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Gaussian, mean and principal curvatures

In this chapter, we show how to extract geometric information from the second

fundamental form of a surface or, equivalently, from its Weingarten map.

8.1 Gaussian and mean curvatures

We start by defining two new measures of the curvature of a surface.

Definition 8.1.1

Let W be the Weingarten map of an oriented surface S at a point p ∈ S. The
Gaussian curvature K and mean curvature H of S at p are defined by

K = det(W), H =
1

2
trace(W).

Recall that the determinant and trace of a linear map (such as W) can be

computed as the determinant and the sum of the diagonal entries of the matrix

of the linear map with respect to any basis (in this case of the tangent plane),

and that they depend only on the linear map and not on the choice of basis.

When the sign of the unit normal of S is changed, the Weingarten map also

changes sign (Exercise 7.2.2), thus leaving K unchanged. This implies that the

Gaussian curvature is defined for any surface S, orientable or not: to define

K at a point p ∈ S, choose a surface patch σ with p in its image; this is an
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180 8. Gaussian, mean and principal curvatures

oriented surface, which may be used to define K, and the result is independent

of the choice of σ. On the other hand, on a surface that is not necessarily

orientable, H is in general only well defined up to sign.

To get explicit formulas for H and K, we work in a surface patch of S. Let
σ(u, v) be a surface patch with first and second fundamental forms

Edu2 + 2Fdudv +Gdv2 and Ldu2 + 2Mdudv +Ndv2,

respectively. Define symmetric 2× 2 matrices FI and FII by

FI =

(
E F

F G

)
, FII =

(
L M

M N

)
.

Proposition 8.1.2

Let σ be a surface patch of an oriented surface S. Then, with the above nota-

tion, the matrix of Wp,S with respect to the basis {σu,σv} of TpS is F−1
I FII .

Proof

By the proof of Proposition 7.2.2, W(σu) = −Nu and W(σv) = −Nv, so the

matrix of W is

(
a c

b d

)
, where

−Nu = aσu + bσv, −Nv = cσu + dσv.

Take the dot product of each of these equations with σu and σv and use

Lemma 7.2.3; this gives

L = aE + bF, M = cE + dF,

M = aF + bG, N = cF + dG.

These four scalar equations are equivalent to the single matrix equation

(
L M

M N

)
=

(
E F

F G

)(
a c

b d

)

i.e., FII = FI

(
a c

b d

)
.

Hence, the matrix of W with respect to the basis {σu,σv} is

(
a c

b d

)
= F−1

I FII .
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Corollary 8.1.3

We have

H =
LG− 2MF + NE

2(EG− F 2)
, K =

LN −M2

EG− F 2
.

Proof

By Definition 8.1.1,

K = det
(F−1

I FII

)
=

det(FII)

det(FI)
=

LN −M2

EG− F 2
.

To compute H , we need the trace of the matrix

F−1
I FII =

1

EG− F 2

(
G −F

−F E

)(
L M

M N

)

=
1

EG− F 2

(
LG −MF MG −NF

ME − LF NE −MF

)
.

Thus,

2H = trace
(F−1

I FII

)
=

LG− 2MF +NE

EG − F 2
.

Example 8.1.4

In Examples 6.1.3 and 7.1.2 we considered the surface of revolution

σ(u, v) = (f(u) cos v, f(u) sin v, g(u)),

where we can assume that f > 0 and ḟ2 + ġ2 = 1 everywhere (a dot denoting

d/du). We found that

E = 1, F = 0, G = f2, L = ḟ g̈ − f̈ ġ, M = 0, N = f ġ.

By Corollary 8.1.3, the Gaussian curvature is

K =
LN −M2

EG− F 2
=

(ḟ g̈ − f̈ ġ)f ġ

f2
.

We can simplify this formula by noting that ḟ2 + ġ2 = 1 implies (by differenti-

ating with respect to u) that ḟ f̈ + ġg̈ = 0,

∴ (ḟ g̈ − f̈ ġ)ġ = −ḟ2f̈ − f̈ ġ2 = −f̈(ḟ2 + ġ2) = −f̈ ,

∴ K = − f̈f

f2
= − f̈

f
.
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We consider some special cases. If γ(u) = (u, 0, 0) is the x-axis, the

corresponding surface of revolution is the xy-plane; since f(u) = u, we have

ḟ = 1, f̈ = 0, so K = 0. If γ(u) = (1, 0, u) is a straight line parallel to the

z-axis, the corresponding surface is the unit cylinder; since f(u) = 1, f̈ = 0, so

K = 0. Finally, if γ(u) = (cos u, 0, sinu) is a circle of radius 1, the correspond-

ing surface is the unit sphere; since f(u) = cosu, ḟ = − sinu, f̈ = − cosu so

K = −f̈/f = −(− cosu)/ cosu = 1. Note that in each of these examples the

curve γ is unit-speed.

Example 8.1.5

For a ruled surface, take a patch

σ(u, v) = γ(u) + vδ(u),

(see Example 5.3.1). Denoting d/du by a dot, we have σu = γ̇ + vδ̇, σv = δ,

so

σuv = δ̇, σvv = 0.

Hence, if N = (σu × σv)/ ‖ σu × σv ‖ is the standard unit normal of σ, then

M = σuv ·N = δ̇ ·N and N = 0. So

K =
LN −M2

EG− F 2
=

−(δ̇ ·N)2

EG− F 2
≤ 0,

i.e., the Gaussian curvature of a ruled surface is negative or zero.

Gauss discovered a way to obtain the Gaussian curvature from the Gauss

map itself, rather than from its derivative, the Weingarten map. His result is

an analogue of Proposition 2.2.3, which shows that, if γ is a unit-speed plane

curve, its signed curvature κs = ϕ̇, where ϕ is the angle between its tangent

vector γ̇ and a fixed direction, i.e., the (signed) curvature is the rate of change

of direction of the tangent vector of γ per unit length. The ‘direction’ of the

tangent plane to an oriented surface S is measured by its unit normal N, so we

might expect that a measure of the curvature of σ is the ‘rate of change of N

per unit area’. The values of N at points of S are recorded by the Gauss map

G, so if R is a small region on S containing a point p, we should look at the

ratio
Area(G(R))

Area(R)

in the limit as the region R shrinks down to the point p.

To make this idea precise, we work in a surface patch.
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Theorem 8.1.6

Let σ : U → R
3 be a surface patch, let (u0, v0) ∈ U , and let δ > 0 be such that

the closed disc

Rδ = {(u, v) ∈ R
2 | (u− u0)

2 + (v − v0)
2 ≤ δ2}

with centre (u0, v0) and radius δ is contained in U . Then,

lim
δ→0

AN(Rδ)

Aσ(Rδ)
= |K|,

where K is the Gaussian curvature of σ at σ(u0, v0).

Note that a δ with the properties in the statement of the theorem exists

because U is open.

Proof

By Definition 6.4.1,

AN(Rδ)

Aσ(Rδ)
=

∫
Rδ

‖ Nu ×Nv ‖ dudv∫
Rδ

‖ σu × σv ‖ dudv
. (8.1)

In the notation of the proof of Proposition 8.1.2,

Nu ×Nv = (aσu + bσv)× (cσu + dσv)

= (ad− bc)σu × σv

= det(F−1
I FII)σu × σv

=
det(FII)

det(FI)
σu × σv

=
LN −M2

EG− F 2
σu × σv

= Kσu × σv (by Corollary 8.1.3). (8.2)

Substituting in Eq. 8.1, we get

AN(Rδ)

Aσ(Rδ)
=

∫
Rδ

|K| ‖ σu × σv ‖ dudv∫
Rδ

‖ σu × σv ‖ dudv
.

