
5
Examples of surfaces

In this chapter we describe some of the simplest classes of surfaces. Others will

be introduced later in the book.

5.1 Level surfaces

As we have already seen (Examples 4.1.3–5 and Exercise 4.1.3), surfaces are

often given to us as level surfaces

{(x, y, z) ∈ R
3 | f(x, y, z) = 0},

where f is a smooth function. In those examples, we constructed atlases by

fairly ad hoc methods. The following result gives general conditions under which

a level surface is a smooth surface. In fact, it deals with a slightly more general

situation in which different regions of a surface may be defined by different

functions.

Theorem 5.1.1

Let S be a subset of R3 with the following property: for each point p ∈ S, there
is an open subset W of R3 containing p and a smooth function f : W → R

such that

(i) S ∩W = {(x, y, z) ∈ W | f(x, y, z) = 0};
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96 5. Examples of surfaces

(ii) The gradient ∇f = (fx, fy, fz) of f does not vanish at p.

Then, S is a smooth surface.

We postpone the proof to Section 5.6.

Example 5.1.2

For the unit sphere S2, we can take W = R
3 and use the single function

f(x, y, z) = x2+y2+z2−1. Then, ∇f = (2x, 2y, 2z) so ‖ ∇f ‖= 2 at all points

of S2. In particular, ∇f is non-zero everywhere on S2. Hence, Theorem 5.1.1

tells us that S2 is a smooth surface.

Example 5.1.3

For the circular cone of Example 4.1.5, f(x, y, z) = x2 + y2 − z2. Hence,

∇f = (2x, 2y,−2z), and this vanishes only at the vertex (0, 0, 0). Theorem 5.1.1

applies with W = {(x, y, z) ∈ R
3 | z �= 0}, so the circular cone with the vertex

removed is a smooth surface, as we have already seen.

A large class of level surfaces is studied in the next section.

EXERCISES

5.1.1 Show that the following are smooth surfaces:

(i) x2 + y2 + z4 = 1.

(ii) (x2 + y2 + z2 + a2 − b2)2 = 4a2(x2 + y2), where a > b > 0 are

constants.

Show that the surface in (ii) is, in fact, the torus of Exercise 4.2.5.

5.1.2 Consider the surface S defined by f(x, y, z) = 0, where f is a smooth

function such that ∇f does not vanish at any point of S. Show that

∇f is perpendicular to the tangent plane at every point of S, and
deduce that S is orientable. Suppose now that F : R

3 → R is a

smooth function. Show that, if the restriction of F to S has a local

maximum or a local minimum at p then, at p, ∇F = λ∇f for

some scalar λ. (This is called Lagrange’s Method of Undetermined

Multipliers.)

5.1.3 Show that the smallest value of x2+y2+z2 subject to the condition

xyz = 1 is 3, and that the points (x, y, z) that give this minimum

value lie at the vertices of a regular tetrahedron in R
3.
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5.2 Quadric surfaces

The simplest level surfaces, namely planes, have Cartesian equations of the

form ax + by + cz = d, where a, b, c, d are constants. From this point of view,

the next simplest surfaces should be those whose Cartesian equations are given

by quadratic expressions in x, y and z.

In this section, we identify any vector v = (x, y, z) ∈ R
3 with the column

matrix

⎛
⎝

x

y

z

⎞
⎠, which we also denote by v. Note that, if v,w ∈ R

3, vtw is a

1× 1 matrix, i.e., a number, namely the dot product v ·w.

Definition 5.2.1

A quadric is the subset of R3 defined by an equation of the form

vtAv+ btv+ c = 0,

where v = (x, y, z), A is a constant symmetric 3×3 matrix, b ∈ R
3 is a constant

vector, and c ∈ R is a constant scalar.

To see this more explicitly, let

A =

⎛
⎝

a1 a4 a6
a4 a2 a5
a6 a5 a3

⎞
⎠ , b = (b1, b2, b3).

Then, the equation of the quadric is

a1x
2 + a2y

2 + a3z
2 + 2a4xy + 2a5yz + 2a6xz + b1x+ b2y + b3z + c = 0. (5.1)

A quadric is not necessarily a surface. For example, the quadric with

equation x2+y2+z2 = 0 is a single point, and that with equation x2+y2 = 0 is

a straight line. A more interesting example is the quadric xy = 0, which is the

union of the two intersecting planes x = 0 and y = 0, and is also not a surface.

(Intuitively, it has a ‘corner’ along the line of intersection of the planes.) The

following proposition shows that to understand all quadrics it is sufficient to

consider quadrics whose equations take on a particularly simple form.

Theorem 5.2.2

By applying a direct isometry of R3, every non-empty quadric (5.1) in which

the coefficients are not all zero can be transformed into one whose Cartesian

equation is one of the following:
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(i) Ellipsoid: x2

p2 + y2

q2 + z2

r2 = 1.

