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Geodesics

Geodesics are the curves in a surface that a bug living in the surface would

perceive to be straight. For example, the shortest path between two points in a

surface is always a geodesic. We shall actually begin by giving a quite different

definition of geodesics, since this definition is easier to work with. We give

various methods of finding geodesics on surfaces, before finally making contact

with the idea of shortest paths towards the end of the chapter.

9.1 Definition and basic properties

If we drive along a ‘straight’ road, we do not have to turn the wheel of our car to

the right or left (this is what we mean by ‘straight’ !). However, the road is not,

in fact, a straight line as the surface of the earth is, to a good approximation, a

sphere and there can be no straight line on the surface of a sphere. If the road

is represented by a curve γ, its acceleration γ̈ will be non-zero, but we perceive

the curve as being straight because the tangential component of γ̈ is zero, in

other words because γ̈ is perpendicular to the surface. This suggests

Definition 9.1.1

A curve γ on a surface S is called a geodesic if γ̈(t) is zero or perpendicular

to the tangent plane of the surface at the point γ(t), i.e., parallel to its unit

normal, for all values of the parameter t.

Andrew Pressley, Elementary Differential Geometry: Second Edition, 215
Springer Undergraduate Mathematics Series, DOI 10.1007/978-1-84882-891-9 9,
c© Springer-Verlag London Limited 2010



216 9. Geodesics

Equivalently, γ is a geodesic if and only if its tangent vector γ̇ is parallel

along γ (see Section 7.4).

Note that this definition makes sense for any surface, orientable or not.

There is an interesting mechanical interpretation of geodesics: a parti-

cle moving on the surface, and subject to no forces except a force acting

perpendicular to the surface that keeps the particle on the surface, would move

along a geodesic. This is because Newton’s second law of motion states that

the force on the particle is parallel to its acceleration γ̈, which would therefore

be perpendicular to the surface.

We begin our study of geodesics by noting that there is essentially no choice

in their parametrization.

Proposition 9.1.2

Any geodesic has constant speed.

Proof

Let γ(t) be a geodesic on a surface S. Then, denoting d/dt by a dot,

d

dt
‖ γ̇ ‖2= d

dt
(γ̇ · γ̇) = 2γ̈ · γ̇.

Since γ is a geodesic, γ̈ is perpendicular to the tangent plane and is therefore

perpendicular to the tangent vector γ̇. So γ̈ · γ̇ = 0 and the last equation shows

that ‖ γ̇ ‖ is constant.

It follows from this proposition that a unit-speed reparametrization of a

geodesic γ is still a geodesic. For, if ‖ γ̇ ‖= λ, then γ̃(t) = γ(t/λ) is a unit-

speed reparametrization of γ and d2γ̃
dt2 = 1

λ2
d2γ
dt2 is parallel to γ̈, and hence is

also perpendicular to the surface. Thus, we can always restrict to unit-speed

geodesics if we wish. In general, however, a reparametrization of a geodesic will

not be a geodesic (see Exercise 9.1.2).

We observe next that there is an equivalent definition of a geodesic expressed

in terms of the geodesic curvature κg (see Section 7.3). Of course, this is why

κg is called the geodesic curvature !

Proposition 9.1.3

A unit-speed curve on a surface is a geodesic if and only if its geodesic curvature

is zero everywhere.
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Proof

Let γ be a unit-speed curve on the surface S, and let p ∈ S. Let σ be a surface

patch of S with p in its image, and let N be the standard unit normal of σ, so

that

κg = γ̈ · (N× γ̇) (9.1)

(changing σ may change the sign of N, and hence that of κg, but that is

not relevant to the present discussion). If γ̈ is parallel to N, it is obviously

perpendicular to N× γ̇, so by Eq. 9.1, κg = 0.

Conversely, suppose that κg = 0. Then, γ̈ is perpendicular to N × γ̇. But

then, since γ̇, N and N × γ̇ are perpendicular unit vectors in R
3 (see the

discussion in Section 7.3), and since γ̈ is perpendicular to γ̇, it follows that γ̈

is parallel to N.

The following result gives the simplest examples of geodesics.

Proposition 9.1.4

Any (part of a) straight line on a surface is a geodesic.

By this, we mean that every straight line can be parametrized so that it is

a geodesic. A similar remark applies to other geodesics we consider and whose

parametrization is not specified (see Exercise 9.1.2).

Proof

This is obvious, for any straight line has a (constant speed) parametrization of

the form

γ(t) = a+ bt,

where a and b are constant vectors, and clearly γ̈ = 0.

Example 9.1.5

All straight lines in the plane are geodesics, as are the rulings of any ruled

surface, such as those of a (generalized) cylinder or a (generalized) cone, or the

straight lines on a hyperboloid of one sheet.

The next result is almost as simple:
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Proposition 9.1.6

Any normal section of a surface is a geodesic.

Proof

Recall from Section 7.3 that a normal section of a surface S is the intersection

C of S with a plane Π, such that Π is perpendicular to the surface at each point

of C. We showed in Corollary7.3.4 that κg = 0 for a normal section, and so the

result follows from Proposition 9.1.3.

Example 9.1.7

All great circles on a sphere are geodesics. For a great circle is the intersection of

P

O

Π

the sphere with a plane Π passing through the centre O of the sphere, and so

if P is a point of the great circle, the straight line through O and P lies in

Π and is perpendicular to the tangent plane of the sphere at P . Hence, Π is

perpendicular to the tangent plane at P .

Example 9.1.8

The intersection of a generalized cylinder with a plane Π perpendicular to the

rulings of the cylinder is a geodesic. For it is clear that the unit normal N is

perpendicular to the rulings. It follows that N is parallel to Π, and hence that

Π is perpendicular to the tangent plane.
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N

Π

EXERCISES

9.1.1 Describe four different geodesics on the hyperboloid of one sheet

x2 + y2 − z2 = 1

passing through the point (1, 0, 0).

9.1.2 A (regular) curve γ with nowhere vanishing curvature on a surface

S is called a pre-geodesic on S if some reparametrization of γ is a

geodesic on S (recall that a reparametrization of a geodesic is not

usually a geodesic). Show that:

(i) A curve γ is a pre-geodesic if and only if γ̈ · (N× γ̇) = 0 every-

where on γ (in the notation of the proof of Proposition 9.1.3).

(ii) Any reparametrization of a pre-geodesic is a pre-geodesic.

(iii) Any constant speed reparametrization of a pre-geodesic is a

geodesic.

(iv) A pre-geodesic is a geodesic if and only if it has constant speed.