Let ε be any positive number. Since K(u, v) is a continuous function of

(u, v) (see Exercise 8.1.3), we can choose δ > 0 so small that

|K(u, v)−K(u0, v0)| < ε
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if (u, v) ∈ Rδ. Since, for any real numbers a, b, |a − b| ≥ ||a| − |b||, it follows

that ||K(u, v)| − |K(u0, v0)|| < ε if (u, v) ∈ Rδ, i.e.,

|K(u0, v0)| − ε < |K(u, v)| < |K(u0, v0)|+ ε

if (u, v) ∈ Rδ. Multiplying through by ‖ σu ×σv ‖ and integrating over Rδ, we

get

(|K(u0, v0)| − ε)

∫
‖ σu × σv ‖dudv<

∫
|K(u, v)|‖ σu × σv ‖dudv

< (|K(u0, v0)|+ ε)

∫
‖ σu × σv ‖dudv,

∴ |K(u0, v0)| − ε <
AN(Rδ)

Aσ(Rδ)
< |K(u0, v0)|+ ε (using Eq. 8.1)

∴
∣∣∣∣AN(Rδ)

Aσ(Rδ)
− |K(u0, v0)|

∣∣∣∣ < ε.

This proves the theorem.

Although this proposition only gives the absolute value of the Gaussian

curvature K, the sign can be recovered from the Gauss map if we define the

signed area of G(R) to be ±AN(R), where the sign is + or − according to

whether Nu×Nv points in the same or the opposite direction as N. By Eq. 8.3,

this sign is that of K, so K is the limit of the ratio

Signed area(G(R))

Area(R)

as the region R shrinks to the point p.

As the following examples show, Theorem 8.1.6 sometimes allows one to

find the Gaussian curvature of a surface with no calculation.

Example 8.1.7

For a plane, the unit normal is constant. Thus, for any R, G(R) is a single

point, and thus has zero area. By the theorem, a plane has Gaussian curvature

zero everywhere.

For a generalized cylinder, the unit normal is clearly always perpendicular

to the rulings of the cylinder, so the image of the Gauss map is contained in the

great circle on S2 formed by intersecting S2 with the plane passing through its

centre perpendicular to the rulings of the cylinder. Any great circle obviously

has zero area, so the cylinder has zero Gaussian curvature too.

Finally, for the unit sphere S2 itself, the unit normal at a point p is clearly

parallel to the radius vector from the centre of the sphere to p. In other words,
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the Gauss map is the identity map or the antipodal map (depending on the

choice of orientation). Both of these maps are obviously equiareal, so the ab-

solute value of the Gaussian curvature of S2 is 1. In fact, if σ is any surface

patch of S2, we have N = ±σ so with either choice of sign Nu×Nv = σu×σv

is a positive multiple of N and the Gaussian curvature is +1.

EXERCISES

8.1.1 Show that the Gaussian and mean curvatures of the surface z =

f(x, y), where f is a smooth function, are

K =
fxxfyy − f2

xy

(1 + f2
x + f2

y )
2
, H =

(1 + f2
y )fxx − 2fxfyfxy + (1 + f2

x)fyy

2(1 + f2
x + f2

y )
3/2

.

8.1.2 Calculate the Gaussian curvature of the helicoid and catenoid

(Exercises 4.2.6 and 5.3.1).

8.1.3 Show that the Gaussian and mean curvatures of a surface S are

smooth functions on S.
8.1.4 In the notation of Example 8.1.5, show that if δ is the principal

normal n of γ or its binormal b, then K = 0 if and only if γ is

planar.

8.1.5 What is the effect on the Gaussian and mean curvatures of a surface

S if we apply a dilation of R3 to S?
8.1.6 Show that the Weingarten map W of a surface satisfies the quadratic

equation

W2 − 2HW +K = 0,

in the usual notation.

8.1.7 Show that the image of the Gauss map of a generalized cone is a

curve on S2, and deduce that the cone has zero Gaussian curvature.

8.1.8 Let σ : U → R
3 be a patch of a surface S. Show that the image

under the Gauss map of the part σ(R) of S corresponding to a

region R ⊆ U has area ∫
R

|K|dAσ,

where K is the Gaussian curvature of S.
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8.1.9 Let S be the torus in Exercise 4.2.5. Describe the parts S+ and S− of

S where the Gaussian curvature K of S is positive and negative,

respectively. Show, without calculation, that∫
S+

K dA = −
∫

S−
K dA = 4π.

It follows that
∫
SK dA = 0, a result that will be ‘explained’ in

Section 13.4.

8.1.10 Let w(u, v) be a smooth tangent vector field on a surface patch

σ(u, v). This means that

w(u, v) = α(u, v)σu + β(u, v)σv

where α and β are smooth functions of (u, v). Then, if γ(t) =

σ(u(t), v(t)) is any curve on σ, w gives rise to the tangent vec-

tor field w|γ(t) = w(u(t), v(t)) along γ. Let ∇uw be the covariant

derivative of w|γ along a parameter curve v = constant, and define

∇vw similarly. (Note that if σ is the uv-plane, then ∇u and ∇v

become ∂/∂u and ∂/∂v). Show that

∇v(∇uw)−∇u(∇vw) = (wv ·N)Nu − (wu ·N)Nv,

where N is the unit normal of σ. Deduce that, if λ(u, v) is a smooth

function of (u, v), then

∇v(∇u(λw))−∇u(∇v(λw)) = λ (∇v(∇uw)−∇u(∇vw)) .

Use Proposition 8.1.2 to show that

∇v(∇uσu)−∇u(∇vσu) = K(−Fσu + Eσv),

where

K =
LN −M2

EG− F 2
,

and find a similar expression for ∇v(∇uσv) − ∇u(∇vσv). Deduce

that

∇v(∇uw) = ∇u(∇vw)

for all tangent vector fields w if and only if K = 0 everywhere on

the surface. (Note that this holds for the plane: wuv = wvu.) We

shall see the significance of the condition K = 0 in Section 8.4.
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8.2 Principal curvatures of a surface

We now examine the Weingarten map Wp,S of a surface S at a point p ∈ S
in a little more detail (we shall usually omit the subscripts). The crucial point

is that W is self-adjoint (Corollary 7.2.4). From Theorem A.0.3 we deduce the

following proposition.

Proposition 8.2.1

Let p be a point of a surface S. There are scalars κ1, κ2 and a basis {t1, t2} of

the tangent plane TpS such that

W(t1) = κ1t1, W(t2) = κ2t2.

Moreover, if κ1 	= κ2, then 〈t1, t2〉 = 0.

The real numbers κ1 and κ2 are the eigenvalues of W , and t1 and t2 are

corresponding eigenvectors. But in this situation, we adopt a special terminol-

ogy: κ1 and κ2 are called the principal curvatures of S, and t1 and t2 are called

principal vectors corresponding to κ1 and κ2.

Points of the surface at which the two principal curvatures are equal (to

κ, say) are called umbilics. At an umbilic, the equations W(t1) = κt1 and

W(t2) = κt2 imply that W(t) = κt if t is any linear combination of t1 and t2.

Thus, p is an umbilic if and only if Wp,S is a scalar multiple of the identity map,

and in that case every tangent vector is principal. On the other hand, if p ∈ S is

not an umbilic, Proposition 8.2.1 tells us that principal vectors corresponding to

the two principal curvatures are necessarily orthogonal (Theorem A.0.3). Thus,

whether or not p is an umbilic we can always find two orthogonal principal

vectors in TpS, and we obtain:

Corollary 8.2.2

If p is a point of a surface S, there is an orthonormal basis of the tangent plane

TpS consisting of principal vectors.