(ii) Hyperboloid of one sheet: x2

p2 + y2

q2 − z2

r2 = 1.

(iii) Hyperboloid of two sheets: z2

r2 − x2

p2 − y2

q2 = 1.
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(iv) Elliptic paraboloid: x2

p2 + y2

q2 = z.

(v) Hyperbolic paraboloid: x2

p2 − y2

q2 = z.

(vi) Quadric cone: x2

p2 + y2

q2 − z2

r2 = 0.
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(vii) Elliptic cylinder: x2

p2 + y2

q2 = 1.

(viii) Hyperbolic cylinder: x2

p2 − y2

q2 = 1.

(ix) Parabolic cylinder: x2

p2 = y.

(x) Plane: x = 0.

(xi) Two parallel planes: x2 = p2.
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(xii) Two intersecting planes: x2

p2 − y2

q2 = 0.

(xiii) Straight line: x2

p2 + y2

q2 = 0.

(xiv) Single point: x2

p2 + y2

q2 + z2

r2 = 0.

In each case, p, q and r are non-zero constants.

Proof

By Theorem A.0.4, there is an orthogonal matrix P such that PAP t is a diag-

onal matrix, say

A′ =

⎛
⎝

a′1 0 0

0 a′2 0

0 0 a′3

⎞
⎠

(P t denotes the transpose of P and I denotes the identity matrix). Then,

det(P ) = ±1, and by replacing P by −P if necessary, we can assume that

det(P ) = 1. The diagonal entries of A′ are the eigenvalues of A, and the rows

of P are the corresponding eigenvectors. Define v′ = (x′, y′, z′), b′ = (b′1, b
′
2, b

′
3),

where ⎛
⎝

x′

y′

z′

⎞
⎠ = P

⎛
⎝

x

y

z

⎞
⎠ ,

⎛
⎝

b′1
b′2
b′3

⎞
⎠ = P

⎛
⎝

b1
b2
b3

⎞
⎠ .

Noting that

⎛
⎝

x

y

z

⎞
⎠ = P t

⎛
⎝

x′

y′

z′

⎞
⎠ ,

⎛
⎝

b1
b2
b3

⎞
⎠ = P t

⎛
⎝

b′1
b′2
b′3

⎞
⎠ ,

the quadric in Definition 5.2.1 becomes

(x′ y′ z′)A′(x′ y′ z′)t + (b′1 b
′
2 b

′
3)(x

′ y′ z′)t + c = 0,

i.e., a′1x
′2 + a′2y

′2 + a′3z
′2 + b′1x

′ + b′2y
′ + b′3z

′ + c = 0.

This new quadric is obtained from the given one by applying the direct isometry

v �→ Pv (see Appendix 1), so we might as well consider the quadric in (5.1),

but assume that a4 = a5 = a6 = 0, i.e.,

a1x
2 + a2y

2 + a3z
2 + b1x+ b2y + b3z + c = 0. (5.2)

Suppose now that, in Eq. 5.2, a1 �= 0. If we define x′ = x + b1/2a1, corre-

sponding to a translation of R3, the equation becomes

a1x
′2 + a2y

2 + a3z
2 + b2y + b3z + c′ = 0,
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where c′ is a constant. In other words, if a1 �= 0, we can assume that b1 = 0,

and similarly for a2 and a3, of course.

If a1, a2 and a3 in Eq. 5.2 are all non-zero, we may therefore reduce to the

form

a1x
2 + a2y

2 + a3z
2 + c = 0.

If c �= 0, we get cases (i), (ii) and (iii), depending on the signs of a1, a2, a3
and c, and if c = 0 we get cases (vi) and (xiv).

If exactly one of a1, a2 and a3 is zero, say a3 = 0, we are reduced to the

form

a1x
2 + a2y

2 + b3z + c = 0. (5.3)

If b3 �= 0, we may define z′ = z+ c/b3. Thus, by a translation (and by dividing

by b3), we are reduced to the case

a1x
2 + a2y

2 + z = 0.

This gives cases (iv) and (v).

If b3 = 0 in Eq. 5.3, we have

a1x
2 + a2y

2 + c = 0.

If c = 0 we get cases (xii) and (xiii). If c �= 0, dividing through by it leads to

cases (vii) and (viii).

Suppose now that a2 = a3 = 0, but a1 �= 0. Then we have

a1x
2 + b2y + b3z + c = 0. (5.4)

If b2 and b3 are not both zero, by applying a rotation in the xz-plane that takes

the y-axis to a line parallel to the vector (b2, b3), we can arrive at the situation

b2 �= 0, b3 = 0, and then by a translation along the y-axis we can arrange that

c = 0. This leads to the equation

a1x
2 + y = 0,

which gives case (ix). If b2 = b3 = 0 in Eq. 5.4, then c = 0 gives case (x) and

c �= 0 gives case (xi).

