
6
The first fundamental form

Perhaps the first thing that a geometrically inclined bug living on a surface

might wish to do is to measure the distance between two points of the surface.

Of course, this will usually be different from the distance between these points

as measured by an inhabitant of the ambient three-dimensional space, since

the straight line segment which furnishes the shortest path between the points

in R
3 will generally not be contained in the surface. The object that allows

one to compute lengths on a surface, and also angles and areas, is the first

fundamental form of the surface.

6.1 Lengths of curves on surfaces

If our bug-geometer walks along a curve γ on a surface S, the distance he

travels is ∫
‖ γ̇(t) ‖ dt

(see Definition 1.2.1). To compute this he would need to be able to find the

length of tangent vectors to the surface, such as γ̇, which in turn can be com-

puted from the object in the following definition.
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122 6. The first fundamental form

Definition 6.1.1

Let p be a point of a surface S. The first fundamental form of S at p associates

to tangent vectors v,w ∈ TpS the scalar

〈v,w〉p,S = v ·w.

Thus, 〈v,w〉p,S is just the dot product, but restricted to tangent vectors

to S at p. We shall usually omit one or both of the subscripts unless there is

some danger of confusion as to which point or surface is intended.

The first fundamental form 〈 , 〉 is an example of an inner product (see

Appendix 0): this follows immediately from the fact that the dot product defines

an inner product on R
3.

In traditional works on this subject, the first fundamental form looks slightly

different. Suppose that σ(u, v) is a surface patch of S. Then, any tangent vector

to S at a point p in the image of σ can be expressed uniquely as a linear

combination of σu and σv. Define maps du : TpS → R and dv : TpS → R by

du(v) = λ, dv(v) = μ if v = λσu + μσv,

for some λ, μ ∈ R. It is easy to see that du and dv are linear maps. Then, using

the fact that 〈 , 〉 is a symmetric bilinear form, we have

〈v,v〉 = λ2〈σu,σu〉+ 2λμ〈σu,σv〉+ μ2〈σv,σv〉.
Writing

E = ‖ σu ‖2, F = σu · σv, G = ‖ σv ‖2,
this becomes

〈v,v〉 = Eλ2 + 2Fλμ+Gμ2 = Edu(v)2 + 2Fdu(v)dv(v) +Gdv(v)2.

Traditionally, the expression

Edu2 + 2Fdudv +Gdv2

is called the first fundamental form of the surface patch σ(u, v). Note that the

coefficients E,F,G and the linear maps du, dv depend on the choice of surface

patch for S (see Exercise 6.1.4), but the first fundamental form itself depends

only on S and p.

If γ is a curve lying in the image of a surface patch σ, we have

γ(t) = σ(u(t), v(t))

for some smooth functions u(t) and v(t). Then, denoting d/dt by a dot, we have

γ̇ = u̇σu + v̇σv by the chain rule, so

〈γ̇, γ̇〉 = Eu̇2 + 2F u̇v̇ +Gv̇2,



6.1 Lengths of curves on surfaces 123

and the length of γ is given by∫
(Eu̇2 + 2F u̇v̇ +Gv̇2)1/2dt. (6.1)

Example 6.1.2

For the plane
σ(u, v) = a+ up+ vq

(see Example 4.1.2) with p and q being perpendicular unit vectors, we have

σu = p, σv = q, so E = ‖ σu ‖2 = ‖ p ‖2 = 1, F = σu · σv = p · q = 0,

G = ‖ σv ‖2 = ‖ q ‖2 = 1, and the first fundamental form is simply

du2 + dv2.

Example 6.1.3

Consider a surface of revolution

σ(u, v) = (f(u) cos v, f(u) sin v, g(u)).

Recall from Example 5.3.2 that we can assume that f(u) > 0 for all values of

u and that the profile curve u �→ (f(u), 0, g(u)) is unit-speed, i.e., ḟ2 + ġ2 = 1

(a dot denoting d/du). Then:

σu = (ḟ cos v, ḟ sin v, ġ), σv = (−f sin v, f cos v, 0),
∴ E = ‖ σu ‖2= ḟ2 + ġ2 = 1, F = σu · σv = 0, G = ‖ σv ‖2= f2.

So the first fundamental form is

du2 + f(u)2dv2.

A special case is the unit sphere S2 in latitude-longitude coordinates

(Example 4.1.4). We take u = θ, v = ϕ, f(θ) = cos θ, g(θ) = sin θ, giving

the first fundamental form of S2 as

dθ2 + cos2 θ dϕ2.

Example 6.1.4

We consider a generalized cylinder

σ(u, v) = γ(u) + va

defined in Example 5.3.1. As we saw in Exercise 5.3.3, we can assume that γ is

unit-speed, a is a unit vector, and γ is contained in a plane perpendicular to a.

Then, denoting d/du by a dot, σu = γ̇, σv = a, so E = ‖ σu ‖2 = ‖ γ̇ ‖2= 1,
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F = σu · σv = γ̇ · a = 0, G = ‖ σv ‖2 = ‖ a ‖2= 1, and the first fundamental

form of σ is

du2 + dv2.

Note that this is the same as the first fundamental form of the plane

(Example 6.1.2). The geometrical reason for this coincidence will be revealed

in the next section.

Example 6.1.5

We consider a generalized cone

σ(u, v) = (1 + v)γ(u)− vv

(Example 5.3.1). Before computing its first fundamental form, we make some

simplifications to σ.

First, translating the surface by v (which does not change its first funda-

mental form – see Exercise 6.1.2), we get the surface patch σ1 = σ − v =

(1 + v)(γ − v), so if we replace γ by γ1 = γ − v we get σ1 = (1 + v)γ1. This

means that we might as well assume that v = 0 to begin with. Next, we saw in

Example 5.3.1 that for σ to be a regular surface patch, γ must not pass through

the origin, so we can define a new curve γ̃ by γ̃(u) = γ(u)/ ‖ γ(u) ‖. Setting
ũ = u, ṽ = (1 + v)/ ‖ γ(u) ‖, we get a reparametrization σ̃(ũ, ṽ) = ṽγ̃(ũ) of σ

with ‖ γ̃ ‖= 1. We can therefore assume to begin with that σ(u, v) = vγ(u)

with ‖ γ(u) ‖= 1 for all values of u (geometrically, this means that we can

replace γ by the intersection of the cone with S2). Finally, reparametrizing

again, we can assume that γ is unit-speed, for we saw in Example 5.3.1 that

for σ to be regular, γ must be regular.

With these assumptions, and with a dot denoting d/du, we have σu = vγ̇,

σv = γ, so E = ‖ vγ̇ ‖2= v2 ‖ γ̇ ‖2 = v2, F = vγ̇ · γ = 0 (since ‖ γ ‖= 1),

G = ‖ γ ‖2 = 1, and the first fundamental form is

v2du2 + dv2.

Note that, as for the generalized cylinder in Example 6.1.4, the first fundamen-

tal form of the generalized cone does not depend on the curve γ.

EXERCISES

6.1.1 Calculate the first fundamental forms of the following surfaces:

(i) σ(u, v) = (sinhu sinh v, sinhu cosh v, sinhu).

(ii) σ(u, v) = (u− v, u+ v, u2 + v2).
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(iii) σ(u, v) = (coshu, sinhu, v).

(iv) σ(u, v) = (u, v, u2 + v2).

What kinds of surfaces are these?

6.1.2 Show that applying an isometry of R3 to a surface does not change

its first fundamental form. What is the effect of a dilation (i.e., a

map R
3 → R

3 of the form v �→ av for some constant a �= 0)?

6.1.3 Let Edu2+2Fdudv+Gdv2 be the first fundamental form of a surface

patch σ(u, v) of a surface S. Show that, if p is a point in the image

of σ and v,w ∈ TpS, then

〈v,w〉 = Edu(v)du(w) + F (du(v)dv(w) + du(w)dv(v)) +Gdv(w)dv(w).

6.1.4 Suppose that a surface patch σ̃(ũ, ṽ) is a reparametrization of a

surface patch σ(u, v), and let

Ẽdũ2 + 2F̃ dũdṽ + G̃dṽ2 and Edu2 + 2Fdudv +Gdv2

be their first fundamental forms. Show that:

(i) du = ∂u
∂ũdũ + ∂u

∂ṽ dṽ, dv = ∂v
∂ũdũ+ ∂v

∂ṽdṽ.