9.1.3 Consider the tube of radius a > 0 around a unit-speed curve γ in

R
3 defined in Exercise 4.2.7:

σ(s, θ) = γ(s) + a(cos θ n(s) + sin θ b(s)).

Show that the parameter curves on the tube obtained by fixing the

value of s are circular geodesics on σ.
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9.1.4 Let γ(t) be a geodesic on an ellipsoid S (see Theorem 5.2.2(i)). Let

2R(t) be the length of the diameter of S parallel to γ̇(t), and let S(t)

be the distance from the centre of S to the tangent plane Tγ(t)S.
Show that the curvature of γ is S(t)/R(t)2, and that the product

R(t)S(t) is independent of t.

9.1.5 Show that a geodesic with nowhere vanishing curvature is a plane

curve if and only if it is a line of curvature.

9.1.6 Let S1 and S2 be two surfaces that intersect in a curve C, and let γ

be a unit-speed parametrization of C.
(i) Show that if γ is a geodesic on both S1 and S2 and if the curvature

of γ is nowhere zero, then S1 ad S2 touch along γ (i.e., they have

the same tangent plane at each point of C). Give an example of

this situation.

(ii) Show that if S1 and S2 intersect orthogonally at each point of C,
then γ is a geodesic on S1 if and only if Ṅ2 is parallel to N1 at

each point of C (where N1 and N2 are unit normals of S1 and

S2). Show also that, in this case, γ is a geodesic on both S1 and

S2 if and only if C is part of a straight line.

9.2 Geodesic equations

Unfortunately, Propositions 9.1.4 and 9.1.6 are not usually sufficient to deter-

mine all the geodesics on a given surface. For that, we need the following result:

Theorem 9.2.1

A curve γ on a surface S is a geodesic if and only if, for any part γ(t) =

σ(u(t), v(t)) of γ contained in a surface patch σ of S, the following two equa-

tions are satisfied:

d

dt
(Eu̇+ F v̇) =

1

2
(Euu̇

2 + 2Fuu̇v̇ +Guv̇
2),

d

dt
(F u̇+Gv̇) =

1

2
(Evu̇

2 + 2Fvu̇v̇ +Gvv̇
2),

(9.2)

where Edu2 + 2Fdudv +Gdv2 is the first fundamental form of σ.

The differential equations (9.2) are called the geodesic equations.
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Proof

Since {σu,σv} is a basis of the tangent plane of σ, γ is a geodesic if and only

if γ̈ is perpendicular to σu and σv. Since γ̇ = u̇σu + v̇σv, this is equivalent to(
d

dt
(u̇σu + v̇σv)

)
· σu = 0 and

(
d

dt
(u̇σu + v̇σv)

)
· σv = 0. (9.3)

We show that these two equations are equivalent to the two geodesic equations.

The left-hand side of the first equation in (9.3) is equal to

d

dt
((u̇σu + v̇σv) · σu)− (u̇σu + v̇σv) · dσu

dt

=
d

dt
(Eu̇+ F v̇)− (u̇σu + v̇σv) · (u̇σuu + v̇σuv) ( 9.4)

=
d

dt
(Eu̇+ F v̇)− (u̇2(σu · σuu) + u̇v̇(σu · σuv + σv · σuu) + v̇2(σv · σuv)).

Now,

Eu = (σu · σu)u = σuu · σu + σu · σuu = 2σu · σuu,

so σu · σuu = 1
2Eu. Similarly, σv · σuv = 1

2Gu. Finally,

σu · σuv + σv · σuu = (σu · σv)u = Fu.

Substituting these values into (9.4) gives
(
d

dt
(u̇σu + v̇σv)

)
· σu =

d

dt
(Eu̇ + F v̇)− 1

2
(Euu̇

2 + 2Fuu̇v̇ +Guv̇
2).

This shows that the first equation in (9.3) is equivalent to the first geodesic

equation in (9.2). Similarly for the other equations.

The geodesic equations are non-linear differential equations, and are usually

difficult or impossible to solve explicitly. The following example is one case in

which this can be done. Another is given in Exercise 9.2.3.

Example 9.2.2

We determine the geodesics on the unit sphere S2 by solving the geodesic

equations. For the usual parametrization by latitude θ and longitude ϕ,

σ(θ, ϕ) = (cos θ cosϕ, cos θ sinϕ, sin θ),

we found in Example 6.1.3 that the first fundamental form is

dθ2 + cos2 θ dϕ2.
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We might as well restrict ourselves to unit-speed curves γ(t) = σ(θ(t), ϕ(t)),

so that

θ̇2 + ϕ̇2 cos2 θ = 1,

and if γ is a geodesic the second equation in (9.2) gives

d

dt
(ϕ̇ cos2 θ) = 0,

so that

ϕ̇ cos2 θ = Ω,

where Ω is a constant. If Ω = 0, then ϕ̇ = 0 and so ϕ is constant and γ is part

of a meridian. We assume that ϕ̇ �= 0 from now on.

The unit-speed condition gives

θ̇2 = 1− Ω2

cos2 θ
,

so along the geodesic we have

(
dθ

dϕ

)2

=
θ̇2

ϕ̇2
= cos2 θ(Ω−2 cos2 θ − 1),

and hence

±(ϕ− ϕ0) =

∫
dθ

cos θ
√
Ω−2 cos2 θ − 1

,

where ϕ0 is a constant. The integral can be evaluated by making the substitu-

tion u = tan θ. This gives

±(ϕ− ϕ0) =

∫
du√

Ω−2 − 1− u2
= sin−1

(
u√

Ω−2 − 1

)
,

and hence

tan θ = ±
√
Ω−2 − 1 sin(ϕ− ϕ0).

This implies that the coordinates x = cos θ cosϕ, y = cos θ sinϕ and z = sin θ

of γ(t) satisfy the equation

z = ax+ by,

where a = ∓√
Ω−2 − 1 sinϕ0, and b = ±√

Ω−2 − 1 cosϕ0. This shows that γ is

contained in the intersection of S2 with a plane passing through the origin.

Hence, in all cases, γ is part of a great circle.

The geodesic equations can be expressed in a different, but equivalent, form

which is sometimes more useful than that in Theorem 9.2.1.
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Proposition 9.2.3

A curve γ on a surface S is a geodesic if and only if, for any part γ(t) =

σ(u(t), v(t)) of γ contained in a surface patch σ of S, the following two equa-

tions are satisfied:

ü+ Γ1
11u̇

2 + 2Γ1
12u̇v̇ + Γ1

22v̇
2 =0

v̈ + Γ2
11u̇

2 + 2Γ2
12u̇v̇ + Γ2

22v̇
2 =0.