Finally, if a1 = a2 = a3 = 0, (5.6) is the equation of a plane, so after

applying a Suitable composite of rotations and translations we are in case (x)

again.

Corollary 5.2.3

Every non-empty quadric of types (i)–(x) is a surface (for type (vi) one must

remove the vertex of the cone).
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Proof

This is easily verified using Exercise 4.2.8, Theorem 5.1.1 and the special form

of the equations of quadrics in Theorem 5.2.2.

Example 5.2.4

Consider the quadric

x2 + 2y2 + 6x− 4y + 3z = 7.

Setting x′ = x+ 3, y′ = y − 1 (a translation), we get

x′2 + 2y′2 + 3z = 18.

Setting z′ = z − 6 (another translation) gives

x′2 + 2y′2 + 3z′ = 0.

Finally, setting x′′ = x′, y′′ = −y′, z′′ = −z′ (a rotation by π about the x-axis)

gives
1

3
x′′2 +

2

3
y′′2 = z′′,

which is an elliptic paraboloid. It can be parametrized by setting x′′ = u, y′′ =
v, z′′ = 1

3u
2+ 2

3v
2. This corresponds to x = u− 3, y = 1− v, z = 6− 1

3u
2− 2

3v
2,

and shows that the given quadric is a smooth surface with an atlas consisting

of the single surface patch

σ(u, v) =

(
u− 3, 1− v, 6− 1

3
u2 − 2

3
v2
)
.

EXERCISES

5.2.1 Write down parametrizations of each of the quadrics in parts (i)–(xi)

of Theorem 5.2.2 (in case (vi) one must remove the origin).

5.2.2 Show that the quadric

x2 + y2 − 2z2 − 2

3
xy + 4z = c

is a hyperboloid of one sheet if c > 2, and a hyperboloid of two

sheets if c < 2. What if c = 2? (This exercise requires a knowledge

of eigenvalues and eigenvectors.)
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5.2.3 Show that, if a quadric contains three points on a straight line, it

contains the whole line. Deduce that, if L1, L2 and L3 are non-

intersecting straight lines in R
3, there is a quadric containing all

three lines.

5.2.4 Use the preceding exercise to show that any doubly ruled surface

is (part of) a quadric surface. (A surface is doubly ruled if it is the

union of each of two families of straight lines such that no two lines of

the same family intersect, but every line of the first family intersects

every line of the second family, with at most a finite number of

exceptions.) Which quadric surfaces are doubly ruled?

5.3 Ruled surfaces and surfaces of revolution

Level surfaces have an ‘algebraic’ origin, in that they arise from a function

f(x, y, z). On the other hand, the two classes of surfaces considered in this

section arise from geometric constructions.

Example 5.3.1

A ruled surface is a surface that is a union of straight lines, called the rulings

(or sometimes the generators) of the surface.

q

p

° ±
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Suppose that C is a curve in R
3 that meets each of these lines. Any point p

of the surface lies on one of the given straight lines, which intersects C at q,

say. If γ : (α, β) → R
3 is a parametrization of C with γ(u) = q, and if δ(u) is

a non-zero vector in the direction of the line passing through γ(u), then

p = γ(u) + vδ(u),

for some scalar v. Denoting the right-hand side by σ(u, v), it is clear that σ :

U → R
3 is a smooth map, where U = {(u, v) ∈ R

2 | α < u < β}. Moreover,

denoting d/du by a dot,

σu = γ̇ + vδ̇, σv = δ.

Thus, σ is regular if γ̇ + vδ̇ and δ are linearly independent. This will be true,

for example, if γ̇ and δ are linearly independent and v is sufficiently small.

Thus, to get a surface, the curve C must never be tangent to the rulings.

An important special case is that in which the rulings are all parallel to each

other; the ruled surface S is then called a generalized cylinder. In the above

notation, we can take δ to be a constant unit vector, say a, parallel to the

rulings, and the parametrization becomes

σ(u, v) = γ(u) + va.

a

°

Since

σ(u, v) = σ(u′, v′) ⇐⇒ γ(u)− γ(u′) = (v′ − v)a,

for σ to be a injective (and hence a surface patch), no straight line parallel

to a should meet γ in more than one point. Finally, σu = γ̇, σv = a, so σ is

regular if and only if γ is never tangent to the rulings.

The parametrization is simplest when γ lies in a plane perpendicular to a

(in fact, this can always be achieved by replacing γ by its perpendicular pro-

jection onto such a plane – see Exercise 5.3.3). The regularity condition is then
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clearly satisfied provided γ̇ is never zero, i.e., provided γ is regular. We might

as well take the plane to be the xy-plane and a = (0, 0, 1) to be parallel to the

z-axis. Then, γ(u) = (f(u), g(u), 0) for some smooth functions f and g, and

the parametrization becomes

σ(u, v) = (f(u), g(u), v).