The principal curvatures are related in a simple way to the mean and

Gaussian curvatures:
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Proposition 8.2.3

If κ1 and κ2 are the principal curvatures of a surface, the mean and Gaussian

curvatures are given by

H =
1

2
(κ1 + κ2), K = κ1κ2.

Proof

The determinant and trace of the Weingarten map W can be computed using

the matrix of W with respect to any basis of the tangent plane. Using the basis

formed by the principal vectors, the matrix is

(
κ1 0

0 κ2

)
.

The proposition now follows immediately from Definition 8.1.1.

One reason for introducing the principal curvatures and principal vectors

is contained in the following result, which shows that, if we know the principal

curvatures and principal vectors of a surface, it is easy to calculate the normal

curvature of any curve on the surface:

Euler’s Theorem 8.2.4

Let γ be a curve on an oriented surface S, and let κ1 and κ2 be the principal

curvatures of σ, with non-zero principal vectors t1 and t2. Then, the normal

curvature of γ is

κn = κ1 cos
2 θ + κ2 sin

2 θ,

where θ is the oriented angle t̂1γ̇.

Proof

Let p ∈ S, let κ1 and κ2 be the principal curvatures of S at p, and let t1 and

t2 be corresponding principal vectors. By Corollary 8.2.2, we can assume that

{t1, t2} is an orthonormal basis of TpS. Moreover, by replacing t2 by −t2 if

necessary, we can assume that the oriented angle t̂1t2 = +π/2.

With these assumptions, we have

γ̇ = cos θt1 + sin θt2.
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t2

t1

°

µ

.°

By Proposition7.3.5,

κn = 〈〈γ̇, γ̇〉〉 = cos2 θ〈〈t1, t1〉〉+ 2 sin θ cos θ〈〈t1, t2〉〉+ sin2 θ〈〈t2, t2〉〉.
Now, for i, j = 1, 2,

〈〈ti, tj〉〉 = 〈W(ti), tj〉 = 〈κiti, tj〉 =
{
κi if i = j

0 if i 	= j
.

Hence the result.

Corollary 8.2.5

The principal curvatures at a point of a surface are the maximum and minimum

values of the normal curvature of all curves on the surface that pass through

the point. Moreover, the principal vectors are the tangent vectors of the curves

giving these maximum and minimum values.

Proof

If the principal curvatures κ1 and κ2 are different, we might as well suppose

that κ1 > κ2. Let κn be the normal curvature of a curve γ on the surface.

Then, since

κn = κ1 cos
2 θ + κ2 sin

2 θ = κ1 − (κ1 − κ2) sin
2 θ,

it is clear that κn ≤ κ1 with equality if and only if θ = 0 or π, i.e., if and only

if the tangent vector γ̇ of γ is parallel to the principal vector t1. Similarly, one

shows that κn ≥ κ2 with equality if and only if γ̇ is parallel to t2.

If κ1 = κ2, the normal curvature of every curve is equal to κ1 by Euler’s

Theorem and every tangent vector to the surface is a principal vector.
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To compute the principal curvatures, we work in a surface patch σ(u, v); let

Edu2 + 2Fdudv +Gdv2 and Ldu2 + 2Mdudv +Ndv2

be its first and second fundamental forms. In the notation of Section 8.1, the ma-

trix of the Weingarten map W with respect to the basis {σu,σv} of the tangent

plane is F−1
I FII . Hence, the principal curvatures are the roots κ of the equation

det(F−1
I FII − κI) = 0,

and a tangent vector t = ξσu + ησv is a principal vector if

(F−1
I FII − κI)

(
ξ

η

)
=

(
0

0

)
.

Writing F−1
I FII − κI as F−1

I (FII − κFI), we obtain the following.

Proposition 8.2.6

In the above notation, the principal curvatures are the roots of the equation

∣∣∣∣ L− κE M − κF

M − κF N − κG

∣∣∣∣ = 0,

and the principal vectors corresponding to the principal curvature κ are the

tangent vectors t = ξσu + ησv such that(
L− κE M − κF

M − κF N − κG

)(
ξ

η

)
=

(
0

0

)
.

Example 8.2.7

It is intuitively clear that a sphere curves the same amount in every direction,

and at every point of the sphere. Thus, we expect that the principal curvatures

of a sphere are equal to each other at every point, and are constant over the

sphere. To confirm this by calculation, we work with the unit sphere S2 and use

the latitude longitude parametrization as usual. We found in Example 6.1.3 that

E = 1, F = 0, G = cos2 θ and in Example 7.1.2 that L = 1,M = 0, N = cos2 θ.

So the principal curvatures are the roots of∣∣∣∣ 1− κ 0

0 cos2 θ − κ cos2 θ

∣∣∣∣ = 0,

i.e., κ = 1 (repeated root), as we expected. Every tangent vector is a principal

vector.
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Example 8.2.8

We consider the unit cylinder parametrized in the usual way:

σ(u, v) = (cos v, sin v, u).

We found in Example 6.1.4 that E = 1, F = 0, G = 1 and in Example 7.1.2

that L = 0,M = 0, N = 1. So the principal curvatures are the roots of
∣∣∣∣ 0− κ 0

0 1− κ

∣∣∣∣ = 0,

i.e., κ = 0 or 1. Any principal vector t1 corresponding to κ1(= 1) satisfies

( −1 0

0 0

)(
ξ1
η1

)
= 0,

so ξ1 = 0 and t1 is a multiple of σv = (− sin v, cos v, 0). Similarly, one finds that

any principal vector corresponding to κ2 (= 0) is a multiple of σu = (0, 0, 1).

t2

t1

Example 8.2.7 proves the intuitively obvious fact that on a sphere every

point is an umbilic. The same is clearly true for a plane, since in that case

both principal curvatures are zero everywhere. Remarkably, there are no other

surfaces with this property:

Proposition 8.2.9

Let S be a (connected) surface of which every point is an umbilic. Then, S is

an open subset of a plane or a sphere.
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Proof

For every tangent vector t, we have W(t) = κt where κ is the principal curva-

ture. Let σ : U → R
3 be a surface patch of S with U a (connected) open subset

of R2. Taking t = σu and σv and recalling from the proof of Proposition 7.2.2

that W(σu) = −Nu,W(σv) = −Nv, we get

Nu = −κσu, Nv = −κσv. (8.3)

Hence,

(κσu)v = −(Nu)v = −(Nv)u = (κσv)u,

so

κvσu = κuσv.

Since σ is regular, σu and σv are linearly independent, so the last equation

implies that κu = κv = 0. Thus, κ is constant.

There are now two cases to consider. If κ = 0, Eqs. 8.3 show that N is

constant. Then,

(N · σ)u = N · σu = 0, (N · σ)v = N · σv = 0,

so N ·σ is a constant, say c. Then σ(U) is an open subset of the plane v ·N = c.

If κ 	= 0, Eq. 8.3 shows that

N = −κσ + a,

where a is a constant vector. Hence,

∣∣∣∣
∣∣∣∣σ − 1

κ
a

∣∣∣∣
∣∣∣∣
2

=

∣∣∣∣
∣∣∣∣− 1

κ
N

∣∣∣∣
∣∣∣∣
2

=
1

κ2
,

so σ(U) is an open subset of the sphere with centre κ−1a and radius κ−1.

We have now proved the proposition when S is covered by a single surface

patch. For an arbitrary surface S, the preceding argument shows that each

patch in the atlas of S is contained in a plane or a sphere. But if the images of

two patches intersect they must clearly be part of the same plane or the same

sphere. It follows that the whole of S is contained in a plane or a sphere.