(ii) If

J =

⎛
⎜⎝
∂u

∂ũ

∂u

∂ṽ
∂v

∂ũ

∂v

∂ṽ

⎞
⎟⎠

is the Jacobian matrix of the reparametrization map (ũ, ṽ) �→ (u, v),

and J t is the transpose of J , then

(
Ẽ F̃

F̃ G̃

)
= J t

(
E F

F G

)
J.

6.1.5 Show that the following are equivalent conditions on a surface patch

σ(u, v) with first fundamental form Edu2 + 2Fdudv +Gdv2:

(i) Ev = Gu = 0.

(ii) σuv is parallel to the standard unit normal N.

(iii) The opposite sides of any quadrilateral formed by parameter

curves of σ have the same length (see the remarks following the

proof of Proposition 4.4.2).
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When these conditions are satisfied, the parameter curves of σ are

said to form a Chebyshev net. Show that, in that case, σ has a

reparametrization σ̃(ũ, ṽ) with first fundamental form

dũ2 + 2 cos θ dũdṽ + dṽ2,

where θ is a smooth function of (ũ, ṽ). Show that θ is the angle

between the parameter curves of σ̃. Show further that, if we put

û = ũ + ṽ, v̂ = ũ − ṽ, the resulting reparametrization σ̂(û, v̂) of

σ̃(ũ, ṽ) has first fundamental form

cos2 ω dû2 + sin2 ω dv̂2,

where ω = θ/2.

6.2 Isometries of surfaces

We observed in Example 6.1.4 that a plane and a generalized cylinder, when

suitably parametrized, have the same first fundamental form. The geometric

reason for this is not hard to see. A plane piece of paper can be ‘wrapped’ on a

cylinder in the obvious way without crumpling the paper (see Example 4.3.2).

If we draw a curve on the plane, then after wrapping it becomes a curve on

the cylinder. Because there is no crumpling, the lengths of these two curves

will be the same. Since the lengths are computed as the integral of (the square

root of) the first fundamental form, it is plausible that the first fundamental

forms of the two surfaces should be the same. Experiment suggests, on the

other hand, that it is impossible to wrap a plane sheet of paper around a

sphere without crumpling. Thus, we expect that a plane and a sphere do not

have the same first fundamental form.

The following definition makes precise what it means to wrap one surface

onto another without crumpling.

Definition 6.2.1

If S1 and S2 are surfaces, a smooth map f : S1 → S2 is called a local isometry if

it takes any curve in S1 to a curve of the same length in S2. If a local isometry

f : S1 → S2 exists, we say that S1 and S2 are locally isometric.

We shall see that every local isometry is a local diffeomorphism; a local

isometry that is a diffeomorphism is called an isometry. It is obvious that any
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composite of local isometries is a local isometry, and that the inverse of any

isometry is an isometry.

To express the condition for a local isometry in a more useful form, we need

the following construction. Let f : S1 → S2 be a smooth map and let p ∈ S1.

For v,w ∈ TpS1, define

f∗〈v,w〉p = 〈Dpf(v), Dpf(w)〉f(p).
Then, f∗〈 , 〉p is a symmetric bilinear form on TpS1. Indeed, the symmetry is

obvious and if λ, λ′ ∈ R, v,v′,w ∈ Tp,

f∗〈λv+ λ′v′,w〉p = 〈Dpf(λv+ λ′v′), Dpf(w)〉f(p)
= 〈λDpf(v) + λ′Dpf(v

′), Dpf(w)〉f(p)
= λ〈Dpf(v), Dpf(w)〉f(p) + λ′〈Dpf(v

′), Dpf(w)〉f(p)
= λf∗〈v,w〉p + λ′f∗〈v′,w〉p.

Theorem 6.2.2

A smooth map f : S1 → S2 is a local isometry if and only if the symmetric

bilinear forms 〈 , 〉p and f∗〈 . 〉p on TpS1 are equal for all p ∈ S1.

Proof

If γ1 is a curve on S1, the length of the part of γ1 with endpoints γ1(t0) and

γ1(t1) is ∫ t1

t0

〈γ̇1, γ̇1〉1/2dt. (6.2)

The length of the corresponding part of the curve γ2 = f ◦ γ1 on S2 is
∫ t1

t0

〈γ̇2, γ̇2〉1/2dt =
∫ t1

t0

〈Df(γ̇1), Df(γ̇1)〉1/2dt =
∫ t1

t0

f∗〈γ̇1, γ̇1〉1/2dt. (6.3)

It is now obvious that, if the two symmetric bilinear forms in the statement of

the theorem are equal, the curves γ1 and f ◦ γ1 have the same length.

Conversely, suppose that the integrals in ( 6.2) and ( 6.3) are equal for all

curves γ on S1. Then, the integrands must be the same for all γ:

〈γ̇, γ̇〉 = f∗〈γ̇, γ̇〉.
Since any tangent vector v to S1 is the tangent vector of a curve on S1, it

follows that
〈v,v〉 = f∗〈v,v〉 for all v. (6.4)
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Since 〈 , 〉 and f∗〈 , 〉 are symmetric bilinear forms, it follows from (6.4) that

they are equal (see Appendix 0).

Thus, f is a local isometry if and only if

〈Dpf(v), Dpf(w)〉f(p) = 〈v,w〉p
for all p ∈ S1 and all v,w ∈ TpS1. This means that the linear map Dpf :

TpS1 → Tf(p)S2 is an isometry, i.e., it preserves lengths (see Appendix 1). In

short, f is a local isometry if and only if Dpf is an isometry for all p ∈ S1.

It follows from this theorem that every local isometry is a local diffeomor-

phism. Indeed, let f : S1 → S2 be a local isometry and let p ∈ S1. If Dpf is not

invertible, there is a non-zero tangent vector v ∈ TpS1 such that Dpf(v) = 0.

But this gives a contradiction: since f is a local isometry,

0 �= 〈v,v〉p = 〈Dpf(v), Dpf(v)〉f(p) = 〈0,0〉p = 0.

Hence, Dpf is invertible, and so f is a local diffeomorphism (Proposition 4.4.6).

It will be useful to express Theorem 6.2.2 in terms of surface patches.

Corollary 6.2.3

A local diffeomorphism f : S1 → S2 is a local isometry if and only if, for any

surface patch σ1 of S1, the patches σ1 and f ◦ σ1 of S1 and S2, respectively,

have the same first fundamental form.

Proof

In view of the theorem, we have to show that the patches σ1 and f ◦σ1 = σ2,

say, have the same first fundamental form if and only if the symmetric bilinear

forms 〈 , 〉p and f∗〈 , 〉p are equal for all p in the image of σ1.

The first fundamental form of σi (i = 1, 2) isEidu
2+2Fidudv+Gidv

2, where

Ei = 〈(σi)u, (σi)u〉, Fi = 〈(σi)u, (σi)v〉, Gi = 〈(σi)v, (σi)v〉. We compute

〈(σ2)u, (σ2)u〉 = 〈Df((σ1)u), Df((σ1)u)〉 = f∗〈(σ1)u, (σ1)u〉.
Thus, if 〈 , 〉 = f∗〈 . 〉, then E1 = E2, and similarly F1 = F2 and G1 = G2.

Conversely, if these last three equations hold, then 〈v,w〉 = f∗〈v,w〉 whenever
the tangent vectors v,w are of the form (σ1)u or (σ1)v. The bilinearity property

then implies that 〈v,w〉 = f∗〈v,w〉 for all v,w.

This proof actually shows that, if p ∈ S1 is in the image of a surface patch

σ1, then σ1 and f ◦ σ1 have the same first fundamental form at p if and only

if Dpf is an isometry; it follows that, if p is in the image of another surface

patch σ2, then σ1 and f ◦σ1 have the same first fundamental form at p if and

only if the same is true of σ2 and f ◦ σ2.
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Example 6.2.4

The map f from the yz-plane to the unit cylinder defined in Example 4.3.2 is a

local isometry. For, if we use the surface patch σ1(u, v) = (0, u, v) for the plane

and σ2(u, v) = (cosu, sinu, v) for the cylinder, then f(σ1(u, v)) = σ2(u, v),

and by Example 6.1.4 σ1 and σ2 have the same first fundamental form.