For example, starting with a circle, we get a circular cylinder. Taking the

circle to have centre the origin, radius 1 and to lie in the xy-plane, it can be

parametrized by

γ(u) = (cosu, sinu, 0),

defined for 0 < u < 2π and −π < u < π, say. This gives the atlas for the unit

cylinder found in Example 4.1.3.

The second special case we shall consider is that in which the rulings all

pass through a certain fixed point, say v; then S is called a generalized cone

with vertex v.

P

°

We can take δ(u) = γ(u)− v, giving

σ(u, v) = (1 + v)γ(u)− vv.

Now,

σ(u, v) = σ(u′, v′) ⇐⇒ (1 + v)γ(u)− (1 + v′)γ(u′) + (v′ − v)v = 0;

since (1+v)− (1+v′)+(v′−v) = 0, the equation on the right-hand side means

that the points v, γ(u) and γ(u′) are collinear. So, for σ to be a surface patch,
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no straight line passing through v should pass through more than one point of

γ (in particular, γ should not pass through v). Finally, we have σu = (1+v)γ̇,

σv = γ − v, so σ is regular provided v �= −1, i.e., the vertex of the cone

is omitted (cf. Example 4.1.5), and none of the straight lines forming the cone is

tangent to γ.

The parametrization is simplest when γ lies in a plane. If this plane con-

tains v, the cone is simply part of that plane. Otherwise, we can take v to be

the origin and the plane to be z = 1. Then, γ(u) = (f(u), g(u), 1) for some

smooth functions f and g, and the parametrization takes the form

σ(u, v) = v(f(u), g(u), 1),

after making the reparametrization v �→ v − 1.

Example 5.3.2

A surface of revolution is the surface obtained by rotating a plane curve, called

the profile curve, around a straight line in the plane. The circles obtained by

rotating a fixed point on the profile curve around the axis of rotation are called

the parallels of the surface, and the curves on the surface obtained by rotating

the profile curve through a fixed angle are called its meridians. (This agrees

with the use of these terms in geography, if we think of the earth as the surface

obtained by rotating a circle passing through the poles about the polar axis

and we take u and v to be latitude and longitude, respectively.)

z

°

°(u)

v

v
y

x
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Let us take the axis of rotation to be the z-axis and the plane to be the

xz-plane. Any point p of the surface is obtained by rotating some point q of

the profile curve through an angle v (say) around the z-axis. If

γ(u) = (f(u), 0, g(u))

is a parametrization of the profile curve containing q, p is of the form

σ(u, v) = (f(u) cos v, f(u) sin v, g(u)).

To check regularity, we compute (with a dot denoting d/du):

σu = (ḟ cos v, ḟ sin v, ġ), σv = (−f sin v, f cos v, 0),

∴ σu × σv = (f ġ cos v,−f ġ sin v, f ḟ),

∴ ‖ σu × σv ‖2= f2(ḟ2 + ġ2).

Thus, σu × σv will be non-vanishing if f(u) is never zero, i.e., if γ does not

intersect the z-axis, and if ḟ and ġ are never zero simultaneously, i.e., if γ is

regular. In this case, we might as well assume that f(u) > 0, so that f(u) is

the distance of σ(u, v) from the axis of rotation. Then, σ is injective provided

that γ does not self-intersect and the angle of rotation v is restricted to lie in

an open interval of length ≤ 2π. Under these conditions, surface patches of the

form σ give the surface of revolution the structure of a surface.

EXERCISES

5.3.1 The surface obtained by rotating the curve x = cosh z in the xz-plane

around the z-axis is called a catenoid. Describe an atlas for this

surface.
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5.3.2 Show that

σ(u, v) = (sechu cos v, sechu sin v, tanhu)

is a regular surface patch for S2 (it is called Mercator’s projection).

Show that meridians and parallels on S2 correspond under σ to

perpendicular straight lines in the plane. (This patch is ’derived’ in

Exercise 6.3.3.)

5.3.3 Show that, if σ(u, v) is the (generalized) cylinder in Example 5.3.1:

(i) The curve γ̃(u) = γ(u) − (γ(u) · a)a is contained in a plane

perpendicular to a.

(ii) σ(u, v) = γ̃(u) + ṽa, where ṽ = v + γ(u) · a.
(iii) σ̃(u, ṽ) = γ̃(u) + ṽa is a reparametrization of σ(u, v).

This exercise shows that, when considering a generalized cylinder

σ(u, v) = γ(u) + va, we can always assume that the curve γ is

contained in a plane perpendicular to the vector a.