Note that this proposition is an analogue for surfaces of Example 2.2.7,

which tells us that a plane curve with constant curvature is part of a circle.

We conclude this section by showing how the values of the principal cur-

vatures at a point p of a surface S provide information about the shape of S
near p. To simplify the situation, we assume that p is the origin and that TpS
is the xy-plane: this can be arranged by applying a suitable isometry of R3 to

S (which does not change its shape). By a further rotation around the z-axis,
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we can also assume that the tangent vectors t1 = (1, 0, 0) and t2 = (0, 1, 0)

are principal, and correspond to principal curvatures κ1 and κ2. Finally, by

reflecting in the xy-plane if necessary, we can assume that the unit normal of

S at p is N = (0, 0, 1).

Let σ be a surface patch of S with σ(0, 0) = 0. For any x, y ∈ R, there are

unique s, t ∈ R such that

(x, y, 0) = sσu + tσv

(here and below, the derivatives of σ are evaluated at (0, 0)). By Taylor’s

theorem,

σ(s, t) = σ(0, 0) + sσu + tσv +
1

2
(s2σuu + 2stσuv + t2σvv)

if we neglect terms involving higher powers of s and t. Hence, if x and y (and

hence s and t) are small, we have σ(s, t) = (x, y, z), where

z =
1

2
(s2σuu + 2stσuv + t2σvv) ·N =

1

2
(Ls2 + 2Mst+Nt2)

approximately, where Ldu2+2Mdudv+Ndv2 is the second fundamental form

of σ at the origin. If t = sσu + tσv, then by Proposition7.3.3,

Ls2 + 2Mst+Nt2 = 〈〈t, t〉〉 = 〈W(t), t〉.
Now, t = xt1 + yt2 so

W(t) = xW(t1) + yW(t2) = κ1xt1 + κ2yt2 = (κ1x, κ2y, 0).

Hence,

Ls2 + 2Mst+Nt2 = (κ1x, κ2y, 0) · (x, y, 0) = κ1x
2 + κ2y

2.

Hence, near the point p, S is approximated by the quadric surface

z =
1

2
(κ1x

2 + κ2y
2). (8.4)

We distinguish four cases:

(i) κ1 and κ2 are both > 0 or both < 0. Then, (8.4) is the equation of an

elliptic paraboloid (see Theorem5.2.2) and one says that p is an elliptic

point of the surface.

(ii) κ1 and κ2 are of opposite sign (both non-zero). Then, (8.4) is the equation

of a hyperbolic paraboloid and one says that p is a hyperbolic point of the

surface.
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(iii) One of κ1 and κ2 is zero, the other is non-zero. Then, (8.4) is the equation

of a parabolic cylinder and one says that p is a parabolic point of the

surface.

z = y4 z = x3 − 3xy2

(iv) Both principal curvatures are zero at p. Then, (8.4) is the equation of a

plane, and one says that p is a planar point of the surface. In this case,

one cannot determine the shape of the surface near p without examining

derivatives of order higher than the second (in the non-planar case, these

terms are small compared to κ1x
2 + κ2y

2 when x and y are small). For

example, the surfaces above both have the origin as a planar point, but

they have quite different shapes. (The surface on the right is called the

monkey saddle as it is the right shape for the saddle on a bicycle ridden

by a monkey: two ways down for the two legs and a third for the tail.)

The classification of points of a surface as elliptic, hyperbolic, parabolic

or planar is independent of the surface patch σ, since reparametrizing either

leaves the principal curvatures unchanged or changes the sign of both of them

(Exercise 8.2.8).

Example 8.2.10

On S2, κ1 = κ2 = ±1 (the sign depending on the parametrization) so all points

are elliptic (and umbilics). On a circular cylinder, κ1 = ±1, κ2 = 0, so every

point is parabolic (and there are no umbilics). On a plane, κ1 = κ2 = 0 so all

points are planar (!) (and umbilics).

Example 8.2.11

For the torus σ(θ, ϕ) = ((a+b cos θ) cosϕ, (a+b cos θ) sinϕ, b sin θ) (see Exercise

4.2.5), we find that the first and second fundamental forms are

b2dθ2 + (a+ b cos θ)2dϕ2 and b dθ2 + (a+ b cos θ) cos θ dϕ2,
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respectively, so the principal curvatures are

κ1 =
1

b
, κ2 =

cos θ

a+ b cos θ
.

Since κ1 > 0 (everywhere), the point σ(θ, ϕ) of the torus is elliptic, parabolic or

hyperbolic according to κ2 is > 0, = 0 or < 0, respectively; from the formula for

κ2, these are the regions of the torus given by −π/2 < θ < π/2, θ = ±π/2 and

π/2 < θ < 3π/2, respectively. Pictures of the elliptic and hyperbolic regions

can be found in the solution to Exercise 8.1.9 (where they are labelled S+ and

S−, respectively); the parabolic region consists of two circles of radius a centred

on the z-axis.

EXERCISES

8.2.1 Calculate the principal curvatures of the helicoid and the catenoid,

defined in Exercises 4.2.6 and 5.3.1, respectively.

8.2.2 A curve γ on a surface S is called a line of curvature if the tangent

vector of γ is a principal vector of S at all points of γ (a ‘line’

of curvature need not be a straight line!). Show that γ is a line of

curvature if and only if
Ṅ = −λγ̇,

for some scalar λ, where N is the standard unit normal of σ, and

that in this case the corresponding principal curvature is λ. (This is

called Rodrigues’ formula.)

8.2.3 Show that a curve γ(t) = σ(u(t), v(t)) on a surface patch σ is a line

of curvature if and only if (in the usual notation)

(EM − FL)u̇2 + (EN − GL)u̇v̇ + (FN −GM )v̇2 = 0.

Deduce that all parameter curves are lines of curvature if and only

if either

(i) the second fundamental form of σ is proportional to its first

fundamental form, or

(ii) F = M = 0.

For which surfaces does (i) hold? Show that the meridians and par-

allels of a surface of revolution are lines of curvature.

8.2.4 In the notation of Example 8.1.5, show that if γ is a curve on a

surface S and δ is the unit normal of S, then K = 0 if and only if γ

is a line of curvature of S.



196 8. Gaussian, mean and principal curvatures

8.2.5 Suppose that two surfaces S1 and S2 intersect in a curve C that is

a line of curvature of S1. Show that C is a line of curvature of S2

if and only if the angle between the tangent planes of S1 and S2 is

constant along C.
8.2.6 Let Σ : W → R

3 be a smooth function defined on an open subset

W of R3 such that, for each fixed value of u (resp. v, w), Σ(u, v, w)

is a (regular) surface patch. Assume also that

Σu ·Σv = Σv ·Σw = Σw ·Σu = 0. (8.5)

This means that the three families of surfaces formed by fixing

the values of u, v or w constitute a triply orthogonal system (see

Section 5.5).

(i) Show that Σu ·Σvw = Σv ·Σuw = Σw ·Σuv = 0.

(ii) Show that, for each of the surfaces in the triply orthogonal

system, the matrices FI and FII are diagonal.

(iii) Deduce that the intersection of any surface from one family

of the triply orthogonal system with any surface from another

family is a line of curvature on both surfaces. (This is called

Dupin’s Theorem.)

8.2.7 Show that, if p, q and r are distinct positive numbers, there are

exactly four umbilics on the ellipsoid

x2

p2
+

y2

q2
+

z2

r2
= 1.

What happens if p, q and r are not distinct?

8.2.8 Show that the principal curvatures of a surface patch σ : U → R
3 are

smooth functions on U provided that σ has no umbilics. Show also

that the principal curvatures either stay the same or both change

sign when σ is reparametrized.