A similar argument shows that a generalized cone is locally isometric to

a plane (see Example 6.2.1). It turns out that there is another class of sur-

faces that is locally isometric to a plane, called tangent developables. (In older

works, a ‘development’ of one surface on another was the term used for a local

isometry.) A tangent developable is the union of the tangent lines to a curve in

R
3 – the tangent line to a curve γ at a point γ(u) is the straight line passing

through γ(u) and parallel to the tangent vector γ̇(u).

°(u) °(u)

°

¾(u; v)

.

We might as well assume that γ is unit-speed. The most general point on

the tangent line at γ(u) is

σ(u, v) = γ(u) + vγ̇(u),

for some scalar v. Now

σu × σv = (γ̇ + vγ̈)× γ̇ = vγ̈ × γ̇.

For σ to be regular, it is thus necessary that γ̈ is never zero, or in other words,

the curvature κ = ‖ γ̈ ‖ is > 0 at all points of γ. Now, γ̇ = t, the unit tangent

vector of γ, and γ̈ = ṫ = κn, where n is the principal normal to γ, so

σu × σv = κvn× t = −κvb,
where b is the binormal of γ. Thus, σ will be regular if κ > 0 everywhere and

v �= 0. The latter condition means that, for regularity, we must exclude the

curve γ itself from the surface. Typically, the regions v > 0 and v < 0 of the
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tangent developable form two sheets which meet along a sharp edge formed by

the curve γ where v = 0, as the following illustration of the tangent developable

of a circular helix indicates (see Exercise 6.2.4):

Our interest in tangent developables stems from the following result.

Proposition 6.2.5

Any tangent developable is locally isometric to a plane.

Proof

We use the above notation, assuming that γ is unit-speed and that κ > 0. Now,

E = ‖ σu ‖2= (γ̇ + vγ̈) · (γ̇ + vγ̈) = γ̇ · γ̇ + 2vγ̇ · γ̈ + v2γ̈ · γ̈ = 1 + v2κ2,

F = σu · σv = (γ̇ + vγ̈) · γ̇ = γ̇ · γ̇ + vγ̇ · γ̈ = 1,

G = ‖ σv ‖2= γ̇ · γ̇ = 1,

since γ̇ · γ̇ = 1, γ̇ · γ̈ = 0, γ̈ · γ̈ = κ2. So the first fundamental form of the

tangent developable is

(1 + v2κ2)du2 + 2dudv + dv2. (6.5)

We are going to show that an open subset of the plane can be parametrized so

that it has the same first fundamental form. This will prove the proposition.

By Theorem2.2.5, there is a plane unit-speed curve γ̃ whose curvature is κ

(we can even assume that its signed curvature is κ). By the above calculations,

the first fundamental form of the tangent developable of γ̃ is also given by (6.5).
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But since γ̃ is a plane curve, its tangent lines obviously fill out part of the plane

in which γ̃ lies.

There is a converse to Proposition 6.2.5: any sufficiently small open subset of

a surface locally isometric to a plane is an open subset of a plane, a generalized

cylinder, a generalized cone or a tangent developable. The proof of this will be

given in Section 8.4.

EXERCISES

6.2.1 By thinking about how a circular cone can be ‘unwrapped’ onto the

plane, write down an isometry from

σ(u, v) = (u cos v, u sin v, u), u > 0, 0 < v < 2π,

(a circular half-cone with a straight line removed) to an open subset

of the xy-plane.

6.2.2 Is the map from the circular half-cone x2 + y2 = z2, z > 0, to the

xy-plane given by (x, y, z) �→ (x, y, 0) a local isometry?

t = 0 t = 0:6

t = 0:2 t = 0:8

t = 0:4 t = 1
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6.2.3 Consider the surface patches

σ(u, v) = (coshu cos v, coshu sin v, u), σ̃(u, v) = (u cos v, u sin v, v),

parametrizing the catenoid (Exercise 5.3.1) and the helicoid

(Exercise 4.2.6), respectively. Show that the map from the catenoid

to the helicoid that takes σ(u, v) to σ̃(sinhu, v) is a local isometry.

Which curves on the helicoid correspond under this isometry to the

parallels and meridians of the catenoid?

In fact, there is an isometric deformation of the catenoid into a

helicoid. Let

σ̂(u, v) = (− sinhu sin v, sinhu cos v,−v).
This is the result of reflecting the helicoid σ̃ in the xy-plane and

then translating it by π/2 parallel to the z-axis. Define

σt(u, v) = cos tσ(u, v) + sin t σ̂(u, v),

so that σ0(u, v) = σ(u, v) and σπ/2(u, v) = σ̂(u, v). Show that, for

all values of t, the map σ(u, v) �→ σt(u, v) is a local isometry. Show

also that the tangent plane of σt at the point σt(u, v) depends only

on u, v and not on t. The surfaces σt are shown above for several val-

ues of t. (The result of this exercise is ‘explained’ in Exercises 12.5.3

and 12.5.4.)

6.2.4 Show that the line of striction (Exercise 5.3.4) of the tangent de-

velopable of a unit-speed curve γ is γ itself. Show also that the

intersection of this surface with the plane passing through a point

γ(u0) of the curve and perpendicular to it at that point is a curve

of the form

Γ(v) = γ(u0)− 1

2
κ(u0)v

2n(u0) +
1

3
κ(u0)τ(u0)v

3b(u0)

if we neglect higher powers of v (we assume that the curvature κ(u0)

and the torsion τ(u0) of γ at γ(u0) are both non-zero). Note that

this curve has an ordinary cusp (Exercise 1.3.3) at γ(u0), so the

tangent developable has a sharp ‘edge’ where the two sheets v > 0

and v < 0 meet along γ. This is evident for the tangent developable

of a circular helix illustrated earlier in this section.
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6.3 Conformal mappings of surfaces

Now that we understand how to measure lengths of curves on surfaces, it is

natural to ask about angles. Suppose that two curves γ and γ̃ on a surface S
intersect at a point p. The angle θ of intersection of γ and γ̃ at p is defined

to be the angle between the tangent vectors γ̇ and ˙̃γ (evaluated at t = t0
and t = t̃0, respectively). Using the dot product formula for the angle between

vectors, we see that θ is given by

cos θ =
γ̇ · ˙̃γ

‖ γ̇ ‖‖ ˙̃γ ‖ =
〈γ̇, ˙̃γ〉

〈γ̇, γ̇〉1/2〈 ˙̃γ, γ̇〉1/2 . (6.6)

˜ ˜
(u; v)

P

¾

°

µ
°̃

(u; v)

As usual, it will be useful to have an expression for this in terms of a

surface patch. Suppose then that γ and γ̃ lie in a surface patch σ of S, so that

γ(t) = σ(u(t), v(t)) and γ̃(t) = σ(ũ(t), ṽ(t)) for some smooth functions u, v, ũ

and ṽ. If Edu2 + 2Fdudv + Gdv2 is the first fundamental form of σ, then by

( 6.6) we have

cos θ =
Eu̇ ˙̃u+ F (u̇ ˙̃v + ˙̃uv̇) +Gv̇ ˙̃v

(Eu̇2 + 2F u̇v̇ +Gv̇2)1/2(E ˙̃u2 + 2F ˙̃u ˙̃v +G ˙̃v2)1/2
. (6.7)

Example 6.3.1

The parameter curves on a surface patch σ(u, v) can be parametrized by

γ(t) = σ(u0, t), γ̃(t) = σ(t, v0),

respectively, where u0 is the constant value of u and v0 is the constant value

of v in the two cases. Thus,

u(t) = u0, v(t) = t, ũ(t) = t, ṽ(t) = v0,

∴ u̇ = 0, v̇ = 1, ˙̃u = 1, ˙̃v = 0.
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These parameter curves intersect at the point σ(u0, v0) of the surface. By

Eq. 6.7, their angle of intersection θ is given by

cos θ =
F√
EG

,

where E,F and G are evaluated at (u0, v0). In particular, the parameter curves

are orthogonal if and only if F = 0.

Corresponding to the Definition 6.2.1 of a local isometry, we have the fol-

lowing definition.