5.3.4 Consider the ruled surface

σ(u, v) = γ(u) + vδ(u), (5.5)

where ‖ δ(u) ‖= 1 and δ̇(u) �= 0 for all values of u (a dot denotes

d/du). Show that there is a unique point Γ(u), say, on the ruling

through γ(u) at which δ̇(u) is perpendicular to the surface. The

curve Γ is called the line of striction of the ruled surface σ (of course,

it need not be a straight line). Show that Γ̇ · δ̇ = 0. Let ṽ = v+ γ̇·δ̇
‖δ̇‖2

,

and let σ̃(u, ṽ) be the corresponding reparametrization of σ. Then,

σ̃(u, ṽ) = Γ(u) + ṽδ(u). This means that, when considering ruled

surfaces as in (5.5), we can always assume that γ̇ · δ̇ = 0. We shall

make use of this in Chapter 12.

5.4 Compact surfaces

A subset X of R3 is called compact if it is closed (i.e., the set of points in R
3

that are not in X is open) and bounded (i.e., X is contained in some open

ball). On several occasions later in the book we shall be particularly interested

in compact surfaces.

Example 5.4.1

Any sphere is compact. Let us consider the unit sphere S2 for simplicity.

Obviously S2 is bounded as it is contained in the open ball D2(0) (for example).
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To show that S2 is closed, let p be a point not in S2, so that ‖ p ‖ �= 1. Sup-

pose, for example, that ‖ p ‖> 1 (a similar argument applies if ‖ p ‖< 1). Let

ε = ‖ p ‖−1. Then the open ball Dε(p) does not intersect S
2, for if q ∈ Dε(p)

the triangle inequality ‖ p ‖= ‖ (p− q) + q ‖≤ ‖ p− q ‖ + ‖ q ‖ gives

‖ q ‖≥ ‖ p ‖ − ‖ p− q ‖> ‖ p ‖ −ε = 1,

so ‖ q ‖> 1 It follows that the set of points of R3 that are not in S2 is open.

Example 5.4.2

A plane is not compact since it is obviously unbounded.

Example 5.4.3

The open disc

D = {(x, y, z) ∈ R
2 |x2 + y2 < 1, z = 0}

is a non-compact surface. It is obviously bounded (it is contained in D1(0));

it is not closed, however, since the point p = (1, 0, 0) is not in D and for any

ε > 0 the open ball Dε(p) contains the point (1− 1
2ε, 0, 0) which is in D.

It is a surprising result that there are very few compact surfaces in R
3 up to

diffeomorphism, and they can all be described explicitly. We have already seen

the simplest example, the sphere. The next simplest is the torus considered in

Exercise 4.2.5. More generally, one can join such tori together (see above). This

surface is denoted by Tg, where g is the number of holes, called the genus of

the surface (we take g = 0 for the sphere). We accept the following theorem

without proof:
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Theorem 5.4.4

For any integer g ≥ 0, Tg has an atlas making it a smooth surface. Moreover,

every compact surface is diffeomorphic to one of the Tg.

Corollary 5.4.5

Every compact surface is orientable.

Proof

Each of the surfaces Tg obviously has an ‘interior’, which is bounded, and an

‘exterior’ which is unbounded. Hence, we can choose the unit normal at each

point of the surface to point into the exterior region. This provides a smooth

choice of unit normal at every point of the surface Tg, so Tg is orientable. Since

every compact surface is diffeomorphic to one of the surfaces Tg, the corollary

follows from Exercise 4.5.2.

EXERCISES

5.4.1 One of the following surfaces is compact and one is not:

(i) x2 − y2 + z4 = 1.

(ii) x2 + y2 + z4 = 1.

Which is which, and why? Sketch the compact surface.

5.4.2 Explain, without giving a detailed proof, why the tube (Exercise

4.2.7) around a closed curve in R
3 with no self-intersections is a

compact surface diffeomorphic to a torus (provided the tube has

sufficiently small radius).

5.5 Triply orthogonal systems

A triply orthogonal system of surfaces consists of three families of surfaces such

that

(i) Exactly one surface of each family passes through each point of R3 (or of

some open subset of R3).

(ii) Any two surfaces belonging to different families intersect orthogonally.



112 5. Examples of surfaces

The simplest example of such a system is given by the families of planes parallel

to the coordinates planes, namely

x = u, y = v, z = w.

Fixing the value of u (say) determines a particular plane in the first family, and

similarly for the other families. If p = (a, b, c) ∈ R
3, there is a unique plane

from each family passing through p, namely those corresponding to u = a,

v = b and w = c. The orthogonality property (ii) is obviously satisfied.

More generally, suppose that the three families are of the form

U(x, y, z) = u, V (x, y, z) = v, W (x, y, z) = w, (5.6)

where U , V and W are smooth functions of (x, y, z). By Theorem 5.1.1, these

equations determine three families of smooth surfaces provided the vectors∇U ,

∇V and ∇W are non-zero everywhere. Assuming that this condition holds, by

Exercise 5.1.2 the non-zero vector ∇U is then perpendicular to the tangent

plane of the surface U(x, y, z) = u (and similarly for V,W ), so condition (ii) in

the definition of a triply orthogonal system becomes

∇U ·∇V = ∇V ·∇W = ∇W ·∇U = 0. (5.7)

Now consider the smooth function

F (x, y, z) = (U(x, y, z), V (x, y, z),W (x, y, z)).