8.3 Surfaces of constant Gaussian curvature

We have seen in the examples in Section 8.1 some surfaces of zero and constant

positive curvature. For an example of a surface with constant negative Gaussian
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curvature, however, we have to construct a new surface. To this end, we examine

again the surface of revolution

σ(u, v) = (f(u) cos v, f(u) sin v, g(u))

obtained by rotating the unit-speed curve u �→ (f(u), 0, g(u)) in the xz-plane

around the z-axis. We found in Example 8.1.4 that its Gaussian curvature is

K = − f̈

f
. (8.6)

Suppose first that K = 0 everywhere. Then, Eq. 8.6 gives f̈ = 0, so f(u) =

au + b for some constants a and b. Since ḟ2 + ġ2 = 1, we get ġ = ±√
1− a2

(so we must have |a| ≤ 1) and hence g(u) = ±√
1− a2u+ c, where c is another

constant. By applying a translation along the z-axis we can assume that c = 0,

and by applying a rotation by π about the x-axis, if necessary, we can assume

that the sign is +. This gives the ruled surface

σ(u, v) = (b cos v, b sin v, 0) + u(a cos v, a sin v,
√
1− a2).

If a = 0 this is a circular cylinder; if |a| = 1 it is the xy-plane; and if 0 < |a| < 1

it is a circular cone (to see this, put ũ = au+ b).

Now suppose that K > 0, say K = 1/R2, where R > 0 is a constant. Then,

Eq. 8.6 becomes

f̈ +
f

R2
= 0,

which has the general solution

f(u) = a cos
( u

R
+ b

)
,

where a and b are constants. We can assume that b = 0 by performing a

reparametrization ũ = u+Rb, ṽ = v. Then, up to a change of sign and adding

a constant,

g(u) =

∫ √
1− a2

R2
sin2

u

R
du.

The integral in the formula for g(u) can be evaluated in terms of ‘elementary’

functions only when a = 0 or ±R. The case a = 0 does not give a surface, and

if a = R then f(u) = R cos u
R , g(u) = R sin u

R , and we have a sphere of radius

R (the case a = −R can be reduced to this by rotating the surface by π around

the z-axis).

Suppose finally that K < 0. We can restrict ourselves to the case K = −1,

as the general case can be obtained from this by applying a dilation of R3 (see

Exercise 8.1.5). In view of the preceding case, we can think of a surface with

K = −1 as a ‘sphere of imaginary radius’
√−1, or a ‘pseudosphere’.
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When K = −1 the general solution of Eq. 8.6 is

f(u) = aeu + be−u,

where a and b are arbitrary constants. The function g(u) can be expressed in

terms of elementary functions only if one of a or b is zero. If b = 0 we can

assume that a = 1 by a reparametrization u �→ u + constant, and the case

in which a = 0 can be reduced to the case b = 0 by the reparametrization

u �→ −u. Suppose then that a = 1 and b = 0; then, f(u) = eu and we can take

g(u) =

∫ √
1− e2u du. (8.7)

Note that we must have u ≤ 0 for the integral in Eq. 8.7 to make sense, since

otherwise 1− e2u would be negative. The integral can be evaluated by putting

cos θ = eu. Then,∫ √
1− e2u du = −

∫
sin2 θ

cos θ
dθ = sin θ − ln(sec θ + tan θ)

=
√
1− e2u − ln(e−u +

√
e−2u − 1).

We have omitted the arbitrary constant, but we can take it to be zero by a

suitable translation of the surface parallel to the z-axis. Putting x = f(u),

z = g(u), and noting that cosh−1(v) = ln(v+
√
v2 − 1), we see that the profile

curve in the xz-plane has equation

z =
√
1− x2 − cosh−1

(
1

x

)
. (8.8)

Rotating this curve around the z -axis thus gives a surface which has Gaussian

curvature −1 everywhere. Note that, since u ≤ 0, x = eu is restricted to the

range 0 < x ≤ 1.
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The curve defined by Eq. 8.8 is called the tractrix, and it has an interesting

geometrical property. Consider the tangent line at a point P of its graph, and

suppose that it intersects the z-axis at the point Q. Let us compute the distance

from P to Q.

z

x

Q

P

(1, 0)

Suppose that P is the point (x0, z0). Either by a direct calculation or by

inspecting the calculation of the integral (8.7), one finds that

dz

dx
=

√
1− x2

x
.

Hence, the tangent line at P has equation

z − z0 =

√
1− x2

0

x0
(x − x0).

This meets the z-axis at the point (0, z1), where

z1 − z0 =

√
1− x2

0

x0
(0− x0) = −

√
1− x2

0.

Hence, the square of the distance from P to Q is

x2
0 + (z1 − z0)

2 = x2
0 + 1− x2

0 = 1,

so the distance from P to Q is constant and equal to 1.

This means that the tractrix has the following description. Let a donkey

pull a box of stones by a rope of length 1. Suppose that the donkey is initially

at (0, 0), the box is initially at (1, 0), and let the donkey walk slowly along the

negative z-axis. Then, the box of stones moves along the tractrix.
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EXERCISES

8.3.1 Show that:

(i) Setting w = e−u gives a reparametrization σ1(v, w) of the pseu-

dosphere with first fundamental form

dv2 + dw2

w2

(called the upper half-plane model).

(ii) Setting

V =
v2 + w2 − 1

v2 + (w + 1)2
, W =

−2v

v2 + (w + 1)2

defines a reparametrization σ2(V,W ) of the pseudosphere with

first fundamental form

4(dV 2 + dW 2)

(1 − V 2 −W 2)2

(called the Poincaré disc model: the region w > 0 of the vw-

plane corresponds to the disc V 2 +W 2 < 1 in the VW -plane).

(iii) Setting

V̄ =
2V

V 2 +W 2 + 1
, W̄ =

2W

V 2 +W 2 + 1

defines a reparametrization σ2(V̄ , W̄ ) of the pseudosphere with

first fundamental form

(1− W̄ 2)dV̄ 2 + 2V̄ W̄ dV̄ dW̄ + (1 − V̄ 2)dW̄ 2

(1 − V̄ 2 − W̄ 2)2

(called the Beltrami-Klein model: the region w > 0 of the vw-

plane again corresponds to the disc V̄ 2 + W̄ 2 < 1 in the V̄ W̄ -

plane).

In cases (i) and (ii), find the open subsets of the vw- and VW -plane,

respectively, corresponding to the open set

{(u, v) |u < 0,−π < v < π}
in the parametrization of the pseudosphere given in the text.

These models are discussed in much more detail in Chapter 11.
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8.4 Flat surfaces

In Section 8.3, we gave some examples of surfaces of constant Gaussian curva-

ture K, but this certainly falls well short of a complete classification of such

surfaces. It is possible, however, to give a fairly complete description of flat

surfaces, i.e., surfaces for which K = 0 everywhere. To do so, we shall make use

of a special parametrization, valid for any surface, described in the following

proposition.

Proposition 8.4.1

Let p be a point of a surface S, and suppose that p is not an umbilic. Then, there

is a surface patch σ(u, v) of S containing p whose first and second fundamental

forms are
Edu2 +Gdv2 and Ldu2 +Ndv2,

respectively, for some smooth functions E,G,L and N.

We recall that a point p of a surface S is an umbilic if the two principal

curvatures of S at p are equal. From Section 8.2, we see that for the patch

σ in the statement of the proposition, σu and σv are principal vectors with

corresponding principal curvatures L/E and N/G. We call σ a principal patch.