Definition 6.3.2

If S1 and S2 are surfaces, a conformal map f : S1 → S2 is a local diffeomorphism

such that, if γ1 and γ̃1 are any two curves on S1 that intersect, say at a point

p ∈ S1, and if γ2 and γ̃2 are their images under f , the angle of intersection of

γ1 and γ̃1 at p is equal to the angle of intersection of γ2 and γ̃2 at f(p).

In short, f is conformal if and only if it preserves angles. The reason this

definition requires f to be a local diffeomorphism is contained in Exercise 4.4.4

– note that the angle between two intersecting curves is well defined only when

both curves are regular.

It is obvious that any composite of conformal maps is conformal, and that

the inverse of any conformal diffeomorphism is conformal.

As a special case, if σ : U → R
3 is a surface, then σ may be viewed as

a map from an open subset of the plane (namely U), parametrized by (u, v)

in the usual way, and the image S of σ, and we say that σ is a conformal

parametrization or a conformal surface patch of S if this map between surfaces

is conformal.

Theorem 6.3.3

A local diffeomorphism f : S1 → S2 is conformal if and only if there is a

function λ : S1 → R such that

f∗〈v,w〉p = λ(p)〈v,w〉p for all p ∈ S1 and v,w ∈ TpS1.

It is not hard to see that the function λ, if it exists, is necessarily smooth.

Proof

Let γ and γ̃ be two curves on S1 that intersect at a point p ∈ S1. The angle

θ of intersection of the curves is given by Eq. 6.6. The corresponding angle of
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intersection of the curves f ◦γ and f ◦ γ̃ on S2 is obtained from the expression

on the right-hand side of Eq. 6.6 by replacing γ̇ and ˙̃γ with (f ◦γ )̇ and (f ◦ γ̃ )̇,
respectively. Now,

〈(f ◦ γ )̇, (f ◦ γ̃ )̇ 〉f(p) = 〈Dpf(γ̇), Dpf( ˙̃γ)〉f(p) = f∗〈γ̇, ˙̃γ〉p,
with similar expressions for 〈(f ◦γ )̇, f ◦γ )̇ 〉f(p) and 〈(f ◦ γ̃ )̇, f ◦ γ̃ )̇ 〉f(p). Thus,
to compute the angle of intersection of the curves f ◦ γ and f ◦ γ̃ on S2, we

must replace 〈 , 〉 in the numerator and denominator of the expression on the

right-hand side of Eq. 6.6 by f∗〈 , 〉. It is now clear that, if f∗〈 , 〉 = λ〈 , 〉,
this replacement leaves the expression in Eq. 6.6 unchanged (since the factor λ

cancels out) and so f is conformal.

For the converse, we must show that if

〈γ̇, ˙̃γ〉
〈γ̇, γ̇〉1/2〈 ˙̃γ, ˙̃γ〉1/2 =

f∗〈γ̇, ˙̃γ〉
f∗〈γ̇, γ̇〉1/2f∗〈 ˙̃γ, ˙̃γ〉1/2 (6.8)

for all pairs of intersecting curves γ and γ̃ on S1, then f
∗〈 , 〉 is proportional

to 〈 , 〉. Since every tangent vector to S1 is the tangent vector of a curve on

S1, Eq. 6.8 implies that

〈v,w〉
〈v,v〉1/2〈w,w〉1/2 =

f∗〈v,w〉
f∗〈v,v〉1/2f∗〈w,w〉1/2 (6.9)

for all tangent vectors v,w to S1.

Choose an orthonormal basis {v1,v2} of the tangent plane to S1 with re-

spect to its first fundamental form 〈 , 〉. Let
λ = f∗〈v1,v1〉, μ = f∗〈v1,v2〉, ν = f∗〈v2,v2〉.

We apply Eq. 6.9 with v = v1 and w = cos θ v1 + sin θ v2, where θ ∈ R. This

gives

cos θ =
λ cos θ + μ sin θ√

λ(λ cos2 θ + 2μ sin θ cos θ + ν sin2 θ)
.

Taking θ = π/2 gives μ = 0, which implies that

λ = λ cos2 θ + ν sin2 θ for all θ ∈ R.

Hence, λ = ν. This implies that f∗〈v,w〉 = λ〈v,w〉 whenever v and w are basis

vectors. Since both sides are bilinear forms, it follows that f∗〈 , 〉 = λ〈 , 〉.

Reinterpreting this result in terms of surface patches gives



136 6. The first fundamental form

Corollary 6.3.4

A local diffeomorphism f : S1 → S2 is conformal if and only if, for any surface

patch σ of S1, the first fundamental forms of the patches σ of S1 and f ◦σ of

S2 are proportional.

In particular, a surface patch σ(u, v) is conformal if and only if its first

fundamental form is λ(du2 + dv2) for some smooth function λ(u, v).

Example 6.3.5

We consider the unit sphere S2. If q is any point of S2 other than the north

pole n = (0, 0, 1), the straight line joining n and q intersects the xy-plane at

some point p, say. The map that takes q to p is called stereographic projection

from S2 to the plane, and we denote it by Π. We are going to show that Π is

conformal.

Let p = (u, v, 0), q = (x, y, z). Since p,q,n lie on a straight line, there is a

scalar ρ such that

q− n = ρ(p− n),

and hence

(x, y, z) = (0, 0, 1) + ρ((u, v, 0)− (0, 0, 1)) = (ρu, ρv, 1− ρ). (6.10)

Hence, ρ = 1− z, u = x/(1− z), v = y/(1− z) and we have

Π(x, y, z) =

(
x

1− z
,

y

1− z
, 0

)
.

Q

P

N

On the other hand, from Eq. 6.10 and x2 + y2 + z2 = 1 we get ρ =

2/(u2 + v2 + 1) and hence

q =

(
2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,
u2 + v2 − 1

u2 + v2 + 1

)
.
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If we denote the right-hand side by σ1(u, v), then σ1 is a parametrization of

S2 with the north pole removed. Parametrizing the xy-plane by σ2(u, v) =

(u, v, 0), we then have

Π(σ1(u, v)) = σ2(u, v).

According to Corollary 6.3.4, to show that Π is conformal we have to show

that the first fundamental forms of σ1 and σ2 are proportional. The first fun-

damental form of σ2 is du2 + dv2. As to σ1, we get

(σ1)u =

(
2(v2 − u2 + 1)

(u2 + v2 + 1)2
,

−4uv

(u2 + v2 + 1)2
,

4u

(u2 + v2 + 1)2

)
,

(σ1)v =

( −4uv

(u2 + v2 + 1)2
,
2(u2 − v2 + 1)

(u2 + v2 + 1)2
,

4v

(u2 + v2 + 1)2

)
.

This gives

E1 = (σ1)u · (σ1)u =
4(v2 − u2 + 1)2 + 16u2v2 + 16u2

(u2 + v2 + 1)4
=

4

(u2 + v2 + 1)2
.

Similarly, F1 = 0, G1 = 4/(u2 + v2 + 1)2. Thus, the first fundamental form of

σ2 is λ times that of σ1, where λ = 1
4 (u

2 + v2 + 1)2.

It is often useful to think of Π as a map to the complex numbers C rather

than to the xy-plane, by identifying u+ iv ∈ C with (u, v, 0). Moreover, we can

parametrize S2 itself in a partly complex way by identifying (x, y, z) ∈ S2 with

(x + iy, z). Then, S2 becomes the set of pairs (w, z) where w ∈ C, z ∈ R and

|w|2 + z2 = 1. Stereographic projection then takes the simple form

Π(w, z) =
w

1− z
,

and the surface patch σ1 is given by

σ1(w) =

(
2w

|w|2 + 1
,
|w|2 − 1

|w|2 + 1

)
.

The inconvenience of having to exclude the north pole from the domain

of definition of Π can be overcome by introducing a ‘point at infinity’ ∞ and

defining the ‘extended complex plane’ C∞ = C∪{∞}. If we agree that Π maps

the north pole to ∞, it defines a bijection Π : S2 → C∞. Further discussion of

this map is left to the exercises.

Returning now to the general case, it is natural to ask when there is a con-

formal map between two surfaces. The surprising answer is that this is always

the case locally: if p1 and p2 are points of two surfaces S1 and S2, respectively,

there are open subsets O1 of S1 containing p1 and O2 of S2 containing p2 and a

conformal diffeomorphism O1 → O2. This follows from the following theorem:
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Theorem 6.3.6

Every surface has an atlas consisting of conformal surface patches.