The Jacobian matrix of F is

J(F ) =

⎛
⎝

Ux Uy Uz

Vx Vy Vz

Wx Wy Wz

⎞
⎠

so the rows of J(F ) are the components of the non-zero vectors ∇U , ∇V and

∇W . By Eq. 5.7, these vectors are orthogonal, and hence linearly indepen-

dent, so the matrix J(F ) is invertible. By the inverse function theorem (see

Section 5.6), Eq. 5.6 can be solved for (x, y, z) in terms of (u, v, w) (at least if

(u, v, w) is restricted to lie in a suitable open subset of R3), say

(x, y, z) = Σ(u, v, w). (5.8)

Then, setting u equal to a constant u0 (say) gives a parametrization (v, w) �→
Σ(u0, v, w) of the surface U(x, y, z) = u0 (and similarly for the other two

families of surfaces).

Regarding x, y, z as functions of u, v, w via Eq. 5.8, we can differentiate both

sides of the equation

U(x, y, z) = u
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with respect to u, v and w. This gives

Uxxu + Uyyu + Uzzu=1

Uxxv + Uyyv + Uzzv=0

Uxxw + Uyyw + Uzzw=0.

These three equations, together with the corresponding equations for V and W ,

can be written in vector form as follows:

∇U ·Σu = 1, ∇U ·Σv = 0, ∇U ·Σw =0,

∇V ·Σu = 0, ∇V ·Σv = 1, ∇V ·Σw =0, (5.9)

∇W ·Σu = 0, ∇W ·Σv = 0, ∇W ·Σw =1.

By Eqs. 5.8 and 5.9, ∇U and Σu are both perpendicular to ∇V and ∇W , so

they are parallel to each other. Thus,Σu is normal to the surface U(x, y, z) = u,

and Σv and Σw are tangent to it (the last statement is also obvious from the

statement at the end of the preceding paragraph).

We shall have more to say about triply orthogonal systems later, but now

we shall describe one of the most beautiful examples of such systems, which

is provided by the theory of quadric surfaces. Let p, q and r be constants such

that 0 < p2 < q2 < r2. For (x, y, z) ∈ R
3, t �= p2, q2 or r2, let

Ft(x, y, z) =
x2

p2 − t
+

y2

q2 − t
+

z2

r2 − t
.

Fix a point (a, b, c) ∈ R
3 with a, b and c all non-zero. The following properties

are clear:

(i) Ft(a, b, c) is a continuous function of t in each of the open intervals

(−∞, p2), (p2, q2), (q2, r2) and (r2,∞).

(ii) Ft(a, b, c) → 0 as t → ±∞.

(iii) Ft(a, b, c) → ∞ as t approaches p2, q2 or r2 from the left, and Ft(a, b, c)

→ −∞ as t approaches p2, q2 or r2 from the right.

It follows from these properties and the intermediate value theorem that

there is at least one value of t in each open interval (−∞, p2), (p2, q2) and

(q2, r2) such that Ft(a, b, c) = 1. On the other hand, the equation Ft(a, b, c) = 1

is equivalent to the cubic equation Gt(a, b, c) = 0, where

Gt(a, b, c) = a2(q2 − t)(r2 − t) + b2(p2 − t)(r2 − t) + c2(p2 − t)(q2 − t)

−(p2 − t)(q2 − t)(r2 − t),
(5.10)
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which has at most three real roots. It follows that there are unique numbers

u ∈ (−∞, p2), v ∈ (p2, q2) and w ∈ (q2, r2) (depending on (a, b, c), of course)

such that

Fu(a, b, c) = 1, Fv(a, b, c) = 1, Fw(a, b, c) = 1. (5.11)

The three quadrics Fu(x, y, z) = 1, Fv(x, y, z) = 1 and Fw(x, y, z) = 1 are

ellipsoids, hyperboloids of one sheet and hyperboloids of two sheets, respec-

tively, and we have shown that there is one of each passing through each point

(a, b, c) ∈ R
3 that does not lie on any of the coordinate planes. We show that

they form a triply orthogonal system.

Indeed, the vector (
x

p2 − t
,

y

q2 − t
,

z

r2 − t

)

is perpendicular to the tangent plane of the surface Ft(x, y, z) = 1 at (x, y, z).

Thus, to show that the first two surfaces in (5.11) are perpendicular at (a, b, c),

for example, we have to show that

a2

(p2 − u)(p2 − v)
+

b2

(q2 − u)(q2 − v)
+

c2

(r2 − u)(r2 − v)
= 0.

But the left-hand side of this equation is

Fu(a, b, c)− Fv(a, b, c)

u− v
=

1− 1

u− v
= 0.
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We can also construct a simultaneous parametrization of the three families.