Proof

As we noted after Definition 9.1.1, γ is a geodesic if and only if γ̇ is parallel

along γ. Since γ̇ = u̇σu+v̇σv, the equations in the statement of the proposition

follow from Proposition 7.4.5.

It can of course be verified directly that the differential equations in Propo-

sition 9.2.3 are equivalent to those in Theorem 9.2.1 (see Exercise 9.2.6).

Proposition 9.2.3 makes it obvious that the geodesic equations are second-

order ordinary differential equations for the functions u(t) and v(t). Even

though we may be unable in many situations to solve these equations explicitly,

the general theory of ordinary differential equations provides valuable informa-

tion about their solutions. This leads to the following result, which tells us

exactly ‘how many’ geodesics there are.

Proposition 9.2.4

Let p be a point of a surface S, and let t be a unit tangent vector to S at p.

Then, there exists a unique unit-speed geodesic γ on S which passes through

p and has tangent vector t there.

In short, there is a unique geodesic through any given point of a surface in

any given tangent direction.

Proof

The geodesic equations in Proposition 9.2.3 are of the form

ü = f(u, v, u̇, v̇), v̈ = g(u, v, u̇, v̇), (9.5)

where f and g are smooth functions of the four variables u, v, u̇ and v̇. It

is proved in the theory of ordinary differential equations that, for any given

constants a, b, c, and d, and any value t0 of t, there is a solution of Eqs. 9.5

such that
u(t0) = a, v(t0) = b, u̇(t0) = c, v̇(t0) = d, (9.6)
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and such that u(t) and v(t) are defined and smooth for all t satisfying |t− t0| <
ε, where ε is some positive number. Moreover, any two solutions of Eqs. 9.5

satisfying (9.6) agree for all values of t such that |t− t0| < ε′, where ε′ is some

positive number ≤ ε.

We now apply these facts to the geodesic equations. Suppose that p lies in

a patch σ(u, v) of S, say p = σ(a, b), and that t = cσu+dσv, where a, b, c, and

d are scalars and the derivatives are evaluated at u = a, v = b. A unit-speed

curve γ(t) = σ(u(t), v(t)) passes through p at t = t0 if and only if u(t0) = a,

v(t0) = b, and has tangent vector t there if and only if

cσu + dσv = t = γ̇(t0) = u̇(t0)σu + v̇(t0)σv,

i.e., u̇(t0) = c, v̇(t0) = d. Thus, finding a (unit-speed) geodesic γ passing

through p at t = t0 and having tangent vector t is equivalent to solving the

geodesic equations subject to the initial conditions (9.6). But we have said

above that this problem has a unique solution.

Example 9.2.5

We already know that all straight lines in a plane are geodesics. Since there is

a straight line in the plane through any given point of the plane in any given

direction parallel to the plane, it follows from Proposition 9.2.4 that there are

no other geodesics.

Example 9.2.6

Similarly, on a sphere, the great circles are the only geodesics, for there is

clearly a great circle passing through any given point of the sphere in any given

direction tangent to the sphere. (If p is the point and t the tangent direction,

let Π be the plane passing through the origin parallel to p and t (i.e., with

normal p× t); then take the intersection of the sphere with Π.)

The following consequence of Theorem 9.2.1 can also be used in some cases

to find geodesics without solving the geodesic equations.

Corollary 9.2.7

Any local isometry between two surfaces takes the geodesics of one surface to

the geodesics of the other.
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Proof

Let S1 and S2 be the two surfaces, let f : S1 → S2 be the local isometry,

and let γ1 be a geodesic on S1. Let p be a point on γ1 and let σ(u, v) be

a surface patch of S1 with p in its image. Then, the part of γ1 lying in the

patch σ is of the form γ1(t) = σ(u(t), v(t)) with a < t < b, say, where the

smooth functions u and v satisfy the geodesic equations (9.2), with E, F and

G being the coefficients of the first fundamental form of σ. By Corollary6.2.3,

f ◦ σ is a patch of S2 with the same first fundamental form as σ. Hence, by

Theorem 9.2.1, γ2(t) = f(σ(u(t), v(t))), with a < t < b, is a geodesic on S2.

This implies that γ̈2 is perpendicular to S2 at f(p). As this is true for all p,

γ2 is a geodesic on S2.

Example 9.2.8

On the unit cylinder S given by x2+ y2 = 1, we know that the circles obtained

by intersecting S with planes parallel to the xy-plane are geodesics (since they

are normal sections). We also know that the straight lines on S parallel to the

z-axis are geodesics. However, these are certainly not the only geodesics, for

there is only one geodesic of each of the two types passing through each point

of S (whereas we know that there is a geodesic passing through each point in

any given tangent direction).

To find the missing geodesics, we recall that S is locally isometric to the

plane (see Example 6.2.4). In fact, the local isometry takes the point (u, v, 0)

of the xy-plane to the point (cosu, sinu, v) ∈ S. By Corollary 9.2.7, this map

takes geodesics on the plane (i.e., straight lines) to geodesics on S, and vice

versa. So to find all the geodesics on S, we have only to find the images under

the local isometry of all the straight lines in the plane. Any line not parallel to

the y-axis has equation y = mx+c, wherem and c are constants. Parametrizing

this line by x = u, y = mu+ c, we see that its image is the curve

γ(u) = (cosu, sinu,mu+ c)

on S. Comparing with Example 2.1.3, we see that this is a circular helix of

radius one and pitch 2π|m| (adding c to the z-coordinate just translates the
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helix vertically). Note that if m = 0, we get the circular geodesics that we

already know. Finally, any straight line in the xy-plane parallel to the y-axis

is mapped by the local isometry to a straight line on S parallel to the z-axis,

giving the other family of geodesics that we already know.

EXERCISES

9.2.1 Show that, if p and q are distinct points of the unit cylinder, there

are either two or infinitely many geodesics on the cylinder with end-

points p and q (and which do not otherwise pass through p or q).

Which pairs p,q have the former property?

9.2.2 Use Corollary 9.2.7 to find all the geodesics on a circular cone.

9.2.3 Find the geodesics on the unit cylinder by solving the geodesic

equations.

9.2.4 Consider the following three properties that a curve γ on a surface

may have:

(i) γ has constant speed.

(ii) γ satisfies the first of the geodesic equations (9.2).

(iii) γ satisfies the second of the geodesic equations (9.2).

Show, without using Theorem 9.2.1, that (ii) and (iii) together imply

(i). Show also that if (i) holds and if γ is not a parameter curve, then

(ii) and (iii) are equivalent.