We assume Proposition 8.4.1 for the moment, and use it to give the proof of

Proposition 8.4.2

Let p be a point of a flat surface S, and assume that p is not an umbilic. Then,

there is a patch of S containing p that is a ruled surface.

Proof

We take a principal patch σ : U → R
3 containing p as in Proposition 8.4.1,

say p = σ(u0, v0). By Corollary 8.1.3, the Gaussian curvature K = LN/EG.

Since the Gaussian curvature is zero everywhere, either L = 0 or N = 0 at

each point of U , and since p is not an umbilic L and N are not both zero.

Suppose that L(u0, v0) 	= 0, say. Then, L(u, v) 	= 0 for (u, v) in some open

subset of U containing (u0, v0). Hence, by shrinking U if necessary, we can

assume that L 	= 0 at every point of U . Then, N = 0 everywhere, and the

second fundamental form of σ is Ldu2.

We shall prove that the parameter curves u = constant are straight lines.

Such a curve can be parametrized by v �→ σ(u0, v), where u0 is the constant
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value of u. A unit tangent vector to this curve is t = σv/G
1/2, so by

Proposition 1.1.6 what we have to prove is that tv = 0.

By the proof of Proposition 8.1.2, the derivatives of the unit normal are

Nu = −E−1Lσu, Nv = 0. (8.9)

Hence, tv · σu = −EL−1tv ·Nu. Now, t ·Nu = 0 and Nuv = 0 by Eq. 8.9, so

tv ·Nu = −t · Nuv = 0. Hence, tv · σu = 0. Next, tv · t = 0 since t is a unit

vector by construction, so tv ·σv = 0. Finally, tv ·N = −t ·Nv = 0 by Eq. 8.9

again. Since the vectors σu,σv and N form a basis of R3, we have proved that

tv = 0.

Our task, then, is to describe the structure of flat ruled surfaces. We

parametrize the ruled surface as in Example 8.1.5:

σ(u, v) = γ(u) + vδ(u).

We found there that σu = γ̇ + vδ̇, σv = δ, the dot denoting d/du, and that

the Gaussian curvature of σ is zero if and only if

δ̇ · (σu × σv) = 0.

Since
σu × σv = γ̇ × δ + vδ̇ × δ,

and δ̇ · (δ̇ × δ) = 0,

K = 0 if and only if δ̇ · (γ̇ × δ) = 0. (8.10)

Thus, K = 0 if and only if γ̇, δ and δ̇ are everywhere linearly dependent.

To proceed further, let us assume, as we may, that δ(u) is a unit vector for

all values of u. Then, δ · δ̇ = 0. Suppose first that δ̇(u) = 0 for all values of u.

Then, δ is a constant vector and σ is a generalized cylinder.

Suppose now that δ̇ is never zero. Then, δ and δ̇ are linearly independent

as they are non-zero and perpendicular, so if γ̇, δ and δ̇ are linearly dependent,

then
γ̇(u) = f(u)δ(u) + g(u)δ̇(u)

for some smooth functions f and g. Assume first that f = ġ everywhere. Then,

γ̇ = (gδ)˙ and so γ = gδ + a, where a is a constant vector; hence,

σ(u, v) = a+ (v + g(u))δ(u).

Putting ũ = u, ṽ = v + g(u), we see that this is a reparametrization of a

generalized cone.

Suppose finally that δ̇ and f − ġ are both nowhere zero. If we define

γ̃(u) = γ(u)− g(u)δ(u), ṽ =
v + g(u)

f(u)− ġ(u)
,
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a short calculation gives

σ(u, v) = γ̃(u) + ṽ ˙̃γ(u),

so σ is a reparametrization of an open subset of the tangent developable of γ̃.

Of course, it could be that none of the conditions on δ, f and g considered

above are satisfied. In fact, we have only shown that certain open subsets

of the surface are parts of generalized cylinders, generalized cones or tangent

developables. It is not true that the whole surface must be one of these three

types, since flat surfaces of different types can be joined together to make a

smooth surface, as shown in the diagram above. It can be shown that the most

general flat surface is a patchwork consisting of pieces of generalized cylinders,

generalized cones and tangent developables, joined together along segments of

straight lines.

The remainder of this section is devoted to the proof of Proposition 8.4.1

and can safely be omitted by readers who are uncomfortable with the use of

the inverse function theorem. In fact, we can prove a more general result with

no additional effort:

Proposition 8.4.3

Let σ̃ : Ũ → R
3 be a surface patch, and suppose that for all (ũ, ṽ) ∈ Ũ we are

given tangent vectors

e1(ũ, ṽ) = a(ũ, ṽ)σ̃ũ + b(ũ, ṽ)σ̃ṽ, e2(ũ, ṽ) = c(ũ, ṽ)σ̃ũ + d(ũ, ṽ)σ̃ṽ,

whose components a, b, c, d are smooth functions of (ũ, ṽ). Assume that, at

some point (ũ0, ṽ0) ∈ Ũ , the vectors e1(ũ0, ṽ0) and e2(ũ0, ṽ0) are linearly in-

dependent. Then, there is an open subset Ṽ of Ũ containing (ũ0, ṽ0) and a

reparametrization σ(u, v) of σ̃(ũ, ṽ), for (ũ, ṽ) ∈ Ṽ , such that σu and σv are

parallel to e1 and e2, respectively.
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Proposition 8.4.1 is a special case of Proposition 8.4.3. In fact, let σ̃ be

any surface patch of S containing p, and let p = σ̃(ũ0, ṽ0). Since the principal

curvatures κ1 and κ2 of σ̃ are distinct at p, and are continuous functions by

Exercise 8.2.8, they remain distinct for (ũ, ṽ) in some open set Ũ containing

(ũ0, ṽ0) on which σ̃ is defined. Let

e1 = ξ1σ̃ũ + η1σ̃ṽ, e2 = ξ2σ̃ũ + η2σ̃ṽ

be unit principal vectors corresponding to κ1 and κ2; they are perpendic-

ular by Proposition 8.2.1. Let σ(u, v) be a reparametrization of σ̃ as in

Proposition 8.4.3. Then, σu · σv = 0 because e1 and e2 are perpendicular,

so the first fundamental form of σ is of the form Edu2 + Gdv2. Also, σu and

σv are principal vectors corresponding to κ1 and κ2, so we have

(FII − κ1FI)

(
1

0

)
= (FII − κ2FI)

(
0

1

)
=

(
0

0

)
,

where FI and FII are the matrices associated to the first and second

fundamental forms of σ. Since FI =

(
E 0

0 G

)
, these equations imply that

FII =

(
κ1E 0

0 κ2G

)
, so the second fundamental form of σ is Ldu2 +Ndv2,

where L = κ1E and N = κ2G.

We are thus left with the proof of Proposition 8.4.3. To begin, we observe

that, if
e = Aσ̃ũ +Bσ̃ṽ,

where A and B are any given smooth functions of (ũ, ṽ) ∈ Ũ , we can find a

curve γ in σ̃ with γ̇ = e and with any given point q = σ̃(α, β) as starting point

γ(0). For, finding such a curve γ(t) = σ̃(ũ(t), ṽ(t)) is equivalent to solving the

pair of ordinary differential equations

˙̃u = A(ũ, ṽ), ˙̃v = B(ũ, ṽ)

with initial conditions ũ(0) = α, ṽ(0) = β. It is proved in the theory of ordinary

differential equations that this problem has a unique solution ũ(t), ṽ(t) defined

on some open interval containing t = 0. Moreover, ũ and ṽ are smooth functions

of the three variables t, α and β.