Note that the cubic Gt(a, b, c) in (5.10) is equal to (t−u)(t− v)(t−w), since it

is divisible by this product and the coefficients of t3 agree. Putting t = p2, q2

and r2 and solving the resulting equations for a2, b2 and c2, we find that

a =±
√

(p2 − u)(p2 − v)(p2 − w)

(r2 − p2)(q2 − p2)
,

b =±
√

(q2 − u)(q2 − v)(q2 − w)

(p2 − q2)(r2 − q2)
, (5.12)

c =±
√

(r2 − u)(r2 − v)(r2 − w)

(p2 − r2)(q2 − r2)
.

Define σ(u, v, w) = (x, y, z), where x, y and z are the right-hand sides of

the three equations in (5.12), respectively, with any combination of signs.

For fixed u (resp. fixed v, fixed w), this gives eight surface patches for

the corresponding ellipsoid Fu(x, y, z) = 1 (resp. hyperboloid of one sheet

Fv(x, y, z) = 1, hyperboloid of two sheets Fw(x, y, z) = 1).

EXERCISES

5.5.1 Show that the following are triply orthogonal systems:

(i) The spheres with centre the origin, the planes containing the

z-axis and the circular cones with axis the z-axis.

(ii) The planes parallel to the xy-plane, the planes containing the

z-axis and the circular cylinders with axis the z-axis.

5.5.2 By considering the quadric surface Ft(x, y, z) = 0, where

Ft(x, y, z) =
x2

p2 − t
+

y2

q2 − t
− 2z + t,
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construct a triply orthogonal system (illustrated above) consisting

of two families of elliptic paraboloids and one family of hyperbolic

paraboloids. Find a parametrization of these surfaces analogous to

(5.12).

5.6 Applications of the inverse function theorem

In this section we give the proofs of Propositions 4.2.6 and 4.4.6 and

Theorem 5.1.1.

Suppose first that f : U → R
n is a smooth map, where U is an open subset

of Rm. If we write (ũ1, . . . , ũn) = f(u1, . . . , um), the Jacobian matrix of f is

J(f) =

⎛
⎜⎜⎜⎜⎝

∂ũ1

∂u1

∂ũ1

∂u2
· · · ∂ũ1

∂um
∂ũ2

∂u1

∂ũ2

∂u2
· · · ∂ũ2

∂um

...
...

. . .
...

∂ũn

∂u1

∂ũn

∂u2
· · · ∂ũn

∂um

⎞
⎟⎟⎟⎟⎠

.

This has already been used in the case m = n = 2 in Section 4.2, but now we

shall need it in other cases too.

The main tool that we use is the following theorem.

Theorem 5.6.1 (Inverse Function Theorem)

Let f : U → R
n be a smooth map defined on an open subset U of Rn (n ≥ 1).

Assume that, at some point x0 ∈ U , the Jacobian matrix J(f) is invertible.

Then, there is an open subset V of Rn and a smooth map g : V → R
n such

that

(i) y0 = f(x0) ∈ V

(ii) g(y0) = x0

(iii) g(V ) ⊆ U

(iv) g(V ) is an open subset of Rn

(v) f(g(y)) = y for all y ∈ V

In particular, g : V → g(V ) and f : g(V ) → V are inverse bijections.

Thus, the inverse function theorem says that, if J(f) is invertible at some

point, then f is bijective near that point and its inverse map is smooth. A proof

of this theorem can be found in books on multivariable calculus.
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As our first application of Theorem 5.6.1, we complete the proof of

Proposition 4.4.6. Suppose then that f : S → S̃ is a smooth map between sur-

faces S and S̃, let p ∈ S and assume that the linear map Dpf : TpS → Tf(p)S̃
is invertible. Let σ : U → R

3 be a surface patch of S containing p, say

σ(u0, v0) = p, and let σ̃ : Ũ → R
3 be a surface patch of S̃ containing f(p). By

shrinking U if necessary, we can assume that f maps σ(U) into σ̃(Ũ). Since f

is smooth, there are smooth functions α : U → R and β : U → R such that

f(σ(u, v)) = σ̃(α(u, v), β(u, v)).

From the remarks following Proposition 4.4.4, the matrix of Dpf with respect

to the bases {σu,σv} of TpS and {σ̃ũ, σ̃ṽ} of Tf(p)S̃ is the Jacobian matrix

(
αu αv

βu βv

)
.

Since Dpf is invertible, so is this matrix. By the inverse function theorem, the

smooth map U → R
2 given by (u, v) �→ (α(u, v), β(u, v)) is a diffeomorphism

from an open subset V (say) of U containing (u0, v0) to an open subset Ṽ

(say) of Ũ . Then O = σ(V ) and Õ = σ̃(Ṽ ) are open subsets of S and S̃,
respectively, and f is a diffeomorphism from O to Õ. This proves that f is a

local diffeomorphism.