9.2.5 Let γ(t) be a unit-speed curve on the helicoid

σ(u, v) = (u cos v, u sin v, v)

(Exercise 4.2.6). Show that

u̇2 + (1 + u2)v̇2 = 1

(a dot denotes d/dt). Show also that, if γ is a geodesic on σ, then

v̇ =
a

1 + u2
,

where a is a constant. Find the geodesics corresponding to a = 0

and a = 1.

Suppose that a geodesic γ on σ intersects a ruling at a point p a

distance D > 0 from the z-axis, and that the angle between γ and

the ruling at p is α, where 0 < α < π/2. Show that the geodesic
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intersects the z-axis if D > cotα, but that if D < cotα its smallest

distance from the z-axis is
√
D2 sin2 α− cos2 α. Find the equation

of the geodesic if D = cotα.

9.2.6 Verify directly that the differential equations in Proposition 9.2.3 are

equivalent to the geodesic equations in Theorem 9.2.1.

9.3 Geodesics on surfaces of revolution

It turns out that, although the geodesic equations for a surface of revolution

cannot usually be solved explicitly, they can be used to get a good qualitative

understanding of the geodesics on such a surface.

We parametrize the surface of revolution in the usual way

σ(u, v) = (f(u) cos v, f(u) sin v, g(u)),

where we assume that f > 0 and
(

df
du

)2
+
(

dg
du

)2
= 1 (see Example 5.3.2 – we

used a dot there to denote d/du, but now a dot is reserved for d/dt, where t

is the parameter along a geodesic). We found in Example 6.1.3 that the first

fundamental form of σ is du2 + f(u)2dv2. Referring to Eq. 9.2,

ü = f(u)
df

du
v̇2,

d

dt
(f(u)2v̇) = 0. (9.7)

We might as well consider unit-speed geodesics, so that

u̇2 + f(u)2v̇2 = 1. (9.8)

From this, we make the following easy deductions:

Proposition 9.3.1

On the surface of revolution

σ(u, v) = (f(u) cos v, f(u) sin v, g(u)),

(i) Every meridian is a geodesic.

(ii) A parallel u = u0 (say) is a geodesic if and only if df/du = 0 when u = u0,

i.e., u0 is a stationary point of f .
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Proof

On a meridian, we have v = constant so the second equation in (9.7) is obviously

satisfied. Equation 9.8 gives u̇ = ±1, so u̇ is constant and the first equation in

(9.7) is also satisfied.

geodesics

For (ii), note that if u = u0 is constant, then by Eq. 9.8, v̇ = ±1/f(u0) is

non-zero, and so the first equation in (9.7) holds only if df/du = 0. Conversely,

if df/du = 0 when u = u0, the first equation in (9.7) obviously holds, and the

second holds because v̇ = ±1/f(u0) and f(u) = f(u0) are constant.

Of course, this proposition only gives some of the geodesics on a surface of

revolution. The following result is very helpful in understanding the remaining

geodesics.

Proposition 9.3.2 (Clairaut’s Theorem)

Let γ be a unit-speed curve on a surface of revolution S, let ρ : S → R be

the distance of a point of S from the axis of rotation, and let ψ be the angle

between γ̇ and the meridians of S. If γ is a geodesic, then ρ sinψ is constant

along γ. Conversely, if ρ sinψ is constant along γ, and if no part of γ is part

of some parallel of S, then γ is a geodesic.

By a ‘part’ of γ we mean γ(J), where J is an open interval. The

hypothesis there cannot be relaxed, for on a parallel ψ = π/2, and so ρ sinψ
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is certainly constant. But parallels are not geodesics in general, as Proposi-

tion 9.3.1(ii) shows.

S

°

° ¾u

¾v

Ã

:

P

Proof

Parametrizing S as in Proposition 9.3.1, we have ρ = f(u). Note that σu and

ρ−1σv are unit vectors tangent to the meridians and parallels, respectively, and

that they are perpendicular since F = 0. Assuming that γ(t) = σ(u(t), v(t)) is

unit-speed, we have

γ̇ = cosψσu + ρ−1 sinψσv

(this equation actually serves to define the sign of ψ, which is left ambiguous

in the statement of Clairaut’s Theorem). Hence,

σu × γ̇ = ρ−1 sinψσu × σv.

Since γ̇ = u̇σu + v̇σv, this gives

v̇σu × σv = ρ−1 sinψσu × σv.

Hence, ρv̇ = sinψ and so

ρ sinψ = ρ2v̇.

But the second equation in (9.7) shows that this is a constant, say Ω, along the

geodesic.
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For the converse, if ρ sinψ is a constant Ω along a unit-speed curve γ in S,
the above argument shows that the second equation in (9.7) is satisfied, and

we must show that the first equation in (9.7) is satisfied too. Since

v̇ =
sinψ

ρ
=

Ω

ρ2
, (9.9)

Eq. 9.8 gives

u̇2 = 1− Ω2

ρ2
. (9.10)

Differentiating both sides with respect to t gives

2u̇ü =
2Ω2

ρ3
ρ̇ =

2Ω2

ρ3
dρ

du
u̇,

∴ u̇

(
ü− ρ

dρ

du
v̇2
)

= 0.

If the term in brackets does not vanish at some point of the curve, say at

γ(t0) = σ(u0, v0), there will be a number ε > 0 such that it does not vanish

for |t − t0| < ε. But then u̇ = 0 for |t − t0| < ε, and so γ coincides with the

parallel u = u0 when |t− t0| < ε, contrary to our assumption. Hence, the term

in brackets must vanish everywhere on γ, i.e.,

ü = ρ
dρ

du
v̇2,

showing that the first equation in (9.7) is indeed satisfied.

Clairaut’s Theorem has a simple mechanical interpretation. Recall that the

geodesics on a surface S are the curves traced on S by a particle subject to no

forces except a force normal to S that constrains it to move on S. When S is

a surface of revolution, the force at a point p ∈ S lies in the plane containing

the axis of revolution and p, and so has no moment about the axis. It follows

that the angular momentum Ω of the particle about the axis is constant. But,

if the particle moves along a unit-speed geodesic, the component of its velocity

along the parallel through p is sinψ, so its angular momentum about the axis

is proportional to ρ sinψ.

Example 9.3.3

We use Clairaut’s theorem to determine the geodesics on the pseudosphere:

σ(u, v) = (eu cos v, eu sin v,
√
1− e2u − cosh−1(e−u)).
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We found in Section 8.3 that its first fundamental form is

du2 + e2udv2.

It is convenient to reparametrize by setting w = e−u. The reparametrized

surface is

σ̃(v, w) =

(
1

w
cos v,

1

w
sin v,

√
1− 1

w2
− cosh−1 w

)
,

and its first fundamental form is

dv2 + dw2

w2
. (9.11)

We must have w > 1 for σ̃ to be well defined and smooth.

