidentally forgets to erase an old configuration file.
4. He enters the enclave and updates system.
5. I enter the enclave at 16:30, half an hour after the new closing time.

Again the scenario is puzzling, and to explain it we need to know how Tokeneer
deals with configuration files. The update function checks the validity of configura-
tion files in the order it finds them on the floppy disk. As there was an older file, this
is the one that is used. In our scenario, it was the older file that had a later closing
time, creating the problem. Once more, I have gained accidental access to both the
enclave and its workstations.

17.5 Analysis

All these stories are revealed by testing 12 operations. The operations realise their
intended functionality when all the preconditions are satisfied, at least for one pre-
state. However, it is only when the test cases exercise system behaviour beyond the
anticipated operational envelope that the stories such as the ones given in the previ-
ous sections are uncovered. The next section discusses these scenarios in the context
of the documentation produced by Praxis-HIS and SPRE during the development of
the high-integrity variant of Tokeneer IDS.

To understand the relevance and validity of these stories, we must analyse them
with respect to the documentation provided, which explains expected system be-
haviour and expected security properties. Section 17.5.1 provides information about
the security model of the TIS, and evaluates the findings accordingly.

17.5.1 Comparison with Security Model and Requirements

This section compares the scenarios with the system requirements document [19,21]
and the security model of the re-developed version of TIS [20]. In [20], the security
model of the TIS is identified with the following six security properties.

1. If the latch is unlocked by the TIS, then the TIS must be in possession of either a
User Token or an Admin Token. The User Token must have valid ID, Privilege,
and I&A Certificates, and either have a valid Authorisation Certificate or have
a template that allowed the TIS to successfully validate the user’s fingerprint.
Or, if the User Token does not meet this, the Admin Token must have a valid
Authorisation Certificate, with role of guard.
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2. If the latch is unlocked automatically by the TIS, then the current time must be
close to being within the allowed entry period defined for the User requesting
access. The term close needs to be defined, but is intended to allow a period of
grace between checking that access is allowed and actually unlocking the latch.
Automatically refers to the latch being unlocked by the system in response to a
user token insertion, rather than being manually unlocked by the guard.

3. An alarm will be raised whenever the door/latch is insecure. Insecure is defined
to mean the latch is locked, the door is open, and too much time has passed since
the last explicit request to lock the latch.

4. No audit data is lost without an audit alarm being raised.
5. The presence of an audit record of one type (e.g. recording the unlocking of

the latch) will always be preceded by certain other audit records (e.g., recording
the successful checking of certificates, fingerprints, etc.). Such a property would
need to be defined in detail, explaining the data relationship rules exactly for
each case.

6. The configuration data will be changed, or information written to the floppy, only
if there is an administrator logged on to the TIS.

The first and second properties do not prevent the TIS from situations such as the
one given in Scenario 1. Here are some of the root causes of these stories:

� None of these properties imposes the condition that the owner of the card shall be
the person entering the enclave.
� There is no way of checking whether the person who is authorised outside the en-

clave actually enters the enclave after removing his/her card from the card reader.
� It is difficult to keep track of users using the enclave without the exit point, which

was included in the actual Tokeneer system specification, but excluded in the re-
developed version of TIS.
� No action is taken after an access denial, even if the door is open.

One might argue that some of these statements are not set as the requirements of
the high-integrity variant of the TIS, and some of them are even explicitly excluded
in the documentation. However, this does not affect the validity of the stories men-
tioned above. Therefore, if any of them is taken under investigation in the future,
one of the root causes listed above must be considered whilst looking for a solution.

Another discussion item relevant to one of the stories is Security Property 6. The
property states that the configuration data will be changed by an administrator (more
specifically by a Security Officer), and the information (log files) will be written to
the floppy by an administrator (more specifically by the Audit Manager). As shown
in Scenario 2, in the case of an invalid configuration file, the system replaces the
current configuration file with a default one. In other words, if the security officer
attempts to update the configuration file with an invalid file by mistake, it is the
system that updates the file with some default file without the control of the security
officer. By taking such an action without the approval of the security officer, the
system actually breaks one of the security properties stated earlier. In the Security
Properties Document of the TIS [19], it is declared that the proof of this security
property is missed, therefore we will not discuss this item any further. However, it
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is open to discussion whether more attention should be given to the correctness of
a file that determines how long the door to a secure enclave can be kept open, the
latch of this door can be kept unlocked, the enclave is available to users, etc.

Regarding system faults and the alarms raised, in [5] it is stated that the system
faults are warnings, with the exception of critical faults listed as failure to control
the latch, failure to monitor the door and failure to write to the Audit Log. It is also
mentioned as a requirement that the system shall continue to function following a
system fault categorised as a warning, and raise an alarm following a critical fault.
During the test case execution process, it was not possible to concretise the test cases
that require a critical fault, therefore we are not in a position to state the behaviour of
the system under these circumstances. However, there were test cases that required
the alarm to be raised due to other causes such as the door being kept open more
than allowed or the audit file size exceeding the limit specified in the configuration
file. The system continues to perform normally for such cases even though an alarm
is raised. Our concern is that the system may behave similarly for the critical faults
mentioned above since the only requirement specified following a critical fault is
to raise an alarm. The security of the system may not be compromised if the log
file is too large, but a failure to control the latch would certainly create a risk, and
therefore we believe that the measures taken for the latter case should be more than
just raising an alarm.

The next section explains the system-level testing carried out by SPRE Inc pre-
viously, and compares the test results of this testing activity with that explained in
this report.

17.6 Conclusions

Is Tokeneer really secure? Of course it is! It seems very unlikely that any of the
accidents described by our scenarios could really happen and compromise the se-
curity of the enclave and its workstations, particularly as an administrator is needed
for three of the four scenarios. But these are interesting scenarios nonetheless, and
they have been overlooked both by the formal development and by system testing.
In fact, the system testing performed by SPRE detected Scenario 2, and the case
is closed as solved; however, in our tests, it persisted, using tests generated by a
completely different technique.

Additionally, these scenarios may be useful in designing similar systems in the
future, as they raise questions about configuration files, audit logs, and alarms that
may have been overlooked this time. Perhaps they might be useful if the system
were to evolve to include stronger security guarantees, including malicious intent.

The lesson of our experiment is that there is value in diversity: an alternative
approach gives us an opportunity to think laterally. De Bono’s lateral thinking is
about judging the correctness of a statement (in this case the correctness of To-
keneer), and seeking errors that contradict that claim of correctness. Even when a
considerable amount of effort has been invested in one approach, in this case the
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application of formal methods, lateral thinking, provided by using a completely dif-
ferent, but principled set of techniques and tools, can still challenge the claim of
correctness.
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