Applying this observation to e = e1, we can find a curve γ1(s1) in σ̃ with

γ1(0) = σ̃(ũ0, ṽ0) and dγ1/ds1 = e1. Now applying the same observation to

e = e2, we can find, for each value of s1 close to 0, a curve s2 �→ λ(s1, s2)

in σ̃ with ∂λ/∂s2 = e2 and λ(s1, 0) = γ1(s1). Define (ũ, ṽ) as functions of

(s1, s2) by
σ̃(ũ, ṽ) = λ(s1, s2). (8.11)
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°2

°2(s2)

°1(s1) °1

λ(s1, .)

μ(., s2)

σ(u0, v0)
~ ~ ~

Differentiating with respect to s1 and s2 gives

σ̃ũ
∂ũ

∂s1
+ σ̃ṽ

∂ṽ

∂s1
= λs1 , σ̃ũ

∂ũ

∂s2
+ σ̃ṽ

∂ṽ

∂s2
= λs2 .

We have

λs1 |s2=0 =
d

ds1
λ(s1, 0) =

dγ1

ds1
= e1, λs2 =

∂λ

∂s2
= e2. (8.12)

Equating coefficients of σ̃ũ and σ̃ṽ, we see from the last two sets of equations

that, at the point σ̃(ũ0, ṽ0), where s1 = s2 = 0, the Jacobian matrix

(
∂ũ
∂s1

∂ũ
∂s2

∂ṽ
∂s1

∂ṽ
∂s2

)
=

(
a c

b d

)
. (8.13)

Since e1 and e2 are linearly independent at (ũ0, ṽ0), this matrix is invertible.

By the Inverse Function Theorem 5.6.1, Eq. 8.11 can be solved for (s1, s2) as

smooth functions of (ũ, ṽ) when (ũ, ṽ) is in some open set W̃ of Ũ containing

(ũ0, ṽ0). Thus, λ is an allowable surface patch; by Eq. 8.12, it has the property

that λs1 = e1 when s2 = 0, and λs2 = e2 everywhere.

We now repeat the procedure, this time starting with a curve γ2(t2) with

dγ2/dt2 = e2 and γ2(0) = σ̃(ũ0, ṽ0), and then taking a curve t1 �→ μ(t1, t2)

with ∂μ/∂t1 = e1 and μ(0, t2) = γ2(t2). This gives an allowable patch μ(t1, t2)

such that

μ(t1, t2) = σ̃(ũ, ṽ)

for (ũ, ṽ) in some open subset Z̃ of Ũ containing (ũ0, ṽ0). This patch has the

property that μt1 = e1 everywhere and μt2 = e2 when t1 = 0.
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The parametrization we want is σ(u, v), where σ(u, v) is the intersection

of the curve s2 �→ λ(u, s2) with the curve t1 �→ μ(t1, v). Thus, we consider the

equations
σ̃(ũ, ṽ) = λ(u, s2) = μ(t1, v).

From Eq. 8.13,
∂ũ

∂u
= a,

∂ṽ

∂u
= b,

and similarly
∂ũ

∂v
= c,

∂ṽ

∂v
= d.

Hence, the Jacobian matrix(
∂ũ
∂u

∂ũ
∂v

∂ṽ
∂u

∂ṽ
∂v

)
=

(
a c

b d

)
.

As usual, the fact that this matrix is invertible means that (u, v) can be ex-

pressed as smooth functions of (ũ, ṽ), for (ũ, ṽ) in some open subset Ṽ of W̃ ∩ Z̃

containing (ũ0, ṽ0), and we get a reparametrization σ(u, v) of σ̃(ũ, ṽ). Finally,

the equation σ(u, v) = μ(t1, v) implies that

σu =
∂t1
∂u

μt1 =
∂t1
∂u

e1,

and similarly

σv =
∂s2
∂v

e2,

so σu and σv are parallel to e1 and e2 everywhere.

EXERCISES

8.4.1 Let p be a hyperbolic point of a surface S (see Section 8.2). Show

that there is a patch of S containing p whose parameter curves

are asymptotic curves (see Exercise 7.3.6). Show that the second

fundamental form of such a patch is of the form 2Mdudv.

8.5 Surfaces of constant mean curvature

We now consider surfaces whose mean curvature H is constant. Such surfaces

have an interesting physical interpretation: we shall show in Section 12.1 that

soap bubbles always adopt the form of a surface of constant mean curvature. In

this section we give two simple constructions of surfaces of constant non-zero

mean curvature; the case in which H = 0 is treated in much more detail in

Chapter 12.
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The first of these gives a correspondence between surfaces of constant non-

zero mean curvature and surfaces of constant positive Gaussian curvature.

Definition 8.5.1

Let S be an oriented surface and let λ ∈ R. The parallel surface Sλ of S is

Sλ = {p+ λNp |p ∈ S},
where Np is the unit normal of S at the point p.

s

s ̧

¸

Roughly speaking, Sλ is obtained by translating the surface S at a distance

λ perpendicular to itself (but this will not be a genuine translation since Np

will in general depend on p).

Proposition 8.5.2

Let κ1 and κ2 be the principal curvatures of an oriented surface S, let λ ∈ R

and let Sλ be the corresponding parallel surface of S. Assume that neither κ1

nor κ2 is equal to 1/λ at any point of S. Then,
(i) Sλ is a (smooth) oriented surface, the unit normal of Sλ at p+λNp being

equal to εNp, where ε is the sign of (1− λκ1)(1− λκ2).

(ii) The principal curvatures of Sλ are εκ1/(1− λκ1) and εκ2/(1− λκ2), and

the corresponding principal vectors are the same as those of S for the

principal curvatures κ1 and κ2, respectively.

(iii) The Gaussian and mean curvatures of Sλ are

K

1− 2λH + λ2K
and

ε(H − λK)

1− 2λH + λ2K
,

respectively, where K and H are the Gaussian and mean curvatures of S.
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Proof

Let σ(u, v) be a surface patch of S with standard unit normal N(u, v). Define

σλ(u, v) = σ(u, v) + λN(u, v).

By Proposition 8.1.2,

σλ
u = σu + λNu = (1− λa)σu − λbσv,

σλ
v = σv + λNv = −λcσu + (1− λd)σv, (8.14)

where

Wσ =

(
a c

b d

)

is the matrix of the Weingarten map of S with respect to the basis {σu,σv}
of the tangent plane. Hence,

σλ
u × σλ

v = (1− λ(a+ d) + λ2(ad− bc))σu × σv.

Since κ1 and κ2 are the eigenvalues of Wσ (see Section 8.2), and since the

sum and product of the eigenvalues of a matrix are equal to the trace and the

determinant of the matrix, respectively,

κ1 + κ2 = a+ d, κ1κ2 = ad− bc.

Hence,

σλ
u × σλ

v = (1− λκ1)(1 − λκ2)σu × σv. (8.15)

The assertions in part (i) follow from this equation.

The principal curvatures of Sλ are the eigenvalues of the matrix Wσλ of

the Weingarten map of Sλ with respect to the basis {σλ
u,σ

λ
v}. By the proof of

Proposition 8.1.2, this is the negative of the matrix expressing Nλ
u and Nλ

v in

terms of σλ
u and σλ

v , whereN
λ is the standard unit normal of σλ. Equation 8.14

says that the matrix expressing σλ
u and σλ

v in terms of σu and σv is I −λWσ ,

and the fact that Nλ = εN implies that −εWσ is the matrix expressing Nλ
u

and Nλ
v in terms of σu and σv. Combining these two observations we get

Wσλ = ε(I − λWσ)
−1Wσ.

If T is an eigenvector of Wσ with eigenvalue κ, then T is also an eigenvector of

Wσλ with eigenvalue εκ/(1− λκ). The assertions in part (ii) follows from this.