If γ(t) = σ̃(v(t), w(t)) is a unit-speed geodesic, the unit-speed condition

gives

v̇2 + ẇ2 = w2, (9.12)

and Clairaut’s theorem gives

1

w
sinψ =

1

w2
v̇ = Ω, (9.13)

where Ω is a constant, since ρ = 1/w. Thus, v̇ = Ωw2. If Ω = 0, we get a

meridian v = constant. Assuming now that Ω �= 0 and substituting in Eq. 9.12

gives

ẇ = ±w
√
1− Ω2w2.

Hence, along the geodesic,

dv

dw
=
v̇

ẇ
= ± Ωw√

1− Ω2w2
,

∴ (v − v0) = ∓ 1

Ω

√
1− Ω2w2, (9.14)

∴ (v − v0)
2 + w2 =

1

Ω2
,

where v0 is a constant. So the geodesics are the images under σ̃ of the parts

of the circles in the vw-plane given by Eq. 9.14 and lying in the region w > 1.

Note that these circles all have centre on the v-axis, and so intersect the v-axis

perpendicularly. The meridians correspond to straight lines perpendicular to

the v-axis.
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v

w

1

The corresponding geodesics on the pseudosphere itself are shown below.

Note that the geodesics cannot be extended indefinitely, in one direction in the

case of the meridians and in both directions for the others. This is because the

geodesics ‘run into’ the circular edge of the pseudosphere in the xy-plane. A bug

walking at constant speed along such a geodesic would reach the edge in a finite

time, and thus would suffer the fate feared by ancient mariners of falling off

the edge of the world. In terms of the vw-plane, the reason for this is that the

line w = 1 is a boundary of the region that corresponds to the pseudosphere

and the straight lines and semicircles that correspond to the geodesics cross

this line.

Clairaut’s theorem can often be used to determine the qualitative behaviour

of the geodesics on a surface S, when solving the geodesic differential equations

explicitly may be difficult or impossible. Note first that, in general, there are

two geodesics passing through any given point p ∈ S with a given angular

momentum Ω, for v̇ is determined by Eq. 9.9 and u̇ up to sign by Eq. 9.10. In

fact, one geodesic is obtained from the other by reflecting in the plane through

p containing the of rotation (which changes Ω to −Ω) followed by changing the

parameter t of the geodesic to −t (which changes the angular momentum back

to Ω again).

The discussion in the preceding paragraph shows that we may as well assume

that Ω > 0, which we do from now on. Then, Eq. 9.10 shows that the geodesic

is confined to the part of S which is at a distance ≥ Ω from the axis.
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If all of S is a distance > Ω from the axis, the geodesic will cross every

parallel of S. For otherwise, u would be bounded above or below on S, say the

former. Let u0 be the least upper bound of u on the geodesic, and let Ω + 2ε,

where ε > 0, be the radius of the parallel u = u0. If u is sufficiently close to u0,

the radius of the corresponding parallel will be ≥ Ω+ ε, and on the part of the

geodesic lying in this region we shall have

|u̇| ≥
√
1−

(
Ω

Ω+ ε

)2

> 0

by Eq. 9.10. But this clearly implies that the geodesic will cross u = u0, con-

tradicting our assumption.

Thus, the interesting case is that in which part of S is within a distance Ω

of the axis. The discussion of this case will be clearer if we consider a concrete

example whose geodesics nevertheless exhibit essentially all possible forms of

behaviour.

Example 9.3.4

We consider the hyperboloid of one sheet obtained by rotating the hyperbola

x2 − z2 = 1, x > 0,

in the xz-plane around the z-axis. Since all of the surface is at a distance ≥ 1

from the z-axis, we have seen above that, if 0 ≤ Ω < 1, a geodesic with angular

momentum Ω crosses every parallel of the hyperboloid and so extends from

z = −∞ to z = ∞.

0 < Ω < 1
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Suppose now that Ω > 1. Then the geodesic is confined to one of the two regions

z ≥
√
Ω2 − 1, z ≤ −

√
Ω2 − 1,

which are bounded by circles Γ+ and Γ−, respectively, of radius Ω. Let p be a

point on Γ−, and consider the geodesic C that passes through p and is tangent to

Γ− there. Then, ψ = π/2 and ρ = Ω at p, so C has angular momentum Ω. Now C
cannot be contained in Γ−, since Γ− is not a geodesic (by Proposition 9.3.1(ii)),

so C must head into the region below Γ− as it leaves p. Moreover, C must be

symmetric about p, since reflection in the plane through p containing the z-axis

takes C to another geodesic that also passes through p and is tangent to Γ−

there, and so must coincide with C by the uniqueness part of Corollary9.2.4.

Since u̇ �= 0 in the region below Γ− by Eq. 9.10, the geodesic crosses every

parallel below Γ− and z → −∞ as t→ ±∞.

Suppose now that C̃ is any geodesic with angular momentum Ω > 1 in

the region below Γ−. Then a suitable rotation around the z-axis will cause C̃
to intersect C, say at q, and so to coincide with it (possibly after reflecting

in the plane through q containing the z-axis and changing t to −t). We have

therefore described the behaviour of every geodesic with angular momentum

Ω > 1 that is confined to the region below Γ−. Of course, the geodesics with

angular momentum Ω > 1 in the region above Γ+ are obtained by reflecting

those below Γ− in the xy-plane.

Suppose finally that Ω = 1. Let C be a geodesic with angular momentum 1

passing through a point p. If p is on the waist Γ of the hyperboloid (i.e., the

unit circle in the xy-plane), which is a geodesic by Proposition 9.3.1(ii), then

ρ = 1 at p and so ψ = π/2 and C is tangent to Γ at p. It must therefore coincide

with Γ. If, on the other hand, p is in the region below Γ, then 0 < ψ < π/2
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at p, so as it leaves p in one direction, C approaches Γ. It must in fact get

arbitrarily close to Γ. For if it were to stay always below a parallel Γ̃ of radius

1 + ε, say (with ε > 0), then we would have

|u̇| ≥
√
1−

(
1

1 + ε

)2

everywhere along C by Eq. 9.10, which clearly implies that C must cross every

parallel, contradicting our assumption. So, if Ω = 1, the geodesic spirals around

the hyperboloid approaching, and getting arbitrarily close to, Γ but never quite

reaching it.

EXERCISES

9.3.1 There is another way to see that all the meridians, and the parallels

corresponding to the stationary points of f , are geodesics on a surface

of revolution considered in this section. What is it?