Indeed, if σ1 and σ2 are conformal parametrizations of S1 and S2, the map

σ1(u, v) �→ σ2(u, v) will be conformal as it is the composite of the conformal

diffeomorphism σ2 and the inverse of the conformal diffeomorphism σ1.

We shall prove a special case of Theorem 6.3.6 later (see Theorem 12.4.1),

but the general case is beyond the scope of this book.

EXERCISES

6.3.1 Show that every local isometry is conformal. Give an example of a

conformal map that is not a local isometry.

6.3.2 Show that Enneper’s surface

σ(u, v) =

(
u− u3

3
+ uv2, v − v3

3
+ vu2, u2 − v2

)

is conformally parametrized.

6.3.3 Recall from Example 6.1.3 that the first fundamental form of the

latitude–longitude parametrization σ(θ, ϕ) of S2 is

dθ2 + cos2 θ dϕ2.

Find a smooth function ψ such that the reparametrization σ̃(u, v) =

σ(ψ(u), v) is conformal. Verify that σ̃ is, in fact, the Mercator

parametrization in Exercise 5.3.2.

6.3.4 Let Φ : U → V be a diffeomorphism between open subsets of R2.

Write

Φ(u, v) = (f(u, v), g(u, v)),

where f and g are smooth functions on the uv-plane. Show that Φ

is conformal if and only if

either (fu = gv and fv = −gu) or (fu = −gv and fv = gu).

(6.11)

Show that, if J(Φ) is the Jacobian matrix of Φ, then det(J(Φ)) > 0

in the first case and det(J(Φ)) < 0 in the second case.

6.3.5 (This exercise requires a basic knowledge of complex analysis.) Re-

call that the transition map between two surface patches in an atlas

for a surface S is a smooth map between open subsets of R2. Since
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R
2 is the ‘same’ as the complex numbers C (via (u, v) ↔ u + iv),

we can ask whether such a transition map is holomorphic. One says

that S is a Riemann surface if S has an atlas for which all the tran-

sition maps are holomorphic. Deduce from Theorem 6.3.6 and the

preceding exercise that every orientable surface has an atlas making

it a Riemann surface. (You will need to recall from complex analysis

that a smooth function Φ as in the preceding exercise is holomorphic

if and only if the first pair of equations in (6.11) hold – these are the

Cauchy–Riemann equations. If the second pair of equations in (6.11)

hold, Φ is said to be anti-holomorphic.)

6.3.6 Define a map Π̃ similar to Π by projecting from the south pole of S2

onto the xy-plane. Show that this defines a second conformal surface

patch σ̃1, which covers the whole of S2 except the south pole. What

is the transition map between these two patches? Why do the two

patches σ1 and σ̃1 not give S2 the structure of a Riemann surface?

How can σ̃1 be modified to produce such a structure?

6.3.7 Show that the stereographic projection map Π takes circles on S2 to

Circles in C∞, and that every Circle arises in this way. (A circle on

S2 is the intersection of S2 with a plane; a Circle in C∞ is a line or

a circle in C – see Appendix 2).

6.3.8 Show that, if M is a Möbius transformation or a conjugate-Möbius

transformation (see Appendix 2), the bijection Π−1◦M◦Π : S2 → S2

is a conformal diffeomorphism of S2. It can be shown that every

conformal diffeomorphism of S2 is of this type.

6.4 Equiareal maps and a theorem

of Archimedes

Suppose that σ : U → R
3 is a surface patch on a surface S. The image of

σ is covered by the two families of parameter curves obtained by setting u =

constant and v = constant, respectively. Fix (u0, v0) ∈ U ; since the change in

σ(u, v) corresponding to a small change Δu in u is approximately σuΔu and

that corresponding to a small change Δv in v is approximately σvΔv, the part

of the surface contained by the parameter curves on the surface corresponding

to u = u0, u = u0 + Δu, v = v0 and v = v0 + Δv is approximately a paral-

lelogram in the plane with sides given by the vectors σuΔu and σvΔv (the

derivatives being evaluated at (u0, v0)):
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¾vΔv

¾uΔu

¾(u0, v0)

u = u0

v = v0

v = v0 + Δv

u = u0 + Δu

Recalling that the area of a parallelogram in the plane with sides a and

b is ‖ a× b ‖, we see that the area of the parallelogram on the surface is

approximately

‖ σuΔu× σvΔv ‖= ‖ σu × σv ‖ ΔuΔv.

This suggests the following definition.

Definition 6.4.1

The area Aσ(R) of the part σ(R) of a surface patch σ : U → R
3 corresponding

to a region R ⊆ U is

Aσ(R) =

∫
R

‖ σu × σv ‖ dudv.

Of course, this integral may be infinite – think of the area of a whole plane,

for example. However, the integral will be finite if, say, R is contained in a

rectangle that is entirely contained, along with its boundary, in U .

The quantity ‖ σu × σv ‖ that appears in the definition of area is easily

computed in terms of the first fundamental form Edu2 +2Fdudv+Gdv2 of σ:

Proposition 6.4.2

‖ σu × σv ‖= (EG− F 2)1/2.
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Proof

We use a result from vector algebra: if a,b, c and d are vectors in R
3,

(a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c).
Applying this to ‖ σu × σv ‖2 = (σu × σv) · (σu × σv), we get

‖ σu × σv ‖2= (σu · σu)(σv · σv)− (σu · σv)
2 = EG− F 2.

Note that, for a regular surface, EG−F 2 > 0 everywhere, since for a regular

surface σu × σv is never zero.

Thus, our definition of area is

Aσ(R) =

∫
R

(EG− F 2)1/2dudv. (6.12)

We sometimes denote (EG − F 2)1/2dudv by dAσ . But we have still to check

that this definition is sensible, i.e., it is unchanged if σ is reparametrized. This

is certainly not obvious, since E, F and G change under reparametrization (see

Exercise 6.1.4).

Proposition 6.4.3

The area of a surface patch is unchanged by reparametrization.

Proof

Let σ : U → R
3 be a surface patch and let σ̃ : Ũ → R

3 be a reparametrization

of σ, with reparametrization map Φ : Ũ → U . Thus, if Φ(ũ, ṽ) = (u, v), we

have

σ̃(ũ, ṽ) = σ(u, v).

Let R̃ ⊆ Ũ be a region, and let R = Φ(R̃) ⊆ U . We have to prove that

∫
R

‖ σu × σv ‖ dudv =

∫
R̃

‖ σ̃ũ × σ̃ṽ ‖ dũdṽ.

We showed in the proof of Proposition 4.2.7 that

σ̃ũ × σ̃ṽ = det(J(Φ))σu × σv,
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where J(Φ) is the Jacobian matrix of Φ. Hence,
∫

R̃

‖ σ̃ũ × σ̃ṽ ‖ dũdṽ =

∫
R̃

|det(J(Φ))| ‖ σu × σv ‖ dũdṽ.

By the change of variables formula for double integrals, the right-hand side of

this equation is exactly
∫

R

‖ σu × σv ‖ dudv.

Now that we have a good definition of area, we can ask which maps between

surfaces are area-preserving.

Definition 6.4.4

Let S1 and S2 be two surfaces. A local diffeomorphism f : S1 → S2 is said to

be equiareal if it takes any region in S1 to a region of the same area in S2 (we

assume that each of the regions is sufficiently small, so that it is contained in

the image of some surface patch).

We have the following analogue of Theorem 6.2.2.

Theorem 6.4.5

A local diffeomorphism f : S1 → S2 is equiareal if and only if, for any surface

patch σ(u, v) on S1, the first fundamental forms

E1du
2 + 2F1dudv +G1dv

2 and E2du
2 + 2F2dudv +G2dv

2

of the patches σ on S1 and f ◦ σ on S2 satisfy

E1G1 − F 2
1 = E2G2 − F 2

2 . (6.13)

The proof is very similar to that of Theorem 6.2.2 and we leave it as

Exercise 6.4.6. As with isometries and conformal maps, it is obvious that any

composite of equaireal diffeomorphism is equiareal, and that the inverse of any

equiareal difeomorphism is equaireal.
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z

P

Q

One of the most famous examples of an equiareal map was found by

Archimedes. Legend has it that the discovery was inscribed onto his tomb-

stone by the Roman general Marcellus who led the siege of Syracuse in

which Archimedes perished. Naturally, since calculus was not available to him,

Archimedes’ proof of his theorem was quite different from ours.