We now give the proof of Proposition 4.2.6. We want to show that, if σ :

U → R
3 and σ̃ : Ũ → R

3 are two regular patches in the atlas of a surface S,
the transition map from σ to σ̃ is smooth where it is defined.

Suppose that a point p lies in both patches, say σ(u0, v0) = σ̃(ũ0, ṽ0) = p.

Write

σ(u, v) = (f(u, v), g(u, v), h(u, v)).

Since σu and σv are linearly independent, the Jacobian matrix

⎛
⎝

fu fv
gu gv
hu hv

⎞
⎠

of σ has rank 2 everywhere. Hence, at least one of its three 2× 2 submatrices

is invertible at each point. Suppose that the submatrix

(
fu fv
gu gv

)

is invertible at p. (The proof is similar in the other two cases.) By the inverse

function theorem applied to the map F : U → R
2 given by

F (u, v) = (f(u, v), g(u, v)),
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there is an open subset V of R2 containing F (u0, v0) and an open subset W of

U containing (u0, v0) such that F : W → V is bijective with a smooth inverse

F−1 : V → W . Since σ : W → σ(W ) is bijective, the projection π : σ(W ) → V

given by π(x, y, z) = (x, y) is also bijective, since π = F ◦ σ−1 on σ(W ). It

follows that W̃ = σ̃−1(σ(W )) is an open subset of Ũ and that

σ−1 ◦ σ̃ = F−1 ◦ F̃
on W̃ , where F̃ = π◦σ̃. Since F−1 and F̃ are smooth on W̃ , so is the transition

map σ−1 ◦ σ̃. Since σ−1 ◦ σ̃ is smooth on an open set containing any point

(u0, v0) where it is defined, it is smooth.

Finally, we give the proof of Theorem 5.1.1. Let p, W and f be as in the

statement of the theorem, and suppose that p = (x0, y0, z0) and that fz �= 0

at p. (The proof is similar in the other two cases.) Consider the map F : W →
R

3 defined by
F (x, y, z) = (x, y, f(x, y, z)).

The Jacobian matrix of F is
⎛
⎝

1 0 0

0 1 0

fx fy fz

⎞
⎠ ,

and is clearly invertible at p since fz �= 0. By the inverse function theorem,

there is an open subset V of R3 containing F (x0, y0, z0) = (x0, y0, 0) and a

smooth map G : V → W such that W̃ = G(V ) is open and F : W̃ → V and

G : V → W̃ are inverse bijections.

Since V is open, there are open subsets U1 of R2 containing (x0, y0) and

U2 of R containing 0 such that V contains the open set U1 × U2 of all points

(x, y, w) with (x, y) ∈ U1 and w ∈ U2. Hence, we might as well assume that

V = U1 × U2. The fact that F and G are inverse bijections means that

G(x, y, w) = (x, y, g(x, y, w))

for some smooth map g : U1 × U2 → R, and

f(x, y, g(x, y, w)) = w

for all (x, y) ∈ U1, w ∈ U2.

Define σ : U1 → R
3 by

σ(x, y) = (x, y, g(x, y, 0)).

Then σ is a homeomorphism from U1 to S∩W̃ (whose inverse is the restriction

to S ∩ W̃ of the projection π(x, y, z) = (x, y)). It is obvious that σ is smooth,

and it is regular because

σx × σy = (−gx,−gy, 1)
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is nowhere zero. So σ is a regular surface patch on S containing the given

point p. Since p was an arbitrary point of S, we have constructed an atlas for

S making it into a (smooth) surface.

EXERCISES

5.6.1 Show that, if γ : (α, β) → R
3 is a curve whose image is contained

in a surface patch σ : U → R
3, then γ(t) = σ(u(t), v(t)) for some

smooth map (α, β) → U , t �→ (u(t), v(t)).

5.6.2 Prove Theorem 1.5.1 and its analogue for level curves in R
3

(Exercise 1.5.1).

5.6.3 Let σ : U → R
3 be a smooth map such that σu × σv �= 0 at some

point (u0, v0) ∈ U . Show that there is an open subset W of U con-

taining (u0, v0) such that the restriction of σ to W is injective. Note

that, in the text, surface patches are injective by definition, but this

exercise shows that injectivity near a given point is a consequence

of regularity.

5.6.4 Let σ : U → R
3 be a regular surface patch, let (u0, v0) ∈ U and let

σ(u0, v0) = (x0, y0, z0). Suppose that the unit normal N(u0, v0) is

not parallel to the xy-plane. Show that there is an open set V in R
2

containing (x0, y0), an open subset W of U containing (u0, v0) and

a smooth function ϕ : V → R such that σ̃(x, y) = (x, y, ϕ(x, y)) is

a reparametrization of σ : W → R
3. Thus, ‘near’ p, the surface is

part of the graph z = ϕ(x, y).

What happens if N(u0, v0) is parallel to the xy-plane?
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