Part (iii) follows from part (ii) by straightforward algebra.
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Corollary 8.5.3

If S has constant Gaussian curvature 1/R2, the parallel surfaces S±R have

constant mean curvature 1/2R. Conversely, if S has constant mean curvature

1/2R, the parallel surface SR has constant Gaussian curvature 1/R2.

Proof

This follows from part (iii) of the proposition by straightforward algebra. For

example, if H = 1/2R the Gaussian curvature of SR is

K

1− 2RH +R2K
=

K

R2K
=

1

R2
.

The next construction gives a beautiful geometric description of the surfaces

of revolution which have constant non-zero mean curvature in terms of the curve

traced out by the focus of an ellipse that rolls without slipping along a straight

line (cf. Exercise 2.2.10). Take the ellipse to be

x2

p2
+

(y − q)2

q2
= 1,

where p > q > 0 are constants. Thus, the ellipse is tangent to the x-axis at

the origin. The foci of the ellipse are the points f1 = (−εp, q) and f2 = (εp, q),

where the eccentricity ε =
√
1− q2

p2 .

Proposition 8.5.4

With the above notation, let C be the curve traced out by one of the foci of

the ellipse as it rolls without slipping along the x-axis. Let S be the surface

obtained by rotating C around the x-axis. Then, S has constant non-zero mean

curvature.

f1

f1�

f2

p

f2�

φφ
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Proof

We consider a situation in which the ellipse has rolled along the x-axis so that

its point of contact with the x-axis is at a point p, the focus f1 has moved to a

point f1
′ = (x, y) on C, and the focus f2 has moved to f2

′ = (X,Y ), say. Let ϕ

be the angle between p − f1
′ and the x-axis; then ϕ is also the angle between

p− f2
′ and the x-axis by Exercise 1.1.6(iii). Hence,

y = ‖ p− f1
′ ‖ sinϕ, Y = ‖ p− f2

′ ‖ sinϕ

and so

y + Y = 2p sinϕ

by Exercise 1.1.6(i). But Exercise 1.1.6(ii) gives yY = q2 so

y +
q2

y
= 2p sinϕ. (8.16)

Now, since the ellipse rolls without slipping, the point of contact of the ellipse

with the x-axis is stationary. This implies that the point f1
′ moves as if rotating

instantaneously about p, so that the tangent vector to C at f1
′ is perpendicular

to p− f1
′. (If this heuristic argument is unconvincing, an analytical proof can

be found in Exercise 2.2.10.) It follows that

dy

dx
= cotϕ. (8.17)

Eliminating ϕ between Eqs. 8.16 and 8.17 gives

y2 + q2 =
2py√

1 +
(

dy
dx

)2
. (8.18)

The surface S obtained by rotating C around the x-axis can be parametrized by

σ(x, θ) = (x, y cos θ, y sin θ)

where θ is the angle of rotation. The first and second fundamental forms of

σ are (
1 +

(
dy

dx

)2
)
dx2 + y2dθ2 and − d2y

dx2
dx2 +

y√
1 +

(
dy
dx

)2
dθ2,

respectively. Using the formula in Corollary 8.1.3, the mean curvature is found

to be

H =
1

2y

√
1 +

(
dy
dx

)2
−

d2y
dx2

2

(
1 +

(
dy
dx

)2
)3/2

. (8.19)
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Differentiating both sides of Eq. 8.18 we get

2y
dy

dx
=

2p dy
dx√

1 +
(

dy
dx

)2
− 2py dy

dx
d2y
dx2(

1 +
(

dy
dx

)2
)3/ 2

.

Dividing both sides by 4py dy
dx and comparing with Eq. 8.19 shows that the

surface S has mean curvature 1/2p.

EXERCISES

8.5.1 Suppose that the first fundamental form of a surface patch σ(u, v)

is of the form E(du2 + dv2). Prove that σuu + σvv is perpendicular

to σu and σv. Deduce that the mean curvature H = 0 everywhere

if and only if the Laplacian

σuu + σvv = 0.

Show that the surface patch

σ(u, v) =

(
u− u3

3
+ uv2, v − v3

3
+ u2v, u2 − v2

)

has H = 0 everywhere. (A picture of this surface can be found in

Section 12.2.)

8.5.2 Prove that H = 0 for the surface

z = ln
( cos y
cosx

)
.

(A picture of this surface can also be found in Section 12.2.)

8.5.3 Let σ(u, v) be a surface with first and second fundamental forms

Edu2 +Gdv2 and Ldu2 +Ndv2, respectively (cf. Proposition 8.4.1).

Define

Σ(u, v, w) = σ(u, v) + wN(u, v),

where N is the standard unit normal of σ. Show that the three

families of surfaces obtained by fixing the values of u, v or w in

Σ form a triply orthogonal system (see Section 5.5). The surfaces

w = constant are parallel surfaces of σ. Show that the surfaces u =

constant and v = constant are flat ruled surfaces.
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8.6 Gaussian curvature of compact surfaces

We have seen in Section 8.2 how the relative signs of the principal curvatures

at a point p of a surface S determine the shape of S near p. In fact, since

the Gaussian curvature K of S is the product of its principal curvatures, the

discussion there shows that

(i) If K > 0 at p, then p is an elliptic point.

(ii) If K < 0 at p, then p is a hyperbolic point.

(iii) If K = 0 at p, then p is either a parabolic point or a planar point.

In this section, we give a result which shows how the Gaussian curvature

influences the global shape of a surface. We shall give another result of a similar

nature in Section 13.4.

Proposition 8.6.1

If S is a compact surface, there is a point of S at which its Gaussian curvature

K is > 0.

In the proof, we shall make use of the following fact about compact sets: if

X is a compact subset of R3 and f : R3 → R is a continuous function, then

there are points p,q ∈ X such that f(q) ≤ f(r) ≤ f(p) for all points r ∈ X ,

so that f attains its maximum value on X at p and its minimum at q.

Proof

Define f : R3 → R by f(v) = ‖ v ‖2. Then, f is continuous, so the fact that S
is compact implies that there is a point p ∈ S where f attains its maximum

value. Then S is contained inside the closed ball of radius ‖ p ‖ and centre the

origin, and S intersects its boundary sphere at p. The idea is that S is at least

as curved as the sphere at p, so its Gaussian curvature should be at least that

of the sphere at p, i.e., at least 1/ ‖ p ‖2.
To make this argument precise, let γ(t) be any unit-speed curve in S passing

through p when t = 0. Then, f(γ(t)) has a local maximum at t = 0, so

d

dt
f(γ(t)) = 0,

d2

dt2
f(γ(t)) ≤ 0

at t = 0, i.e.,
γ(0) · γ̇(0) = 0, γ(0) · γ̈(0) + 1 ≤ 0. (8.20)

The equation in (8.20) shows that p = γ(0) is perpendicular to every unit

tangent vector to S at p, and hence is perpendicular to the tangent plane TpS.
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Choose a surface patch σ of S containing p, and let N be its standard unit

normal. By the preceding remark,

N = ± p

‖ p ‖ . (8.21)

The inequality in (8.20) implies that the normal curvature κn = γ̈(0) ·N of γ

at p (computed in the patch σ) is ≤ −1/ ‖ p ‖ or ≥ 1/ ‖ p ‖, according to

whether the sign in Eq. 8.21 is + or −, respectively. By Corollary 8.2.5, the

principal curvatures of σ at p are either both ≤ −1/ ‖ p ‖ or both ≥ 1/ ‖ p ‖.
In each case, K ≥ 1/ ‖ p ‖2> 0 at p.
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