Consider the unit sphere x2+y2+z2 = 1 and the unit cylinder x2+y2 = 1.

The sphere is contained inside the cylinder, and the two surfaces touch along

the circle x2 + y2 = 1 in the xy-plane. For each point p ∈ S2 other than the

poles (0, 0,±1), there is a unique straight line parallel to the xy-plane and

passing through the point p and the z-axis. This line intersects the cylinder in

two points, one of which, say q, is closest to p. Let f be the map from S2 (with

the two poles removed) to the cylinder that takes p to q.

To find a formula for f , let (x, y, z) be the Cartesian coordinates of p, and

(X,Y, Z) those of q. Since the line through p and q is parallel to the xy-plane,

we have Z = z and (X,Y ) = λ(x, y) for some scalar λ. Since (X,Y, Z) is on

the cylinder,

1 = X2 + Y 2 =λ2(x2 + y2),
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∴ λ = ±(x2+ y2)−1/2.

Taking the + sign gives the point q, so we get

f(x, y, z) =

(
x

(x2 + y2)1/2
,

y

(x2 + y2)1/2
, z

)
.

We shall show in the proof of the next theorem that f is a diffeomorphism.

Theorem 6.4.6 (Archimedes’ Theorem)

The map f is an equiareal diffeomorphism.

Proof

We take the atlas for the surface S1 consisting of the sphere minus the north

and south poles with two patches, both given by the formula

σ1(θ, ϕ) = (cos θ cosϕ, cos θ sinϕ, sin θ),

and defined on the open sets

{−π/2 < θ < π/2, 0 < ϕ < 2π} and {−π/2 < θ < π/2, −π < ϕ < π}.
The image of σ1(θ, ϕ) under the map f is the point

σ2(θ, ϕ) = (cosϕ, sinϕ, sin θ) (6.14)

of the cylinder. It is easy to check that this gives an atlas for the surface S2,

consisting of the part of the cylinder between the planes z = 1 and z = −1,

with two patches, both given by Eq. 6.14 and defined on the same two open

sets as σ1. We have to show that Eq. 6.13 holds.

We computed the coefficients E1, F1 and G1 of the first fundamental form

of σ1 in Example 6.1.3:

E1 = 1, F1 = 0, G1 = cos2 θ.

For σ2, we get (σ2)θ = (0, 0, cos θ), (σ2)ϕ = (− sinϕ, cosϕ, 0), and so

E2 = cos2 θ, F2 = 0, G2 = 1.

It is now clear that Eq. 6.13 holds.

Note that, since f corresponds simply to the identity map (θ, ϕ) �→ (θ, ϕ)

in terms of the parametrizations σ1 and σ2 of the unit sphere and cylinder,

respectively, it follows that f is a diffeomorphism.
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The following classical result provides a beautiful application of Archimedes’

theorem. A spherical triangle is a triangle on a sphere whose sides are arcs of

great circles.

Theorem 6.4.7

The area of a spherical triangle on the unit sphere S2 with internal angles α, β

and γ is

α+ β + γ − π.

Proof

We begin by using Archimedes’ Theorem 6.4.6 to compute the area of a ‘lune’,

i.e., the area enclosed between two great circles:

µ

We can assume that the great circles intersect at the poles, since this can

be achieved by applying a rotation of S2, and this does not change areas. If

θ is the angle between them, the image of the lune under the map f is a

curved rectangle on the cylinder of width θ and height 2 (see next page). If we

now apply the isometry which unwraps the cylinder on the plane, this curved

rectangle on the cylinder will map to a genuine rectangle on the plane, with

width θ and height 2. By Archimedes’ theorem, the lune has the same area as

the curved rectangle on the cylinder, and since every isometry is an equiareal

map (see Exercise 6.4.6), this has the same area as the genuine rectangle in the

plane, namely 2θ. Note that this correctly gives the area of the whole sphere

to be 4π.
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z

Turning now to the proof of the theorem, let A, B and C be the vertices of

the triangle (so that α is the angle at A, etc.). The three great circles, of which

the sides of the triangle are arcs, divide S2 into eight triangles, as shown in the

following diagram (in which A′ is the antipodal point of A, etc.).

A
B

C

B�
A�

C�

Note that the two triangles with vertices A,B,C and A′, B, C together form a

lune with angle α, etc. Hence, denoting the triangle with vertices A,B,C by

ABC and its area by A(ABC), etc., we have, by the preceding calculation,
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A(ABC) +A(A′BC) = 2α,

A(ABC) +A(AB′C) = 2β,

A(ABC) +A(ABC′) = 2γ.

Adding these equations, we get

2A(ABC) + {A(ABC) +A(A′BC) +A(AB′C) +A(ABC′)} = 2α+ 2β + 2γ.

(6.15)

Now, the triangles ABC, AB′C, AB′C′ and ABC′ together make a hemisphere

(namely, the hemisphere containing the vertex A with boundary the great circle

passing through B and C), so

A(ABC) +A(AB′C) +A(AB′C′) +A(ABC′) = 2π. (6.16)

Finally, since the map that takes each point of S2 to its antipodal point is an

isometry, and hence equiareal, we have

A(A′BC) = A(AB′C′).

Inserting this into Eq. 6.16, we see that the term in { } on the left-hand side

of Eq. 6.15 is equal to 2π. Rearranging now gives the result.

In Chapter 13, we shall obtain a far-reaching generalization of this result

in which S2 is replaced by an arbitrary surface, and great circles by arbitrary

curves on the surface.

EXERCISES

6.4.1 Determine the area of the part of the paraboloid z = x2 + y2 with

z ≤ 1 and compare with the area of the hemisphere x2+y2+z2 = 1,

z ≤ 0.

6.4.2 A sailor circumnavigates Australia by a route consisting of a triangle

whose sides are arcs of great circles. Prove that at least one interior

angle of the triangle is ≥ π
3 + 10

169 radians. (Take the Earth to be a

sphere of radius 6,500km and assume that the area of Australia is

7.5 million square kilometres.)

6.4.3 A spherical polygon on S2 is the region formed by the intersection

of n hemispheres of S2, where n is an integer ≥ 3. Show that,

if α1, . . . , αn are the interior angles of such a polygon, its area is

equal to
n∑

i=1

αi − (n− 2)π.



148 6. The first fundamental form

6.4.4 Suppose that S2 is covered by spherical polygons such that the in-

tersection of any two polygons is either empty or a common edge or

vertex of each polygon. Suppose that there are F polygons, E edges

and V vertices (a common edge or vertex of more than one polygon

being counted only once). Show that the sum of the angles of all

the polygons is 2πV . By using the preceding exercise, deduce that

V − E + F = 2. (This result is due to Euler; it will be generalized

in Chapter 13.)

6.4.5 Show that:

(i) Every local isometry is an equiareal map.

(ii) A map that is both conformal and equiareal is a local isometry.

Give an example of an equiareal map that is not a local isometry.

6.4.6 Prove Theorem 6.4.5.

6.4.7 Let σ(u, v) be a surface patch with standard unit normal N. Show

that

N× σu =
Eσv − Fσu√
EG− F 2

, N× σv =
Fσv −Gσv√
EG− F 2

.

6.5 Spherical geometry

We conclude this chapter with a brief discussion of the simplest example of

a geometry different from Euclid’s, namely spherical geometry. The study of

spherical geometry, like that of plane geometry, began in antiquity. Its im-

portance was astronomical: to locate an object in the sky such as a star, one

imagines a fixed large sphere centred on the observer; the straight line con-

necting the observer to the star intersects the sphere in a point whose position

gives the direction in which the observer must look in order to see the star.

Thus, the three-dimensional universe is projected onto the surface of a sphere.

Of course, spherical geometry is also important because we live on the surface

of a sphere, to a reasonably good approximation.

If we are to develop spherical geometry by analogy with Euclidean plane

geometry, the first thing to do is to decide what should be the analogue of

straight lines. Now straight lines are the shortest curves joining any two of

their points (Exercise 1.2.4), so it is natural to ask what the corresponding

shortest curves are on the sphere. We are going to show that these are arcs of

great circles.
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For simplicity, we work with the unit sphere S2. If p and q are two distinct

points of S2, there is always at least one great circle passing through p and q.