9.3.2 Describe qualitatively the geodesics on:

(i) A spheroid, obtained by rotating an ellipse around one of its

axes.

(ii) A torus (Exercise 4.2.5).

9.3.3 Show that a geodesic on the pseudosphere with non-zero angular

momentum Ω intersects itself if and only if Ω < (1 + π2)−1/2. How

many self-intersections are there in that case?

9.3.4 Show that if we reparametrize the pseudosphere as in Exercise

8.3.1(ii), the geodesics on the pseudosphere correspond to segments

of straight lines and circles in the parameter plane that intersect the

boundary of the disc orthogonally. Deduce that, in the parametriza-

tion of Exercise 8.3.1(iii), the geodesics correspond to segments of

straight lines in the parameter plane. We shall see in Section 10.4

that there are very few surfaces that have parametrizations with this

property.

9.4 Geodesics as shortest paths

Everyone knows that the straight line segment joining two points p and q

in a plane is the shortest path between p and q (see Exercise 1.2.4). It is



236 9. Geodesics

almost as well known that great circles are the shortest paths on a sphere

(Proposition 6.5.1). And we have seen that the straight lines are the geodesics

in a plane, and the great circles are the geodesics on a sphere.

To see the connection between geodesics and shortest paths on an arbitrary

surface S, we consider a unit-speed curve γ on S passing through two fixed

points p,q ∈ S. If γ is a shortest path on S from p to q, then the part of γ

contained in any surface patch σ of S must be the shortest path between any

two of its points. For if p′ and q′ are any two points of γ in (the image of) σ,

and if there were a shorter path in σ from p′ to q′ than γ, we could replace the

part of γ between p′ and q′ by this shorter path, thus giving a shorter path

from p to q in S.
We may therefore consider a path γ entirely contained in a surface patch σ.

To test whether γ has smaller length than any other path in σ passing through

two fixed points p,q on σ; we embed γ in a smooth family of curves on σ

passing through p and q. By such a family, we mean a curve γτ on σ, for each

τ in an open interval (−δ, δ), such that

(i) there is an ε > 0 such that γτ (t) is defined for all t ∈ (−ε, ε) and all

τ ∈ (−δ, δ);
(ii) for some a, b with −ε < a < b < ε, we have

γτ (a) = p and γτ (b) = q for all τ ∈ (−δ, δ);

(iii) the map from the rectangle (−δ, δ)× (−ε, ε) into R
3 given by

(τ, t) �→ γτ (t)

is smooth;

(iv) γ0 = γ.

p

q

°¿

°

The length of the part of γτ between p and q is

L(τ) =
∫ b

a

‖ γ̇τ ‖ dt,

where a dot denotes d/dt.
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Theorem 9.4.1

With the above notation, the unit-speed curve γ is a geodesic if and only if

d

dτ
L(τ) = 0 when τ = 0

for all families of curves γτ with γ0 = γ.

Note that although we assumed that γ = γ0 is unit-speed, we cannot assume

that γτ is unit-speed if τ �= 0, as this would imply that the length of the segment

of γτ corresponding to a ≤ t ≤ b is independent of τ .

Proof

We use the formula for ‘differentiating under the integral sign’ : if f(τ, t) is

smooth,
d

dτ

∫
f(τ, t)dt =

∫
∂f

∂τ
dt.

Thus,

d

dτ
L(τ) = d

dτ

∫ b

a

‖ γ̇τ ‖ dt

=
d

dτ

∫ b

a

(Eu̇2 + 2F u̇v̇ +Gv̇2)1/2 dt

=

∫ b

a

∂

∂τ
(g(τ, t)1/2) dt (9.15)

=
1

2

∫ b

a

g(τ, t)−1/2 ∂g

∂τ
dt,

where
g(τ, t) = Eu̇2 + 2F u̇v̇ +Gv̇2

and a dot denotes d/dt. Now,

∂g

∂τ
=
∂E

∂τ
u̇2 + 2

∂F

∂τ
u̇v̇ +

∂G

∂τ
v̇2 + 2Eu̇

∂u̇

∂τ
+ 2F

(
∂u̇

∂τ
v̇ + u̇

∂v̇

∂τ

)
+ 2Gv̇

∂v̇

∂τ

=

(
Eu

∂u

∂τ
+ Ev

∂v

∂τ

)
u̇2 + 2

(
Fu
∂u

∂τ
+ Fv

∂v

∂τ

)
u̇v̇ +

(
Gu

∂u

∂τ
+Gv

∂v

∂τ

)
v̇2

+ 2Eu̇
∂2u

∂τ∂t
+ 2F

(
∂2u

∂τ∂t
v̇ + u̇

∂2v

∂τ∂t

)
+ 2Gv̇

∂2v

∂τ∂t

= (Euu̇
2 + 2Fuu̇v̇ +Guv̇

2)
∂u

∂τ
+ (Evu̇

2 + 2Fvu̇v̇ +Gv v̇
2)
∂v

∂τ

+ 2(Eu̇+ F v̇)
∂2u

∂τ∂t
+ 2(F u̇+Gv̇)

∂2v

∂τ∂t
.
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The contribution to the integral in Eq. 9.15 coming from the terms involving

the second partial derivatives is

∫ b

a

g−1/2

{
(Eu̇ + F v̇)

∂2u

∂τ∂t
+(F u̇+Gv̇)

∂2v

∂τ∂t

}
dt

= g−1/2

{
(Eu̇+ F v̇)

∂u

∂τ
+ (F u̇+Gv̇)

∂v

∂τ

}∣∣∣∣
t=b

t=a

(9.16)

−
∫ b

a

(
∂

∂t

{
g−1/2(Eu̇+ F v̇)

} ∂u
∂τ

+
∂

∂t

{
g−1/2(F u̇+Gv̇)

} ∂v
∂τ

)
dt,

using integration by parts. Now, since γτ (a) and γτ (b) are independent of τ

(being equal to p and q, respectively), we have

∂γτ

∂τ
= 0 when t = a or b.

Since
∂γτ

∂τ
=
∂u

∂τ
σu +

∂v

∂τ
σv,

we see that
∂u

∂τ
=
∂v

∂τ
= 0 when t = a or b.