To see this, note first that if p and q are antipodal points, i.e., if p = −q,

the intersection of S2 with any plane containing this diameter is a great cir-

cle through p and q. If p and q are not antipodal points, the plane passing

through the origin perpendicular to the (non-zero) vector p × q intersects S2

in a great circle passing through p and q. The argument shows, in fact, that if

p and q are not antipodal there is a unique great circle passing through them

both; in this case p and q divide this great circle into two circular arcs, one

shorter than the other. If p and q are antipodal, there are infinitely many great

circles passing through both points, each of which is divided by p and q into

two semicircles (see below).

p q

Proposition 6.5.1

Let p and q be distinct points of S2. If p �= −q, the short great circle arc joining

p and q is the unique curve of shortest length joining p and q. If p = −q, any

great semicircle joining p and q is a shortest curve joining these two points.

Proof

By using a rotation of S2 (which is an isometry of S2 – see Exercise 6.1.2) we

can assume that p is the north pole (0, 0, 1), and by a further rotation about

the z-axis we can assume in addition that q is a point on the great semicir-

cle C passing through the north and south poles and the point (1, 0, 0), say

(cosα, 0, sinα), where −π
2 ≤ α ≤ π

2 . Then the distance from p to q measured

along the short great circle arc joining them is π/2− α.
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The first fundamental form of the latitude-longitude parametrization

σ(θ, ϕ) is dθ2 + cos2 θ dϕ2 (Example 6.1.3) so the length of a curve γ(t)

passing through p when t = t0 and through q when t = t1, say, is

∫ t1

t0

(
θ̇2 + cos2 θ ϕ̇2

)1/2

dt.

The integrand is not less than |θ̇|, so the length of the part of γ between p and

q is not less than ∫ t1

t0

|θ̇| dt =
∫ π/2

α

dθ = π/2− α,

which is the length of the short great circle arc passing through p and q.

Conversely, if γ has exactly this length, we must have

(
θ̇2 + cos2 θ ϕ̇2

)1/2

= |θ̇|,

and hence

cos θ ϕ̇ = 0

for all t between t0 and t1. Since cos θ = 0 only at the north and south poles

(0, 0,±1), we must therefore have ϕ̇ = 0 at all other points of γ; this means

that ϕ is a constant, which must be zero since γ passes through p, and so γ is

part of C.

Thus, great circles are the spherical analogues of straight lines in Euclidean

geometry. One immediate difference between spherical and plane geometry is

that there are no parallel lines in spherical geometry, for any two great circles

intersect (the two planes containing the two great circles intersect in a diameter

of S2, the endpoints of which are the points of intersection of the two great

circles).

The spherical distance dS2(p,q) between two points p,q ∈ S2 is the length

of the short great circle arc joining p and q. This is simply the angle between

the vectors p and q in the range 0 ≤ dS2(p,q) ≤ π: in symbols,

cos dS2(p,q) = p · q.
There is a beautiful formula for the spherical distance in terms of the stereo-

graphic projection map Π (see Example 6.3.5). Recall that Π defines a bijection

from S2 to the extended complex plane C∞; we write dS2(Π−1(w),Π−1(z)) sim-

ply as dS2(w, z).
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Proposition 6.5.2

If w, z ∈ C, the spherical distance dS2(z, w) between the points of S2 corre-

sponding to w and z under stereographic projection is given by

tan
1

2
dS2(w, z) =

|w − z|
|1 + w̄z| .

Proof

From Example 6.3.5, the point of S2 corresponding to w ∈ C is

Π−1(w) =

(
w + w̄

|w|2 + 1
,

w − w̄

i(|w|2 + 1)
,
|w|2 − 1

|w|2 + 1

)
.

Hence,

cos dS2(w, z) = Π−1(w) ·Π−1(z)

=
(w + w̄)(z + z̄)− (w − w̄)(z − z̄) + (|w|2 − 1)(|z|2 − 1)

(|w|2 + 1)(|z|2 + 1)

=
2(w̄z + wz̄) + (1− |w|2)(1− |z|2)

(|w|2 + 1)(|z|2 + 1)
. (6.17)

On the other hand, let t denote the right-hand side of the formula in the

statement of the proposition. Then,

1− t2

1 + t2
=

|1 + w̄z|2 − |w − z|2
|1 + w̄z|2 + |w − z|2

=
(1 + w̄z)(1 + wz̄)− (w − z)(w̄ − z̄)

(1 + w̄z)(1 + wz̄) + (w − z)(w̄ − z̄)

=
2(w̄z + wz̄) + (1− |w|2)(1 − |z|2)

(|w|2 + 1)(|z|2 + 1)
. (6.18)

The proposition follows on comparing Eqs. 6.17 and 6.18 and recalling the

identity

cos θ =
1− tan2 1

2θ

1 + tan2 1
2θ
.

Much of Euclidean geometry deals with the properties of triangles. We shall

always consider only spherical triangles with sides of length less than π.
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Proposition 6.5.3

Suppose that a spherical triangle has sides of length A, B and C, and let α, β

and γ be its internal angles (so that α is the angle opposite the side of length

A, etc., and 0 ≤ α, β, γ < π). Then,

(i) cos γ =
cosC − cosA cosB

sinA sinB
,

(ii)
sinα

sinA
=

sinβ

sinB
=

sin γ

sinC
.

Two formulas similar to that in (i) can, of course, be obtained by making the

cyclic permutations A→ B → C → A, α→ β → γ → α.

Part (i) is called the ‘cosine rule’ for spherical triangles because it becomes

the usual cosine rule when A,B,C are small, in which case the spherical triangle

is ‘almost’ a plane triangle: using the approximations cosA = 1 − 1
2A

2 and

sinA = A, etc. we get

C2 = A2 +B2 − 2AB cos γ.

Similarly (ii) reduces to the familiar sine rule for plane triangles when A,

B, C are small.

Proof 6.5.3 Let a, b and c be the vertices of the triangle, so that α is the angle

at a, etc. Since A is the angle (measured in radians) between the unit vectors

b and c, etc., we have

cosA = b · c, cosB = c · a, cosC = a · b. (6.19)

Next, the side of the triangle of length C is an arc of the great circle that is

the intersection of S2 with the plane ΠC through the origin and perpendicular

to the vector a × b (and similarly for the other sides). Let Πc be the plane

passing through the vertex c parallel to the tangent plane of S2 there. Then

Πc intersects the planes ΠA and ΠB in two straight lines that are tangent to the

sides of the triangle passing through c. It follows that γ is the angle between

these two lines, which in turn is equal to the angle between ΠA and ΠB, i.e.,

the angle between b× c and a× c:

cos γ =
(b× c) · (a× c)

‖ b× c ‖ ‖ a× c ‖ . (6.20)

Of course, there are similar formulas for cosα and cosβ.
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Now

‖ b× c ‖= sinA, ‖ a× c ‖= sinB.

On the other hand, the triple product identity (see the proof of Proposition

6.4.2) gives

(b× c) · (a× c) = (a · b)(c · c)− (b · c)(a · c) = cosC − cosA cosB,

using Eq. 6.19. Inserting these formulas in Eq. 6.20 gives formula (i).

For (ii), we have

sinα =
‖ (a× c)× (a× b) ‖

sinB sinC
=

‖ ((a× c) · b)a− ((a× c) · a)b ‖
sinB sinC

=
|(a× c) · b|
sinB sinC

.

Hence,
sinα

sinA
=

|(a × c) · b|
sinA sinB sinC

. (6.21)

Now, the scalar triple product (a × c) · b is unchanged, up to a sign, by any

permutation of the vectors a, b and c. It follows that the left-hand side of

Eq. 6.21 is unchanged under any permutation of the vertices of the triangle.

This gives formula (ii).

As a special case, we have the spherical analogue of Pythagoras’ theorem:

Corollary 6.5.4

Suppose that a spherical triangle has sides of length A, B and C and that the

angle opposite the side of length C is a right angle. Then,

cosC = cosA cosB.

The formal analogy between Eqs. 6.19 and 6.20 suggests that we should

consider the spherical triangle with vertices

a∗ =
b× c

‖ b× c ‖ , b∗ =
c× a

‖ c× a ‖ , c∗ =
a× b

‖ a× b ‖ .

Note that the cyclic order a → b → c → a of the vertices is preserved in these

formulas; if the cyclic order was reversed the sign of all three vectors would

change. The triangles with vertices a∗,b∗, c∗ and −a∗,−b∗,−c∗ are called the

dual triangles of the triangle with vertices a,b, c.

Note that each of the two dual triangles is obtained from the other by

applying the antipodal map v �→ −v of S2; since this is an isometry of R3

(see Appendix 1), it is also an isometry of S2 (Exercise 6.1.2) so the two dual
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triangles have the same angles and sides of the same length. Geometrically,

±a∗ are the endpoints of the diameter of S2 perpendicular to the plane that

intersects S2 in the great circle passing through b and c: they are called the

poles of this great circle (thus, the north and south poles of S2 are the poles of

the equator).

Note also that ±a are the poles of the great circle through b∗ and c∗, since a
is perpendicular to b∗ and c∗. It follows that the dual triangles of the triangle

with vertices a∗,b∗, c∗ are the original triangle with vertices a,b, c and its

image under the antipodal map. This can also be verified algebraically:

b∗ × c∗ =
(c× a)× (a× b)

‖ c× a ‖‖ a× b ‖ =
((c× a) · b)a

‖ c× a ‖‖ a× b ‖ ,

∴ b∗ × c∗

‖ b∗ × c∗ ‖ = ±a,

the sign being that of (c × a) · b = a · (b × c). Thus, the dual triangle of the

triangle with vertices a∗,b∗, c∗ is the original triangle if a · (b× c) > 0 and is

its image under the antipodal map if a · (b× c) < 0.

Proposition 6.5.5

Let α, β, γ and A,B,C be the angles and the lengths of the sides of a spher-

ical triangle, so that α is the angle opposite the side of length A, etc. Let

α∗, β∗, γ∗, A∗, B∗, C∗ be the corresponding quantities for either of the dual tri-

angles. Then,

α∗ = π −A, β∗ = π −B, γ∗ = π − C,

A∗ = π − α, B∗ = π − β, C∗ = π − γ.

Proof

Denoting the vertices of the triangle by a,b, c as above, Eq. 6.19 gives

cosA∗ = b∗ · c∗ =
(c × a) · (a× b)

‖ c× a ‖‖ a× b ‖ = − cosα,

so, since both α and A∗ are between 0 and π,

A∗ = π − α. (6.22)

The formula α∗ = π−A is obtained by applying Eq. 6.22 to the dual triangles.
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Corollary 6.5.6

With the notation in Proposition 6.5.3, we have

cosA =
cosα+ cosβ cos γ

sinβ sin γ
,

together with two similar formulas obtained by making the permutations A→
B → C → A, α → β → γ → α.

Proof

Just apply part (i) of Proposition 6.5.3 to the dual triangle and use Proposi-

tion 6.5.5.

This formula is important because it shows that the sides of a spherical

triangle are determined by its angles, unlike the situation in plane geometry in

which there are ‘similar’ triangles with the same angles but possibly different

sizes. The ‘reason’ for this is that in spherical geometry there is an absolute

standard of length, namely the radius of the sphere.

Much of Euclidean geometry is concerned with the question of when two

geometrical figures (such as triangles) are congruent, which means that one

figure can be ‘moved’ so that it coincides with the other. The types of ‘mo-

tions’ that are allowed are those that do not change the size or shape of the

triangles, namely the isometries of the plane (see Appendix 1). Hence, we need

to determine the isometries of the sphere.

We know that any isometry of R3 that preserves S2 will give an isometry

of S2 (see Exercise 6.1.2). The following proposition shows that we get all the

isometries of S2 this way (cf. Theorem A.1.5 and its proof).

Proposition 6.5.7

Every isometry of S2 is a composite of reflections in planes passing through

the origin. In fact, at most three reflections are required.

Proof

The first thing to observe is that isometries of S2 must take great circles to great

circles, since these are the curves of shortest length and isometries preserve

length.

Let F be any isometry of S2, and let e1 = (1, 0, 0), e2 = (0, 1, 0) and

e3 = (0, 0, 1). If F (e1) = e1 let G1 be the identity map. Otherwise, let G1 be
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the reflection in the plane perpendicular to the line joining e1 to F (e1) and

passing through its mid-point; note that since ‖ e1 ‖= ‖ F (e1) ‖, this plane

passes through the origin so G1 is an isometry of S2. Then G1 ◦ F fixes e1. If

e2 = G1(F (e2)) let G2 be the identity map. Otherwise, let G2 be the reflection

in the perpendicular bisector of the line joining e2 and G1(F (e2)). Since ‖ e2 ‖
= ‖ G1(F (e2)) ‖ (because F and G1 are isometries), this plane passes through

the origin so G2 is an isometry of S2, and since

‖ e1 −G1(F (e2)) ‖= ‖ G1(F (e1))−G1(F (e2)) ‖= ‖ e1 − e2 ‖,
e1 is fixed by G2. Hence, G2 ◦G1 ◦F fixes e1 and e2. Now the north and south

poles ±e3 are the only two points whose spherical distance from e1 and e2 is

equal to π/2, so G2 ◦ G1 ◦ F must either fix e3 or take it to −e3. In the first

case let G3 be the identity, in the second let G3 be reflection in the xy-plane.

Then, H = G3 ◦G2 ◦G1 ◦ F is an isometry of S2 that fixes e1, e2 and e3.

Since H fixes e1 and e2 it must fix each point of the equator, since the

equator is the unique great circle passing through these two points and any

point on the equator is uniquely determined by its spherical distances from

them. Similarly, H must fix each point of the great circle passing through e1
and e3. If a is any point of S2 other than the poles ±e3, the unique great circle

C passing through a and the poles intersects the equator at a point b, say. Since

H fixes b and the poles, it fixes every point of C by the previous argument. In

particular, H fixes a. Since a was an arbitrary point of the sphere, H must be

the identity map.

Hence, F = G1 ◦G2 ◦G3 is a product of ≤ 3 reflections.

One of the most striking differences between Euclidean and spherical ge-

ometry is contained in the following result, which is strongly suggested by

Corollary 6.5.6.

Proposition 6.5.8

In spherical geometry, similar triangles are congruent.

This means that if two spherical triangles have vertices a,b, c and a′,b′, c′,
and if the angle of the first triangle at a is equal to that of the second triangle

at a′, and similarly for the other two angles, there is an isometry of S2 that

takes a to a′, b to b′ and c to c′. We leave the proof to Exercise 6.5.2.
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EXERCISES

6.5.1 Find the angles and the lengths of the sides of an equilateral spherical

triangle whose area is one quarter of the area of the sphere.

6.5.2 Show that similar spherical triangles are congruent.

6.5.3 The spherical circle of centre p ∈ S2 and radius R is the set of

points of S2 that are a spherical distance R from p. Show that, if

0 ≤ R ≤ π/2:

(i) A spherical circle of radius R is a circle of radius sinR.

(ii) The area inside a spherical circle of radius R is 2π(1− cosR).

What if R > π/2?

6.5.4 This exercise describes the transformations of C∞ corresponding to

the isometries of S2 under the stereographic projection map Π :

S2 → C∞ (Example 6.3.5). If F is any isometry of S2, let F∞ =

Π ◦ F ◦Π−1 be the corresponding bijection C∞ → C∞.

(i) A Möbius transformation

M(w) =
aw + b

cw + d
,

where a, b, c, d ∈ C and ad−bc �= 0, is said to be unitary if d = ā

and c = −b̄ (see Appendix 2). Show that the composite of two

unitary Möbius transformations is unitary and that the inverse

of a unitary Möbius transformation is unitary.

(ii) Show that if F is the reflection in the plane passing through the

origin and perpendicular to the unit vector (a, b) (where a ∈ C,

b ∈ R – see Example 5.3.4), then

F∞(w) =
−aw̄ + b

bw̄ + ā
.

(iii) Deduce that if F is any isometry of S2 there is a unitary Möbius

transformation M such that either F∞ = M or F∞ = M ◦ J
where J(w) = −w̄.

(iv) Show conversely that if M is any unitary Möbius transforma-

tion, the bijections C∞ → C∞ given by M and M ◦ J are both

of the form F∞ for some isometry F of S2.
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