Hence, the first term on the right-hand side of Eq. 9.16 is zero. Inserting the

remaining terms in Eq. 9.16 back into Eq. 9.15, we get

d

dτ
L(τ) =

∫ b

a

(
U
∂u

∂τ
+ V

∂v

∂τ

)
dt, (9.17)

where

U(τ, t) =
1

2
g−1/2(Euu̇

2 + 2Fuu̇v̇ +Guv̇
2)− d

dt

{
g−1/2(Eu̇+ F v̇)

}
,

V (τ, t) =
1

2
g−1/2(Evu̇

2 + 2Fvu̇v̇ +Gv v̇
2)− d

dt

{
g−1/2(F u̇+Gv̇)

}
. (9.18)

Now γ0 = γ is unit-speed, so since ‖ γ̇τ ‖2= g(τ, t), we have g(τ, t) = 1 for all

t when τ = 0. Comparing Eq. 9.18 with the geodesic equations in (9.2), we see

that, if γ is a geodesic, then U = V = 0 when τ = 0, and hence by Eq. 9.17,

d

dτ
L(τ) = 0 when τ = 0.

For the converse, we have to show that, if

∫ b

a

(
U
∂u

∂τ
+ V

∂v

∂τ

)
dt = 0 when τ = 0 (9.19)
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for all families of curves γτ , then U = V = 0 when τ = 0 (since this will prove

that γ satisfies the geodesic equations). Assume, then, that condition (9.19)

holds, and suppose, for example, that U �= 0 when τ = 0. We will show that

this leads to a contradiction.

Since U �= 0 when τ = 0, there is some t0 ∈ (a, b) such that U(0, t0) �= 0,

say U(0, t0) > 0. Since U is a continuous function, there exists η > 0 such that

U(0, t) > 0 if t ∈ (t0 − η, t0 + η).

Let φ be a smooth function such that

φ(t) > 0 if t ∈ (t0 − η, t0 + η) and φ(t) = 0 if t /∈ (t0 − η, t0 + η). (9.20)

(The construction of such a function φ is outlined in Exercise 9.4.3.) Sup-

pose that γ(t) = σ(u(t), v(t)), and consider the family of curves γτ (t) =

σ(u(τ, t), v(τ, t)), where

u(τ, t) = u(t) + τφ(t), v(τ, t) = v(t).

Then, ∂u/∂τ = φ and ∂v/∂τ = 0 for all τ and t, so Eq. 9.19 gives

0 =

∫ b

a

(
U
∂u

∂τ
+ V

∂v

∂τ

)∣∣∣∣∣
τ=0

dt =

∫ t0+η

t0−η

U(0, t)φ(t) dt. (9.21)

But U(0, t) and φ(t) are both > 0 for all t ∈ (t0 − η, t0 + η), so the integral

on the right-hand side of Eq. 9.21 is > 0. This contradiction proves that we

must have U(0, t) = 0 for all t ∈ (a, b). One proves similarly that V (0, t) = 0

for all t ∈ (a, b). Together, these results prove that γ satisfies the geodesic

equations.

It is worth making several comments on Theorem 9.4.1 to be clear about

what it implies, and also what it does not imply.

First, if γ is a shortest path on σ from p to q, then L(τ) must have an

absolute minimum when τ = 0. This implies that d
dτL(τ) = 0 when τ = 0, and

hence by Theorem 9.4.1 that γ is a geodesic.

Second, if γ is a geodesic on σ passing through p and q, then L(τ) has

a stationary point (extremum) when τ = 0, but this need not be an absolute

minimum, or even a local minimum, so γ need not be a shortest path from

p to q. For example, if p and q are two nearby points on a sphere, the short

great circle arc joining p and q is the shortest path from p to q (this is not

quite obvious – see below), but the long great circle arc joining p and q is also

a geodesic – see the diagram preceding Proposition 6.5.1.

Third, in general, a shortest path joining two points on a surface may not

exist. For example, consider the surface S consisting of the xy-plane with the

origin removed. This is a perfectly good surface, but there is no shortest path
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on the surface from the point p = (−1, 0) to the point q = (1, 0). Of course,

the shortest path should be the straight line segment joining the two points,

but this does not lie entirely on the surface, since it passes through the origin

which is not part of the surface. For a ‘real life’ analogy, imagine trying to walk

from p to q but finding that there is a deep hole in the ground at the origin.

The solution might be to walk in a straight line as long as possible, and then

skirt around the hole at the last minute, say taking something like the route

shown below. This path consists of two straight line segments of length 1 − ε,

together with a semicircle of radius ε, so its total length is

2(1− ε) + πε = 2 + (π − 2)ε.

Of course, this is greater than the straight line distance 2, but it can be made

as close as we like to 2 by taking ε sufficiently small. In the language of real

analysis, the greatest lower bound of the lengths of curves on the surface joining

p and q is 2, but there is no curve from p to q in the surface whose length is

equal to this lower bound.

p q

2

Finally, it can be proved that if a surface S is a closed subset of R3 (i.e., if

the set of points of R3 that are not in S is an open subset of R3), and if there is

some path in S joining any two points of S, then there is always a shortest path

joining any two points of S. For example, a plane is a closed subset of R3, and

so there is a shortest path joining any two points. This path must be a straight

line, for by the first remark above it is a geodesic, and we know that the only

geodesics on a plane are the straight lines. Similarly, a sphere is a closed subset

of R3, and it follows that the short great circle arc joining two points on the

sphere is the shortest path joining them. But the surface S considered above

is not a closed subset of R3, for (0, 0) /∈ S, but any open ball containing (0, 0)

must clearly contain points of S, and so the set of points not in S is not open.

Another property of surfaces that are closed subsets of R3 (that we shall also

not prove) is that geodesics on such surfaces can be extended indefinitely, i.e.,

they can be defined on the whole of R. This is clear for straight lines in the plane,

for example, and for great circles on the sphere (although in the latter case the

geodesics ‘close up’ after an increment in the unit-speed parameter equal to

the circumference of the sphere). But, for the straight line γ(t) = (t− 1, 0) on

the surface S defined above, which passes through p when t = 0, the largest

interval containing t = 0 on which it is defined as a curve in the surface is

(−∞, 1). We encountered a less artificial example of this ‘incompleteness’ in
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Example 9.3.3: the pseudosphere considered there fails to be a closed subset

of R3 because the points of its boundary circle in the xy-plane are not in the

surface.

EXERCISES

9.4.1 The geodesics on a circular (half) cone were determined in Exer-

cise 9.2.2. Interpreting ‘line’ as ‘geodesic’, which of the following

(true) statements in plane Euclidean geometry are true for the cone?

(i) There is a line passing through any two points.

(ii) There is a unique line passing through any two distinct points.

(iii) Any two distinct lines intersect in at most one point.

(iv) There are lines that do not intersect each other.

(v) Any line can be continued indefinitely.

(vi) A line defines the shortest distance between any two of its

points.

(vii) A line cannot intersect itself transversely (i.e., with two non-

parallel tangent vectors at the point of intersection).

9.4.2 Show that the long great circle arc on S2 joining the points

p = (1, 0, 0) and q = (0, 1, 0) is not even a local minimum of the

length function L (see the remarks following the proof of Theo-

rem 9.4.1).

9.4.3 Construct a smooth function with the properties in (9.20) in the

following steps:

(i) Show that, for all integers n (positive and negative), tne−1/t2

tends to 0 as t tends to 0.

(ii) Deduce from (i) that the function

θ(t) =

{
e−1/t2 if t ≥ 0,

0 if t ≤ 0

is smooth everywhere.

(iii) Show that the function

ψ(t) = θ(1 + t)θ(1 − t)

is smooth everywhere, that ψ(t) > 0 if −1 < t < 1, and that

ψ(t) = 0 otherwise.
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(iv) Show that the function

φ(t) = ψ

(
t− t0
η

)

has the properties we want.

9.5 Geodesic coordinates

The existence of geodesics on a surface S allows us to construct a very useful

atlas for S. For this, let p ∈ S and let γ, with parameter v say, be a unit-speed

geodesic on S with γ(0) = p. For any value of v, let γ̃v, with parameter u, say,

be a unit-speed geodesic such that γ̃v(0) = γ(v) and which is perpendicular

to γ at γ(v) (γ̃v is unique up to the reparametrization u �→ −u). We define

σ(u, v) = γ̃v(u).

Proposition 9.5.1

With the above notation, there is an open subset U of R2 containing (0, 0)

such that σ : U → R
3 is an allowable surface patch of S. Moreover, the first

fundamental form of σ is

du2 +G(u, v)dv2,

where G is a smooth function on U such that

G(0, v) = 1, Gu(0, v) = 0,

whenever (0, v) ∈ U .

°
°(v)

°v˜

¾(u; v)

p
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Proof

The proof that σ is (for a suitable open set U) an allowable surface patch makes

use of the inverse function theorem (see Section 5.6).

Note first that, for any value of v,

σu(0, v) =
d

du
γ̃v(u)

∣∣∣∣
u=0

, σv(0, v) =
d

dv
γ̃v(0) =

d

dv
γ(v),

and that these are perpendicular unit vectors by construction. If

σ(u, v) = (f(u, v), g(u, v), h(u, v)),

it follows that the Jacobian matrix⎛
⎝ fu fv

gu gv
hu hv

⎞
⎠

has rank 2 when u = v = 0. Hence, at least one of its three 2× 2 submatrices

is invertible at (0, 0), say (
fu fv
gu gv

)
. (9.22)

By the Inverse Function Theorem 5.6.1, there is an open subset U of R2 such

that the map given by

F (u, v) = (f(u, v), g(u, v))

is a bijection from U to an open subset F (U) of R2, and such that its inverse

map F (U) → U is also smooth. The matrix (9.22) is then invertible for all

(u, v) ∈ U , and so σu and σv are linearly independent for (u, v) ∈ U . It follows

that σ : U → R
3 is a surface patch.

As to the first fundamental form of σ, note first that

E = ‖ σu ‖2=
∣∣∣∣
∣∣∣∣ ddu γ̃v(u)

∣∣∣∣
∣∣∣∣
2

= 1

because γ̃v is a unit-speed curve. Next, we apply the second of the geodesic

equations (9.2) to γ̃v. The unit-speed parameter is u and v is constant, so

we get Fu = 0. But when u = 0, we have already seen that σu and σv are

perpendicular, so F = 0. It follows that F = 0 everywhere. Hence, the first

fundamental form of σ is

du2 +G(u, v)dv2.

We have

G(0, v) = ‖ σv(0, v) ‖2=
∣∣∣∣
∣∣∣∣dγdv

∣∣∣∣
∣∣∣∣
2

= 1
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because γ is unit-speed. Finally, from the first geodesic equation in (9.2) applied

to the geodesic γ, for which u = 0 and v is the unit-speed parameter, we get

Gu(0, v) = 0.

A surface patch σ constructed as above is called a geodesic patch, and u

and v are called geodesic coordinates.

Example 9.5.2

If p is a point on the equator of the unit sphere S2, take γ to be the equator

with parameter the longitude ϕ, and let γ̃ϕ be the meridian parametrized by

latitude θ and passing through the point on the equator with longitude ϕ. The

corresponding geodesic patch is the usual latitude-longitude patch, for which

the first fundamental form is

dθ2 + cos2 θ dϕ2,

in accordance with Proposition 9.5.1.

We give an application of geodesic coordinates in the proof of

Theorem 10.3.1.

EXERCISES

9.5.1 Let P be a point of a surface S and let v be a unit tangent vector to

S at P . Let γθ(r) be the unit-speed geodesic on S passing through

P when r = 0 and such that the oriented angle
̂
v dγθ

dr = θ. It can be

shown that σ(r, θ) = γθ(r) is smooth for −ε < r < ε and all values

of θ, where ε is some positive number, and that it is an allowable

surface patch for S defined for 0 < r < ε and for θ in any open

interval of length ≤ 2π. This is called a geodesic polar patch on S.
Show that, if 0 < R < ε,

∫ R

0

∣∣∣∣
∣∣∣∣dγ

θ

dr

∣∣∣∣
∣∣∣∣
2

dr = R.

By differentiating both sides with respect to θ, prove that

σr · σθ = 0.
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P

geodesics

geodesics
circle

This is called Gauss’ Lemma – geometrically, it means that the pa-

rameter curve r = R, called the geodesic circle with centre P and

radius R, is perpendicular to each of its radii, i.e., the geodesics

passing through P . Deduce that the first fundamental form of σ is

dr2 +G(r, θ)dθ2,

for some smooth function G(r, θ).

9.5.2 Let P and Q be two points on a surface S, and assume that there is

a geodesic polar patch with centre P as in Exercise 9.5.1 that also

contains Q; suppose that Q is the point σ(R,α), where 0 < R < ε,

0 ≤ α < 2π. Show in the following steps that the geodesic γα(t) =

σ(t, α) is (up to reparametrization) the unique shortest curve on S
joining P and Q.

(i) Let γ(t) = σ(f(t), g(t)) be any curve in the patch σ joining

P and Q. We assume that γ passes through P when t = 0

and through Q when t = R (this can always be achieved by a

suitable reparametrization). Show that the length of the part

of γ between P and Q is ≥ R, and that R is the length of the

part of γα between P and Q.

(ii) Show that, if γ is any curve on S joining P and Q (not neces-

sarily staying inside the patch σ), the length of the part of γ

between P and Q is ≥ R.

(iii) Show that, if the part of a curve γ on S joining P to Q has

length R, then γ is a reparametrization of γα.
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